xref: /freebsd/sys/vm/vm_object.c (revision bbb29a3c0f2c4565eff6fda70426807b6ed97f8b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100 
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104 
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106 		    int pagerflags, int flags, boolean_t *clearobjflags,
107 		    boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109 		    boolean_t *clearobjflags);
110 static void	vm_object_qcollapse(vm_object_t object);
111 static void	vm_object_vndeallocate(vm_object_t object);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144 
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147 
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151 
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155 
156 static uma_zone_t obj_zone;
157 
158 static int vm_object_zinit(void *mem, int size, int flags);
159 
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162 
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166 	vm_object_t object;
167 
168 	object = (vm_object_t)mem;
169 	KASSERT(TAILQ_EMPTY(&object->memq),
170 	    ("object %p has resident pages in its memq", object));
171 	KASSERT(vm_radix_is_empty(&object->rtree),
172 	    ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174 	KASSERT(LIST_EMPTY(&object->rvq),
175 	    ("object %p has reservations",
176 	    object));
177 #endif
178 	KASSERT(vm_object_cache_is_empty(object),
179 	    ("object %p has cached pages",
180 	    object));
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 }
191 #endif
192 
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196 	vm_object_t object;
197 
198 	object = (vm_object_t)mem;
199 	bzero(&object->lock, sizeof(object->lock));
200 	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201 
202 	/* These are true for any object that has been freed */
203 	object->rtree.rt_root = 0;
204 	object->rtree.rt_flags = 0;
205 	object->paging_in_progress = 0;
206 	object->resident_page_count = 0;
207 	object->shadow_count = 0;
208 	object->cache.rt_root = 0;
209 	object->cache.rt_flags = 0;
210 	return (0);
211 }
212 
213 static void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216 
217 	TAILQ_INIT(&object->memq);
218 	LIST_INIT(&object->shadow_head);
219 
220 	object->type = type;
221 	switch (type) {
222 	case OBJT_DEAD:
223 		panic("_vm_object_allocate: can't create OBJT_DEAD");
224 	case OBJT_DEFAULT:
225 	case OBJT_SWAP:
226 		object->flags = OBJ_ONEMAPPING;
227 		break;
228 	case OBJT_DEVICE:
229 	case OBJT_SG:
230 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231 		break;
232 	case OBJT_MGTDEVICE:
233 		object->flags = OBJ_FICTITIOUS;
234 		break;
235 	case OBJT_PHYS:
236 		object->flags = OBJ_UNMANAGED;
237 		break;
238 	case OBJT_VNODE:
239 		object->flags = 0;
240 		break;
241 	default:
242 		panic("_vm_object_allocate: type %d is undefined", type);
243 	}
244 	object->size = size;
245 	object->generation = 1;
246 	object->ref_count = 1;
247 	object->memattr = VM_MEMATTR_DEFAULT;
248 	object->cred = NULL;
249 	object->charge = 0;
250 	object->handle = NULL;
251 	object->backing_object = NULL;
252 	object->backing_object_offset = (vm_ooffset_t) 0;
253 #if VM_NRESERVLEVEL > 0
254 	LIST_INIT(&object->rvq);
255 #endif
256 
257 	mtx_lock(&vm_object_list_mtx);
258 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259 	mtx_unlock(&vm_object_list_mtx);
260 }
261 
262 /*
263  *	vm_object_init:
264  *
265  *	Initialize the VM objects module.
266  */
267 void
268 vm_object_init(void)
269 {
270 	TAILQ_INIT(&vm_object_list);
271 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272 
273 	rw_init(&kernel_object->lock, "kernel vm object");
274 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275 	    kernel_object);
276 #if VM_NRESERVLEVEL > 0
277 	kernel_object->flags |= OBJ_COLORED;
278 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279 #endif
280 
281 	rw_init(&kmem_object->lock, "kmem vm object");
282 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283 	    kmem_object);
284 #if VM_NRESERVLEVEL > 0
285 	kmem_object->flags |= OBJ_COLORED;
286 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288 
289 	/*
290 	 * The lock portion of struct vm_object must be type stable due
291 	 * to vm_pageout_fallback_object_lock locking a vm object
292 	 * without holding any references to it.
293 	 */
294 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295 #ifdef INVARIANTS
296 	    vm_object_zdtor,
297 #else
298 	    NULL,
299 #endif
300 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301 
302 	vm_radix_init();
303 }
304 
305 void
306 vm_object_clear_flag(vm_object_t object, u_short bits)
307 {
308 
309 	VM_OBJECT_ASSERT_WLOCKED(object);
310 	object->flags &= ~bits;
311 }
312 
313 /*
314  *	Sets the default memory attribute for the specified object.  Pages
315  *	that are allocated to this object are by default assigned this memory
316  *	attribute.
317  *
318  *	Presently, this function must be called before any pages are allocated
319  *	to the object.  In the future, this requirement may be relaxed for
320  *	"default" and "swap" objects.
321  */
322 int
323 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324 {
325 
326 	VM_OBJECT_ASSERT_WLOCKED(object);
327 	switch (object->type) {
328 	case OBJT_DEFAULT:
329 	case OBJT_DEVICE:
330 	case OBJT_MGTDEVICE:
331 	case OBJT_PHYS:
332 	case OBJT_SG:
333 	case OBJT_SWAP:
334 	case OBJT_VNODE:
335 		if (!TAILQ_EMPTY(&object->memq))
336 			return (KERN_FAILURE);
337 		break;
338 	case OBJT_DEAD:
339 		return (KERN_INVALID_ARGUMENT);
340 	default:
341 		panic("vm_object_set_memattr: object %p is of undefined type",
342 		    object);
343 	}
344 	object->memattr = memattr;
345 	return (KERN_SUCCESS);
346 }
347 
348 void
349 vm_object_pip_add(vm_object_t object, short i)
350 {
351 
352 	VM_OBJECT_ASSERT_WLOCKED(object);
353 	object->paging_in_progress += i;
354 }
355 
356 void
357 vm_object_pip_subtract(vm_object_t object, short i)
358 {
359 
360 	VM_OBJECT_ASSERT_WLOCKED(object);
361 	object->paging_in_progress -= i;
362 }
363 
364 void
365 vm_object_pip_wakeup(vm_object_t object)
366 {
367 
368 	VM_OBJECT_ASSERT_WLOCKED(object);
369 	object->paging_in_progress--;
370 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371 		vm_object_clear_flag(object, OBJ_PIPWNT);
372 		wakeup(object);
373 	}
374 }
375 
376 void
377 vm_object_pip_wakeupn(vm_object_t object, short i)
378 {
379 
380 	VM_OBJECT_ASSERT_WLOCKED(object);
381 	if (i)
382 		object->paging_in_progress -= i;
383 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384 		vm_object_clear_flag(object, OBJ_PIPWNT);
385 		wakeup(object);
386 	}
387 }
388 
389 void
390 vm_object_pip_wait(vm_object_t object, char *waitid)
391 {
392 
393 	VM_OBJECT_ASSERT_WLOCKED(object);
394 	while (object->paging_in_progress) {
395 		object->flags |= OBJ_PIPWNT;
396 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397 	}
398 }
399 
400 /*
401  *	vm_object_allocate:
402  *
403  *	Returns a new object with the given size.
404  */
405 vm_object_t
406 vm_object_allocate(objtype_t type, vm_pindex_t size)
407 {
408 	vm_object_t object;
409 
410 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411 	_vm_object_allocate(type, size, object);
412 	return (object);
413 }
414 
415 
416 /*
417  *	vm_object_reference:
418  *
419  *	Gets another reference to the given object.  Note: OBJ_DEAD
420  *	objects can be referenced during final cleaning.
421  */
422 void
423 vm_object_reference(vm_object_t object)
424 {
425 	if (object == NULL)
426 		return;
427 	VM_OBJECT_WLOCK(object);
428 	vm_object_reference_locked(object);
429 	VM_OBJECT_WUNLOCK(object);
430 }
431 
432 /*
433  *	vm_object_reference_locked:
434  *
435  *	Gets another reference to the given object.
436  *
437  *	The object must be locked.
438  */
439 void
440 vm_object_reference_locked(vm_object_t object)
441 {
442 	struct vnode *vp;
443 
444 	VM_OBJECT_ASSERT_WLOCKED(object);
445 	object->ref_count++;
446 	if (object->type == OBJT_VNODE) {
447 		vp = object->handle;
448 		vref(vp);
449 	}
450 }
451 
452 /*
453  * Handle deallocating an object of type OBJT_VNODE.
454  */
455 static void
456 vm_object_vndeallocate(vm_object_t object)
457 {
458 	struct vnode *vp = (struct vnode *) object->handle;
459 
460 	VM_OBJECT_ASSERT_WLOCKED(object);
461 	KASSERT(object->type == OBJT_VNODE,
462 	    ("vm_object_vndeallocate: not a vnode object"));
463 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464 #ifdef INVARIANTS
465 	if (object->ref_count == 0) {
466 		vprint("vm_object_vndeallocate", vp);
467 		panic("vm_object_vndeallocate: bad object reference count");
468 	}
469 #endif
470 
471 	/*
472 	 * The test for text of vp vnode does not need a bypass to
473 	 * reach right VV_TEXT there, since it is obtained from
474 	 * object->handle.
475 	 */
476 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
477 		object->ref_count--;
478 		VM_OBJECT_WUNLOCK(object);
479 		/* vrele may need the vnode lock. */
480 		vrele(vp);
481 	} else {
482 		vhold(vp);
483 		VM_OBJECT_WUNLOCK(object);
484 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
485 		vdrop(vp);
486 		VM_OBJECT_WLOCK(object);
487 		object->ref_count--;
488 		if (object->type == OBJT_DEAD) {
489 			VM_OBJECT_WUNLOCK(object);
490 			VOP_UNLOCK(vp, 0);
491 		} else {
492 			if (object->ref_count == 0)
493 				VOP_UNSET_TEXT(vp);
494 			VM_OBJECT_WUNLOCK(object);
495 			vput(vp);
496 		}
497 	}
498 }
499 
500 /*
501  *	vm_object_deallocate:
502  *
503  *	Release a reference to the specified object,
504  *	gained either through a vm_object_allocate
505  *	or a vm_object_reference call.  When all references
506  *	are gone, storage associated with this object
507  *	may be relinquished.
508  *
509  *	No object may be locked.
510  */
511 void
512 vm_object_deallocate(vm_object_t object)
513 {
514 	vm_object_t temp;
515 	struct vnode *vp;
516 
517 	while (object != NULL) {
518 		VM_OBJECT_WLOCK(object);
519 		if (object->type == OBJT_VNODE) {
520 			vm_object_vndeallocate(object);
521 			return;
522 		}
523 
524 		KASSERT(object->ref_count != 0,
525 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
526 
527 		/*
528 		 * If the reference count goes to 0 we start calling
529 		 * vm_object_terminate() on the object chain.
530 		 * A ref count of 1 may be a special case depending on the
531 		 * shadow count being 0 or 1.
532 		 */
533 		object->ref_count--;
534 		if (object->ref_count > 1) {
535 			VM_OBJECT_WUNLOCK(object);
536 			return;
537 		} else if (object->ref_count == 1) {
538 			if (object->type == OBJT_SWAP &&
539 			    (object->flags & OBJ_TMPFS) != 0) {
540 				vp = object->un_pager.swp.swp_tmpfs;
541 				vhold(vp);
542 				VM_OBJECT_WUNLOCK(object);
543 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
544 				VM_OBJECT_WLOCK(object);
545 				if (object->type == OBJT_DEAD ||
546 				    object->ref_count != 1) {
547 					VM_OBJECT_WUNLOCK(object);
548 					VOP_UNLOCK(vp, 0);
549 					vdrop(vp);
550 					return;
551 				}
552 				if ((object->flags & OBJ_TMPFS) != 0)
553 					VOP_UNSET_TEXT(vp);
554 				VOP_UNLOCK(vp, 0);
555 				vdrop(vp);
556 			}
557 			if (object->shadow_count == 0 &&
558 			    object->handle == NULL &&
559 			    (object->type == OBJT_DEFAULT ||
560 			    (object->type == OBJT_SWAP &&
561 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
562 				vm_object_set_flag(object, OBJ_ONEMAPPING);
563 			} else if ((object->shadow_count == 1) &&
564 			    (object->handle == NULL) &&
565 			    (object->type == OBJT_DEFAULT ||
566 			     object->type == OBJT_SWAP)) {
567 				vm_object_t robject;
568 
569 				robject = LIST_FIRST(&object->shadow_head);
570 				KASSERT(robject != NULL,
571 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
572 					 object->ref_count,
573 					 object->shadow_count));
574 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
575 				    ("shadowed tmpfs v_object %p", object));
576 				if (!VM_OBJECT_TRYWLOCK(robject)) {
577 					/*
578 					 * Avoid a potential deadlock.
579 					 */
580 					object->ref_count++;
581 					VM_OBJECT_WUNLOCK(object);
582 					/*
583 					 * More likely than not the thread
584 					 * holding robject's lock has lower
585 					 * priority than the current thread.
586 					 * Let the lower priority thread run.
587 					 */
588 					pause("vmo_de", 1);
589 					continue;
590 				}
591 				/*
592 				 * Collapse object into its shadow unless its
593 				 * shadow is dead.  In that case, object will
594 				 * be deallocated by the thread that is
595 				 * deallocating its shadow.
596 				 */
597 				if ((robject->flags & OBJ_DEAD) == 0 &&
598 				    (robject->handle == NULL) &&
599 				    (robject->type == OBJT_DEFAULT ||
600 				     robject->type == OBJT_SWAP)) {
601 
602 					robject->ref_count++;
603 retry:
604 					if (robject->paging_in_progress) {
605 						VM_OBJECT_WUNLOCK(object);
606 						vm_object_pip_wait(robject,
607 						    "objde1");
608 						temp = robject->backing_object;
609 						if (object == temp) {
610 							VM_OBJECT_WLOCK(object);
611 							goto retry;
612 						}
613 					} else if (object->paging_in_progress) {
614 						VM_OBJECT_WUNLOCK(robject);
615 						object->flags |= OBJ_PIPWNT;
616 						VM_OBJECT_SLEEP(object, object,
617 						    PDROP | PVM, "objde2", 0);
618 						VM_OBJECT_WLOCK(robject);
619 						temp = robject->backing_object;
620 						if (object == temp) {
621 							VM_OBJECT_WLOCK(object);
622 							goto retry;
623 						}
624 					} else
625 						VM_OBJECT_WUNLOCK(object);
626 
627 					if (robject->ref_count == 1) {
628 						robject->ref_count--;
629 						object = robject;
630 						goto doterm;
631 					}
632 					object = robject;
633 					vm_object_collapse(object);
634 					VM_OBJECT_WUNLOCK(object);
635 					continue;
636 				}
637 				VM_OBJECT_WUNLOCK(robject);
638 			}
639 			VM_OBJECT_WUNLOCK(object);
640 			return;
641 		}
642 doterm:
643 		temp = object->backing_object;
644 		if (temp != NULL) {
645 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
646 			    ("shadowed tmpfs v_object 2 %p", object));
647 			VM_OBJECT_WLOCK(temp);
648 			LIST_REMOVE(object, shadow_list);
649 			temp->shadow_count--;
650 			VM_OBJECT_WUNLOCK(temp);
651 			object->backing_object = NULL;
652 		}
653 		/*
654 		 * Don't double-terminate, we could be in a termination
655 		 * recursion due to the terminate having to sync data
656 		 * to disk.
657 		 */
658 		if ((object->flags & OBJ_DEAD) == 0)
659 			vm_object_terminate(object);
660 		else
661 			VM_OBJECT_WUNLOCK(object);
662 		object = temp;
663 	}
664 }
665 
666 /*
667  *	vm_object_destroy removes the object from the global object list
668  *      and frees the space for the object.
669  */
670 void
671 vm_object_destroy(vm_object_t object)
672 {
673 
674 	/*
675 	 * Remove the object from the global object list.
676 	 */
677 	mtx_lock(&vm_object_list_mtx);
678 	TAILQ_REMOVE(&vm_object_list, object, object_list);
679 	mtx_unlock(&vm_object_list_mtx);
680 
681 	/*
682 	 * Release the allocation charge.
683 	 */
684 	if (object->cred != NULL) {
685 		KASSERT(object->type == OBJT_DEFAULT ||
686 		    object->type == OBJT_SWAP,
687 		    ("%s: non-swap obj %p has cred", __func__, object));
688 		swap_release_by_cred(object->charge, object->cred);
689 		object->charge = 0;
690 		crfree(object->cred);
691 		object->cred = NULL;
692 	}
693 
694 	/*
695 	 * Free the space for the object.
696 	 */
697 	uma_zfree(obj_zone, object);
698 }
699 
700 /*
701  *	vm_object_terminate actually destroys the specified object, freeing
702  *	up all previously used resources.
703  *
704  *	The object must be locked.
705  *	This routine may block.
706  */
707 void
708 vm_object_terminate(vm_object_t object)
709 {
710 	vm_page_t p, p_next;
711 
712 	VM_OBJECT_ASSERT_WLOCKED(object);
713 
714 	/*
715 	 * Make sure no one uses us.
716 	 */
717 	vm_object_set_flag(object, OBJ_DEAD);
718 
719 	/*
720 	 * wait for the pageout daemon to be done with the object
721 	 */
722 	vm_object_pip_wait(object, "objtrm");
723 
724 	KASSERT(!object->paging_in_progress,
725 		("vm_object_terminate: pageout in progress"));
726 
727 	/*
728 	 * Clean and free the pages, as appropriate. All references to the
729 	 * object are gone, so we don't need to lock it.
730 	 */
731 	if (object->type == OBJT_VNODE) {
732 		struct vnode *vp = (struct vnode *)object->handle;
733 
734 		/*
735 		 * Clean pages and flush buffers.
736 		 */
737 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
738 		VM_OBJECT_WUNLOCK(object);
739 
740 		vinvalbuf(vp, V_SAVE, 0, 0);
741 
742 		VM_OBJECT_WLOCK(object);
743 	}
744 
745 	KASSERT(object->ref_count == 0,
746 		("vm_object_terminate: object with references, ref_count=%d",
747 		object->ref_count));
748 
749 	/*
750 	 * Free any remaining pageable pages.  This also removes them from the
751 	 * paging queues.  However, don't free wired pages, just remove them
752 	 * from the object.  Rather than incrementally removing each page from
753 	 * the object, the page and object are reset to any empty state.
754 	 */
755 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756 		vm_page_assert_unbusied(p);
757 		vm_page_lock(p);
758 		/*
759 		 * Optimize the page's removal from the object by resetting
760 		 * its "object" field.  Specifically, if the page is not
761 		 * wired, then the effect of this assignment is that
762 		 * vm_page_free()'s call to vm_page_remove() will return
763 		 * immediately without modifying the page or the object.
764 		 */
765 		p->object = NULL;
766 		if (p->wire_count == 0) {
767 			vm_page_free(p);
768 			PCPU_INC(cnt.v_pfree);
769 		}
770 		vm_page_unlock(p);
771 	}
772 	/*
773 	 * If the object contained any pages, then reset it to an empty state.
774 	 * None of the object's fields, including "resident_page_count", were
775 	 * modified by the preceding loop.
776 	 */
777 	if (object->resident_page_count != 0) {
778 		vm_radix_reclaim_allnodes(&object->rtree);
779 		TAILQ_INIT(&object->memq);
780 		object->resident_page_count = 0;
781 		if (object->type == OBJT_VNODE)
782 			vdrop(object->handle);
783 	}
784 
785 #if VM_NRESERVLEVEL > 0
786 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
787 		vm_reserv_break_all(object);
788 #endif
789 	if (__predict_false(!vm_object_cache_is_empty(object)))
790 		vm_page_cache_free(object, 0, 0);
791 
792 	/*
793 	 * Let the pager know object is dead.
794 	 */
795 	vm_pager_deallocate(object);
796 	VM_OBJECT_WUNLOCK(object);
797 
798 	vm_object_destroy(object);
799 }
800 
801 /*
802  * Make the page read-only so that we can clear the object flags.  However, if
803  * this is a nosync mmap then the object is likely to stay dirty so do not
804  * mess with the page and do not clear the object flags.  Returns TRUE if the
805  * page should be flushed, and FALSE otherwise.
806  */
807 static boolean_t
808 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
809 {
810 
811 	/*
812 	 * If we have been asked to skip nosync pages and this is a
813 	 * nosync page, skip it.  Note that the object flags were not
814 	 * cleared in this case so we do not have to set them.
815 	 */
816 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
817 		*clearobjflags = FALSE;
818 		return (FALSE);
819 	} else {
820 		pmap_remove_write(p);
821 		return (p->dirty != 0);
822 	}
823 }
824 
825 /*
826  *	vm_object_page_clean
827  *
828  *	Clean all dirty pages in the specified range of object.  Leaves page
829  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
830  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
831  *	leaving the object dirty.
832  *
833  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
834  *	synchronous clustering mode implementation.
835  *
836  *	Odd semantics: if start == end, we clean everything.
837  *
838  *	The object must be locked.
839  *
840  *	Returns FALSE if some page from the range was not written, as
841  *	reported by the pager, and TRUE otherwise.
842  */
843 boolean_t
844 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
845     int flags)
846 {
847 	vm_page_t np, p;
848 	vm_pindex_t pi, tend, tstart;
849 	int curgeneration, n, pagerflags;
850 	boolean_t clearobjflags, eio, res;
851 
852 	VM_OBJECT_ASSERT_WLOCKED(object);
853 
854 	/*
855 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
856 	 * objects.  The check below prevents the function from
857 	 * operating on non-vnode objects.
858 	 */
859 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
860 	    object->resident_page_count == 0)
861 		return (TRUE);
862 
863 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
864 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
865 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
866 
867 	tstart = OFF_TO_IDX(start);
868 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
869 	clearobjflags = tstart == 0 && tend >= object->size;
870 	res = TRUE;
871 
872 rescan:
873 	curgeneration = object->generation;
874 
875 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
876 		pi = p->pindex;
877 		if (pi >= tend)
878 			break;
879 		np = TAILQ_NEXT(p, listq);
880 		if (p->valid == 0)
881 			continue;
882 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
883 			if (object->generation != curgeneration) {
884 				if ((flags & OBJPC_SYNC) != 0)
885 					goto rescan;
886 				else
887 					clearobjflags = FALSE;
888 			}
889 			np = vm_page_find_least(object, pi);
890 			continue;
891 		}
892 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
893 			continue;
894 
895 		n = vm_object_page_collect_flush(object, p, pagerflags,
896 		    flags, &clearobjflags, &eio);
897 		if (eio) {
898 			res = FALSE;
899 			clearobjflags = FALSE;
900 		}
901 		if (object->generation != curgeneration) {
902 			if ((flags & OBJPC_SYNC) != 0)
903 				goto rescan;
904 			else
905 				clearobjflags = FALSE;
906 		}
907 
908 		/*
909 		 * If the VOP_PUTPAGES() did a truncated write, so
910 		 * that even the first page of the run is not fully
911 		 * written, vm_pageout_flush() returns 0 as the run
912 		 * length.  Since the condition that caused truncated
913 		 * write may be permanent, e.g. exhausted free space,
914 		 * accepting n == 0 would cause an infinite loop.
915 		 *
916 		 * Forwarding the iterator leaves the unwritten page
917 		 * behind, but there is not much we can do there if
918 		 * filesystem refuses to write it.
919 		 */
920 		if (n == 0) {
921 			n = 1;
922 			clearobjflags = FALSE;
923 		}
924 		np = vm_page_find_least(object, pi + n);
925 	}
926 #if 0
927 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
928 #endif
929 
930 	if (clearobjflags)
931 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
932 	return (res);
933 }
934 
935 static int
936 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
937     int flags, boolean_t *clearobjflags, boolean_t *eio)
938 {
939 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
940 	int count, i, mreq, runlen;
941 
942 	vm_page_lock_assert(p, MA_NOTOWNED);
943 	VM_OBJECT_ASSERT_WLOCKED(object);
944 
945 	count = 1;
946 	mreq = 0;
947 
948 	for (tp = p; count < vm_pageout_page_count; count++) {
949 		tp = vm_page_next(tp);
950 		if (tp == NULL || vm_page_busied(tp))
951 			break;
952 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953 			break;
954 	}
955 
956 	for (p_first = p; count < vm_pageout_page_count; count++) {
957 		tp = vm_page_prev(p_first);
958 		if (tp == NULL || vm_page_busied(tp))
959 			break;
960 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
961 			break;
962 		p_first = tp;
963 		mreq++;
964 	}
965 
966 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
967 		ma[i] = tp;
968 
969 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
970 	return (runlen);
971 }
972 
973 /*
974  * Note that there is absolutely no sense in writing out
975  * anonymous objects, so we track down the vnode object
976  * to write out.
977  * We invalidate (remove) all pages from the address space
978  * for semantic correctness.
979  *
980  * If the backing object is a device object with unmanaged pages, then any
981  * mappings to the specified range of pages must be removed before this
982  * function is called.
983  *
984  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985  * may start out with a NULL object.
986  */
987 boolean_t
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989     boolean_t syncio, boolean_t invalidate)
990 {
991 	vm_object_t backing_object;
992 	struct vnode *vp;
993 	struct mount *mp;
994 	int error, flags, fsync_after;
995 	boolean_t res;
996 
997 	if (object == NULL)
998 		return (TRUE);
999 	res = TRUE;
1000 	error = 0;
1001 	VM_OBJECT_WLOCK(object);
1002 	while ((backing_object = object->backing_object) != NULL) {
1003 		VM_OBJECT_WLOCK(backing_object);
1004 		offset += object->backing_object_offset;
1005 		VM_OBJECT_WUNLOCK(object);
1006 		object = backing_object;
1007 		if (object->size < OFF_TO_IDX(offset + size))
1008 			size = IDX_TO_OFF(object->size) - offset;
1009 	}
1010 	/*
1011 	 * Flush pages if writing is allowed, invalidate them
1012 	 * if invalidation requested.  Pages undergoing I/O
1013 	 * will be ignored by vm_object_page_remove().
1014 	 *
1015 	 * We cannot lock the vnode and then wait for paging
1016 	 * to complete without deadlocking against vm_fault.
1017 	 * Instead we simply call vm_object_page_remove() and
1018 	 * allow it to block internally on a page-by-page
1019 	 * basis when it encounters pages undergoing async
1020 	 * I/O.
1021 	 */
1022 	if (object->type == OBJT_VNODE &&
1023 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1024 		vp = object->handle;
1025 		VM_OBJECT_WUNLOCK(object);
1026 		(void) vn_start_write(vp, &mp, V_WAIT);
1027 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1028 		if (syncio && !invalidate && offset == 0 &&
1029 		    OFF_TO_IDX(size) == object->size) {
1030 			/*
1031 			 * If syncing the whole mapping of the file,
1032 			 * it is faster to schedule all the writes in
1033 			 * async mode, also allowing the clustering,
1034 			 * and then wait for i/o to complete.
1035 			 */
1036 			flags = 0;
1037 			fsync_after = TRUE;
1038 		} else {
1039 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1040 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1041 			fsync_after = FALSE;
1042 		}
1043 		VM_OBJECT_WLOCK(object);
1044 		res = vm_object_page_clean(object, offset, offset + size,
1045 		    flags);
1046 		VM_OBJECT_WUNLOCK(object);
1047 		if (fsync_after)
1048 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1049 		VOP_UNLOCK(vp, 0);
1050 		vn_finished_write(mp);
1051 		if (error != 0)
1052 			res = FALSE;
1053 		VM_OBJECT_WLOCK(object);
1054 	}
1055 	if ((object->type == OBJT_VNODE ||
1056 	     object->type == OBJT_DEVICE) && invalidate) {
1057 		if (object->type == OBJT_DEVICE)
1058 			/*
1059 			 * The option OBJPR_NOTMAPPED must be passed here
1060 			 * because vm_object_page_remove() cannot remove
1061 			 * unmanaged mappings.
1062 			 */
1063 			flags = OBJPR_NOTMAPPED;
1064 		else if (old_msync)
1065 			flags = OBJPR_NOTWIRED;
1066 		else
1067 			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1068 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1069 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1070 	}
1071 	VM_OBJECT_WUNLOCK(object);
1072 	return (res);
1073 }
1074 
1075 /*
1076  *	vm_object_madvise:
1077  *
1078  *	Implements the madvise function at the object/page level.
1079  *
1080  *	MADV_WILLNEED	(any object)
1081  *
1082  *	    Activate the specified pages if they are resident.
1083  *
1084  *	MADV_DONTNEED	(any object)
1085  *
1086  *	    Deactivate the specified pages if they are resident.
1087  *
1088  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1089  *			 OBJ_ONEMAPPING only)
1090  *
1091  *	    Deactivate and clean the specified pages if they are
1092  *	    resident.  This permits the process to reuse the pages
1093  *	    without faulting or the kernel to reclaim the pages
1094  *	    without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1098     int advise)
1099 {
1100 	vm_pindex_t tpindex;
1101 	vm_object_t backing_object, tobject;
1102 	vm_page_t m;
1103 
1104 	if (object == NULL)
1105 		return;
1106 	VM_OBJECT_WLOCK(object);
1107 	/*
1108 	 * Locate and adjust resident pages
1109 	 */
1110 	for (; pindex < end; pindex += 1) {
1111 relookup:
1112 		tobject = object;
1113 		tpindex = pindex;
1114 shadowlookup:
1115 		/*
1116 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117 		 * and those pages must be OBJ_ONEMAPPING.
1118 		 */
1119 		if (advise == MADV_FREE) {
1120 			if ((tobject->type != OBJT_DEFAULT &&
1121 			     tobject->type != OBJT_SWAP) ||
1122 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123 				goto unlock_tobject;
1124 			}
1125 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1126 			goto unlock_tobject;
1127 		m = vm_page_lookup(tobject, tpindex);
1128 		if (m == NULL && advise == MADV_WILLNEED) {
1129 			/*
1130 			 * If the page is cached, reactivate it.
1131 			 */
1132 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133 			    VM_ALLOC_NOBUSY);
1134 		}
1135 		if (m == NULL) {
1136 			/*
1137 			 * There may be swap even if there is no backing page
1138 			 */
1139 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140 				swap_pager_freespace(tobject, tpindex, 1);
1141 			/*
1142 			 * next object
1143 			 */
1144 			backing_object = tobject->backing_object;
1145 			if (backing_object == NULL)
1146 				goto unlock_tobject;
1147 			VM_OBJECT_WLOCK(backing_object);
1148 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149 			if (tobject != object)
1150 				VM_OBJECT_WUNLOCK(tobject);
1151 			tobject = backing_object;
1152 			goto shadowlookup;
1153 		} else if (m->valid != VM_PAGE_BITS_ALL)
1154 			goto unlock_tobject;
1155 		/*
1156 		 * If the page is not in a normal state, skip it.
1157 		 */
1158 		vm_page_lock(m);
1159 		if (m->hold_count != 0 || m->wire_count != 0) {
1160 			vm_page_unlock(m);
1161 			goto unlock_tobject;
1162 		}
1163 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1164 		    ("vm_object_madvise: page %p is fictitious", m));
1165 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1166 		    ("vm_object_madvise: page %p is not managed", m));
1167 		if (vm_page_busied(m)) {
1168 			if (advise == MADV_WILLNEED) {
1169 				/*
1170 				 * Reference the page before unlocking and
1171 				 * sleeping so that the page daemon is less
1172 				 * likely to reclaim it.
1173 				 */
1174 				vm_page_aflag_set(m, PGA_REFERENCED);
1175 			}
1176 			if (object != tobject)
1177 				VM_OBJECT_WUNLOCK(object);
1178 			VM_OBJECT_WUNLOCK(tobject);
1179 			vm_page_busy_sleep(m, "madvpo");
1180 			VM_OBJECT_WLOCK(object);
1181   			goto relookup;
1182 		}
1183 		if (advise == MADV_WILLNEED) {
1184 			vm_page_activate(m);
1185 		} else {
1186 			vm_page_advise(m, advise);
1187 		}
1188 		vm_page_unlock(m);
1189 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1190 			swap_pager_freespace(tobject, tpindex, 1);
1191 unlock_tobject:
1192 		if (tobject != object)
1193 			VM_OBJECT_WUNLOCK(tobject);
1194 	}
1195 	VM_OBJECT_WUNLOCK(object);
1196 }
1197 
1198 /*
1199  *	vm_object_shadow:
1200  *
1201  *	Create a new object which is backed by the
1202  *	specified existing object range.  The source
1203  *	object reference is deallocated.
1204  *
1205  *	The new object and offset into that object
1206  *	are returned in the source parameters.
1207  */
1208 void
1209 vm_object_shadow(
1210 	vm_object_t *object,	/* IN/OUT */
1211 	vm_ooffset_t *offset,	/* IN/OUT */
1212 	vm_size_t length)
1213 {
1214 	vm_object_t source;
1215 	vm_object_t result;
1216 
1217 	source = *object;
1218 
1219 	/*
1220 	 * Don't create the new object if the old object isn't shared.
1221 	 */
1222 	if (source != NULL) {
1223 		VM_OBJECT_WLOCK(source);
1224 		if (source->ref_count == 1 &&
1225 		    source->handle == NULL &&
1226 		    (source->type == OBJT_DEFAULT ||
1227 		     source->type == OBJT_SWAP)) {
1228 			VM_OBJECT_WUNLOCK(source);
1229 			return;
1230 		}
1231 		VM_OBJECT_WUNLOCK(source);
1232 	}
1233 
1234 	/*
1235 	 * Allocate a new object with the given length.
1236 	 */
1237 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1238 
1239 	/*
1240 	 * The new object shadows the source object, adding a reference to it.
1241 	 * Our caller changes his reference to point to the new object,
1242 	 * removing a reference to the source object.  Net result: no change
1243 	 * of reference count.
1244 	 *
1245 	 * Try to optimize the result object's page color when shadowing
1246 	 * in order to maintain page coloring consistency in the combined
1247 	 * shadowed object.
1248 	 */
1249 	result->backing_object = source;
1250 	/*
1251 	 * Store the offset into the source object, and fix up the offset into
1252 	 * the new object.
1253 	 */
1254 	result->backing_object_offset = *offset;
1255 	if (source != NULL) {
1256 		VM_OBJECT_WLOCK(source);
1257 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1258 		source->shadow_count++;
1259 #if VM_NRESERVLEVEL > 0
1260 		result->flags |= source->flags & OBJ_COLORED;
1261 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1262 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1263 #endif
1264 		VM_OBJECT_WUNLOCK(source);
1265 	}
1266 
1267 
1268 	/*
1269 	 * Return the new things
1270 	 */
1271 	*offset = 0;
1272 	*object = result;
1273 }
1274 
1275 /*
1276  *	vm_object_split:
1277  *
1278  * Split the pages in a map entry into a new object.  This affords
1279  * easier removal of unused pages, and keeps object inheritance from
1280  * being a negative impact on memory usage.
1281  */
1282 void
1283 vm_object_split(vm_map_entry_t entry)
1284 {
1285 	vm_page_t m, m_next;
1286 	vm_object_t orig_object, new_object, source;
1287 	vm_pindex_t idx, offidxstart;
1288 	vm_size_t size;
1289 
1290 	orig_object = entry->object.vm_object;
1291 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1292 		return;
1293 	if (orig_object->ref_count <= 1)
1294 		return;
1295 	VM_OBJECT_WUNLOCK(orig_object);
1296 
1297 	offidxstart = OFF_TO_IDX(entry->offset);
1298 	size = atop(entry->end - entry->start);
1299 
1300 	/*
1301 	 * If swap_pager_copy() is later called, it will convert new_object
1302 	 * into a swap object.
1303 	 */
1304 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1305 
1306 	/*
1307 	 * At this point, the new object is still private, so the order in
1308 	 * which the original and new objects are locked does not matter.
1309 	 */
1310 	VM_OBJECT_WLOCK(new_object);
1311 	VM_OBJECT_WLOCK(orig_object);
1312 	source = orig_object->backing_object;
1313 	if (source != NULL) {
1314 		VM_OBJECT_WLOCK(source);
1315 		if ((source->flags & OBJ_DEAD) != 0) {
1316 			VM_OBJECT_WUNLOCK(source);
1317 			VM_OBJECT_WUNLOCK(orig_object);
1318 			VM_OBJECT_WUNLOCK(new_object);
1319 			vm_object_deallocate(new_object);
1320 			VM_OBJECT_WLOCK(orig_object);
1321 			return;
1322 		}
1323 		LIST_INSERT_HEAD(&source->shadow_head,
1324 				  new_object, shadow_list);
1325 		source->shadow_count++;
1326 		vm_object_reference_locked(source);	/* for new_object */
1327 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1328 		VM_OBJECT_WUNLOCK(source);
1329 		new_object->backing_object_offset =
1330 			orig_object->backing_object_offset + entry->offset;
1331 		new_object->backing_object = source;
1332 	}
1333 	if (orig_object->cred != NULL) {
1334 		new_object->cred = orig_object->cred;
1335 		crhold(orig_object->cred);
1336 		new_object->charge = ptoa(size);
1337 		KASSERT(orig_object->charge >= ptoa(size),
1338 		    ("orig_object->charge < 0"));
1339 		orig_object->charge -= ptoa(size);
1340 	}
1341 retry:
1342 	m = vm_page_find_least(orig_object, offidxstart);
1343 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1344 	    m = m_next) {
1345 		m_next = TAILQ_NEXT(m, listq);
1346 
1347 		/*
1348 		 * We must wait for pending I/O to complete before we can
1349 		 * rename the page.
1350 		 *
1351 		 * We do not have to VM_PROT_NONE the page as mappings should
1352 		 * not be changed by this operation.
1353 		 */
1354 		if (vm_page_busied(m)) {
1355 			VM_OBJECT_WUNLOCK(new_object);
1356 			vm_page_lock(m);
1357 			VM_OBJECT_WUNLOCK(orig_object);
1358 			vm_page_busy_sleep(m, "spltwt");
1359 			VM_OBJECT_WLOCK(orig_object);
1360 			VM_OBJECT_WLOCK(new_object);
1361 			goto retry;
1362 		}
1363 
1364 		/* vm_page_rename() will handle dirty and cache. */
1365 		if (vm_page_rename(m, new_object, idx)) {
1366 			VM_OBJECT_WUNLOCK(new_object);
1367 			VM_OBJECT_WUNLOCK(orig_object);
1368 			VM_WAIT;
1369 			VM_OBJECT_WLOCK(orig_object);
1370 			VM_OBJECT_WLOCK(new_object);
1371 			goto retry;
1372 		}
1373 #if VM_NRESERVLEVEL > 0
1374 		/*
1375 		 * If some of the reservation's allocated pages remain with
1376 		 * the original object, then transferring the reservation to
1377 		 * the new object is neither particularly beneficial nor
1378 		 * particularly harmful as compared to leaving the reservation
1379 		 * with the original object.  If, however, all of the
1380 		 * reservation's allocated pages are transferred to the new
1381 		 * object, then transferring the reservation is typically
1382 		 * beneficial.  Determining which of these two cases applies
1383 		 * would be more costly than unconditionally renaming the
1384 		 * reservation.
1385 		 */
1386 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1387 #endif
1388 		if (orig_object->type == OBJT_SWAP)
1389 			vm_page_xbusy(m);
1390 	}
1391 	if (orig_object->type == OBJT_SWAP) {
1392 		/*
1393 		 * swap_pager_copy() can sleep, in which case the orig_object's
1394 		 * and new_object's locks are released and reacquired.
1395 		 */
1396 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1397 		TAILQ_FOREACH(m, &new_object->memq, listq)
1398 			vm_page_xunbusy(m);
1399 
1400 		/*
1401 		 * Transfer any cached pages from orig_object to new_object.
1402 		 * If swap_pager_copy() found swapped out pages within the
1403 		 * specified range of orig_object, then it changed
1404 		 * new_object's type to OBJT_SWAP when it transferred those
1405 		 * pages to new_object.  Otherwise, new_object's type
1406 		 * should still be OBJT_DEFAULT and orig_object should not
1407 		 * contain any cached pages within the specified range.
1408 		 */
1409 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1410 			vm_page_cache_transfer(orig_object, offidxstart,
1411 			    new_object);
1412 	}
1413 	VM_OBJECT_WUNLOCK(orig_object);
1414 	VM_OBJECT_WUNLOCK(new_object);
1415 	entry->object.vm_object = new_object;
1416 	entry->offset = 0LL;
1417 	vm_object_deallocate(orig_object);
1418 	VM_OBJECT_WLOCK(new_object);
1419 }
1420 
1421 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1422 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1423 #define	OBSC_COLLAPSE_WAIT	0x0004
1424 
1425 static int
1426 vm_object_backing_scan(vm_object_t object, int op)
1427 {
1428 	int r = 1;
1429 	vm_page_t p;
1430 	vm_object_t backing_object;
1431 	vm_pindex_t backing_offset_index;
1432 
1433 	VM_OBJECT_ASSERT_WLOCKED(object);
1434 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1435 
1436 	backing_object = object->backing_object;
1437 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1438 
1439 	/*
1440 	 * Initial conditions
1441 	 */
1442 	if (op & OBSC_TEST_ALL_SHADOWED) {
1443 		/*
1444 		 * We do not want to have to test for the existence of cache
1445 		 * or swap pages in the backing object.  XXX but with the
1446 		 * new swapper this would be pretty easy to do.
1447 		 *
1448 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1449 		 * been ZFOD faulted yet?  If we do not test for this, the
1450 		 * shadow test may succeed! XXX
1451 		 */
1452 		if (backing_object->type != OBJT_DEFAULT) {
1453 			return (0);
1454 		}
1455 	}
1456 	if (op & OBSC_COLLAPSE_WAIT) {
1457 		vm_object_set_flag(backing_object, OBJ_DEAD);
1458 	}
1459 
1460 	/*
1461 	 * Our scan
1462 	 */
1463 	p = TAILQ_FIRST(&backing_object->memq);
1464 	while (p) {
1465 		vm_page_t next = TAILQ_NEXT(p, listq);
1466 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1467 
1468 		if (op & OBSC_TEST_ALL_SHADOWED) {
1469 			vm_page_t pp;
1470 
1471 			/*
1472 			 * Ignore pages outside the parent object's range
1473 			 * and outside the parent object's mapping of the
1474 			 * backing object.
1475 			 *
1476 			 * note that we do not busy the backing object's
1477 			 * page.
1478 			 */
1479 			if (
1480 			    p->pindex < backing_offset_index ||
1481 			    new_pindex >= object->size
1482 			) {
1483 				p = next;
1484 				continue;
1485 			}
1486 
1487 			/*
1488 			 * See if the parent has the page or if the parent's
1489 			 * object pager has the page.  If the parent has the
1490 			 * page but the page is not valid, the parent's
1491 			 * object pager must have the page.
1492 			 *
1493 			 * If this fails, the parent does not completely shadow
1494 			 * the object and we might as well give up now.
1495 			 */
1496 
1497 			pp = vm_page_lookup(object, new_pindex);
1498 			if (
1499 			    (pp == NULL || pp->valid == 0) &&
1500 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1501 			) {
1502 				r = 0;
1503 				break;
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * Check for busy page
1509 		 */
1510 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1511 			vm_page_t pp;
1512 
1513 			if (op & OBSC_COLLAPSE_NOWAIT) {
1514 				if (!p->valid || vm_page_busied(p)) {
1515 					p = next;
1516 					continue;
1517 				}
1518 			} else if (op & OBSC_COLLAPSE_WAIT) {
1519 				if (vm_page_busied(p)) {
1520 					VM_OBJECT_WUNLOCK(object);
1521 					vm_page_lock(p);
1522 					VM_OBJECT_WUNLOCK(backing_object);
1523 					vm_page_busy_sleep(p, "vmocol");
1524 					VM_OBJECT_WLOCK(object);
1525 					VM_OBJECT_WLOCK(backing_object);
1526 					/*
1527 					 * If we slept, anything could have
1528 					 * happened.  Since the object is
1529 					 * marked dead, the backing offset
1530 					 * should not have changed so we
1531 					 * just restart our scan.
1532 					 */
1533 					p = TAILQ_FIRST(&backing_object->memq);
1534 					continue;
1535 				}
1536 			}
1537 
1538 			KASSERT(
1539 			    p->object == backing_object,
1540 			    ("vm_object_backing_scan: object mismatch")
1541 			);
1542 
1543 			if (
1544 			    p->pindex < backing_offset_index ||
1545 			    new_pindex >= object->size
1546 			) {
1547 				if (backing_object->type == OBJT_SWAP)
1548 					swap_pager_freespace(backing_object,
1549 					    p->pindex, 1);
1550 
1551 				/*
1552 				 * Page is out of the parent object's range, we
1553 				 * can simply destroy it.
1554 				 */
1555 				vm_page_lock(p);
1556 				KASSERT(!pmap_page_is_mapped(p),
1557 				    ("freeing mapped page %p", p));
1558 				if (p->wire_count == 0)
1559 					vm_page_free(p);
1560 				else
1561 					vm_page_remove(p);
1562 				vm_page_unlock(p);
1563 				p = next;
1564 				continue;
1565 			}
1566 
1567 			pp = vm_page_lookup(object, new_pindex);
1568 			if (
1569 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1570 			    (pp != NULL && pp->valid == 0)
1571 			) {
1572 				if (backing_object->type == OBJT_SWAP)
1573 					swap_pager_freespace(backing_object,
1574 					    p->pindex, 1);
1575 
1576 				/*
1577 				 * The page in the parent is not (yet) valid.
1578 				 * We don't know anything about the state of
1579 				 * the original page.  It might be mapped,
1580 				 * so we must avoid the next if here.
1581 				 *
1582 				 * This is due to a race in vm_fault() where
1583 				 * we must unbusy the original (backing_obj)
1584 				 * page before we can (re)lock the parent.
1585 				 * Hence we can get here.
1586 				 */
1587 				p = next;
1588 				continue;
1589 			}
1590 			if (
1591 			    pp != NULL ||
1592 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1593 			) {
1594 				if (backing_object->type == OBJT_SWAP)
1595 					swap_pager_freespace(backing_object,
1596 					    p->pindex, 1);
1597 
1598 				/*
1599 				 * page already exists in parent OR swap exists
1600 				 * for this location in the parent.  Destroy
1601 				 * the original page from the backing object.
1602 				 *
1603 				 * Leave the parent's page alone
1604 				 */
1605 				vm_page_lock(p);
1606 				KASSERT(!pmap_page_is_mapped(p),
1607 				    ("freeing mapped page %p", p));
1608 				if (p->wire_count == 0)
1609 					vm_page_free(p);
1610 				else
1611 					vm_page_remove(p);
1612 				vm_page_unlock(p);
1613 				p = next;
1614 				continue;
1615 			}
1616 
1617 			/*
1618 			 * Page does not exist in parent, rename the
1619 			 * page from the backing object to the main object.
1620 			 *
1621 			 * If the page was mapped to a process, it can remain
1622 			 * mapped through the rename.
1623 			 * vm_page_rename() will handle dirty and cache.
1624 			 */
1625 			if (vm_page_rename(p, object, new_pindex)) {
1626 				if (op & OBSC_COLLAPSE_NOWAIT) {
1627 					p = next;
1628 					continue;
1629 				}
1630 				VM_OBJECT_WLOCK(backing_object);
1631 				VM_OBJECT_WUNLOCK(object);
1632 				VM_WAIT;
1633 				VM_OBJECT_WLOCK(object);
1634 				VM_OBJECT_WLOCK(backing_object);
1635 				p = TAILQ_FIRST(&backing_object->memq);
1636 				continue;
1637 			}
1638 
1639 			/* Use the old pindex to free the right page. */
1640 			if (backing_object->type == OBJT_SWAP)
1641 				swap_pager_freespace(backing_object,
1642 				    new_pindex + backing_offset_index, 1);
1643 
1644 #if VM_NRESERVLEVEL > 0
1645 			/*
1646 			 * Rename the reservation.
1647 			 */
1648 			vm_reserv_rename(p, object, backing_object,
1649 			    backing_offset_index);
1650 #endif
1651 		}
1652 		p = next;
1653 	}
1654 	return (r);
1655 }
1656 
1657 
1658 /*
1659  * this version of collapse allows the operation to occur earlier and
1660  * when paging_in_progress is true for an object...  This is not a complete
1661  * operation, but should plug 99.9% of the rest of the leaks.
1662  */
1663 static void
1664 vm_object_qcollapse(vm_object_t object)
1665 {
1666 	vm_object_t backing_object = object->backing_object;
1667 
1668 	VM_OBJECT_ASSERT_WLOCKED(object);
1669 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1670 
1671 	if (backing_object->ref_count != 1)
1672 		return;
1673 
1674 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1675 }
1676 
1677 /*
1678  *	vm_object_collapse:
1679  *
1680  *	Collapse an object with the object backing it.
1681  *	Pages in the backing object are moved into the
1682  *	parent, and the backing object is deallocated.
1683  */
1684 void
1685 vm_object_collapse(vm_object_t object)
1686 {
1687 	VM_OBJECT_ASSERT_WLOCKED(object);
1688 
1689 	while (TRUE) {
1690 		vm_object_t backing_object;
1691 
1692 		/*
1693 		 * Verify that the conditions are right for collapse:
1694 		 *
1695 		 * The object exists and the backing object exists.
1696 		 */
1697 		if ((backing_object = object->backing_object) == NULL)
1698 			break;
1699 
1700 		/*
1701 		 * we check the backing object first, because it is most likely
1702 		 * not collapsable.
1703 		 */
1704 		VM_OBJECT_WLOCK(backing_object);
1705 		if (backing_object->handle != NULL ||
1706 		    (backing_object->type != OBJT_DEFAULT &&
1707 		     backing_object->type != OBJT_SWAP) ||
1708 		    (backing_object->flags & OBJ_DEAD) ||
1709 		    object->handle != NULL ||
1710 		    (object->type != OBJT_DEFAULT &&
1711 		     object->type != OBJT_SWAP) ||
1712 		    (object->flags & OBJ_DEAD)) {
1713 			VM_OBJECT_WUNLOCK(backing_object);
1714 			break;
1715 		}
1716 
1717 		if (
1718 		    object->paging_in_progress != 0 ||
1719 		    backing_object->paging_in_progress != 0
1720 		) {
1721 			vm_object_qcollapse(object);
1722 			VM_OBJECT_WUNLOCK(backing_object);
1723 			break;
1724 		}
1725 		/*
1726 		 * We know that we can either collapse the backing object (if
1727 		 * the parent is the only reference to it) or (perhaps) have
1728 		 * the parent bypass the object if the parent happens to shadow
1729 		 * all the resident pages in the entire backing object.
1730 		 *
1731 		 * This is ignoring pager-backed pages such as swap pages.
1732 		 * vm_object_backing_scan fails the shadowing test in this
1733 		 * case.
1734 		 */
1735 		if (backing_object->ref_count == 1) {
1736 			/*
1737 			 * If there is exactly one reference to the backing
1738 			 * object, we can collapse it into the parent.
1739 			 */
1740 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1741 
1742 #if VM_NRESERVLEVEL > 0
1743 			/*
1744 			 * Break any reservations from backing_object.
1745 			 */
1746 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747 				vm_reserv_break_all(backing_object);
1748 #endif
1749 
1750 			/*
1751 			 * Move the pager from backing_object to object.
1752 			 */
1753 			if (backing_object->type == OBJT_SWAP) {
1754 				/*
1755 				 * swap_pager_copy() can sleep, in which case
1756 				 * the backing_object's and object's locks are
1757 				 * released and reacquired.
1758 				 * Since swap_pager_copy() is being asked to
1759 				 * destroy the source, it will change the
1760 				 * backing_object's type to OBJT_DEFAULT.
1761 				 */
1762 				swap_pager_copy(
1763 				    backing_object,
1764 				    object,
1765 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1766 
1767 				/*
1768 				 * Free any cached pages from backing_object.
1769 				 */
1770 				if (__predict_false(
1771 				    !vm_object_cache_is_empty(backing_object)))
1772 					vm_page_cache_free(backing_object, 0, 0);
1773 			}
1774 			/*
1775 			 * Object now shadows whatever backing_object did.
1776 			 * Note that the reference to
1777 			 * backing_object->backing_object moves from within
1778 			 * backing_object to within object.
1779 			 */
1780 			LIST_REMOVE(object, shadow_list);
1781 			backing_object->shadow_count--;
1782 			if (backing_object->backing_object) {
1783 				VM_OBJECT_WLOCK(backing_object->backing_object);
1784 				LIST_REMOVE(backing_object, shadow_list);
1785 				LIST_INSERT_HEAD(
1786 				    &backing_object->backing_object->shadow_head,
1787 				    object, shadow_list);
1788 				/*
1789 				 * The shadow_count has not changed.
1790 				 */
1791 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1792 			}
1793 			object->backing_object = backing_object->backing_object;
1794 			object->backing_object_offset +=
1795 			    backing_object->backing_object_offset;
1796 
1797 			/*
1798 			 * Discard backing_object.
1799 			 *
1800 			 * Since the backing object has no pages, no pager left,
1801 			 * and no object references within it, all that is
1802 			 * necessary is to dispose of it.
1803 			 */
1804 			KASSERT(backing_object->ref_count == 1, (
1805 "backing_object %p was somehow re-referenced during collapse!",
1806 			    backing_object));
1807 			VM_OBJECT_WUNLOCK(backing_object);
1808 			vm_object_destroy(backing_object);
1809 
1810 			object_collapses++;
1811 		} else {
1812 			vm_object_t new_backing_object;
1813 
1814 			/*
1815 			 * If we do not entirely shadow the backing object,
1816 			 * there is nothing we can do so we give up.
1817 			 */
1818 			if (object->resident_page_count != object->size &&
1819 			    vm_object_backing_scan(object,
1820 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1821 				VM_OBJECT_WUNLOCK(backing_object);
1822 				break;
1823 			}
1824 
1825 			/*
1826 			 * Make the parent shadow the next object in the
1827 			 * chain.  Deallocating backing_object will not remove
1828 			 * it, since its reference count is at least 2.
1829 			 */
1830 			LIST_REMOVE(object, shadow_list);
1831 			backing_object->shadow_count--;
1832 
1833 			new_backing_object = backing_object->backing_object;
1834 			if ((object->backing_object = new_backing_object) != NULL) {
1835 				VM_OBJECT_WLOCK(new_backing_object);
1836 				LIST_INSERT_HEAD(
1837 				    &new_backing_object->shadow_head,
1838 				    object,
1839 				    shadow_list
1840 				);
1841 				new_backing_object->shadow_count++;
1842 				vm_object_reference_locked(new_backing_object);
1843 				VM_OBJECT_WUNLOCK(new_backing_object);
1844 				object->backing_object_offset +=
1845 					backing_object->backing_object_offset;
1846 			}
1847 
1848 			/*
1849 			 * Drop the reference count on backing_object. Since
1850 			 * its ref_count was at least 2, it will not vanish.
1851 			 */
1852 			backing_object->ref_count--;
1853 			VM_OBJECT_WUNLOCK(backing_object);
1854 			object_bypasses++;
1855 		}
1856 
1857 		/*
1858 		 * Try again with this object's new backing object.
1859 		 */
1860 	}
1861 }
1862 
1863 /*
1864  *	vm_object_page_remove:
1865  *
1866  *	For the given object, either frees or invalidates each of the
1867  *	specified pages.  In general, a page is freed.  However, if a page is
1868  *	wired for any reason other than the existence of a managed, wired
1869  *	mapping, then it may be invalidated but not removed from the object.
1870  *	Pages are specified by the given range ["start", "end") and the option
1871  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1872  *	extends from "start" to the end of the object.  If the option
1873  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1874  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1875  *	specified, then the pages within the specified range must have no
1876  *	mappings.  Otherwise, if this option is not specified, any mappings to
1877  *	the specified pages are removed before the pages are freed or
1878  *	invalidated.
1879  *
1880  *	In general, this operation should only be performed on objects that
1881  *	contain managed pages.  There are, however, two exceptions.  First, it
1882  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1883  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1884  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1885  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1886  *
1887  *	The object must be locked.
1888  */
1889 void
1890 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1891     int options)
1892 {
1893 	vm_page_t p, next;
1894 	int wirings;
1895 
1896 	VM_OBJECT_ASSERT_WLOCKED(object);
1897 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1898 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1899 	    ("vm_object_page_remove: illegal options for object %p", object));
1900 	if (object->resident_page_count == 0)
1901 		goto skipmemq;
1902 	vm_object_pip_add(object, 1);
1903 again:
1904 	p = vm_page_find_least(object, start);
1905 
1906 	/*
1907 	 * Here, the variable "p" is either (1) the page with the least pindex
1908 	 * greater than or equal to the parameter "start" or (2) NULL.
1909 	 */
1910 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1911 		next = TAILQ_NEXT(p, listq);
1912 
1913 		/*
1914 		 * If the page is wired for any reason besides the existence
1915 		 * of managed, wired mappings, then it cannot be freed.  For
1916 		 * example, fictitious pages, which represent device memory,
1917 		 * are inherently wired and cannot be freed.  They can,
1918 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1919 		 * not specified.
1920 		 */
1921 		vm_page_lock(p);
1922 		if (vm_page_xbusied(p)) {
1923 			VM_OBJECT_WUNLOCK(object);
1924 			vm_page_busy_sleep(p, "vmopax");
1925 			VM_OBJECT_WLOCK(object);
1926 			goto again;
1927 		}
1928 		if ((wirings = p->wire_count) != 0 &&
1929 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1930 			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1931 			    0) {
1932 				pmap_remove_all(p);
1933 				/* Account for removal of wired mappings. */
1934 				if (wirings != 0)
1935 					p->wire_count -= wirings;
1936 			}
1937 			if ((options & OBJPR_CLEANONLY) == 0) {
1938 				p->valid = 0;
1939 				vm_page_undirty(p);
1940 			}
1941 			goto next;
1942 		}
1943 		if (vm_page_busied(p)) {
1944 			VM_OBJECT_WUNLOCK(object);
1945 			vm_page_busy_sleep(p, "vmopar");
1946 			VM_OBJECT_WLOCK(object);
1947 			goto again;
1948 		}
1949 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1950 		    ("vm_object_page_remove: page %p is fictitious", p));
1951 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1952 			if ((options & OBJPR_NOTMAPPED) == 0)
1953 				pmap_remove_write(p);
1954 			if (p->dirty)
1955 				goto next;
1956 		}
1957 		if ((options & OBJPR_NOTMAPPED) == 0) {
1958 			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1959 				goto next;
1960 			pmap_remove_all(p);
1961 			/* Account for removal of wired mappings. */
1962 			if (wirings != 0) {
1963 				KASSERT(p->wire_count == wirings,
1964 				    ("inconsistent wire count %d %d %p",
1965 				    p->wire_count, wirings, p));
1966 				p->wire_count = 0;
1967 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1968 			}
1969 		}
1970 		vm_page_free(p);
1971 next:
1972 		vm_page_unlock(p);
1973 	}
1974 	vm_object_pip_wakeup(object);
1975 skipmemq:
1976 	if (__predict_false(!vm_object_cache_is_empty(object)))
1977 		vm_page_cache_free(object, start, end);
1978 }
1979 
1980 /*
1981  *	vm_object_page_cache:
1982  *
1983  *	For the given object, attempt to move the specified clean
1984  *	pages to the cache queue.  If a page is wired for any reason,
1985  *	then it will not be changed.  Pages are specified by the given
1986  *	range ["start", "end").  As a special case, if "end" is zero,
1987  *	then the range extends from "start" to the end of the object.
1988  *	Any mappings to the specified pages are removed before the
1989  *	pages are moved to the cache queue.
1990  *
1991  *	This operation should only be performed on objects that
1992  *	contain non-fictitious, managed pages.
1993  *
1994  *	The object must be locked.
1995  */
1996 void
1997 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1998 {
1999 	struct mtx *mtx, *new_mtx;
2000 	vm_page_t p, next;
2001 
2002 	VM_OBJECT_ASSERT_WLOCKED(object);
2003 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2004 	    ("vm_object_page_cache: illegal object %p", object));
2005 	if (object->resident_page_count == 0)
2006 		return;
2007 	p = vm_page_find_least(object, start);
2008 
2009 	/*
2010 	 * Here, the variable "p" is either (1) the page with the least pindex
2011 	 * greater than or equal to the parameter "start" or (2) NULL.
2012 	 */
2013 	mtx = NULL;
2014 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2015 		next = TAILQ_NEXT(p, listq);
2016 
2017 		/*
2018 		 * Avoid releasing and reacquiring the same page lock.
2019 		 */
2020 		new_mtx = vm_page_lockptr(p);
2021 		if (mtx != new_mtx) {
2022 			if (mtx != NULL)
2023 				mtx_unlock(mtx);
2024 			mtx = new_mtx;
2025 			mtx_lock(mtx);
2026 		}
2027 		vm_page_try_to_cache(p);
2028 	}
2029 	if (mtx != NULL)
2030 		mtx_unlock(mtx);
2031 }
2032 
2033 /*
2034  *	Populate the specified range of the object with valid pages.  Returns
2035  *	TRUE if the range is successfully populated and FALSE otherwise.
2036  *
2037  *	Note: This function should be optimized to pass a larger array of
2038  *	pages to vm_pager_get_pages() before it is applied to a non-
2039  *	OBJT_DEVICE object.
2040  *
2041  *	The object must be locked.
2042  */
2043 boolean_t
2044 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2045 {
2046 	vm_page_t m, ma[1];
2047 	vm_pindex_t pindex;
2048 	int rv;
2049 
2050 	VM_OBJECT_ASSERT_WLOCKED(object);
2051 	for (pindex = start; pindex < end; pindex++) {
2052 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2053 		if (m->valid != VM_PAGE_BITS_ALL) {
2054 			ma[0] = m;
2055 			rv = vm_pager_get_pages(object, ma, 1, 0);
2056 			m = vm_page_lookup(object, pindex);
2057 			if (m == NULL)
2058 				break;
2059 			if (rv != VM_PAGER_OK) {
2060 				vm_page_lock(m);
2061 				vm_page_free(m);
2062 				vm_page_unlock(m);
2063 				break;
2064 			}
2065 		}
2066 		/*
2067 		 * Keep "m" busy because a subsequent iteration may unlock
2068 		 * the object.
2069 		 */
2070 	}
2071 	if (pindex > start) {
2072 		m = vm_page_lookup(object, start);
2073 		while (m != NULL && m->pindex < pindex) {
2074 			vm_page_xunbusy(m);
2075 			m = TAILQ_NEXT(m, listq);
2076 		}
2077 	}
2078 	return (pindex == end);
2079 }
2080 
2081 /*
2082  *	Routine:	vm_object_coalesce
2083  *	Function:	Coalesces two objects backing up adjoining
2084  *			regions of memory into a single object.
2085  *
2086  *	returns TRUE if objects were combined.
2087  *
2088  *	NOTE:	Only works at the moment if the second object is NULL -
2089  *		if it's not, which object do we lock first?
2090  *
2091  *	Parameters:
2092  *		prev_object	First object to coalesce
2093  *		prev_offset	Offset into prev_object
2094  *		prev_size	Size of reference to prev_object
2095  *		next_size	Size of reference to the second object
2096  *		reserved	Indicator that extension region has
2097  *				swap accounted for
2098  *
2099  *	Conditions:
2100  *	The object must *not* be locked.
2101  */
2102 boolean_t
2103 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2104     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2105 {
2106 	vm_pindex_t next_pindex;
2107 
2108 	if (prev_object == NULL)
2109 		return (TRUE);
2110 	VM_OBJECT_WLOCK(prev_object);
2111 	if ((prev_object->type != OBJT_DEFAULT &&
2112 	    prev_object->type != OBJT_SWAP) ||
2113 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2114 		VM_OBJECT_WUNLOCK(prev_object);
2115 		return (FALSE);
2116 	}
2117 
2118 	/*
2119 	 * Try to collapse the object first
2120 	 */
2121 	vm_object_collapse(prev_object);
2122 
2123 	/*
2124 	 * Can't coalesce if: . more than one reference . paged out . shadows
2125 	 * another object . has a copy elsewhere (any of which mean that the
2126 	 * pages not mapped to prev_entry may be in use anyway)
2127 	 */
2128 	if (prev_object->backing_object != NULL) {
2129 		VM_OBJECT_WUNLOCK(prev_object);
2130 		return (FALSE);
2131 	}
2132 
2133 	prev_size >>= PAGE_SHIFT;
2134 	next_size >>= PAGE_SHIFT;
2135 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2136 
2137 	if ((prev_object->ref_count > 1) &&
2138 	    (prev_object->size != next_pindex)) {
2139 		VM_OBJECT_WUNLOCK(prev_object);
2140 		return (FALSE);
2141 	}
2142 
2143 	/*
2144 	 * Account for the charge.
2145 	 */
2146 	if (prev_object->cred != NULL) {
2147 
2148 		/*
2149 		 * If prev_object was charged, then this mapping,
2150 		 * althought not charged now, may become writable
2151 		 * later. Non-NULL cred in the object would prevent
2152 		 * swap reservation during enabling of the write
2153 		 * access, so reserve swap now. Failed reservation
2154 		 * cause allocation of the separate object for the map
2155 		 * entry, and swap reservation for this entry is
2156 		 * managed in appropriate time.
2157 		 */
2158 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2159 		    prev_object->cred)) {
2160 			return (FALSE);
2161 		}
2162 		prev_object->charge += ptoa(next_size);
2163 	}
2164 
2165 	/*
2166 	 * Remove any pages that may still be in the object from a previous
2167 	 * deallocation.
2168 	 */
2169 	if (next_pindex < prev_object->size) {
2170 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2171 		    next_size, 0);
2172 		if (prev_object->type == OBJT_SWAP)
2173 			swap_pager_freespace(prev_object,
2174 					     next_pindex, next_size);
2175 #if 0
2176 		if (prev_object->cred != NULL) {
2177 			KASSERT(prev_object->charge >=
2178 			    ptoa(prev_object->size - next_pindex),
2179 			    ("object %p overcharged 1 %jx %jx", prev_object,
2180 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2181 			prev_object->charge -= ptoa(prev_object->size -
2182 			    next_pindex);
2183 		}
2184 #endif
2185 	}
2186 
2187 	/*
2188 	 * Extend the object if necessary.
2189 	 */
2190 	if (next_pindex + next_size > prev_object->size)
2191 		prev_object->size = next_pindex + next_size;
2192 
2193 	VM_OBJECT_WUNLOCK(prev_object);
2194 	return (TRUE);
2195 }
2196 
2197 void
2198 vm_object_set_writeable_dirty(vm_object_t object)
2199 {
2200 
2201 	VM_OBJECT_ASSERT_WLOCKED(object);
2202 	if (object->type != OBJT_VNODE)
2203 		return;
2204 	object->generation++;
2205 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2206 		return;
2207 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2208 }
2209 
2210 /*
2211  *	vm_object_unwire:
2212  *
2213  *	For each page offset within the specified range of the given object,
2214  *	find the highest-level page in the shadow chain and unwire it.  A page
2215  *	must exist at every page offset, and the highest-level page must be
2216  *	wired.
2217  */
2218 void
2219 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2220     uint8_t queue)
2221 {
2222 	vm_object_t tobject;
2223 	vm_page_t m, tm;
2224 	vm_pindex_t end_pindex, pindex, tpindex;
2225 	int depth, locked_depth;
2226 
2227 	KASSERT((offset & PAGE_MASK) == 0,
2228 	    ("vm_object_unwire: offset is not page aligned"));
2229 	KASSERT((length & PAGE_MASK) == 0,
2230 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2231 	/* The wired count of a fictitious page never changes. */
2232 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2233 		return;
2234 	pindex = OFF_TO_IDX(offset);
2235 	end_pindex = pindex + atop(length);
2236 	locked_depth = 1;
2237 	VM_OBJECT_RLOCK(object);
2238 	m = vm_page_find_least(object, pindex);
2239 	while (pindex < end_pindex) {
2240 		if (m == NULL || pindex < m->pindex) {
2241 			/*
2242 			 * The first object in the shadow chain doesn't
2243 			 * contain a page at the current index.  Therefore,
2244 			 * the page must exist in a backing object.
2245 			 */
2246 			tobject = object;
2247 			tpindex = pindex;
2248 			depth = 0;
2249 			do {
2250 				tpindex +=
2251 				    OFF_TO_IDX(tobject->backing_object_offset);
2252 				tobject = tobject->backing_object;
2253 				KASSERT(tobject != NULL,
2254 				    ("vm_object_unwire: missing page"));
2255 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2256 					goto next_page;
2257 				depth++;
2258 				if (depth == locked_depth) {
2259 					locked_depth++;
2260 					VM_OBJECT_RLOCK(tobject);
2261 				}
2262 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2263 			    NULL);
2264 		} else {
2265 			tm = m;
2266 			m = TAILQ_NEXT(m, listq);
2267 		}
2268 		vm_page_lock(tm);
2269 		vm_page_unwire(tm, queue);
2270 		vm_page_unlock(tm);
2271 next_page:
2272 		pindex++;
2273 	}
2274 	/* Release the accumulated object locks. */
2275 	for (depth = 0; depth < locked_depth; depth++) {
2276 		tobject = object->backing_object;
2277 		VM_OBJECT_RUNLOCK(object);
2278 		object = tobject;
2279 	}
2280 }
2281 
2282 #include "opt_ddb.h"
2283 #ifdef DDB
2284 #include <sys/kernel.h>
2285 
2286 #include <sys/cons.h>
2287 
2288 #include <ddb/ddb.h>
2289 
2290 static int
2291 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2292 {
2293 	vm_map_t tmpm;
2294 	vm_map_entry_t tmpe;
2295 	vm_object_t obj;
2296 	int entcount;
2297 
2298 	if (map == 0)
2299 		return 0;
2300 
2301 	if (entry == 0) {
2302 		tmpe = map->header.next;
2303 		entcount = map->nentries;
2304 		while (entcount-- && (tmpe != &map->header)) {
2305 			if (_vm_object_in_map(map, object, tmpe)) {
2306 				return 1;
2307 			}
2308 			tmpe = tmpe->next;
2309 		}
2310 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2311 		tmpm = entry->object.sub_map;
2312 		tmpe = tmpm->header.next;
2313 		entcount = tmpm->nentries;
2314 		while (entcount-- && tmpe != &tmpm->header) {
2315 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2316 				return 1;
2317 			}
2318 			tmpe = tmpe->next;
2319 		}
2320 	} else if ((obj = entry->object.vm_object) != NULL) {
2321 		for (; obj; obj = obj->backing_object)
2322 			if (obj == object) {
2323 				return 1;
2324 			}
2325 	}
2326 	return 0;
2327 }
2328 
2329 static int
2330 vm_object_in_map(vm_object_t object)
2331 {
2332 	struct proc *p;
2333 
2334 	/* sx_slock(&allproc_lock); */
2335 	FOREACH_PROC_IN_SYSTEM(p) {
2336 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2337 			continue;
2338 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2339 			/* sx_sunlock(&allproc_lock); */
2340 			return 1;
2341 		}
2342 	}
2343 	/* sx_sunlock(&allproc_lock); */
2344 	if (_vm_object_in_map(kernel_map, object, 0))
2345 		return 1;
2346 	return 0;
2347 }
2348 
2349 DB_SHOW_COMMAND(vmochk, vm_object_check)
2350 {
2351 	vm_object_t object;
2352 
2353 	/*
2354 	 * make sure that internal objs are in a map somewhere
2355 	 * and none have zero ref counts.
2356 	 */
2357 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2358 		if (object->handle == NULL &&
2359 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2360 			if (object->ref_count == 0) {
2361 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2362 					(long)object->size);
2363 			}
2364 			if (!vm_object_in_map(object)) {
2365 				db_printf(
2366 			"vmochk: internal obj is not in a map: "
2367 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2368 				    object->ref_count, (u_long)object->size,
2369 				    (u_long)object->size,
2370 				    (void *)object->backing_object);
2371 			}
2372 		}
2373 	}
2374 }
2375 
2376 /*
2377  *	vm_object_print:	[ debug ]
2378  */
2379 DB_SHOW_COMMAND(object, vm_object_print_static)
2380 {
2381 	/* XXX convert args. */
2382 	vm_object_t object = (vm_object_t)addr;
2383 	boolean_t full = have_addr;
2384 
2385 	vm_page_t p;
2386 
2387 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2388 #define	count	was_count
2389 
2390 	int count;
2391 
2392 	if (object == NULL)
2393 		return;
2394 
2395 	db_iprintf(
2396 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2397 	    object, (int)object->type, (uintmax_t)object->size,
2398 	    object->resident_page_count, object->ref_count, object->flags,
2399 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2400 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2401 	    object->shadow_count,
2402 	    object->backing_object ? object->backing_object->ref_count : 0,
2403 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2404 
2405 	if (!full)
2406 		return;
2407 
2408 	db_indent += 2;
2409 	count = 0;
2410 	TAILQ_FOREACH(p, &object->memq, listq) {
2411 		if (count == 0)
2412 			db_iprintf("memory:=");
2413 		else if (count == 6) {
2414 			db_printf("\n");
2415 			db_iprintf(" ...");
2416 			count = 0;
2417 		} else
2418 			db_printf(",");
2419 		count++;
2420 
2421 		db_printf("(off=0x%jx,page=0x%jx)",
2422 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2423 	}
2424 	if (count != 0)
2425 		db_printf("\n");
2426 	db_indent -= 2;
2427 }
2428 
2429 /* XXX. */
2430 #undef count
2431 
2432 /* XXX need this non-static entry for calling from vm_map_print. */
2433 void
2434 vm_object_print(
2435         /* db_expr_t */ long addr,
2436 	boolean_t have_addr,
2437 	/* db_expr_t */ long count,
2438 	char *modif)
2439 {
2440 	vm_object_print_static(addr, have_addr, count, modif);
2441 }
2442 
2443 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2444 {
2445 	vm_object_t object;
2446 	vm_pindex_t fidx;
2447 	vm_paddr_t pa;
2448 	vm_page_t m, prev_m;
2449 	int rcount, nl, c;
2450 
2451 	nl = 0;
2452 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2453 		db_printf("new object: %p\n", (void *)object);
2454 		if (nl > 18) {
2455 			c = cngetc();
2456 			if (c != ' ')
2457 				return;
2458 			nl = 0;
2459 		}
2460 		nl++;
2461 		rcount = 0;
2462 		fidx = 0;
2463 		pa = -1;
2464 		TAILQ_FOREACH(m, &object->memq, listq) {
2465 			if (m->pindex > 128)
2466 				break;
2467 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2468 			    prev_m->pindex + 1 != m->pindex) {
2469 				if (rcount) {
2470 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2471 						(long)fidx, rcount, (long)pa);
2472 					if (nl > 18) {
2473 						c = cngetc();
2474 						if (c != ' ')
2475 							return;
2476 						nl = 0;
2477 					}
2478 					nl++;
2479 					rcount = 0;
2480 				}
2481 			}
2482 			if (rcount &&
2483 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2484 				++rcount;
2485 				continue;
2486 			}
2487 			if (rcount) {
2488 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2489 					(long)fidx, rcount, (long)pa);
2490 				if (nl > 18) {
2491 					c = cngetc();
2492 					if (c != ' ')
2493 						return;
2494 					nl = 0;
2495 				}
2496 				nl++;
2497 			}
2498 			fidx = m->pindex;
2499 			pa = VM_PAGE_TO_PHYS(m);
2500 			rcount = 1;
2501 		}
2502 		if (rcount) {
2503 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2504 				(long)fidx, rcount, (long)pa);
2505 			if (nl > 18) {
2506 				c = cngetc();
2507 				if (c != ' ')
2508 					return;
2509 				nl = 0;
2510 			}
2511 			nl++;
2512 		}
2513 	}
2514 }
2515 #endif /* DDB */
2516