xref: /freebsd/sys/vm/vm_object.c (revision bb15ca603fa442c72dde3f3cb8b46db6970e3950)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102 
103 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104 		    int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106 		    int *clearobjflags);
107 static void	vm_object_qcollapse(vm_object_t object);
108 static void	vm_object_vndeallocate(vm_object_t object);
109 
110 /*
111  *	Virtual memory objects maintain the actual data
112  *	associated with allocated virtual memory.  A given
113  *	page of memory exists within exactly one object.
114  *
115  *	An object is only deallocated when all "references"
116  *	are given up.  Only one "reference" to a given
117  *	region of an object should be writeable.
118  *
119  *	Associated with each object is a list of all resident
120  *	memory pages belonging to that object; this list is
121  *	maintained by the "vm_page" module, and locked by the object's
122  *	lock.
123  *
124  *	Each object also records a "pager" routine which is
125  *	used to retrieve (and store) pages to the proper backing
126  *	storage.  In addition, objects may be backed by other
127  *	objects from which they were virtual-copied.
128  *
129  *	The only items within the object structure which are
130  *	modified after time of creation are:
131  *		reference count		locked by object's lock
132  *		pager routine		locked by object's lock
133  *
134  */
135 
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;	/* lock for object list and count */
138 
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141 
142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
143     "VM object stats");
144 
145 static long object_collapses;
146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
147     &object_collapses, 0, "VM object collapses");
148 
149 static long object_bypasses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
151     &object_bypasses, 0, "VM object bypasses");
152 
153 static uma_zone_t obj_zone;
154 
155 static int vm_object_zinit(void *mem, int size, int flags);
156 
157 #ifdef INVARIANTS
158 static void vm_object_zdtor(void *mem, int size, void *arg);
159 
160 static void
161 vm_object_zdtor(void *mem, int size, void *arg)
162 {
163 	vm_object_t object;
164 
165 	object = (vm_object_t)mem;
166 	KASSERT(TAILQ_EMPTY(&object->memq),
167 	    ("object %p has resident pages",
168 	    object));
169 #if VM_NRESERVLEVEL > 0
170 	KASSERT(LIST_EMPTY(&object->rvq),
171 	    ("object %p has reservations",
172 	    object));
173 #endif
174 	KASSERT(object->cache == NULL,
175 	    ("object %p has cached pages",
176 	    object));
177 	KASSERT(object->paging_in_progress == 0,
178 	    ("object %p paging_in_progress = %d",
179 	    object, object->paging_in_progress));
180 	KASSERT(object->resident_page_count == 0,
181 	    ("object %p resident_page_count = %d",
182 	    object, object->resident_page_count));
183 	KASSERT(object->shadow_count == 0,
184 	    ("object %p shadow_count = %d",
185 	    object, object->shadow_count));
186 }
187 #endif
188 
189 static int
190 vm_object_zinit(void *mem, int size, int flags)
191 {
192 	vm_object_t object;
193 
194 	object = (vm_object_t)mem;
195 	bzero(&object->mtx, sizeof(object->mtx));
196 	VM_OBJECT_LOCK_INIT(object, "standard object");
197 
198 	/* These are true for any object that has been freed */
199 	object->paging_in_progress = 0;
200 	object->resident_page_count = 0;
201 	object->shadow_count = 0;
202 	return (0);
203 }
204 
205 void
206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
207 {
208 
209 	TAILQ_INIT(&object->memq);
210 	LIST_INIT(&object->shadow_head);
211 
212 	object->root = NULL;
213 	object->type = type;
214 	object->size = size;
215 	object->generation = 1;
216 	object->ref_count = 1;
217 	object->memattr = VM_MEMATTR_DEFAULT;
218 	object->flags = 0;
219 	object->cred = NULL;
220 	object->charge = 0;
221 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
222 		object->flags = OBJ_ONEMAPPING;
223 	object->pg_color = 0;
224 	object->handle = NULL;
225 	object->backing_object = NULL;
226 	object->backing_object_offset = (vm_ooffset_t) 0;
227 #if VM_NRESERVLEVEL > 0
228 	LIST_INIT(&object->rvq);
229 #endif
230 	object->cache = NULL;
231 
232 	mtx_lock(&vm_object_list_mtx);
233 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
234 	mtx_unlock(&vm_object_list_mtx);
235 }
236 
237 /*
238  *	vm_object_init:
239  *
240  *	Initialize the VM objects module.
241  */
242 void
243 vm_object_init(void)
244 {
245 	TAILQ_INIT(&vm_object_list);
246 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
247 
248 	VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
249 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250 	    kernel_object);
251 #if VM_NRESERVLEVEL > 0
252 	kernel_object->flags |= OBJ_COLORED;
253 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
254 #endif
255 
256 	VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
257 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258 	    kmem_object);
259 #if VM_NRESERVLEVEL > 0
260 	kmem_object->flags |= OBJ_COLORED;
261 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263 
264 	/*
265 	 * The lock portion of struct vm_object must be type stable due
266 	 * to vm_pageout_fallback_object_lock locking a vm object
267 	 * without holding any references to it.
268 	 */
269 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
270 #ifdef INVARIANTS
271 	    vm_object_zdtor,
272 #else
273 	    NULL,
274 #endif
275 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
276 }
277 
278 void
279 vm_object_clear_flag(vm_object_t object, u_short bits)
280 {
281 
282 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
283 	object->flags &= ~bits;
284 }
285 
286 /*
287  *	Sets the default memory attribute for the specified object.  Pages
288  *	that are allocated to this object are by default assigned this memory
289  *	attribute.
290  *
291  *	Presently, this function must be called before any pages are allocated
292  *	to the object.  In the future, this requirement may be relaxed for
293  *	"default" and "swap" objects.
294  */
295 int
296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
297 {
298 
299 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
300 	switch (object->type) {
301 	case OBJT_DEFAULT:
302 	case OBJT_DEVICE:
303 	case OBJT_PHYS:
304 	case OBJT_SG:
305 	case OBJT_SWAP:
306 	case OBJT_VNODE:
307 		if (!TAILQ_EMPTY(&object->memq))
308 			return (KERN_FAILURE);
309 		break;
310 	case OBJT_DEAD:
311 		return (KERN_INVALID_ARGUMENT);
312 	}
313 	object->memattr = memattr;
314 	return (KERN_SUCCESS);
315 }
316 
317 void
318 vm_object_pip_add(vm_object_t object, short i)
319 {
320 
321 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322 	object->paging_in_progress += i;
323 }
324 
325 void
326 vm_object_pip_subtract(vm_object_t object, short i)
327 {
328 
329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330 	object->paging_in_progress -= i;
331 }
332 
333 void
334 vm_object_pip_wakeup(vm_object_t object)
335 {
336 
337 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338 	object->paging_in_progress--;
339 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
340 		vm_object_clear_flag(object, OBJ_PIPWNT);
341 		wakeup(object);
342 	}
343 }
344 
345 void
346 vm_object_pip_wakeupn(vm_object_t object, short i)
347 {
348 
349 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
350 	if (i)
351 		object->paging_in_progress -= i;
352 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
353 		vm_object_clear_flag(object, OBJ_PIPWNT);
354 		wakeup(object);
355 	}
356 }
357 
358 void
359 vm_object_pip_wait(vm_object_t object, char *waitid)
360 {
361 
362 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
363 	while (object->paging_in_progress) {
364 		object->flags |= OBJ_PIPWNT;
365 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
366 	}
367 }
368 
369 /*
370  *	vm_object_allocate:
371  *
372  *	Returns a new object with the given size.
373  */
374 vm_object_t
375 vm_object_allocate(objtype_t type, vm_pindex_t size)
376 {
377 	vm_object_t object;
378 
379 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
380 	_vm_object_allocate(type, size, object);
381 	return (object);
382 }
383 
384 
385 /*
386  *	vm_object_reference:
387  *
388  *	Gets another reference to the given object.  Note: OBJ_DEAD
389  *	objects can be referenced during final cleaning.
390  */
391 void
392 vm_object_reference(vm_object_t object)
393 {
394 	if (object == NULL)
395 		return;
396 	VM_OBJECT_LOCK(object);
397 	vm_object_reference_locked(object);
398 	VM_OBJECT_UNLOCK(object);
399 }
400 
401 /*
402  *	vm_object_reference_locked:
403  *
404  *	Gets another reference to the given object.
405  *
406  *	The object must be locked.
407  */
408 void
409 vm_object_reference_locked(vm_object_t object)
410 {
411 	struct vnode *vp;
412 
413 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
414 	object->ref_count++;
415 	if (object->type == OBJT_VNODE) {
416 		vp = object->handle;
417 		vref(vp);
418 	}
419 }
420 
421 /*
422  * Handle deallocating an object of type OBJT_VNODE.
423  */
424 static void
425 vm_object_vndeallocate(vm_object_t object)
426 {
427 	struct vnode *vp = (struct vnode *) object->handle;
428 
429 	VFS_ASSERT_GIANT(vp->v_mount);
430 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
431 	KASSERT(object->type == OBJT_VNODE,
432 	    ("vm_object_vndeallocate: not a vnode object"));
433 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
434 #ifdef INVARIANTS
435 	if (object->ref_count == 0) {
436 		vprint("vm_object_vndeallocate", vp);
437 		panic("vm_object_vndeallocate: bad object reference count");
438 	}
439 #endif
440 
441 	if (object->ref_count > 1) {
442 		object->ref_count--;
443 		VM_OBJECT_UNLOCK(object);
444 		/* vrele may need the vnode lock. */
445 		vrele(vp);
446 	} else {
447 		vhold(vp);
448 		VM_OBJECT_UNLOCK(object);
449 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
450 		vdrop(vp);
451 		VM_OBJECT_LOCK(object);
452 		object->ref_count--;
453 		if (object->type == OBJT_DEAD) {
454 			VM_OBJECT_UNLOCK(object);
455 			VOP_UNLOCK(vp, 0);
456 		} else {
457 			if (object->ref_count == 0)
458 				vp->v_vflag &= ~VV_TEXT;
459 			VM_OBJECT_UNLOCK(object);
460 			vput(vp);
461 		}
462 	}
463 }
464 
465 /*
466  *	vm_object_deallocate:
467  *
468  *	Release a reference to the specified object,
469  *	gained either through a vm_object_allocate
470  *	or a vm_object_reference call.  When all references
471  *	are gone, storage associated with this object
472  *	may be relinquished.
473  *
474  *	No object may be locked.
475  */
476 void
477 vm_object_deallocate(vm_object_t object)
478 {
479 	vm_object_t temp;
480 
481 	while (object != NULL) {
482 		int vfslocked;
483 
484 		vfslocked = 0;
485 	restart:
486 		VM_OBJECT_LOCK(object);
487 		if (object->type == OBJT_VNODE) {
488 			struct vnode *vp = (struct vnode *) object->handle;
489 
490 			/*
491 			 * Conditionally acquire Giant for a vnode-backed
492 			 * object.  We have to be careful since the type of
493 			 * a vnode object can change while the object is
494 			 * unlocked.
495 			 */
496 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
497 				vfslocked = 1;
498 				if (!mtx_trylock(&Giant)) {
499 					VM_OBJECT_UNLOCK(object);
500 					mtx_lock(&Giant);
501 					goto restart;
502 				}
503 			}
504 			vm_object_vndeallocate(object);
505 			VFS_UNLOCK_GIANT(vfslocked);
506 			return;
507 		} else
508 			/*
509 			 * This is to handle the case that the object
510 			 * changed type while we dropped its lock to
511 			 * obtain Giant.
512 			 */
513 			VFS_UNLOCK_GIANT(vfslocked);
514 
515 		KASSERT(object->ref_count != 0,
516 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
517 
518 		/*
519 		 * If the reference count goes to 0 we start calling
520 		 * vm_object_terminate() on the object chain.
521 		 * A ref count of 1 may be a special case depending on the
522 		 * shadow count being 0 or 1.
523 		 */
524 		object->ref_count--;
525 		if (object->ref_count > 1) {
526 			VM_OBJECT_UNLOCK(object);
527 			return;
528 		} else if (object->ref_count == 1) {
529 			if (object->shadow_count == 0 &&
530 			    object->handle == NULL &&
531 			    (object->type == OBJT_DEFAULT ||
532 			     object->type == OBJT_SWAP)) {
533 				vm_object_set_flag(object, OBJ_ONEMAPPING);
534 			} else if ((object->shadow_count == 1) &&
535 			    (object->handle == NULL) &&
536 			    (object->type == OBJT_DEFAULT ||
537 			     object->type == OBJT_SWAP)) {
538 				vm_object_t robject;
539 
540 				robject = LIST_FIRST(&object->shadow_head);
541 				KASSERT(robject != NULL,
542 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
543 					 object->ref_count,
544 					 object->shadow_count));
545 				if (!VM_OBJECT_TRYLOCK(robject)) {
546 					/*
547 					 * Avoid a potential deadlock.
548 					 */
549 					object->ref_count++;
550 					VM_OBJECT_UNLOCK(object);
551 					/*
552 					 * More likely than not the thread
553 					 * holding robject's lock has lower
554 					 * priority than the current thread.
555 					 * Let the lower priority thread run.
556 					 */
557 					pause("vmo_de", 1);
558 					continue;
559 				}
560 				/*
561 				 * Collapse object into its shadow unless its
562 				 * shadow is dead.  In that case, object will
563 				 * be deallocated by the thread that is
564 				 * deallocating its shadow.
565 				 */
566 				if ((robject->flags & OBJ_DEAD) == 0 &&
567 				    (robject->handle == NULL) &&
568 				    (robject->type == OBJT_DEFAULT ||
569 				     robject->type == OBJT_SWAP)) {
570 
571 					robject->ref_count++;
572 retry:
573 					if (robject->paging_in_progress) {
574 						VM_OBJECT_UNLOCK(object);
575 						vm_object_pip_wait(robject,
576 						    "objde1");
577 						temp = robject->backing_object;
578 						if (object == temp) {
579 							VM_OBJECT_LOCK(object);
580 							goto retry;
581 						}
582 					} else if (object->paging_in_progress) {
583 						VM_OBJECT_UNLOCK(robject);
584 						object->flags |= OBJ_PIPWNT;
585 						msleep(object,
586 						    VM_OBJECT_MTX(object),
587 						    PDROP | PVM, "objde2", 0);
588 						VM_OBJECT_LOCK(robject);
589 						temp = robject->backing_object;
590 						if (object == temp) {
591 							VM_OBJECT_LOCK(object);
592 							goto retry;
593 						}
594 					} else
595 						VM_OBJECT_UNLOCK(object);
596 
597 					if (robject->ref_count == 1) {
598 						robject->ref_count--;
599 						object = robject;
600 						goto doterm;
601 					}
602 					object = robject;
603 					vm_object_collapse(object);
604 					VM_OBJECT_UNLOCK(object);
605 					continue;
606 				}
607 				VM_OBJECT_UNLOCK(robject);
608 			}
609 			VM_OBJECT_UNLOCK(object);
610 			return;
611 		}
612 doterm:
613 		temp = object->backing_object;
614 		if (temp != NULL) {
615 			VM_OBJECT_LOCK(temp);
616 			LIST_REMOVE(object, shadow_list);
617 			temp->shadow_count--;
618 			VM_OBJECT_UNLOCK(temp);
619 			object->backing_object = NULL;
620 		}
621 		/*
622 		 * Don't double-terminate, we could be in a termination
623 		 * recursion due to the terminate having to sync data
624 		 * to disk.
625 		 */
626 		if ((object->flags & OBJ_DEAD) == 0)
627 			vm_object_terminate(object);
628 		else
629 			VM_OBJECT_UNLOCK(object);
630 		object = temp;
631 	}
632 }
633 
634 /*
635  *	vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641 
642 	/*
643 	 * Remove the object from the global object list.
644 	 */
645 	mtx_lock(&vm_object_list_mtx);
646 	TAILQ_REMOVE(&vm_object_list, object, object_list);
647 	mtx_unlock(&vm_object_list_mtx);
648 
649 	/*
650 	 * Release the allocation charge.
651 	 */
652 	if (object->cred != NULL) {
653 		KASSERT(object->type == OBJT_DEFAULT ||
654 		    object->type == OBJT_SWAP,
655 		    ("vm_object_terminate: non-swap obj %p has cred",
656 		     object));
657 		swap_release_by_cred(object->charge, object->cred);
658 		object->charge = 0;
659 		crfree(object->cred);
660 		object->cred = NULL;
661 	}
662 
663 	/*
664 	 * Free the space for the object.
665 	 */
666 	uma_zfree(obj_zone, object);
667 }
668 
669 /*
670  *	vm_object_terminate actually destroys the specified object, freeing
671  *	up all previously used resources.
672  *
673  *	The object must be locked.
674  *	This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679 	vm_page_t p, p_next;
680 
681 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
682 
683 	/*
684 	 * Make sure no one uses us.
685 	 */
686 	vm_object_set_flag(object, OBJ_DEAD);
687 
688 	/*
689 	 * wait for the pageout daemon to be done with the object
690 	 */
691 	vm_object_pip_wait(object, "objtrm");
692 
693 	KASSERT(!object->paging_in_progress,
694 		("vm_object_terminate: pageout in progress"));
695 
696 	/*
697 	 * Clean and free the pages, as appropriate. All references to the
698 	 * object are gone, so we don't need to lock it.
699 	 */
700 	if (object->type == OBJT_VNODE) {
701 		struct vnode *vp = (struct vnode *)object->handle;
702 
703 		/*
704 		 * Clean pages and flush buffers.
705 		 */
706 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707 		VM_OBJECT_UNLOCK(object);
708 
709 		vinvalbuf(vp, V_SAVE, 0, 0);
710 
711 		VM_OBJECT_LOCK(object);
712 	}
713 
714 	KASSERT(object->ref_count == 0,
715 		("vm_object_terminate: object with references, ref_count=%d",
716 		object->ref_count));
717 
718 	/*
719 	 * Free any remaining pageable pages.  This also removes them from the
720 	 * paging queues.  However, don't free wired pages, just remove them
721 	 * from the object.  Rather than incrementally removing each page from
722 	 * the object, the page and object are reset to any empty state.
723 	 */
724 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726 		    ("vm_object_terminate: freeing busy page %p", p));
727 		vm_page_lock(p);
728 		/*
729 		 * Optimize the page's removal from the object by resetting
730 		 * its "object" field.  Specifically, if the page is not
731 		 * wired, then the effect of this assignment is that
732 		 * vm_page_free()'s call to vm_page_remove() will return
733 		 * immediately without modifying the page or the object.
734 		 */
735 		p->object = NULL;
736 		if (p->wire_count == 0) {
737 			vm_page_free(p);
738 			PCPU_INC(cnt.v_pfree);
739 		}
740 		vm_page_unlock(p);
741 	}
742 	/*
743 	 * If the object contained any pages, then reset it to an empty state.
744 	 * None of the object's fields, including "resident_page_count", were
745 	 * modified by the preceding loop.
746 	 */
747 	if (object->resident_page_count != 0) {
748 		object->root = NULL;
749 		TAILQ_INIT(&object->memq);
750 		object->resident_page_count = 0;
751 		if (object->type == OBJT_VNODE)
752 			vdrop(object->handle);
753 	}
754 
755 #if VM_NRESERVLEVEL > 0
756 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
757 		vm_reserv_break_all(object);
758 #endif
759 	if (__predict_false(object->cache != NULL))
760 		vm_page_cache_free(object, 0, 0);
761 
762 	/*
763 	 * Let the pager know object is dead.
764 	 */
765 	vm_pager_deallocate(object);
766 	VM_OBJECT_UNLOCK(object);
767 
768 	vm_object_destroy(object);
769 }
770 
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
779 {
780 
781 	/*
782 	 * If we have been asked to skip nosync pages and this is a
783 	 * nosync page, skip it.  Note that the object flags were not
784 	 * cleared in this case so we do not have to set them.
785 	 */
786 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787 		*clearobjflags = 0;
788 		return (FALSE);
789 	} else {
790 		pmap_remove_write(p);
791 		return (p->dirty != 0);
792 	}
793 }
794 
795 /*
796  *	vm_object_page_clean
797  *
798  *	Clean all dirty pages in the specified range of object.  Leaves page
799  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
800  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *	leaving the object dirty.
802  *
803  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *	synchronous clustering mode implementation.
805  *
806  *	Odd semantics: if start == end, we clean everything.
807  *
808  *	The object must be locked.
809  */
810 void
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814 	vm_page_t np, p;
815 	vm_pindex_t pi, tend, tstart;
816 	int clearobjflags, curgeneration, n, pagerflags;
817 
818 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
819 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
820 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
821 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
822 	    object->resident_page_count == 0)
823 		return;
824 
825 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828 
829 	tstart = OFF_TO_IDX(start);
830 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831 	clearobjflags = tstart == 0 && tend >= object->size;
832 
833 rescan:
834 	curgeneration = object->generation;
835 
836 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
837 		pi = p->pindex;
838 		if (pi >= tend)
839 			break;
840 		np = TAILQ_NEXT(p, listq);
841 		if (p->valid == 0)
842 			continue;
843 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
844 			if (object->generation != curgeneration)
845 				goto rescan;
846 			np = vm_page_find_least(object, pi);
847 			continue;
848 		}
849 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
850 			continue;
851 
852 		n = vm_object_page_collect_flush(object, p, pagerflags,
853 		    flags, &clearobjflags);
854 		if (object->generation != curgeneration)
855 			goto rescan;
856 
857 		/*
858 		 * If the VOP_PUTPAGES() did a truncated write, so
859 		 * that even the first page of the run is not fully
860 		 * written, vm_pageout_flush() returns 0 as the run
861 		 * length.  Since the condition that caused truncated
862 		 * write may be permanent, e.g. exhausted free space,
863 		 * accepting n == 0 would cause an infinite loop.
864 		 *
865 		 * Forwarding the iterator leaves the unwritten page
866 		 * behind, but there is not much we can do there if
867 		 * filesystem refuses to write it.
868 		 */
869 		if (n == 0)
870 			n = 1;
871 		np = vm_page_find_least(object, pi + n);
872 	}
873 #if 0
874 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
875 #endif
876 
877 	if (clearobjflags)
878 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
879 }
880 
881 static int
882 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
883     int flags, int *clearobjflags)
884 {
885 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
886 	int count, i, mreq, runlen;
887 
888 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
889 	vm_page_lock_assert(p, MA_NOTOWNED);
890 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
891 
892 	count = 1;
893 	mreq = 0;
894 
895 	for (tp = p; count < vm_pageout_page_count; count++) {
896 		tp = vm_page_next(tp);
897 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
898 			break;
899 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
900 			break;
901 	}
902 
903 	for (p_first = p; count < vm_pageout_page_count; count++) {
904 		tp = vm_page_prev(p_first);
905 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906 			break;
907 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908 			break;
909 		p_first = tp;
910 		mreq++;
911 	}
912 
913 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
914 		ma[i] = tp;
915 
916 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
917 	return (runlen);
918 }
919 
920 /*
921  * Note that there is absolutely no sense in writing out
922  * anonymous objects, so we track down the vnode object
923  * to write out.
924  * We invalidate (remove) all pages from the address space
925  * for semantic correctness.
926  *
927  * If the backing object is a device object with unmanaged pages, then any
928  * mappings to the specified range of pages must be removed before this
929  * function is called.
930  *
931  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
932  * may start out with a NULL object.
933  */
934 void
935 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
936     boolean_t syncio, boolean_t invalidate)
937 {
938 	vm_object_t backing_object;
939 	struct vnode *vp;
940 	struct mount *mp;
941 	int flags;
942 
943 	if (object == NULL)
944 		return;
945 	VM_OBJECT_LOCK(object);
946 	while ((backing_object = object->backing_object) != NULL) {
947 		VM_OBJECT_LOCK(backing_object);
948 		offset += object->backing_object_offset;
949 		VM_OBJECT_UNLOCK(object);
950 		object = backing_object;
951 		if (object->size < OFF_TO_IDX(offset + size))
952 			size = IDX_TO_OFF(object->size) - offset;
953 	}
954 	/*
955 	 * Flush pages if writing is allowed, invalidate them
956 	 * if invalidation requested.  Pages undergoing I/O
957 	 * will be ignored by vm_object_page_remove().
958 	 *
959 	 * We cannot lock the vnode and then wait for paging
960 	 * to complete without deadlocking against vm_fault.
961 	 * Instead we simply call vm_object_page_remove() and
962 	 * allow it to block internally on a page-by-page
963 	 * basis when it encounters pages undergoing async
964 	 * I/O.
965 	 */
966 	if (object->type == OBJT_VNODE &&
967 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
968 		int vfslocked;
969 		vp = object->handle;
970 		VM_OBJECT_UNLOCK(object);
971 		(void) vn_start_write(vp, &mp, V_WAIT);
972 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
973 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
974 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
975 		flags |= invalidate ? OBJPC_INVAL : 0;
976 		VM_OBJECT_LOCK(object);
977 		vm_object_page_clean(object, offset, offset + size, flags);
978 		VM_OBJECT_UNLOCK(object);
979 		VOP_UNLOCK(vp, 0);
980 		VFS_UNLOCK_GIANT(vfslocked);
981 		vn_finished_write(mp);
982 		VM_OBJECT_LOCK(object);
983 	}
984 	if ((object->type == OBJT_VNODE ||
985 	     object->type == OBJT_DEVICE) && invalidate) {
986 		if (object->type == OBJT_DEVICE)
987 			/*
988 			 * The option OBJPR_NOTMAPPED must be passed here
989 			 * because vm_object_page_remove() cannot remove
990 			 * unmanaged mappings.
991 			 */
992 			flags = OBJPR_NOTMAPPED;
993 		else if (old_msync)
994 			flags = 0;
995 		else
996 			flags = OBJPR_CLEANONLY;
997 		vm_object_page_remove(object, OFF_TO_IDX(offset),
998 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
999 	}
1000 	VM_OBJECT_UNLOCK(object);
1001 }
1002 
1003 /*
1004  *	vm_object_madvise:
1005  *
1006  *	Implements the madvise function at the object/page level.
1007  *
1008  *	MADV_WILLNEED	(any object)
1009  *
1010  *	    Activate the specified pages if they are resident.
1011  *
1012  *	MADV_DONTNEED	(any object)
1013  *
1014  *	    Deactivate the specified pages if they are resident.
1015  *
1016  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1017  *			 OBJ_ONEMAPPING only)
1018  *
1019  *	    Deactivate and clean the specified pages if they are
1020  *	    resident.  This permits the process to reuse the pages
1021  *	    without faulting or the kernel to reclaim the pages
1022  *	    without I/O.
1023  */
1024 void
1025 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1026 {
1027 	vm_pindex_t end, tpindex;
1028 	vm_object_t backing_object, tobject;
1029 	vm_page_t m;
1030 
1031 	if (object == NULL)
1032 		return;
1033 	VM_OBJECT_LOCK(object);
1034 	end = pindex + count;
1035 	/*
1036 	 * Locate and adjust resident pages
1037 	 */
1038 	for (; pindex < end; pindex += 1) {
1039 relookup:
1040 		tobject = object;
1041 		tpindex = pindex;
1042 shadowlookup:
1043 		/*
1044 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1045 		 * and those pages must be OBJ_ONEMAPPING.
1046 		 */
1047 		if (advise == MADV_FREE) {
1048 			if ((tobject->type != OBJT_DEFAULT &&
1049 			     tobject->type != OBJT_SWAP) ||
1050 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1051 				goto unlock_tobject;
1052 			}
1053 		} else if (tobject->type == OBJT_PHYS)
1054 			goto unlock_tobject;
1055 		m = vm_page_lookup(tobject, tpindex);
1056 		if (m == NULL && advise == MADV_WILLNEED) {
1057 			/*
1058 			 * If the page is cached, reactivate it.
1059 			 */
1060 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1061 			    VM_ALLOC_NOBUSY);
1062 		}
1063 		if (m == NULL) {
1064 			/*
1065 			 * There may be swap even if there is no backing page
1066 			 */
1067 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1068 				swap_pager_freespace(tobject, tpindex, 1);
1069 			/*
1070 			 * next object
1071 			 */
1072 			backing_object = tobject->backing_object;
1073 			if (backing_object == NULL)
1074 				goto unlock_tobject;
1075 			VM_OBJECT_LOCK(backing_object);
1076 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1077 			if (tobject != object)
1078 				VM_OBJECT_UNLOCK(tobject);
1079 			tobject = backing_object;
1080 			goto shadowlookup;
1081 		} else if (m->valid != VM_PAGE_BITS_ALL)
1082 			goto unlock_tobject;
1083 		/*
1084 		 * If the page is not in a normal state, skip it.
1085 		 */
1086 		vm_page_lock(m);
1087 		if (m->hold_count != 0 || m->wire_count != 0) {
1088 			vm_page_unlock(m);
1089 			goto unlock_tobject;
1090 		}
1091 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1092 		    ("vm_object_madvise: page %p is fictitious", m));
1093 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1094 		    ("vm_object_madvise: page %p is not managed", m));
1095 		if ((m->oflags & VPO_BUSY) || m->busy) {
1096 			if (advise == MADV_WILLNEED) {
1097 				/*
1098 				 * Reference the page before unlocking and
1099 				 * sleeping so that the page daemon is less
1100 				 * likely to reclaim it.
1101 				 */
1102 				vm_page_aflag_set(m, PGA_REFERENCED);
1103 			}
1104 			vm_page_unlock(m);
1105 			if (object != tobject)
1106 				VM_OBJECT_UNLOCK(object);
1107 			m->oflags |= VPO_WANTED;
1108 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1109 			    0);
1110 			VM_OBJECT_LOCK(object);
1111   			goto relookup;
1112 		}
1113 		if (advise == MADV_WILLNEED) {
1114 			vm_page_activate(m);
1115 		} else if (advise == MADV_DONTNEED) {
1116 			vm_page_dontneed(m);
1117 		} else if (advise == MADV_FREE) {
1118 			/*
1119 			 * Mark the page clean.  This will allow the page
1120 			 * to be freed up by the system.  However, such pages
1121 			 * are often reused quickly by malloc()/free()
1122 			 * so we do not do anything that would cause
1123 			 * a page fault if we can help it.
1124 			 *
1125 			 * Specifically, we do not try to actually free
1126 			 * the page now nor do we try to put it in the
1127 			 * cache (which would cause a page fault on reuse).
1128 			 *
1129 			 * But we do make the page is freeable as we
1130 			 * can without actually taking the step of unmapping
1131 			 * it.
1132 			 */
1133 			pmap_clear_modify(m);
1134 			m->dirty = 0;
1135 			m->act_count = 0;
1136 			vm_page_dontneed(m);
1137 		}
1138 		vm_page_unlock(m);
1139 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140 			swap_pager_freespace(tobject, tpindex, 1);
1141 unlock_tobject:
1142 		if (tobject != object)
1143 			VM_OBJECT_UNLOCK(tobject);
1144 	}
1145 	VM_OBJECT_UNLOCK(object);
1146 }
1147 
1148 /*
1149  *	vm_object_shadow:
1150  *
1151  *	Create a new object which is backed by the
1152  *	specified existing object range.  The source
1153  *	object reference is deallocated.
1154  *
1155  *	The new object and offset into that object
1156  *	are returned in the source parameters.
1157  */
1158 void
1159 vm_object_shadow(
1160 	vm_object_t *object,	/* IN/OUT */
1161 	vm_ooffset_t *offset,	/* IN/OUT */
1162 	vm_size_t length)
1163 {
1164 	vm_object_t source;
1165 	vm_object_t result;
1166 
1167 	source = *object;
1168 
1169 	/*
1170 	 * Don't create the new object if the old object isn't shared.
1171 	 */
1172 	if (source != NULL) {
1173 		VM_OBJECT_LOCK(source);
1174 		if (source->ref_count == 1 &&
1175 		    source->handle == NULL &&
1176 		    (source->type == OBJT_DEFAULT ||
1177 		     source->type == OBJT_SWAP)) {
1178 			VM_OBJECT_UNLOCK(source);
1179 			return;
1180 		}
1181 		VM_OBJECT_UNLOCK(source);
1182 	}
1183 
1184 	/*
1185 	 * Allocate a new object with the given length.
1186 	 */
1187 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1188 
1189 	/*
1190 	 * The new object shadows the source object, adding a reference to it.
1191 	 * Our caller changes his reference to point to the new object,
1192 	 * removing a reference to the source object.  Net result: no change
1193 	 * of reference count.
1194 	 *
1195 	 * Try to optimize the result object's page color when shadowing
1196 	 * in order to maintain page coloring consistency in the combined
1197 	 * shadowed object.
1198 	 */
1199 	result->backing_object = source;
1200 	/*
1201 	 * Store the offset into the source object, and fix up the offset into
1202 	 * the new object.
1203 	 */
1204 	result->backing_object_offset = *offset;
1205 	if (source != NULL) {
1206 		VM_OBJECT_LOCK(source);
1207 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1208 		source->shadow_count++;
1209 #if VM_NRESERVLEVEL > 0
1210 		result->flags |= source->flags & OBJ_COLORED;
1211 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1212 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1213 #endif
1214 		VM_OBJECT_UNLOCK(source);
1215 	}
1216 
1217 
1218 	/*
1219 	 * Return the new things
1220 	 */
1221 	*offset = 0;
1222 	*object = result;
1223 }
1224 
1225 /*
1226  *	vm_object_split:
1227  *
1228  * Split the pages in a map entry into a new object.  This affords
1229  * easier removal of unused pages, and keeps object inheritance from
1230  * being a negative impact on memory usage.
1231  */
1232 void
1233 vm_object_split(vm_map_entry_t entry)
1234 {
1235 	vm_page_t m, m_next;
1236 	vm_object_t orig_object, new_object, source;
1237 	vm_pindex_t idx, offidxstart;
1238 	vm_size_t size;
1239 
1240 	orig_object = entry->object.vm_object;
1241 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1242 		return;
1243 	if (orig_object->ref_count <= 1)
1244 		return;
1245 	VM_OBJECT_UNLOCK(orig_object);
1246 
1247 	offidxstart = OFF_TO_IDX(entry->offset);
1248 	size = atop(entry->end - entry->start);
1249 
1250 	/*
1251 	 * If swap_pager_copy() is later called, it will convert new_object
1252 	 * into a swap object.
1253 	 */
1254 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1255 
1256 	/*
1257 	 * At this point, the new object is still private, so the order in
1258 	 * which the original and new objects are locked does not matter.
1259 	 */
1260 	VM_OBJECT_LOCK(new_object);
1261 	VM_OBJECT_LOCK(orig_object);
1262 	source = orig_object->backing_object;
1263 	if (source != NULL) {
1264 		VM_OBJECT_LOCK(source);
1265 		if ((source->flags & OBJ_DEAD) != 0) {
1266 			VM_OBJECT_UNLOCK(source);
1267 			VM_OBJECT_UNLOCK(orig_object);
1268 			VM_OBJECT_UNLOCK(new_object);
1269 			vm_object_deallocate(new_object);
1270 			VM_OBJECT_LOCK(orig_object);
1271 			return;
1272 		}
1273 		LIST_INSERT_HEAD(&source->shadow_head,
1274 				  new_object, shadow_list);
1275 		source->shadow_count++;
1276 		vm_object_reference_locked(source);	/* for new_object */
1277 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1278 		VM_OBJECT_UNLOCK(source);
1279 		new_object->backing_object_offset =
1280 			orig_object->backing_object_offset + entry->offset;
1281 		new_object->backing_object = source;
1282 	}
1283 	if (orig_object->cred != NULL) {
1284 		new_object->cred = orig_object->cred;
1285 		crhold(orig_object->cred);
1286 		new_object->charge = ptoa(size);
1287 		KASSERT(orig_object->charge >= ptoa(size),
1288 		    ("orig_object->charge < 0"));
1289 		orig_object->charge -= ptoa(size);
1290 	}
1291 retry:
1292 	m = vm_page_find_least(orig_object, offidxstart);
1293 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1294 	    m = m_next) {
1295 		m_next = TAILQ_NEXT(m, listq);
1296 
1297 		/*
1298 		 * We must wait for pending I/O to complete before we can
1299 		 * rename the page.
1300 		 *
1301 		 * We do not have to VM_PROT_NONE the page as mappings should
1302 		 * not be changed by this operation.
1303 		 */
1304 		if ((m->oflags & VPO_BUSY) || m->busy) {
1305 			VM_OBJECT_UNLOCK(new_object);
1306 			m->oflags |= VPO_WANTED;
1307 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1308 			VM_OBJECT_LOCK(new_object);
1309 			goto retry;
1310 		}
1311 		vm_page_lock(m);
1312 		vm_page_rename(m, new_object, idx);
1313 		vm_page_unlock(m);
1314 		/* page automatically made dirty by rename and cache handled */
1315 		vm_page_busy(m);
1316 	}
1317 	if (orig_object->type == OBJT_SWAP) {
1318 		/*
1319 		 * swap_pager_copy() can sleep, in which case the orig_object's
1320 		 * and new_object's locks are released and reacquired.
1321 		 */
1322 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1323 
1324 		/*
1325 		 * Transfer any cached pages from orig_object to new_object.
1326 		 */
1327 		if (__predict_false(orig_object->cache != NULL))
1328 			vm_page_cache_transfer(orig_object, offidxstart,
1329 			    new_object);
1330 	}
1331 	VM_OBJECT_UNLOCK(orig_object);
1332 	TAILQ_FOREACH(m, &new_object->memq, listq)
1333 		vm_page_wakeup(m);
1334 	VM_OBJECT_UNLOCK(new_object);
1335 	entry->object.vm_object = new_object;
1336 	entry->offset = 0LL;
1337 	vm_object_deallocate(orig_object);
1338 	VM_OBJECT_LOCK(new_object);
1339 }
1340 
1341 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1342 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1343 #define	OBSC_COLLAPSE_WAIT	0x0004
1344 
1345 static int
1346 vm_object_backing_scan(vm_object_t object, int op)
1347 {
1348 	int r = 1;
1349 	vm_page_t p;
1350 	vm_object_t backing_object;
1351 	vm_pindex_t backing_offset_index;
1352 
1353 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1354 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1355 
1356 	backing_object = object->backing_object;
1357 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1358 
1359 	/*
1360 	 * Initial conditions
1361 	 */
1362 	if (op & OBSC_TEST_ALL_SHADOWED) {
1363 		/*
1364 		 * We do not want to have to test for the existence of cache
1365 		 * or swap pages in the backing object.  XXX but with the
1366 		 * new swapper this would be pretty easy to do.
1367 		 *
1368 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1369 		 * been ZFOD faulted yet?  If we do not test for this, the
1370 		 * shadow test may succeed! XXX
1371 		 */
1372 		if (backing_object->type != OBJT_DEFAULT) {
1373 			return (0);
1374 		}
1375 	}
1376 	if (op & OBSC_COLLAPSE_WAIT) {
1377 		vm_object_set_flag(backing_object, OBJ_DEAD);
1378 	}
1379 
1380 	/*
1381 	 * Our scan
1382 	 */
1383 	p = TAILQ_FIRST(&backing_object->memq);
1384 	while (p) {
1385 		vm_page_t next = TAILQ_NEXT(p, listq);
1386 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1387 
1388 		if (op & OBSC_TEST_ALL_SHADOWED) {
1389 			vm_page_t pp;
1390 
1391 			/*
1392 			 * Ignore pages outside the parent object's range
1393 			 * and outside the parent object's mapping of the
1394 			 * backing object.
1395 			 *
1396 			 * note that we do not busy the backing object's
1397 			 * page.
1398 			 */
1399 			if (
1400 			    p->pindex < backing_offset_index ||
1401 			    new_pindex >= object->size
1402 			) {
1403 				p = next;
1404 				continue;
1405 			}
1406 
1407 			/*
1408 			 * See if the parent has the page or if the parent's
1409 			 * object pager has the page.  If the parent has the
1410 			 * page but the page is not valid, the parent's
1411 			 * object pager must have the page.
1412 			 *
1413 			 * If this fails, the parent does not completely shadow
1414 			 * the object and we might as well give up now.
1415 			 */
1416 
1417 			pp = vm_page_lookup(object, new_pindex);
1418 			if (
1419 			    (pp == NULL || pp->valid == 0) &&
1420 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1421 			) {
1422 				r = 0;
1423 				break;
1424 			}
1425 		}
1426 
1427 		/*
1428 		 * Check for busy page
1429 		 */
1430 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1431 			vm_page_t pp;
1432 
1433 			if (op & OBSC_COLLAPSE_NOWAIT) {
1434 				if ((p->oflags & VPO_BUSY) ||
1435 				    !p->valid ||
1436 				    p->busy) {
1437 					p = next;
1438 					continue;
1439 				}
1440 			} else if (op & OBSC_COLLAPSE_WAIT) {
1441 				if ((p->oflags & VPO_BUSY) || p->busy) {
1442 					VM_OBJECT_UNLOCK(object);
1443 					p->oflags |= VPO_WANTED;
1444 					msleep(p, VM_OBJECT_MTX(backing_object),
1445 					    PDROP | PVM, "vmocol", 0);
1446 					VM_OBJECT_LOCK(object);
1447 					VM_OBJECT_LOCK(backing_object);
1448 					/*
1449 					 * If we slept, anything could have
1450 					 * happened.  Since the object is
1451 					 * marked dead, the backing offset
1452 					 * should not have changed so we
1453 					 * just restart our scan.
1454 					 */
1455 					p = TAILQ_FIRST(&backing_object->memq);
1456 					continue;
1457 				}
1458 			}
1459 
1460 			KASSERT(
1461 			    p->object == backing_object,
1462 			    ("vm_object_backing_scan: object mismatch")
1463 			);
1464 
1465 			/*
1466 			 * Destroy any associated swap
1467 			 */
1468 			if (backing_object->type == OBJT_SWAP) {
1469 				swap_pager_freespace(
1470 				    backing_object,
1471 				    p->pindex,
1472 				    1
1473 				);
1474 			}
1475 
1476 			if (
1477 			    p->pindex < backing_offset_index ||
1478 			    new_pindex >= object->size
1479 			) {
1480 				/*
1481 				 * Page is out of the parent object's range, we
1482 				 * can simply destroy it.
1483 				 */
1484 				vm_page_lock(p);
1485 				KASSERT(!pmap_page_is_mapped(p),
1486 				    ("freeing mapped page %p", p));
1487 				if (p->wire_count == 0)
1488 					vm_page_free(p);
1489 				else
1490 					vm_page_remove(p);
1491 				vm_page_unlock(p);
1492 				p = next;
1493 				continue;
1494 			}
1495 
1496 			pp = vm_page_lookup(object, new_pindex);
1497 			if (
1498 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1499 			    (pp != NULL && pp->valid == 0)
1500 			) {
1501 				/*
1502 				 * The page in the parent is not (yet) valid.
1503 				 * We don't know anything about the state of
1504 				 * the original page.  It might be mapped,
1505 				 * so we must avoid the next if here.
1506 				 *
1507 				 * This is due to a race in vm_fault() where
1508 				 * we must unbusy the original (backing_obj)
1509 				 * page before we can (re)lock the parent.
1510 				 * Hence we can get here.
1511 				 */
1512 				p = next;
1513 				continue;
1514 			}
1515 			if (
1516 			    pp != NULL ||
1517 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1518 			) {
1519 				/*
1520 				 * page already exists in parent OR swap exists
1521 				 * for this location in the parent.  Destroy
1522 				 * the original page from the backing object.
1523 				 *
1524 				 * Leave the parent's page alone
1525 				 */
1526 				vm_page_lock(p);
1527 				KASSERT(!pmap_page_is_mapped(p),
1528 				    ("freeing mapped page %p", p));
1529 				if (p->wire_count == 0)
1530 					vm_page_free(p);
1531 				else
1532 					vm_page_remove(p);
1533 				vm_page_unlock(p);
1534 				p = next;
1535 				continue;
1536 			}
1537 
1538 #if VM_NRESERVLEVEL > 0
1539 			/*
1540 			 * Rename the reservation.
1541 			 */
1542 			vm_reserv_rename(p, object, backing_object,
1543 			    backing_offset_index);
1544 #endif
1545 
1546 			/*
1547 			 * Page does not exist in parent, rename the
1548 			 * page from the backing object to the main object.
1549 			 *
1550 			 * If the page was mapped to a process, it can remain
1551 			 * mapped through the rename.
1552 			 */
1553 			vm_page_lock(p);
1554 			vm_page_rename(p, object, new_pindex);
1555 			vm_page_unlock(p);
1556 			/* page automatically made dirty by rename */
1557 		}
1558 		p = next;
1559 	}
1560 	return (r);
1561 }
1562 
1563 
1564 /*
1565  * this version of collapse allows the operation to occur earlier and
1566  * when paging_in_progress is true for an object...  This is not a complete
1567  * operation, but should plug 99.9% of the rest of the leaks.
1568  */
1569 static void
1570 vm_object_qcollapse(vm_object_t object)
1571 {
1572 	vm_object_t backing_object = object->backing_object;
1573 
1574 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1575 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1576 
1577 	if (backing_object->ref_count != 1)
1578 		return;
1579 
1580 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1581 }
1582 
1583 /*
1584  *	vm_object_collapse:
1585  *
1586  *	Collapse an object with the object backing it.
1587  *	Pages in the backing object are moved into the
1588  *	parent, and the backing object is deallocated.
1589  */
1590 void
1591 vm_object_collapse(vm_object_t object)
1592 {
1593 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1594 
1595 	while (TRUE) {
1596 		vm_object_t backing_object;
1597 
1598 		/*
1599 		 * Verify that the conditions are right for collapse:
1600 		 *
1601 		 * The object exists and the backing object exists.
1602 		 */
1603 		if ((backing_object = object->backing_object) == NULL)
1604 			break;
1605 
1606 		/*
1607 		 * we check the backing object first, because it is most likely
1608 		 * not collapsable.
1609 		 */
1610 		VM_OBJECT_LOCK(backing_object);
1611 		if (backing_object->handle != NULL ||
1612 		    (backing_object->type != OBJT_DEFAULT &&
1613 		     backing_object->type != OBJT_SWAP) ||
1614 		    (backing_object->flags & OBJ_DEAD) ||
1615 		    object->handle != NULL ||
1616 		    (object->type != OBJT_DEFAULT &&
1617 		     object->type != OBJT_SWAP) ||
1618 		    (object->flags & OBJ_DEAD)) {
1619 			VM_OBJECT_UNLOCK(backing_object);
1620 			break;
1621 		}
1622 
1623 		if (
1624 		    object->paging_in_progress != 0 ||
1625 		    backing_object->paging_in_progress != 0
1626 		) {
1627 			vm_object_qcollapse(object);
1628 			VM_OBJECT_UNLOCK(backing_object);
1629 			break;
1630 		}
1631 		/*
1632 		 * We know that we can either collapse the backing object (if
1633 		 * the parent is the only reference to it) or (perhaps) have
1634 		 * the parent bypass the object if the parent happens to shadow
1635 		 * all the resident pages in the entire backing object.
1636 		 *
1637 		 * This is ignoring pager-backed pages such as swap pages.
1638 		 * vm_object_backing_scan fails the shadowing test in this
1639 		 * case.
1640 		 */
1641 		if (backing_object->ref_count == 1) {
1642 			/*
1643 			 * If there is exactly one reference to the backing
1644 			 * object, we can collapse it into the parent.
1645 			 */
1646 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1647 
1648 #if VM_NRESERVLEVEL > 0
1649 			/*
1650 			 * Break any reservations from backing_object.
1651 			 */
1652 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1653 				vm_reserv_break_all(backing_object);
1654 #endif
1655 
1656 			/*
1657 			 * Move the pager from backing_object to object.
1658 			 */
1659 			if (backing_object->type == OBJT_SWAP) {
1660 				/*
1661 				 * swap_pager_copy() can sleep, in which case
1662 				 * the backing_object's and object's locks are
1663 				 * released and reacquired.
1664 				 */
1665 				swap_pager_copy(
1666 				    backing_object,
1667 				    object,
1668 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1669 
1670 				/*
1671 				 * Free any cached pages from backing_object.
1672 				 */
1673 				if (__predict_false(backing_object->cache != NULL))
1674 					vm_page_cache_free(backing_object, 0, 0);
1675 			}
1676 			/*
1677 			 * Object now shadows whatever backing_object did.
1678 			 * Note that the reference to
1679 			 * backing_object->backing_object moves from within
1680 			 * backing_object to within object.
1681 			 */
1682 			LIST_REMOVE(object, shadow_list);
1683 			backing_object->shadow_count--;
1684 			if (backing_object->backing_object) {
1685 				VM_OBJECT_LOCK(backing_object->backing_object);
1686 				LIST_REMOVE(backing_object, shadow_list);
1687 				LIST_INSERT_HEAD(
1688 				    &backing_object->backing_object->shadow_head,
1689 				    object, shadow_list);
1690 				/*
1691 				 * The shadow_count has not changed.
1692 				 */
1693 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1694 			}
1695 			object->backing_object = backing_object->backing_object;
1696 			object->backing_object_offset +=
1697 			    backing_object->backing_object_offset;
1698 
1699 			/*
1700 			 * Discard backing_object.
1701 			 *
1702 			 * Since the backing object has no pages, no pager left,
1703 			 * and no object references within it, all that is
1704 			 * necessary is to dispose of it.
1705 			 */
1706 			KASSERT(backing_object->ref_count == 1, (
1707 "backing_object %p was somehow re-referenced during collapse!",
1708 			    backing_object));
1709 			VM_OBJECT_UNLOCK(backing_object);
1710 			vm_object_destroy(backing_object);
1711 
1712 			object_collapses++;
1713 		} else {
1714 			vm_object_t new_backing_object;
1715 
1716 			/*
1717 			 * If we do not entirely shadow the backing object,
1718 			 * there is nothing we can do so we give up.
1719 			 */
1720 			if (object->resident_page_count != object->size &&
1721 			    vm_object_backing_scan(object,
1722 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1723 				VM_OBJECT_UNLOCK(backing_object);
1724 				break;
1725 			}
1726 
1727 			/*
1728 			 * Make the parent shadow the next object in the
1729 			 * chain.  Deallocating backing_object will not remove
1730 			 * it, since its reference count is at least 2.
1731 			 */
1732 			LIST_REMOVE(object, shadow_list);
1733 			backing_object->shadow_count--;
1734 
1735 			new_backing_object = backing_object->backing_object;
1736 			if ((object->backing_object = new_backing_object) != NULL) {
1737 				VM_OBJECT_LOCK(new_backing_object);
1738 				LIST_INSERT_HEAD(
1739 				    &new_backing_object->shadow_head,
1740 				    object,
1741 				    shadow_list
1742 				);
1743 				new_backing_object->shadow_count++;
1744 				vm_object_reference_locked(new_backing_object);
1745 				VM_OBJECT_UNLOCK(new_backing_object);
1746 				object->backing_object_offset +=
1747 					backing_object->backing_object_offset;
1748 			}
1749 
1750 			/*
1751 			 * Drop the reference count on backing_object. Since
1752 			 * its ref_count was at least 2, it will not vanish.
1753 			 */
1754 			backing_object->ref_count--;
1755 			VM_OBJECT_UNLOCK(backing_object);
1756 			object_bypasses++;
1757 		}
1758 
1759 		/*
1760 		 * Try again with this object's new backing object.
1761 		 */
1762 	}
1763 }
1764 
1765 /*
1766  *	vm_object_page_remove:
1767  *
1768  *	For the given object, either frees or invalidates each of the
1769  *	specified pages.  In general, a page is freed.  However, if a page is
1770  *	wired for any reason other than the existence of a managed, wired
1771  *	mapping, then it may be invalidated but not removed from the object.
1772  *	Pages are specified by the given range ["start", "end") and the option
1773  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1774  *	extends from "start" to the end of the object.  If the option
1775  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1776  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1777  *	specified, then the pages within the specified range must have no
1778  *	mappings.  Otherwise, if this option is not specified, any mappings to
1779  *	the specified pages are removed before the pages are freed or
1780  *	invalidated.
1781  *
1782  *	In general, this operation should only be performed on objects that
1783  *	contain managed pages.  There are, however, two exceptions.  First, it
1784  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1785  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1786  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1787  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1788  *
1789  *	The object must be locked.
1790  */
1791 void
1792 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1793     int options)
1794 {
1795 	vm_page_t p, next;
1796 	int wirings;
1797 
1798 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1799 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1800 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1801 	    ("vm_object_page_remove: illegal options for object %p", object));
1802 	if (object->resident_page_count == 0)
1803 		goto skipmemq;
1804 	vm_object_pip_add(object, 1);
1805 again:
1806 	p = vm_page_find_least(object, start);
1807 
1808 	/*
1809 	 * Here, the variable "p" is either (1) the page with the least pindex
1810 	 * greater than or equal to the parameter "start" or (2) NULL.
1811 	 */
1812 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1813 		next = TAILQ_NEXT(p, listq);
1814 
1815 		/*
1816 		 * If the page is wired for any reason besides the existence
1817 		 * of managed, wired mappings, then it cannot be freed.  For
1818 		 * example, fictitious pages, which represent device memory,
1819 		 * are inherently wired and cannot be freed.  They can,
1820 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1821 		 * not specified.
1822 		 */
1823 		vm_page_lock(p);
1824 		if ((wirings = p->wire_count) != 0 &&
1825 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1826 			if ((options & OBJPR_NOTMAPPED) == 0) {
1827 				pmap_remove_all(p);
1828 				/* Account for removal of wired mappings. */
1829 				if (wirings != 0)
1830 					p->wire_count -= wirings;
1831 			}
1832 			if ((options & OBJPR_CLEANONLY) == 0) {
1833 				p->valid = 0;
1834 				vm_page_undirty(p);
1835 			}
1836 			vm_page_unlock(p);
1837 			continue;
1838 		}
1839 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1840 			goto again;
1841 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1842 		    ("vm_object_page_remove: page %p is fictitious", p));
1843 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1844 			if ((options & OBJPR_NOTMAPPED) == 0)
1845 				pmap_remove_write(p);
1846 			if (p->dirty) {
1847 				vm_page_unlock(p);
1848 				continue;
1849 			}
1850 		}
1851 		if ((options & OBJPR_NOTMAPPED) == 0) {
1852 			pmap_remove_all(p);
1853 			/* Account for removal of wired mappings. */
1854 			if (wirings != 0)
1855 				p->wire_count -= wirings;
1856 		}
1857 		vm_page_free(p);
1858 		vm_page_unlock(p);
1859 	}
1860 	vm_object_pip_wakeup(object);
1861 skipmemq:
1862 	if (__predict_false(object->cache != NULL))
1863 		vm_page_cache_free(object, start, end);
1864 }
1865 
1866 /*
1867  *	vm_object_page_cache:
1868  *
1869  *	For the given object, attempt to move the specified clean
1870  *	pages to the cache queue.  If a page is wired for any reason,
1871  *	then it will not be changed.  Pages are specified by the given
1872  *	range ["start", "end").  As a special case, if "end" is zero,
1873  *	then the range extends from "start" to the end of the object.
1874  *	Any mappings to the specified pages are removed before the
1875  *	pages are moved to the cache queue.
1876  *
1877  *	This operation should only be performed on objects that
1878  *	contain managed pages.
1879  *
1880  *	The object must be locked.
1881  */
1882 void
1883 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1884 {
1885 	struct mtx *mtx, *new_mtx;
1886 	vm_page_t p, next;
1887 
1888 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1889 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1890 	    object->type != OBJT_PHYS),
1891 	    ("vm_object_page_cache: illegal object %p", object));
1892 	if (object->resident_page_count == 0)
1893 		return;
1894 	p = vm_page_find_least(object, start);
1895 
1896 	/*
1897 	 * Here, the variable "p" is either (1) the page with the least pindex
1898 	 * greater than or equal to the parameter "start" or (2) NULL.
1899 	 */
1900 	mtx = NULL;
1901 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1902 		next = TAILQ_NEXT(p, listq);
1903 
1904 		/*
1905 		 * Avoid releasing and reacquiring the same page lock.
1906 		 */
1907 		new_mtx = vm_page_lockptr(p);
1908 		if (mtx != new_mtx) {
1909 			if (mtx != NULL)
1910 				mtx_unlock(mtx);
1911 			mtx = new_mtx;
1912 			mtx_lock(mtx);
1913 		}
1914 		vm_page_try_to_cache(p);
1915 	}
1916 	if (mtx != NULL)
1917 		mtx_unlock(mtx);
1918 }
1919 
1920 /*
1921  *	Populate the specified range of the object with valid pages.  Returns
1922  *	TRUE if the range is successfully populated and FALSE otherwise.
1923  *
1924  *	Note: This function should be optimized to pass a larger array of
1925  *	pages to vm_pager_get_pages() before it is applied to a non-
1926  *	OBJT_DEVICE object.
1927  *
1928  *	The object must be locked.
1929  */
1930 boolean_t
1931 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1932 {
1933 	vm_page_t m, ma[1];
1934 	vm_pindex_t pindex;
1935 	int rv;
1936 
1937 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1938 	for (pindex = start; pindex < end; pindex++) {
1939 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1940 		    VM_ALLOC_RETRY);
1941 		if (m->valid != VM_PAGE_BITS_ALL) {
1942 			ma[0] = m;
1943 			rv = vm_pager_get_pages(object, ma, 1, 0);
1944 			m = vm_page_lookup(object, pindex);
1945 			if (m == NULL)
1946 				break;
1947 			if (rv != VM_PAGER_OK) {
1948 				vm_page_lock(m);
1949 				vm_page_free(m);
1950 				vm_page_unlock(m);
1951 				break;
1952 			}
1953 		}
1954 		/*
1955 		 * Keep "m" busy because a subsequent iteration may unlock
1956 		 * the object.
1957 		 */
1958 	}
1959 	if (pindex > start) {
1960 		m = vm_page_lookup(object, start);
1961 		while (m != NULL && m->pindex < pindex) {
1962 			vm_page_wakeup(m);
1963 			m = TAILQ_NEXT(m, listq);
1964 		}
1965 	}
1966 	return (pindex == end);
1967 }
1968 
1969 /*
1970  *	Routine:	vm_object_coalesce
1971  *	Function:	Coalesces two objects backing up adjoining
1972  *			regions of memory into a single object.
1973  *
1974  *	returns TRUE if objects were combined.
1975  *
1976  *	NOTE:	Only works at the moment if the second object is NULL -
1977  *		if it's not, which object do we lock first?
1978  *
1979  *	Parameters:
1980  *		prev_object	First object to coalesce
1981  *		prev_offset	Offset into prev_object
1982  *		prev_size	Size of reference to prev_object
1983  *		next_size	Size of reference to the second object
1984  *		reserved	Indicator that extension region has
1985  *				swap accounted for
1986  *
1987  *	Conditions:
1988  *	The object must *not* be locked.
1989  */
1990 boolean_t
1991 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1992     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1993 {
1994 	vm_pindex_t next_pindex;
1995 
1996 	if (prev_object == NULL)
1997 		return (TRUE);
1998 	VM_OBJECT_LOCK(prev_object);
1999 	if (prev_object->type != OBJT_DEFAULT &&
2000 	    prev_object->type != OBJT_SWAP) {
2001 		VM_OBJECT_UNLOCK(prev_object);
2002 		return (FALSE);
2003 	}
2004 
2005 	/*
2006 	 * Try to collapse the object first
2007 	 */
2008 	vm_object_collapse(prev_object);
2009 
2010 	/*
2011 	 * Can't coalesce if: . more than one reference . paged out . shadows
2012 	 * another object . has a copy elsewhere (any of which mean that the
2013 	 * pages not mapped to prev_entry may be in use anyway)
2014 	 */
2015 	if (prev_object->backing_object != NULL) {
2016 		VM_OBJECT_UNLOCK(prev_object);
2017 		return (FALSE);
2018 	}
2019 
2020 	prev_size >>= PAGE_SHIFT;
2021 	next_size >>= PAGE_SHIFT;
2022 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2023 
2024 	if ((prev_object->ref_count > 1) &&
2025 	    (prev_object->size != next_pindex)) {
2026 		VM_OBJECT_UNLOCK(prev_object);
2027 		return (FALSE);
2028 	}
2029 
2030 	/*
2031 	 * Account for the charge.
2032 	 */
2033 	if (prev_object->cred != NULL) {
2034 
2035 		/*
2036 		 * If prev_object was charged, then this mapping,
2037 		 * althought not charged now, may become writable
2038 		 * later. Non-NULL cred in the object would prevent
2039 		 * swap reservation during enabling of the write
2040 		 * access, so reserve swap now. Failed reservation
2041 		 * cause allocation of the separate object for the map
2042 		 * entry, and swap reservation for this entry is
2043 		 * managed in appropriate time.
2044 		 */
2045 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2046 		    prev_object->cred)) {
2047 			return (FALSE);
2048 		}
2049 		prev_object->charge += ptoa(next_size);
2050 	}
2051 
2052 	/*
2053 	 * Remove any pages that may still be in the object from a previous
2054 	 * deallocation.
2055 	 */
2056 	if (next_pindex < prev_object->size) {
2057 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2058 		    next_size, 0);
2059 		if (prev_object->type == OBJT_SWAP)
2060 			swap_pager_freespace(prev_object,
2061 					     next_pindex, next_size);
2062 #if 0
2063 		if (prev_object->cred != NULL) {
2064 			KASSERT(prev_object->charge >=
2065 			    ptoa(prev_object->size - next_pindex),
2066 			    ("object %p overcharged 1 %jx %jx", prev_object,
2067 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2068 			prev_object->charge -= ptoa(prev_object->size -
2069 			    next_pindex);
2070 		}
2071 #endif
2072 	}
2073 
2074 	/*
2075 	 * Extend the object if necessary.
2076 	 */
2077 	if (next_pindex + next_size > prev_object->size)
2078 		prev_object->size = next_pindex + next_size;
2079 
2080 	VM_OBJECT_UNLOCK(prev_object);
2081 	return (TRUE);
2082 }
2083 
2084 void
2085 vm_object_set_writeable_dirty(vm_object_t object)
2086 {
2087 
2088 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2089 	if (object->type != OBJT_VNODE)
2090 		return;
2091 	object->generation++;
2092 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2093 		return;
2094 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2095 }
2096 
2097 #include "opt_ddb.h"
2098 #ifdef DDB
2099 #include <sys/kernel.h>
2100 
2101 #include <sys/cons.h>
2102 
2103 #include <ddb/ddb.h>
2104 
2105 static int
2106 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2107 {
2108 	vm_map_t tmpm;
2109 	vm_map_entry_t tmpe;
2110 	vm_object_t obj;
2111 	int entcount;
2112 
2113 	if (map == 0)
2114 		return 0;
2115 
2116 	if (entry == 0) {
2117 		tmpe = map->header.next;
2118 		entcount = map->nentries;
2119 		while (entcount-- && (tmpe != &map->header)) {
2120 			if (_vm_object_in_map(map, object, tmpe)) {
2121 				return 1;
2122 			}
2123 			tmpe = tmpe->next;
2124 		}
2125 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2126 		tmpm = entry->object.sub_map;
2127 		tmpe = tmpm->header.next;
2128 		entcount = tmpm->nentries;
2129 		while (entcount-- && tmpe != &tmpm->header) {
2130 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2131 				return 1;
2132 			}
2133 			tmpe = tmpe->next;
2134 		}
2135 	} else if ((obj = entry->object.vm_object) != NULL) {
2136 		for (; obj; obj = obj->backing_object)
2137 			if (obj == object) {
2138 				return 1;
2139 			}
2140 	}
2141 	return 0;
2142 }
2143 
2144 static int
2145 vm_object_in_map(vm_object_t object)
2146 {
2147 	struct proc *p;
2148 
2149 	/* sx_slock(&allproc_lock); */
2150 	FOREACH_PROC_IN_SYSTEM(p) {
2151 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2152 			continue;
2153 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2154 			/* sx_sunlock(&allproc_lock); */
2155 			return 1;
2156 		}
2157 	}
2158 	/* sx_sunlock(&allproc_lock); */
2159 	if (_vm_object_in_map(kernel_map, object, 0))
2160 		return 1;
2161 	if (_vm_object_in_map(kmem_map, object, 0))
2162 		return 1;
2163 	if (_vm_object_in_map(pager_map, object, 0))
2164 		return 1;
2165 	if (_vm_object_in_map(buffer_map, object, 0))
2166 		return 1;
2167 	return 0;
2168 }
2169 
2170 DB_SHOW_COMMAND(vmochk, vm_object_check)
2171 {
2172 	vm_object_t object;
2173 
2174 	/*
2175 	 * make sure that internal objs are in a map somewhere
2176 	 * and none have zero ref counts.
2177 	 */
2178 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2179 		if (object->handle == NULL &&
2180 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2181 			if (object->ref_count == 0) {
2182 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2183 					(long)object->size);
2184 			}
2185 			if (!vm_object_in_map(object)) {
2186 				db_printf(
2187 			"vmochk: internal obj is not in a map: "
2188 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2189 				    object->ref_count, (u_long)object->size,
2190 				    (u_long)object->size,
2191 				    (void *)object->backing_object);
2192 			}
2193 		}
2194 	}
2195 }
2196 
2197 /*
2198  *	vm_object_print:	[ debug ]
2199  */
2200 DB_SHOW_COMMAND(object, vm_object_print_static)
2201 {
2202 	/* XXX convert args. */
2203 	vm_object_t object = (vm_object_t)addr;
2204 	boolean_t full = have_addr;
2205 
2206 	vm_page_t p;
2207 
2208 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2209 #define	count	was_count
2210 
2211 	int count;
2212 
2213 	if (object == NULL)
2214 		return;
2215 
2216 	db_iprintf(
2217 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2218 	    object, (int)object->type, (uintmax_t)object->size,
2219 	    object->resident_page_count, object->ref_count, object->flags,
2220 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2221 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2222 	    object->shadow_count,
2223 	    object->backing_object ? object->backing_object->ref_count : 0,
2224 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2225 
2226 	if (!full)
2227 		return;
2228 
2229 	db_indent += 2;
2230 	count = 0;
2231 	TAILQ_FOREACH(p, &object->memq, listq) {
2232 		if (count == 0)
2233 			db_iprintf("memory:=");
2234 		else if (count == 6) {
2235 			db_printf("\n");
2236 			db_iprintf(" ...");
2237 			count = 0;
2238 		} else
2239 			db_printf(",");
2240 		count++;
2241 
2242 		db_printf("(off=0x%jx,page=0x%jx)",
2243 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2244 	}
2245 	if (count != 0)
2246 		db_printf("\n");
2247 	db_indent -= 2;
2248 }
2249 
2250 /* XXX. */
2251 #undef count
2252 
2253 /* XXX need this non-static entry for calling from vm_map_print. */
2254 void
2255 vm_object_print(
2256         /* db_expr_t */ long addr,
2257 	boolean_t have_addr,
2258 	/* db_expr_t */ long count,
2259 	char *modif)
2260 {
2261 	vm_object_print_static(addr, have_addr, count, modif);
2262 }
2263 
2264 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2265 {
2266 	vm_object_t object;
2267 	vm_pindex_t fidx;
2268 	vm_paddr_t pa;
2269 	vm_page_t m, prev_m;
2270 	int rcount, nl, c;
2271 
2272 	nl = 0;
2273 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2274 		db_printf("new object: %p\n", (void *)object);
2275 		if (nl > 18) {
2276 			c = cngetc();
2277 			if (c != ' ')
2278 				return;
2279 			nl = 0;
2280 		}
2281 		nl++;
2282 		rcount = 0;
2283 		fidx = 0;
2284 		pa = -1;
2285 		TAILQ_FOREACH(m, &object->memq, listq) {
2286 			if (m->pindex > 128)
2287 				break;
2288 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2289 			    prev_m->pindex + 1 != m->pindex) {
2290 				if (rcount) {
2291 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2292 						(long)fidx, rcount, (long)pa);
2293 					if (nl > 18) {
2294 						c = cngetc();
2295 						if (c != ' ')
2296 							return;
2297 						nl = 0;
2298 					}
2299 					nl++;
2300 					rcount = 0;
2301 				}
2302 			}
2303 			if (rcount &&
2304 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2305 				++rcount;
2306 				continue;
2307 			}
2308 			if (rcount) {
2309 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2310 					(long)fidx, rcount, (long)pa);
2311 				if (nl > 18) {
2312 					c = cngetc();
2313 					if (c != ' ')
2314 						return;
2315 					nl = 0;
2316 				}
2317 				nl++;
2318 			}
2319 			fidx = m->pindex;
2320 			pa = VM_PAGE_TO_PHYS(m);
2321 			rcount = 1;
2322 		}
2323 		if (rcount) {
2324 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2325 				(long)fidx, rcount, (long)pa);
2326 			if (nl > 18) {
2327 				c = cngetc();
2328 				if (c != ' ')
2329 					return;
2330 				nl = 0;
2331 			}
2332 			nl++;
2333 		}
2334 	}
2335 }
2336 #endif /* DDB */
2337