xref: /freebsd/sys/vm/vm_object.c (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>		/* for curproc, pageproc */
74 #include <sys/vnode.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 static void	vm_object_qcollapse __P((vm_object_t object));
93 
94 /*
95  *	Virtual memory objects maintain the actual data
96  *	associated with allocated virtual memory.  A given
97  *	page of memory exists within exactly one object.
98  *
99  *	An object is only deallocated when all "references"
100  *	are given up.  Only one "reference" to a given
101  *	region of an object should be writeable.
102  *
103  *	Associated with each object is a list of all resident
104  *	memory pages belonging to that object; this list is
105  *	maintained by the "vm_page" module, and locked by the object's
106  *	lock.
107  *
108  *	Each object also records a "pager" routine which is
109  *	used to retrieve (and store) pages to the proper backing
110  *	storage.  In addition, objects may be backed by other
111  *	objects from which they were virtual-copied.
112  *
113  *	The only items within the object structure which are
114  *	modified after time of creation are:
115  *		reference count		locked by object's lock
116  *		pager routine		locked by object's lock
117  *
118  */
119 
120 struct object_q vm_object_list;
121 #ifndef NULL_SIMPLELOCKS
122 static struct simplelock vm_object_list_lock;
123 #endif
124 static long vm_object_count;		/* count of all objects */
125 vm_object_t kernel_object;
126 vm_object_t kmem_object;
127 static struct vm_object kernel_object_store;
128 static struct vm_object kmem_object_store;
129 extern int vm_pageout_page_count;
130 
131 static long object_collapses;
132 static long object_bypasses;
133 static int next_index;
134 static vm_zone_t obj_zone;
135 static struct vm_zone obj_zone_store;
136 static int object_hash_rand;
137 #define VM_OBJECTS_INIT 256
138 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
139 
140 void
141 _vm_object_allocate(type, size, object)
142 	objtype_t type;
143 	vm_size_t size;
144 	vm_object_t object;
145 {
146 	int incr;
147 	TAILQ_INIT(&object->memq);
148 	TAILQ_INIT(&object->shadow_head);
149 
150 	object->type = type;
151 	object->size = size;
152 	object->ref_count = 1;
153 	object->flags = 0;
154 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
155 		vm_object_set_flag(object, OBJ_ONEMAPPING);
156 	object->paging_in_progress = 0;
157 	object->resident_page_count = 0;
158 	object->shadow_count = 0;
159 	object->pg_color = next_index;
160 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
161 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
162 	else
163 		incr = size;
164 	next_index = (next_index + incr) & PQ_L2_MASK;
165 	object->handle = NULL;
166 	object->backing_object = NULL;
167 	object->backing_object_offset = (vm_ooffset_t) 0;
168 	/*
169 	 * Try to generate a number that will spread objects out in the
170 	 * hash table.  We 'wipe' new objects across the hash in 128 page
171 	 * increments plus 1 more to offset it a little more by the time
172 	 * it wraps around.
173 	 */
174 	object->hash_rand = object_hash_rand - 129;
175 
176 	object->generation++;
177 
178 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179 	vm_object_count++;
180 	object_hash_rand = object->hash_rand;
181 }
182 
183 /*
184  *	vm_object_init:
185  *
186  *	Initialize the VM objects module.
187  */
188 void
189 vm_object_init()
190 {
191 	TAILQ_INIT(&vm_object_list);
192 	simple_lock_init(&vm_object_list_lock);
193 	vm_object_count = 0;
194 
195 	kernel_object = &kernel_object_store;
196 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
197 	    kernel_object);
198 
199 	kmem_object = &kmem_object_store;
200 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
201 	    kmem_object);
202 
203 	obj_zone = &obj_zone_store;
204 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
205 		vm_objects_init, VM_OBJECTS_INIT);
206 }
207 
208 void
209 vm_object_init2() {
210 	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
211 }
212 
213 /*
214  *	vm_object_allocate:
215  *
216  *	Returns a new object with the given size.
217  */
218 
219 vm_object_t
220 vm_object_allocate(type, size)
221 	objtype_t type;
222 	vm_size_t size;
223 {
224 	vm_object_t result;
225 
226 	result = (vm_object_t) zalloc(obj_zone);
227 
228 	_vm_object_allocate(type, size, result);
229 
230 	return (result);
231 }
232 
233 
234 /*
235  *	vm_object_reference:
236  *
237  *	Gets another reference to the given object.
238  */
239 void
240 vm_object_reference(object)
241 	vm_object_t object;
242 {
243 	if (object == NULL)
244 		return;
245 
246 	KASSERT(!(object->flags & OBJ_DEAD),
247 	    ("vm_object_reference: attempting to reference dead obj"));
248 
249 	object->ref_count++;
250 	if (object->type == OBJT_VNODE) {
251 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) {
252 			printf("vm_object_reference: delay in getting object\n");
253 		}
254 	}
255 }
256 
257 void
258 vm_object_vndeallocate(object)
259 	vm_object_t object;
260 {
261 	struct vnode *vp = (struct vnode *) object->handle;
262 
263 	KASSERT(object->type == OBJT_VNODE,
264 	    ("vm_object_vndeallocate: not a vnode object"));
265 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
266 #ifdef INVARIANTS
267 	if (object->ref_count == 0) {
268 		vprint("vm_object_vndeallocate", vp);
269 		panic("vm_object_vndeallocate: bad object reference count");
270 	}
271 #endif
272 
273 	object->ref_count--;
274 	if (object->ref_count == 0) {
275 		vp->v_flag &= ~VTEXT;
276 		vm_object_clear_flag(object, OBJ_OPT);
277 	}
278 	vrele(vp);
279 }
280 
281 /*
282  *	vm_object_deallocate:
283  *
284  *	Release a reference to the specified object,
285  *	gained either through a vm_object_allocate
286  *	or a vm_object_reference call.  When all references
287  *	are gone, storage associated with this object
288  *	may be relinquished.
289  *
290  *	No object may be locked.
291  */
292 void
293 vm_object_deallocate(object)
294 	vm_object_t object;
295 {
296 	vm_object_t temp;
297 
298 	while (object != NULL) {
299 
300 		if (object->type == OBJT_VNODE) {
301 			vm_object_vndeallocate(object);
302 			return;
303 		}
304 
305 		if (object->ref_count == 0) {
306 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
307 		} else if (object->ref_count > 2) {
308 			object->ref_count--;
309 			return;
310 		}
311 
312 		/*
313 		 * Here on ref_count of one or two, which are special cases for
314 		 * objects.
315 		 */
316 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
317 			vm_object_set_flag(object, OBJ_ONEMAPPING);
318 			object->ref_count--;
319 			return;
320 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
321 			object->ref_count--;
322 			if ((object->handle == NULL) &&
323 			    (object->type == OBJT_DEFAULT ||
324 			     object->type == OBJT_SWAP)) {
325 				vm_object_t robject;
326 
327 				robject = TAILQ_FIRST(&object->shadow_head);
328 				KASSERT(robject != NULL,
329 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
330 					 object->ref_count,
331 					 object->shadow_count));
332 				if ((robject->handle == NULL) &&
333 				    (robject->type == OBJT_DEFAULT ||
334 				     robject->type == OBJT_SWAP)) {
335 
336 					robject->ref_count++;
337 
338 					while (
339 						robject->paging_in_progress ||
340 						object->paging_in_progress
341 					) {
342 						vm_object_pip_sleep(robject, "objde1");
343 						vm_object_pip_sleep(object, "objde2");
344 					}
345 
346 					if (robject->ref_count == 1) {
347 						robject->ref_count--;
348 						object = robject;
349 						goto doterm;
350 					}
351 
352 					object = robject;
353 					vm_object_collapse(object);
354 					continue;
355 				}
356 			}
357 
358 			return;
359 
360 		} else {
361 			object->ref_count--;
362 			if (object->ref_count != 0)
363 				return;
364 		}
365 
366 doterm:
367 
368 		temp = object->backing_object;
369 		if (temp) {
370 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
371 			temp->shadow_count--;
372 			if (temp->ref_count == 0)
373 				vm_object_clear_flag(temp, OBJ_OPT);
374 			temp->generation++;
375 			object->backing_object = NULL;
376 		}
377 		vm_object_terminate(object);
378 		/* unlocks and deallocates object */
379 		object = temp;
380 	}
381 }
382 
383 /*
384  *	vm_object_terminate actually destroys the specified object, freeing
385  *	up all previously used resources.
386  *
387  *	The object must be locked.
388  *	This routine may block.
389  */
390 void
391 vm_object_terminate(object)
392 	vm_object_t object;
393 {
394 	vm_page_t p;
395 	int s;
396 
397 	/*
398 	 * Make sure no one uses us.
399 	 */
400 	vm_object_set_flag(object, OBJ_DEAD);
401 
402 	/*
403 	 * wait for the pageout daemon to be done with the object
404 	 */
405 	vm_object_pip_wait(object, "objtrm");
406 
407 	KASSERT(!object->paging_in_progress,
408 		("vm_object_terminate: pageout in progress"));
409 
410 	/*
411 	 * Clean and free the pages, as appropriate. All references to the
412 	 * object are gone, so we don't need to lock it.
413 	 */
414 	if (object->type == OBJT_VNODE) {
415 		struct vnode *vp;
416 
417 		/*
418 		 * Freeze optimized copies.
419 		 */
420 		vm_freeze_copyopts(object, 0, object->size);
421 
422 		/*
423 		 * Clean pages and flush buffers.
424 		 */
425 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
426 
427 		vp = (struct vnode *) object->handle;
428 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
429 	}
430 
431 	if (object->ref_count != 0)
432 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
433 
434 	/*
435 	 * Now free any remaining pages. For internal objects, this also
436 	 * removes them from paging queues. Don't free wired pages, just
437 	 * remove them from the object.
438 	 */
439 	s = splvm();
440 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
441 		if (p->busy || (p->flags & PG_BUSY))
442 			panic("vm_object_terminate: freeing busy page %p\n", p);
443 		if (p->wire_count == 0) {
444 			vm_page_busy(p);
445 			vm_page_free(p);
446 			cnt.v_pfree++;
447 		} else {
448 			vm_page_busy(p);
449 			vm_page_remove(p);
450 		}
451 	}
452 	splx(s);
453 
454 	/*
455 	 * Let the pager know object is dead.
456 	 */
457 	vm_pager_deallocate(object);
458 
459 	/*
460 	 * Remove the object from the global object list.
461 	 */
462 	simple_lock(&vm_object_list_lock);
463 	TAILQ_REMOVE(&vm_object_list, object, object_list);
464 	simple_unlock(&vm_object_list_lock);
465 
466 	wakeup(object);
467 
468 	/*
469 	 * Free the space for the object.
470 	 */
471 	zfree(obj_zone, object);
472 }
473 
474 /*
475  *	vm_object_page_clean
476  *
477  *	Clean all dirty pages in the specified range of object.  Leaves page
478  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
479  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
480  *	leaving the object dirty.
481  *
482  *	Odd semantics: if start == end, we clean everything.
483  *
484  *	The object must be locked.
485  */
486 
487 void
488 vm_object_page_clean(object, start, end, flags)
489 	vm_object_t object;
490 	vm_pindex_t start;
491 	vm_pindex_t end;
492 	int flags;
493 {
494 	vm_page_t p, np, tp;
495 	vm_offset_t tstart, tend;
496 	vm_pindex_t pi;
497 	int s;
498 	struct vnode *vp;
499 	int runlen;
500 	int maxf;
501 	int chkb;
502 	int maxb;
503 	int i;
504 	int clearobjflags;
505 	int pagerflags;
506 	vm_page_t maf[vm_pageout_page_count];
507 	vm_page_t mab[vm_pageout_page_count];
508 	vm_page_t ma[vm_pageout_page_count];
509 	int curgeneration;
510 
511 	if (object->type != OBJT_VNODE ||
512 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
513 		return;
514 
515 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
516 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
517 
518 	vp = object->handle;
519 
520 	vm_object_set_flag(object, OBJ_CLEANING);
521 
522 	tstart = start;
523 	if (end == 0) {
524 		tend = object->size;
525 	} else {
526 		tend = end;
527 	}
528 
529 	/*
530 	 * Generally set CLEANCHK interlock and make the page read-only so
531 	 * we can then clear the object flags.
532 	 *
533 	 * However, if this is a nosync mmap then the object is likely to
534 	 * stay dirty so do not mess with the page and do not clear the
535 	 * object flags.
536 	 */
537 
538 	clearobjflags = 1;
539 
540 	for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
541 		vm_page_flag_set(p, PG_CLEANCHK);
542 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
543 			clearobjflags = 0;
544 		else
545 			vm_page_protect(p, VM_PROT_READ);
546 	}
547 
548 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
549 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
550 	}
551 
552 rescan:
553 	curgeneration = object->generation;
554 
555 	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
556 		np = TAILQ_NEXT(p, listq);
557 
558 		pi = p->pindex;
559 		if (((p->flags & PG_CLEANCHK) == 0) ||
560 			(pi < tstart) || (pi >= tend) ||
561 			(p->valid == 0) ||
562 			((p->queue - p->pc) == PQ_CACHE)) {
563 			vm_page_flag_clear(p, PG_CLEANCHK);
564 			continue;
565 		}
566 
567 		vm_page_test_dirty(p);
568 		if ((p->dirty & p->valid) == 0) {
569 			vm_page_flag_clear(p, PG_CLEANCHK);
570 			continue;
571 		}
572 
573 		/*
574 		 * If we have been asked to skip nosync pages and this is a
575 		 * nosync page, skip it.  Note that the object flags were
576 		 * not cleared in this case so we do not have to set them.
577 		 */
578 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
579 			vm_page_flag_clear(p, PG_CLEANCHK);
580 			continue;
581 		}
582 
583 		s = splvm();
584 		while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
585 			if (object->generation != curgeneration) {
586 				splx(s);
587 				goto rescan;
588 			}
589 		}
590 
591 		maxf = 0;
592 		for(i=1;i<vm_pageout_page_count;i++) {
593 			if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
594 				if ((tp->flags & PG_BUSY) ||
595 					(tp->flags & PG_CLEANCHK) == 0 ||
596 					(tp->busy != 0))
597 					break;
598 				if((tp->queue - tp->pc) == PQ_CACHE) {
599 					vm_page_flag_clear(tp, PG_CLEANCHK);
600 					break;
601 				}
602 				vm_page_test_dirty(tp);
603 				if ((tp->dirty & tp->valid) == 0) {
604 					vm_page_flag_clear(tp, PG_CLEANCHK);
605 					break;
606 				}
607 				maf[ i - 1 ] = tp;
608 				maxf++;
609 				continue;
610 			}
611 			break;
612 		}
613 
614 		maxb = 0;
615 		chkb = vm_pageout_page_count -  maxf;
616 		if (chkb) {
617 			for(i = 1; i < chkb;i++) {
618 				if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
619 					if ((tp->flags & PG_BUSY) ||
620 						(tp->flags & PG_CLEANCHK) == 0 ||
621 						(tp->busy != 0))
622 						break;
623 					if((tp->queue - tp->pc) == PQ_CACHE) {
624 						vm_page_flag_clear(tp, PG_CLEANCHK);
625 						break;
626 					}
627 					vm_page_test_dirty(tp);
628 					if ((tp->dirty & tp->valid) == 0) {
629 						vm_page_flag_clear(tp, PG_CLEANCHK);
630 						break;
631 					}
632 					mab[ i - 1 ] = tp;
633 					maxb++;
634 					continue;
635 				}
636 				break;
637 			}
638 		}
639 
640 		for(i=0;i<maxb;i++) {
641 			int index = (maxb - i) - 1;
642 			ma[index] = mab[i];
643 			vm_page_flag_clear(ma[index], PG_CLEANCHK);
644 		}
645 		vm_page_flag_clear(p, PG_CLEANCHK);
646 		ma[maxb] = p;
647 		for(i=0;i<maxf;i++) {
648 			int index = (maxb + i) + 1;
649 			ma[index] = maf[i];
650 			vm_page_flag_clear(ma[index], PG_CLEANCHK);
651 		}
652 		runlen = maxb + maxf + 1;
653 
654 		splx(s);
655 		vm_pageout_flush(ma, runlen, pagerflags);
656 		for (i = 0; i<runlen; i++) {
657 			if (ma[i]->valid & ma[i]->dirty) {
658 				vm_page_protect(ma[i], VM_PROT_READ);
659 				vm_page_flag_set(ma[i], PG_CLEANCHK);
660 			}
661 		}
662 		if (object->generation != curgeneration)
663 			goto rescan;
664 	}
665 
666 #if 0
667 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
668 #endif
669 
670 	vm_object_clear_flag(object, OBJ_CLEANING);
671 	return;
672 }
673 
674 #ifdef not_used
675 /* XXX I cannot tell if this should be an exported symbol */
676 /*
677  *	vm_object_deactivate_pages
678  *
679  *	Deactivate all pages in the specified object.  (Keep its pages
680  *	in memory even though it is no longer referenced.)
681  *
682  *	The object must be locked.
683  */
684 static void
685 vm_object_deactivate_pages(object)
686 	vm_object_t object;
687 {
688 	vm_page_t p, next;
689 
690 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
691 		next = TAILQ_NEXT(p, listq);
692 		vm_page_deactivate(p);
693 	}
694 }
695 #endif
696 
697 /*
698  * Same as vm_object_pmap_copy, except range checking really
699  * works, and is meant for small sections of an object.
700  *
701  * This code protects resident pages by making them read-only
702  * and is typically called on a fork or split when a page
703  * is converted to copy-on-write.
704  *
705  * NOTE: If the page is already at VM_PROT_NONE, calling
706  * vm_page_protect will have no effect.
707  */
708 
709 void
710 vm_object_pmap_copy_1(object, start, end)
711 	vm_object_t object;
712 	vm_pindex_t start;
713 	vm_pindex_t end;
714 {
715 	vm_pindex_t idx;
716 	vm_page_t p;
717 
718 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
719 		return;
720 
721 	for (idx = start; idx < end; idx++) {
722 		p = vm_page_lookup(object, idx);
723 		if (p == NULL)
724 			continue;
725 		vm_page_protect(p, VM_PROT_READ);
726 	}
727 }
728 
729 /*
730  *	vm_object_pmap_remove:
731  *
732  *	Removes all physical pages in the specified
733  *	object range from all physical maps.
734  *
735  *	The object must *not* be locked.
736  */
737 void
738 vm_object_pmap_remove(object, start, end)
739 	vm_object_t object;
740 	vm_pindex_t start;
741 	vm_pindex_t end;
742 {
743 	vm_page_t p;
744 
745 	if (object == NULL)
746 		return;
747 	for (p = TAILQ_FIRST(&object->memq);
748 		p != NULL;
749 		p = TAILQ_NEXT(p, listq)) {
750 		if (p->pindex >= start && p->pindex < end)
751 			vm_page_protect(p, VM_PROT_NONE);
752 	}
753 	if ((start == 0) && (object->size == end))
754 		vm_object_clear_flag(object, OBJ_WRITEABLE);
755 }
756 
757 /*
758  *	vm_object_madvise:
759  *
760  *	Implements the madvise function at the object/page level.
761  *
762  *	MADV_WILLNEED	(any object)
763  *
764  *	    Activate the specified pages if they are resident.
765  *
766  *	MADV_DONTNEED	(any object)
767  *
768  *	    Deactivate the specified pages if they are resident.
769  *
770  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
771  *			 OBJ_ONEMAPPING only)
772  *
773  *	    Deactivate and clean the specified pages if they are
774  *	    resident.  This permits the process to reuse the pages
775  *	    without faulting or the kernel to reclaim the pages
776  *	    without I/O.
777  */
778 void
779 vm_object_madvise(object, pindex, count, advise)
780 	vm_object_t object;
781 	vm_pindex_t pindex;
782 	int count;
783 	int advise;
784 {
785 	vm_pindex_t end, tpindex;
786 	vm_object_t tobject;
787 	vm_page_t m;
788 
789 	if (object == NULL)
790 		return;
791 
792 	end = pindex + count;
793 
794 	/*
795 	 * Locate and adjust resident pages
796 	 */
797 
798 	for (; pindex < end; pindex += 1) {
799 relookup:
800 		tobject = object;
801 		tpindex = pindex;
802 shadowlookup:
803 		/*
804 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
805 		 * and those pages must be OBJ_ONEMAPPING.
806 		 */
807 		if (advise == MADV_FREE) {
808 			if ((tobject->type != OBJT_DEFAULT &&
809 			     tobject->type != OBJT_SWAP) ||
810 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
811 				continue;
812 			}
813 		}
814 
815 		m = vm_page_lookup(tobject, tpindex);
816 
817 		if (m == NULL) {
818 			/*
819 			 * There may be swap even if there is no backing page
820 			 */
821 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
822 				swap_pager_freespace(tobject, tpindex, 1);
823 
824 			/*
825 			 * next object
826 			 */
827 			tobject = tobject->backing_object;
828 			if (tobject == NULL)
829 				continue;
830 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
831 			goto shadowlookup;
832 		}
833 
834 		/*
835 		 * If the page is busy or not in a normal active state,
836 		 * we skip it.  If the page is not managed there are no
837 		 * page queues to mess with.  Things can break if we mess
838 		 * with pages in any of the below states.
839 		 */
840 		if (
841 		    m->hold_count ||
842 		    m->wire_count ||
843 		    (m->flags & PG_UNMANAGED) ||
844 		    m->valid != VM_PAGE_BITS_ALL
845 		) {
846 			continue;
847 		}
848 
849  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
850   			goto relookup;
851 
852 		if (advise == MADV_WILLNEED) {
853 			vm_page_activate(m);
854 		} else if (advise == MADV_DONTNEED) {
855 			vm_page_dontneed(m);
856 		} else if (advise == MADV_FREE) {
857 			/*
858 			 * Mark the page clean.  This will allow the page
859 			 * to be freed up by the system.  However, such pages
860 			 * are often reused quickly by malloc()/free()
861 			 * so we do not do anything that would cause
862 			 * a page fault if we can help it.
863 			 *
864 			 * Specifically, we do not try to actually free
865 			 * the page now nor do we try to put it in the
866 			 * cache (which would cause a page fault on reuse).
867 			 *
868 			 * But we do make the page is freeable as we
869 			 * can without actually taking the step of unmapping
870 			 * it.
871 			 */
872 			pmap_clear_modify(m);
873 			m->dirty = 0;
874 			m->act_count = 0;
875 			vm_page_dontneed(m);
876 			if (tobject->type == OBJT_SWAP)
877 				swap_pager_freespace(tobject, tpindex, 1);
878 		}
879 	}
880 }
881 
882 /*
883  *	vm_object_shadow:
884  *
885  *	Create a new object which is backed by the
886  *	specified existing object range.  The source
887  *	object reference is deallocated.
888  *
889  *	The new object and offset into that object
890  *	are returned in the source parameters.
891  */
892 
893 void
894 vm_object_shadow(object, offset, length)
895 	vm_object_t *object;	/* IN/OUT */
896 	vm_ooffset_t *offset;	/* IN/OUT */
897 	vm_size_t length;
898 {
899 	vm_object_t source;
900 	vm_object_t result;
901 
902 	source = *object;
903 
904 	/*
905 	 * Don't create the new object if the old object isn't shared.
906 	 */
907 
908 	if (source != NULL &&
909 	    source->ref_count == 1 &&
910 	    source->handle == NULL &&
911 	    (source->type == OBJT_DEFAULT ||
912 	     source->type == OBJT_SWAP))
913 		return;
914 
915 	/*
916 	 * Allocate a new object with the given length
917 	 */
918 
919 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
920 		panic("vm_object_shadow: no object for shadowing");
921 
922 	/*
923 	 * The new object shadows the source object, adding a reference to it.
924 	 * Our caller changes his reference to point to the new object,
925 	 * removing a reference to the source object.  Net result: no change
926 	 * of reference count.
927 	 *
928 	 * Try to optimize the result object's page color when shadowing
929 	 * in order to maintain page coloring consistency in the combined
930 	 * shadowed object.
931 	 */
932 	result->backing_object = source;
933 	if (source) {
934 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
935 		source->shadow_count++;
936 		source->generation++;
937 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
938 	}
939 
940 	/*
941 	 * Store the offset into the source object, and fix up the offset into
942 	 * the new object.
943 	 */
944 
945 	result->backing_object_offset = *offset;
946 
947 	/*
948 	 * Return the new things
949 	 */
950 
951 	*offset = 0;
952 	*object = result;
953 }
954 
955 #define	OBSC_TEST_ALL_SHADOWED	0x0001
956 #define	OBSC_COLLAPSE_NOWAIT	0x0002
957 #define	OBSC_COLLAPSE_WAIT	0x0004
958 
959 static __inline int
960 vm_object_backing_scan(vm_object_t object, int op)
961 {
962 	int s;
963 	int r = 1;
964 	vm_page_t p;
965 	vm_object_t backing_object;
966 	vm_pindex_t backing_offset_index;
967 
968 	s = splvm();
969 
970 	backing_object = object->backing_object;
971 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
972 
973 	/*
974 	 * Initial conditions
975 	 */
976 
977 	if (op & OBSC_TEST_ALL_SHADOWED) {
978 		/*
979 		 * We do not want to have to test for the existence of
980 		 * swap pages in the backing object.  XXX but with the
981 		 * new swapper this would be pretty easy to do.
982 		 *
983 		 * XXX what about anonymous MAP_SHARED memory that hasn't
984 		 * been ZFOD faulted yet?  If we do not test for this, the
985 		 * shadow test may succeed! XXX
986 		 */
987 		if (backing_object->type != OBJT_DEFAULT) {
988 			splx(s);
989 			return(0);
990 		}
991 	}
992 	if (op & OBSC_COLLAPSE_WAIT) {
993 		vm_object_set_flag(backing_object, OBJ_DEAD);
994 	}
995 
996 	/*
997 	 * Our scan
998 	 */
999 
1000 	p = TAILQ_FIRST(&backing_object->memq);
1001 	while (p) {
1002 		vm_page_t next = TAILQ_NEXT(p, listq);
1003 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1004 
1005 		if (op & OBSC_TEST_ALL_SHADOWED) {
1006 			vm_page_t pp;
1007 
1008 			/*
1009 			 * Ignore pages outside the parent object's range
1010 			 * and outside the parent object's mapping of the
1011 			 * backing object.
1012 			 *
1013 			 * note that we do not busy the backing object's
1014 			 * page.
1015 			 */
1016 
1017 			if (
1018 			    p->pindex < backing_offset_index ||
1019 			    new_pindex >= object->size
1020 			) {
1021 				p = next;
1022 				continue;
1023 			}
1024 
1025 			/*
1026 			 * See if the parent has the page or if the parent's
1027 			 * object pager has the page.  If the parent has the
1028 			 * page but the page is not valid, the parent's
1029 			 * object pager must have the page.
1030 			 *
1031 			 * If this fails, the parent does not completely shadow
1032 			 * the object and we might as well give up now.
1033 			 */
1034 
1035 			pp = vm_page_lookup(object, new_pindex);
1036 			if (
1037 			    (pp == NULL || pp->valid == 0) &&
1038 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1039 			) {
1040 				r = 0;
1041 				break;
1042 			}
1043 		}
1044 
1045 		/*
1046 		 * Check for busy page
1047 		 */
1048 
1049 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1050 			vm_page_t pp;
1051 
1052 			if (op & OBSC_COLLAPSE_NOWAIT) {
1053 				if (
1054 				    (p->flags & PG_BUSY) ||
1055 				    !p->valid ||
1056 				    p->hold_count ||
1057 				    p->wire_count ||
1058 				    p->busy
1059 				) {
1060 					p = next;
1061 					continue;
1062 				}
1063 			} else if (op & OBSC_COLLAPSE_WAIT) {
1064 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1065 					/*
1066 					 * If we slept, anything could have
1067 					 * happened.  Since the object is
1068 					 * marked dead, the backing offset
1069 					 * should not have changed so we
1070 					 * just restart our scan.
1071 					 */
1072 					p = TAILQ_FIRST(&backing_object->memq);
1073 					continue;
1074 				}
1075 			}
1076 
1077 			/*
1078 			 * Busy the page
1079 			 */
1080 			vm_page_busy(p);
1081 
1082 			KASSERT(
1083 			    p->object == backing_object,
1084 			    ("vm_object_qcollapse(): object mismatch")
1085 			);
1086 
1087 			/*
1088 			 * Destroy any associated swap
1089 			 */
1090 			if (backing_object->type == OBJT_SWAP) {
1091 				swap_pager_freespace(
1092 				    backing_object,
1093 				    p->pindex,
1094 				    1
1095 				);
1096 			}
1097 
1098 			if (
1099 			    p->pindex < backing_offset_index ||
1100 			    new_pindex >= object->size
1101 			) {
1102 				/*
1103 				 * Page is out of the parent object's range, we
1104 				 * can simply destroy it.
1105 				 */
1106 				vm_page_protect(p, VM_PROT_NONE);
1107 				vm_page_free(p);
1108 				p = next;
1109 				continue;
1110 			}
1111 
1112 			pp = vm_page_lookup(object, new_pindex);
1113 			if (
1114 			    pp != NULL ||
1115 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1116 			) {
1117 				/*
1118 				 * page already exists in parent OR swap exists
1119 				 * for this location in the parent.  Destroy
1120 				 * the original page from the backing object.
1121 				 *
1122 				 * Leave the parent's page alone
1123 				 */
1124 				vm_page_protect(p, VM_PROT_NONE);
1125 				vm_page_free(p);
1126 				p = next;
1127 				continue;
1128 			}
1129 
1130 			/*
1131 			 * Page does not exist in parent, rename the
1132 			 * page from the backing object to the main object.
1133 			 *
1134 			 * If the page was mapped to a process, it can remain
1135 			 * mapped through the rename.
1136 			 */
1137 			if ((p->queue - p->pc) == PQ_CACHE)
1138 				vm_page_deactivate(p);
1139 
1140 			vm_page_rename(p, object, new_pindex);
1141 			/* page automatically made dirty by rename */
1142 		}
1143 		p = next;
1144 	}
1145 	splx(s);
1146 	return(r);
1147 }
1148 
1149 
1150 /*
1151  * this version of collapse allows the operation to occur earlier and
1152  * when paging_in_progress is true for an object...  This is not a complete
1153  * operation, but should plug 99.9% of the rest of the leaks.
1154  */
1155 static void
1156 vm_object_qcollapse(object)
1157 	vm_object_t object;
1158 {
1159 	vm_object_t backing_object = object->backing_object;
1160 
1161 	if (backing_object->ref_count != 1)
1162 		return;
1163 
1164 	backing_object->ref_count += 2;
1165 
1166 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1167 
1168 	backing_object->ref_count -= 2;
1169 }
1170 
1171 /*
1172  *	vm_object_collapse:
1173  *
1174  *	Collapse an object with the object backing it.
1175  *	Pages in the backing object are moved into the
1176  *	parent, and the backing object is deallocated.
1177  */
1178 void
1179 vm_object_collapse(object)
1180 	vm_object_t object;
1181 {
1182 	while (TRUE) {
1183 		vm_object_t backing_object;
1184 
1185 		/*
1186 		 * Verify that the conditions are right for collapse:
1187 		 *
1188 		 * The object exists and the backing object exists.
1189 		 */
1190 		if (object == NULL)
1191 			break;
1192 
1193 		if ((backing_object = object->backing_object) == NULL)
1194 			break;
1195 
1196 		/*
1197 		 * we check the backing object first, because it is most likely
1198 		 * not collapsable.
1199 		 */
1200 		if (backing_object->handle != NULL ||
1201 		    (backing_object->type != OBJT_DEFAULT &&
1202 		     backing_object->type != OBJT_SWAP) ||
1203 		    (backing_object->flags & OBJ_DEAD) ||
1204 		    object->handle != NULL ||
1205 		    (object->type != OBJT_DEFAULT &&
1206 		     object->type != OBJT_SWAP) ||
1207 		    (object->flags & OBJ_DEAD)) {
1208 			break;
1209 		}
1210 
1211 		if (
1212 		    object->paging_in_progress != 0 ||
1213 		    backing_object->paging_in_progress != 0
1214 		) {
1215 			vm_object_qcollapse(object);
1216 			break;
1217 		}
1218 
1219 		/*
1220 		 * We know that we can either collapse the backing object (if
1221 		 * the parent is the only reference to it) or (perhaps) have
1222 		 * the parent bypass the object if the parent happens to shadow
1223 		 * all the resident pages in the entire backing object.
1224 		 *
1225 		 * This is ignoring pager-backed pages such as swap pages.
1226 		 * vm_object_backing_scan fails the shadowing test in this
1227 		 * case.
1228 		 */
1229 
1230 		if (backing_object->ref_count == 1) {
1231 			/*
1232 			 * If there is exactly one reference to the backing
1233 			 * object, we can collapse it into the parent.
1234 			 */
1235 
1236 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1237 
1238 			/*
1239 			 * Move the pager from backing_object to object.
1240 			 */
1241 
1242 			if (backing_object->type == OBJT_SWAP) {
1243 				vm_object_pip_add(backing_object, 1);
1244 
1245 				/*
1246 				 * scrap the paging_offset junk and do a
1247 				 * discrete copy.  This also removes major
1248 				 * assumptions about how the swap-pager
1249 				 * works from where it doesn't belong.  The
1250 				 * new swapper is able to optimize the
1251 				 * destroy-source case.
1252 				 */
1253 
1254 				vm_object_pip_add(object, 1);
1255 				swap_pager_copy(
1256 				    backing_object,
1257 				    object,
1258 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1259 				vm_object_pip_wakeup(object);
1260 
1261 				vm_object_pip_wakeup(backing_object);
1262 			}
1263 			/*
1264 			 * Object now shadows whatever backing_object did.
1265 			 * Note that the reference to
1266 			 * backing_object->backing_object moves from within
1267 			 * backing_object to within object.
1268 			 */
1269 
1270 			TAILQ_REMOVE(
1271 			    &object->backing_object->shadow_head,
1272 			    object,
1273 			    shadow_list
1274 			);
1275 			object->backing_object->shadow_count--;
1276 			object->backing_object->generation++;
1277 			if (backing_object->backing_object) {
1278 				TAILQ_REMOVE(
1279 				    &backing_object->backing_object->shadow_head,
1280 				    backing_object,
1281 				    shadow_list
1282 				);
1283 				backing_object->backing_object->shadow_count--;
1284 				backing_object->backing_object->generation++;
1285 			}
1286 			object->backing_object = backing_object->backing_object;
1287 			if (object->backing_object) {
1288 				TAILQ_INSERT_TAIL(
1289 				    &object->backing_object->shadow_head,
1290 				    object,
1291 				    shadow_list
1292 				);
1293 				object->backing_object->shadow_count++;
1294 				object->backing_object->generation++;
1295 			}
1296 
1297 			object->backing_object_offset +=
1298 			    backing_object->backing_object_offset;
1299 
1300 			/*
1301 			 * Discard backing_object.
1302 			 *
1303 			 * Since the backing object has no pages, no pager left,
1304 			 * and no object references within it, all that is
1305 			 * necessary is to dispose of it.
1306 			 */
1307 
1308 			TAILQ_REMOVE(
1309 			    &vm_object_list,
1310 			    backing_object,
1311 			    object_list
1312 			);
1313 			vm_object_count--;
1314 
1315 			zfree(obj_zone, backing_object);
1316 
1317 			object_collapses++;
1318 		} else {
1319 			vm_object_t new_backing_object;
1320 
1321 			/*
1322 			 * If we do not entirely shadow the backing object,
1323 			 * there is nothing we can do so we give up.
1324 			 */
1325 
1326 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1327 				break;
1328 			}
1329 
1330 			/*
1331 			 * Make the parent shadow the next object in the
1332 			 * chain.  Deallocating backing_object will not remove
1333 			 * it, since its reference count is at least 2.
1334 			 */
1335 
1336 			TAILQ_REMOVE(
1337 			    &backing_object->shadow_head,
1338 			    object,
1339 			    shadow_list
1340 			);
1341 			backing_object->shadow_count--;
1342 			backing_object->generation++;
1343 
1344 			new_backing_object = backing_object->backing_object;
1345 			if ((object->backing_object = new_backing_object) != NULL) {
1346 				vm_object_reference(new_backing_object);
1347 				TAILQ_INSERT_TAIL(
1348 				    &new_backing_object->shadow_head,
1349 				    object,
1350 				    shadow_list
1351 				);
1352 				new_backing_object->shadow_count++;
1353 				new_backing_object->generation++;
1354 				object->backing_object_offset +=
1355 					backing_object->backing_object_offset;
1356 			}
1357 
1358 			/*
1359 			 * Drop the reference count on backing_object. Since
1360 			 * its ref_count was at least 2, it will not vanish;
1361 			 * so we don't need to call vm_object_deallocate, but
1362 			 * we do anyway.
1363 			 */
1364 			vm_object_deallocate(backing_object);
1365 			object_bypasses++;
1366 		}
1367 
1368 		/*
1369 		 * Try again with this object's new backing object.
1370 		 */
1371 	}
1372 }
1373 
1374 /*
1375  *	vm_object_page_remove: [internal]
1376  *
1377  *	Removes all physical pages in the specified
1378  *	object range from the object's list of pages.
1379  *
1380  *	The object must be locked.
1381  */
1382 void
1383 vm_object_page_remove(object, start, end, clean_only)
1384 	vm_object_t object;
1385 	vm_pindex_t start;
1386 	vm_pindex_t end;
1387 	boolean_t clean_only;
1388 {
1389 	vm_page_t p, next;
1390 	unsigned int size;
1391 	int all;
1392 
1393 	if (object == NULL ||
1394 	    object->resident_page_count == 0)
1395 		return;
1396 
1397 	all = ((end == 0) && (start == 0));
1398 
1399 	/*
1400 	 * Since physically-backed objects do not use managed pages, we can't
1401 	 * remove pages from the object (we must instead remove the page
1402 	 * references, and then destroy the object).
1403 	 */
1404 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1405 
1406 	vm_object_pip_add(object, 1);
1407 again:
1408 	size = end - start;
1409 	if (all || size > object->resident_page_count / 4) {
1410 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1411 			next = TAILQ_NEXT(p, listq);
1412 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1413 				if (p->wire_count != 0) {
1414 					vm_page_protect(p, VM_PROT_NONE);
1415 					if (!clean_only)
1416 						p->valid = 0;
1417 					continue;
1418 				}
1419 
1420 				/*
1421 				 * The busy flags are only cleared at
1422 				 * interrupt -- minimize the spl transitions
1423 				 */
1424 
1425  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1426  					goto again;
1427 
1428 				if (clean_only && p->valid) {
1429 					vm_page_test_dirty(p);
1430 					if (p->valid & p->dirty)
1431 						continue;
1432 				}
1433 
1434 				vm_page_busy(p);
1435 				vm_page_protect(p, VM_PROT_NONE);
1436 				vm_page_free(p);
1437 			}
1438 		}
1439 	} else {
1440 		while (size > 0) {
1441 			if ((p = vm_page_lookup(object, start)) != 0) {
1442 
1443 				if (p->wire_count != 0) {
1444 					vm_page_protect(p, VM_PROT_NONE);
1445 					if (!clean_only)
1446 						p->valid = 0;
1447 					start += 1;
1448 					size -= 1;
1449 					continue;
1450 				}
1451 
1452 				/*
1453 				 * The busy flags are only cleared at
1454 				 * interrupt -- minimize the spl transitions
1455 				 */
1456  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1457 					goto again;
1458 
1459 				if (clean_only && p->valid) {
1460 					vm_page_test_dirty(p);
1461 					if (p->valid & p->dirty) {
1462 						start += 1;
1463 						size -= 1;
1464 						continue;
1465 					}
1466 				}
1467 
1468 				vm_page_busy(p);
1469 				vm_page_protect(p, VM_PROT_NONE);
1470 				vm_page_free(p);
1471 			}
1472 			start += 1;
1473 			size -= 1;
1474 		}
1475 	}
1476 	vm_object_pip_wakeup(object);
1477 }
1478 
1479 /*
1480  *	Routine:	vm_object_coalesce
1481  *	Function:	Coalesces two objects backing up adjoining
1482  *			regions of memory into a single object.
1483  *
1484  *	returns TRUE if objects were combined.
1485  *
1486  *	NOTE:	Only works at the moment if the second object is NULL -
1487  *		if it's not, which object do we lock first?
1488  *
1489  *	Parameters:
1490  *		prev_object	First object to coalesce
1491  *		prev_offset	Offset into prev_object
1492  *		next_object	Second object into coalesce
1493  *		next_offset	Offset into next_object
1494  *
1495  *		prev_size	Size of reference to prev_object
1496  *		next_size	Size of reference to next_object
1497  *
1498  *	Conditions:
1499  *	The object must *not* be locked.
1500  */
1501 boolean_t
1502 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1503 	vm_object_t prev_object;
1504 	vm_pindex_t prev_pindex;
1505 	vm_size_t prev_size, next_size;
1506 {
1507 	vm_pindex_t next_pindex;
1508 
1509 	if (prev_object == NULL) {
1510 		return (TRUE);
1511 	}
1512 
1513 	if (prev_object->type != OBJT_DEFAULT &&
1514 	    prev_object->type != OBJT_SWAP) {
1515 		return (FALSE);
1516 	}
1517 
1518 	/*
1519 	 * Try to collapse the object first
1520 	 */
1521 	vm_object_collapse(prev_object);
1522 
1523 	/*
1524 	 * Can't coalesce if: . more than one reference . paged out . shadows
1525 	 * another object . has a copy elsewhere (any of which mean that the
1526 	 * pages not mapped to prev_entry may be in use anyway)
1527 	 */
1528 
1529 	if (prev_object->backing_object != NULL) {
1530 		return (FALSE);
1531 	}
1532 
1533 	prev_size >>= PAGE_SHIFT;
1534 	next_size >>= PAGE_SHIFT;
1535 	next_pindex = prev_pindex + prev_size;
1536 
1537 	if ((prev_object->ref_count > 1) &&
1538 	    (prev_object->size != next_pindex)) {
1539 		return (FALSE);
1540 	}
1541 
1542 	/*
1543 	 * Remove any pages that may still be in the object from a previous
1544 	 * deallocation.
1545 	 */
1546 	if (next_pindex < prev_object->size) {
1547 		vm_object_page_remove(prev_object,
1548 				      next_pindex,
1549 				      next_pindex + next_size, FALSE);
1550 		if (prev_object->type == OBJT_SWAP)
1551 			swap_pager_freespace(prev_object,
1552 					     next_pindex, next_size);
1553 	}
1554 
1555 	/*
1556 	 * Extend the object if necessary.
1557 	 */
1558 	if (next_pindex + next_size > prev_object->size)
1559 		prev_object->size = next_pindex + next_size;
1560 
1561 	return (TRUE);
1562 }
1563 
1564 #include "opt_ddb.h"
1565 #ifdef DDB
1566 #include <sys/kernel.h>
1567 
1568 #include <sys/cons.h>
1569 
1570 #include <ddb/ddb.h>
1571 
1572 static int	_vm_object_in_map __P((vm_map_t map, vm_object_t object,
1573 				       vm_map_entry_t entry));
1574 static int	vm_object_in_map __P((vm_object_t object));
1575 
1576 static int
1577 _vm_object_in_map(map, object, entry)
1578 	vm_map_t map;
1579 	vm_object_t object;
1580 	vm_map_entry_t entry;
1581 {
1582 	vm_map_t tmpm;
1583 	vm_map_entry_t tmpe;
1584 	vm_object_t obj;
1585 	int entcount;
1586 
1587 	if (map == 0)
1588 		return 0;
1589 
1590 	if (entry == 0) {
1591 		tmpe = map->header.next;
1592 		entcount = map->nentries;
1593 		while (entcount-- && (tmpe != &map->header)) {
1594 			if( _vm_object_in_map(map, object, tmpe)) {
1595 				return 1;
1596 			}
1597 			tmpe = tmpe->next;
1598 		}
1599 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1600 		tmpm = entry->object.sub_map;
1601 		tmpe = tmpm->header.next;
1602 		entcount = tmpm->nentries;
1603 		while (entcount-- && tmpe != &tmpm->header) {
1604 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1605 				return 1;
1606 			}
1607 			tmpe = tmpe->next;
1608 		}
1609 	} else if ((obj = entry->object.vm_object) != NULL) {
1610 		for(; obj; obj=obj->backing_object)
1611 			if( obj == object) {
1612 				return 1;
1613 			}
1614 	}
1615 	return 0;
1616 }
1617 
1618 static int
1619 vm_object_in_map( object)
1620 	vm_object_t object;
1621 {
1622 	struct proc *p;
1623 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1624 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1625 			continue;
1626 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1627 			return 1;
1628 	}
1629 	if( _vm_object_in_map( kernel_map, object, 0))
1630 		return 1;
1631 	if( _vm_object_in_map( kmem_map, object, 0))
1632 		return 1;
1633 	if( _vm_object_in_map( pager_map, object, 0))
1634 		return 1;
1635 	if( _vm_object_in_map( buffer_map, object, 0))
1636 		return 1;
1637 	if( _vm_object_in_map( mb_map, object, 0))
1638 		return 1;
1639 	return 0;
1640 }
1641 
1642 DB_SHOW_COMMAND(vmochk, vm_object_check)
1643 {
1644 	vm_object_t object;
1645 
1646 	/*
1647 	 * make sure that internal objs are in a map somewhere
1648 	 * and none have zero ref counts.
1649 	 */
1650 	for (object = TAILQ_FIRST(&vm_object_list);
1651 			object != NULL;
1652 			object = TAILQ_NEXT(object, object_list)) {
1653 		if (object->handle == NULL &&
1654 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1655 			if (object->ref_count == 0) {
1656 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1657 					(long)object->size);
1658 			}
1659 			if (!vm_object_in_map(object)) {
1660 				db_printf(
1661 			"vmochk: internal obj is not in a map: "
1662 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1663 				    object->ref_count, (u_long)object->size,
1664 				    (u_long)object->size,
1665 				    (void *)object->backing_object);
1666 			}
1667 		}
1668 	}
1669 }
1670 
1671 /*
1672  *	vm_object_print:	[ debug ]
1673  */
1674 DB_SHOW_COMMAND(object, vm_object_print_static)
1675 {
1676 	/* XXX convert args. */
1677 	vm_object_t object = (vm_object_t)addr;
1678 	boolean_t full = have_addr;
1679 
1680 	vm_page_t p;
1681 
1682 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1683 #define	count	was_count
1684 
1685 	int count;
1686 
1687 	if (object == NULL)
1688 		return;
1689 
1690 	db_iprintf(
1691 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1692 	    object, (int)object->type, (u_long)object->size,
1693 	    object->resident_page_count, object->ref_count, object->flags);
1694 	/*
1695 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1696 	 */
1697 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1698 	    object->shadow_count,
1699 	    object->backing_object ? object->backing_object->ref_count : 0,
1700 	    object->backing_object, (long)object->backing_object_offset);
1701 
1702 	if (!full)
1703 		return;
1704 
1705 	db_indent += 2;
1706 	count = 0;
1707 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1708 		if (count == 0)
1709 			db_iprintf("memory:=");
1710 		else if (count == 6) {
1711 			db_printf("\n");
1712 			db_iprintf(" ...");
1713 			count = 0;
1714 		} else
1715 			db_printf(",");
1716 		count++;
1717 
1718 		db_printf("(off=0x%lx,page=0x%lx)",
1719 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1720 	}
1721 	if (count != 0)
1722 		db_printf("\n");
1723 	db_indent -= 2;
1724 }
1725 
1726 /* XXX. */
1727 #undef count
1728 
1729 /* XXX need this non-static entry for calling from vm_map_print. */
1730 void
1731 vm_object_print(addr, have_addr, count, modif)
1732         /* db_expr_t */ long addr;
1733 	boolean_t have_addr;
1734 	/* db_expr_t */ long count;
1735 	char *modif;
1736 {
1737 	vm_object_print_static(addr, have_addr, count, modif);
1738 }
1739 
1740 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1741 {
1742 	vm_object_t object;
1743 	int nl = 0;
1744 	int c;
1745 	for (object = TAILQ_FIRST(&vm_object_list);
1746 			object != NULL;
1747 			object = TAILQ_NEXT(object, object_list)) {
1748 		vm_pindex_t idx, fidx;
1749 		vm_pindex_t osize;
1750 		vm_offset_t pa = -1, padiff;
1751 		int rcount;
1752 		vm_page_t m;
1753 
1754 		db_printf("new object: %p\n", (void *)object);
1755 		if ( nl > 18) {
1756 			c = cngetc();
1757 			if (c != ' ')
1758 				return;
1759 			nl = 0;
1760 		}
1761 		nl++;
1762 		rcount = 0;
1763 		fidx = 0;
1764 		osize = object->size;
1765 		if (osize > 128)
1766 			osize = 128;
1767 		for(idx=0;idx<osize;idx++) {
1768 			m = vm_page_lookup(object, idx);
1769 			if (m == NULL) {
1770 				if (rcount) {
1771 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1772 						(long)fidx, rcount, (long)pa);
1773 					if ( nl > 18) {
1774 						c = cngetc();
1775 						if (c != ' ')
1776 							return;
1777 						nl = 0;
1778 					}
1779 					nl++;
1780 					rcount = 0;
1781 				}
1782 				continue;
1783 			}
1784 
1785 
1786 			if (rcount &&
1787 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1788 				++rcount;
1789 				continue;
1790 			}
1791 			if (rcount) {
1792 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1793 				padiff >>= PAGE_SHIFT;
1794 				padiff &= PQ_L2_MASK;
1795 				if (padiff == 0) {
1796 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1797 					++rcount;
1798 					continue;
1799 				}
1800 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1801 					(long)fidx, rcount, (long)pa);
1802 				db_printf("pd(%ld)\n", (long)padiff);
1803 				if ( nl > 18) {
1804 					c = cngetc();
1805 					if (c != ' ')
1806 						return;
1807 					nl = 0;
1808 				}
1809 				nl++;
1810 			}
1811 			fidx = idx;
1812 			pa = VM_PAGE_TO_PHYS(m);
1813 			rcount = 1;
1814 		}
1815 		if (rcount) {
1816 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1817 				(long)fidx, rcount, (long)pa);
1818 			if ( nl > 18) {
1819 				c = cngetc();
1820 				if (c != ' ')
1821 					return;
1822 				nl = 0;
1823 			}
1824 			nl++;
1825 		}
1826 	}
1827 }
1828 #endif /* DDB */
1829