1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/vmmeter.h> 85 #include <sys/sx.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_radix.h> 99 #include <vm/vm_reserv.h> 100 #include <vm/uma.h> 101 102 static int old_msync; 103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 104 "Use old (insecure) msync behavior"); 105 106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 107 int pagerflags, int flags, boolean_t *clearobjflags, 108 boolean_t *eio); 109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 110 boolean_t *clearobjflags); 111 static void vm_object_qcollapse(vm_object_t object); 112 static void vm_object_vndeallocate(vm_object_t object); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 147 "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(object->ref_count == 0, 171 ("object %p ref_count = %d", object, object->ref_count)); 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages in its memq", object)); 174 KASSERT(vm_radix_is_empty(&object->rtree), 175 ("object %p has resident pages in its trie", object)); 176 #if VM_NRESERVLEVEL > 0 177 KASSERT(LIST_EMPTY(&object->rvq), 178 ("object %p has reservations", 179 object)); 180 #endif 181 KASSERT(vm_object_cache_is_empty(object), 182 ("object %p has cached pages", 183 object)); 184 KASSERT(object->paging_in_progress == 0, 185 ("object %p paging_in_progress = %d", 186 object, object->paging_in_progress)); 187 KASSERT(object->resident_page_count == 0, 188 ("object %p resident_page_count = %d", 189 object, object->resident_page_count)); 190 KASSERT(object->shadow_count == 0, 191 ("object %p shadow_count = %d", 192 object, object->shadow_count)); 193 KASSERT(object->type == OBJT_DEAD, 194 ("object %p has non-dead type %d", 195 object, object->type)); 196 } 197 #endif 198 199 static int 200 vm_object_zinit(void *mem, int size, int flags) 201 { 202 vm_object_t object; 203 204 object = (vm_object_t)mem; 205 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 206 207 /* These are true for any object that has been freed */ 208 object->type = OBJT_DEAD; 209 object->ref_count = 0; 210 object->rtree.rt_root = 0; 211 object->rtree.rt_flags = 0; 212 object->paging_in_progress = 0; 213 object->resident_page_count = 0; 214 object->shadow_count = 0; 215 object->cache.rt_root = 0; 216 object->cache.rt_flags = 0; 217 218 mtx_lock(&vm_object_list_mtx); 219 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 220 mtx_unlock(&vm_object_list_mtx); 221 return (0); 222 } 223 224 static void 225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 226 { 227 228 TAILQ_INIT(&object->memq); 229 LIST_INIT(&object->shadow_head); 230 231 object->type = type; 232 switch (type) { 233 case OBJT_DEAD: 234 panic("_vm_object_allocate: can't create OBJT_DEAD"); 235 case OBJT_DEFAULT: 236 case OBJT_SWAP: 237 object->flags = OBJ_ONEMAPPING; 238 break; 239 case OBJT_DEVICE: 240 case OBJT_SG: 241 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 242 break; 243 case OBJT_MGTDEVICE: 244 object->flags = OBJ_FICTITIOUS; 245 break; 246 case OBJT_PHYS: 247 object->flags = OBJ_UNMANAGED; 248 break; 249 case OBJT_VNODE: 250 object->flags = 0; 251 break; 252 default: 253 panic("_vm_object_allocate: type %d is undefined", type); 254 } 255 object->size = size; 256 object->generation = 1; 257 object->ref_count = 1; 258 object->memattr = VM_MEMATTR_DEFAULT; 259 object->cred = NULL; 260 object->charge = 0; 261 object->handle = NULL; 262 object->backing_object = NULL; 263 object->backing_object_offset = (vm_ooffset_t) 0; 264 #if VM_NRESERVLEVEL > 0 265 LIST_INIT(&object->rvq); 266 #endif 267 umtx_shm_object_init(object); 268 } 269 270 /* 271 * vm_object_init: 272 * 273 * Initialize the VM objects module. 274 */ 275 void 276 vm_object_init(void) 277 { 278 TAILQ_INIT(&vm_object_list); 279 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 280 281 rw_init(&kernel_object->lock, "kernel vm object"); 282 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 283 kernel_object); 284 #if VM_NRESERVLEVEL > 0 285 kernel_object->flags |= OBJ_COLORED; 286 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 287 #endif 288 289 rw_init(&kmem_object->lock, "kmem vm object"); 290 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 291 kmem_object); 292 #if VM_NRESERVLEVEL > 0 293 kmem_object->flags |= OBJ_COLORED; 294 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 295 #endif 296 297 /* 298 * The lock portion of struct vm_object must be type stable due 299 * to vm_pageout_fallback_object_lock locking a vm object 300 * without holding any references to it. 301 */ 302 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 303 #ifdef INVARIANTS 304 vm_object_zdtor, 305 #else 306 NULL, 307 #endif 308 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 309 310 vm_radix_init(); 311 } 312 313 void 314 vm_object_clear_flag(vm_object_t object, u_short bits) 315 { 316 317 VM_OBJECT_ASSERT_WLOCKED(object); 318 object->flags &= ~bits; 319 } 320 321 /* 322 * Sets the default memory attribute for the specified object. Pages 323 * that are allocated to this object are by default assigned this memory 324 * attribute. 325 * 326 * Presently, this function must be called before any pages are allocated 327 * to the object. In the future, this requirement may be relaxed for 328 * "default" and "swap" objects. 329 */ 330 int 331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 332 { 333 334 VM_OBJECT_ASSERT_WLOCKED(object); 335 switch (object->type) { 336 case OBJT_DEFAULT: 337 case OBJT_DEVICE: 338 case OBJT_MGTDEVICE: 339 case OBJT_PHYS: 340 case OBJT_SG: 341 case OBJT_SWAP: 342 case OBJT_VNODE: 343 if (!TAILQ_EMPTY(&object->memq)) 344 return (KERN_FAILURE); 345 break; 346 case OBJT_DEAD: 347 return (KERN_INVALID_ARGUMENT); 348 default: 349 panic("vm_object_set_memattr: object %p is of undefined type", 350 object); 351 } 352 object->memattr = memattr; 353 return (KERN_SUCCESS); 354 } 355 356 void 357 vm_object_pip_add(vm_object_t object, short i) 358 { 359 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 object->paging_in_progress += i; 362 } 363 364 void 365 vm_object_pip_subtract(vm_object_t object, short i) 366 { 367 368 VM_OBJECT_ASSERT_WLOCKED(object); 369 object->paging_in_progress -= i; 370 } 371 372 void 373 vm_object_pip_wakeup(vm_object_t object) 374 { 375 376 VM_OBJECT_ASSERT_WLOCKED(object); 377 object->paging_in_progress--; 378 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 379 vm_object_clear_flag(object, OBJ_PIPWNT); 380 wakeup(object); 381 } 382 } 383 384 void 385 vm_object_pip_wakeupn(vm_object_t object, short i) 386 { 387 388 VM_OBJECT_ASSERT_WLOCKED(object); 389 if (i) 390 object->paging_in_progress -= i; 391 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 392 vm_object_clear_flag(object, OBJ_PIPWNT); 393 wakeup(object); 394 } 395 } 396 397 void 398 vm_object_pip_wait(vm_object_t object, char *waitid) 399 { 400 401 VM_OBJECT_ASSERT_WLOCKED(object); 402 while (object->paging_in_progress) { 403 object->flags |= OBJ_PIPWNT; 404 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 405 } 406 } 407 408 /* 409 * vm_object_allocate: 410 * 411 * Returns a new object with the given size. 412 */ 413 vm_object_t 414 vm_object_allocate(objtype_t type, vm_pindex_t size) 415 { 416 vm_object_t object; 417 418 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 419 _vm_object_allocate(type, size, object); 420 return (object); 421 } 422 423 424 /* 425 * vm_object_reference: 426 * 427 * Gets another reference to the given object. Note: OBJ_DEAD 428 * objects can be referenced during final cleaning. 429 */ 430 void 431 vm_object_reference(vm_object_t object) 432 { 433 if (object == NULL) 434 return; 435 VM_OBJECT_WLOCK(object); 436 vm_object_reference_locked(object); 437 VM_OBJECT_WUNLOCK(object); 438 } 439 440 /* 441 * vm_object_reference_locked: 442 * 443 * Gets another reference to the given object. 444 * 445 * The object must be locked. 446 */ 447 void 448 vm_object_reference_locked(vm_object_t object) 449 { 450 struct vnode *vp; 451 452 VM_OBJECT_ASSERT_WLOCKED(object); 453 object->ref_count++; 454 if (object->type == OBJT_VNODE) { 455 vp = object->handle; 456 vref(vp); 457 } 458 } 459 460 /* 461 * Handle deallocating an object of type OBJT_VNODE. 462 */ 463 static void 464 vm_object_vndeallocate(vm_object_t object) 465 { 466 struct vnode *vp = (struct vnode *) object->handle; 467 468 VM_OBJECT_ASSERT_WLOCKED(object); 469 KASSERT(object->type == OBJT_VNODE, 470 ("vm_object_vndeallocate: not a vnode object")); 471 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 472 #ifdef INVARIANTS 473 if (object->ref_count == 0) { 474 vprint("vm_object_vndeallocate", vp); 475 panic("vm_object_vndeallocate: bad object reference count"); 476 } 477 #endif 478 479 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 480 umtx_shm_object_terminated(object); 481 482 /* 483 * The test for text of vp vnode does not need a bypass to 484 * reach right VV_TEXT there, since it is obtained from 485 * object->handle. 486 */ 487 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 488 object->ref_count--; 489 VM_OBJECT_WUNLOCK(object); 490 /* vrele may need the vnode lock. */ 491 vrele(vp); 492 } else { 493 vhold(vp); 494 VM_OBJECT_WUNLOCK(object); 495 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 496 vdrop(vp); 497 VM_OBJECT_WLOCK(object); 498 object->ref_count--; 499 if (object->type == OBJT_DEAD) { 500 VM_OBJECT_WUNLOCK(object); 501 VOP_UNLOCK(vp, 0); 502 } else { 503 if (object->ref_count == 0) 504 VOP_UNSET_TEXT(vp); 505 VM_OBJECT_WUNLOCK(object); 506 vput(vp); 507 } 508 } 509 } 510 511 /* 512 * vm_object_deallocate: 513 * 514 * Release a reference to the specified object, 515 * gained either through a vm_object_allocate 516 * or a vm_object_reference call. When all references 517 * are gone, storage associated with this object 518 * may be relinquished. 519 * 520 * No object may be locked. 521 */ 522 void 523 vm_object_deallocate(vm_object_t object) 524 { 525 vm_object_t temp; 526 struct vnode *vp; 527 528 while (object != NULL) { 529 VM_OBJECT_WLOCK(object); 530 if (object->type == OBJT_VNODE) { 531 vm_object_vndeallocate(object); 532 return; 533 } 534 535 KASSERT(object->ref_count != 0, 536 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 537 538 /* 539 * If the reference count goes to 0 we start calling 540 * vm_object_terminate() on the object chain. 541 * A ref count of 1 may be a special case depending on the 542 * shadow count being 0 or 1. 543 */ 544 object->ref_count--; 545 if (object->ref_count > 1) { 546 VM_OBJECT_WUNLOCK(object); 547 return; 548 } else if (object->ref_count == 1) { 549 if (object->type == OBJT_SWAP && 550 (object->flags & OBJ_TMPFS) != 0) { 551 vp = object->un_pager.swp.swp_tmpfs; 552 vhold(vp); 553 VM_OBJECT_WUNLOCK(object); 554 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 555 VM_OBJECT_WLOCK(object); 556 if (object->type == OBJT_DEAD || 557 object->ref_count != 1) { 558 VM_OBJECT_WUNLOCK(object); 559 VOP_UNLOCK(vp, 0); 560 vdrop(vp); 561 return; 562 } 563 if ((object->flags & OBJ_TMPFS) != 0) 564 VOP_UNSET_TEXT(vp); 565 VOP_UNLOCK(vp, 0); 566 vdrop(vp); 567 } 568 if (object->shadow_count == 0 && 569 object->handle == NULL && 570 (object->type == OBJT_DEFAULT || 571 (object->type == OBJT_SWAP && 572 (object->flags & OBJ_TMPFS_NODE) == 0))) { 573 vm_object_set_flag(object, OBJ_ONEMAPPING); 574 } else if ((object->shadow_count == 1) && 575 (object->handle == NULL) && 576 (object->type == OBJT_DEFAULT || 577 object->type == OBJT_SWAP)) { 578 vm_object_t robject; 579 580 robject = LIST_FIRST(&object->shadow_head); 581 KASSERT(robject != NULL, 582 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 583 object->ref_count, 584 object->shadow_count)); 585 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 586 ("shadowed tmpfs v_object %p", object)); 587 if (!VM_OBJECT_TRYWLOCK(robject)) { 588 /* 589 * Avoid a potential deadlock. 590 */ 591 object->ref_count++; 592 VM_OBJECT_WUNLOCK(object); 593 /* 594 * More likely than not the thread 595 * holding robject's lock has lower 596 * priority than the current thread. 597 * Let the lower priority thread run. 598 */ 599 pause("vmo_de", 1); 600 continue; 601 } 602 /* 603 * Collapse object into its shadow unless its 604 * shadow is dead. In that case, object will 605 * be deallocated by the thread that is 606 * deallocating its shadow. 607 */ 608 if ((robject->flags & OBJ_DEAD) == 0 && 609 (robject->handle == NULL) && 610 (robject->type == OBJT_DEFAULT || 611 robject->type == OBJT_SWAP)) { 612 613 robject->ref_count++; 614 retry: 615 if (robject->paging_in_progress) { 616 VM_OBJECT_WUNLOCK(object); 617 vm_object_pip_wait(robject, 618 "objde1"); 619 temp = robject->backing_object; 620 if (object == temp) { 621 VM_OBJECT_WLOCK(object); 622 goto retry; 623 } 624 } else if (object->paging_in_progress) { 625 VM_OBJECT_WUNLOCK(robject); 626 object->flags |= OBJ_PIPWNT; 627 VM_OBJECT_SLEEP(object, object, 628 PDROP | PVM, "objde2", 0); 629 VM_OBJECT_WLOCK(robject); 630 temp = robject->backing_object; 631 if (object == temp) { 632 VM_OBJECT_WLOCK(object); 633 goto retry; 634 } 635 } else 636 VM_OBJECT_WUNLOCK(object); 637 638 if (robject->ref_count == 1) { 639 robject->ref_count--; 640 object = robject; 641 goto doterm; 642 } 643 object = robject; 644 vm_object_collapse(object); 645 VM_OBJECT_WUNLOCK(object); 646 continue; 647 } 648 VM_OBJECT_WUNLOCK(robject); 649 } 650 VM_OBJECT_WUNLOCK(object); 651 return; 652 } 653 doterm: 654 umtx_shm_object_terminated(object); 655 temp = object->backing_object; 656 if (temp != NULL) { 657 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 658 ("shadowed tmpfs v_object 2 %p", object)); 659 VM_OBJECT_WLOCK(temp); 660 LIST_REMOVE(object, shadow_list); 661 temp->shadow_count--; 662 VM_OBJECT_WUNLOCK(temp); 663 object->backing_object = NULL; 664 } 665 /* 666 * Don't double-terminate, we could be in a termination 667 * recursion due to the terminate having to sync data 668 * to disk. 669 */ 670 if ((object->flags & OBJ_DEAD) == 0) 671 vm_object_terminate(object); 672 else 673 VM_OBJECT_WUNLOCK(object); 674 object = temp; 675 } 676 } 677 678 /* 679 * vm_object_destroy removes the object from the global object list 680 * and frees the space for the object. 681 */ 682 void 683 vm_object_destroy(vm_object_t object) 684 { 685 686 /* 687 * Release the allocation charge. 688 */ 689 if (object->cred != NULL) { 690 swap_release_by_cred(object->charge, object->cred); 691 object->charge = 0; 692 crfree(object->cred); 693 object->cred = NULL; 694 } 695 696 /* 697 * Free the space for the object. 698 */ 699 uma_zfree(obj_zone, object); 700 } 701 702 /* 703 * vm_object_terminate actually destroys the specified object, freeing 704 * up all previously used resources. 705 * 706 * The object must be locked. 707 * This routine may block. 708 */ 709 void 710 vm_object_terminate(vm_object_t object) 711 { 712 vm_page_t p, p_next; 713 714 VM_OBJECT_ASSERT_WLOCKED(object); 715 716 /* 717 * Make sure no one uses us. 718 */ 719 vm_object_set_flag(object, OBJ_DEAD); 720 721 /* 722 * wait for the pageout daemon to be done with the object 723 */ 724 vm_object_pip_wait(object, "objtrm"); 725 726 KASSERT(!object->paging_in_progress, 727 ("vm_object_terminate: pageout in progress")); 728 729 /* 730 * Clean and free the pages, as appropriate. All references to the 731 * object are gone, so we don't need to lock it. 732 */ 733 if (object->type == OBJT_VNODE) { 734 struct vnode *vp = (struct vnode *)object->handle; 735 736 /* 737 * Clean pages and flush buffers. 738 */ 739 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 740 VM_OBJECT_WUNLOCK(object); 741 742 vinvalbuf(vp, V_SAVE, 0, 0); 743 744 BO_LOCK(&vp->v_bufobj); 745 vp->v_bufobj.bo_flag |= BO_DEAD; 746 BO_UNLOCK(&vp->v_bufobj); 747 748 VM_OBJECT_WLOCK(object); 749 } 750 751 KASSERT(object->ref_count == 0, 752 ("vm_object_terminate: object with references, ref_count=%d", 753 object->ref_count)); 754 755 /* 756 * Free any remaining pageable pages. This also removes them from the 757 * paging queues. However, don't free wired pages, just remove them 758 * from the object. Rather than incrementally removing each page from 759 * the object, the page and object are reset to any empty state. 760 */ 761 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 762 vm_page_assert_unbusied(p); 763 vm_page_lock(p); 764 /* 765 * Optimize the page's removal from the object by resetting 766 * its "object" field. Specifically, if the page is not 767 * wired, then the effect of this assignment is that 768 * vm_page_free()'s call to vm_page_remove() will return 769 * immediately without modifying the page or the object. 770 */ 771 p->object = NULL; 772 if (p->wire_count == 0) { 773 vm_page_free(p); 774 PCPU_INC(cnt.v_pfree); 775 } 776 vm_page_unlock(p); 777 } 778 /* 779 * If the object contained any pages, then reset it to an empty state. 780 * None of the object's fields, including "resident_page_count", were 781 * modified by the preceding loop. 782 */ 783 if (object->resident_page_count != 0) { 784 vm_radix_reclaim_allnodes(&object->rtree); 785 TAILQ_INIT(&object->memq); 786 object->resident_page_count = 0; 787 if (object->type == OBJT_VNODE) 788 vdrop(object->handle); 789 } 790 791 #if VM_NRESERVLEVEL > 0 792 if (__predict_false(!LIST_EMPTY(&object->rvq))) 793 vm_reserv_break_all(object); 794 #endif 795 if (__predict_false(!vm_object_cache_is_empty(object))) 796 vm_page_cache_free(object, 0, 0); 797 798 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 799 object->type == OBJT_SWAP, 800 ("%s: non-swap obj %p has cred", __func__, object)); 801 802 /* 803 * Let the pager know object is dead. 804 */ 805 vm_pager_deallocate(object); 806 VM_OBJECT_WUNLOCK(object); 807 808 vm_object_destroy(object); 809 } 810 811 /* 812 * Make the page read-only so that we can clear the object flags. However, if 813 * this is a nosync mmap then the object is likely to stay dirty so do not 814 * mess with the page and do not clear the object flags. Returns TRUE if the 815 * page should be flushed, and FALSE otherwise. 816 */ 817 static boolean_t 818 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 819 { 820 821 /* 822 * If we have been asked to skip nosync pages and this is a 823 * nosync page, skip it. Note that the object flags were not 824 * cleared in this case so we do not have to set them. 825 */ 826 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 827 *clearobjflags = FALSE; 828 return (FALSE); 829 } else { 830 pmap_remove_write(p); 831 return (p->dirty != 0); 832 } 833 } 834 835 /* 836 * vm_object_page_clean 837 * 838 * Clean all dirty pages in the specified range of object. Leaves page 839 * on whatever queue it is currently on. If NOSYNC is set then do not 840 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 841 * leaving the object dirty. 842 * 843 * When stuffing pages asynchronously, allow clustering. XXX we need a 844 * synchronous clustering mode implementation. 845 * 846 * Odd semantics: if start == end, we clean everything. 847 * 848 * The object must be locked. 849 * 850 * Returns FALSE if some page from the range was not written, as 851 * reported by the pager, and TRUE otherwise. 852 */ 853 boolean_t 854 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 855 int flags) 856 { 857 vm_page_t np, p; 858 vm_pindex_t pi, tend, tstart; 859 int curgeneration, n, pagerflags; 860 boolean_t clearobjflags, eio, res; 861 862 VM_OBJECT_ASSERT_WLOCKED(object); 863 864 /* 865 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 866 * objects. The check below prevents the function from 867 * operating on non-vnode objects. 868 */ 869 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 870 object->resident_page_count == 0) 871 return (TRUE); 872 873 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 874 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 875 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 876 877 tstart = OFF_TO_IDX(start); 878 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 879 clearobjflags = tstart == 0 && tend >= object->size; 880 res = TRUE; 881 882 rescan: 883 curgeneration = object->generation; 884 885 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 886 pi = p->pindex; 887 if (pi >= tend) 888 break; 889 np = TAILQ_NEXT(p, listq); 890 if (p->valid == 0) 891 continue; 892 if (vm_page_sleep_if_busy(p, "vpcwai")) { 893 if (object->generation != curgeneration) { 894 if ((flags & OBJPC_SYNC) != 0) 895 goto rescan; 896 else 897 clearobjflags = FALSE; 898 } 899 np = vm_page_find_least(object, pi); 900 continue; 901 } 902 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 903 continue; 904 905 n = vm_object_page_collect_flush(object, p, pagerflags, 906 flags, &clearobjflags, &eio); 907 if (eio) { 908 res = FALSE; 909 clearobjflags = FALSE; 910 } 911 if (object->generation != curgeneration) { 912 if ((flags & OBJPC_SYNC) != 0) 913 goto rescan; 914 else 915 clearobjflags = FALSE; 916 } 917 918 /* 919 * If the VOP_PUTPAGES() did a truncated write, so 920 * that even the first page of the run is not fully 921 * written, vm_pageout_flush() returns 0 as the run 922 * length. Since the condition that caused truncated 923 * write may be permanent, e.g. exhausted free space, 924 * accepting n == 0 would cause an infinite loop. 925 * 926 * Forwarding the iterator leaves the unwritten page 927 * behind, but there is not much we can do there if 928 * filesystem refuses to write it. 929 */ 930 if (n == 0) { 931 n = 1; 932 clearobjflags = FALSE; 933 } 934 np = vm_page_find_least(object, pi + n); 935 } 936 #if 0 937 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 938 #endif 939 940 if (clearobjflags) 941 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 942 return (res); 943 } 944 945 static int 946 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 947 int flags, boolean_t *clearobjflags, boolean_t *eio) 948 { 949 vm_page_t ma[vm_pageout_page_count], p_first, tp; 950 int count, i, mreq, runlen; 951 952 vm_page_lock_assert(p, MA_NOTOWNED); 953 VM_OBJECT_ASSERT_WLOCKED(object); 954 955 count = 1; 956 mreq = 0; 957 958 for (tp = p; count < vm_pageout_page_count; count++) { 959 tp = vm_page_next(tp); 960 if (tp == NULL || vm_page_busied(tp)) 961 break; 962 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 963 break; 964 } 965 966 for (p_first = p; count < vm_pageout_page_count; count++) { 967 tp = vm_page_prev(p_first); 968 if (tp == NULL || vm_page_busied(tp)) 969 break; 970 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 971 break; 972 p_first = tp; 973 mreq++; 974 } 975 976 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 977 ma[i] = tp; 978 979 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 980 return (runlen); 981 } 982 983 /* 984 * Note that there is absolutely no sense in writing out 985 * anonymous objects, so we track down the vnode object 986 * to write out. 987 * We invalidate (remove) all pages from the address space 988 * for semantic correctness. 989 * 990 * If the backing object is a device object with unmanaged pages, then any 991 * mappings to the specified range of pages must be removed before this 992 * function is called. 993 * 994 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 995 * may start out with a NULL object. 996 */ 997 boolean_t 998 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 999 boolean_t syncio, boolean_t invalidate) 1000 { 1001 vm_object_t backing_object; 1002 struct vnode *vp; 1003 struct mount *mp; 1004 int error, flags, fsync_after; 1005 boolean_t res; 1006 1007 if (object == NULL) 1008 return (TRUE); 1009 res = TRUE; 1010 error = 0; 1011 VM_OBJECT_WLOCK(object); 1012 while ((backing_object = object->backing_object) != NULL) { 1013 VM_OBJECT_WLOCK(backing_object); 1014 offset += object->backing_object_offset; 1015 VM_OBJECT_WUNLOCK(object); 1016 object = backing_object; 1017 if (object->size < OFF_TO_IDX(offset + size)) 1018 size = IDX_TO_OFF(object->size) - offset; 1019 } 1020 /* 1021 * Flush pages if writing is allowed, invalidate them 1022 * if invalidation requested. Pages undergoing I/O 1023 * will be ignored by vm_object_page_remove(). 1024 * 1025 * We cannot lock the vnode and then wait for paging 1026 * to complete without deadlocking against vm_fault. 1027 * Instead we simply call vm_object_page_remove() and 1028 * allow it to block internally on a page-by-page 1029 * basis when it encounters pages undergoing async 1030 * I/O. 1031 */ 1032 if (object->type == OBJT_VNODE && 1033 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1034 vp = object->handle; 1035 VM_OBJECT_WUNLOCK(object); 1036 (void) vn_start_write(vp, &mp, V_WAIT); 1037 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1038 if (syncio && !invalidate && offset == 0 && 1039 OFF_TO_IDX(size) == object->size) { 1040 /* 1041 * If syncing the whole mapping of the file, 1042 * it is faster to schedule all the writes in 1043 * async mode, also allowing the clustering, 1044 * and then wait for i/o to complete. 1045 */ 1046 flags = 0; 1047 fsync_after = TRUE; 1048 } else { 1049 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1050 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1051 fsync_after = FALSE; 1052 } 1053 VM_OBJECT_WLOCK(object); 1054 res = vm_object_page_clean(object, offset, offset + size, 1055 flags); 1056 VM_OBJECT_WUNLOCK(object); 1057 if (fsync_after) 1058 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1059 VOP_UNLOCK(vp, 0); 1060 vn_finished_write(mp); 1061 if (error != 0) 1062 res = FALSE; 1063 VM_OBJECT_WLOCK(object); 1064 } 1065 if ((object->type == OBJT_VNODE || 1066 object->type == OBJT_DEVICE) && invalidate) { 1067 if (object->type == OBJT_DEVICE) 1068 /* 1069 * The option OBJPR_NOTMAPPED must be passed here 1070 * because vm_object_page_remove() cannot remove 1071 * unmanaged mappings. 1072 */ 1073 flags = OBJPR_NOTMAPPED; 1074 else if (old_msync) 1075 flags = 0; 1076 else 1077 flags = OBJPR_CLEANONLY; 1078 vm_object_page_remove(object, OFF_TO_IDX(offset), 1079 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1080 } 1081 VM_OBJECT_WUNLOCK(object); 1082 return (res); 1083 } 1084 1085 /* 1086 * vm_object_madvise: 1087 * 1088 * Implements the madvise function at the object/page level. 1089 * 1090 * MADV_WILLNEED (any object) 1091 * 1092 * Activate the specified pages if they are resident. 1093 * 1094 * MADV_DONTNEED (any object) 1095 * 1096 * Deactivate the specified pages if they are resident. 1097 * 1098 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1099 * OBJ_ONEMAPPING only) 1100 * 1101 * Deactivate and clean the specified pages if they are 1102 * resident. This permits the process to reuse the pages 1103 * without faulting or the kernel to reclaim the pages 1104 * without I/O. 1105 */ 1106 void 1107 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1108 int advise) 1109 { 1110 vm_pindex_t tpindex; 1111 vm_object_t backing_object, tobject; 1112 vm_page_t m; 1113 1114 if (object == NULL) 1115 return; 1116 VM_OBJECT_WLOCK(object); 1117 /* 1118 * Locate and adjust resident pages 1119 */ 1120 for (; pindex < end; pindex += 1) { 1121 relookup: 1122 tobject = object; 1123 tpindex = pindex; 1124 shadowlookup: 1125 /* 1126 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1127 * and those pages must be OBJ_ONEMAPPING. 1128 */ 1129 if (advise == MADV_FREE) { 1130 if ((tobject->type != OBJT_DEFAULT && 1131 tobject->type != OBJT_SWAP) || 1132 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1133 goto unlock_tobject; 1134 } 1135 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1136 goto unlock_tobject; 1137 m = vm_page_lookup(tobject, tpindex); 1138 if (m == NULL && advise == MADV_WILLNEED) { 1139 /* 1140 * If the page is cached, reactivate it. 1141 */ 1142 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1143 VM_ALLOC_NOBUSY); 1144 } 1145 if (m == NULL) { 1146 /* 1147 * There may be swap even if there is no backing page 1148 */ 1149 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1150 swap_pager_freespace(tobject, tpindex, 1); 1151 /* 1152 * next object 1153 */ 1154 backing_object = tobject->backing_object; 1155 if (backing_object == NULL) 1156 goto unlock_tobject; 1157 VM_OBJECT_WLOCK(backing_object); 1158 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1159 if (tobject != object) 1160 VM_OBJECT_WUNLOCK(tobject); 1161 tobject = backing_object; 1162 goto shadowlookup; 1163 } else if (m->valid != VM_PAGE_BITS_ALL) 1164 goto unlock_tobject; 1165 /* 1166 * If the page is not in a normal state, skip it. 1167 */ 1168 vm_page_lock(m); 1169 if (m->hold_count != 0 || m->wire_count != 0) { 1170 vm_page_unlock(m); 1171 goto unlock_tobject; 1172 } 1173 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1174 ("vm_object_madvise: page %p is fictitious", m)); 1175 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1176 ("vm_object_madvise: page %p is not managed", m)); 1177 if (vm_page_busied(m)) { 1178 if (advise == MADV_WILLNEED) { 1179 /* 1180 * Reference the page before unlocking and 1181 * sleeping so that the page daemon is less 1182 * likely to reclaim it. 1183 */ 1184 vm_page_aflag_set(m, PGA_REFERENCED); 1185 } 1186 if (object != tobject) 1187 VM_OBJECT_WUNLOCK(object); 1188 VM_OBJECT_WUNLOCK(tobject); 1189 vm_page_busy_sleep(m, "madvpo"); 1190 VM_OBJECT_WLOCK(object); 1191 goto relookup; 1192 } 1193 if (advise == MADV_WILLNEED) { 1194 vm_page_activate(m); 1195 } else { 1196 vm_page_advise(m, advise); 1197 } 1198 vm_page_unlock(m); 1199 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1200 swap_pager_freespace(tobject, tpindex, 1); 1201 unlock_tobject: 1202 if (tobject != object) 1203 VM_OBJECT_WUNLOCK(tobject); 1204 } 1205 VM_OBJECT_WUNLOCK(object); 1206 } 1207 1208 /* 1209 * vm_object_shadow: 1210 * 1211 * Create a new object which is backed by the 1212 * specified existing object range. The source 1213 * object reference is deallocated. 1214 * 1215 * The new object and offset into that object 1216 * are returned in the source parameters. 1217 */ 1218 void 1219 vm_object_shadow( 1220 vm_object_t *object, /* IN/OUT */ 1221 vm_ooffset_t *offset, /* IN/OUT */ 1222 vm_size_t length) 1223 { 1224 vm_object_t source; 1225 vm_object_t result; 1226 1227 source = *object; 1228 1229 /* 1230 * Don't create the new object if the old object isn't shared. 1231 */ 1232 if (source != NULL) { 1233 VM_OBJECT_WLOCK(source); 1234 if (source->ref_count == 1 && 1235 source->handle == NULL && 1236 (source->type == OBJT_DEFAULT || 1237 source->type == OBJT_SWAP)) { 1238 VM_OBJECT_WUNLOCK(source); 1239 return; 1240 } 1241 VM_OBJECT_WUNLOCK(source); 1242 } 1243 1244 /* 1245 * Allocate a new object with the given length. 1246 */ 1247 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1248 1249 /* 1250 * The new object shadows the source object, adding a reference to it. 1251 * Our caller changes his reference to point to the new object, 1252 * removing a reference to the source object. Net result: no change 1253 * of reference count. 1254 * 1255 * Try to optimize the result object's page color when shadowing 1256 * in order to maintain page coloring consistency in the combined 1257 * shadowed object. 1258 */ 1259 result->backing_object = source; 1260 /* 1261 * Store the offset into the source object, and fix up the offset into 1262 * the new object. 1263 */ 1264 result->backing_object_offset = *offset; 1265 if (source != NULL) { 1266 VM_OBJECT_WLOCK(source); 1267 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1268 source->shadow_count++; 1269 #if VM_NRESERVLEVEL > 0 1270 result->flags |= source->flags & OBJ_COLORED; 1271 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1272 ((1 << (VM_NFREEORDER - 1)) - 1); 1273 #endif 1274 VM_OBJECT_WUNLOCK(source); 1275 } 1276 1277 1278 /* 1279 * Return the new things 1280 */ 1281 *offset = 0; 1282 *object = result; 1283 } 1284 1285 /* 1286 * vm_object_split: 1287 * 1288 * Split the pages in a map entry into a new object. This affords 1289 * easier removal of unused pages, and keeps object inheritance from 1290 * being a negative impact on memory usage. 1291 */ 1292 void 1293 vm_object_split(vm_map_entry_t entry) 1294 { 1295 vm_page_t m, m_next; 1296 vm_object_t orig_object, new_object, source; 1297 vm_pindex_t idx, offidxstart; 1298 vm_size_t size; 1299 1300 orig_object = entry->object.vm_object; 1301 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1302 return; 1303 if (orig_object->ref_count <= 1) 1304 return; 1305 VM_OBJECT_WUNLOCK(orig_object); 1306 1307 offidxstart = OFF_TO_IDX(entry->offset); 1308 size = atop(entry->end - entry->start); 1309 1310 /* 1311 * If swap_pager_copy() is later called, it will convert new_object 1312 * into a swap object. 1313 */ 1314 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1315 1316 /* 1317 * At this point, the new object is still private, so the order in 1318 * which the original and new objects are locked does not matter. 1319 */ 1320 VM_OBJECT_WLOCK(new_object); 1321 VM_OBJECT_WLOCK(orig_object); 1322 source = orig_object->backing_object; 1323 if (source != NULL) { 1324 VM_OBJECT_WLOCK(source); 1325 if ((source->flags & OBJ_DEAD) != 0) { 1326 VM_OBJECT_WUNLOCK(source); 1327 VM_OBJECT_WUNLOCK(orig_object); 1328 VM_OBJECT_WUNLOCK(new_object); 1329 vm_object_deallocate(new_object); 1330 VM_OBJECT_WLOCK(orig_object); 1331 return; 1332 } 1333 LIST_INSERT_HEAD(&source->shadow_head, 1334 new_object, shadow_list); 1335 source->shadow_count++; 1336 vm_object_reference_locked(source); /* for new_object */ 1337 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1338 VM_OBJECT_WUNLOCK(source); 1339 new_object->backing_object_offset = 1340 orig_object->backing_object_offset + entry->offset; 1341 new_object->backing_object = source; 1342 } 1343 if (orig_object->cred != NULL) { 1344 new_object->cred = orig_object->cred; 1345 crhold(orig_object->cred); 1346 new_object->charge = ptoa(size); 1347 KASSERT(orig_object->charge >= ptoa(size), 1348 ("orig_object->charge < 0")); 1349 orig_object->charge -= ptoa(size); 1350 } 1351 retry: 1352 m = vm_page_find_least(orig_object, offidxstart); 1353 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1354 m = m_next) { 1355 m_next = TAILQ_NEXT(m, listq); 1356 1357 /* 1358 * We must wait for pending I/O to complete before we can 1359 * rename the page. 1360 * 1361 * We do not have to VM_PROT_NONE the page as mappings should 1362 * not be changed by this operation. 1363 */ 1364 if (vm_page_busied(m)) { 1365 VM_OBJECT_WUNLOCK(new_object); 1366 vm_page_lock(m); 1367 VM_OBJECT_WUNLOCK(orig_object); 1368 vm_page_busy_sleep(m, "spltwt"); 1369 VM_OBJECT_WLOCK(orig_object); 1370 VM_OBJECT_WLOCK(new_object); 1371 goto retry; 1372 } 1373 1374 /* vm_page_rename() will handle dirty and cache. */ 1375 if (vm_page_rename(m, new_object, idx)) { 1376 VM_OBJECT_WUNLOCK(new_object); 1377 VM_OBJECT_WUNLOCK(orig_object); 1378 VM_WAIT; 1379 VM_OBJECT_WLOCK(orig_object); 1380 VM_OBJECT_WLOCK(new_object); 1381 goto retry; 1382 } 1383 #if VM_NRESERVLEVEL > 0 1384 /* 1385 * If some of the reservation's allocated pages remain with 1386 * the original object, then transferring the reservation to 1387 * the new object is neither particularly beneficial nor 1388 * particularly harmful as compared to leaving the reservation 1389 * with the original object. If, however, all of the 1390 * reservation's allocated pages are transferred to the new 1391 * object, then transferring the reservation is typically 1392 * beneficial. Determining which of these two cases applies 1393 * would be more costly than unconditionally renaming the 1394 * reservation. 1395 */ 1396 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1397 #endif 1398 if (orig_object->type == OBJT_SWAP) 1399 vm_page_xbusy(m); 1400 } 1401 if (orig_object->type == OBJT_SWAP) { 1402 /* 1403 * swap_pager_copy() can sleep, in which case the orig_object's 1404 * and new_object's locks are released and reacquired. 1405 */ 1406 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1407 TAILQ_FOREACH(m, &new_object->memq, listq) 1408 vm_page_xunbusy(m); 1409 1410 /* 1411 * Transfer any cached pages from orig_object to new_object. 1412 * If swap_pager_copy() found swapped out pages within the 1413 * specified range of orig_object, then it changed 1414 * new_object's type to OBJT_SWAP when it transferred those 1415 * pages to new_object. Otherwise, new_object's type 1416 * should still be OBJT_DEFAULT and orig_object should not 1417 * contain any cached pages within the specified range. 1418 */ 1419 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1420 vm_page_cache_transfer(orig_object, offidxstart, 1421 new_object); 1422 } 1423 VM_OBJECT_WUNLOCK(orig_object); 1424 VM_OBJECT_WUNLOCK(new_object); 1425 entry->object.vm_object = new_object; 1426 entry->offset = 0LL; 1427 vm_object_deallocate(orig_object); 1428 VM_OBJECT_WLOCK(new_object); 1429 } 1430 1431 #define OBSC_COLLAPSE_NOWAIT 0x0002 1432 #define OBSC_COLLAPSE_WAIT 0x0004 1433 1434 static vm_page_t 1435 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1436 int op) 1437 { 1438 vm_object_t backing_object; 1439 1440 VM_OBJECT_ASSERT_WLOCKED(object); 1441 backing_object = object->backing_object; 1442 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1443 1444 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1445 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1446 ("invalid ownership %p %p %p", p, object, backing_object)); 1447 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1448 return (next); 1449 if (p != NULL) 1450 vm_page_lock(p); 1451 VM_OBJECT_WUNLOCK(object); 1452 VM_OBJECT_WUNLOCK(backing_object); 1453 if (p == NULL) 1454 VM_WAIT; 1455 else 1456 vm_page_busy_sleep(p, "vmocol"); 1457 VM_OBJECT_WLOCK(object); 1458 VM_OBJECT_WLOCK(backing_object); 1459 return (TAILQ_FIRST(&backing_object->memq)); 1460 } 1461 1462 static bool 1463 vm_object_scan_all_shadowed(vm_object_t object) 1464 { 1465 vm_object_t backing_object; 1466 vm_page_t p, pp; 1467 vm_pindex_t backing_offset_index, new_pindex; 1468 1469 VM_OBJECT_ASSERT_WLOCKED(object); 1470 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1471 1472 backing_object = object->backing_object; 1473 1474 /* 1475 * Initial conditions: 1476 * 1477 * We do not want to have to test for the existence of cache or swap 1478 * pages in the backing object. XXX but with the new swapper this 1479 * would be pretty easy to do. 1480 */ 1481 if (backing_object->type != OBJT_DEFAULT) 1482 return (false); 1483 1484 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1485 1486 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; 1487 p = TAILQ_NEXT(p, listq)) { 1488 new_pindex = p->pindex - backing_offset_index; 1489 1490 /* 1491 * Ignore pages outside the parent object's range and outside 1492 * the parent object's mapping of the backing object. 1493 */ 1494 if (p->pindex < backing_offset_index || 1495 new_pindex >= object->size) 1496 continue; 1497 1498 /* 1499 * See if the parent has the page or if the parent's object 1500 * pager has the page. If the parent has the page but the page 1501 * is not valid, the parent's object pager must have the page. 1502 * 1503 * If this fails, the parent does not completely shadow the 1504 * object and we might as well give up now. 1505 */ 1506 pp = vm_page_lookup(object, new_pindex); 1507 if ((pp == NULL || pp->valid == 0) && 1508 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1509 return (false); 1510 } 1511 return (true); 1512 } 1513 1514 static bool 1515 vm_object_collapse_scan(vm_object_t object, int op) 1516 { 1517 vm_object_t backing_object; 1518 vm_page_t next, p, pp; 1519 vm_pindex_t backing_offset_index, new_pindex; 1520 1521 VM_OBJECT_ASSERT_WLOCKED(object); 1522 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1523 1524 backing_object = object->backing_object; 1525 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1526 1527 /* 1528 * Initial conditions 1529 */ 1530 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1531 vm_object_set_flag(backing_object, OBJ_DEAD); 1532 1533 /* 1534 * Our scan 1535 */ 1536 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1537 next = TAILQ_NEXT(p, listq); 1538 new_pindex = p->pindex - backing_offset_index; 1539 1540 /* 1541 * Check for busy page 1542 */ 1543 if (vm_page_busied(p)) { 1544 next = vm_object_collapse_scan_wait(object, p, next, op); 1545 continue; 1546 } 1547 1548 KASSERT(p->object == backing_object, 1549 ("vm_object_collapse_scan: object mismatch")); 1550 1551 if (p->pindex < backing_offset_index || 1552 new_pindex >= object->size) { 1553 if (backing_object->type == OBJT_SWAP) 1554 swap_pager_freespace(backing_object, p->pindex, 1555 1); 1556 1557 /* 1558 * Page is out of the parent object's range, we can 1559 * simply destroy it. 1560 */ 1561 vm_page_lock(p); 1562 KASSERT(!pmap_page_is_mapped(p), 1563 ("freeing mapped page %p", p)); 1564 if (p->wire_count == 0) 1565 vm_page_free(p); 1566 else 1567 vm_page_remove(p); 1568 vm_page_unlock(p); 1569 continue; 1570 } 1571 1572 pp = vm_page_lookup(object, new_pindex); 1573 if (pp != NULL && vm_page_busied(pp)) { 1574 /* 1575 * The page in the parent is busy and possibly not 1576 * (yet) valid. Until its state is finalized by the 1577 * busy bit owner, we can't tell whether it shadows the 1578 * original page. Therefore, we must either skip it 1579 * and the original (backing_object) page or wait for 1580 * its state to be finalized. 1581 * 1582 * This is due to a race with vm_fault() where we must 1583 * unbusy the original (backing_obj) page before we can 1584 * (re)lock the parent. Hence we can get here. 1585 */ 1586 next = vm_object_collapse_scan_wait(object, pp, next, 1587 op); 1588 continue; 1589 } 1590 1591 KASSERT(pp == NULL || pp->valid != 0, 1592 ("unbusy invalid page %p", pp)); 1593 1594 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1595 NULL)) { 1596 /* 1597 * The page already exists in the parent OR swap exists 1598 * for this location in the parent. Leave the parent's 1599 * page alone. Destroy the original page from the 1600 * backing object. 1601 */ 1602 if (backing_object->type == OBJT_SWAP) 1603 swap_pager_freespace(backing_object, p->pindex, 1604 1); 1605 vm_page_lock(p); 1606 KASSERT(!pmap_page_is_mapped(p), 1607 ("freeing mapped page %p", p)); 1608 if (p->wire_count == 0) 1609 vm_page_free(p); 1610 else 1611 vm_page_remove(p); 1612 vm_page_unlock(p); 1613 continue; 1614 } 1615 1616 /* 1617 * Page does not exist in parent, rename the page from the 1618 * backing object to the main object. 1619 * 1620 * If the page was mapped to a process, it can remain mapped 1621 * through the rename. vm_page_rename() will handle dirty and 1622 * cache. 1623 */ 1624 if (vm_page_rename(p, object, new_pindex)) { 1625 next = vm_object_collapse_scan_wait(object, NULL, next, 1626 op); 1627 continue; 1628 } 1629 1630 /* Use the old pindex to free the right page. */ 1631 if (backing_object->type == OBJT_SWAP) 1632 swap_pager_freespace(backing_object, 1633 new_pindex + backing_offset_index, 1); 1634 1635 #if VM_NRESERVLEVEL > 0 1636 /* 1637 * Rename the reservation. 1638 */ 1639 vm_reserv_rename(p, object, backing_object, 1640 backing_offset_index); 1641 #endif 1642 } 1643 return (true); 1644 } 1645 1646 1647 /* 1648 * this version of collapse allows the operation to occur earlier and 1649 * when paging_in_progress is true for an object... This is not a complete 1650 * operation, but should plug 99.9% of the rest of the leaks. 1651 */ 1652 static void 1653 vm_object_qcollapse(vm_object_t object) 1654 { 1655 vm_object_t backing_object = object->backing_object; 1656 1657 VM_OBJECT_ASSERT_WLOCKED(object); 1658 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1659 1660 if (backing_object->ref_count != 1) 1661 return; 1662 1663 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1664 } 1665 1666 /* 1667 * vm_object_collapse: 1668 * 1669 * Collapse an object with the object backing it. 1670 * Pages in the backing object are moved into the 1671 * parent, and the backing object is deallocated. 1672 */ 1673 void 1674 vm_object_collapse(vm_object_t object) 1675 { 1676 vm_object_t backing_object, new_backing_object; 1677 1678 VM_OBJECT_ASSERT_WLOCKED(object); 1679 1680 while (TRUE) { 1681 /* 1682 * Verify that the conditions are right for collapse: 1683 * 1684 * The object exists and the backing object exists. 1685 */ 1686 if ((backing_object = object->backing_object) == NULL) 1687 break; 1688 1689 /* 1690 * we check the backing object first, because it is most likely 1691 * not collapsable. 1692 */ 1693 VM_OBJECT_WLOCK(backing_object); 1694 if (backing_object->handle != NULL || 1695 (backing_object->type != OBJT_DEFAULT && 1696 backing_object->type != OBJT_SWAP) || 1697 (backing_object->flags & OBJ_DEAD) || 1698 object->handle != NULL || 1699 (object->type != OBJT_DEFAULT && 1700 object->type != OBJT_SWAP) || 1701 (object->flags & OBJ_DEAD)) { 1702 VM_OBJECT_WUNLOCK(backing_object); 1703 break; 1704 } 1705 1706 if (object->paging_in_progress != 0 || 1707 backing_object->paging_in_progress != 0) { 1708 vm_object_qcollapse(object); 1709 VM_OBJECT_WUNLOCK(backing_object); 1710 break; 1711 } 1712 1713 /* 1714 * We know that we can either collapse the backing object (if 1715 * the parent is the only reference to it) or (perhaps) have 1716 * the parent bypass the object if the parent happens to shadow 1717 * all the resident pages in the entire backing object. 1718 * 1719 * This is ignoring pager-backed pages such as swap pages. 1720 * vm_object_collapse_scan fails the shadowing test in this 1721 * case. 1722 */ 1723 if (backing_object->ref_count == 1) { 1724 vm_object_pip_add(object, 1); 1725 vm_object_pip_add(backing_object, 1); 1726 1727 /* 1728 * If there is exactly one reference to the backing 1729 * object, we can collapse it into the parent. 1730 */ 1731 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1732 1733 #if VM_NRESERVLEVEL > 0 1734 /* 1735 * Break any reservations from backing_object. 1736 */ 1737 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1738 vm_reserv_break_all(backing_object); 1739 #endif 1740 1741 /* 1742 * Move the pager from backing_object to object. 1743 */ 1744 if (backing_object->type == OBJT_SWAP) { 1745 /* 1746 * swap_pager_copy() can sleep, in which case 1747 * the backing_object's and object's locks are 1748 * released and reacquired. 1749 * Since swap_pager_copy() is being asked to 1750 * destroy the source, it will change the 1751 * backing_object's type to OBJT_DEFAULT. 1752 */ 1753 swap_pager_copy( 1754 backing_object, 1755 object, 1756 OFF_TO_IDX(object->backing_object_offset), TRUE); 1757 1758 /* 1759 * Free any cached pages from backing_object. 1760 */ 1761 if (__predict_false( 1762 !vm_object_cache_is_empty(backing_object))) 1763 vm_page_cache_free(backing_object, 0, 0); 1764 } 1765 /* 1766 * Object now shadows whatever backing_object did. 1767 * Note that the reference to 1768 * backing_object->backing_object moves from within 1769 * backing_object to within object. 1770 */ 1771 LIST_REMOVE(object, shadow_list); 1772 backing_object->shadow_count--; 1773 if (backing_object->backing_object) { 1774 VM_OBJECT_WLOCK(backing_object->backing_object); 1775 LIST_REMOVE(backing_object, shadow_list); 1776 LIST_INSERT_HEAD( 1777 &backing_object->backing_object->shadow_head, 1778 object, shadow_list); 1779 /* 1780 * The shadow_count has not changed. 1781 */ 1782 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1783 } 1784 object->backing_object = backing_object->backing_object; 1785 object->backing_object_offset += 1786 backing_object->backing_object_offset; 1787 1788 /* 1789 * Discard backing_object. 1790 * 1791 * Since the backing object has no pages, no pager left, 1792 * and no object references within it, all that is 1793 * necessary is to dispose of it. 1794 */ 1795 KASSERT(backing_object->ref_count == 1, ( 1796 "backing_object %p was somehow re-referenced during collapse!", 1797 backing_object)); 1798 vm_object_pip_wakeup(backing_object); 1799 backing_object->type = OBJT_DEAD; 1800 backing_object->ref_count = 0; 1801 VM_OBJECT_WUNLOCK(backing_object); 1802 vm_object_destroy(backing_object); 1803 1804 vm_object_pip_wakeup(object); 1805 object_collapses++; 1806 } else { 1807 /* 1808 * If we do not entirely shadow the backing object, 1809 * there is nothing we can do so we give up. 1810 */ 1811 if (object->resident_page_count != object->size && 1812 !vm_object_scan_all_shadowed(object)) { 1813 VM_OBJECT_WUNLOCK(backing_object); 1814 break; 1815 } 1816 1817 /* 1818 * Make the parent shadow the next object in the 1819 * chain. Deallocating backing_object will not remove 1820 * it, since its reference count is at least 2. 1821 */ 1822 LIST_REMOVE(object, shadow_list); 1823 backing_object->shadow_count--; 1824 1825 new_backing_object = backing_object->backing_object; 1826 if ((object->backing_object = new_backing_object) != NULL) { 1827 VM_OBJECT_WLOCK(new_backing_object); 1828 LIST_INSERT_HEAD( 1829 &new_backing_object->shadow_head, 1830 object, 1831 shadow_list 1832 ); 1833 new_backing_object->shadow_count++; 1834 vm_object_reference_locked(new_backing_object); 1835 VM_OBJECT_WUNLOCK(new_backing_object); 1836 object->backing_object_offset += 1837 backing_object->backing_object_offset; 1838 } 1839 1840 /* 1841 * Drop the reference count on backing_object. Since 1842 * its ref_count was at least 2, it will not vanish. 1843 */ 1844 backing_object->ref_count--; 1845 VM_OBJECT_WUNLOCK(backing_object); 1846 object_bypasses++; 1847 } 1848 1849 /* 1850 * Try again with this object's new backing object. 1851 */ 1852 } 1853 } 1854 1855 /* 1856 * vm_object_page_remove: 1857 * 1858 * For the given object, either frees or invalidates each of the 1859 * specified pages. In general, a page is freed. However, if a page is 1860 * wired for any reason other than the existence of a managed, wired 1861 * mapping, then it may be invalidated but not removed from the object. 1862 * Pages are specified by the given range ["start", "end") and the option 1863 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1864 * extends from "start" to the end of the object. If the option 1865 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1866 * specified range are affected. If the option OBJPR_NOTMAPPED is 1867 * specified, then the pages within the specified range must have no 1868 * mappings. Otherwise, if this option is not specified, any mappings to 1869 * the specified pages are removed before the pages are freed or 1870 * invalidated. 1871 * 1872 * In general, this operation should only be performed on objects that 1873 * contain managed pages. There are, however, two exceptions. First, it 1874 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1875 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1876 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1877 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1878 * 1879 * The object must be locked. 1880 */ 1881 void 1882 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1883 int options) 1884 { 1885 vm_page_t p, next; 1886 1887 VM_OBJECT_ASSERT_WLOCKED(object); 1888 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1889 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1890 ("vm_object_page_remove: illegal options for object %p", object)); 1891 if (object->resident_page_count == 0) 1892 goto skipmemq; 1893 vm_object_pip_add(object, 1); 1894 again: 1895 p = vm_page_find_least(object, start); 1896 1897 /* 1898 * Here, the variable "p" is either (1) the page with the least pindex 1899 * greater than or equal to the parameter "start" or (2) NULL. 1900 */ 1901 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1902 next = TAILQ_NEXT(p, listq); 1903 1904 /* 1905 * If the page is wired for any reason besides the existence 1906 * of managed, wired mappings, then it cannot be freed. For 1907 * example, fictitious pages, which represent device memory, 1908 * are inherently wired and cannot be freed. They can, 1909 * however, be invalidated if the option OBJPR_CLEANONLY is 1910 * not specified. 1911 */ 1912 vm_page_lock(p); 1913 if (vm_page_xbusied(p)) { 1914 VM_OBJECT_WUNLOCK(object); 1915 vm_page_busy_sleep(p, "vmopax"); 1916 VM_OBJECT_WLOCK(object); 1917 goto again; 1918 } 1919 if (p->wire_count != 0) { 1920 if ((options & OBJPR_NOTMAPPED) == 0) 1921 pmap_remove_all(p); 1922 if ((options & OBJPR_CLEANONLY) == 0) { 1923 p->valid = 0; 1924 vm_page_undirty(p); 1925 } 1926 goto next; 1927 } 1928 if (vm_page_busied(p)) { 1929 VM_OBJECT_WUNLOCK(object); 1930 vm_page_busy_sleep(p, "vmopar"); 1931 VM_OBJECT_WLOCK(object); 1932 goto again; 1933 } 1934 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1935 ("vm_object_page_remove: page %p is fictitious", p)); 1936 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1937 if ((options & OBJPR_NOTMAPPED) == 0) 1938 pmap_remove_write(p); 1939 if (p->dirty) 1940 goto next; 1941 } 1942 if ((options & OBJPR_NOTMAPPED) == 0) 1943 pmap_remove_all(p); 1944 vm_page_free(p); 1945 next: 1946 vm_page_unlock(p); 1947 } 1948 vm_object_pip_wakeup(object); 1949 skipmemq: 1950 if (__predict_false(!vm_object_cache_is_empty(object))) 1951 vm_page_cache_free(object, start, end); 1952 } 1953 1954 /* 1955 * vm_object_page_noreuse: 1956 * 1957 * For the given object, attempt to move the specified pages to 1958 * the head of the inactive queue. This bypasses regular LRU 1959 * operation and allows the pages to be reused quickly under memory 1960 * pressure. If a page is wired for any reason, then it will not 1961 * be queued. Pages are specified by the range ["start", "end"). 1962 * As a special case, if "end" is zero, then the range extends from 1963 * "start" to the end of the object. 1964 * 1965 * This operation should only be performed on objects that 1966 * contain non-fictitious, managed pages. 1967 * 1968 * The object must be locked. 1969 */ 1970 void 1971 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1972 { 1973 struct mtx *mtx, *new_mtx; 1974 vm_page_t p, next; 1975 1976 VM_OBJECT_ASSERT_WLOCKED(object); 1977 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1978 ("vm_object_page_noreuse: illegal object %p", object)); 1979 if (object->resident_page_count == 0) 1980 return; 1981 p = vm_page_find_least(object, start); 1982 1983 /* 1984 * Here, the variable "p" is either (1) the page with the least pindex 1985 * greater than or equal to the parameter "start" or (2) NULL. 1986 */ 1987 mtx = NULL; 1988 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1989 next = TAILQ_NEXT(p, listq); 1990 1991 /* 1992 * Avoid releasing and reacquiring the same page lock. 1993 */ 1994 new_mtx = vm_page_lockptr(p); 1995 if (mtx != new_mtx) { 1996 if (mtx != NULL) 1997 mtx_unlock(mtx); 1998 mtx = new_mtx; 1999 mtx_lock(mtx); 2000 } 2001 vm_page_deactivate_noreuse(p); 2002 } 2003 if (mtx != NULL) 2004 mtx_unlock(mtx); 2005 } 2006 2007 /* 2008 * Populate the specified range of the object with valid pages. Returns 2009 * TRUE if the range is successfully populated and FALSE otherwise. 2010 * 2011 * Note: This function should be optimized to pass a larger array of 2012 * pages to vm_pager_get_pages() before it is applied to a non- 2013 * OBJT_DEVICE object. 2014 * 2015 * The object must be locked. 2016 */ 2017 boolean_t 2018 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2019 { 2020 vm_page_t m; 2021 vm_pindex_t pindex; 2022 int rv; 2023 2024 VM_OBJECT_ASSERT_WLOCKED(object); 2025 for (pindex = start; pindex < end; pindex++) { 2026 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2027 if (m->valid != VM_PAGE_BITS_ALL) { 2028 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2029 if (rv != VM_PAGER_OK) { 2030 vm_page_lock(m); 2031 vm_page_free(m); 2032 vm_page_unlock(m); 2033 break; 2034 } 2035 } 2036 /* 2037 * Keep "m" busy because a subsequent iteration may unlock 2038 * the object. 2039 */ 2040 } 2041 if (pindex > start) { 2042 m = vm_page_lookup(object, start); 2043 while (m != NULL && m->pindex < pindex) { 2044 vm_page_xunbusy(m); 2045 m = TAILQ_NEXT(m, listq); 2046 } 2047 } 2048 return (pindex == end); 2049 } 2050 2051 /* 2052 * Routine: vm_object_coalesce 2053 * Function: Coalesces two objects backing up adjoining 2054 * regions of memory into a single object. 2055 * 2056 * returns TRUE if objects were combined. 2057 * 2058 * NOTE: Only works at the moment if the second object is NULL - 2059 * if it's not, which object do we lock first? 2060 * 2061 * Parameters: 2062 * prev_object First object to coalesce 2063 * prev_offset Offset into prev_object 2064 * prev_size Size of reference to prev_object 2065 * next_size Size of reference to the second object 2066 * reserved Indicator that extension region has 2067 * swap accounted for 2068 * 2069 * Conditions: 2070 * The object must *not* be locked. 2071 */ 2072 boolean_t 2073 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2074 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2075 { 2076 vm_pindex_t next_pindex; 2077 2078 if (prev_object == NULL) 2079 return (TRUE); 2080 VM_OBJECT_WLOCK(prev_object); 2081 if ((prev_object->type != OBJT_DEFAULT && 2082 prev_object->type != OBJT_SWAP) || 2083 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2084 VM_OBJECT_WUNLOCK(prev_object); 2085 return (FALSE); 2086 } 2087 2088 /* 2089 * Try to collapse the object first 2090 */ 2091 vm_object_collapse(prev_object); 2092 2093 /* 2094 * Can't coalesce if: . more than one reference . paged out . shadows 2095 * another object . has a copy elsewhere (any of which mean that the 2096 * pages not mapped to prev_entry may be in use anyway) 2097 */ 2098 if (prev_object->backing_object != NULL) { 2099 VM_OBJECT_WUNLOCK(prev_object); 2100 return (FALSE); 2101 } 2102 2103 prev_size >>= PAGE_SHIFT; 2104 next_size >>= PAGE_SHIFT; 2105 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2106 2107 if ((prev_object->ref_count > 1) && 2108 (prev_object->size != next_pindex)) { 2109 VM_OBJECT_WUNLOCK(prev_object); 2110 return (FALSE); 2111 } 2112 2113 /* 2114 * Account for the charge. 2115 */ 2116 if (prev_object->cred != NULL) { 2117 2118 /* 2119 * If prev_object was charged, then this mapping, 2120 * although not charged now, may become writable 2121 * later. Non-NULL cred in the object would prevent 2122 * swap reservation during enabling of the write 2123 * access, so reserve swap now. Failed reservation 2124 * cause allocation of the separate object for the map 2125 * entry, and swap reservation for this entry is 2126 * managed in appropriate time. 2127 */ 2128 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2129 prev_object->cred)) { 2130 VM_OBJECT_WUNLOCK(prev_object); 2131 return (FALSE); 2132 } 2133 prev_object->charge += ptoa(next_size); 2134 } 2135 2136 /* 2137 * Remove any pages that may still be in the object from a previous 2138 * deallocation. 2139 */ 2140 if (next_pindex < prev_object->size) { 2141 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2142 next_size, 0); 2143 if (prev_object->type == OBJT_SWAP) 2144 swap_pager_freespace(prev_object, 2145 next_pindex, next_size); 2146 #if 0 2147 if (prev_object->cred != NULL) { 2148 KASSERT(prev_object->charge >= 2149 ptoa(prev_object->size - next_pindex), 2150 ("object %p overcharged 1 %jx %jx", prev_object, 2151 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2152 prev_object->charge -= ptoa(prev_object->size - 2153 next_pindex); 2154 } 2155 #endif 2156 } 2157 2158 /* 2159 * Extend the object if necessary. 2160 */ 2161 if (next_pindex + next_size > prev_object->size) 2162 prev_object->size = next_pindex + next_size; 2163 2164 VM_OBJECT_WUNLOCK(prev_object); 2165 return (TRUE); 2166 } 2167 2168 void 2169 vm_object_set_writeable_dirty(vm_object_t object) 2170 { 2171 2172 VM_OBJECT_ASSERT_WLOCKED(object); 2173 if (object->type != OBJT_VNODE) { 2174 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2175 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2176 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2177 } 2178 return; 2179 } 2180 object->generation++; 2181 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2182 return; 2183 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2184 } 2185 2186 /* 2187 * vm_object_unwire: 2188 * 2189 * For each page offset within the specified range of the given object, 2190 * find the highest-level page in the shadow chain and unwire it. A page 2191 * must exist at every page offset, and the highest-level page must be 2192 * wired. 2193 */ 2194 void 2195 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2196 uint8_t queue) 2197 { 2198 vm_object_t tobject; 2199 vm_page_t m, tm; 2200 vm_pindex_t end_pindex, pindex, tpindex; 2201 int depth, locked_depth; 2202 2203 KASSERT((offset & PAGE_MASK) == 0, 2204 ("vm_object_unwire: offset is not page aligned")); 2205 KASSERT((length & PAGE_MASK) == 0, 2206 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2207 /* The wired count of a fictitious page never changes. */ 2208 if ((object->flags & OBJ_FICTITIOUS) != 0) 2209 return; 2210 pindex = OFF_TO_IDX(offset); 2211 end_pindex = pindex + atop(length); 2212 locked_depth = 1; 2213 VM_OBJECT_RLOCK(object); 2214 m = vm_page_find_least(object, pindex); 2215 while (pindex < end_pindex) { 2216 if (m == NULL || pindex < m->pindex) { 2217 /* 2218 * The first object in the shadow chain doesn't 2219 * contain a page at the current index. Therefore, 2220 * the page must exist in a backing object. 2221 */ 2222 tobject = object; 2223 tpindex = pindex; 2224 depth = 0; 2225 do { 2226 tpindex += 2227 OFF_TO_IDX(tobject->backing_object_offset); 2228 tobject = tobject->backing_object; 2229 KASSERT(tobject != NULL, 2230 ("vm_object_unwire: missing page")); 2231 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2232 goto next_page; 2233 depth++; 2234 if (depth == locked_depth) { 2235 locked_depth++; 2236 VM_OBJECT_RLOCK(tobject); 2237 } 2238 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2239 NULL); 2240 } else { 2241 tm = m; 2242 m = TAILQ_NEXT(m, listq); 2243 } 2244 vm_page_lock(tm); 2245 vm_page_unwire(tm, queue); 2246 vm_page_unlock(tm); 2247 next_page: 2248 pindex++; 2249 } 2250 /* Release the accumulated object locks. */ 2251 for (depth = 0; depth < locked_depth; depth++) { 2252 tobject = object->backing_object; 2253 VM_OBJECT_RUNLOCK(object); 2254 object = tobject; 2255 } 2256 } 2257 2258 struct vnode * 2259 vm_object_vnode(vm_object_t object) 2260 { 2261 2262 VM_OBJECT_ASSERT_LOCKED(object); 2263 if (object->type == OBJT_VNODE) 2264 return (object->handle); 2265 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2266 return (object->un_pager.swp.swp_tmpfs); 2267 return (NULL); 2268 } 2269 2270 static int 2271 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2272 { 2273 struct kinfo_vmobject kvo; 2274 char *fullpath, *freepath; 2275 struct vnode *vp; 2276 struct vattr va; 2277 vm_object_t obj; 2278 vm_page_t m; 2279 int count, error; 2280 2281 if (req->oldptr == NULL) { 2282 /* 2283 * If an old buffer has not been provided, generate an 2284 * estimate of the space needed for a subsequent call. 2285 */ 2286 mtx_lock(&vm_object_list_mtx); 2287 count = 0; 2288 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2289 if (obj->type == OBJT_DEAD) 2290 continue; 2291 count++; 2292 } 2293 mtx_unlock(&vm_object_list_mtx); 2294 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2295 count * 11 / 10)); 2296 } 2297 2298 error = 0; 2299 2300 /* 2301 * VM objects are type stable and are never removed from the 2302 * list once added. This allows us to safely read obj->object_list 2303 * after reacquiring the VM object lock. 2304 */ 2305 mtx_lock(&vm_object_list_mtx); 2306 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2307 if (obj->type == OBJT_DEAD) 2308 continue; 2309 VM_OBJECT_RLOCK(obj); 2310 if (obj->type == OBJT_DEAD) { 2311 VM_OBJECT_RUNLOCK(obj); 2312 continue; 2313 } 2314 mtx_unlock(&vm_object_list_mtx); 2315 kvo.kvo_size = ptoa(obj->size); 2316 kvo.kvo_resident = obj->resident_page_count; 2317 kvo.kvo_ref_count = obj->ref_count; 2318 kvo.kvo_shadow_count = obj->shadow_count; 2319 kvo.kvo_memattr = obj->memattr; 2320 kvo.kvo_active = 0; 2321 kvo.kvo_inactive = 0; 2322 TAILQ_FOREACH(m, &obj->memq, listq) { 2323 /* 2324 * A page may belong to the object but be 2325 * dequeued and set to PQ_NONE while the 2326 * object lock is not held. This makes the 2327 * reads of m->queue below racy, and we do not 2328 * count pages set to PQ_NONE. However, this 2329 * sysctl is only meant to give an 2330 * approximation of the system anyway. 2331 */ 2332 if (m->queue == PQ_ACTIVE) 2333 kvo.kvo_active++; 2334 else if (m->queue == PQ_INACTIVE) 2335 kvo.kvo_inactive++; 2336 } 2337 2338 kvo.kvo_vn_fileid = 0; 2339 kvo.kvo_vn_fsid = 0; 2340 freepath = NULL; 2341 fullpath = ""; 2342 vp = NULL; 2343 switch (obj->type) { 2344 case OBJT_DEFAULT: 2345 kvo.kvo_type = KVME_TYPE_DEFAULT; 2346 break; 2347 case OBJT_VNODE: 2348 kvo.kvo_type = KVME_TYPE_VNODE; 2349 vp = obj->handle; 2350 vref(vp); 2351 break; 2352 case OBJT_SWAP: 2353 kvo.kvo_type = KVME_TYPE_SWAP; 2354 break; 2355 case OBJT_DEVICE: 2356 kvo.kvo_type = KVME_TYPE_DEVICE; 2357 break; 2358 case OBJT_PHYS: 2359 kvo.kvo_type = KVME_TYPE_PHYS; 2360 break; 2361 case OBJT_DEAD: 2362 kvo.kvo_type = KVME_TYPE_DEAD; 2363 break; 2364 case OBJT_SG: 2365 kvo.kvo_type = KVME_TYPE_SG; 2366 break; 2367 case OBJT_MGTDEVICE: 2368 kvo.kvo_type = KVME_TYPE_MGTDEVICE; 2369 break; 2370 default: 2371 kvo.kvo_type = KVME_TYPE_UNKNOWN; 2372 break; 2373 } 2374 VM_OBJECT_RUNLOCK(obj); 2375 if (vp != NULL) { 2376 vn_fullpath(curthread, vp, &fullpath, &freepath); 2377 vn_lock(vp, LK_SHARED | LK_RETRY); 2378 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2379 kvo.kvo_vn_fileid = va.va_fileid; 2380 kvo.kvo_vn_fsid = va.va_fsid; 2381 } 2382 vput(vp); 2383 } 2384 2385 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path)); 2386 if (freepath != NULL) 2387 free(freepath, M_TEMP); 2388 2389 /* Pack record size down */ 2390 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) + 2391 strlen(kvo.kvo_path) + 1; 2392 kvo.kvo_structsize = roundup(kvo.kvo_structsize, 2393 sizeof(uint64_t)); 2394 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize); 2395 mtx_lock(&vm_object_list_mtx); 2396 if (error) 2397 break; 2398 } 2399 mtx_unlock(&vm_object_list_mtx); 2400 return (error); 2401 } 2402 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2403 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2404 "List of VM objects"); 2405 2406 #include "opt_ddb.h" 2407 #ifdef DDB 2408 #include <sys/kernel.h> 2409 2410 #include <sys/cons.h> 2411 2412 #include <ddb/ddb.h> 2413 2414 static int 2415 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2416 { 2417 vm_map_t tmpm; 2418 vm_map_entry_t tmpe; 2419 vm_object_t obj; 2420 int entcount; 2421 2422 if (map == 0) 2423 return 0; 2424 2425 if (entry == 0) { 2426 tmpe = map->header.next; 2427 entcount = map->nentries; 2428 while (entcount-- && (tmpe != &map->header)) { 2429 if (_vm_object_in_map(map, object, tmpe)) { 2430 return 1; 2431 } 2432 tmpe = tmpe->next; 2433 } 2434 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2435 tmpm = entry->object.sub_map; 2436 tmpe = tmpm->header.next; 2437 entcount = tmpm->nentries; 2438 while (entcount-- && tmpe != &tmpm->header) { 2439 if (_vm_object_in_map(tmpm, object, tmpe)) { 2440 return 1; 2441 } 2442 tmpe = tmpe->next; 2443 } 2444 } else if ((obj = entry->object.vm_object) != NULL) { 2445 for (; obj; obj = obj->backing_object) 2446 if (obj == object) { 2447 return 1; 2448 } 2449 } 2450 return 0; 2451 } 2452 2453 static int 2454 vm_object_in_map(vm_object_t object) 2455 { 2456 struct proc *p; 2457 2458 /* sx_slock(&allproc_lock); */ 2459 FOREACH_PROC_IN_SYSTEM(p) { 2460 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2461 continue; 2462 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2463 /* sx_sunlock(&allproc_lock); */ 2464 return 1; 2465 } 2466 } 2467 /* sx_sunlock(&allproc_lock); */ 2468 if (_vm_object_in_map(kernel_map, object, 0)) 2469 return 1; 2470 return 0; 2471 } 2472 2473 DB_SHOW_COMMAND(vmochk, vm_object_check) 2474 { 2475 vm_object_t object; 2476 2477 /* 2478 * make sure that internal objs are in a map somewhere 2479 * and none have zero ref counts. 2480 */ 2481 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2482 if (object->handle == NULL && 2483 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2484 if (object->ref_count == 0) { 2485 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2486 (long)object->size); 2487 } 2488 if (!vm_object_in_map(object)) { 2489 db_printf( 2490 "vmochk: internal obj is not in a map: " 2491 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2492 object->ref_count, (u_long)object->size, 2493 (u_long)object->size, 2494 (void *)object->backing_object); 2495 } 2496 } 2497 } 2498 } 2499 2500 /* 2501 * vm_object_print: [ debug ] 2502 */ 2503 DB_SHOW_COMMAND(object, vm_object_print_static) 2504 { 2505 /* XXX convert args. */ 2506 vm_object_t object = (vm_object_t)addr; 2507 boolean_t full = have_addr; 2508 2509 vm_page_t p; 2510 2511 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2512 #define count was_count 2513 2514 int count; 2515 2516 if (object == NULL) 2517 return; 2518 2519 db_iprintf( 2520 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2521 object, (int)object->type, (uintmax_t)object->size, 2522 object->resident_page_count, object->ref_count, object->flags, 2523 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2524 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2525 object->shadow_count, 2526 object->backing_object ? object->backing_object->ref_count : 0, 2527 object->backing_object, (uintmax_t)object->backing_object_offset); 2528 2529 if (!full) 2530 return; 2531 2532 db_indent += 2; 2533 count = 0; 2534 TAILQ_FOREACH(p, &object->memq, listq) { 2535 if (count == 0) 2536 db_iprintf("memory:="); 2537 else if (count == 6) { 2538 db_printf("\n"); 2539 db_iprintf(" ..."); 2540 count = 0; 2541 } else 2542 db_printf(","); 2543 count++; 2544 2545 db_printf("(off=0x%jx,page=0x%jx)", 2546 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2547 } 2548 if (count != 0) 2549 db_printf("\n"); 2550 db_indent -= 2; 2551 } 2552 2553 /* XXX. */ 2554 #undef count 2555 2556 /* XXX need this non-static entry for calling from vm_map_print. */ 2557 void 2558 vm_object_print( 2559 /* db_expr_t */ long addr, 2560 boolean_t have_addr, 2561 /* db_expr_t */ long count, 2562 char *modif) 2563 { 2564 vm_object_print_static(addr, have_addr, count, modif); 2565 } 2566 2567 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2568 { 2569 vm_object_t object; 2570 vm_pindex_t fidx; 2571 vm_paddr_t pa; 2572 vm_page_t m, prev_m; 2573 int rcount, nl, c; 2574 2575 nl = 0; 2576 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2577 db_printf("new object: %p\n", (void *)object); 2578 if (nl > 18) { 2579 c = cngetc(); 2580 if (c != ' ') 2581 return; 2582 nl = 0; 2583 } 2584 nl++; 2585 rcount = 0; 2586 fidx = 0; 2587 pa = -1; 2588 TAILQ_FOREACH(m, &object->memq, listq) { 2589 if (m->pindex > 128) 2590 break; 2591 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2592 prev_m->pindex + 1 != m->pindex) { 2593 if (rcount) { 2594 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2595 (long)fidx, rcount, (long)pa); 2596 if (nl > 18) { 2597 c = cngetc(); 2598 if (c != ' ') 2599 return; 2600 nl = 0; 2601 } 2602 nl++; 2603 rcount = 0; 2604 } 2605 } 2606 if (rcount && 2607 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2608 ++rcount; 2609 continue; 2610 } 2611 if (rcount) { 2612 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2613 (long)fidx, rcount, (long)pa); 2614 if (nl > 18) { 2615 c = cngetc(); 2616 if (c != ' ') 2617 return; 2618 nl = 0; 2619 } 2620 nl++; 2621 } 2622 fidx = m->pindex; 2623 pa = VM_PAGE_TO_PHYS(m); 2624 rcount = 1; 2625 } 2626 if (rcount) { 2627 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2628 (long)fidx, rcount, (long)pa); 2629 if (nl > 18) { 2630 c = cngetc(); 2631 if (c != ' ') 2632 return; 2633 nl = 0; 2634 } 2635 nl++; 2636 } 2637 } 2638 } 2639 #endif /* DDB */ 2640