xref: /freebsd/sys/vm/vm_object.c (revision c4eb8f475a00040ffa2e99fdce5b56bbfc2cd00d)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 #define EASY_SCAN_FACTOR       8
100 
101 #define MSYNC_FLUSH_HARDSEQ	0x01
102 #define MSYNC_FLUSH_SOFTSEQ	0x02
103 
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
109     "Enable sequential iteration optimization");
110 
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114 
115 static void	vm_object_qcollapse(vm_object_t object);
116 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
117 static void	vm_object_vndeallocate(vm_object_t object);
118 
119 /*
120  *	Virtual memory objects maintain the actual data
121  *	associated with allocated virtual memory.  A given
122  *	page of memory exists within exactly one object.
123  *
124  *	An object is only deallocated when all "references"
125  *	are given up.  Only one "reference" to a given
126  *	region of an object should be writeable.
127  *
128  *	Associated with each object is a list of all resident
129  *	memory pages belonging to that object; this list is
130  *	maintained by the "vm_page" module, and locked by the object's
131  *	lock.
132  *
133  *	Each object also records a "pager" routine which is
134  *	used to retrieve (and store) pages to the proper backing
135  *	storage.  In addition, objects may be backed by other
136  *	objects from which they were virtual-copied.
137  *
138  *	The only items within the object structure which are
139  *	modified after time of creation are:
140  *		reference count		locked by object's lock
141  *		pager routine		locked by object's lock
142  *
143  */
144 
145 struct object_q vm_object_list;
146 struct mtx vm_object_list_mtx;	/* lock for object list and count */
147 
148 struct vm_object kernel_object_store;
149 struct vm_object kmem_object_store;
150 
151 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
152 
153 static long object_collapses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
155     &object_collapses, 0, "VM object collapses");
156 
157 static long object_bypasses;
158 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159     &object_bypasses, 0, "VM object bypasses");
160 
161 static uma_zone_t obj_zone;
162 
163 static int vm_object_zinit(void *mem, int size, int flags);
164 
165 #ifdef INVARIANTS
166 static void vm_object_zdtor(void *mem, int size, void *arg);
167 
168 static void
169 vm_object_zdtor(void *mem, int size, void *arg)
170 {
171 	vm_object_t object;
172 
173 	object = (vm_object_t)mem;
174 	KASSERT(TAILQ_EMPTY(&object->memq),
175 	    ("object %p has resident pages",
176 	    object));
177 #if VM_NRESERVLEVEL > 0
178 	KASSERT(LIST_EMPTY(&object->rvq),
179 	    ("object %p has reservations",
180 	    object));
181 #endif
182 	KASSERT(object->cache == NULL,
183 	    ("object %p has cached pages",
184 	    object));
185 	KASSERT(object->paging_in_progress == 0,
186 	    ("object %p paging_in_progress = %d",
187 	    object, object->paging_in_progress));
188 	KASSERT(object->resident_page_count == 0,
189 	    ("object %p resident_page_count = %d",
190 	    object, object->resident_page_count));
191 	KASSERT(object->shadow_count == 0,
192 	    ("object %p shadow_count = %d",
193 	    object, object->shadow_count));
194 }
195 #endif
196 
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200 	vm_object_t object;
201 
202 	object = (vm_object_t)mem;
203 	bzero(&object->mtx, sizeof(object->mtx));
204 	VM_OBJECT_LOCK_INIT(object, "standard object");
205 
206 	/* These are true for any object that has been freed */
207 	object->paging_in_progress = 0;
208 	object->resident_page_count = 0;
209 	object->shadow_count = 0;
210 	return (0);
211 }
212 
213 void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216 
217 	TAILQ_INIT(&object->memq);
218 	LIST_INIT(&object->shadow_head);
219 
220 	object->root = NULL;
221 	object->type = type;
222 	object->size = size;
223 	object->generation = 1;
224 	object->ref_count = 1;
225 	object->memattr = VM_MEMATTR_DEFAULT;
226 	object->flags = 0;
227 	object->uip = NULL;
228 	object->charge = 0;
229 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
230 		object->flags = OBJ_ONEMAPPING;
231 	object->pg_color = 0;
232 	object->handle = NULL;
233 	object->backing_object = NULL;
234 	object->backing_object_offset = (vm_ooffset_t) 0;
235 #if VM_NRESERVLEVEL > 0
236 	LIST_INIT(&object->rvq);
237 #endif
238 	object->cache = NULL;
239 
240 	mtx_lock(&vm_object_list_mtx);
241 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242 	mtx_unlock(&vm_object_list_mtx);
243 }
244 
245 /*
246  *	vm_object_init:
247  *
248  *	Initialize the VM objects module.
249  */
250 void
251 vm_object_init(void)
252 {
253 	TAILQ_INIT(&vm_object_list);
254 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255 
256 	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
257 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258 	    kernel_object);
259 #if VM_NRESERVLEVEL > 0
260 	kernel_object->flags |= OBJ_COLORED;
261 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263 
264 	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
265 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266 	    kmem_object);
267 #if VM_NRESERVLEVEL > 0
268 	kmem_object->flags |= OBJ_COLORED;
269 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270 #endif
271 
272 	/*
273 	 * The lock portion of struct vm_object must be type stable due
274 	 * to vm_pageout_fallback_object_lock locking a vm object
275 	 * without holding any references to it.
276 	 */
277 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278 #ifdef INVARIANTS
279 	    vm_object_zdtor,
280 #else
281 	    NULL,
282 #endif
283 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284 }
285 
286 void
287 vm_object_clear_flag(vm_object_t object, u_short bits)
288 {
289 
290 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291 	object->flags &= ~bits;
292 }
293 
294 /*
295  *	Sets the default memory attribute for the specified object.  Pages
296  *	that are allocated to this object are by default assigned this memory
297  *	attribute.
298  *
299  *	Presently, this function must be called before any pages are allocated
300  *	to the object.  In the future, this requirement may be relaxed for
301  *	"default" and "swap" objects.
302  */
303 int
304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305 {
306 
307 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308 	switch (object->type) {
309 	case OBJT_DEFAULT:
310 	case OBJT_DEVICE:
311 	case OBJT_PHYS:
312 	case OBJT_SG:
313 	case OBJT_SWAP:
314 	case OBJT_VNODE:
315 		if (!TAILQ_EMPTY(&object->memq))
316 			return (KERN_FAILURE);
317 		break;
318 	case OBJT_DEAD:
319 		return (KERN_INVALID_ARGUMENT);
320 	}
321 	object->memattr = memattr;
322 	return (KERN_SUCCESS);
323 }
324 
325 void
326 vm_object_pip_add(vm_object_t object, short i)
327 {
328 
329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330 	object->paging_in_progress += i;
331 }
332 
333 void
334 vm_object_pip_subtract(vm_object_t object, short i)
335 {
336 
337 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338 	object->paging_in_progress -= i;
339 }
340 
341 void
342 vm_object_pip_wakeup(vm_object_t object)
343 {
344 
345 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346 	object->paging_in_progress--;
347 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
348 		vm_object_clear_flag(object, OBJ_PIPWNT);
349 		wakeup(object);
350 	}
351 }
352 
353 void
354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356 
357 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
358 	if (i)
359 		object->paging_in_progress -= i;
360 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
361 		vm_object_clear_flag(object, OBJ_PIPWNT);
362 		wakeup(object);
363 	}
364 }
365 
366 void
367 vm_object_pip_wait(vm_object_t object, char *waitid)
368 {
369 
370 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
371 	while (object->paging_in_progress) {
372 		object->flags |= OBJ_PIPWNT;
373 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
374 	}
375 }
376 
377 /*
378  *	vm_object_allocate:
379  *
380  *	Returns a new object with the given size.
381  */
382 vm_object_t
383 vm_object_allocate(objtype_t type, vm_pindex_t size)
384 {
385 	vm_object_t object;
386 
387 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
388 	_vm_object_allocate(type, size, object);
389 	return (object);
390 }
391 
392 
393 /*
394  *	vm_object_reference:
395  *
396  *	Gets another reference to the given object.  Note: OBJ_DEAD
397  *	objects can be referenced during final cleaning.
398  */
399 void
400 vm_object_reference(vm_object_t object)
401 {
402 	if (object == NULL)
403 		return;
404 	VM_OBJECT_LOCK(object);
405 	vm_object_reference_locked(object);
406 	VM_OBJECT_UNLOCK(object);
407 }
408 
409 /*
410  *	vm_object_reference_locked:
411  *
412  *	Gets another reference to the given object.
413  *
414  *	The object must be locked.
415  */
416 void
417 vm_object_reference_locked(vm_object_t object)
418 {
419 	struct vnode *vp;
420 
421 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422 	object->ref_count++;
423 	if (object->type == OBJT_VNODE) {
424 		vp = object->handle;
425 		vref(vp);
426 	}
427 }
428 
429 /*
430  * Handle deallocating an object of type OBJT_VNODE.
431  */
432 static void
433 vm_object_vndeallocate(vm_object_t object)
434 {
435 	struct vnode *vp = (struct vnode *) object->handle;
436 
437 	VFS_ASSERT_GIANT(vp->v_mount);
438 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439 	KASSERT(object->type == OBJT_VNODE,
440 	    ("vm_object_vndeallocate: not a vnode object"));
441 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
442 #ifdef INVARIANTS
443 	if (object->ref_count == 0) {
444 		vprint("vm_object_vndeallocate", vp);
445 		panic("vm_object_vndeallocate: bad object reference count");
446 	}
447 #endif
448 
449 	object->ref_count--;
450 	if (object->ref_count == 0) {
451 		mp_fixme("Unlocked vflag access.");
452 		vp->v_vflag &= ~VV_TEXT;
453 	}
454 	VM_OBJECT_UNLOCK(object);
455 	/*
456 	 * vrele may need a vop lock
457 	 */
458 	vrele(vp);
459 }
460 
461 /*
462  *	vm_object_deallocate:
463  *
464  *	Release a reference to the specified object,
465  *	gained either through a vm_object_allocate
466  *	or a vm_object_reference call.  When all references
467  *	are gone, storage associated with this object
468  *	may be relinquished.
469  *
470  *	No object may be locked.
471  */
472 void
473 vm_object_deallocate(vm_object_t object)
474 {
475 	vm_object_t temp;
476 
477 	while (object != NULL) {
478 		int vfslocked;
479 
480 		vfslocked = 0;
481 	restart:
482 		VM_OBJECT_LOCK(object);
483 		if (object->type == OBJT_VNODE) {
484 			struct vnode *vp = (struct vnode *) object->handle;
485 
486 			/*
487 			 * Conditionally acquire Giant for a vnode-backed
488 			 * object.  We have to be careful since the type of
489 			 * a vnode object can change while the object is
490 			 * unlocked.
491 			 */
492 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
493 				vfslocked = 1;
494 				if (!mtx_trylock(&Giant)) {
495 					VM_OBJECT_UNLOCK(object);
496 					mtx_lock(&Giant);
497 					goto restart;
498 				}
499 			}
500 			vm_object_vndeallocate(object);
501 			VFS_UNLOCK_GIANT(vfslocked);
502 			return;
503 		} else
504 			/*
505 			 * This is to handle the case that the object
506 			 * changed type while we dropped its lock to
507 			 * obtain Giant.
508 			 */
509 			VFS_UNLOCK_GIANT(vfslocked);
510 
511 		KASSERT(object->ref_count != 0,
512 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
513 
514 		/*
515 		 * If the reference count goes to 0 we start calling
516 		 * vm_object_terminate() on the object chain.
517 		 * A ref count of 1 may be a special case depending on the
518 		 * shadow count being 0 or 1.
519 		 */
520 		object->ref_count--;
521 		if (object->ref_count > 1) {
522 			VM_OBJECT_UNLOCK(object);
523 			return;
524 		} else if (object->ref_count == 1) {
525 			if (object->shadow_count == 0 &&
526 			    object->handle == NULL &&
527 			    (object->type == OBJT_DEFAULT ||
528 			     object->type == OBJT_SWAP)) {
529 				vm_object_set_flag(object, OBJ_ONEMAPPING);
530 			} else if ((object->shadow_count == 1) &&
531 			    (object->handle == NULL) &&
532 			    (object->type == OBJT_DEFAULT ||
533 			     object->type == OBJT_SWAP)) {
534 				vm_object_t robject;
535 
536 				robject = LIST_FIRST(&object->shadow_head);
537 				KASSERT(robject != NULL,
538 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
539 					 object->ref_count,
540 					 object->shadow_count));
541 				if (!VM_OBJECT_TRYLOCK(robject)) {
542 					/*
543 					 * Avoid a potential deadlock.
544 					 */
545 					object->ref_count++;
546 					VM_OBJECT_UNLOCK(object);
547 					/*
548 					 * More likely than not the thread
549 					 * holding robject's lock has lower
550 					 * priority than the current thread.
551 					 * Let the lower priority thread run.
552 					 */
553 					pause("vmo_de", 1);
554 					continue;
555 				}
556 				/*
557 				 * Collapse object into its shadow unless its
558 				 * shadow is dead.  In that case, object will
559 				 * be deallocated by the thread that is
560 				 * deallocating its shadow.
561 				 */
562 				if ((robject->flags & OBJ_DEAD) == 0 &&
563 				    (robject->handle == NULL) &&
564 				    (robject->type == OBJT_DEFAULT ||
565 				     robject->type == OBJT_SWAP)) {
566 
567 					robject->ref_count++;
568 retry:
569 					if (robject->paging_in_progress) {
570 						VM_OBJECT_UNLOCK(object);
571 						vm_object_pip_wait(robject,
572 						    "objde1");
573 						temp = robject->backing_object;
574 						if (object == temp) {
575 							VM_OBJECT_LOCK(object);
576 							goto retry;
577 						}
578 					} else if (object->paging_in_progress) {
579 						VM_OBJECT_UNLOCK(robject);
580 						object->flags |= OBJ_PIPWNT;
581 						msleep(object,
582 						    VM_OBJECT_MTX(object),
583 						    PDROP | PVM, "objde2", 0);
584 						VM_OBJECT_LOCK(robject);
585 						temp = robject->backing_object;
586 						if (object == temp) {
587 							VM_OBJECT_LOCK(object);
588 							goto retry;
589 						}
590 					} else
591 						VM_OBJECT_UNLOCK(object);
592 
593 					if (robject->ref_count == 1) {
594 						robject->ref_count--;
595 						object = robject;
596 						goto doterm;
597 					}
598 					object = robject;
599 					vm_object_collapse(object);
600 					VM_OBJECT_UNLOCK(object);
601 					continue;
602 				}
603 				VM_OBJECT_UNLOCK(robject);
604 			}
605 			VM_OBJECT_UNLOCK(object);
606 			return;
607 		}
608 doterm:
609 		temp = object->backing_object;
610 		if (temp != NULL) {
611 			VM_OBJECT_LOCK(temp);
612 			LIST_REMOVE(object, shadow_list);
613 			temp->shadow_count--;
614 			temp->generation++;
615 			VM_OBJECT_UNLOCK(temp);
616 			object->backing_object = NULL;
617 		}
618 		/*
619 		 * Don't double-terminate, we could be in a termination
620 		 * recursion due to the terminate having to sync data
621 		 * to disk.
622 		 */
623 		if ((object->flags & OBJ_DEAD) == 0)
624 			vm_object_terminate(object);
625 		else
626 			VM_OBJECT_UNLOCK(object);
627 		object = temp;
628 	}
629 }
630 
631 /*
632  *	vm_object_destroy removes the object from the global object list
633  *      and frees the space for the object.
634  */
635 void
636 vm_object_destroy(vm_object_t object)
637 {
638 
639 	/*
640 	 * Remove the object from the global object list.
641 	 */
642 	mtx_lock(&vm_object_list_mtx);
643 	TAILQ_REMOVE(&vm_object_list, object, object_list);
644 	mtx_unlock(&vm_object_list_mtx);
645 
646 	/*
647 	 * Release the allocation charge.
648 	 */
649 	if (object->uip != NULL) {
650 		KASSERT(object->type == OBJT_DEFAULT ||
651 		    object->type == OBJT_SWAP,
652 		    ("vm_object_terminate: non-swap obj %p has uip",
653 		     object));
654 		swap_release_by_uid(object->charge, object->uip);
655 		object->charge = 0;
656 		uifree(object->uip);
657 		object->uip = NULL;
658 	}
659 
660 	/*
661 	 * Free the space for the object.
662 	 */
663 	uma_zfree(obj_zone, object);
664 }
665 
666 /*
667  *	vm_object_terminate actually destroys the specified object, freeing
668  *	up all previously used resources.
669  *
670  *	The object must be locked.
671  *	This routine may block.
672  */
673 void
674 vm_object_terminate(vm_object_t object)
675 {
676 	vm_page_t p;
677 
678 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679 
680 	/*
681 	 * Make sure no one uses us.
682 	 */
683 	vm_object_set_flag(object, OBJ_DEAD);
684 
685 	/*
686 	 * wait for the pageout daemon to be done with the object
687 	 */
688 	vm_object_pip_wait(object, "objtrm");
689 
690 	KASSERT(!object->paging_in_progress,
691 		("vm_object_terminate: pageout in progress"));
692 
693 	/*
694 	 * Clean and free the pages, as appropriate. All references to the
695 	 * object are gone, so we don't need to lock it.
696 	 */
697 	if (object->type == OBJT_VNODE) {
698 		struct vnode *vp = (struct vnode *)object->handle;
699 
700 		/*
701 		 * Clean pages and flush buffers.
702 		 */
703 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704 		VM_OBJECT_UNLOCK(object);
705 
706 		vinvalbuf(vp, V_SAVE, 0, 0);
707 
708 		VM_OBJECT_LOCK(object);
709 	}
710 
711 	KASSERT(object->ref_count == 0,
712 		("vm_object_terminate: object with references, ref_count=%d",
713 		object->ref_count));
714 
715 	/*
716 	 * Now free any remaining pages. For internal objects, this also
717 	 * removes them from paging queues. Don't free wired pages, just
718 	 * remove them from the object.
719 	 */
720 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
721 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
722 			("vm_object_terminate: freeing busy page %p "
723 			"p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
724 		vm_page_lock(p);
725 		if (p->wire_count == 0) {
726 			vm_page_free(p);
727 			PCPU_INC(cnt.v_pfree);
728 		} else
729 			vm_page_remove(p);
730 		vm_page_unlock(p);
731 	}
732 
733 #if VM_NRESERVLEVEL > 0
734 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
735 		vm_reserv_break_all(object);
736 #endif
737 	if (__predict_false(object->cache != NULL))
738 		vm_page_cache_free(object, 0, 0);
739 
740 	/*
741 	 * Let the pager know object is dead.
742 	 */
743 	vm_pager_deallocate(object);
744 	VM_OBJECT_UNLOCK(object);
745 
746 	vm_object_destroy(object);
747 }
748 
749 /*
750  *	vm_object_page_clean
751  *
752  *	Clean all dirty pages in the specified range of object.  Leaves page
753  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
754  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
755  *	leaving the object dirty.
756  *
757  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
758  *	synchronous clustering mode implementation.
759  *
760  *	Odd semantics: if start == end, we clean everything.
761  *
762  *	The object must be locked.
763  */
764 void
765 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
766 {
767 	vm_page_t p, np;
768 	vm_pindex_t tstart, tend;
769 	vm_pindex_t pi;
770 	int clearobjflags;
771 	int pagerflags;
772 	int curgeneration;
773 
774 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
775 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
776 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0)
777 		return;
778 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
779 
780 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
781 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
782 
783 	vm_object_set_flag(object, OBJ_CLEANING);
784 
785 	tstart = start;
786 	if (end == 0) {
787 		tend = object->size;
788 	} else {
789 		tend = end;
790 	}
791 
792 	/*
793 	 * If the caller is smart and only msync()s a range he knows is
794 	 * dirty, we may be able to avoid an object scan.  This results in
795 	 * a phenominal improvement in performance.  We cannot do this
796 	 * as a matter of course because the object may be huge - e.g.
797 	 * the size might be in the gigabytes or terrabytes.
798 	 */
799 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
800 		vm_pindex_t tscan;
801 		int scanlimit;
802 		int scanreset;
803 
804 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
805 		if (scanreset < 16)
806 			scanreset = 16;
807 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
808 
809 		scanlimit = scanreset;
810 		tscan = tstart;
811 		while (tscan < tend) {
812 			curgeneration = object->generation;
813 			p = vm_page_lookup(object, tscan);
814 			if (p == NULL || p->valid == 0) {
815 				if (--scanlimit == 0)
816 					break;
817 				++tscan;
818 				continue;
819 			}
820 			vm_page_lock(p);
821 			vm_page_lock_queues();
822 			vm_page_test_dirty(p);
823 			if (p->dirty == 0) {
824 				vm_page_unlock_queues();
825 				vm_page_unlock(p);
826 				if (--scanlimit == 0)
827 					break;
828 				++tscan;
829 				continue;
830 			}
831 			vm_page_unlock_queues();
832 			vm_page_unlock(p);
833 			/*
834 			 * If we have been asked to skip nosync pages and
835 			 * this is a nosync page, we can't continue.
836 			 */
837 			if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
838 				if (--scanlimit == 0)
839 					break;
840 				++tscan;
841 				continue;
842 			}
843 			scanlimit = scanreset;
844 
845 			/*
846 			 * This returns 0 if it was unable to busy the first
847 			 * page (i.e. had to sleep).
848 			 */
849 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
850 
851 		}
852 
853 		/*
854 		 * If everything was dirty and we flushed it successfully,
855 		 * and the requested range is not the entire object, we
856 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
857 		 * return immediately.
858 		 */
859 		if (tscan >= tend && (tstart || tend < object->size)) {
860 			vm_object_clear_flag(object, OBJ_CLEANING);
861 			return;
862 		}
863 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
864 	}
865 
866 	/*
867 	 * Generally set CLEANCHK interlock and make the page read-only so
868 	 * we can then clear the object flags.
869 	 *
870 	 * However, if this is a nosync mmap then the object is likely to
871 	 * stay dirty so do not mess with the page and do not clear the
872 	 * object flags.
873 	 */
874 	clearobjflags = 1;
875 	TAILQ_FOREACH(p, &object->memq, listq) {
876 		p->oflags |= VPO_CLEANCHK;
877 		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
878 			clearobjflags = 0;
879 		else
880 			pmap_remove_write(p);
881 	}
882 
883 	if (clearobjflags && (tstart == 0) && (tend == object->size))
884 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
885 
886 rescan:
887 	curgeneration = object->generation;
888 
889 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
890 		int n;
891 
892 		np = TAILQ_NEXT(p, listq);
893 
894 again:
895 		pi = p->pindex;
896 		if ((p->oflags & VPO_CLEANCHK) == 0 ||
897 			(pi < tstart) || (pi >= tend) ||
898 		    p->valid == 0) {
899 			p->oflags &= ~VPO_CLEANCHK;
900 			continue;
901 		}
902 
903 		vm_page_lock(p);
904 		vm_page_lock_queues();
905 		vm_page_test_dirty(p);
906 		if (p->dirty == 0) {
907 			vm_page_unlock_queues();
908 			vm_page_unlock(p);
909 			p->oflags &= ~VPO_CLEANCHK;
910 			continue;
911 		}
912 		vm_page_unlock_queues();
913 		vm_page_unlock(p);
914 		/*
915 		 * If we have been asked to skip nosync pages and this is a
916 		 * nosync page, skip it.  Note that the object flags were
917 		 * not cleared in this case so we do not have to set them.
918 		 */
919 		if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
920 			p->oflags &= ~VPO_CLEANCHK;
921 			continue;
922 		}
923 
924 		n = vm_object_page_collect_flush(object, p,
925 			curgeneration, pagerflags);
926 		if (n == 0)
927 			goto rescan;
928 
929 		if (object->generation != curgeneration)
930 			goto rescan;
931 
932 		/*
933 		 * Try to optimize the next page.  If we can't we pick up
934 		 * our (random) scan where we left off.
935 		 */
936 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ)
937 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
938 				goto again;
939 	}
940 #if 0
941 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
942 #endif
943 
944 	vm_object_clear_flag(object, OBJ_CLEANING);
945 	return;
946 }
947 
948 static int
949 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
950 {
951 	int runlen;
952 	int maxf;
953 	int chkb;
954 	int maxb;
955 	int i;
956 	vm_pindex_t pi;
957 	vm_page_t maf[vm_pageout_page_count];
958 	vm_page_t mab[vm_pageout_page_count];
959 	vm_page_t ma[vm_pageout_page_count];
960 
961 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
962 	vm_page_lock_assert(p, MA_NOTOWNED);
963 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
964 	pi = p->pindex;
965 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
966 		if (object->generation != curgeneration) {
967 			return(0);
968 		}
969 	}
970 	maxf = 0;
971 	for(i = 1; i < vm_pageout_page_count; i++) {
972 		vm_page_t tp;
973 
974 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
975 			if ((tp->oflags & VPO_BUSY) ||
976 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
977 				 (tp->oflags & VPO_CLEANCHK) == 0) ||
978 				(tp->busy != 0))
979 				break;
980 			vm_page_lock(tp);
981 			vm_page_lock_queues();
982 			vm_page_test_dirty(tp);
983 			if (tp->dirty == 0) {
984 				vm_page_unlock(tp);
985 				vm_page_unlock_queues();
986 				tp->oflags &= ~VPO_CLEANCHK;
987 				break;
988 			}
989 			vm_page_unlock(tp);
990 			vm_page_unlock_queues();
991 			maf[ i - 1 ] = tp;
992 			maxf++;
993 			continue;
994 		}
995 		break;
996 	}
997 
998 	maxb = 0;
999 	chkb = vm_pageout_page_count -  maxf;
1000 	if (chkb) {
1001 		for(i = 1; i < chkb;i++) {
1002 			vm_page_t tp;
1003 
1004 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
1005 				if ((tp->oflags & VPO_BUSY) ||
1006 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1007 					 (tp->oflags & VPO_CLEANCHK) == 0) ||
1008 					(tp->busy != 0))
1009 					break;
1010 				vm_page_lock(tp);
1011 				vm_page_lock_queues();
1012 				vm_page_test_dirty(tp);
1013 				if (tp->dirty == 0) {
1014 					vm_page_unlock_queues();
1015 					vm_page_unlock(tp);
1016 					tp->oflags &= ~VPO_CLEANCHK;
1017 					break;
1018 				}
1019 				vm_page_unlock_queues();
1020 				vm_page_unlock(tp);
1021 				mab[ i - 1 ] = tp;
1022 				maxb++;
1023 				continue;
1024 			}
1025 			break;
1026 		}
1027 	}
1028 
1029 	for(i = 0; i < maxb; i++) {
1030 		int index = (maxb - i) - 1;
1031 		ma[index] = mab[i];
1032 		ma[index]->oflags &= ~VPO_CLEANCHK;
1033 	}
1034 	p->oflags &= ~VPO_CLEANCHK;
1035 	ma[maxb] = p;
1036 	for(i = 0; i < maxf; i++) {
1037 		int index = (maxb + i) + 1;
1038 		ma[index] = maf[i];
1039 		ma[index]->oflags &= ~VPO_CLEANCHK;
1040 	}
1041 	runlen = maxb + maxf + 1;
1042 
1043 	vm_pageout_flush(ma, runlen, pagerflags);
1044 	for (i = 0; i < runlen; i++) {
1045 		if (ma[i]->dirty) {
1046 			pmap_remove_write(ma[i]);
1047 			ma[i]->oflags |= VPO_CLEANCHK;
1048 
1049 			/*
1050 			 * maxf will end up being the actual number of pages
1051 			 * we wrote out contiguously, non-inclusive of the
1052 			 * first page.  We do not count look-behind pages.
1053 			 */
1054 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
1055 				maxf = i - maxb - 1;
1056 		}
1057 	}
1058 	return(maxf + 1);
1059 }
1060 
1061 /*
1062  * Note that there is absolutely no sense in writing out
1063  * anonymous objects, so we track down the vnode object
1064  * to write out.
1065  * We invalidate (remove) all pages from the address space
1066  * for semantic correctness.
1067  *
1068  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1069  * may start out with a NULL object.
1070  */
1071 void
1072 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1073     boolean_t syncio, boolean_t invalidate)
1074 {
1075 	vm_object_t backing_object;
1076 	struct vnode *vp;
1077 	struct mount *mp;
1078 	int flags;
1079 
1080 	if (object == NULL)
1081 		return;
1082 	VM_OBJECT_LOCK(object);
1083 	while ((backing_object = object->backing_object) != NULL) {
1084 		VM_OBJECT_LOCK(backing_object);
1085 		offset += object->backing_object_offset;
1086 		VM_OBJECT_UNLOCK(object);
1087 		object = backing_object;
1088 		if (object->size < OFF_TO_IDX(offset + size))
1089 			size = IDX_TO_OFF(object->size) - offset;
1090 	}
1091 	/*
1092 	 * Flush pages if writing is allowed, invalidate them
1093 	 * if invalidation requested.  Pages undergoing I/O
1094 	 * will be ignored by vm_object_page_remove().
1095 	 *
1096 	 * We cannot lock the vnode and then wait for paging
1097 	 * to complete without deadlocking against vm_fault.
1098 	 * Instead we simply call vm_object_page_remove() and
1099 	 * allow it to block internally on a page-by-page
1100 	 * basis when it encounters pages undergoing async
1101 	 * I/O.
1102 	 */
1103 	if (object->type == OBJT_VNODE &&
1104 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1105 		int vfslocked;
1106 		vp = object->handle;
1107 		VM_OBJECT_UNLOCK(object);
1108 		(void) vn_start_write(vp, &mp, V_WAIT);
1109 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1110 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1111 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1112 		flags |= invalidate ? OBJPC_INVAL : 0;
1113 		VM_OBJECT_LOCK(object);
1114 		vm_object_page_clean(object,
1115 		    OFF_TO_IDX(offset),
1116 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1117 		    flags);
1118 		VM_OBJECT_UNLOCK(object);
1119 		VOP_UNLOCK(vp, 0);
1120 		VFS_UNLOCK_GIANT(vfslocked);
1121 		vn_finished_write(mp);
1122 		VM_OBJECT_LOCK(object);
1123 	}
1124 	if ((object->type == OBJT_VNODE ||
1125 	     object->type == OBJT_DEVICE) && invalidate) {
1126 		boolean_t purge;
1127 		purge = old_msync || (object->type == OBJT_DEVICE);
1128 		vm_object_page_remove(object,
1129 		    OFF_TO_IDX(offset),
1130 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1131 		    purge ? FALSE : TRUE);
1132 	}
1133 	VM_OBJECT_UNLOCK(object);
1134 }
1135 
1136 /*
1137  *	vm_object_madvise:
1138  *
1139  *	Implements the madvise function at the object/page level.
1140  *
1141  *	MADV_WILLNEED	(any object)
1142  *
1143  *	    Activate the specified pages if they are resident.
1144  *
1145  *	MADV_DONTNEED	(any object)
1146  *
1147  *	    Deactivate the specified pages if they are resident.
1148  *
1149  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1150  *			 OBJ_ONEMAPPING only)
1151  *
1152  *	    Deactivate and clean the specified pages if they are
1153  *	    resident.  This permits the process to reuse the pages
1154  *	    without faulting or the kernel to reclaim the pages
1155  *	    without I/O.
1156  */
1157 void
1158 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1159 {
1160 	vm_pindex_t end, tpindex;
1161 	vm_object_t backing_object, tobject;
1162 	vm_page_t m;
1163 
1164 	if (object == NULL)
1165 		return;
1166 	VM_OBJECT_LOCK(object);
1167 	end = pindex + count;
1168 	/*
1169 	 * Locate and adjust resident pages
1170 	 */
1171 	for (; pindex < end; pindex += 1) {
1172 relookup:
1173 		tobject = object;
1174 		tpindex = pindex;
1175 shadowlookup:
1176 		/*
1177 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1178 		 * and those pages must be OBJ_ONEMAPPING.
1179 		 */
1180 		if (advise == MADV_FREE) {
1181 			if ((tobject->type != OBJT_DEFAULT &&
1182 			     tobject->type != OBJT_SWAP) ||
1183 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1184 				goto unlock_tobject;
1185 			}
1186 		} else if (tobject->type == OBJT_PHYS)
1187 			goto unlock_tobject;
1188 		m = vm_page_lookup(tobject, tpindex);
1189 		if (m == NULL && advise == MADV_WILLNEED) {
1190 			/*
1191 			 * If the page is cached, reactivate it.
1192 			 */
1193 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1194 			    VM_ALLOC_NOBUSY);
1195 		}
1196 		if (m == NULL) {
1197 			/*
1198 			 * There may be swap even if there is no backing page
1199 			 */
1200 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1201 				swap_pager_freespace(tobject, tpindex, 1);
1202 			/*
1203 			 * next object
1204 			 */
1205 			backing_object = tobject->backing_object;
1206 			if (backing_object == NULL)
1207 				goto unlock_tobject;
1208 			VM_OBJECT_LOCK(backing_object);
1209 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1210 			if (tobject != object)
1211 				VM_OBJECT_UNLOCK(tobject);
1212 			tobject = backing_object;
1213 			goto shadowlookup;
1214 		} else if (m->valid != VM_PAGE_BITS_ALL)
1215 			goto unlock_tobject;
1216 		/*
1217 		 * If the page is not in a normal state, skip it.
1218 		 */
1219 		vm_page_lock(m);
1220 		vm_page_lock_queues();
1221 		if (m->hold_count != 0 || m->wire_count != 0) {
1222 			vm_page_unlock_queues();
1223 			vm_page_unlock(m);
1224 			goto unlock_tobject;
1225 		}
1226 		if ((m->oflags & VPO_BUSY) || m->busy) {
1227 			if (advise == MADV_WILLNEED)
1228 				/*
1229 				 * Reference the page before unlocking and
1230 				 * sleeping so that the page daemon is less
1231 				 * likely to reclaim it.
1232 				 */
1233 				vm_page_flag_set(m, PG_REFERENCED);
1234 			vm_page_unlock_queues();
1235 			vm_page_unlock(m);
1236 			if (object != tobject)
1237 				VM_OBJECT_UNLOCK(object);
1238 			m->oflags |= VPO_WANTED;
1239 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1240 			    0);
1241 			VM_OBJECT_LOCK(object);
1242   			goto relookup;
1243 		}
1244 		if (advise == MADV_WILLNEED) {
1245 			vm_page_activate(m);
1246 		} else if (advise == MADV_DONTNEED) {
1247 			vm_page_dontneed(m);
1248 		} else if (advise == MADV_FREE) {
1249 			/*
1250 			 * Mark the page clean.  This will allow the page
1251 			 * to be freed up by the system.  However, such pages
1252 			 * are often reused quickly by malloc()/free()
1253 			 * so we do not do anything that would cause
1254 			 * a page fault if we can help it.
1255 			 *
1256 			 * Specifically, we do not try to actually free
1257 			 * the page now nor do we try to put it in the
1258 			 * cache (which would cause a page fault on reuse).
1259 			 *
1260 			 * But we do make the page is freeable as we
1261 			 * can without actually taking the step of unmapping
1262 			 * it.
1263 			 */
1264 			pmap_clear_modify(m);
1265 			m->dirty = 0;
1266 			m->act_count = 0;
1267 			vm_page_dontneed(m);
1268 		}
1269 		vm_page_unlock_queues();
1270 		vm_page_unlock(m);
1271 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1272 			swap_pager_freespace(tobject, tpindex, 1);
1273 unlock_tobject:
1274 		if (tobject != object)
1275 			VM_OBJECT_UNLOCK(tobject);
1276 	}
1277 	VM_OBJECT_UNLOCK(object);
1278 }
1279 
1280 /*
1281  *	vm_object_shadow:
1282  *
1283  *	Create a new object which is backed by the
1284  *	specified existing object range.  The source
1285  *	object reference is deallocated.
1286  *
1287  *	The new object and offset into that object
1288  *	are returned in the source parameters.
1289  */
1290 void
1291 vm_object_shadow(
1292 	vm_object_t *object,	/* IN/OUT */
1293 	vm_ooffset_t *offset,	/* IN/OUT */
1294 	vm_size_t length)
1295 {
1296 	vm_object_t source;
1297 	vm_object_t result;
1298 
1299 	source = *object;
1300 
1301 	/*
1302 	 * Don't create the new object if the old object isn't shared.
1303 	 */
1304 	if (source != NULL) {
1305 		VM_OBJECT_LOCK(source);
1306 		if (source->ref_count == 1 &&
1307 		    source->handle == NULL &&
1308 		    (source->type == OBJT_DEFAULT ||
1309 		     source->type == OBJT_SWAP)) {
1310 			VM_OBJECT_UNLOCK(source);
1311 			return;
1312 		}
1313 		VM_OBJECT_UNLOCK(source);
1314 	}
1315 
1316 	/*
1317 	 * Allocate a new object with the given length.
1318 	 */
1319 	result = vm_object_allocate(OBJT_DEFAULT, length);
1320 
1321 	/*
1322 	 * The new object shadows the source object, adding a reference to it.
1323 	 * Our caller changes his reference to point to the new object,
1324 	 * removing a reference to the source object.  Net result: no change
1325 	 * of reference count.
1326 	 *
1327 	 * Try to optimize the result object's page color when shadowing
1328 	 * in order to maintain page coloring consistency in the combined
1329 	 * shadowed object.
1330 	 */
1331 	result->backing_object = source;
1332 	/*
1333 	 * Store the offset into the source object, and fix up the offset into
1334 	 * the new object.
1335 	 */
1336 	result->backing_object_offset = *offset;
1337 	if (source != NULL) {
1338 		VM_OBJECT_LOCK(source);
1339 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1340 		source->shadow_count++;
1341 		source->generation++;
1342 #if VM_NRESERVLEVEL > 0
1343 		result->flags |= source->flags & OBJ_COLORED;
1344 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1345 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1346 #endif
1347 		VM_OBJECT_UNLOCK(source);
1348 	}
1349 
1350 
1351 	/*
1352 	 * Return the new things
1353 	 */
1354 	*offset = 0;
1355 	*object = result;
1356 }
1357 
1358 /*
1359  *	vm_object_split:
1360  *
1361  * Split the pages in a map entry into a new object.  This affords
1362  * easier removal of unused pages, and keeps object inheritance from
1363  * being a negative impact on memory usage.
1364  */
1365 void
1366 vm_object_split(vm_map_entry_t entry)
1367 {
1368 	vm_page_t m, m_next;
1369 	vm_object_t orig_object, new_object, source;
1370 	vm_pindex_t idx, offidxstart;
1371 	vm_size_t size;
1372 
1373 	orig_object = entry->object.vm_object;
1374 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1375 		return;
1376 	if (orig_object->ref_count <= 1)
1377 		return;
1378 	VM_OBJECT_UNLOCK(orig_object);
1379 
1380 	offidxstart = OFF_TO_IDX(entry->offset);
1381 	size = atop(entry->end - entry->start);
1382 
1383 	/*
1384 	 * If swap_pager_copy() is later called, it will convert new_object
1385 	 * into a swap object.
1386 	 */
1387 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1388 
1389 	/*
1390 	 * At this point, the new object is still private, so the order in
1391 	 * which the original and new objects are locked does not matter.
1392 	 */
1393 	VM_OBJECT_LOCK(new_object);
1394 	VM_OBJECT_LOCK(orig_object);
1395 	source = orig_object->backing_object;
1396 	if (source != NULL) {
1397 		VM_OBJECT_LOCK(source);
1398 		if ((source->flags & OBJ_DEAD) != 0) {
1399 			VM_OBJECT_UNLOCK(source);
1400 			VM_OBJECT_UNLOCK(orig_object);
1401 			VM_OBJECT_UNLOCK(new_object);
1402 			vm_object_deallocate(new_object);
1403 			VM_OBJECT_LOCK(orig_object);
1404 			return;
1405 		}
1406 		LIST_INSERT_HEAD(&source->shadow_head,
1407 				  new_object, shadow_list);
1408 		source->shadow_count++;
1409 		source->generation++;
1410 		vm_object_reference_locked(source);	/* for new_object */
1411 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1412 		VM_OBJECT_UNLOCK(source);
1413 		new_object->backing_object_offset =
1414 			orig_object->backing_object_offset + entry->offset;
1415 		new_object->backing_object = source;
1416 	}
1417 	if (orig_object->uip != NULL) {
1418 		new_object->uip = orig_object->uip;
1419 		uihold(orig_object->uip);
1420 		new_object->charge = ptoa(size);
1421 		KASSERT(orig_object->charge >= ptoa(size),
1422 		    ("orig_object->charge < 0"));
1423 		orig_object->charge -= ptoa(size);
1424 	}
1425 retry:
1426 	if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1427 		if (m->pindex < offidxstart) {
1428 			m = vm_page_splay(offidxstart, orig_object->root);
1429 			if ((orig_object->root = m)->pindex < offidxstart)
1430 				m = TAILQ_NEXT(m, listq);
1431 		}
1432 	}
1433 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1434 	    m = m_next) {
1435 		m_next = TAILQ_NEXT(m, listq);
1436 
1437 		/*
1438 		 * We must wait for pending I/O to complete before we can
1439 		 * rename the page.
1440 		 *
1441 		 * We do not have to VM_PROT_NONE the page as mappings should
1442 		 * not be changed by this operation.
1443 		 */
1444 		if ((m->oflags & VPO_BUSY) || m->busy) {
1445 			VM_OBJECT_UNLOCK(new_object);
1446 			m->oflags |= VPO_WANTED;
1447 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1448 			VM_OBJECT_LOCK(new_object);
1449 			goto retry;
1450 		}
1451 		vm_page_lock(m);
1452 		vm_page_rename(m, new_object, idx);
1453 		vm_page_unlock(m);
1454 		/* page automatically made dirty by rename and cache handled */
1455 		vm_page_busy(m);
1456 	}
1457 	if (orig_object->type == OBJT_SWAP) {
1458 		/*
1459 		 * swap_pager_copy() can sleep, in which case the orig_object's
1460 		 * and new_object's locks are released and reacquired.
1461 		 */
1462 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1463 
1464 		/*
1465 		 * Transfer any cached pages from orig_object to new_object.
1466 		 */
1467 		if (__predict_false(orig_object->cache != NULL))
1468 			vm_page_cache_transfer(orig_object, offidxstart,
1469 			    new_object);
1470 	}
1471 	VM_OBJECT_UNLOCK(orig_object);
1472 	TAILQ_FOREACH(m, &new_object->memq, listq)
1473 		vm_page_wakeup(m);
1474 	VM_OBJECT_UNLOCK(new_object);
1475 	entry->object.vm_object = new_object;
1476 	entry->offset = 0LL;
1477 	vm_object_deallocate(orig_object);
1478 	VM_OBJECT_LOCK(new_object);
1479 }
1480 
1481 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1482 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1483 #define	OBSC_COLLAPSE_WAIT	0x0004
1484 
1485 static int
1486 vm_object_backing_scan(vm_object_t object, int op)
1487 {
1488 	int r = 1;
1489 	vm_page_t p;
1490 	vm_object_t backing_object;
1491 	vm_pindex_t backing_offset_index;
1492 
1493 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1494 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1495 
1496 	backing_object = object->backing_object;
1497 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1498 
1499 	/*
1500 	 * Initial conditions
1501 	 */
1502 	if (op & OBSC_TEST_ALL_SHADOWED) {
1503 		/*
1504 		 * We do not want to have to test for the existence of cache
1505 		 * or swap pages in the backing object.  XXX but with the
1506 		 * new swapper this would be pretty easy to do.
1507 		 *
1508 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1509 		 * been ZFOD faulted yet?  If we do not test for this, the
1510 		 * shadow test may succeed! XXX
1511 		 */
1512 		if (backing_object->type != OBJT_DEFAULT) {
1513 			return (0);
1514 		}
1515 	}
1516 	if (op & OBSC_COLLAPSE_WAIT) {
1517 		vm_object_set_flag(backing_object, OBJ_DEAD);
1518 	}
1519 
1520 	/*
1521 	 * Our scan
1522 	 */
1523 	p = TAILQ_FIRST(&backing_object->memq);
1524 	while (p) {
1525 		vm_page_t next = TAILQ_NEXT(p, listq);
1526 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1527 
1528 		if (op & OBSC_TEST_ALL_SHADOWED) {
1529 			vm_page_t pp;
1530 
1531 			/*
1532 			 * Ignore pages outside the parent object's range
1533 			 * and outside the parent object's mapping of the
1534 			 * backing object.
1535 			 *
1536 			 * note that we do not busy the backing object's
1537 			 * page.
1538 			 */
1539 			if (
1540 			    p->pindex < backing_offset_index ||
1541 			    new_pindex >= object->size
1542 			) {
1543 				p = next;
1544 				continue;
1545 			}
1546 
1547 			/*
1548 			 * See if the parent has the page or if the parent's
1549 			 * object pager has the page.  If the parent has the
1550 			 * page but the page is not valid, the parent's
1551 			 * object pager must have the page.
1552 			 *
1553 			 * If this fails, the parent does not completely shadow
1554 			 * the object and we might as well give up now.
1555 			 */
1556 
1557 			pp = vm_page_lookup(object, new_pindex);
1558 			if (
1559 			    (pp == NULL || pp->valid == 0) &&
1560 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1561 			) {
1562 				r = 0;
1563 				break;
1564 			}
1565 		}
1566 
1567 		/*
1568 		 * Check for busy page
1569 		 */
1570 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1571 			vm_page_t pp;
1572 
1573 			if (op & OBSC_COLLAPSE_NOWAIT) {
1574 				if ((p->oflags & VPO_BUSY) ||
1575 				    !p->valid ||
1576 				    p->busy) {
1577 					p = next;
1578 					continue;
1579 				}
1580 			} else if (op & OBSC_COLLAPSE_WAIT) {
1581 				if ((p->oflags & VPO_BUSY) || p->busy) {
1582 					VM_OBJECT_UNLOCK(object);
1583 					p->oflags |= VPO_WANTED;
1584 					msleep(p, VM_OBJECT_MTX(backing_object),
1585 					    PDROP | PVM, "vmocol", 0);
1586 					VM_OBJECT_LOCK(object);
1587 					VM_OBJECT_LOCK(backing_object);
1588 					/*
1589 					 * If we slept, anything could have
1590 					 * happened.  Since the object is
1591 					 * marked dead, the backing offset
1592 					 * should not have changed so we
1593 					 * just restart our scan.
1594 					 */
1595 					p = TAILQ_FIRST(&backing_object->memq);
1596 					continue;
1597 				}
1598 			}
1599 
1600 			KASSERT(
1601 			    p->object == backing_object,
1602 			    ("vm_object_backing_scan: object mismatch")
1603 			);
1604 
1605 			/*
1606 			 * Destroy any associated swap
1607 			 */
1608 			if (backing_object->type == OBJT_SWAP) {
1609 				swap_pager_freespace(
1610 				    backing_object,
1611 				    p->pindex,
1612 				    1
1613 				);
1614 			}
1615 
1616 			if (
1617 			    p->pindex < backing_offset_index ||
1618 			    new_pindex >= object->size
1619 			) {
1620 				/*
1621 				 * Page is out of the parent object's range, we
1622 				 * can simply destroy it.
1623 				 */
1624 				vm_page_lock(p);
1625 				KASSERT(!pmap_page_is_mapped(p),
1626 				    ("freeing mapped page %p", p));
1627 				if (p->wire_count == 0)
1628 					vm_page_free(p);
1629 				else
1630 					vm_page_remove(p);
1631 				vm_page_unlock(p);
1632 				p = next;
1633 				continue;
1634 			}
1635 
1636 			pp = vm_page_lookup(object, new_pindex);
1637 			if (
1638 			    pp != NULL ||
1639 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1640 			) {
1641 				/*
1642 				 * page already exists in parent OR swap exists
1643 				 * for this location in the parent.  Destroy
1644 				 * the original page from the backing object.
1645 				 *
1646 				 * Leave the parent's page alone
1647 				 */
1648 				vm_page_lock(p);
1649 				KASSERT(!pmap_page_is_mapped(p),
1650 				    ("freeing mapped page %p", p));
1651 				if (p->wire_count == 0)
1652 					vm_page_free(p);
1653 				else
1654 					vm_page_remove(p);
1655 				vm_page_unlock(p);
1656 				p = next;
1657 				continue;
1658 			}
1659 
1660 #if VM_NRESERVLEVEL > 0
1661 			/*
1662 			 * Rename the reservation.
1663 			 */
1664 			vm_reserv_rename(p, object, backing_object,
1665 			    backing_offset_index);
1666 #endif
1667 
1668 			/*
1669 			 * Page does not exist in parent, rename the
1670 			 * page from the backing object to the main object.
1671 			 *
1672 			 * If the page was mapped to a process, it can remain
1673 			 * mapped through the rename.
1674 			 */
1675 			vm_page_lock(p);
1676 			vm_page_rename(p, object, new_pindex);
1677 			vm_page_unlock(p);
1678 			/* page automatically made dirty by rename */
1679 		}
1680 		p = next;
1681 	}
1682 	return (r);
1683 }
1684 
1685 
1686 /*
1687  * this version of collapse allows the operation to occur earlier and
1688  * when paging_in_progress is true for an object...  This is not a complete
1689  * operation, but should plug 99.9% of the rest of the leaks.
1690  */
1691 static void
1692 vm_object_qcollapse(vm_object_t object)
1693 {
1694 	vm_object_t backing_object = object->backing_object;
1695 
1696 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1697 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1698 
1699 	if (backing_object->ref_count != 1)
1700 		return;
1701 
1702 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1703 }
1704 
1705 /*
1706  *	vm_object_collapse:
1707  *
1708  *	Collapse an object with the object backing it.
1709  *	Pages in the backing object are moved into the
1710  *	parent, and the backing object is deallocated.
1711  */
1712 void
1713 vm_object_collapse(vm_object_t object)
1714 {
1715 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1716 
1717 	while (TRUE) {
1718 		vm_object_t backing_object;
1719 
1720 		/*
1721 		 * Verify that the conditions are right for collapse:
1722 		 *
1723 		 * The object exists and the backing object exists.
1724 		 */
1725 		if ((backing_object = object->backing_object) == NULL)
1726 			break;
1727 
1728 		/*
1729 		 * we check the backing object first, because it is most likely
1730 		 * not collapsable.
1731 		 */
1732 		VM_OBJECT_LOCK(backing_object);
1733 		if (backing_object->handle != NULL ||
1734 		    (backing_object->type != OBJT_DEFAULT &&
1735 		     backing_object->type != OBJT_SWAP) ||
1736 		    (backing_object->flags & OBJ_DEAD) ||
1737 		    object->handle != NULL ||
1738 		    (object->type != OBJT_DEFAULT &&
1739 		     object->type != OBJT_SWAP) ||
1740 		    (object->flags & OBJ_DEAD)) {
1741 			VM_OBJECT_UNLOCK(backing_object);
1742 			break;
1743 		}
1744 
1745 		if (
1746 		    object->paging_in_progress != 0 ||
1747 		    backing_object->paging_in_progress != 0
1748 		) {
1749 			vm_object_qcollapse(object);
1750 			VM_OBJECT_UNLOCK(backing_object);
1751 			break;
1752 		}
1753 		/*
1754 		 * We know that we can either collapse the backing object (if
1755 		 * the parent is the only reference to it) or (perhaps) have
1756 		 * the parent bypass the object if the parent happens to shadow
1757 		 * all the resident pages in the entire backing object.
1758 		 *
1759 		 * This is ignoring pager-backed pages such as swap pages.
1760 		 * vm_object_backing_scan fails the shadowing test in this
1761 		 * case.
1762 		 */
1763 		if (backing_object->ref_count == 1) {
1764 			/*
1765 			 * If there is exactly one reference to the backing
1766 			 * object, we can collapse it into the parent.
1767 			 */
1768 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1769 
1770 #if VM_NRESERVLEVEL > 0
1771 			/*
1772 			 * Break any reservations from backing_object.
1773 			 */
1774 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1775 				vm_reserv_break_all(backing_object);
1776 #endif
1777 
1778 			/*
1779 			 * Move the pager from backing_object to object.
1780 			 */
1781 			if (backing_object->type == OBJT_SWAP) {
1782 				/*
1783 				 * swap_pager_copy() can sleep, in which case
1784 				 * the backing_object's and object's locks are
1785 				 * released and reacquired.
1786 				 */
1787 				swap_pager_copy(
1788 				    backing_object,
1789 				    object,
1790 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1791 
1792 				/*
1793 				 * Free any cached pages from backing_object.
1794 				 */
1795 				if (__predict_false(backing_object->cache != NULL))
1796 					vm_page_cache_free(backing_object, 0, 0);
1797 			}
1798 			/*
1799 			 * Object now shadows whatever backing_object did.
1800 			 * Note that the reference to
1801 			 * backing_object->backing_object moves from within
1802 			 * backing_object to within object.
1803 			 */
1804 			LIST_REMOVE(object, shadow_list);
1805 			backing_object->shadow_count--;
1806 			backing_object->generation++;
1807 			if (backing_object->backing_object) {
1808 				VM_OBJECT_LOCK(backing_object->backing_object);
1809 				LIST_REMOVE(backing_object, shadow_list);
1810 				LIST_INSERT_HEAD(
1811 				    &backing_object->backing_object->shadow_head,
1812 				    object, shadow_list);
1813 				/*
1814 				 * The shadow_count has not changed.
1815 				 */
1816 				backing_object->backing_object->generation++;
1817 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1818 			}
1819 			object->backing_object = backing_object->backing_object;
1820 			object->backing_object_offset +=
1821 			    backing_object->backing_object_offset;
1822 
1823 			/*
1824 			 * Discard backing_object.
1825 			 *
1826 			 * Since the backing object has no pages, no pager left,
1827 			 * and no object references within it, all that is
1828 			 * necessary is to dispose of it.
1829 			 */
1830 			KASSERT(backing_object->ref_count == 1, (
1831 "backing_object %p was somehow re-referenced during collapse!",
1832 			    backing_object));
1833 			VM_OBJECT_UNLOCK(backing_object);
1834 			vm_object_destroy(backing_object);
1835 
1836 			object_collapses++;
1837 		} else {
1838 			vm_object_t new_backing_object;
1839 
1840 			/*
1841 			 * If we do not entirely shadow the backing object,
1842 			 * there is nothing we can do so we give up.
1843 			 */
1844 			if (object->resident_page_count != object->size &&
1845 			    vm_object_backing_scan(object,
1846 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1847 				VM_OBJECT_UNLOCK(backing_object);
1848 				break;
1849 			}
1850 
1851 			/*
1852 			 * Make the parent shadow the next object in the
1853 			 * chain.  Deallocating backing_object will not remove
1854 			 * it, since its reference count is at least 2.
1855 			 */
1856 			LIST_REMOVE(object, shadow_list);
1857 			backing_object->shadow_count--;
1858 			backing_object->generation++;
1859 
1860 			new_backing_object = backing_object->backing_object;
1861 			if ((object->backing_object = new_backing_object) != NULL) {
1862 				VM_OBJECT_LOCK(new_backing_object);
1863 				LIST_INSERT_HEAD(
1864 				    &new_backing_object->shadow_head,
1865 				    object,
1866 				    shadow_list
1867 				);
1868 				new_backing_object->shadow_count++;
1869 				new_backing_object->generation++;
1870 				vm_object_reference_locked(new_backing_object);
1871 				VM_OBJECT_UNLOCK(new_backing_object);
1872 				object->backing_object_offset +=
1873 					backing_object->backing_object_offset;
1874 			}
1875 
1876 			/*
1877 			 * Drop the reference count on backing_object. Since
1878 			 * its ref_count was at least 2, it will not vanish.
1879 			 */
1880 			backing_object->ref_count--;
1881 			VM_OBJECT_UNLOCK(backing_object);
1882 			object_bypasses++;
1883 		}
1884 
1885 		/*
1886 		 * Try again with this object's new backing object.
1887 		 */
1888 	}
1889 }
1890 
1891 /*
1892  *	vm_object_page_remove:
1893  *
1894  *	For the given object, either frees or invalidates each of the
1895  *	specified pages.  In general, a page is freed.  However, if a
1896  *	page is wired for any reason other than the existence of a
1897  *	managed, wired mapping, then it may be invalidated but not
1898  *	removed from the object.  Pages are specified by the given
1899  *	range ["start", "end") and Boolean "clean_only".  As a
1900  *	special case, if "end" is zero, then the range extends from
1901  *	"start" to the end of the object.  If "clean_only" is TRUE,
1902  *	then only the non-dirty pages within the specified range are
1903  *	affected.
1904  *
1905  *	In general, this operation should only be performed on objects
1906  *	that contain managed pages.  There are two exceptions.  First,
1907  *	it may be performed on the kernel and kmem objects.  Second,
1908  *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1909  *	device-backed pages.  In both of these cases, "clean_only"
1910  *	must be FALSE.
1911  *
1912  *	The object must be locked.
1913  */
1914 void
1915 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1916     boolean_t clean_only)
1917 {
1918 	vm_page_t p, next;
1919 	int wirings;
1920 
1921 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1922 	if (object->resident_page_count == 0)
1923 		goto skipmemq;
1924 
1925 	/*
1926 	 * Since physically-backed objects do not use managed pages, we can't
1927 	 * remove pages from the object (we must instead remove the page
1928 	 * references, and then destroy the object).
1929 	 */
1930 	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1931 	    object == kmem_object,
1932 	    ("attempt to remove pages from a physical object"));
1933 
1934 	vm_object_pip_add(object, 1);
1935 again:
1936 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1937 		if (p->pindex < start) {
1938 			p = vm_page_splay(start, object->root);
1939 			if ((object->root = p)->pindex < start)
1940 				p = TAILQ_NEXT(p, listq);
1941 		}
1942 	}
1943 
1944 	/*
1945 	 * Assert: the variable p is either (1) the page with the
1946 	 * least pindex greater than or equal to the parameter pindex
1947 	 * or (2) NULL.
1948 	 */
1949 	for (;
1950 	     p != NULL && (p->pindex < end || end == 0);
1951 	     p = next) {
1952 		next = TAILQ_NEXT(p, listq);
1953 
1954 		/*
1955 		 * If the page is wired for any reason besides the
1956 		 * existence of managed, wired mappings, then it cannot
1957 		 * be freed.  For example, fictitious pages, which
1958 		 * represent device memory, are inherently wired and
1959 		 * cannot be freed.  They can, however, be invalidated
1960 		 * if "clean_only" is FALSE.
1961 		 */
1962 		vm_page_lock(p);
1963 		if ((wirings = p->wire_count) != 0 &&
1964 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1965 			/* Fictitious pages do not have managed mappings. */
1966 			if ((p->flags & PG_FICTITIOUS) == 0)
1967 				pmap_remove_all(p);
1968 			/* Account for removal of managed, wired mappings. */
1969 			p->wire_count -= wirings;
1970 			if (!clean_only) {
1971 				p->valid = 0;
1972 				vm_page_undirty(p);
1973 			}
1974 			vm_page_unlock(p);
1975 			continue;
1976 		}
1977 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1978 			goto again;
1979 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1980 		    ("vm_object_page_remove: page %p is fictitious", p));
1981 		if (clean_only && p->valid) {
1982 			pmap_remove_write(p);
1983 			if (p->dirty) {
1984 				vm_page_unlock(p);
1985 				continue;
1986 			}
1987 		}
1988 		pmap_remove_all(p);
1989 		/* Account for removal of managed, wired mappings. */
1990 		if (wirings != 0)
1991 			p->wire_count -= wirings;
1992 		vm_page_free(p);
1993 		vm_page_unlock(p);
1994 	}
1995 	vm_object_pip_wakeup(object);
1996 skipmemq:
1997 	if (__predict_false(object->cache != NULL))
1998 		vm_page_cache_free(object, start, end);
1999 }
2000 
2001 /*
2002  *	Populate the specified range of the object with valid pages.  Returns
2003  *	TRUE if the range is successfully populated and FALSE otherwise.
2004  *
2005  *	Note: This function should be optimized to pass a larger array of
2006  *	pages to vm_pager_get_pages() before it is applied to a non-
2007  *	OBJT_DEVICE object.
2008  *
2009  *	The object must be locked.
2010  */
2011 boolean_t
2012 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2013 {
2014 	vm_page_t m, ma[1];
2015 	vm_pindex_t pindex;
2016 	int rv;
2017 
2018 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2019 	for (pindex = start; pindex < end; pindex++) {
2020 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2021 		    VM_ALLOC_RETRY);
2022 		if (m->valid != VM_PAGE_BITS_ALL) {
2023 			ma[0] = m;
2024 			rv = vm_pager_get_pages(object, ma, 1, 0);
2025 			m = vm_page_lookup(object, pindex);
2026 			if (m == NULL)
2027 				break;
2028 			if (rv != VM_PAGER_OK) {
2029 				vm_page_lock(m);
2030 				vm_page_free(m);
2031 				vm_page_unlock(m);
2032 				break;
2033 			}
2034 		}
2035 		/*
2036 		 * Keep "m" busy because a subsequent iteration may unlock
2037 		 * the object.
2038 		 */
2039 	}
2040 	if (pindex > start) {
2041 		m = vm_page_lookup(object, start);
2042 		while (m != NULL && m->pindex < pindex) {
2043 			vm_page_wakeup(m);
2044 			m = TAILQ_NEXT(m, listq);
2045 		}
2046 	}
2047 	return (pindex == end);
2048 }
2049 
2050 /*
2051  *	Routine:	vm_object_coalesce
2052  *	Function:	Coalesces two objects backing up adjoining
2053  *			regions of memory into a single object.
2054  *
2055  *	returns TRUE if objects were combined.
2056  *
2057  *	NOTE:	Only works at the moment if the second object is NULL -
2058  *		if it's not, which object do we lock first?
2059  *
2060  *	Parameters:
2061  *		prev_object	First object to coalesce
2062  *		prev_offset	Offset into prev_object
2063  *		prev_size	Size of reference to prev_object
2064  *		next_size	Size of reference to the second object
2065  *		reserved	Indicator that extension region has
2066  *				swap accounted for
2067  *
2068  *	Conditions:
2069  *	The object must *not* be locked.
2070  */
2071 boolean_t
2072 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2073     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2074 {
2075 	vm_pindex_t next_pindex;
2076 
2077 	if (prev_object == NULL)
2078 		return (TRUE);
2079 	VM_OBJECT_LOCK(prev_object);
2080 	if (prev_object->type != OBJT_DEFAULT &&
2081 	    prev_object->type != OBJT_SWAP) {
2082 		VM_OBJECT_UNLOCK(prev_object);
2083 		return (FALSE);
2084 	}
2085 
2086 	/*
2087 	 * Try to collapse the object first
2088 	 */
2089 	vm_object_collapse(prev_object);
2090 
2091 	/*
2092 	 * Can't coalesce if: . more than one reference . paged out . shadows
2093 	 * another object . has a copy elsewhere (any of which mean that the
2094 	 * pages not mapped to prev_entry may be in use anyway)
2095 	 */
2096 	if (prev_object->backing_object != NULL) {
2097 		VM_OBJECT_UNLOCK(prev_object);
2098 		return (FALSE);
2099 	}
2100 
2101 	prev_size >>= PAGE_SHIFT;
2102 	next_size >>= PAGE_SHIFT;
2103 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2104 
2105 	if ((prev_object->ref_count > 1) &&
2106 	    (prev_object->size != next_pindex)) {
2107 		VM_OBJECT_UNLOCK(prev_object);
2108 		return (FALSE);
2109 	}
2110 
2111 	/*
2112 	 * Account for the charge.
2113 	 */
2114 	if (prev_object->uip != NULL) {
2115 
2116 		/*
2117 		 * If prev_object was charged, then this mapping,
2118 		 * althought not charged now, may become writable
2119 		 * later. Non-NULL uip in the object would prevent
2120 		 * swap reservation during enabling of the write
2121 		 * access, so reserve swap now. Failed reservation
2122 		 * cause allocation of the separate object for the map
2123 		 * entry, and swap reservation for this entry is
2124 		 * managed in appropriate time.
2125 		 */
2126 		if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2127 		    prev_object->uip)) {
2128 			return (FALSE);
2129 		}
2130 		prev_object->charge += ptoa(next_size);
2131 	}
2132 
2133 	/*
2134 	 * Remove any pages that may still be in the object from a previous
2135 	 * deallocation.
2136 	 */
2137 	if (next_pindex < prev_object->size) {
2138 		vm_object_page_remove(prev_object,
2139 				      next_pindex,
2140 				      next_pindex + next_size, FALSE);
2141 		if (prev_object->type == OBJT_SWAP)
2142 			swap_pager_freespace(prev_object,
2143 					     next_pindex, next_size);
2144 #if 0
2145 		if (prev_object->uip != NULL) {
2146 			KASSERT(prev_object->charge >=
2147 			    ptoa(prev_object->size - next_pindex),
2148 			    ("object %p overcharged 1 %jx %jx", prev_object,
2149 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2150 			prev_object->charge -= ptoa(prev_object->size -
2151 			    next_pindex);
2152 		}
2153 #endif
2154 	}
2155 
2156 	/*
2157 	 * Extend the object if necessary.
2158 	 */
2159 	if (next_pindex + next_size > prev_object->size)
2160 		prev_object->size = next_pindex + next_size;
2161 
2162 	VM_OBJECT_UNLOCK(prev_object);
2163 	return (TRUE);
2164 }
2165 
2166 void
2167 vm_object_set_writeable_dirty(vm_object_t object)
2168 {
2169 
2170 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2171 	if (object->type != OBJT_VNODE ||
2172 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0)
2173 		return;
2174 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2175 }
2176 
2177 #include "opt_ddb.h"
2178 #ifdef DDB
2179 #include <sys/kernel.h>
2180 
2181 #include <sys/cons.h>
2182 
2183 #include <ddb/ddb.h>
2184 
2185 static int
2186 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2187 {
2188 	vm_map_t tmpm;
2189 	vm_map_entry_t tmpe;
2190 	vm_object_t obj;
2191 	int entcount;
2192 
2193 	if (map == 0)
2194 		return 0;
2195 
2196 	if (entry == 0) {
2197 		tmpe = map->header.next;
2198 		entcount = map->nentries;
2199 		while (entcount-- && (tmpe != &map->header)) {
2200 			if (_vm_object_in_map(map, object, tmpe)) {
2201 				return 1;
2202 			}
2203 			tmpe = tmpe->next;
2204 		}
2205 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2206 		tmpm = entry->object.sub_map;
2207 		tmpe = tmpm->header.next;
2208 		entcount = tmpm->nentries;
2209 		while (entcount-- && tmpe != &tmpm->header) {
2210 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2211 				return 1;
2212 			}
2213 			tmpe = tmpe->next;
2214 		}
2215 	} else if ((obj = entry->object.vm_object) != NULL) {
2216 		for (; obj; obj = obj->backing_object)
2217 			if (obj == object) {
2218 				return 1;
2219 			}
2220 	}
2221 	return 0;
2222 }
2223 
2224 static int
2225 vm_object_in_map(vm_object_t object)
2226 {
2227 	struct proc *p;
2228 
2229 	/* sx_slock(&allproc_lock); */
2230 	FOREACH_PROC_IN_SYSTEM(p) {
2231 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2232 			continue;
2233 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2234 			/* sx_sunlock(&allproc_lock); */
2235 			return 1;
2236 		}
2237 	}
2238 	/* sx_sunlock(&allproc_lock); */
2239 	if (_vm_object_in_map(kernel_map, object, 0))
2240 		return 1;
2241 	if (_vm_object_in_map(kmem_map, object, 0))
2242 		return 1;
2243 	if (_vm_object_in_map(pager_map, object, 0))
2244 		return 1;
2245 	if (_vm_object_in_map(buffer_map, object, 0))
2246 		return 1;
2247 	return 0;
2248 }
2249 
2250 DB_SHOW_COMMAND(vmochk, vm_object_check)
2251 {
2252 	vm_object_t object;
2253 
2254 	/*
2255 	 * make sure that internal objs are in a map somewhere
2256 	 * and none have zero ref counts.
2257 	 */
2258 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2259 		if (object->handle == NULL &&
2260 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2261 			if (object->ref_count == 0) {
2262 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2263 					(long)object->size);
2264 			}
2265 			if (!vm_object_in_map(object)) {
2266 				db_printf(
2267 			"vmochk: internal obj is not in a map: "
2268 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2269 				    object->ref_count, (u_long)object->size,
2270 				    (u_long)object->size,
2271 				    (void *)object->backing_object);
2272 			}
2273 		}
2274 	}
2275 }
2276 
2277 /*
2278  *	vm_object_print:	[ debug ]
2279  */
2280 DB_SHOW_COMMAND(object, vm_object_print_static)
2281 {
2282 	/* XXX convert args. */
2283 	vm_object_t object = (vm_object_t)addr;
2284 	boolean_t full = have_addr;
2285 
2286 	vm_page_t p;
2287 
2288 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2289 #define	count	was_count
2290 
2291 	int count;
2292 
2293 	if (object == NULL)
2294 		return;
2295 
2296 	db_iprintf(
2297 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2298 	    object, (int)object->type, (uintmax_t)object->size,
2299 	    object->resident_page_count, object->ref_count, object->flags,
2300 	    object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2301 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2302 	    object->shadow_count,
2303 	    object->backing_object ? object->backing_object->ref_count : 0,
2304 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2305 
2306 	if (!full)
2307 		return;
2308 
2309 	db_indent += 2;
2310 	count = 0;
2311 	TAILQ_FOREACH(p, &object->memq, listq) {
2312 		if (count == 0)
2313 			db_iprintf("memory:=");
2314 		else if (count == 6) {
2315 			db_printf("\n");
2316 			db_iprintf(" ...");
2317 			count = 0;
2318 		} else
2319 			db_printf(",");
2320 		count++;
2321 
2322 		db_printf("(off=0x%jx,page=0x%jx)",
2323 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2324 	}
2325 	if (count != 0)
2326 		db_printf("\n");
2327 	db_indent -= 2;
2328 }
2329 
2330 /* XXX. */
2331 #undef count
2332 
2333 /* XXX need this non-static entry for calling from vm_map_print. */
2334 void
2335 vm_object_print(
2336         /* db_expr_t */ long addr,
2337 	boolean_t have_addr,
2338 	/* db_expr_t */ long count,
2339 	char *modif)
2340 {
2341 	vm_object_print_static(addr, have_addr, count, modif);
2342 }
2343 
2344 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2345 {
2346 	vm_object_t object;
2347 	vm_pindex_t fidx;
2348 	vm_paddr_t pa;
2349 	vm_page_t m, prev_m;
2350 	int rcount, nl, c;
2351 
2352 	nl = 0;
2353 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2354 		db_printf("new object: %p\n", (void *)object);
2355 		if (nl > 18) {
2356 			c = cngetc();
2357 			if (c != ' ')
2358 				return;
2359 			nl = 0;
2360 		}
2361 		nl++;
2362 		rcount = 0;
2363 		fidx = 0;
2364 		pa = -1;
2365 		TAILQ_FOREACH(m, &object->memq, listq) {
2366 			if (m->pindex > 128)
2367 				break;
2368 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2369 			    prev_m->pindex + 1 != m->pindex) {
2370 				if (rcount) {
2371 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2372 						(long)fidx, rcount, (long)pa);
2373 					if (nl > 18) {
2374 						c = cngetc();
2375 						if (c != ' ')
2376 							return;
2377 						nl = 0;
2378 					}
2379 					nl++;
2380 					rcount = 0;
2381 				}
2382 			}
2383 			if (rcount &&
2384 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2385 				++rcount;
2386 				continue;
2387 			}
2388 			if (rcount) {
2389 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2390 					(long)fidx, rcount, (long)pa);
2391 				if (nl > 18) {
2392 					c = cngetc();
2393 					if (c != ' ')
2394 						return;
2395 					nl = 0;
2396 				}
2397 				nl++;
2398 			}
2399 			fidx = m->pindex;
2400 			pa = VM_PAGE_TO_PHYS(m);
2401 			rcount = 1;
2402 		}
2403 		if (rcount) {
2404 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2405 				(long)fidx, rcount, (long)pa);
2406 			if (nl > 18) {
2407 				c = cngetc();
2408 				if (c != ' ')
2409 					return;
2410 				nl = 0;
2411 			}
2412 			nl++;
2413 		}
2414 	}
2415 }
2416 #endif /* DDB */
2417