1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/vnode.h> 83 #include <sys/vmmeter.h> 84 #include <sys/sx.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_reserv.h> 99 #include <vm/uma.h> 100 101 static int old_msync; 102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 103 "Use old (insecure) msync behavior"); 104 105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 106 int pagerflags, int flags, boolean_t *clearobjflags, 107 boolean_t *eio); 108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 109 boolean_t *clearobjflags); 110 static void vm_object_qcollapse(vm_object_t object); 111 static void vm_object_vndeallocate(vm_object_t object); 112 113 /* 114 * Virtual memory objects maintain the actual data 115 * associated with allocated virtual memory. A given 116 * page of memory exists within exactly one object. 117 * 118 * An object is only deallocated when all "references" 119 * are given up. Only one "reference" to a given 120 * region of an object should be writeable. 121 * 122 * Associated with each object is a list of all resident 123 * memory pages belonging to that object; this list is 124 * maintained by the "vm_page" module, and locked by the object's 125 * lock. 126 * 127 * Each object also records a "pager" routine which is 128 * used to retrieve (and store) pages to the proper backing 129 * storage. In addition, objects may be backed by other 130 * objects from which they were virtual-copied. 131 * 132 * The only items within the object structure which are 133 * modified after time of creation are: 134 * reference count locked by object's lock 135 * pager routine locked by object's lock 136 * 137 */ 138 139 struct object_q vm_object_list; 140 struct mtx vm_object_list_mtx; /* lock for object list and count */ 141 142 struct vm_object kernel_object_store; 143 struct vm_object kmem_object_store; 144 145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 146 "VM object stats"); 147 148 static long object_collapses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 150 &object_collapses, 0, "VM object collapses"); 151 152 static long object_bypasses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 154 &object_bypasses, 0, "VM object bypasses"); 155 156 static uma_zone_t obj_zone; 157 158 static int vm_object_zinit(void *mem, int size, int flags); 159 160 #ifdef INVARIANTS 161 static void vm_object_zdtor(void *mem, int size, void *arg); 162 163 static void 164 vm_object_zdtor(void *mem, int size, void *arg) 165 { 166 vm_object_t object; 167 168 object = (vm_object_t)mem; 169 KASSERT(TAILQ_EMPTY(&object->memq), 170 ("object %p has resident pages in its memq", object)); 171 KASSERT(vm_radix_is_empty(&object->rtree), 172 ("object %p has resident pages in its trie", object)); 173 #if VM_NRESERVLEVEL > 0 174 KASSERT(LIST_EMPTY(&object->rvq), 175 ("object %p has reservations", 176 object)); 177 #endif 178 KASSERT(vm_object_cache_is_empty(object), 179 ("object %p has cached pages", 180 object)); 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 } 191 #endif 192 193 static int 194 vm_object_zinit(void *mem, int size, int flags) 195 { 196 vm_object_t object; 197 198 object = (vm_object_t)mem; 199 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 200 201 /* These are true for any object that has been freed */ 202 object->rtree.rt_root = 0; 203 object->rtree.rt_flags = 0; 204 object->paging_in_progress = 0; 205 object->resident_page_count = 0; 206 object->shadow_count = 0; 207 object->cache.rt_root = 0; 208 object->cache.rt_flags = 0; 209 return (0); 210 } 211 212 static void 213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 214 { 215 216 TAILQ_INIT(&object->memq); 217 LIST_INIT(&object->shadow_head); 218 219 object->type = type; 220 switch (type) { 221 case OBJT_DEAD: 222 panic("_vm_object_allocate: can't create OBJT_DEAD"); 223 case OBJT_DEFAULT: 224 case OBJT_SWAP: 225 object->flags = OBJ_ONEMAPPING; 226 break; 227 case OBJT_DEVICE: 228 case OBJT_SG: 229 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 230 break; 231 case OBJT_MGTDEVICE: 232 object->flags = OBJ_FICTITIOUS; 233 break; 234 case OBJT_PHYS: 235 object->flags = OBJ_UNMANAGED; 236 break; 237 case OBJT_VNODE: 238 object->flags = 0; 239 break; 240 default: 241 panic("_vm_object_allocate: type %d is undefined", type); 242 } 243 object->size = size; 244 object->generation = 1; 245 object->ref_count = 1; 246 object->memattr = VM_MEMATTR_DEFAULT; 247 object->cred = NULL; 248 object->charge = 0; 249 object->handle = NULL; 250 object->backing_object = NULL; 251 object->backing_object_offset = (vm_ooffset_t) 0; 252 #if VM_NRESERVLEVEL > 0 253 LIST_INIT(&object->rvq); 254 #endif 255 256 mtx_lock(&vm_object_list_mtx); 257 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 258 mtx_unlock(&vm_object_list_mtx); 259 } 260 261 /* 262 * vm_object_init: 263 * 264 * Initialize the VM objects module. 265 */ 266 void 267 vm_object_init(void) 268 { 269 TAILQ_INIT(&vm_object_list); 270 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 271 272 rw_init(&kernel_object->lock, "kernel vm object"); 273 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 274 kernel_object); 275 #if VM_NRESERVLEVEL > 0 276 kernel_object->flags |= OBJ_COLORED; 277 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 278 #endif 279 280 rw_init(&kmem_object->lock, "kmem vm object"); 281 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 282 kmem_object); 283 #if VM_NRESERVLEVEL > 0 284 kmem_object->flags |= OBJ_COLORED; 285 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 286 #endif 287 288 /* 289 * The lock portion of struct vm_object must be type stable due 290 * to vm_pageout_fallback_object_lock locking a vm object 291 * without holding any references to it. 292 */ 293 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 294 #ifdef INVARIANTS 295 vm_object_zdtor, 296 #else 297 NULL, 298 #endif 299 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 300 301 vm_radix_init(); 302 } 303 304 void 305 vm_object_clear_flag(vm_object_t object, u_short bits) 306 { 307 308 VM_OBJECT_ASSERT_WLOCKED(object); 309 object->flags &= ~bits; 310 } 311 312 /* 313 * Sets the default memory attribute for the specified object. Pages 314 * that are allocated to this object are by default assigned this memory 315 * attribute. 316 * 317 * Presently, this function must be called before any pages are allocated 318 * to the object. In the future, this requirement may be relaxed for 319 * "default" and "swap" objects. 320 */ 321 int 322 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 323 { 324 325 VM_OBJECT_ASSERT_WLOCKED(object); 326 switch (object->type) { 327 case OBJT_DEFAULT: 328 case OBJT_DEVICE: 329 case OBJT_MGTDEVICE: 330 case OBJT_PHYS: 331 case OBJT_SG: 332 case OBJT_SWAP: 333 case OBJT_VNODE: 334 if (!TAILQ_EMPTY(&object->memq)) 335 return (KERN_FAILURE); 336 break; 337 case OBJT_DEAD: 338 return (KERN_INVALID_ARGUMENT); 339 default: 340 panic("vm_object_set_memattr: object %p is of undefined type", 341 object); 342 } 343 object->memattr = memattr; 344 return (KERN_SUCCESS); 345 } 346 347 void 348 vm_object_pip_add(vm_object_t object, short i) 349 { 350 351 VM_OBJECT_ASSERT_WLOCKED(object); 352 object->paging_in_progress += i; 353 } 354 355 void 356 vm_object_pip_subtract(vm_object_t object, short i) 357 { 358 359 VM_OBJECT_ASSERT_WLOCKED(object); 360 object->paging_in_progress -= i; 361 } 362 363 void 364 vm_object_pip_wakeup(vm_object_t object) 365 { 366 367 VM_OBJECT_ASSERT_WLOCKED(object); 368 object->paging_in_progress--; 369 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 370 vm_object_clear_flag(object, OBJ_PIPWNT); 371 wakeup(object); 372 } 373 } 374 375 void 376 vm_object_pip_wakeupn(vm_object_t object, short i) 377 { 378 379 VM_OBJECT_ASSERT_WLOCKED(object); 380 if (i) 381 object->paging_in_progress -= i; 382 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 383 vm_object_clear_flag(object, OBJ_PIPWNT); 384 wakeup(object); 385 } 386 } 387 388 void 389 vm_object_pip_wait(vm_object_t object, char *waitid) 390 { 391 392 VM_OBJECT_ASSERT_WLOCKED(object); 393 while (object->paging_in_progress) { 394 object->flags |= OBJ_PIPWNT; 395 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 396 } 397 } 398 399 /* 400 * vm_object_allocate: 401 * 402 * Returns a new object with the given size. 403 */ 404 vm_object_t 405 vm_object_allocate(objtype_t type, vm_pindex_t size) 406 { 407 vm_object_t object; 408 409 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 410 _vm_object_allocate(type, size, object); 411 return (object); 412 } 413 414 415 /* 416 * vm_object_reference: 417 * 418 * Gets another reference to the given object. Note: OBJ_DEAD 419 * objects can be referenced during final cleaning. 420 */ 421 void 422 vm_object_reference(vm_object_t object) 423 { 424 if (object == NULL) 425 return; 426 VM_OBJECT_WLOCK(object); 427 vm_object_reference_locked(object); 428 VM_OBJECT_WUNLOCK(object); 429 } 430 431 /* 432 * vm_object_reference_locked: 433 * 434 * Gets another reference to the given object. 435 * 436 * The object must be locked. 437 */ 438 void 439 vm_object_reference_locked(vm_object_t object) 440 { 441 struct vnode *vp; 442 443 VM_OBJECT_ASSERT_WLOCKED(object); 444 object->ref_count++; 445 if (object->type == OBJT_VNODE) { 446 vp = object->handle; 447 vref(vp); 448 } 449 } 450 451 /* 452 * Handle deallocating an object of type OBJT_VNODE. 453 */ 454 static void 455 vm_object_vndeallocate(vm_object_t object) 456 { 457 struct vnode *vp = (struct vnode *) object->handle; 458 459 VM_OBJECT_ASSERT_WLOCKED(object); 460 KASSERT(object->type == OBJT_VNODE, 461 ("vm_object_vndeallocate: not a vnode object")); 462 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 463 #ifdef INVARIANTS 464 if (object->ref_count == 0) { 465 vprint("vm_object_vndeallocate", vp); 466 panic("vm_object_vndeallocate: bad object reference count"); 467 } 468 #endif 469 470 /* 471 * The test for text of vp vnode does not need a bypass to 472 * reach right VV_TEXT there, since it is obtained from 473 * object->handle. 474 */ 475 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 476 object->ref_count--; 477 VM_OBJECT_WUNLOCK(object); 478 /* vrele may need the vnode lock. */ 479 vrele(vp); 480 } else { 481 vhold(vp); 482 VM_OBJECT_WUNLOCK(object); 483 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 484 vdrop(vp); 485 VM_OBJECT_WLOCK(object); 486 object->ref_count--; 487 if (object->type == OBJT_DEAD) { 488 VM_OBJECT_WUNLOCK(object); 489 VOP_UNLOCK(vp, 0); 490 } else { 491 if (object->ref_count == 0) 492 VOP_UNSET_TEXT(vp); 493 VM_OBJECT_WUNLOCK(object); 494 vput(vp); 495 } 496 } 497 } 498 499 /* 500 * vm_object_deallocate: 501 * 502 * Release a reference to the specified object, 503 * gained either through a vm_object_allocate 504 * or a vm_object_reference call. When all references 505 * are gone, storage associated with this object 506 * may be relinquished. 507 * 508 * No object may be locked. 509 */ 510 void 511 vm_object_deallocate(vm_object_t object) 512 { 513 vm_object_t temp; 514 struct vnode *vp; 515 516 while (object != NULL) { 517 VM_OBJECT_WLOCK(object); 518 if (object->type == OBJT_VNODE) { 519 vm_object_vndeallocate(object); 520 return; 521 } 522 523 KASSERT(object->ref_count != 0, 524 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 525 526 /* 527 * If the reference count goes to 0 we start calling 528 * vm_object_terminate() on the object chain. 529 * A ref count of 1 may be a special case depending on the 530 * shadow count being 0 or 1. 531 */ 532 object->ref_count--; 533 if (object->ref_count > 1) { 534 VM_OBJECT_WUNLOCK(object); 535 return; 536 } else if (object->ref_count == 1) { 537 if (object->type == OBJT_SWAP && 538 (object->flags & OBJ_TMPFS) != 0) { 539 vp = object->un_pager.swp.swp_tmpfs; 540 vhold(vp); 541 VM_OBJECT_WUNLOCK(object); 542 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 543 VM_OBJECT_WLOCK(object); 544 if (object->type == OBJT_DEAD || 545 object->ref_count != 1) { 546 VM_OBJECT_WUNLOCK(object); 547 VOP_UNLOCK(vp, 0); 548 vdrop(vp); 549 return; 550 } 551 if ((object->flags & OBJ_TMPFS) != 0) 552 VOP_UNSET_TEXT(vp); 553 VOP_UNLOCK(vp, 0); 554 vdrop(vp); 555 } 556 if (object->shadow_count == 0 && 557 object->handle == NULL && 558 (object->type == OBJT_DEFAULT || 559 (object->type == OBJT_SWAP && 560 (object->flags & OBJ_TMPFS_NODE) == 0))) { 561 vm_object_set_flag(object, OBJ_ONEMAPPING); 562 } else if ((object->shadow_count == 1) && 563 (object->handle == NULL) && 564 (object->type == OBJT_DEFAULT || 565 object->type == OBJT_SWAP)) { 566 vm_object_t robject; 567 568 robject = LIST_FIRST(&object->shadow_head); 569 KASSERT(robject != NULL, 570 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 571 object->ref_count, 572 object->shadow_count)); 573 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 574 ("shadowed tmpfs v_object %p", object)); 575 if (!VM_OBJECT_TRYWLOCK(robject)) { 576 /* 577 * Avoid a potential deadlock. 578 */ 579 object->ref_count++; 580 VM_OBJECT_WUNLOCK(object); 581 /* 582 * More likely than not the thread 583 * holding robject's lock has lower 584 * priority than the current thread. 585 * Let the lower priority thread run. 586 */ 587 pause("vmo_de", 1); 588 continue; 589 } 590 /* 591 * Collapse object into its shadow unless its 592 * shadow is dead. In that case, object will 593 * be deallocated by the thread that is 594 * deallocating its shadow. 595 */ 596 if ((robject->flags & OBJ_DEAD) == 0 && 597 (robject->handle == NULL) && 598 (robject->type == OBJT_DEFAULT || 599 robject->type == OBJT_SWAP)) { 600 601 robject->ref_count++; 602 retry: 603 if (robject->paging_in_progress) { 604 VM_OBJECT_WUNLOCK(object); 605 vm_object_pip_wait(robject, 606 "objde1"); 607 temp = robject->backing_object; 608 if (object == temp) { 609 VM_OBJECT_WLOCK(object); 610 goto retry; 611 } 612 } else if (object->paging_in_progress) { 613 VM_OBJECT_WUNLOCK(robject); 614 object->flags |= OBJ_PIPWNT; 615 VM_OBJECT_SLEEP(object, object, 616 PDROP | PVM, "objde2", 0); 617 VM_OBJECT_WLOCK(robject); 618 temp = robject->backing_object; 619 if (object == temp) { 620 VM_OBJECT_WLOCK(object); 621 goto retry; 622 } 623 } else 624 VM_OBJECT_WUNLOCK(object); 625 626 if (robject->ref_count == 1) { 627 robject->ref_count--; 628 object = robject; 629 goto doterm; 630 } 631 object = robject; 632 vm_object_collapse(object); 633 VM_OBJECT_WUNLOCK(object); 634 continue; 635 } 636 VM_OBJECT_WUNLOCK(robject); 637 } 638 VM_OBJECT_WUNLOCK(object); 639 return; 640 } 641 doterm: 642 temp = object->backing_object; 643 if (temp != NULL) { 644 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 645 ("shadowed tmpfs v_object 2 %p", object)); 646 VM_OBJECT_WLOCK(temp); 647 LIST_REMOVE(object, shadow_list); 648 temp->shadow_count--; 649 VM_OBJECT_WUNLOCK(temp); 650 object->backing_object = NULL; 651 } 652 /* 653 * Don't double-terminate, we could be in a termination 654 * recursion due to the terminate having to sync data 655 * to disk. 656 */ 657 if ((object->flags & OBJ_DEAD) == 0) 658 vm_object_terminate(object); 659 else 660 VM_OBJECT_WUNLOCK(object); 661 object = temp; 662 } 663 } 664 665 /* 666 * vm_object_destroy removes the object from the global object list 667 * and frees the space for the object. 668 */ 669 void 670 vm_object_destroy(vm_object_t object) 671 { 672 673 /* 674 * Remove the object from the global object list. 675 */ 676 mtx_lock(&vm_object_list_mtx); 677 TAILQ_REMOVE(&vm_object_list, object, object_list); 678 mtx_unlock(&vm_object_list_mtx); 679 680 /* 681 * Release the allocation charge. 682 */ 683 if (object->cred != NULL) { 684 KASSERT(object->type == OBJT_DEFAULT || 685 object->type == OBJT_SWAP, 686 ("%s: non-swap obj %p has cred", __func__, object)); 687 swap_release_by_cred(object->charge, object->cred); 688 object->charge = 0; 689 crfree(object->cred); 690 object->cred = NULL; 691 } 692 693 /* 694 * Free the space for the object. 695 */ 696 uma_zfree(obj_zone, object); 697 } 698 699 /* 700 * vm_object_terminate actually destroys the specified object, freeing 701 * up all previously used resources. 702 * 703 * The object must be locked. 704 * This routine may block. 705 */ 706 void 707 vm_object_terminate(vm_object_t object) 708 { 709 vm_page_t p, p_next; 710 711 VM_OBJECT_ASSERT_WLOCKED(object); 712 713 /* 714 * Make sure no one uses us. 715 */ 716 vm_object_set_flag(object, OBJ_DEAD); 717 718 /* 719 * wait for the pageout daemon to be done with the object 720 */ 721 vm_object_pip_wait(object, "objtrm"); 722 723 KASSERT(!object->paging_in_progress, 724 ("vm_object_terminate: pageout in progress")); 725 726 /* 727 * Clean and free the pages, as appropriate. All references to the 728 * object are gone, so we don't need to lock it. 729 */ 730 if (object->type == OBJT_VNODE) { 731 struct vnode *vp = (struct vnode *)object->handle; 732 733 /* 734 * Clean pages and flush buffers. 735 */ 736 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 737 VM_OBJECT_WUNLOCK(object); 738 739 vinvalbuf(vp, V_SAVE, 0, 0); 740 741 VM_OBJECT_WLOCK(object); 742 } 743 744 KASSERT(object->ref_count == 0, 745 ("vm_object_terminate: object with references, ref_count=%d", 746 object->ref_count)); 747 748 /* 749 * Free any remaining pageable pages. This also removes them from the 750 * paging queues. However, don't free wired pages, just remove them 751 * from the object. Rather than incrementally removing each page from 752 * the object, the page and object are reset to any empty state. 753 */ 754 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 755 vm_page_assert_unbusied(p); 756 vm_page_lock(p); 757 /* 758 * Optimize the page's removal from the object by resetting 759 * its "object" field. Specifically, if the page is not 760 * wired, then the effect of this assignment is that 761 * vm_page_free()'s call to vm_page_remove() will return 762 * immediately without modifying the page or the object. 763 */ 764 p->object = NULL; 765 if (p->wire_count == 0) { 766 vm_page_free(p); 767 PCPU_INC(cnt.v_pfree); 768 } 769 vm_page_unlock(p); 770 } 771 /* 772 * If the object contained any pages, then reset it to an empty state. 773 * None of the object's fields, including "resident_page_count", were 774 * modified by the preceding loop. 775 */ 776 if (object->resident_page_count != 0) { 777 vm_radix_reclaim_allnodes(&object->rtree); 778 TAILQ_INIT(&object->memq); 779 object->resident_page_count = 0; 780 if (object->type == OBJT_VNODE) 781 vdrop(object->handle); 782 } 783 784 #if VM_NRESERVLEVEL > 0 785 if (__predict_false(!LIST_EMPTY(&object->rvq))) 786 vm_reserv_break_all(object); 787 #endif 788 if (__predict_false(!vm_object_cache_is_empty(object))) 789 vm_page_cache_free(object, 0, 0); 790 791 /* 792 * Let the pager know object is dead. 793 */ 794 vm_pager_deallocate(object); 795 VM_OBJECT_WUNLOCK(object); 796 797 vm_object_destroy(object); 798 } 799 800 /* 801 * Make the page read-only so that we can clear the object flags. However, if 802 * this is a nosync mmap then the object is likely to stay dirty so do not 803 * mess with the page and do not clear the object flags. Returns TRUE if the 804 * page should be flushed, and FALSE otherwise. 805 */ 806 static boolean_t 807 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 808 { 809 810 /* 811 * If we have been asked to skip nosync pages and this is a 812 * nosync page, skip it. Note that the object flags were not 813 * cleared in this case so we do not have to set them. 814 */ 815 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 816 *clearobjflags = FALSE; 817 return (FALSE); 818 } else { 819 pmap_remove_write(p); 820 return (p->dirty != 0); 821 } 822 } 823 824 /* 825 * vm_object_page_clean 826 * 827 * Clean all dirty pages in the specified range of object. Leaves page 828 * on whatever queue it is currently on. If NOSYNC is set then do not 829 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 830 * leaving the object dirty. 831 * 832 * When stuffing pages asynchronously, allow clustering. XXX we need a 833 * synchronous clustering mode implementation. 834 * 835 * Odd semantics: if start == end, we clean everything. 836 * 837 * The object must be locked. 838 * 839 * Returns FALSE if some page from the range was not written, as 840 * reported by the pager, and TRUE otherwise. 841 */ 842 boolean_t 843 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 844 int flags) 845 { 846 vm_page_t np, p; 847 vm_pindex_t pi, tend, tstart; 848 int curgeneration, n, pagerflags; 849 boolean_t clearobjflags, eio, res; 850 851 VM_OBJECT_ASSERT_WLOCKED(object); 852 853 /* 854 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 855 * objects. The check below prevents the function from 856 * operating on non-vnode objects. 857 */ 858 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 859 object->resident_page_count == 0) 860 return (TRUE); 861 862 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 863 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 864 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 865 866 tstart = OFF_TO_IDX(start); 867 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 868 clearobjflags = tstart == 0 && tend >= object->size; 869 res = TRUE; 870 871 rescan: 872 curgeneration = object->generation; 873 874 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 875 pi = p->pindex; 876 if (pi >= tend) 877 break; 878 np = TAILQ_NEXT(p, listq); 879 if (p->valid == 0) 880 continue; 881 if (vm_page_sleep_if_busy(p, "vpcwai")) { 882 if (object->generation != curgeneration) { 883 if ((flags & OBJPC_SYNC) != 0) 884 goto rescan; 885 else 886 clearobjflags = FALSE; 887 } 888 np = vm_page_find_least(object, pi); 889 continue; 890 } 891 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 892 continue; 893 894 n = vm_object_page_collect_flush(object, p, pagerflags, 895 flags, &clearobjflags, &eio); 896 if (eio) { 897 res = FALSE; 898 clearobjflags = FALSE; 899 } 900 if (object->generation != curgeneration) { 901 if ((flags & OBJPC_SYNC) != 0) 902 goto rescan; 903 else 904 clearobjflags = FALSE; 905 } 906 907 /* 908 * If the VOP_PUTPAGES() did a truncated write, so 909 * that even the first page of the run is not fully 910 * written, vm_pageout_flush() returns 0 as the run 911 * length. Since the condition that caused truncated 912 * write may be permanent, e.g. exhausted free space, 913 * accepting n == 0 would cause an infinite loop. 914 * 915 * Forwarding the iterator leaves the unwritten page 916 * behind, but there is not much we can do there if 917 * filesystem refuses to write it. 918 */ 919 if (n == 0) { 920 n = 1; 921 clearobjflags = FALSE; 922 } 923 np = vm_page_find_least(object, pi + n); 924 } 925 #if 0 926 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 927 #endif 928 929 if (clearobjflags) 930 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 931 return (res); 932 } 933 934 static int 935 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 936 int flags, boolean_t *clearobjflags, boolean_t *eio) 937 { 938 vm_page_t ma[vm_pageout_page_count], p_first, tp; 939 int count, i, mreq, runlen; 940 941 vm_page_lock_assert(p, MA_NOTOWNED); 942 VM_OBJECT_ASSERT_WLOCKED(object); 943 944 count = 1; 945 mreq = 0; 946 947 for (tp = p; count < vm_pageout_page_count; count++) { 948 tp = vm_page_next(tp); 949 if (tp == NULL || vm_page_busied(tp)) 950 break; 951 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 952 break; 953 } 954 955 for (p_first = p; count < vm_pageout_page_count; count++) { 956 tp = vm_page_prev(p_first); 957 if (tp == NULL || vm_page_busied(tp)) 958 break; 959 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 960 break; 961 p_first = tp; 962 mreq++; 963 } 964 965 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 966 ma[i] = tp; 967 968 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 969 return (runlen); 970 } 971 972 /* 973 * Note that there is absolutely no sense in writing out 974 * anonymous objects, so we track down the vnode object 975 * to write out. 976 * We invalidate (remove) all pages from the address space 977 * for semantic correctness. 978 * 979 * If the backing object is a device object with unmanaged pages, then any 980 * mappings to the specified range of pages must be removed before this 981 * function is called. 982 * 983 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 984 * may start out with a NULL object. 985 */ 986 boolean_t 987 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 988 boolean_t syncio, boolean_t invalidate) 989 { 990 vm_object_t backing_object; 991 struct vnode *vp; 992 struct mount *mp; 993 int error, flags, fsync_after; 994 boolean_t res; 995 996 if (object == NULL) 997 return (TRUE); 998 res = TRUE; 999 error = 0; 1000 VM_OBJECT_WLOCK(object); 1001 while ((backing_object = object->backing_object) != NULL) { 1002 VM_OBJECT_WLOCK(backing_object); 1003 offset += object->backing_object_offset; 1004 VM_OBJECT_WUNLOCK(object); 1005 object = backing_object; 1006 if (object->size < OFF_TO_IDX(offset + size)) 1007 size = IDX_TO_OFF(object->size) - offset; 1008 } 1009 /* 1010 * Flush pages if writing is allowed, invalidate them 1011 * if invalidation requested. Pages undergoing I/O 1012 * will be ignored by vm_object_page_remove(). 1013 * 1014 * We cannot lock the vnode and then wait for paging 1015 * to complete without deadlocking against vm_fault. 1016 * Instead we simply call vm_object_page_remove() and 1017 * allow it to block internally on a page-by-page 1018 * basis when it encounters pages undergoing async 1019 * I/O. 1020 */ 1021 if (object->type == OBJT_VNODE && 1022 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1023 vp = object->handle; 1024 VM_OBJECT_WUNLOCK(object); 1025 (void) vn_start_write(vp, &mp, V_WAIT); 1026 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1027 if (syncio && !invalidate && offset == 0 && 1028 OFF_TO_IDX(size) == object->size) { 1029 /* 1030 * If syncing the whole mapping of the file, 1031 * it is faster to schedule all the writes in 1032 * async mode, also allowing the clustering, 1033 * and then wait for i/o to complete. 1034 */ 1035 flags = 0; 1036 fsync_after = TRUE; 1037 } else { 1038 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1039 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1040 fsync_after = FALSE; 1041 } 1042 VM_OBJECT_WLOCK(object); 1043 res = vm_object_page_clean(object, offset, offset + size, 1044 flags); 1045 VM_OBJECT_WUNLOCK(object); 1046 if (fsync_after) 1047 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1048 VOP_UNLOCK(vp, 0); 1049 vn_finished_write(mp); 1050 if (error != 0) 1051 res = FALSE; 1052 VM_OBJECT_WLOCK(object); 1053 } 1054 if ((object->type == OBJT_VNODE || 1055 object->type == OBJT_DEVICE) && invalidate) { 1056 if (object->type == OBJT_DEVICE) 1057 /* 1058 * The option OBJPR_NOTMAPPED must be passed here 1059 * because vm_object_page_remove() cannot remove 1060 * unmanaged mappings. 1061 */ 1062 flags = OBJPR_NOTMAPPED; 1063 else if (old_msync) 1064 flags = OBJPR_NOTWIRED; 1065 else 1066 flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED; 1067 vm_object_page_remove(object, OFF_TO_IDX(offset), 1068 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1069 } 1070 VM_OBJECT_WUNLOCK(object); 1071 return (res); 1072 } 1073 1074 /* 1075 * vm_object_madvise: 1076 * 1077 * Implements the madvise function at the object/page level. 1078 * 1079 * MADV_WILLNEED (any object) 1080 * 1081 * Activate the specified pages if they are resident. 1082 * 1083 * MADV_DONTNEED (any object) 1084 * 1085 * Deactivate the specified pages if they are resident. 1086 * 1087 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1088 * OBJ_ONEMAPPING only) 1089 * 1090 * Deactivate and clean the specified pages if they are 1091 * resident. This permits the process to reuse the pages 1092 * without faulting or the kernel to reclaim the pages 1093 * without I/O. 1094 */ 1095 void 1096 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1097 int advise) 1098 { 1099 vm_pindex_t tpindex; 1100 vm_object_t backing_object, tobject; 1101 vm_page_t m; 1102 1103 if (object == NULL) 1104 return; 1105 VM_OBJECT_WLOCK(object); 1106 /* 1107 * Locate and adjust resident pages 1108 */ 1109 for (; pindex < end; pindex += 1) { 1110 relookup: 1111 tobject = object; 1112 tpindex = pindex; 1113 shadowlookup: 1114 /* 1115 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1116 * and those pages must be OBJ_ONEMAPPING. 1117 */ 1118 if (advise == MADV_FREE) { 1119 if ((tobject->type != OBJT_DEFAULT && 1120 tobject->type != OBJT_SWAP) || 1121 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1122 goto unlock_tobject; 1123 } 1124 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1125 goto unlock_tobject; 1126 m = vm_page_lookup(tobject, tpindex); 1127 if (m == NULL && advise == MADV_WILLNEED) { 1128 /* 1129 * If the page is cached, reactivate it. 1130 */ 1131 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1132 VM_ALLOC_NOBUSY); 1133 } 1134 if (m == NULL) { 1135 /* 1136 * There may be swap even if there is no backing page 1137 */ 1138 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1139 swap_pager_freespace(tobject, tpindex, 1); 1140 /* 1141 * next object 1142 */ 1143 backing_object = tobject->backing_object; 1144 if (backing_object == NULL) 1145 goto unlock_tobject; 1146 VM_OBJECT_WLOCK(backing_object); 1147 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1148 if (tobject != object) 1149 VM_OBJECT_WUNLOCK(tobject); 1150 tobject = backing_object; 1151 goto shadowlookup; 1152 } else if (m->valid != VM_PAGE_BITS_ALL) 1153 goto unlock_tobject; 1154 /* 1155 * If the page is not in a normal state, skip it. 1156 */ 1157 vm_page_lock(m); 1158 if (m->hold_count != 0 || m->wire_count != 0) { 1159 vm_page_unlock(m); 1160 goto unlock_tobject; 1161 } 1162 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1163 ("vm_object_madvise: page %p is fictitious", m)); 1164 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1165 ("vm_object_madvise: page %p is not managed", m)); 1166 if (vm_page_busied(m)) { 1167 if (advise == MADV_WILLNEED) { 1168 /* 1169 * Reference the page before unlocking and 1170 * sleeping so that the page daemon is less 1171 * likely to reclaim it. 1172 */ 1173 vm_page_aflag_set(m, PGA_REFERENCED); 1174 } 1175 if (object != tobject) 1176 VM_OBJECT_WUNLOCK(object); 1177 VM_OBJECT_WUNLOCK(tobject); 1178 vm_page_busy_sleep(m, "madvpo"); 1179 VM_OBJECT_WLOCK(object); 1180 goto relookup; 1181 } 1182 if (advise == MADV_WILLNEED) { 1183 vm_page_activate(m); 1184 } else { 1185 vm_page_advise(m, advise); 1186 } 1187 vm_page_unlock(m); 1188 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1189 swap_pager_freespace(tobject, tpindex, 1); 1190 unlock_tobject: 1191 if (tobject != object) 1192 VM_OBJECT_WUNLOCK(tobject); 1193 } 1194 VM_OBJECT_WUNLOCK(object); 1195 } 1196 1197 /* 1198 * vm_object_shadow: 1199 * 1200 * Create a new object which is backed by the 1201 * specified existing object range. The source 1202 * object reference is deallocated. 1203 * 1204 * The new object and offset into that object 1205 * are returned in the source parameters. 1206 */ 1207 void 1208 vm_object_shadow( 1209 vm_object_t *object, /* IN/OUT */ 1210 vm_ooffset_t *offset, /* IN/OUT */ 1211 vm_size_t length) 1212 { 1213 vm_object_t source; 1214 vm_object_t result; 1215 1216 source = *object; 1217 1218 /* 1219 * Don't create the new object if the old object isn't shared. 1220 */ 1221 if (source != NULL) { 1222 VM_OBJECT_WLOCK(source); 1223 if (source->ref_count == 1 && 1224 source->handle == NULL && 1225 (source->type == OBJT_DEFAULT || 1226 source->type == OBJT_SWAP)) { 1227 VM_OBJECT_WUNLOCK(source); 1228 return; 1229 } 1230 VM_OBJECT_WUNLOCK(source); 1231 } 1232 1233 /* 1234 * Allocate a new object with the given length. 1235 */ 1236 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1237 1238 /* 1239 * The new object shadows the source object, adding a reference to it. 1240 * Our caller changes his reference to point to the new object, 1241 * removing a reference to the source object. Net result: no change 1242 * of reference count. 1243 * 1244 * Try to optimize the result object's page color when shadowing 1245 * in order to maintain page coloring consistency in the combined 1246 * shadowed object. 1247 */ 1248 result->backing_object = source; 1249 /* 1250 * Store the offset into the source object, and fix up the offset into 1251 * the new object. 1252 */ 1253 result->backing_object_offset = *offset; 1254 if (source != NULL) { 1255 VM_OBJECT_WLOCK(source); 1256 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1257 source->shadow_count++; 1258 #if VM_NRESERVLEVEL > 0 1259 result->flags |= source->flags & OBJ_COLORED; 1260 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1261 ((1 << (VM_NFREEORDER - 1)) - 1); 1262 #endif 1263 VM_OBJECT_WUNLOCK(source); 1264 } 1265 1266 1267 /* 1268 * Return the new things 1269 */ 1270 *offset = 0; 1271 *object = result; 1272 } 1273 1274 /* 1275 * vm_object_split: 1276 * 1277 * Split the pages in a map entry into a new object. This affords 1278 * easier removal of unused pages, and keeps object inheritance from 1279 * being a negative impact on memory usage. 1280 */ 1281 void 1282 vm_object_split(vm_map_entry_t entry) 1283 { 1284 vm_page_t m, m_next; 1285 vm_object_t orig_object, new_object, source; 1286 vm_pindex_t idx, offidxstart; 1287 vm_size_t size; 1288 1289 orig_object = entry->object.vm_object; 1290 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1291 return; 1292 if (orig_object->ref_count <= 1) 1293 return; 1294 VM_OBJECT_WUNLOCK(orig_object); 1295 1296 offidxstart = OFF_TO_IDX(entry->offset); 1297 size = atop(entry->end - entry->start); 1298 1299 /* 1300 * If swap_pager_copy() is later called, it will convert new_object 1301 * into a swap object. 1302 */ 1303 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1304 1305 /* 1306 * At this point, the new object is still private, so the order in 1307 * which the original and new objects are locked does not matter. 1308 */ 1309 VM_OBJECT_WLOCK(new_object); 1310 VM_OBJECT_WLOCK(orig_object); 1311 source = orig_object->backing_object; 1312 if (source != NULL) { 1313 VM_OBJECT_WLOCK(source); 1314 if ((source->flags & OBJ_DEAD) != 0) { 1315 VM_OBJECT_WUNLOCK(source); 1316 VM_OBJECT_WUNLOCK(orig_object); 1317 VM_OBJECT_WUNLOCK(new_object); 1318 vm_object_deallocate(new_object); 1319 VM_OBJECT_WLOCK(orig_object); 1320 return; 1321 } 1322 LIST_INSERT_HEAD(&source->shadow_head, 1323 new_object, shadow_list); 1324 source->shadow_count++; 1325 vm_object_reference_locked(source); /* for new_object */ 1326 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1327 VM_OBJECT_WUNLOCK(source); 1328 new_object->backing_object_offset = 1329 orig_object->backing_object_offset + entry->offset; 1330 new_object->backing_object = source; 1331 } 1332 if (orig_object->cred != NULL) { 1333 new_object->cred = orig_object->cred; 1334 crhold(orig_object->cred); 1335 new_object->charge = ptoa(size); 1336 KASSERT(orig_object->charge >= ptoa(size), 1337 ("orig_object->charge < 0")); 1338 orig_object->charge -= ptoa(size); 1339 } 1340 retry: 1341 m = vm_page_find_least(orig_object, offidxstart); 1342 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1343 m = m_next) { 1344 m_next = TAILQ_NEXT(m, listq); 1345 1346 /* 1347 * We must wait for pending I/O to complete before we can 1348 * rename the page. 1349 * 1350 * We do not have to VM_PROT_NONE the page as mappings should 1351 * not be changed by this operation. 1352 */ 1353 if (vm_page_busied(m)) { 1354 VM_OBJECT_WUNLOCK(new_object); 1355 vm_page_lock(m); 1356 VM_OBJECT_WUNLOCK(orig_object); 1357 vm_page_busy_sleep(m, "spltwt"); 1358 VM_OBJECT_WLOCK(orig_object); 1359 VM_OBJECT_WLOCK(new_object); 1360 goto retry; 1361 } 1362 1363 /* vm_page_rename() will handle dirty and cache. */ 1364 if (vm_page_rename(m, new_object, idx)) { 1365 VM_OBJECT_WUNLOCK(new_object); 1366 VM_OBJECT_WUNLOCK(orig_object); 1367 VM_WAIT; 1368 VM_OBJECT_WLOCK(orig_object); 1369 VM_OBJECT_WLOCK(new_object); 1370 goto retry; 1371 } 1372 #if VM_NRESERVLEVEL > 0 1373 /* 1374 * If some of the reservation's allocated pages remain with 1375 * the original object, then transferring the reservation to 1376 * the new object is neither particularly beneficial nor 1377 * particularly harmful as compared to leaving the reservation 1378 * with the original object. If, however, all of the 1379 * reservation's allocated pages are transferred to the new 1380 * object, then transferring the reservation is typically 1381 * beneficial. Determining which of these two cases applies 1382 * would be more costly than unconditionally renaming the 1383 * reservation. 1384 */ 1385 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1386 #endif 1387 if (orig_object->type == OBJT_SWAP) 1388 vm_page_xbusy(m); 1389 } 1390 if (orig_object->type == OBJT_SWAP) { 1391 /* 1392 * swap_pager_copy() can sleep, in which case the orig_object's 1393 * and new_object's locks are released and reacquired. 1394 */ 1395 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1396 TAILQ_FOREACH(m, &new_object->memq, listq) 1397 vm_page_xunbusy(m); 1398 1399 /* 1400 * Transfer any cached pages from orig_object to new_object. 1401 * If swap_pager_copy() found swapped out pages within the 1402 * specified range of orig_object, then it changed 1403 * new_object's type to OBJT_SWAP when it transferred those 1404 * pages to new_object. Otherwise, new_object's type 1405 * should still be OBJT_DEFAULT and orig_object should not 1406 * contain any cached pages within the specified range. 1407 */ 1408 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1409 vm_page_cache_transfer(orig_object, offidxstart, 1410 new_object); 1411 } 1412 VM_OBJECT_WUNLOCK(orig_object); 1413 VM_OBJECT_WUNLOCK(new_object); 1414 entry->object.vm_object = new_object; 1415 entry->offset = 0LL; 1416 vm_object_deallocate(orig_object); 1417 VM_OBJECT_WLOCK(new_object); 1418 } 1419 1420 #define OBSC_TEST_ALL_SHADOWED 0x0001 1421 #define OBSC_COLLAPSE_NOWAIT 0x0002 1422 #define OBSC_COLLAPSE_WAIT 0x0004 1423 1424 static int 1425 vm_object_backing_scan(vm_object_t object, int op) 1426 { 1427 int r = 1; 1428 vm_page_t p; 1429 vm_object_t backing_object; 1430 vm_pindex_t backing_offset_index; 1431 1432 VM_OBJECT_ASSERT_WLOCKED(object); 1433 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1434 1435 backing_object = object->backing_object; 1436 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1437 1438 /* 1439 * Initial conditions 1440 */ 1441 if (op & OBSC_TEST_ALL_SHADOWED) { 1442 /* 1443 * We do not want to have to test for the existence of cache 1444 * or swap pages in the backing object. XXX but with the 1445 * new swapper this would be pretty easy to do. 1446 * 1447 * XXX what about anonymous MAP_SHARED memory that hasn't 1448 * been ZFOD faulted yet? If we do not test for this, the 1449 * shadow test may succeed! XXX 1450 */ 1451 if (backing_object->type != OBJT_DEFAULT) { 1452 return (0); 1453 } 1454 } 1455 if (op & OBSC_COLLAPSE_WAIT) { 1456 vm_object_set_flag(backing_object, OBJ_DEAD); 1457 } 1458 1459 /* 1460 * Our scan 1461 */ 1462 p = TAILQ_FIRST(&backing_object->memq); 1463 while (p) { 1464 vm_page_t next = TAILQ_NEXT(p, listq); 1465 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1466 1467 if (op & OBSC_TEST_ALL_SHADOWED) { 1468 vm_page_t pp; 1469 1470 /* 1471 * Ignore pages outside the parent object's range 1472 * and outside the parent object's mapping of the 1473 * backing object. 1474 * 1475 * note that we do not busy the backing object's 1476 * page. 1477 */ 1478 if ( 1479 p->pindex < backing_offset_index || 1480 new_pindex >= object->size 1481 ) { 1482 p = next; 1483 continue; 1484 } 1485 1486 /* 1487 * See if the parent has the page or if the parent's 1488 * object pager has the page. If the parent has the 1489 * page but the page is not valid, the parent's 1490 * object pager must have the page. 1491 * 1492 * If this fails, the parent does not completely shadow 1493 * the object and we might as well give up now. 1494 */ 1495 1496 pp = vm_page_lookup(object, new_pindex); 1497 if ( 1498 (pp == NULL || pp->valid == 0) && 1499 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1500 ) { 1501 r = 0; 1502 break; 1503 } 1504 } 1505 1506 /* 1507 * Check for busy page 1508 */ 1509 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1510 vm_page_t pp; 1511 1512 if (op & OBSC_COLLAPSE_NOWAIT) { 1513 if (!p->valid || vm_page_busied(p)) { 1514 p = next; 1515 continue; 1516 } 1517 } else if (op & OBSC_COLLAPSE_WAIT) { 1518 if (vm_page_busied(p)) { 1519 VM_OBJECT_WUNLOCK(object); 1520 vm_page_lock(p); 1521 VM_OBJECT_WUNLOCK(backing_object); 1522 vm_page_busy_sleep(p, "vmocol"); 1523 VM_OBJECT_WLOCK(object); 1524 VM_OBJECT_WLOCK(backing_object); 1525 /* 1526 * If we slept, anything could have 1527 * happened. Since the object is 1528 * marked dead, the backing offset 1529 * should not have changed so we 1530 * just restart our scan. 1531 */ 1532 p = TAILQ_FIRST(&backing_object->memq); 1533 continue; 1534 } 1535 } 1536 1537 KASSERT( 1538 p->object == backing_object, 1539 ("vm_object_backing_scan: object mismatch") 1540 ); 1541 1542 if ( 1543 p->pindex < backing_offset_index || 1544 new_pindex >= object->size 1545 ) { 1546 if (backing_object->type == OBJT_SWAP) 1547 swap_pager_freespace(backing_object, 1548 p->pindex, 1); 1549 1550 /* 1551 * Page is out of the parent object's range, we 1552 * can simply destroy it. 1553 */ 1554 vm_page_lock(p); 1555 KASSERT(!pmap_page_is_mapped(p), 1556 ("freeing mapped page %p", p)); 1557 if (p->wire_count == 0) 1558 vm_page_free(p); 1559 else 1560 vm_page_remove(p); 1561 vm_page_unlock(p); 1562 p = next; 1563 continue; 1564 } 1565 1566 pp = vm_page_lookup(object, new_pindex); 1567 if ( 1568 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1569 (pp != NULL && pp->valid == 0) 1570 ) { 1571 if (backing_object->type == OBJT_SWAP) 1572 swap_pager_freespace(backing_object, 1573 p->pindex, 1); 1574 1575 /* 1576 * The page in the parent is not (yet) valid. 1577 * We don't know anything about the state of 1578 * the original page. It might be mapped, 1579 * so we must avoid the next if here. 1580 * 1581 * This is due to a race in vm_fault() where 1582 * we must unbusy the original (backing_obj) 1583 * page before we can (re)lock the parent. 1584 * Hence we can get here. 1585 */ 1586 p = next; 1587 continue; 1588 } 1589 if ( 1590 pp != NULL || 1591 vm_pager_has_page(object, new_pindex, NULL, NULL) 1592 ) { 1593 if (backing_object->type == OBJT_SWAP) 1594 swap_pager_freespace(backing_object, 1595 p->pindex, 1); 1596 1597 /* 1598 * page already exists in parent OR swap exists 1599 * for this location in the parent. Destroy 1600 * the original page from the backing object. 1601 * 1602 * Leave the parent's page alone 1603 */ 1604 vm_page_lock(p); 1605 KASSERT(!pmap_page_is_mapped(p), 1606 ("freeing mapped page %p", p)); 1607 if (p->wire_count == 0) 1608 vm_page_free(p); 1609 else 1610 vm_page_remove(p); 1611 vm_page_unlock(p); 1612 p = next; 1613 continue; 1614 } 1615 1616 /* 1617 * Page does not exist in parent, rename the 1618 * page from the backing object to the main object. 1619 * 1620 * If the page was mapped to a process, it can remain 1621 * mapped through the rename. 1622 * vm_page_rename() will handle dirty and cache. 1623 */ 1624 if (vm_page_rename(p, object, new_pindex)) { 1625 if (op & OBSC_COLLAPSE_NOWAIT) { 1626 p = next; 1627 continue; 1628 } 1629 VM_OBJECT_WUNLOCK(backing_object); 1630 VM_OBJECT_WUNLOCK(object); 1631 VM_WAIT; 1632 VM_OBJECT_WLOCK(object); 1633 VM_OBJECT_WLOCK(backing_object); 1634 p = TAILQ_FIRST(&backing_object->memq); 1635 continue; 1636 } 1637 1638 /* Use the old pindex to free the right page. */ 1639 if (backing_object->type == OBJT_SWAP) 1640 swap_pager_freespace(backing_object, 1641 new_pindex + backing_offset_index, 1); 1642 1643 #if VM_NRESERVLEVEL > 0 1644 /* 1645 * Rename the reservation. 1646 */ 1647 vm_reserv_rename(p, object, backing_object, 1648 backing_offset_index); 1649 #endif 1650 } 1651 p = next; 1652 } 1653 return (r); 1654 } 1655 1656 1657 /* 1658 * this version of collapse allows the operation to occur earlier and 1659 * when paging_in_progress is true for an object... This is not a complete 1660 * operation, but should plug 99.9% of the rest of the leaks. 1661 */ 1662 static void 1663 vm_object_qcollapse(vm_object_t object) 1664 { 1665 vm_object_t backing_object = object->backing_object; 1666 1667 VM_OBJECT_ASSERT_WLOCKED(object); 1668 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1669 1670 if (backing_object->ref_count != 1) 1671 return; 1672 1673 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1674 } 1675 1676 /* 1677 * vm_object_collapse: 1678 * 1679 * Collapse an object with the object backing it. 1680 * Pages in the backing object are moved into the 1681 * parent, and the backing object is deallocated. 1682 */ 1683 void 1684 vm_object_collapse(vm_object_t object) 1685 { 1686 VM_OBJECT_ASSERT_WLOCKED(object); 1687 1688 while (TRUE) { 1689 vm_object_t backing_object; 1690 1691 /* 1692 * Verify that the conditions are right for collapse: 1693 * 1694 * The object exists and the backing object exists. 1695 */ 1696 if ((backing_object = object->backing_object) == NULL) 1697 break; 1698 1699 /* 1700 * we check the backing object first, because it is most likely 1701 * not collapsable. 1702 */ 1703 VM_OBJECT_WLOCK(backing_object); 1704 if (backing_object->handle != NULL || 1705 (backing_object->type != OBJT_DEFAULT && 1706 backing_object->type != OBJT_SWAP) || 1707 (backing_object->flags & OBJ_DEAD) || 1708 object->handle != NULL || 1709 (object->type != OBJT_DEFAULT && 1710 object->type != OBJT_SWAP) || 1711 (object->flags & OBJ_DEAD)) { 1712 VM_OBJECT_WUNLOCK(backing_object); 1713 break; 1714 } 1715 1716 if ( 1717 object->paging_in_progress != 0 || 1718 backing_object->paging_in_progress != 0 1719 ) { 1720 vm_object_qcollapse(object); 1721 VM_OBJECT_WUNLOCK(backing_object); 1722 break; 1723 } 1724 /* 1725 * We know that we can either collapse the backing object (if 1726 * the parent is the only reference to it) or (perhaps) have 1727 * the parent bypass the object if the parent happens to shadow 1728 * all the resident pages in the entire backing object. 1729 * 1730 * This is ignoring pager-backed pages such as swap pages. 1731 * vm_object_backing_scan fails the shadowing test in this 1732 * case. 1733 */ 1734 if (backing_object->ref_count == 1) { 1735 /* 1736 * If there is exactly one reference to the backing 1737 * object, we can collapse it into the parent. 1738 */ 1739 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1740 1741 #if VM_NRESERVLEVEL > 0 1742 /* 1743 * Break any reservations from backing_object. 1744 */ 1745 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1746 vm_reserv_break_all(backing_object); 1747 #endif 1748 1749 /* 1750 * Move the pager from backing_object to object. 1751 */ 1752 if (backing_object->type == OBJT_SWAP) { 1753 /* 1754 * swap_pager_copy() can sleep, in which case 1755 * the backing_object's and object's locks are 1756 * released and reacquired. 1757 * Since swap_pager_copy() is being asked to 1758 * destroy the source, it will change the 1759 * backing_object's type to OBJT_DEFAULT. 1760 */ 1761 swap_pager_copy( 1762 backing_object, 1763 object, 1764 OFF_TO_IDX(object->backing_object_offset), TRUE); 1765 1766 /* 1767 * Free any cached pages from backing_object. 1768 */ 1769 if (__predict_false( 1770 !vm_object_cache_is_empty(backing_object))) 1771 vm_page_cache_free(backing_object, 0, 0); 1772 } 1773 /* 1774 * Object now shadows whatever backing_object did. 1775 * Note that the reference to 1776 * backing_object->backing_object moves from within 1777 * backing_object to within object. 1778 */ 1779 LIST_REMOVE(object, shadow_list); 1780 backing_object->shadow_count--; 1781 if (backing_object->backing_object) { 1782 VM_OBJECT_WLOCK(backing_object->backing_object); 1783 LIST_REMOVE(backing_object, shadow_list); 1784 LIST_INSERT_HEAD( 1785 &backing_object->backing_object->shadow_head, 1786 object, shadow_list); 1787 /* 1788 * The shadow_count has not changed. 1789 */ 1790 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1791 } 1792 object->backing_object = backing_object->backing_object; 1793 object->backing_object_offset += 1794 backing_object->backing_object_offset; 1795 1796 /* 1797 * Discard backing_object. 1798 * 1799 * Since the backing object has no pages, no pager left, 1800 * and no object references within it, all that is 1801 * necessary is to dispose of it. 1802 */ 1803 KASSERT(backing_object->ref_count == 1, ( 1804 "backing_object %p was somehow re-referenced during collapse!", 1805 backing_object)); 1806 VM_OBJECT_WUNLOCK(backing_object); 1807 vm_object_destroy(backing_object); 1808 1809 object_collapses++; 1810 } else { 1811 vm_object_t new_backing_object; 1812 1813 /* 1814 * If we do not entirely shadow the backing object, 1815 * there is nothing we can do so we give up. 1816 */ 1817 if (object->resident_page_count != object->size && 1818 vm_object_backing_scan(object, 1819 OBSC_TEST_ALL_SHADOWED) == 0) { 1820 VM_OBJECT_WUNLOCK(backing_object); 1821 break; 1822 } 1823 1824 /* 1825 * Make the parent shadow the next object in the 1826 * chain. Deallocating backing_object will not remove 1827 * it, since its reference count is at least 2. 1828 */ 1829 LIST_REMOVE(object, shadow_list); 1830 backing_object->shadow_count--; 1831 1832 new_backing_object = backing_object->backing_object; 1833 if ((object->backing_object = new_backing_object) != NULL) { 1834 VM_OBJECT_WLOCK(new_backing_object); 1835 LIST_INSERT_HEAD( 1836 &new_backing_object->shadow_head, 1837 object, 1838 shadow_list 1839 ); 1840 new_backing_object->shadow_count++; 1841 vm_object_reference_locked(new_backing_object); 1842 VM_OBJECT_WUNLOCK(new_backing_object); 1843 object->backing_object_offset += 1844 backing_object->backing_object_offset; 1845 } 1846 1847 /* 1848 * Drop the reference count on backing_object. Since 1849 * its ref_count was at least 2, it will not vanish. 1850 */ 1851 backing_object->ref_count--; 1852 VM_OBJECT_WUNLOCK(backing_object); 1853 object_bypasses++; 1854 } 1855 1856 /* 1857 * Try again with this object's new backing object. 1858 */ 1859 } 1860 } 1861 1862 /* 1863 * vm_object_page_remove: 1864 * 1865 * For the given object, either frees or invalidates each of the 1866 * specified pages. In general, a page is freed. However, if a page is 1867 * wired for any reason other than the existence of a managed, wired 1868 * mapping, then it may be invalidated but not removed from the object. 1869 * Pages are specified by the given range ["start", "end") and the option 1870 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1871 * extends from "start" to the end of the object. If the option 1872 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1873 * specified range are affected. If the option OBJPR_NOTMAPPED is 1874 * specified, then the pages within the specified range must have no 1875 * mappings. Otherwise, if this option is not specified, any mappings to 1876 * the specified pages are removed before the pages are freed or 1877 * invalidated. 1878 * 1879 * In general, this operation should only be performed on objects that 1880 * contain managed pages. There are, however, two exceptions. First, it 1881 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1882 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1883 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1884 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1885 * 1886 * The object must be locked. 1887 */ 1888 void 1889 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1890 int options) 1891 { 1892 vm_page_t p, next; 1893 int wirings; 1894 1895 VM_OBJECT_ASSERT_WLOCKED(object); 1896 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1897 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1898 ("vm_object_page_remove: illegal options for object %p", object)); 1899 if (object->resident_page_count == 0) 1900 goto skipmemq; 1901 vm_object_pip_add(object, 1); 1902 again: 1903 p = vm_page_find_least(object, start); 1904 1905 /* 1906 * Here, the variable "p" is either (1) the page with the least pindex 1907 * greater than or equal to the parameter "start" or (2) NULL. 1908 */ 1909 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1910 next = TAILQ_NEXT(p, listq); 1911 1912 /* 1913 * If the page is wired for any reason besides the existence 1914 * of managed, wired mappings, then it cannot be freed. For 1915 * example, fictitious pages, which represent device memory, 1916 * are inherently wired and cannot be freed. They can, 1917 * however, be invalidated if the option OBJPR_CLEANONLY is 1918 * not specified. 1919 */ 1920 vm_page_lock(p); 1921 if (vm_page_xbusied(p)) { 1922 VM_OBJECT_WUNLOCK(object); 1923 vm_page_busy_sleep(p, "vmopax"); 1924 VM_OBJECT_WLOCK(object); 1925 goto again; 1926 } 1927 if ((wirings = p->wire_count) != 0 && 1928 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1929 if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) == 1930 0) { 1931 pmap_remove_all(p); 1932 /* Account for removal of wired mappings. */ 1933 if (wirings != 0) 1934 p->wire_count -= wirings; 1935 } 1936 if ((options & OBJPR_CLEANONLY) == 0) { 1937 p->valid = 0; 1938 vm_page_undirty(p); 1939 } 1940 goto next; 1941 } 1942 if (vm_page_busied(p)) { 1943 VM_OBJECT_WUNLOCK(object); 1944 vm_page_busy_sleep(p, "vmopar"); 1945 VM_OBJECT_WLOCK(object); 1946 goto again; 1947 } 1948 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1949 ("vm_object_page_remove: page %p is fictitious", p)); 1950 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1951 if ((options & OBJPR_NOTMAPPED) == 0) 1952 pmap_remove_write(p); 1953 if (p->dirty) 1954 goto next; 1955 } 1956 if ((options & OBJPR_NOTMAPPED) == 0) { 1957 if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0) 1958 goto next; 1959 pmap_remove_all(p); 1960 /* Account for removal of wired mappings. */ 1961 if (wirings != 0) { 1962 KASSERT(p->wire_count == wirings, 1963 ("inconsistent wire count %d %d %p", 1964 p->wire_count, wirings, p)); 1965 p->wire_count = 0; 1966 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1967 } 1968 } 1969 vm_page_free(p); 1970 next: 1971 vm_page_unlock(p); 1972 } 1973 vm_object_pip_wakeup(object); 1974 skipmemq: 1975 if (__predict_false(!vm_object_cache_is_empty(object))) 1976 vm_page_cache_free(object, start, end); 1977 } 1978 1979 /* 1980 * vm_object_page_cache: 1981 * 1982 * For the given object, attempt to move the specified clean 1983 * pages to the cache queue. If a page is wired for any reason, 1984 * then it will not be changed. Pages are specified by the given 1985 * range ["start", "end"). As a special case, if "end" is zero, 1986 * then the range extends from "start" to the end of the object. 1987 * Any mappings to the specified pages are removed before the 1988 * pages are moved to the cache queue. 1989 * 1990 * This operation should only be performed on objects that 1991 * contain non-fictitious, managed pages. 1992 * 1993 * The object must be locked. 1994 */ 1995 void 1996 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1997 { 1998 struct mtx *mtx, *new_mtx; 1999 vm_page_t p, next; 2000 2001 VM_OBJECT_ASSERT_WLOCKED(object); 2002 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2003 ("vm_object_page_cache: illegal object %p", object)); 2004 if (object->resident_page_count == 0) 2005 return; 2006 p = vm_page_find_least(object, start); 2007 2008 /* 2009 * Here, the variable "p" is either (1) the page with the least pindex 2010 * greater than or equal to the parameter "start" or (2) NULL. 2011 */ 2012 mtx = NULL; 2013 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2014 next = TAILQ_NEXT(p, listq); 2015 2016 /* 2017 * Avoid releasing and reacquiring the same page lock. 2018 */ 2019 new_mtx = vm_page_lockptr(p); 2020 if (mtx != new_mtx) { 2021 if (mtx != NULL) 2022 mtx_unlock(mtx); 2023 mtx = new_mtx; 2024 mtx_lock(mtx); 2025 } 2026 vm_page_try_to_cache(p); 2027 } 2028 if (mtx != NULL) 2029 mtx_unlock(mtx); 2030 } 2031 2032 /* 2033 * Populate the specified range of the object with valid pages. Returns 2034 * TRUE if the range is successfully populated and FALSE otherwise. 2035 * 2036 * Note: This function should be optimized to pass a larger array of 2037 * pages to vm_pager_get_pages() before it is applied to a non- 2038 * OBJT_DEVICE object. 2039 * 2040 * The object must be locked. 2041 */ 2042 boolean_t 2043 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2044 { 2045 vm_page_t m, ma[1]; 2046 vm_pindex_t pindex; 2047 int rv; 2048 2049 VM_OBJECT_ASSERT_WLOCKED(object); 2050 for (pindex = start; pindex < end; pindex++) { 2051 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2052 if (m->valid != VM_PAGE_BITS_ALL) { 2053 ma[0] = m; 2054 rv = vm_pager_get_pages(object, ma, 1, 0); 2055 m = vm_page_lookup(object, pindex); 2056 if (m == NULL) 2057 break; 2058 if (rv != VM_PAGER_OK) { 2059 vm_page_lock(m); 2060 vm_page_free(m); 2061 vm_page_unlock(m); 2062 break; 2063 } 2064 } 2065 /* 2066 * Keep "m" busy because a subsequent iteration may unlock 2067 * the object. 2068 */ 2069 } 2070 if (pindex > start) { 2071 m = vm_page_lookup(object, start); 2072 while (m != NULL && m->pindex < pindex) { 2073 vm_page_xunbusy(m); 2074 m = TAILQ_NEXT(m, listq); 2075 } 2076 } 2077 return (pindex == end); 2078 } 2079 2080 /* 2081 * Routine: vm_object_coalesce 2082 * Function: Coalesces two objects backing up adjoining 2083 * regions of memory into a single object. 2084 * 2085 * returns TRUE if objects were combined. 2086 * 2087 * NOTE: Only works at the moment if the second object is NULL - 2088 * if it's not, which object do we lock first? 2089 * 2090 * Parameters: 2091 * prev_object First object to coalesce 2092 * prev_offset Offset into prev_object 2093 * prev_size Size of reference to prev_object 2094 * next_size Size of reference to the second object 2095 * reserved Indicator that extension region has 2096 * swap accounted for 2097 * 2098 * Conditions: 2099 * The object must *not* be locked. 2100 */ 2101 boolean_t 2102 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2103 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2104 { 2105 vm_pindex_t next_pindex; 2106 2107 if (prev_object == NULL) 2108 return (TRUE); 2109 VM_OBJECT_WLOCK(prev_object); 2110 if ((prev_object->type != OBJT_DEFAULT && 2111 prev_object->type != OBJT_SWAP) || 2112 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2113 VM_OBJECT_WUNLOCK(prev_object); 2114 return (FALSE); 2115 } 2116 2117 /* 2118 * Try to collapse the object first 2119 */ 2120 vm_object_collapse(prev_object); 2121 2122 /* 2123 * Can't coalesce if: . more than one reference . paged out . shadows 2124 * another object . has a copy elsewhere (any of which mean that the 2125 * pages not mapped to prev_entry may be in use anyway) 2126 */ 2127 if (prev_object->backing_object != NULL) { 2128 VM_OBJECT_WUNLOCK(prev_object); 2129 return (FALSE); 2130 } 2131 2132 prev_size >>= PAGE_SHIFT; 2133 next_size >>= PAGE_SHIFT; 2134 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2135 2136 if ((prev_object->ref_count > 1) && 2137 (prev_object->size != next_pindex)) { 2138 VM_OBJECT_WUNLOCK(prev_object); 2139 return (FALSE); 2140 } 2141 2142 /* 2143 * Account for the charge. 2144 */ 2145 if (prev_object->cred != NULL) { 2146 2147 /* 2148 * If prev_object was charged, then this mapping, 2149 * althought not charged now, may become writable 2150 * later. Non-NULL cred in the object would prevent 2151 * swap reservation during enabling of the write 2152 * access, so reserve swap now. Failed reservation 2153 * cause allocation of the separate object for the map 2154 * entry, and swap reservation for this entry is 2155 * managed in appropriate time. 2156 */ 2157 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2158 prev_object->cred)) { 2159 return (FALSE); 2160 } 2161 prev_object->charge += ptoa(next_size); 2162 } 2163 2164 /* 2165 * Remove any pages that may still be in the object from a previous 2166 * deallocation. 2167 */ 2168 if (next_pindex < prev_object->size) { 2169 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2170 next_size, 0); 2171 if (prev_object->type == OBJT_SWAP) 2172 swap_pager_freespace(prev_object, 2173 next_pindex, next_size); 2174 #if 0 2175 if (prev_object->cred != NULL) { 2176 KASSERT(prev_object->charge >= 2177 ptoa(prev_object->size - next_pindex), 2178 ("object %p overcharged 1 %jx %jx", prev_object, 2179 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2180 prev_object->charge -= ptoa(prev_object->size - 2181 next_pindex); 2182 } 2183 #endif 2184 } 2185 2186 /* 2187 * Extend the object if necessary. 2188 */ 2189 if (next_pindex + next_size > prev_object->size) 2190 prev_object->size = next_pindex + next_size; 2191 2192 VM_OBJECT_WUNLOCK(prev_object); 2193 return (TRUE); 2194 } 2195 2196 void 2197 vm_object_set_writeable_dirty(vm_object_t object) 2198 { 2199 2200 VM_OBJECT_ASSERT_WLOCKED(object); 2201 if (object->type != OBJT_VNODE) { 2202 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2203 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2204 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2205 } 2206 return; 2207 } 2208 object->generation++; 2209 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2210 return; 2211 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2212 } 2213 2214 /* 2215 * vm_object_unwire: 2216 * 2217 * For each page offset within the specified range of the given object, 2218 * find the highest-level page in the shadow chain and unwire it. A page 2219 * must exist at every page offset, and the highest-level page must be 2220 * wired. 2221 */ 2222 void 2223 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2224 uint8_t queue) 2225 { 2226 vm_object_t tobject; 2227 vm_page_t m, tm; 2228 vm_pindex_t end_pindex, pindex, tpindex; 2229 int depth, locked_depth; 2230 2231 KASSERT((offset & PAGE_MASK) == 0, 2232 ("vm_object_unwire: offset is not page aligned")); 2233 KASSERT((length & PAGE_MASK) == 0, 2234 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2235 /* The wired count of a fictitious page never changes. */ 2236 if ((object->flags & OBJ_FICTITIOUS) != 0) 2237 return; 2238 pindex = OFF_TO_IDX(offset); 2239 end_pindex = pindex + atop(length); 2240 locked_depth = 1; 2241 VM_OBJECT_RLOCK(object); 2242 m = vm_page_find_least(object, pindex); 2243 while (pindex < end_pindex) { 2244 if (m == NULL || pindex < m->pindex) { 2245 /* 2246 * The first object in the shadow chain doesn't 2247 * contain a page at the current index. Therefore, 2248 * the page must exist in a backing object. 2249 */ 2250 tobject = object; 2251 tpindex = pindex; 2252 depth = 0; 2253 do { 2254 tpindex += 2255 OFF_TO_IDX(tobject->backing_object_offset); 2256 tobject = tobject->backing_object; 2257 KASSERT(tobject != NULL, 2258 ("vm_object_unwire: missing page")); 2259 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2260 goto next_page; 2261 depth++; 2262 if (depth == locked_depth) { 2263 locked_depth++; 2264 VM_OBJECT_RLOCK(tobject); 2265 } 2266 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2267 NULL); 2268 } else { 2269 tm = m; 2270 m = TAILQ_NEXT(m, listq); 2271 } 2272 vm_page_lock(tm); 2273 vm_page_unwire(tm, queue); 2274 vm_page_unlock(tm); 2275 next_page: 2276 pindex++; 2277 } 2278 /* Release the accumulated object locks. */ 2279 for (depth = 0; depth < locked_depth; depth++) { 2280 tobject = object->backing_object; 2281 VM_OBJECT_RUNLOCK(object); 2282 object = tobject; 2283 } 2284 } 2285 2286 #include "opt_ddb.h" 2287 #ifdef DDB 2288 #include <sys/kernel.h> 2289 2290 #include <sys/cons.h> 2291 2292 #include <ddb/ddb.h> 2293 2294 static int 2295 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2296 { 2297 vm_map_t tmpm; 2298 vm_map_entry_t tmpe; 2299 vm_object_t obj; 2300 int entcount; 2301 2302 if (map == 0) 2303 return 0; 2304 2305 if (entry == 0) { 2306 tmpe = map->header.next; 2307 entcount = map->nentries; 2308 while (entcount-- && (tmpe != &map->header)) { 2309 if (_vm_object_in_map(map, object, tmpe)) { 2310 return 1; 2311 } 2312 tmpe = tmpe->next; 2313 } 2314 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2315 tmpm = entry->object.sub_map; 2316 tmpe = tmpm->header.next; 2317 entcount = tmpm->nentries; 2318 while (entcount-- && tmpe != &tmpm->header) { 2319 if (_vm_object_in_map(tmpm, object, tmpe)) { 2320 return 1; 2321 } 2322 tmpe = tmpe->next; 2323 } 2324 } else if ((obj = entry->object.vm_object) != NULL) { 2325 for (; obj; obj = obj->backing_object) 2326 if (obj == object) { 2327 return 1; 2328 } 2329 } 2330 return 0; 2331 } 2332 2333 static int 2334 vm_object_in_map(vm_object_t object) 2335 { 2336 struct proc *p; 2337 2338 /* sx_slock(&allproc_lock); */ 2339 FOREACH_PROC_IN_SYSTEM(p) { 2340 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2341 continue; 2342 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2343 /* sx_sunlock(&allproc_lock); */ 2344 return 1; 2345 } 2346 } 2347 /* sx_sunlock(&allproc_lock); */ 2348 if (_vm_object_in_map(kernel_map, object, 0)) 2349 return 1; 2350 return 0; 2351 } 2352 2353 DB_SHOW_COMMAND(vmochk, vm_object_check) 2354 { 2355 vm_object_t object; 2356 2357 /* 2358 * make sure that internal objs are in a map somewhere 2359 * and none have zero ref counts. 2360 */ 2361 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2362 if (object->handle == NULL && 2363 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2364 if (object->ref_count == 0) { 2365 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2366 (long)object->size); 2367 } 2368 if (!vm_object_in_map(object)) { 2369 db_printf( 2370 "vmochk: internal obj is not in a map: " 2371 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2372 object->ref_count, (u_long)object->size, 2373 (u_long)object->size, 2374 (void *)object->backing_object); 2375 } 2376 } 2377 } 2378 } 2379 2380 /* 2381 * vm_object_print: [ debug ] 2382 */ 2383 DB_SHOW_COMMAND(object, vm_object_print_static) 2384 { 2385 /* XXX convert args. */ 2386 vm_object_t object = (vm_object_t)addr; 2387 boolean_t full = have_addr; 2388 2389 vm_page_t p; 2390 2391 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2392 #define count was_count 2393 2394 int count; 2395 2396 if (object == NULL) 2397 return; 2398 2399 db_iprintf( 2400 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2401 object, (int)object->type, (uintmax_t)object->size, 2402 object->resident_page_count, object->ref_count, object->flags, 2403 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2404 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2405 object->shadow_count, 2406 object->backing_object ? object->backing_object->ref_count : 0, 2407 object->backing_object, (uintmax_t)object->backing_object_offset); 2408 2409 if (!full) 2410 return; 2411 2412 db_indent += 2; 2413 count = 0; 2414 TAILQ_FOREACH(p, &object->memq, listq) { 2415 if (count == 0) 2416 db_iprintf("memory:="); 2417 else if (count == 6) { 2418 db_printf("\n"); 2419 db_iprintf(" ..."); 2420 count = 0; 2421 } else 2422 db_printf(","); 2423 count++; 2424 2425 db_printf("(off=0x%jx,page=0x%jx)", 2426 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2427 } 2428 if (count != 0) 2429 db_printf("\n"); 2430 db_indent -= 2; 2431 } 2432 2433 /* XXX. */ 2434 #undef count 2435 2436 /* XXX need this non-static entry for calling from vm_map_print. */ 2437 void 2438 vm_object_print( 2439 /* db_expr_t */ long addr, 2440 boolean_t have_addr, 2441 /* db_expr_t */ long count, 2442 char *modif) 2443 { 2444 vm_object_print_static(addr, have_addr, count, modif); 2445 } 2446 2447 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2448 { 2449 vm_object_t object; 2450 vm_pindex_t fidx; 2451 vm_paddr_t pa; 2452 vm_page_t m, prev_m; 2453 int rcount, nl, c; 2454 2455 nl = 0; 2456 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2457 db_printf("new object: %p\n", (void *)object); 2458 if (nl > 18) { 2459 c = cngetc(); 2460 if (c != ' ') 2461 return; 2462 nl = 0; 2463 } 2464 nl++; 2465 rcount = 0; 2466 fidx = 0; 2467 pa = -1; 2468 TAILQ_FOREACH(m, &object->memq, listq) { 2469 if (m->pindex > 128) 2470 break; 2471 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2472 prev_m->pindex + 1 != m->pindex) { 2473 if (rcount) { 2474 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2475 (long)fidx, rcount, (long)pa); 2476 if (nl > 18) { 2477 c = cngetc(); 2478 if (c != ' ') 2479 return; 2480 nl = 0; 2481 } 2482 nl++; 2483 rcount = 0; 2484 } 2485 } 2486 if (rcount && 2487 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2488 ++rcount; 2489 continue; 2490 } 2491 if (rcount) { 2492 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2493 (long)fidx, rcount, (long)pa); 2494 if (nl > 18) { 2495 c = cngetc(); 2496 if (c != ' ') 2497 return; 2498 nl = 0; 2499 } 2500 nl++; 2501 } 2502 fidx = m->pindex; 2503 pa = VM_PAGE_TO_PHYS(m); 2504 rcount = 1; 2505 } 2506 if (rcount) { 2507 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2508 (long)fidx, rcount, (long)pa); 2509 if (nl > 18) { 2510 c = cngetc(); 2511 if (c != ' ') 2512 return; 2513 nl = 0; 2514 } 2515 nl++; 2516 } 2517 } 2518 } 2519 #endif /* DDB */ 2520