1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, int *clearobjflags); 105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 106 int *clearobjflags); 107 static void vm_object_qcollapse(vm_object_t object); 108 static void vm_object_vndeallocate(vm_object_t object); 109 110 /* 111 * Virtual memory objects maintain the actual data 112 * associated with allocated virtual memory. A given 113 * page of memory exists within exactly one object. 114 * 115 * An object is only deallocated when all "references" 116 * are given up. Only one "reference" to a given 117 * region of an object should be writeable. 118 * 119 * Associated with each object is a list of all resident 120 * memory pages belonging to that object; this list is 121 * maintained by the "vm_page" module, and locked by the object's 122 * lock. 123 * 124 * Each object also records a "pager" routine which is 125 * used to retrieve (and store) pages to the proper backing 126 * storage. In addition, objects may be backed by other 127 * objects from which they were virtual-copied. 128 * 129 * The only items within the object structure which are 130 * modified after time of creation are: 131 * reference count locked by object's lock 132 * pager routine locked by object's lock 133 * 134 */ 135 136 struct object_q vm_object_list; 137 struct mtx vm_object_list_mtx; /* lock for object list and count */ 138 139 struct vm_object kernel_object_store; 140 struct vm_object kmem_object_store; 141 142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 143 "VM object stats"); 144 145 static long object_collapses; 146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 147 &object_collapses, 0, "VM object collapses"); 148 149 static long object_bypasses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 151 &object_bypasses, 0, "VM object bypasses"); 152 153 static uma_zone_t obj_zone; 154 155 static int vm_object_zinit(void *mem, int size, int flags); 156 157 #ifdef INVARIANTS 158 static void vm_object_zdtor(void *mem, int size, void *arg); 159 160 static void 161 vm_object_zdtor(void *mem, int size, void *arg) 162 { 163 vm_object_t object; 164 165 object = (vm_object_t)mem; 166 KASSERT(TAILQ_EMPTY(&object->memq), 167 ("object %p has resident pages", 168 object)); 169 #if VM_NRESERVLEVEL > 0 170 KASSERT(LIST_EMPTY(&object->rvq), 171 ("object %p has reservations", 172 object)); 173 #endif 174 KASSERT(object->cache == NULL, 175 ("object %p has cached pages", 176 object)); 177 KASSERT(object->paging_in_progress == 0, 178 ("object %p paging_in_progress = %d", 179 object, object->paging_in_progress)); 180 KASSERT(object->resident_page_count == 0, 181 ("object %p resident_page_count = %d", 182 object, object->resident_page_count)); 183 KASSERT(object->shadow_count == 0, 184 ("object %p shadow_count = %d", 185 object, object->shadow_count)); 186 } 187 #endif 188 189 static int 190 vm_object_zinit(void *mem, int size, int flags) 191 { 192 vm_object_t object; 193 194 object = (vm_object_t)mem; 195 bzero(&object->mtx, sizeof(object->mtx)); 196 VM_OBJECT_LOCK_INIT(object, "standard object"); 197 198 /* These are true for any object that has been freed */ 199 object->paging_in_progress = 0; 200 object->resident_page_count = 0; 201 object->shadow_count = 0; 202 return (0); 203 } 204 205 void 206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 207 { 208 209 TAILQ_INIT(&object->memq); 210 LIST_INIT(&object->shadow_head); 211 212 object->root = NULL; 213 object->type = type; 214 object->size = size; 215 object->generation = 1; 216 object->ref_count = 1; 217 object->memattr = VM_MEMATTR_DEFAULT; 218 object->flags = 0; 219 object->cred = NULL; 220 object->charge = 0; 221 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 222 object->flags = OBJ_ONEMAPPING; 223 object->pg_color = 0; 224 object->handle = NULL; 225 object->backing_object = NULL; 226 object->backing_object_offset = (vm_ooffset_t) 0; 227 #if VM_NRESERVLEVEL > 0 228 LIST_INIT(&object->rvq); 229 #endif 230 object->cache = NULL; 231 232 mtx_lock(&vm_object_list_mtx); 233 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 234 mtx_unlock(&vm_object_list_mtx); 235 } 236 237 /* 238 * vm_object_init: 239 * 240 * Initialize the VM objects module. 241 */ 242 void 243 vm_object_init(void) 244 { 245 TAILQ_INIT(&vm_object_list); 246 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 247 248 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 249 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 250 kernel_object); 251 #if VM_NRESERVLEVEL > 0 252 kernel_object->flags |= OBJ_COLORED; 253 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 254 #endif 255 256 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 257 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 258 kmem_object); 259 #if VM_NRESERVLEVEL > 0 260 kmem_object->flags |= OBJ_COLORED; 261 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 262 #endif 263 264 /* 265 * The lock portion of struct vm_object must be type stable due 266 * to vm_pageout_fallback_object_lock locking a vm object 267 * without holding any references to it. 268 */ 269 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 270 #ifdef INVARIANTS 271 vm_object_zdtor, 272 #else 273 NULL, 274 #endif 275 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 276 } 277 278 void 279 vm_object_clear_flag(vm_object_t object, u_short bits) 280 { 281 282 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 283 object->flags &= ~bits; 284 } 285 286 /* 287 * Sets the default memory attribute for the specified object. Pages 288 * that are allocated to this object are by default assigned this memory 289 * attribute. 290 * 291 * Presently, this function must be called before any pages are allocated 292 * to the object. In the future, this requirement may be relaxed for 293 * "default" and "swap" objects. 294 */ 295 int 296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 297 { 298 299 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 300 switch (object->type) { 301 case OBJT_DEFAULT: 302 case OBJT_DEVICE: 303 case OBJT_PHYS: 304 case OBJT_SG: 305 case OBJT_SWAP: 306 case OBJT_VNODE: 307 if (!TAILQ_EMPTY(&object->memq)) 308 return (KERN_FAILURE); 309 break; 310 case OBJT_DEAD: 311 return (KERN_INVALID_ARGUMENT); 312 } 313 object->memattr = memattr; 314 return (KERN_SUCCESS); 315 } 316 317 void 318 vm_object_pip_add(vm_object_t object, short i) 319 { 320 321 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 322 object->paging_in_progress += i; 323 } 324 325 void 326 vm_object_pip_subtract(vm_object_t object, short i) 327 { 328 329 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 330 object->paging_in_progress -= i; 331 } 332 333 void 334 vm_object_pip_wakeup(vm_object_t object) 335 { 336 337 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 338 object->paging_in_progress--; 339 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 340 vm_object_clear_flag(object, OBJ_PIPWNT); 341 wakeup(object); 342 } 343 } 344 345 void 346 vm_object_pip_wakeupn(vm_object_t object, short i) 347 { 348 349 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 350 if (i) 351 object->paging_in_progress -= i; 352 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 353 vm_object_clear_flag(object, OBJ_PIPWNT); 354 wakeup(object); 355 } 356 } 357 358 void 359 vm_object_pip_wait(vm_object_t object, char *waitid) 360 { 361 362 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 363 while (object->paging_in_progress) { 364 object->flags |= OBJ_PIPWNT; 365 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 366 } 367 } 368 369 /* 370 * vm_object_allocate: 371 * 372 * Returns a new object with the given size. 373 */ 374 vm_object_t 375 vm_object_allocate(objtype_t type, vm_pindex_t size) 376 { 377 vm_object_t object; 378 379 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 380 _vm_object_allocate(type, size, object); 381 return (object); 382 } 383 384 385 /* 386 * vm_object_reference: 387 * 388 * Gets another reference to the given object. Note: OBJ_DEAD 389 * objects can be referenced during final cleaning. 390 */ 391 void 392 vm_object_reference(vm_object_t object) 393 { 394 if (object == NULL) 395 return; 396 VM_OBJECT_LOCK(object); 397 vm_object_reference_locked(object); 398 VM_OBJECT_UNLOCK(object); 399 } 400 401 /* 402 * vm_object_reference_locked: 403 * 404 * Gets another reference to the given object. 405 * 406 * The object must be locked. 407 */ 408 void 409 vm_object_reference_locked(vm_object_t object) 410 { 411 struct vnode *vp; 412 413 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 414 object->ref_count++; 415 if (object->type == OBJT_VNODE) { 416 vp = object->handle; 417 vref(vp); 418 } 419 } 420 421 /* 422 * Handle deallocating an object of type OBJT_VNODE. 423 */ 424 static void 425 vm_object_vndeallocate(vm_object_t object) 426 { 427 struct vnode *vp = (struct vnode *) object->handle; 428 429 VFS_ASSERT_GIANT(vp->v_mount); 430 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 431 KASSERT(object->type == OBJT_VNODE, 432 ("vm_object_vndeallocate: not a vnode object")); 433 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 434 #ifdef INVARIANTS 435 if (object->ref_count == 0) { 436 vprint("vm_object_vndeallocate", vp); 437 panic("vm_object_vndeallocate: bad object reference count"); 438 } 439 #endif 440 441 if (object->ref_count > 1) { 442 object->ref_count--; 443 VM_OBJECT_UNLOCK(object); 444 /* vrele may need the vnode lock. */ 445 vrele(vp); 446 } else { 447 vhold(vp); 448 VM_OBJECT_UNLOCK(object); 449 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 450 vdrop(vp); 451 VM_OBJECT_LOCK(object); 452 object->ref_count--; 453 if (object->type == OBJT_DEAD) { 454 VM_OBJECT_UNLOCK(object); 455 VOP_UNLOCK(vp, 0); 456 } else { 457 if (object->ref_count == 0) 458 vp->v_vflag &= ~VV_TEXT; 459 VM_OBJECT_UNLOCK(object); 460 vput(vp); 461 } 462 } 463 } 464 465 /* 466 * vm_object_deallocate: 467 * 468 * Release a reference to the specified object, 469 * gained either through a vm_object_allocate 470 * or a vm_object_reference call. When all references 471 * are gone, storage associated with this object 472 * may be relinquished. 473 * 474 * No object may be locked. 475 */ 476 void 477 vm_object_deallocate(vm_object_t object) 478 { 479 vm_object_t temp; 480 481 while (object != NULL) { 482 int vfslocked; 483 484 vfslocked = 0; 485 restart: 486 VM_OBJECT_LOCK(object); 487 if (object->type == OBJT_VNODE) { 488 struct vnode *vp = (struct vnode *) object->handle; 489 490 /* 491 * Conditionally acquire Giant for a vnode-backed 492 * object. We have to be careful since the type of 493 * a vnode object can change while the object is 494 * unlocked. 495 */ 496 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 497 vfslocked = 1; 498 if (!mtx_trylock(&Giant)) { 499 VM_OBJECT_UNLOCK(object); 500 mtx_lock(&Giant); 501 goto restart; 502 } 503 } 504 vm_object_vndeallocate(object); 505 VFS_UNLOCK_GIANT(vfslocked); 506 return; 507 } else 508 /* 509 * This is to handle the case that the object 510 * changed type while we dropped its lock to 511 * obtain Giant. 512 */ 513 VFS_UNLOCK_GIANT(vfslocked); 514 515 KASSERT(object->ref_count != 0, 516 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 517 518 /* 519 * If the reference count goes to 0 we start calling 520 * vm_object_terminate() on the object chain. 521 * A ref count of 1 may be a special case depending on the 522 * shadow count being 0 or 1. 523 */ 524 object->ref_count--; 525 if (object->ref_count > 1) { 526 VM_OBJECT_UNLOCK(object); 527 return; 528 } else if (object->ref_count == 1) { 529 if (object->shadow_count == 0 && 530 object->handle == NULL && 531 (object->type == OBJT_DEFAULT || 532 object->type == OBJT_SWAP)) { 533 vm_object_set_flag(object, OBJ_ONEMAPPING); 534 } else if ((object->shadow_count == 1) && 535 (object->handle == NULL) && 536 (object->type == OBJT_DEFAULT || 537 object->type == OBJT_SWAP)) { 538 vm_object_t robject; 539 540 robject = LIST_FIRST(&object->shadow_head); 541 KASSERT(robject != NULL, 542 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 543 object->ref_count, 544 object->shadow_count)); 545 if (!VM_OBJECT_TRYLOCK(robject)) { 546 /* 547 * Avoid a potential deadlock. 548 */ 549 object->ref_count++; 550 VM_OBJECT_UNLOCK(object); 551 /* 552 * More likely than not the thread 553 * holding robject's lock has lower 554 * priority than the current thread. 555 * Let the lower priority thread run. 556 */ 557 pause("vmo_de", 1); 558 continue; 559 } 560 /* 561 * Collapse object into its shadow unless its 562 * shadow is dead. In that case, object will 563 * be deallocated by the thread that is 564 * deallocating its shadow. 565 */ 566 if ((robject->flags & OBJ_DEAD) == 0 && 567 (robject->handle == NULL) && 568 (robject->type == OBJT_DEFAULT || 569 robject->type == OBJT_SWAP)) { 570 571 robject->ref_count++; 572 retry: 573 if (robject->paging_in_progress) { 574 VM_OBJECT_UNLOCK(object); 575 vm_object_pip_wait(robject, 576 "objde1"); 577 temp = robject->backing_object; 578 if (object == temp) { 579 VM_OBJECT_LOCK(object); 580 goto retry; 581 } 582 } else if (object->paging_in_progress) { 583 VM_OBJECT_UNLOCK(robject); 584 object->flags |= OBJ_PIPWNT; 585 msleep(object, 586 VM_OBJECT_MTX(object), 587 PDROP | PVM, "objde2", 0); 588 VM_OBJECT_LOCK(robject); 589 temp = robject->backing_object; 590 if (object == temp) { 591 VM_OBJECT_LOCK(object); 592 goto retry; 593 } 594 } else 595 VM_OBJECT_UNLOCK(object); 596 597 if (robject->ref_count == 1) { 598 robject->ref_count--; 599 object = robject; 600 goto doterm; 601 } 602 object = robject; 603 vm_object_collapse(object); 604 VM_OBJECT_UNLOCK(object); 605 continue; 606 } 607 VM_OBJECT_UNLOCK(robject); 608 } 609 VM_OBJECT_UNLOCK(object); 610 return; 611 } 612 doterm: 613 temp = object->backing_object; 614 if (temp != NULL) { 615 VM_OBJECT_LOCK(temp); 616 LIST_REMOVE(object, shadow_list); 617 temp->shadow_count--; 618 VM_OBJECT_UNLOCK(temp); 619 object->backing_object = NULL; 620 } 621 /* 622 * Don't double-terminate, we could be in a termination 623 * recursion due to the terminate having to sync data 624 * to disk. 625 */ 626 if ((object->flags & OBJ_DEAD) == 0) 627 vm_object_terminate(object); 628 else 629 VM_OBJECT_UNLOCK(object); 630 object = temp; 631 } 632 } 633 634 /* 635 * vm_object_destroy removes the object from the global object list 636 * and frees the space for the object. 637 */ 638 void 639 vm_object_destroy(vm_object_t object) 640 { 641 642 /* 643 * Remove the object from the global object list. 644 */ 645 mtx_lock(&vm_object_list_mtx); 646 TAILQ_REMOVE(&vm_object_list, object, object_list); 647 mtx_unlock(&vm_object_list_mtx); 648 649 /* 650 * Release the allocation charge. 651 */ 652 if (object->cred != NULL) { 653 KASSERT(object->type == OBJT_DEFAULT || 654 object->type == OBJT_SWAP, 655 ("vm_object_terminate: non-swap obj %p has cred", 656 object)); 657 swap_release_by_cred(object->charge, object->cred); 658 object->charge = 0; 659 crfree(object->cred); 660 object->cred = NULL; 661 } 662 663 /* 664 * Free the space for the object. 665 */ 666 uma_zfree(obj_zone, object); 667 } 668 669 /* 670 * vm_object_terminate actually destroys the specified object, freeing 671 * up all previously used resources. 672 * 673 * The object must be locked. 674 * This routine may block. 675 */ 676 void 677 vm_object_terminate(vm_object_t object) 678 { 679 vm_page_t p, p_next; 680 681 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 682 683 /* 684 * Make sure no one uses us. 685 */ 686 vm_object_set_flag(object, OBJ_DEAD); 687 688 /* 689 * wait for the pageout daemon to be done with the object 690 */ 691 vm_object_pip_wait(object, "objtrm"); 692 693 KASSERT(!object->paging_in_progress, 694 ("vm_object_terminate: pageout in progress")); 695 696 /* 697 * Clean and free the pages, as appropriate. All references to the 698 * object are gone, so we don't need to lock it. 699 */ 700 if (object->type == OBJT_VNODE) { 701 struct vnode *vp = (struct vnode *)object->handle; 702 703 /* 704 * Clean pages and flush buffers. 705 */ 706 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 707 VM_OBJECT_UNLOCK(object); 708 709 vinvalbuf(vp, V_SAVE, 0, 0); 710 711 VM_OBJECT_LOCK(object); 712 } 713 714 KASSERT(object->ref_count == 0, 715 ("vm_object_terminate: object with references, ref_count=%d", 716 object->ref_count)); 717 718 /* 719 * Free any remaining pageable pages. This also removes them from the 720 * paging queues. However, don't free wired pages, just remove them 721 * from the object. Rather than incrementally removing each page from 722 * the object, the page and object are reset to any empty state. 723 */ 724 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 725 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 726 ("vm_object_terminate: freeing busy page %p", p)); 727 vm_page_lock(p); 728 /* 729 * Optimize the page's removal from the object by resetting 730 * its "object" field. Specifically, if the page is not 731 * wired, then the effect of this assignment is that 732 * vm_page_free()'s call to vm_page_remove() will return 733 * immediately without modifying the page or the object. 734 */ 735 p->object = NULL; 736 if (p->wire_count == 0) { 737 vm_page_free(p); 738 PCPU_INC(cnt.v_pfree); 739 } 740 vm_page_unlock(p); 741 } 742 /* 743 * If the object contained any pages, then reset it to an empty state. 744 * None of the object's fields, including "resident_page_count", were 745 * modified by the preceding loop. 746 */ 747 if (object->resident_page_count != 0) { 748 object->root = NULL; 749 TAILQ_INIT(&object->memq); 750 object->resident_page_count = 0; 751 if (object->type == OBJT_VNODE) 752 vdrop(object->handle); 753 } 754 755 #if VM_NRESERVLEVEL > 0 756 if (__predict_false(!LIST_EMPTY(&object->rvq))) 757 vm_reserv_break_all(object); 758 #endif 759 if (__predict_false(object->cache != NULL)) 760 vm_page_cache_free(object, 0, 0); 761 762 /* 763 * Let the pager know object is dead. 764 */ 765 vm_pager_deallocate(object); 766 VM_OBJECT_UNLOCK(object); 767 768 vm_object_destroy(object); 769 } 770 771 /* 772 * Make the page read-only so that we can clear the object flags. However, if 773 * this is a nosync mmap then the object is likely to stay dirty so do not 774 * mess with the page and do not clear the object flags. Returns TRUE if the 775 * page should be flushed, and FALSE otherwise. 776 */ 777 static boolean_t 778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags) 779 { 780 781 /* 782 * If we have been asked to skip nosync pages and this is a 783 * nosync page, skip it. Note that the object flags were not 784 * cleared in this case so we do not have to set them. 785 */ 786 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 787 *clearobjflags = 0; 788 return (FALSE); 789 } else { 790 pmap_remove_write(p); 791 return (p->dirty != 0); 792 } 793 } 794 795 /* 796 * vm_object_page_clean 797 * 798 * Clean all dirty pages in the specified range of object. Leaves page 799 * on whatever queue it is currently on. If NOSYNC is set then do not 800 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 801 * leaving the object dirty. 802 * 803 * When stuffing pages asynchronously, allow clustering. XXX we need a 804 * synchronous clustering mode implementation. 805 * 806 * Odd semantics: if start == end, we clean everything. 807 * 808 * The object must be locked. 809 */ 810 void 811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 812 int flags) 813 { 814 vm_page_t np, p; 815 vm_pindex_t pi, tend, tstart; 816 int clearobjflags, curgeneration, n, pagerflags; 817 818 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 819 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 820 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 821 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 822 object->resident_page_count == 0) 823 return; 824 825 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 826 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 827 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 828 829 tstart = OFF_TO_IDX(start); 830 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 831 clearobjflags = tstart == 0 && tend >= object->size; 832 833 rescan: 834 curgeneration = object->generation; 835 836 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 837 pi = p->pindex; 838 if (pi >= tend) 839 break; 840 np = TAILQ_NEXT(p, listq); 841 if (p->valid == 0) 842 continue; 843 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 844 if (object->generation != curgeneration) 845 goto rescan; 846 np = vm_page_find_least(object, pi); 847 continue; 848 } 849 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 850 continue; 851 852 n = vm_object_page_collect_flush(object, p, pagerflags, 853 flags, &clearobjflags); 854 if (object->generation != curgeneration) 855 goto rescan; 856 857 /* 858 * If the VOP_PUTPAGES() did a truncated write, so 859 * that even the first page of the run is not fully 860 * written, vm_pageout_flush() returns 0 as the run 861 * length. Since the condition that caused truncated 862 * write may be permanent, e.g. exhausted free space, 863 * accepting n == 0 would cause an infinite loop. 864 * 865 * Forwarding the iterator leaves the unwritten page 866 * behind, but there is not much we can do there if 867 * filesystem refuses to write it. 868 */ 869 if (n == 0) 870 n = 1; 871 np = vm_page_find_least(object, pi + n); 872 } 873 #if 0 874 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 875 #endif 876 877 if (clearobjflags) 878 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 879 } 880 881 static int 882 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 883 int flags, int *clearobjflags) 884 { 885 vm_page_t ma[vm_pageout_page_count], p_first, tp; 886 int count, i, mreq, runlen; 887 888 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 889 vm_page_lock_assert(p, MA_NOTOWNED); 890 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 891 892 count = 1; 893 mreq = 0; 894 895 for (tp = p; count < vm_pageout_page_count; count++) { 896 tp = vm_page_next(tp); 897 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 898 break; 899 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 900 break; 901 } 902 903 for (p_first = p; count < vm_pageout_page_count; count++) { 904 tp = vm_page_prev(p_first); 905 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 906 break; 907 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 908 break; 909 p_first = tp; 910 mreq++; 911 } 912 913 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 914 ma[i] = tp; 915 916 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen); 917 return (runlen); 918 } 919 920 /* 921 * Note that there is absolutely no sense in writing out 922 * anonymous objects, so we track down the vnode object 923 * to write out. 924 * We invalidate (remove) all pages from the address space 925 * for semantic correctness. 926 * 927 * If the backing object is a device object with unmanaged pages, then any 928 * mappings to the specified range of pages must be removed before this 929 * function is called. 930 * 931 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 932 * may start out with a NULL object. 933 */ 934 void 935 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 936 boolean_t syncio, boolean_t invalidate) 937 { 938 vm_object_t backing_object; 939 struct vnode *vp; 940 struct mount *mp; 941 int flags; 942 943 if (object == NULL) 944 return; 945 VM_OBJECT_LOCK(object); 946 while ((backing_object = object->backing_object) != NULL) { 947 VM_OBJECT_LOCK(backing_object); 948 offset += object->backing_object_offset; 949 VM_OBJECT_UNLOCK(object); 950 object = backing_object; 951 if (object->size < OFF_TO_IDX(offset + size)) 952 size = IDX_TO_OFF(object->size) - offset; 953 } 954 /* 955 * Flush pages if writing is allowed, invalidate them 956 * if invalidation requested. Pages undergoing I/O 957 * will be ignored by vm_object_page_remove(). 958 * 959 * We cannot lock the vnode and then wait for paging 960 * to complete without deadlocking against vm_fault. 961 * Instead we simply call vm_object_page_remove() and 962 * allow it to block internally on a page-by-page 963 * basis when it encounters pages undergoing async 964 * I/O. 965 */ 966 if (object->type == OBJT_VNODE && 967 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 968 int vfslocked; 969 vp = object->handle; 970 VM_OBJECT_UNLOCK(object); 971 (void) vn_start_write(vp, &mp, V_WAIT); 972 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 973 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 974 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 975 flags |= invalidate ? OBJPC_INVAL : 0; 976 VM_OBJECT_LOCK(object); 977 vm_object_page_clean(object, offset, offset + size, flags); 978 VM_OBJECT_UNLOCK(object); 979 VOP_UNLOCK(vp, 0); 980 VFS_UNLOCK_GIANT(vfslocked); 981 vn_finished_write(mp); 982 VM_OBJECT_LOCK(object); 983 } 984 if ((object->type == OBJT_VNODE || 985 object->type == OBJT_DEVICE) && invalidate) { 986 if (object->type == OBJT_DEVICE) 987 /* 988 * The option OBJPR_NOTMAPPED must be passed here 989 * because vm_object_page_remove() cannot remove 990 * unmanaged mappings. 991 */ 992 flags = OBJPR_NOTMAPPED; 993 else if (old_msync) 994 flags = 0; 995 else 996 flags = OBJPR_CLEANONLY; 997 vm_object_page_remove(object, OFF_TO_IDX(offset), 998 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 999 } 1000 VM_OBJECT_UNLOCK(object); 1001 } 1002 1003 /* 1004 * vm_object_madvise: 1005 * 1006 * Implements the madvise function at the object/page level. 1007 * 1008 * MADV_WILLNEED (any object) 1009 * 1010 * Activate the specified pages if they are resident. 1011 * 1012 * MADV_DONTNEED (any object) 1013 * 1014 * Deactivate the specified pages if they are resident. 1015 * 1016 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1017 * OBJ_ONEMAPPING only) 1018 * 1019 * Deactivate and clean the specified pages if they are 1020 * resident. This permits the process to reuse the pages 1021 * without faulting or the kernel to reclaim the pages 1022 * without I/O. 1023 */ 1024 void 1025 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1026 { 1027 vm_pindex_t end, tpindex; 1028 vm_object_t backing_object, tobject; 1029 vm_page_t m; 1030 1031 if (object == NULL) 1032 return; 1033 VM_OBJECT_LOCK(object); 1034 end = pindex + count; 1035 /* 1036 * Locate and adjust resident pages 1037 */ 1038 for (; pindex < end; pindex += 1) { 1039 relookup: 1040 tobject = object; 1041 tpindex = pindex; 1042 shadowlookup: 1043 /* 1044 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1045 * and those pages must be OBJ_ONEMAPPING. 1046 */ 1047 if (advise == MADV_FREE) { 1048 if ((tobject->type != OBJT_DEFAULT && 1049 tobject->type != OBJT_SWAP) || 1050 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1051 goto unlock_tobject; 1052 } 1053 } else if (tobject->type == OBJT_PHYS) 1054 goto unlock_tobject; 1055 m = vm_page_lookup(tobject, tpindex); 1056 if (m == NULL && advise == MADV_WILLNEED) { 1057 /* 1058 * If the page is cached, reactivate it. 1059 */ 1060 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1061 VM_ALLOC_NOBUSY); 1062 } 1063 if (m == NULL) { 1064 /* 1065 * There may be swap even if there is no backing page 1066 */ 1067 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1068 swap_pager_freespace(tobject, tpindex, 1); 1069 /* 1070 * next object 1071 */ 1072 backing_object = tobject->backing_object; 1073 if (backing_object == NULL) 1074 goto unlock_tobject; 1075 VM_OBJECT_LOCK(backing_object); 1076 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1077 if (tobject != object) 1078 VM_OBJECT_UNLOCK(tobject); 1079 tobject = backing_object; 1080 goto shadowlookup; 1081 } else if (m->valid != VM_PAGE_BITS_ALL) 1082 goto unlock_tobject; 1083 /* 1084 * If the page is not in a normal state, skip it. 1085 */ 1086 vm_page_lock(m); 1087 if (m->hold_count != 0 || m->wire_count != 0) { 1088 vm_page_unlock(m); 1089 goto unlock_tobject; 1090 } 1091 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1092 ("vm_object_madvise: page %p is fictitious", m)); 1093 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1094 ("vm_object_madvise: page %p is not managed", m)); 1095 if ((m->oflags & VPO_BUSY) || m->busy) { 1096 if (advise == MADV_WILLNEED) { 1097 /* 1098 * Reference the page before unlocking and 1099 * sleeping so that the page daemon is less 1100 * likely to reclaim it. 1101 */ 1102 vm_page_aflag_set(m, PGA_REFERENCED); 1103 } 1104 vm_page_unlock(m); 1105 if (object != tobject) 1106 VM_OBJECT_UNLOCK(object); 1107 m->oflags |= VPO_WANTED; 1108 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1109 0); 1110 VM_OBJECT_LOCK(object); 1111 goto relookup; 1112 } 1113 if (advise == MADV_WILLNEED) { 1114 vm_page_activate(m); 1115 } else if (advise == MADV_DONTNEED) { 1116 vm_page_dontneed(m); 1117 } else if (advise == MADV_FREE) { 1118 /* 1119 * Mark the page clean. This will allow the page 1120 * to be freed up by the system. However, such pages 1121 * are often reused quickly by malloc()/free() 1122 * so we do not do anything that would cause 1123 * a page fault if we can help it. 1124 * 1125 * Specifically, we do not try to actually free 1126 * the page now nor do we try to put it in the 1127 * cache (which would cause a page fault on reuse). 1128 * 1129 * But we do make the page is freeable as we 1130 * can without actually taking the step of unmapping 1131 * it. 1132 */ 1133 pmap_clear_modify(m); 1134 m->dirty = 0; 1135 m->act_count = 0; 1136 vm_page_dontneed(m); 1137 } 1138 vm_page_unlock(m); 1139 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1140 swap_pager_freespace(tobject, tpindex, 1); 1141 unlock_tobject: 1142 if (tobject != object) 1143 VM_OBJECT_UNLOCK(tobject); 1144 } 1145 VM_OBJECT_UNLOCK(object); 1146 } 1147 1148 /* 1149 * vm_object_shadow: 1150 * 1151 * Create a new object which is backed by the 1152 * specified existing object range. The source 1153 * object reference is deallocated. 1154 * 1155 * The new object and offset into that object 1156 * are returned in the source parameters. 1157 */ 1158 void 1159 vm_object_shadow( 1160 vm_object_t *object, /* IN/OUT */ 1161 vm_ooffset_t *offset, /* IN/OUT */ 1162 vm_size_t length) 1163 { 1164 vm_object_t source; 1165 vm_object_t result; 1166 1167 source = *object; 1168 1169 /* 1170 * Don't create the new object if the old object isn't shared. 1171 */ 1172 if (source != NULL) { 1173 VM_OBJECT_LOCK(source); 1174 if (source->ref_count == 1 && 1175 source->handle == NULL && 1176 (source->type == OBJT_DEFAULT || 1177 source->type == OBJT_SWAP)) { 1178 VM_OBJECT_UNLOCK(source); 1179 return; 1180 } 1181 VM_OBJECT_UNLOCK(source); 1182 } 1183 1184 /* 1185 * Allocate a new object with the given length. 1186 */ 1187 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1188 1189 /* 1190 * The new object shadows the source object, adding a reference to it. 1191 * Our caller changes his reference to point to the new object, 1192 * removing a reference to the source object. Net result: no change 1193 * of reference count. 1194 * 1195 * Try to optimize the result object's page color when shadowing 1196 * in order to maintain page coloring consistency in the combined 1197 * shadowed object. 1198 */ 1199 result->backing_object = source; 1200 /* 1201 * Store the offset into the source object, and fix up the offset into 1202 * the new object. 1203 */ 1204 result->backing_object_offset = *offset; 1205 if (source != NULL) { 1206 VM_OBJECT_LOCK(source); 1207 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1208 source->shadow_count++; 1209 #if VM_NRESERVLEVEL > 0 1210 result->flags |= source->flags & OBJ_COLORED; 1211 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1212 ((1 << (VM_NFREEORDER - 1)) - 1); 1213 #endif 1214 VM_OBJECT_UNLOCK(source); 1215 } 1216 1217 1218 /* 1219 * Return the new things 1220 */ 1221 *offset = 0; 1222 *object = result; 1223 } 1224 1225 /* 1226 * vm_object_split: 1227 * 1228 * Split the pages in a map entry into a new object. This affords 1229 * easier removal of unused pages, and keeps object inheritance from 1230 * being a negative impact on memory usage. 1231 */ 1232 void 1233 vm_object_split(vm_map_entry_t entry) 1234 { 1235 vm_page_t m, m_next; 1236 vm_object_t orig_object, new_object, source; 1237 vm_pindex_t idx, offidxstart; 1238 vm_size_t size; 1239 1240 orig_object = entry->object.vm_object; 1241 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1242 return; 1243 if (orig_object->ref_count <= 1) 1244 return; 1245 VM_OBJECT_UNLOCK(orig_object); 1246 1247 offidxstart = OFF_TO_IDX(entry->offset); 1248 size = atop(entry->end - entry->start); 1249 1250 /* 1251 * If swap_pager_copy() is later called, it will convert new_object 1252 * into a swap object. 1253 */ 1254 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1255 1256 /* 1257 * At this point, the new object is still private, so the order in 1258 * which the original and new objects are locked does not matter. 1259 */ 1260 VM_OBJECT_LOCK(new_object); 1261 VM_OBJECT_LOCK(orig_object); 1262 source = orig_object->backing_object; 1263 if (source != NULL) { 1264 VM_OBJECT_LOCK(source); 1265 if ((source->flags & OBJ_DEAD) != 0) { 1266 VM_OBJECT_UNLOCK(source); 1267 VM_OBJECT_UNLOCK(orig_object); 1268 VM_OBJECT_UNLOCK(new_object); 1269 vm_object_deallocate(new_object); 1270 VM_OBJECT_LOCK(orig_object); 1271 return; 1272 } 1273 LIST_INSERT_HEAD(&source->shadow_head, 1274 new_object, shadow_list); 1275 source->shadow_count++; 1276 vm_object_reference_locked(source); /* for new_object */ 1277 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1278 VM_OBJECT_UNLOCK(source); 1279 new_object->backing_object_offset = 1280 orig_object->backing_object_offset + entry->offset; 1281 new_object->backing_object = source; 1282 } 1283 if (orig_object->cred != NULL) { 1284 new_object->cred = orig_object->cred; 1285 crhold(orig_object->cred); 1286 new_object->charge = ptoa(size); 1287 KASSERT(orig_object->charge >= ptoa(size), 1288 ("orig_object->charge < 0")); 1289 orig_object->charge -= ptoa(size); 1290 } 1291 retry: 1292 m = vm_page_find_least(orig_object, offidxstart); 1293 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1294 m = m_next) { 1295 m_next = TAILQ_NEXT(m, listq); 1296 1297 /* 1298 * We must wait for pending I/O to complete before we can 1299 * rename the page. 1300 * 1301 * We do not have to VM_PROT_NONE the page as mappings should 1302 * not be changed by this operation. 1303 */ 1304 if ((m->oflags & VPO_BUSY) || m->busy) { 1305 VM_OBJECT_UNLOCK(new_object); 1306 m->oflags |= VPO_WANTED; 1307 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1308 VM_OBJECT_LOCK(new_object); 1309 goto retry; 1310 } 1311 vm_page_lock(m); 1312 vm_page_rename(m, new_object, idx); 1313 vm_page_unlock(m); 1314 /* page automatically made dirty by rename and cache handled */ 1315 vm_page_busy(m); 1316 } 1317 if (orig_object->type == OBJT_SWAP) { 1318 /* 1319 * swap_pager_copy() can sleep, in which case the orig_object's 1320 * and new_object's locks are released and reacquired. 1321 */ 1322 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1323 1324 /* 1325 * Transfer any cached pages from orig_object to new_object. 1326 */ 1327 if (__predict_false(orig_object->cache != NULL)) 1328 vm_page_cache_transfer(orig_object, offidxstart, 1329 new_object); 1330 } 1331 VM_OBJECT_UNLOCK(orig_object); 1332 TAILQ_FOREACH(m, &new_object->memq, listq) 1333 vm_page_wakeup(m); 1334 VM_OBJECT_UNLOCK(new_object); 1335 entry->object.vm_object = new_object; 1336 entry->offset = 0LL; 1337 vm_object_deallocate(orig_object); 1338 VM_OBJECT_LOCK(new_object); 1339 } 1340 1341 #define OBSC_TEST_ALL_SHADOWED 0x0001 1342 #define OBSC_COLLAPSE_NOWAIT 0x0002 1343 #define OBSC_COLLAPSE_WAIT 0x0004 1344 1345 static int 1346 vm_object_backing_scan(vm_object_t object, int op) 1347 { 1348 int r = 1; 1349 vm_page_t p; 1350 vm_object_t backing_object; 1351 vm_pindex_t backing_offset_index; 1352 1353 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1354 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1355 1356 backing_object = object->backing_object; 1357 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1358 1359 /* 1360 * Initial conditions 1361 */ 1362 if (op & OBSC_TEST_ALL_SHADOWED) { 1363 /* 1364 * We do not want to have to test for the existence of cache 1365 * or swap pages in the backing object. XXX but with the 1366 * new swapper this would be pretty easy to do. 1367 * 1368 * XXX what about anonymous MAP_SHARED memory that hasn't 1369 * been ZFOD faulted yet? If we do not test for this, the 1370 * shadow test may succeed! XXX 1371 */ 1372 if (backing_object->type != OBJT_DEFAULT) { 1373 return (0); 1374 } 1375 } 1376 if (op & OBSC_COLLAPSE_WAIT) { 1377 vm_object_set_flag(backing_object, OBJ_DEAD); 1378 } 1379 1380 /* 1381 * Our scan 1382 */ 1383 p = TAILQ_FIRST(&backing_object->memq); 1384 while (p) { 1385 vm_page_t next = TAILQ_NEXT(p, listq); 1386 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1387 1388 if (op & OBSC_TEST_ALL_SHADOWED) { 1389 vm_page_t pp; 1390 1391 /* 1392 * Ignore pages outside the parent object's range 1393 * and outside the parent object's mapping of the 1394 * backing object. 1395 * 1396 * note that we do not busy the backing object's 1397 * page. 1398 */ 1399 if ( 1400 p->pindex < backing_offset_index || 1401 new_pindex >= object->size 1402 ) { 1403 p = next; 1404 continue; 1405 } 1406 1407 /* 1408 * See if the parent has the page or if the parent's 1409 * object pager has the page. If the parent has the 1410 * page but the page is not valid, the parent's 1411 * object pager must have the page. 1412 * 1413 * If this fails, the parent does not completely shadow 1414 * the object and we might as well give up now. 1415 */ 1416 1417 pp = vm_page_lookup(object, new_pindex); 1418 if ( 1419 (pp == NULL || pp->valid == 0) && 1420 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1421 ) { 1422 r = 0; 1423 break; 1424 } 1425 } 1426 1427 /* 1428 * Check for busy page 1429 */ 1430 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1431 vm_page_t pp; 1432 1433 if (op & OBSC_COLLAPSE_NOWAIT) { 1434 if ((p->oflags & VPO_BUSY) || 1435 !p->valid || 1436 p->busy) { 1437 p = next; 1438 continue; 1439 } 1440 } else if (op & OBSC_COLLAPSE_WAIT) { 1441 if ((p->oflags & VPO_BUSY) || p->busy) { 1442 VM_OBJECT_UNLOCK(object); 1443 p->oflags |= VPO_WANTED; 1444 msleep(p, VM_OBJECT_MTX(backing_object), 1445 PDROP | PVM, "vmocol", 0); 1446 VM_OBJECT_LOCK(object); 1447 VM_OBJECT_LOCK(backing_object); 1448 /* 1449 * If we slept, anything could have 1450 * happened. Since the object is 1451 * marked dead, the backing offset 1452 * should not have changed so we 1453 * just restart our scan. 1454 */ 1455 p = TAILQ_FIRST(&backing_object->memq); 1456 continue; 1457 } 1458 } 1459 1460 KASSERT( 1461 p->object == backing_object, 1462 ("vm_object_backing_scan: object mismatch") 1463 ); 1464 1465 /* 1466 * Destroy any associated swap 1467 */ 1468 if (backing_object->type == OBJT_SWAP) { 1469 swap_pager_freespace( 1470 backing_object, 1471 p->pindex, 1472 1 1473 ); 1474 } 1475 1476 if ( 1477 p->pindex < backing_offset_index || 1478 new_pindex >= object->size 1479 ) { 1480 /* 1481 * Page is out of the parent object's range, we 1482 * can simply destroy it. 1483 */ 1484 vm_page_lock(p); 1485 KASSERT(!pmap_page_is_mapped(p), 1486 ("freeing mapped page %p", p)); 1487 if (p->wire_count == 0) 1488 vm_page_free(p); 1489 else 1490 vm_page_remove(p); 1491 vm_page_unlock(p); 1492 p = next; 1493 continue; 1494 } 1495 1496 pp = vm_page_lookup(object, new_pindex); 1497 if ( 1498 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1499 (pp != NULL && pp->valid == 0) 1500 ) { 1501 /* 1502 * The page in the parent is not (yet) valid. 1503 * We don't know anything about the state of 1504 * the original page. It might be mapped, 1505 * so we must avoid the next if here. 1506 * 1507 * This is due to a race in vm_fault() where 1508 * we must unbusy the original (backing_obj) 1509 * page before we can (re)lock the parent. 1510 * Hence we can get here. 1511 */ 1512 p = next; 1513 continue; 1514 } 1515 if ( 1516 pp != NULL || 1517 vm_pager_has_page(object, new_pindex, NULL, NULL) 1518 ) { 1519 /* 1520 * page already exists in parent OR swap exists 1521 * for this location in the parent. Destroy 1522 * the original page from the backing object. 1523 * 1524 * Leave the parent's page alone 1525 */ 1526 vm_page_lock(p); 1527 KASSERT(!pmap_page_is_mapped(p), 1528 ("freeing mapped page %p", p)); 1529 if (p->wire_count == 0) 1530 vm_page_free(p); 1531 else 1532 vm_page_remove(p); 1533 vm_page_unlock(p); 1534 p = next; 1535 continue; 1536 } 1537 1538 #if VM_NRESERVLEVEL > 0 1539 /* 1540 * Rename the reservation. 1541 */ 1542 vm_reserv_rename(p, object, backing_object, 1543 backing_offset_index); 1544 #endif 1545 1546 /* 1547 * Page does not exist in parent, rename the 1548 * page from the backing object to the main object. 1549 * 1550 * If the page was mapped to a process, it can remain 1551 * mapped through the rename. 1552 */ 1553 vm_page_lock(p); 1554 vm_page_rename(p, object, new_pindex); 1555 vm_page_unlock(p); 1556 /* page automatically made dirty by rename */ 1557 } 1558 p = next; 1559 } 1560 return (r); 1561 } 1562 1563 1564 /* 1565 * this version of collapse allows the operation to occur earlier and 1566 * when paging_in_progress is true for an object... This is not a complete 1567 * operation, but should plug 99.9% of the rest of the leaks. 1568 */ 1569 static void 1570 vm_object_qcollapse(vm_object_t object) 1571 { 1572 vm_object_t backing_object = object->backing_object; 1573 1574 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1575 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1576 1577 if (backing_object->ref_count != 1) 1578 return; 1579 1580 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1581 } 1582 1583 /* 1584 * vm_object_collapse: 1585 * 1586 * Collapse an object with the object backing it. 1587 * Pages in the backing object are moved into the 1588 * parent, and the backing object is deallocated. 1589 */ 1590 void 1591 vm_object_collapse(vm_object_t object) 1592 { 1593 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1594 1595 while (TRUE) { 1596 vm_object_t backing_object; 1597 1598 /* 1599 * Verify that the conditions are right for collapse: 1600 * 1601 * The object exists and the backing object exists. 1602 */ 1603 if ((backing_object = object->backing_object) == NULL) 1604 break; 1605 1606 /* 1607 * we check the backing object first, because it is most likely 1608 * not collapsable. 1609 */ 1610 VM_OBJECT_LOCK(backing_object); 1611 if (backing_object->handle != NULL || 1612 (backing_object->type != OBJT_DEFAULT && 1613 backing_object->type != OBJT_SWAP) || 1614 (backing_object->flags & OBJ_DEAD) || 1615 object->handle != NULL || 1616 (object->type != OBJT_DEFAULT && 1617 object->type != OBJT_SWAP) || 1618 (object->flags & OBJ_DEAD)) { 1619 VM_OBJECT_UNLOCK(backing_object); 1620 break; 1621 } 1622 1623 if ( 1624 object->paging_in_progress != 0 || 1625 backing_object->paging_in_progress != 0 1626 ) { 1627 vm_object_qcollapse(object); 1628 VM_OBJECT_UNLOCK(backing_object); 1629 break; 1630 } 1631 /* 1632 * We know that we can either collapse the backing object (if 1633 * the parent is the only reference to it) or (perhaps) have 1634 * the parent bypass the object if the parent happens to shadow 1635 * all the resident pages in the entire backing object. 1636 * 1637 * This is ignoring pager-backed pages such as swap pages. 1638 * vm_object_backing_scan fails the shadowing test in this 1639 * case. 1640 */ 1641 if (backing_object->ref_count == 1) { 1642 /* 1643 * If there is exactly one reference to the backing 1644 * object, we can collapse it into the parent. 1645 */ 1646 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1647 1648 #if VM_NRESERVLEVEL > 0 1649 /* 1650 * Break any reservations from backing_object. 1651 */ 1652 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1653 vm_reserv_break_all(backing_object); 1654 #endif 1655 1656 /* 1657 * Move the pager from backing_object to object. 1658 */ 1659 if (backing_object->type == OBJT_SWAP) { 1660 /* 1661 * swap_pager_copy() can sleep, in which case 1662 * the backing_object's and object's locks are 1663 * released and reacquired. 1664 */ 1665 swap_pager_copy( 1666 backing_object, 1667 object, 1668 OFF_TO_IDX(object->backing_object_offset), TRUE); 1669 1670 /* 1671 * Free any cached pages from backing_object. 1672 */ 1673 if (__predict_false(backing_object->cache != NULL)) 1674 vm_page_cache_free(backing_object, 0, 0); 1675 } 1676 /* 1677 * Object now shadows whatever backing_object did. 1678 * Note that the reference to 1679 * backing_object->backing_object moves from within 1680 * backing_object to within object. 1681 */ 1682 LIST_REMOVE(object, shadow_list); 1683 backing_object->shadow_count--; 1684 if (backing_object->backing_object) { 1685 VM_OBJECT_LOCK(backing_object->backing_object); 1686 LIST_REMOVE(backing_object, shadow_list); 1687 LIST_INSERT_HEAD( 1688 &backing_object->backing_object->shadow_head, 1689 object, shadow_list); 1690 /* 1691 * The shadow_count has not changed. 1692 */ 1693 VM_OBJECT_UNLOCK(backing_object->backing_object); 1694 } 1695 object->backing_object = backing_object->backing_object; 1696 object->backing_object_offset += 1697 backing_object->backing_object_offset; 1698 1699 /* 1700 * Discard backing_object. 1701 * 1702 * Since the backing object has no pages, no pager left, 1703 * and no object references within it, all that is 1704 * necessary is to dispose of it. 1705 */ 1706 KASSERT(backing_object->ref_count == 1, ( 1707 "backing_object %p was somehow re-referenced during collapse!", 1708 backing_object)); 1709 VM_OBJECT_UNLOCK(backing_object); 1710 vm_object_destroy(backing_object); 1711 1712 object_collapses++; 1713 } else { 1714 vm_object_t new_backing_object; 1715 1716 /* 1717 * If we do not entirely shadow the backing object, 1718 * there is nothing we can do so we give up. 1719 */ 1720 if (object->resident_page_count != object->size && 1721 vm_object_backing_scan(object, 1722 OBSC_TEST_ALL_SHADOWED) == 0) { 1723 VM_OBJECT_UNLOCK(backing_object); 1724 break; 1725 } 1726 1727 /* 1728 * Make the parent shadow the next object in the 1729 * chain. Deallocating backing_object will not remove 1730 * it, since its reference count is at least 2. 1731 */ 1732 LIST_REMOVE(object, shadow_list); 1733 backing_object->shadow_count--; 1734 1735 new_backing_object = backing_object->backing_object; 1736 if ((object->backing_object = new_backing_object) != NULL) { 1737 VM_OBJECT_LOCK(new_backing_object); 1738 LIST_INSERT_HEAD( 1739 &new_backing_object->shadow_head, 1740 object, 1741 shadow_list 1742 ); 1743 new_backing_object->shadow_count++; 1744 vm_object_reference_locked(new_backing_object); 1745 VM_OBJECT_UNLOCK(new_backing_object); 1746 object->backing_object_offset += 1747 backing_object->backing_object_offset; 1748 } 1749 1750 /* 1751 * Drop the reference count on backing_object. Since 1752 * its ref_count was at least 2, it will not vanish. 1753 */ 1754 backing_object->ref_count--; 1755 VM_OBJECT_UNLOCK(backing_object); 1756 object_bypasses++; 1757 } 1758 1759 /* 1760 * Try again with this object's new backing object. 1761 */ 1762 } 1763 } 1764 1765 /* 1766 * vm_object_page_remove: 1767 * 1768 * For the given object, either frees or invalidates each of the 1769 * specified pages. In general, a page is freed. However, if a page is 1770 * wired for any reason other than the existence of a managed, wired 1771 * mapping, then it may be invalidated but not removed from the object. 1772 * Pages are specified by the given range ["start", "end") and the option 1773 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1774 * extends from "start" to the end of the object. If the option 1775 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1776 * specified range are affected. If the option OBJPR_NOTMAPPED is 1777 * specified, then the pages within the specified range must have no 1778 * mappings. Otherwise, if this option is not specified, any mappings to 1779 * the specified pages are removed before the pages are freed or 1780 * invalidated. 1781 * 1782 * In general, this operation should only be performed on objects that 1783 * contain managed pages. There are, however, two exceptions. First, it 1784 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1785 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1786 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1787 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1788 * 1789 * The object must be locked. 1790 */ 1791 void 1792 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1793 int options) 1794 { 1795 vm_page_t p, next; 1796 int wirings; 1797 1798 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1799 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) || 1800 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1801 ("vm_object_page_remove: illegal options for object %p", object)); 1802 if (object->resident_page_count == 0) 1803 goto skipmemq; 1804 vm_object_pip_add(object, 1); 1805 again: 1806 p = vm_page_find_least(object, start); 1807 1808 /* 1809 * Here, the variable "p" is either (1) the page with the least pindex 1810 * greater than or equal to the parameter "start" or (2) NULL. 1811 */ 1812 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1813 next = TAILQ_NEXT(p, listq); 1814 1815 /* 1816 * If the page is wired for any reason besides the existence 1817 * of managed, wired mappings, then it cannot be freed. For 1818 * example, fictitious pages, which represent device memory, 1819 * are inherently wired and cannot be freed. They can, 1820 * however, be invalidated if the option OBJPR_CLEANONLY is 1821 * not specified. 1822 */ 1823 vm_page_lock(p); 1824 if ((wirings = p->wire_count) != 0 && 1825 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1826 if ((options & OBJPR_NOTMAPPED) == 0) { 1827 pmap_remove_all(p); 1828 /* Account for removal of wired mappings. */ 1829 if (wirings != 0) 1830 p->wire_count -= wirings; 1831 } 1832 if ((options & OBJPR_CLEANONLY) == 0) { 1833 p->valid = 0; 1834 vm_page_undirty(p); 1835 } 1836 vm_page_unlock(p); 1837 continue; 1838 } 1839 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1840 goto again; 1841 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1842 ("vm_object_page_remove: page %p is fictitious", p)); 1843 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1844 if ((options & OBJPR_NOTMAPPED) == 0) 1845 pmap_remove_write(p); 1846 if (p->dirty) { 1847 vm_page_unlock(p); 1848 continue; 1849 } 1850 } 1851 if ((options & OBJPR_NOTMAPPED) == 0) { 1852 pmap_remove_all(p); 1853 /* Account for removal of wired mappings. */ 1854 if (wirings != 0) 1855 p->wire_count -= wirings; 1856 } 1857 vm_page_free(p); 1858 vm_page_unlock(p); 1859 } 1860 vm_object_pip_wakeup(object); 1861 skipmemq: 1862 if (__predict_false(object->cache != NULL)) 1863 vm_page_cache_free(object, start, end); 1864 } 1865 1866 /* 1867 * vm_object_page_cache: 1868 * 1869 * For the given object, attempt to move the specified clean 1870 * pages to the cache queue. If a page is wired for any reason, 1871 * then it will not be changed. Pages are specified by the given 1872 * range ["start", "end"). As a special case, if "end" is zero, 1873 * then the range extends from "start" to the end of the object. 1874 * Any mappings to the specified pages are removed before the 1875 * pages are moved to the cache queue. 1876 * 1877 * This operation should only be performed on objects that 1878 * contain managed pages. 1879 * 1880 * The object must be locked. 1881 */ 1882 void 1883 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1884 { 1885 struct mtx *mtx, *new_mtx; 1886 vm_page_t p, next; 1887 1888 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1889 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG && 1890 object->type != OBJT_PHYS), 1891 ("vm_object_page_cache: illegal object %p", object)); 1892 if (object->resident_page_count == 0) 1893 return; 1894 p = vm_page_find_least(object, start); 1895 1896 /* 1897 * Here, the variable "p" is either (1) the page with the least pindex 1898 * greater than or equal to the parameter "start" or (2) NULL. 1899 */ 1900 mtx = NULL; 1901 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1902 next = TAILQ_NEXT(p, listq); 1903 1904 /* 1905 * Avoid releasing and reacquiring the same page lock. 1906 */ 1907 new_mtx = vm_page_lockptr(p); 1908 if (mtx != new_mtx) { 1909 if (mtx != NULL) 1910 mtx_unlock(mtx); 1911 mtx = new_mtx; 1912 mtx_lock(mtx); 1913 } 1914 vm_page_try_to_cache(p); 1915 } 1916 if (mtx != NULL) 1917 mtx_unlock(mtx); 1918 } 1919 1920 /* 1921 * Populate the specified range of the object with valid pages. Returns 1922 * TRUE if the range is successfully populated and FALSE otherwise. 1923 * 1924 * Note: This function should be optimized to pass a larger array of 1925 * pages to vm_pager_get_pages() before it is applied to a non- 1926 * OBJT_DEVICE object. 1927 * 1928 * The object must be locked. 1929 */ 1930 boolean_t 1931 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1932 { 1933 vm_page_t m, ma[1]; 1934 vm_pindex_t pindex; 1935 int rv; 1936 1937 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1938 for (pindex = start; pindex < end; pindex++) { 1939 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1940 VM_ALLOC_RETRY); 1941 if (m->valid != VM_PAGE_BITS_ALL) { 1942 ma[0] = m; 1943 rv = vm_pager_get_pages(object, ma, 1, 0); 1944 m = vm_page_lookup(object, pindex); 1945 if (m == NULL) 1946 break; 1947 if (rv != VM_PAGER_OK) { 1948 vm_page_lock(m); 1949 vm_page_free(m); 1950 vm_page_unlock(m); 1951 break; 1952 } 1953 } 1954 /* 1955 * Keep "m" busy because a subsequent iteration may unlock 1956 * the object. 1957 */ 1958 } 1959 if (pindex > start) { 1960 m = vm_page_lookup(object, start); 1961 while (m != NULL && m->pindex < pindex) { 1962 vm_page_wakeup(m); 1963 m = TAILQ_NEXT(m, listq); 1964 } 1965 } 1966 return (pindex == end); 1967 } 1968 1969 /* 1970 * Routine: vm_object_coalesce 1971 * Function: Coalesces two objects backing up adjoining 1972 * regions of memory into a single object. 1973 * 1974 * returns TRUE if objects were combined. 1975 * 1976 * NOTE: Only works at the moment if the second object is NULL - 1977 * if it's not, which object do we lock first? 1978 * 1979 * Parameters: 1980 * prev_object First object to coalesce 1981 * prev_offset Offset into prev_object 1982 * prev_size Size of reference to prev_object 1983 * next_size Size of reference to the second object 1984 * reserved Indicator that extension region has 1985 * swap accounted for 1986 * 1987 * Conditions: 1988 * The object must *not* be locked. 1989 */ 1990 boolean_t 1991 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1992 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 1993 { 1994 vm_pindex_t next_pindex; 1995 1996 if (prev_object == NULL) 1997 return (TRUE); 1998 VM_OBJECT_LOCK(prev_object); 1999 if (prev_object->type != OBJT_DEFAULT && 2000 prev_object->type != OBJT_SWAP) { 2001 VM_OBJECT_UNLOCK(prev_object); 2002 return (FALSE); 2003 } 2004 2005 /* 2006 * Try to collapse the object first 2007 */ 2008 vm_object_collapse(prev_object); 2009 2010 /* 2011 * Can't coalesce if: . more than one reference . paged out . shadows 2012 * another object . has a copy elsewhere (any of which mean that the 2013 * pages not mapped to prev_entry may be in use anyway) 2014 */ 2015 if (prev_object->backing_object != NULL) { 2016 VM_OBJECT_UNLOCK(prev_object); 2017 return (FALSE); 2018 } 2019 2020 prev_size >>= PAGE_SHIFT; 2021 next_size >>= PAGE_SHIFT; 2022 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2023 2024 if ((prev_object->ref_count > 1) && 2025 (prev_object->size != next_pindex)) { 2026 VM_OBJECT_UNLOCK(prev_object); 2027 return (FALSE); 2028 } 2029 2030 /* 2031 * Account for the charge. 2032 */ 2033 if (prev_object->cred != NULL) { 2034 2035 /* 2036 * If prev_object was charged, then this mapping, 2037 * althought not charged now, may become writable 2038 * later. Non-NULL cred in the object would prevent 2039 * swap reservation during enabling of the write 2040 * access, so reserve swap now. Failed reservation 2041 * cause allocation of the separate object for the map 2042 * entry, and swap reservation for this entry is 2043 * managed in appropriate time. 2044 */ 2045 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2046 prev_object->cred)) { 2047 return (FALSE); 2048 } 2049 prev_object->charge += ptoa(next_size); 2050 } 2051 2052 /* 2053 * Remove any pages that may still be in the object from a previous 2054 * deallocation. 2055 */ 2056 if (next_pindex < prev_object->size) { 2057 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2058 next_size, 0); 2059 if (prev_object->type == OBJT_SWAP) 2060 swap_pager_freespace(prev_object, 2061 next_pindex, next_size); 2062 #if 0 2063 if (prev_object->cred != NULL) { 2064 KASSERT(prev_object->charge >= 2065 ptoa(prev_object->size - next_pindex), 2066 ("object %p overcharged 1 %jx %jx", prev_object, 2067 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2068 prev_object->charge -= ptoa(prev_object->size - 2069 next_pindex); 2070 } 2071 #endif 2072 } 2073 2074 /* 2075 * Extend the object if necessary. 2076 */ 2077 if (next_pindex + next_size > prev_object->size) 2078 prev_object->size = next_pindex + next_size; 2079 2080 VM_OBJECT_UNLOCK(prev_object); 2081 return (TRUE); 2082 } 2083 2084 void 2085 vm_object_set_writeable_dirty(vm_object_t object) 2086 { 2087 2088 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2089 if (object->type != OBJT_VNODE) 2090 return; 2091 object->generation++; 2092 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2093 return; 2094 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2095 } 2096 2097 #include "opt_ddb.h" 2098 #ifdef DDB 2099 #include <sys/kernel.h> 2100 2101 #include <sys/cons.h> 2102 2103 #include <ddb/ddb.h> 2104 2105 static int 2106 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2107 { 2108 vm_map_t tmpm; 2109 vm_map_entry_t tmpe; 2110 vm_object_t obj; 2111 int entcount; 2112 2113 if (map == 0) 2114 return 0; 2115 2116 if (entry == 0) { 2117 tmpe = map->header.next; 2118 entcount = map->nentries; 2119 while (entcount-- && (tmpe != &map->header)) { 2120 if (_vm_object_in_map(map, object, tmpe)) { 2121 return 1; 2122 } 2123 tmpe = tmpe->next; 2124 } 2125 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2126 tmpm = entry->object.sub_map; 2127 tmpe = tmpm->header.next; 2128 entcount = tmpm->nentries; 2129 while (entcount-- && tmpe != &tmpm->header) { 2130 if (_vm_object_in_map(tmpm, object, tmpe)) { 2131 return 1; 2132 } 2133 tmpe = tmpe->next; 2134 } 2135 } else if ((obj = entry->object.vm_object) != NULL) { 2136 for (; obj; obj = obj->backing_object) 2137 if (obj == object) { 2138 return 1; 2139 } 2140 } 2141 return 0; 2142 } 2143 2144 static int 2145 vm_object_in_map(vm_object_t object) 2146 { 2147 struct proc *p; 2148 2149 /* sx_slock(&allproc_lock); */ 2150 FOREACH_PROC_IN_SYSTEM(p) { 2151 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2152 continue; 2153 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2154 /* sx_sunlock(&allproc_lock); */ 2155 return 1; 2156 } 2157 } 2158 /* sx_sunlock(&allproc_lock); */ 2159 if (_vm_object_in_map(kernel_map, object, 0)) 2160 return 1; 2161 if (_vm_object_in_map(kmem_map, object, 0)) 2162 return 1; 2163 if (_vm_object_in_map(pager_map, object, 0)) 2164 return 1; 2165 if (_vm_object_in_map(buffer_map, object, 0)) 2166 return 1; 2167 return 0; 2168 } 2169 2170 DB_SHOW_COMMAND(vmochk, vm_object_check) 2171 { 2172 vm_object_t object; 2173 2174 /* 2175 * make sure that internal objs are in a map somewhere 2176 * and none have zero ref counts. 2177 */ 2178 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2179 if (object->handle == NULL && 2180 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2181 if (object->ref_count == 0) { 2182 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2183 (long)object->size); 2184 } 2185 if (!vm_object_in_map(object)) { 2186 db_printf( 2187 "vmochk: internal obj is not in a map: " 2188 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2189 object->ref_count, (u_long)object->size, 2190 (u_long)object->size, 2191 (void *)object->backing_object); 2192 } 2193 } 2194 } 2195 } 2196 2197 /* 2198 * vm_object_print: [ debug ] 2199 */ 2200 DB_SHOW_COMMAND(object, vm_object_print_static) 2201 { 2202 /* XXX convert args. */ 2203 vm_object_t object = (vm_object_t)addr; 2204 boolean_t full = have_addr; 2205 2206 vm_page_t p; 2207 2208 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2209 #define count was_count 2210 2211 int count; 2212 2213 if (object == NULL) 2214 return; 2215 2216 db_iprintf( 2217 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2218 object, (int)object->type, (uintmax_t)object->size, 2219 object->resident_page_count, object->ref_count, object->flags, 2220 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2221 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2222 object->shadow_count, 2223 object->backing_object ? object->backing_object->ref_count : 0, 2224 object->backing_object, (uintmax_t)object->backing_object_offset); 2225 2226 if (!full) 2227 return; 2228 2229 db_indent += 2; 2230 count = 0; 2231 TAILQ_FOREACH(p, &object->memq, listq) { 2232 if (count == 0) 2233 db_iprintf("memory:="); 2234 else if (count == 6) { 2235 db_printf("\n"); 2236 db_iprintf(" ..."); 2237 count = 0; 2238 } else 2239 db_printf(","); 2240 count++; 2241 2242 db_printf("(off=0x%jx,page=0x%jx)", 2243 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2244 } 2245 if (count != 0) 2246 db_printf("\n"); 2247 db_indent -= 2; 2248 } 2249 2250 /* XXX. */ 2251 #undef count 2252 2253 /* XXX need this non-static entry for calling from vm_map_print. */ 2254 void 2255 vm_object_print( 2256 /* db_expr_t */ long addr, 2257 boolean_t have_addr, 2258 /* db_expr_t */ long count, 2259 char *modif) 2260 { 2261 vm_object_print_static(addr, have_addr, count, modif); 2262 } 2263 2264 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2265 { 2266 vm_object_t object; 2267 vm_pindex_t fidx; 2268 vm_paddr_t pa; 2269 vm_page_t m, prev_m; 2270 int rcount, nl, c; 2271 2272 nl = 0; 2273 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2274 db_printf("new object: %p\n", (void *)object); 2275 if (nl > 18) { 2276 c = cngetc(); 2277 if (c != ' ') 2278 return; 2279 nl = 0; 2280 } 2281 nl++; 2282 rcount = 0; 2283 fidx = 0; 2284 pa = -1; 2285 TAILQ_FOREACH(m, &object->memq, listq) { 2286 if (m->pindex > 128) 2287 break; 2288 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2289 prev_m->pindex + 1 != m->pindex) { 2290 if (rcount) { 2291 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2292 (long)fidx, rcount, (long)pa); 2293 if (nl > 18) { 2294 c = cngetc(); 2295 if (c != ' ') 2296 return; 2297 nl = 0; 2298 } 2299 nl++; 2300 rcount = 0; 2301 } 2302 } 2303 if (rcount && 2304 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2305 ++rcount; 2306 continue; 2307 } 2308 if (rcount) { 2309 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2310 (long)fidx, rcount, (long)pa); 2311 if (nl > 18) { 2312 c = cngetc(); 2313 if (c != ' ') 2314 return; 2315 nl = 0; 2316 } 2317 nl++; 2318 } 2319 fidx = m->pindex; 2320 pa = VM_PAGE_TO_PHYS(m); 2321 rcount = 1; 2322 } 2323 if (rcount) { 2324 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2325 (long)fidx, rcount, (long)pa); 2326 if (nl > 18) { 2327 c = cngetc(); 2328 if (c != ' ') 2329 return; 2330 nl = 0; 2331 } 2332 nl++; 2333 } 2334 } 2335 } 2336 #endif /* DDB */ 2337