xref: /freebsd/sys/vm/vm_object.c (revision b1bebaaba9b9c0ddfe503c43ca8e9e3917ee2c57)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include "opt_vm.h"
66 
67 #include <sys/systm.h>
68 #include <sys/blockcount.h>
69 #include <sys/conf.h>
70 #include <sys/cpuset.h>
71 #include <sys/ipc.h>
72 #include <sys/jail.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/mutex.h>
79 #include <sys/pctrie.h>
80 #include <sys/proc.h>
81 #include <sys/refcount.h>
82 #include <sys/shm.h>
83 #include <sys/sx.h>
84 #include <sys/sysctl.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_pagequeue.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/uma.h>
108 
109 static int old_msync;
110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111     "Use old (insecure) msync behavior");
112 
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114 		    boolean_t *allclean);
115 static void	vm_object_backing_remove(vm_object_t object);
116 
117 /*
118  *	Virtual memory objects maintain the actual data
119  *	associated with allocated virtual memory.  A given
120  *	page of memory exists within exactly one object.
121  *
122  *	An object is only deallocated when all "references"
123  *	are given up.  Only one "reference" to a given
124  *	region of an object should be writeable.
125  *
126  *	Associated with each object is a list of all resident
127  *	memory pages belonging to that object; this list is
128  *	maintained by the "vm_page" module, and locked by the object's
129  *	lock.
130  *
131  *	Each object also records a "pager" routine which is
132  *	used to retrieve (and store) pages to the proper backing
133  *	storage.  In addition, objects may be backed by other
134  *	objects from which they were virtual-copied.
135  *
136  *	The only items within the object structure which are
137  *	modified after time of creation are:
138  *		reference count		locked by object's lock
139  *		pager routine		locked by object's lock
140  *
141  */
142 
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx;	/* lock for object list and count */
145 
146 struct vm_object kernel_object_store;
147 
148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149     "VM object stats");
150 
151 static COUNTER_U64_DEFINE_EARLY(object_collapses);
152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153     &object_collapses,
154     "VM object collapses");
155 
156 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses,
159     "VM object bypasses");
160 
161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
163     &object_collapse_waits,
164     "Number of sleeps for collapse");
165 
166 static uma_zone_t obj_zone;
167 
168 static int vm_object_zinit(void *mem, int size, int flags);
169 
170 #ifdef INVARIANTS
171 static void vm_object_zdtor(void *mem, int size, void *arg);
172 
173 static void
174 vm_object_zdtor(void *mem, int size, void *arg)
175 {
176 	vm_object_t object;
177 
178 	object = (vm_object_t)mem;
179 	KASSERT(object->ref_count == 0,
180 	    ("object %p ref_count = %d", object, object->ref_count));
181 	KASSERT(vm_radix_is_empty(&object->rtree),
182 	    ("object %p has resident pages in its trie", object));
183 #if VM_NRESERVLEVEL > 0
184 	KASSERT(LIST_EMPTY(&object->rvq),
185 	    ("object %p has reservations",
186 	    object));
187 #endif
188 	KASSERT(!vm_object_busied(object),
189 	    ("object %p busy = %d", object, blockcount_read(&object->busy)));
190 	KASSERT(object->resident_page_count == 0,
191 	    ("object %p resident_page_count = %d",
192 	    object, object->resident_page_count));
193 	KASSERT(atomic_load_int(&object->shadow_count) == 0,
194 	    ("object %p shadow_count = %d",
195 	    object, atomic_load_int(&object->shadow_count)));
196 	KASSERT(object->type == OBJT_DEAD,
197 	    ("object %p has non-dead type %d",
198 	    object, object->type));
199 	KASSERT(object->cred == NULL,
200 	    ("object %p has non-zero charge cred %p",
201 	    object, object->cred));
202 }
203 #endif
204 
205 static int
206 vm_object_zinit(void *mem, int size, int flags)
207 {
208 	vm_object_t object;
209 
210 	object = (vm_object_t)mem;
211 	rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
212 
213 	/* These are true for any object that has been freed */
214 	object->type = OBJT_DEAD;
215 	vm_radix_init(&object->rtree);
216 	refcount_init(&object->ref_count, 0);
217 	blockcount_init(&object->paging_in_progress);
218 	blockcount_init(&object->busy);
219 	object->resident_page_count = 0;
220 	atomic_store_int(&object->shadow_count, 0);
221 	object->flags = OBJ_DEAD;
222 
223 	mtx_lock(&vm_object_list_mtx);
224 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
225 	mtx_unlock(&vm_object_list_mtx);
226 	return (0);
227 }
228 
229 static void
230 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
231     vm_object_t object, void *handle)
232 {
233 	LIST_INIT(&object->shadow_head);
234 
235 	object->type = type;
236 	object->flags = flags;
237 	if ((flags & OBJ_SWAP) != 0) {
238 		pctrie_init(&object->un_pager.swp.swp_blks);
239 		object->un_pager.swp.writemappings = 0;
240 	}
241 
242 	/*
243 	 * Ensure that swap_pager_swapoff() iteration over object_list
244 	 * sees up to date type and pctrie head if it observed
245 	 * non-dead object.
246 	 */
247 	atomic_thread_fence_rel();
248 
249 	object->pg_color = 0;
250 	object->size = size;
251 	object->domain.dr_policy = NULL;
252 	object->generation = 1;
253 	object->cleangeneration = 1;
254 	refcount_init(&object->ref_count, 1);
255 	object->memattr = VM_MEMATTR_DEFAULT;
256 	object->cred = NULL;
257 	object->handle = handle;
258 	object->backing_object = NULL;
259 	object->backing_object_offset = (vm_ooffset_t) 0;
260 #if VM_NRESERVLEVEL > 0
261 	LIST_INIT(&object->rvq);
262 #endif
263 	umtx_shm_object_init(object);
264 }
265 
266 /*
267  *	vm_object_init:
268  *
269  *	Initialize the VM objects module.
270  */
271 void
272 vm_object_init(void)
273 {
274 	TAILQ_INIT(&vm_object_list);
275 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
276 
277 	rw_init(&kernel_object->lock, "kernel vm object");
278 	vm_radix_init(&kernel_object->rtree);
279 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
280 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
281 #if VM_NRESERVLEVEL > 0
282 	kernel_object->flags |= OBJ_COLORED;
283 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
284 #endif
285 	kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
286 
287 	/*
288 	 * The lock portion of struct vm_object must be type stable due
289 	 * to vm_pageout_fallback_object_lock locking a vm object
290 	 * without holding any references to it.
291 	 *
292 	 * paging_in_progress is valid always.  Lockless references to
293 	 * the objects may acquire pip and then check OBJ_DEAD.
294 	 */
295 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
296 #ifdef INVARIANTS
297 	    vm_object_zdtor,
298 #else
299 	    NULL,
300 #endif
301 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302 
303 	vm_radix_zinit();
304 }
305 
306 void
307 vm_object_clear_flag(vm_object_t object, u_short bits)
308 {
309 
310 	VM_OBJECT_ASSERT_WLOCKED(object);
311 	object->flags &= ~bits;
312 }
313 
314 /*
315  *	Sets the default memory attribute for the specified object.  Pages
316  *	that are allocated to this object are by default assigned this memory
317  *	attribute.
318  *
319  *	Presently, this function must be called before any pages are allocated
320  *	to the object.  In the future, this requirement may be relaxed for
321  *	"default" and "swap" objects.
322  */
323 int
324 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
325 {
326 
327 	VM_OBJECT_ASSERT_WLOCKED(object);
328 
329 	if (object->type == OBJT_DEAD)
330 		return (KERN_INVALID_ARGUMENT);
331 	if (!vm_radix_is_empty(&object->rtree))
332 		return (KERN_FAILURE);
333 
334 	object->memattr = memattr;
335 	return (KERN_SUCCESS);
336 }
337 
338 void
339 vm_object_pip_add(vm_object_t object, short i)
340 {
341 
342 	if (i > 0)
343 		blockcount_acquire(&object->paging_in_progress, i);
344 }
345 
346 void
347 vm_object_pip_wakeup(vm_object_t object)
348 {
349 
350 	vm_object_pip_wakeupn(object, 1);
351 }
352 
353 void
354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356 
357 	if (i > 0)
358 		blockcount_release(&object->paging_in_progress, i);
359 }
360 
361 /*
362  * Atomically drop the object lock and wait for pip to drain.  This protects
363  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
364  * on return.
365  */
366 static void
367 vm_object_pip_sleep(vm_object_t object, const char *waitid)
368 {
369 
370 	(void)blockcount_sleep(&object->paging_in_progress, &object->lock,
371 	    waitid, PVM | PDROP);
372 }
373 
374 void
375 vm_object_pip_wait(vm_object_t object, const char *waitid)
376 {
377 
378 	VM_OBJECT_ASSERT_WLOCKED(object);
379 
380 	blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
381 	    PVM);
382 }
383 
384 void
385 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
386 {
387 
388 	VM_OBJECT_ASSERT_UNLOCKED(object);
389 
390 	blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
391 }
392 
393 /*
394  *	vm_object_allocate:
395  *
396  *	Returns a new object with the given size.
397  */
398 vm_object_t
399 vm_object_allocate(objtype_t type, vm_pindex_t size)
400 {
401 	vm_object_t object;
402 	u_short flags;
403 
404 	switch (type) {
405 	case OBJT_DEAD:
406 		panic("vm_object_allocate: can't create OBJT_DEAD");
407 	case OBJT_SWAP:
408 		flags = OBJ_COLORED | OBJ_SWAP;
409 		break;
410 	case OBJT_DEVICE:
411 	case OBJT_SG:
412 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
413 		break;
414 	case OBJT_MGTDEVICE:
415 		flags = OBJ_FICTITIOUS;
416 		break;
417 	case OBJT_PHYS:
418 		flags = OBJ_UNMANAGED;
419 		break;
420 	case OBJT_VNODE:
421 		flags = 0;
422 		break;
423 	default:
424 		panic("vm_object_allocate: type %d is undefined or dynamic",
425 		    type);
426 	}
427 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
428 	_vm_object_allocate(type, size, flags, object, NULL);
429 
430 	return (object);
431 }
432 
433 vm_object_t
434 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
435 {
436 	vm_object_t object;
437 
438 	MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
439 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
440 	_vm_object_allocate(dyntype, size, flags, object, NULL);
441 
442 	return (object);
443 }
444 
445 /*
446  *	vm_object_allocate_anon:
447  *
448  *	Returns a new default object of the given size and marked as
449  *	anonymous memory for special split/collapse handling.  Color
450  *	to be initialized by the caller.
451  */
452 vm_object_t
453 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
454     struct ucred *cred)
455 {
456 	vm_object_t handle, object;
457 
458 	if (backing_object == NULL)
459 		handle = NULL;
460 	else if ((backing_object->flags & OBJ_ANON) != 0)
461 		handle = backing_object->handle;
462 	else
463 		handle = backing_object;
464 	object = uma_zalloc(obj_zone, M_WAITOK);
465 	_vm_object_allocate(OBJT_SWAP, size,
466 	    OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
467 	object->cred = cred;
468 	return (object);
469 }
470 
471 static void
472 vm_object_reference_vnode(vm_object_t object)
473 {
474 	u_int old;
475 
476 	/*
477 	 * vnode objects need the lock for the first reference
478 	 * to serialize with vnode_object_deallocate().
479 	 */
480 	if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
481 		VM_OBJECT_RLOCK(object);
482 		old = refcount_acquire(&object->ref_count);
483 		if (object->type == OBJT_VNODE && old == 0)
484 			vref(object->handle);
485 		VM_OBJECT_RUNLOCK(object);
486 	}
487 }
488 
489 /*
490  *	vm_object_reference:
491  *
492  *	Acquires a reference to the given object.
493  */
494 void
495 vm_object_reference(vm_object_t object)
496 {
497 
498 	if (object == NULL)
499 		return;
500 
501 	if (object->type == OBJT_VNODE)
502 		vm_object_reference_vnode(object);
503 	else
504 		refcount_acquire(&object->ref_count);
505 	KASSERT((object->flags & OBJ_DEAD) == 0,
506 	    ("vm_object_reference: Referenced dead object."));
507 }
508 
509 /*
510  *	vm_object_reference_locked:
511  *
512  *	Gets another reference to the given object.
513  *
514  *	The object must be locked.
515  */
516 void
517 vm_object_reference_locked(vm_object_t object)
518 {
519 	u_int old;
520 
521 	VM_OBJECT_ASSERT_LOCKED(object);
522 	old = refcount_acquire(&object->ref_count);
523 	if (object->type == OBJT_VNODE && old == 0)
524 		vref(object->handle);
525 	KASSERT((object->flags & OBJ_DEAD) == 0,
526 	    ("vm_object_reference: Referenced dead object."));
527 }
528 
529 /*
530  * Handle deallocating an object of type OBJT_VNODE.
531  */
532 static void
533 vm_object_deallocate_vnode(vm_object_t object)
534 {
535 	struct vnode *vp = (struct vnode *) object->handle;
536 	bool last;
537 
538 	KASSERT(object->type == OBJT_VNODE,
539 	    ("vm_object_deallocate_vnode: not a vnode object"));
540 	KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
541 
542 	/* Object lock to protect handle lookup. */
543 	last = refcount_release(&object->ref_count);
544 	VM_OBJECT_RUNLOCK(object);
545 
546 	if (!last)
547 		return;
548 
549 	if (!umtx_shm_vnobj_persistent)
550 		umtx_shm_object_terminated(object);
551 
552 	/* vrele may need the vnode lock. */
553 	vrele(vp);
554 }
555 
556 /*
557  * We dropped a reference on an object and discovered that it had a
558  * single remaining shadow.  This is a sibling of the reference we
559  * dropped.  Attempt to collapse the sibling and backing object.
560  */
561 static vm_object_t
562 vm_object_deallocate_anon(vm_object_t backing_object)
563 {
564 	vm_object_t object;
565 
566 	/* Fetch the final shadow.  */
567 	object = LIST_FIRST(&backing_object->shadow_head);
568 	KASSERT(object != NULL &&
569 	    atomic_load_int(&backing_object->shadow_count) == 1,
570 	    ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
571 	    backing_object->ref_count,
572 	    atomic_load_int(&backing_object->shadow_count)));
573 	KASSERT((object->flags & OBJ_ANON) != 0,
574 	    ("invalid shadow object %p", object));
575 
576 	if (!VM_OBJECT_TRYWLOCK(object)) {
577 		/*
578 		 * Prevent object from disappearing since we do not have a
579 		 * reference.
580 		 */
581 		vm_object_pip_add(object, 1);
582 		VM_OBJECT_WUNLOCK(backing_object);
583 		VM_OBJECT_WLOCK(object);
584 		vm_object_pip_wakeup(object);
585 	} else
586 		VM_OBJECT_WUNLOCK(backing_object);
587 
588 	/*
589 	 * Check for a collapse/terminate race with the last reference holder.
590 	 */
591 	if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
592 	    !refcount_acquire_if_not_zero(&object->ref_count)) {
593 		VM_OBJECT_WUNLOCK(object);
594 		return (NULL);
595 	}
596 	backing_object = object->backing_object;
597 	if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
598 		vm_object_collapse(object);
599 	VM_OBJECT_WUNLOCK(object);
600 
601 	return (object);
602 }
603 
604 /*
605  *	vm_object_deallocate:
606  *
607  *	Release a reference to the specified object,
608  *	gained either through a vm_object_allocate
609  *	or a vm_object_reference call.  When all references
610  *	are gone, storage associated with this object
611  *	may be relinquished.
612  *
613  *	No object may be locked.
614  */
615 void
616 vm_object_deallocate(vm_object_t object)
617 {
618 	vm_object_t temp;
619 	bool released;
620 
621 	while (object != NULL) {
622 		/*
623 		 * If the reference count goes to 0 we start calling
624 		 * vm_object_terminate() on the object chain.  A ref count
625 		 * of 1 may be a special case depending on the shadow count
626 		 * being 0 or 1.  These cases require a write lock on the
627 		 * object.
628 		 */
629 		if ((object->flags & OBJ_ANON) == 0)
630 			released = refcount_release_if_gt(&object->ref_count, 1);
631 		else
632 			released = refcount_release_if_gt(&object->ref_count, 2);
633 		if (released)
634 			return;
635 
636 		if (object->type == OBJT_VNODE) {
637 			VM_OBJECT_RLOCK(object);
638 			if (object->type == OBJT_VNODE) {
639 				vm_object_deallocate_vnode(object);
640 				return;
641 			}
642 			VM_OBJECT_RUNLOCK(object);
643 		}
644 
645 		VM_OBJECT_WLOCK(object);
646 		KASSERT(object->ref_count > 0,
647 		    ("vm_object_deallocate: object deallocated too many times: %d",
648 		    object->type));
649 
650 		/*
651 		 * If this is not the final reference to an anonymous
652 		 * object we may need to collapse the shadow chain.
653 		 */
654 		if (!refcount_release(&object->ref_count)) {
655 			if (object->ref_count > 1 ||
656 			    atomic_load_int(&object->shadow_count) == 0) {
657 				if ((object->flags & OBJ_ANON) != 0 &&
658 				    object->ref_count == 1)
659 					vm_object_set_flag(object,
660 					    OBJ_ONEMAPPING);
661 				VM_OBJECT_WUNLOCK(object);
662 				return;
663 			}
664 
665 			/* Handle collapsing last ref on anonymous objects. */
666 			object = vm_object_deallocate_anon(object);
667 			continue;
668 		}
669 
670 		/*
671 		 * Handle the final reference to an object.  We restart
672 		 * the loop with the backing object to avoid recursion.
673 		 */
674 		umtx_shm_object_terminated(object);
675 		temp = object->backing_object;
676 		if (temp != NULL) {
677 			KASSERT(object->type == OBJT_SWAP,
678 			    ("shadowed tmpfs v_object 2 %p", object));
679 			vm_object_backing_remove(object);
680 		}
681 
682 		KASSERT((object->flags & OBJ_DEAD) == 0,
683 		    ("vm_object_deallocate: Terminating dead object."));
684 		vm_object_set_flag(object, OBJ_DEAD);
685 		vm_object_terminate(object);
686 		object = temp;
687 	}
688 }
689 
690 void
691 vm_object_destroy(vm_object_t object)
692 {
693 	uma_zfree(obj_zone, object);
694 }
695 
696 static void
697 vm_object_sub_shadow(vm_object_t object)
698 {
699 	KASSERT(object->shadow_count >= 1,
700 	    ("object %p sub_shadow count zero", object));
701 	atomic_subtract_int(&object->shadow_count, 1);
702 }
703 
704 static void
705 vm_object_backing_remove_locked(vm_object_t object)
706 {
707 	vm_object_t backing_object;
708 
709 	backing_object = object->backing_object;
710 	VM_OBJECT_ASSERT_WLOCKED(object);
711 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
712 
713 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
714 	    ("vm_object_backing_remove: Removing collapsing object."));
715 
716 	vm_object_sub_shadow(backing_object);
717 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
718 		LIST_REMOVE(object, shadow_list);
719 		vm_object_clear_flag(object, OBJ_SHADOWLIST);
720 	}
721 	object->backing_object = NULL;
722 }
723 
724 static void
725 vm_object_backing_remove(vm_object_t object)
726 {
727 	vm_object_t backing_object;
728 
729 	VM_OBJECT_ASSERT_WLOCKED(object);
730 
731 	backing_object = object->backing_object;
732 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
733 		VM_OBJECT_WLOCK(backing_object);
734 		vm_object_backing_remove_locked(object);
735 		VM_OBJECT_WUNLOCK(backing_object);
736 	} else {
737 		object->backing_object = NULL;
738 		vm_object_sub_shadow(backing_object);
739 	}
740 }
741 
742 static void
743 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
744 {
745 
746 	VM_OBJECT_ASSERT_WLOCKED(object);
747 
748 	atomic_add_int(&backing_object->shadow_count, 1);
749 	if ((backing_object->flags & OBJ_ANON) != 0) {
750 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
751 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
752 		    shadow_list);
753 		vm_object_set_flag(object, OBJ_SHADOWLIST);
754 	}
755 	object->backing_object = backing_object;
756 }
757 
758 static void
759 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
760 {
761 
762 	VM_OBJECT_ASSERT_WLOCKED(object);
763 
764 	if ((backing_object->flags & OBJ_ANON) != 0) {
765 		VM_OBJECT_WLOCK(backing_object);
766 		vm_object_backing_insert_locked(object, backing_object);
767 		VM_OBJECT_WUNLOCK(backing_object);
768 	} else {
769 		object->backing_object = backing_object;
770 		atomic_add_int(&backing_object->shadow_count, 1);
771 	}
772 }
773 
774 /*
775  * Insert an object into a backing_object's shadow list with an additional
776  * reference to the backing_object added.
777  */
778 static void
779 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
780 {
781 
782 	VM_OBJECT_ASSERT_WLOCKED(object);
783 
784 	if ((backing_object->flags & OBJ_ANON) != 0) {
785 		VM_OBJECT_WLOCK(backing_object);
786 		KASSERT((backing_object->flags & OBJ_DEAD) == 0,
787 		    ("shadowing dead anonymous object"));
788 		vm_object_reference_locked(backing_object);
789 		vm_object_backing_insert_locked(object, backing_object);
790 		vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
791 		VM_OBJECT_WUNLOCK(backing_object);
792 	} else {
793 		vm_object_reference(backing_object);
794 		atomic_add_int(&backing_object->shadow_count, 1);
795 		object->backing_object = backing_object;
796 	}
797 }
798 
799 /*
800  * Transfer a backing reference from backing_object to object.
801  */
802 static void
803 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
804 {
805 	vm_object_t new_backing_object;
806 
807 	/*
808 	 * Note that the reference to backing_object->backing_object
809 	 * moves from within backing_object to within object.
810 	 */
811 	vm_object_backing_remove_locked(object);
812 	new_backing_object = backing_object->backing_object;
813 	if (new_backing_object == NULL)
814 		return;
815 	if ((new_backing_object->flags & OBJ_ANON) != 0) {
816 		VM_OBJECT_WLOCK(new_backing_object);
817 		vm_object_backing_remove_locked(backing_object);
818 		vm_object_backing_insert_locked(object, new_backing_object);
819 		VM_OBJECT_WUNLOCK(new_backing_object);
820 	} else {
821 		/*
822 		 * shadow_count for new_backing_object is left
823 		 * unchanged, its reference provided by backing_object
824 		 * is replaced by object.
825 		 */
826 		object->backing_object = new_backing_object;
827 		backing_object->backing_object = NULL;
828 	}
829 }
830 
831 /*
832  * Wait for a concurrent collapse to settle.
833  */
834 static void
835 vm_object_collapse_wait(vm_object_t object)
836 {
837 
838 	VM_OBJECT_ASSERT_WLOCKED(object);
839 
840 	while ((object->flags & OBJ_COLLAPSING) != 0) {
841 		vm_object_pip_wait(object, "vmcolwait");
842 		counter_u64_add(object_collapse_waits, 1);
843 	}
844 }
845 
846 /*
847  * Waits for a backing object to clear a pending collapse and returns
848  * it locked if it is an ANON object.
849  */
850 static vm_object_t
851 vm_object_backing_collapse_wait(vm_object_t object)
852 {
853 	vm_object_t backing_object;
854 
855 	VM_OBJECT_ASSERT_WLOCKED(object);
856 
857 	for (;;) {
858 		backing_object = object->backing_object;
859 		if (backing_object == NULL ||
860 		    (backing_object->flags & OBJ_ANON) == 0)
861 			return (NULL);
862 		VM_OBJECT_WLOCK(backing_object);
863 		if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
864 			break;
865 		VM_OBJECT_WUNLOCK(object);
866 		vm_object_pip_sleep(backing_object, "vmbckwait");
867 		counter_u64_add(object_collapse_waits, 1);
868 		VM_OBJECT_WLOCK(object);
869 	}
870 	return (backing_object);
871 }
872 
873 /*
874  *	vm_object_terminate_single_page removes a pageable page from the object,
875  *	and removes it from the paging queues and frees it, if it is not wired.
876  *	It is invoked via callback from vm_object_terminate_pages.
877  */
878 static void
879 vm_object_terminate_single_page(vm_page_t p, void *objectv)
880 {
881 	vm_object_t object __diagused = objectv;
882 
883 	vm_page_assert_unbusied(p);
884 	KASSERT(p->object == object &&
885 	    (p->ref_count & VPRC_OBJREF) != 0,
886 	    ("%s: page %p is inconsistent", __func__, p));
887 	p->object = NULL;
888 	if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
889 		KASSERT((object->flags & OBJ_UNMANAGED) != 0 ||
890 		    vm_page_astate_load(p).queue != PQ_NONE,
891 		    ("%s: page %p does not belong to a queue", __func__, p));
892 		VM_CNT_INC(v_pfree);
893 		vm_page_free(p);
894 	}
895 }
896 
897 /*
898  *	vm_object_terminate_pages removes any remaining pageable pages
899  *	from the object and resets the object to an empty state.
900  */
901 static void
902 vm_object_terminate_pages(vm_object_t object)
903 {
904 	VM_OBJECT_ASSERT_WLOCKED(object);
905 
906 	/*
907 	 * If the object contained any pages, then reset it to an empty state.
908 	 * Rather than incrementally removing each page from the object, the
909 	 * page and object are reset to any empty state.
910 	 */
911 	if (object->resident_page_count == 0)
912 		return;
913 
914 	vm_radix_reclaim_callback(&object->rtree,
915 	    vm_object_terminate_single_page, object);
916 	object->resident_page_count = 0;
917 	if (object->type == OBJT_VNODE)
918 		vdrop(object->handle);
919 }
920 
921 /*
922  *	vm_object_terminate actually destroys the specified object, freeing
923  *	up all previously used resources.
924  *
925  *	The object must be locked.
926  *	This routine may block.
927  */
928 void
929 vm_object_terminate(vm_object_t object)
930 {
931 
932 	VM_OBJECT_ASSERT_WLOCKED(object);
933 	KASSERT((object->flags & OBJ_DEAD) != 0,
934 	    ("terminating non-dead obj %p", object));
935 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
936 	    ("terminating collapsing obj %p", object));
937 	KASSERT(object->backing_object == NULL,
938 	    ("terminating shadow obj %p", object));
939 
940 	/*
941 	 * Wait for the pageout daemon and other current users to be
942 	 * done with the object.  Note that new paging_in_progress
943 	 * users can come after this wait, but they must check
944 	 * OBJ_DEAD flag set (without unlocking the object), and avoid
945 	 * the object being terminated.
946 	 */
947 	vm_object_pip_wait(object, "objtrm");
948 
949 	KASSERT(object->ref_count == 0,
950 	    ("vm_object_terminate: object with references, ref_count=%d",
951 	    object->ref_count));
952 
953 	if ((object->flags & OBJ_PG_DTOR) == 0)
954 		vm_object_terminate_pages(object);
955 
956 #if VM_NRESERVLEVEL > 0
957 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
958 		vm_reserv_break_all(object);
959 #endif
960 
961 	KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
962 	    ("%s: non-swap obj %p has cred", __func__, object));
963 
964 	/*
965 	 * Let the pager know object is dead.
966 	 */
967 	vm_pager_deallocate(object);
968 	VM_OBJECT_WUNLOCK(object);
969 
970 	vm_object_destroy(object);
971 }
972 
973 /*
974  * Make the page read-only so that we can clear the object flags.  However, if
975  * this is a nosync mmap then the object is likely to stay dirty so do not
976  * mess with the page and do not clear the object flags.  Returns TRUE if the
977  * page should be flushed, and FALSE otherwise.
978  */
979 static boolean_t
980 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
981 {
982 
983 	vm_page_assert_busied(p);
984 
985 	/*
986 	 * If we have been asked to skip nosync pages and this is a
987 	 * nosync page, skip it.  Note that the object flags were not
988 	 * cleared in this case so we do not have to set them.
989 	 */
990 	if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
991 		*allclean = FALSE;
992 		return (FALSE);
993 	} else {
994 		pmap_remove_write(p);
995 		return (p->dirty != 0);
996 	}
997 }
998 
999 static int
1000 vm_object_page_clean_flush(struct pctrie_iter *pages, vm_page_t p,
1001     int pagerflags, int flags, boolean_t *allclean, bool *eio)
1002 {
1003 	vm_page_t ma[vm_pageout_page_count];
1004 	int count, runlen;
1005 
1006 	vm_page_assert_xbusied(p);
1007 	ma[0] = p;
1008 	runlen = vm_radix_iter_lookup_range(pages, p->pindex + 1,
1009 	    &ma[1], vm_pageout_page_count - 1);
1010 	for (count = 1; count <= runlen; count++) {
1011 		p = ma[count];
1012 		if (vm_page_tryxbusy(p) == 0)
1013 			break;
1014 		if (!vm_object_page_remove_write(p, flags, allclean)) {
1015 			vm_page_xunbusy(p);
1016 			break;
1017 		}
1018 	}
1019 
1020 	return (vm_pageout_flush(ma, count, pagerflags, eio));
1021 }
1022 
1023 /*
1024  *	vm_object_page_clean
1025  *
1026  *	Clean all dirty pages in the specified range of object.  Leaves page
1027  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
1028  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1029  *	leaving the object dirty.
1030  *
1031  *	For swap objects backing tmpfs regular files, do not flush anything,
1032  *	but remove write protection on the mapped pages to update mtime through
1033  *	mmaped writes.
1034  *
1035  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
1036  *	synchronous clustering mode implementation.
1037  *
1038  *	Odd semantics: if start == end, we clean everything.
1039  *
1040  *	The object must be locked.
1041  *
1042  *	Returns FALSE if some page from the range was not written, as
1043  *	reported by the pager, and TRUE otherwise.
1044  */
1045 boolean_t
1046 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1047     int flags)
1048 {
1049 	struct pctrie_iter pages;
1050 	vm_page_t np, p;
1051 	vm_pindex_t pi, tend, tstart;
1052 	int curgeneration, n, pagerflags;
1053 	boolean_t res, allclean;
1054 	bool eio;
1055 
1056 	VM_OBJECT_ASSERT_WLOCKED(object);
1057 
1058 	if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1059 		return (TRUE);
1060 
1061 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1062 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1063 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1064 
1065 	tstart = OFF_TO_IDX(start);
1066 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1067 	allclean = tstart == 0 && tend >= object->size;
1068 	res = TRUE;
1069 	vm_page_iter_init(&pages, object);
1070 
1071 rescan:
1072 	curgeneration = object->generation;
1073 
1074 	for (p = vm_radix_iter_lookup_ge(&pages, tstart); p != NULL; p = np) {
1075 		pi = p->pindex;
1076 		if (pi >= tend)
1077 			break;
1078 		if (vm_page_none_valid(p)) {
1079 			np = vm_radix_iter_step(&pages);
1080 			continue;
1081 		}
1082 		if (!vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL)) {
1083 			pctrie_iter_reset(&pages);
1084 			if (object->generation != curgeneration &&
1085 			    (flags & OBJPC_SYNC) != 0)
1086 				goto rescan;
1087 			np = vm_radix_iter_lookup_ge(&pages, pi);
1088 			continue;
1089 		}
1090 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
1091 			np = vm_radix_iter_step(&pages);
1092 			vm_page_xunbusy(p);
1093 			continue;
1094 		}
1095 		if (object->type == OBJT_VNODE) {
1096 			n = vm_object_page_clean_flush(&pages, p, pagerflags,
1097 			    flags, &allclean, &eio);
1098 			pctrie_iter_reset(&pages);
1099 			if (eio) {
1100 				res = FALSE;
1101 				allclean = FALSE;
1102 			}
1103 			if (object->generation != curgeneration &&
1104 			    (flags & OBJPC_SYNC) != 0)
1105 				goto rescan;
1106 
1107 			/*
1108 			 * If the VOP_PUTPAGES() did a truncated write, so
1109 			 * that even the first page of the run is not fully
1110 			 * written, vm_pageout_flush() returns 0 as the run
1111 			 * length.  Since the condition that caused truncated
1112 			 * write may be permanent, e.g. exhausted free space,
1113 			 * accepting n == 0 would cause an infinite loop.
1114 			 *
1115 			 * Forwarding the iterator leaves the unwritten page
1116 			 * behind, but there is not much we can do there if
1117 			 * filesystem refuses to write it.
1118 			 */
1119 			if (n == 0) {
1120 				n = 1;
1121 				allclean = FALSE;
1122 			}
1123 		} else {
1124 			n = 1;
1125 			vm_page_xunbusy(p);
1126 		}
1127 		np = vm_radix_iter_lookup_ge(&pages, pi + n);
1128 	}
1129 #if 0
1130 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1131 #endif
1132 
1133 	/*
1134 	 * Leave updating cleangeneration for tmpfs objects to tmpfs
1135 	 * scan.  It needs to update mtime, which happens for other
1136 	 * filesystems during page writeouts.
1137 	 */
1138 	if (allclean && object->type == OBJT_VNODE)
1139 		object->cleangeneration = curgeneration;
1140 	return (res);
1141 }
1142 
1143 /*
1144  * Note that there is absolutely no sense in writing out
1145  * anonymous objects, so we track down the vnode object
1146  * to write out.
1147  * We invalidate (remove) all pages from the address space
1148  * for semantic correctness.
1149  *
1150  * If the backing object is a device object with unmanaged pages, then any
1151  * mappings to the specified range of pages must be removed before this
1152  * function is called.
1153  *
1154  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1155  * may start out with a NULL object.
1156  */
1157 boolean_t
1158 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1159     boolean_t syncio, boolean_t invalidate)
1160 {
1161 	vm_object_t backing_object;
1162 	struct vnode *vp;
1163 	struct mount *mp;
1164 	int error, flags, fsync_after;
1165 	boolean_t res;
1166 
1167 	if (object == NULL)
1168 		return (TRUE);
1169 	res = TRUE;
1170 	error = 0;
1171 	VM_OBJECT_WLOCK(object);
1172 	while ((backing_object = object->backing_object) != NULL) {
1173 		VM_OBJECT_WLOCK(backing_object);
1174 		offset += object->backing_object_offset;
1175 		VM_OBJECT_WUNLOCK(object);
1176 		object = backing_object;
1177 		if (object->size < OFF_TO_IDX(offset + size))
1178 			size = IDX_TO_OFF(object->size) - offset;
1179 	}
1180 	/*
1181 	 * Flush pages if writing is allowed, invalidate them
1182 	 * if invalidation requested.  Pages undergoing I/O
1183 	 * will be ignored by vm_object_page_remove().
1184 	 *
1185 	 * We cannot lock the vnode and then wait for paging
1186 	 * to complete without deadlocking against vm_fault.
1187 	 * Instead we simply call vm_object_page_remove() and
1188 	 * allow it to block internally on a page-by-page
1189 	 * basis when it encounters pages undergoing async
1190 	 * I/O.
1191 	 */
1192 	if (object->type == OBJT_VNODE &&
1193 	    vm_object_mightbedirty(object) != 0 &&
1194 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1195 		VM_OBJECT_WUNLOCK(object);
1196 		(void)vn_start_write(vp, &mp, V_WAIT);
1197 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1198 		if (syncio && !invalidate && offset == 0 &&
1199 		    atop(size) == object->size) {
1200 			/*
1201 			 * If syncing the whole mapping of the file,
1202 			 * it is faster to schedule all the writes in
1203 			 * async mode, also allowing the clustering,
1204 			 * and then wait for i/o to complete.
1205 			 */
1206 			flags = 0;
1207 			fsync_after = TRUE;
1208 		} else {
1209 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1210 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1211 			fsync_after = FALSE;
1212 		}
1213 		VM_OBJECT_WLOCK(object);
1214 		res = vm_object_page_clean(object, offset, offset + size,
1215 		    flags);
1216 		VM_OBJECT_WUNLOCK(object);
1217 		if (fsync_after) {
1218 			for (;;) {
1219 				error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1220 				if (error != ERELOOKUP)
1221 					break;
1222 
1223 				/*
1224 				 * Allow SU/bufdaemon to handle more
1225 				 * dependencies in the meantime.
1226 				 */
1227 				VOP_UNLOCK(vp);
1228 				vn_finished_write(mp);
1229 
1230 				(void)vn_start_write(vp, &mp, V_WAIT);
1231 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1232 			}
1233 		}
1234 		VOP_UNLOCK(vp);
1235 		vn_finished_write(mp);
1236 		if (error != 0)
1237 			res = FALSE;
1238 		VM_OBJECT_WLOCK(object);
1239 	}
1240 	if ((object->type == OBJT_VNODE ||
1241 	     object->type == OBJT_DEVICE) && invalidate) {
1242 		if (object->type == OBJT_DEVICE)
1243 			/*
1244 			 * The option OBJPR_NOTMAPPED must be passed here
1245 			 * because vm_object_page_remove() cannot remove
1246 			 * unmanaged mappings.
1247 			 */
1248 			flags = OBJPR_NOTMAPPED;
1249 		else if (old_msync)
1250 			flags = 0;
1251 		else
1252 			flags = OBJPR_CLEANONLY;
1253 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1254 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1255 	}
1256 	VM_OBJECT_WUNLOCK(object);
1257 	return (res);
1258 }
1259 
1260 /*
1261  * Determine whether the given advice can be applied to the object.  Advice is
1262  * not applied to unmanaged pages since they never belong to page queues, and
1263  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1264  * have been mapped at most once.
1265  */
1266 static bool
1267 vm_object_advice_applies(vm_object_t object, int advice)
1268 {
1269 
1270 	if ((object->flags & OBJ_UNMANAGED) != 0)
1271 		return (false);
1272 	if (advice != MADV_FREE)
1273 		return (true);
1274 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1275 	    (OBJ_ONEMAPPING | OBJ_ANON));
1276 }
1277 
1278 static void
1279 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1280     vm_size_t size)
1281 {
1282 
1283 	if (advice == MADV_FREE)
1284 		vm_pager_freespace(object, pindex, size);
1285 }
1286 
1287 /*
1288  *	vm_object_madvise:
1289  *
1290  *	Implements the madvise function at the object/page level.
1291  *
1292  *	MADV_WILLNEED	(any object)
1293  *
1294  *	    Activate the specified pages if they are resident.
1295  *
1296  *	MADV_DONTNEED	(any object)
1297  *
1298  *	    Deactivate the specified pages if they are resident.
1299  *
1300  *	MADV_FREE	(OBJT_SWAP objects, OBJ_ONEMAPPING only)
1301  *
1302  *	    Deactivate and clean the specified pages if they are
1303  *	    resident.  This permits the process to reuse the pages
1304  *	    without faulting or the kernel to reclaim the pages
1305  *	    without I/O.
1306  */
1307 void
1308 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1309     int advice)
1310 {
1311 	struct pctrie_iter pages;
1312 	vm_pindex_t tpindex;
1313 	vm_object_t backing_object, tobject;
1314 	vm_page_t m, tm;
1315 
1316 	if (object == NULL)
1317 		return;
1318 
1319 	vm_page_iter_init(&pages, object);
1320 relookup:
1321 	VM_OBJECT_WLOCK(object);
1322 	if (!vm_object_advice_applies(object, advice)) {
1323 		VM_OBJECT_WUNLOCK(object);
1324 		return;
1325 	}
1326 	for (m = vm_radix_iter_lookup_ge(&pages, pindex); pindex < end;
1327 	    pindex++) {
1328 		tobject = object;
1329 
1330 		/*
1331 		 * If the next page isn't resident in the top-level object, we
1332 		 * need to search the shadow chain.  When applying MADV_FREE, we
1333 		 * take care to release any swap space used to store
1334 		 * non-resident pages.
1335 		 */
1336 		if (m == NULL || pindex < m->pindex) {
1337 			/*
1338 			 * Optimize a common case: if the top-level object has
1339 			 * no backing object, we can skip over the non-resident
1340 			 * range in constant time.
1341 			 */
1342 			if (object->backing_object == NULL) {
1343 				tpindex = (m != NULL && m->pindex < end) ?
1344 				    m->pindex : end;
1345 				vm_object_madvise_freespace(object, advice,
1346 				    pindex, tpindex - pindex);
1347 				if ((pindex = tpindex) == end)
1348 					break;
1349 				goto next_page;
1350 			}
1351 
1352 			tpindex = pindex;
1353 			do {
1354 				vm_object_madvise_freespace(tobject, advice,
1355 				    tpindex, 1);
1356 				/*
1357 				 * Prepare to search the next object in the
1358 				 * chain.
1359 				 */
1360 				backing_object = tobject->backing_object;
1361 				if (backing_object == NULL)
1362 					goto next_pindex;
1363 				VM_OBJECT_WLOCK(backing_object);
1364 				tpindex +=
1365 				    OFF_TO_IDX(tobject->backing_object_offset);
1366 				if (tobject != object)
1367 					VM_OBJECT_WUNLOCK(tobject);
1368 				tobject = backing_object;
1369 				if (!vm_object_advice_applies(tobject, advice))
1370 					goto next_pindex;
1371 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1372 			    NULL);
1373 		} else {
1374 next_page:
1375 			tm = m;
1376 			m = vm_radix_iter_step(&pages);
1377 		}
1378 
1379 		/*
1380 		 * If the page is not in a normal state, skip it.  The page
1381 		 * can not be invalidated while the object lock is held.
1382 		 */
1383 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1384 			goto next_pindex;
1385 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1386 		    ("vm_object_madvise: page %p is fictitious", tm));
1387 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1388 		    ("vm_object_madvise: page %p is not managed", tm));
1389 		if (vm_page_tryxbusy(tm) == 0) {
1390 			if (object != tobject)
1391 				VM_OBJECT_WUNLOCK(object);
1392 			if (advice == MADV_WILLNEED) {
1393 				/*
1394 				 * Reference the page before unlocking and
1395 				 * sleeping so that the page daemon is less
1396 				 * likely to reclaim it.
1397 				 */
1398 				vm_page_aflag_set(tm, PGA_REFERENCED);
1399 			}
1400 			if (!vm_page_busy_sleep(tm, "madvpo", 0))
1401 				VM_OBJECT_WUNLOCK(tobject);
1402 			pctrie_iter_reset(&pages);
1403   			goto relookup;
1404 		}
1405 		vm_page_advise(tm, advice);
1406 		vm_page_xunbusy(tm);
1407 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1408 next_pindex:
1409 		if (tobject != object)
1410 			VM_OBJECT_WUNLOCK(tobject);
1411 	}
1412 	VM_OBJECT_WUNLOCK(object);
1413 }
1414 
1415 /*
1416  *	vm_object_shadow:
1417  *
1418  *	Create a new object which is backed by the
1419  *	specified existing object range.  The source
1420  *	object reference is deallocated.
1421  *
1422  *	The new object and offset into that object
1423  *	are returned in the source parameters.
1424  */
1425 void
1426 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1427     struct ucred *cred, bool shared)
1428 {
1429 	vm_object_t source;
1430 	vm_object_t result;
1431 
1432 	source = *object;
1433 
1434 	/*
1435 	 * Don't create the new object if the old object isn't shared.
1436 	 *
1437 	 * If we hold the only reference we can guarantee that it won't
1438 	 * increase while we have the map locked.  Otherwise the race is
1439 	 * harmless and we will end up with an extra shadow object that
1440 	 * will be collapsed later.
1441 	 */
1442 	if (source != NULL && source->ref_count == 1 &&
1443 	    (source->flags & OBJ_ANON) != 0)
1444 		return;
1445 
1446 	/*
1447 	 * Allocate a new object with the given length.
1448 	 */
1449 	result = vm_object_allocate_anon(atop(length), source, cred);
1450 
1451 	/*
1452 	 * Store the offset into the source object, and fix up the offset into
1453 	 * the new object.
1454 	 */
1455 	result->backing_object_offset = *offset;
1456 
1457 	if (shared || source != NULL) {
1458 		VM_OBJECT_WLOCK(result);
1459 
1460 		/*
1461 		 * The new object shadows the source object, adding a
1462 		 * reference to it.  Our caller changes his reference
1463 		 * to point to the new object, removing a reference to
1464 		 * the source object.  Net result: no change of
1465 		 * reference count, unless the caller needs to add one
1466 		 * more reference due to forking a shared map entry.
1467 		 */
1468 		if (shared) {
1469 			vm_object_reference_locked(result);
1470 			vm_object_clear_flag(result, OBJ_ONEMAPPING);
1471 		}
1472 
1473 		/*
1474 		 * Try to optimize the result object's page color when
1475 		 * shadowing in order to maintain page coloring
1476 		 * consistency in the combined shadowed object.
1477 		 */
1478 		if (source != NULL) {
1479 			vm_object_backing_insert(result, source);
1480 			result->domain = source->domain;
1481 #if VM_NRESERVLEVEL > 0
1482 			vm_object_set_flag(result,
1483 			    (source->flags & OBJ_COLORED));
1484 			result->pg_color = (source->pg_color +
1485 			    OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1486 			    1)) - 1);
1487 #endif
1488 		}
1489 		VM_OBJECT_WUNLOCK(result);
1490 	}
1491 
1492 	/*
1493 	 * Return the new things
1494 	 */
1495 	*offset = 0;
1496 	*object = result;
1497 }
1498 
1499 /*
1500  *	vm_object_split:
1501  *
1502  * Split the pages in a map entry into a new object.  This affords
1503  * easier removal of unused pages, and keeps object inheritance from
1504  * being a negative impact on memory usage.
1505  */
1506 void
1507 vm_object_split(vm_map_entry_t entry)
1508 {
1509 	struct pctrie_iter pages;
1510 	vm_page_t m;
1511 	vm_object_t orig_object, new_object, backing_object;
1512 	struct ucred *cred;
1513 	vm_pindex_t offidxstart;
1514 	vm_size_t size;
1515 
1516 	orig_object = entry->object.vm_object;
1517 	KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1518 	    ("vm_object_split:  Splitting object with multiple mappings."));
1519 	if ((orig_object->flags & OBJ_ANON) == 0)
1520 		return;
1521 	if (orig_object->ref_count <= 1)
1522 		return;
1523 	VM_OBJECT_WUNLOCK(orig_object);
1524 
1525 	offidxstart = OFF_TO_IDX(entry->offset);
1526 	size = atop(entry->end - entry->start);
1527 	if (orig_object->cred != NULL) {
1528 		/*
1529 		 * vm_object_split() is currently called from
1530 		 * vmspace_fork(), and it might be tempting to add the
1531 		 * charge for the split object to fork_charge.  But
1532 		 * fork_charge is discharged on error when the copied
1533 		 * vmspace is destroyed.  Since the split object is
1534 		 * inserted into the shadow hierarchy serving the
1535 		 * source vm_map, it is kept even after the
1536 		 * unsuccessful fork, meaning that we have to force
1537 		 * its swap usage.
1538 		 */
1539 		cred = curthread->td_ucred;
1540 		crhold(cred);
1541 		swap_reserve_force_by_cred(ptoa(size), cred);
1542 	} else {
1543 		cred = NULL;
1544 	}
1545 
1546 	new_object = vm_object_allocate_anon(size, orig_object, cred);
1547 
1548 	/*
1549 	 * We must wait for the orig_object to complete any in-progress
1550 	 * collapse so that the swap blocks are stable below.  The
1551 	 * additional reference on backing_object by new object will
1552 	 * prevent further collapse operations until split completes.
1553 	 */
1554 	VM_OBJECT_WLOCK(orig_object);
1555 	vm_object_collapse_wait(orig_object);
1556 
1557 	/*
1558 	 * At this point, the new object is still private, so the order in
1559 	 * which the original and new objects are locked does not matter.
1560 	 */
1561 	VM_OBJECT_WLOCK(new_object);
1562 	new_object->domain = orig_object->domain;
1563 	backing_object = orig_object->backing_object;
1564 	if (backing_object != NULL) {
1565 		vm_object_backing_insert_ref(new_object, backing_object);
1566 		new_object->backing_object_offset =
1567 		    orig_object->backing_object_offset + entry->offset;
1568 	}
1569 
1570 	/*
1571 	 * Mark the split operation so that swap_pager_getpages() knows
1572 	 * that the object is in transition.
1573 	 */
1574 	vm_object_set_flag(orig_object, OBJ_SPLIT);
1575 	vm_page_iter_limit_init(&pages, orig_object, offidxstart + size);
1576 retry:
1577 	KASSERT(pctrie_iter_is_reset(&pages),
1578 	    ("%s: pctrie_iter not reset for retry", __func__));
1579 	for (m = vm_radix_iter_lookup_ge(&pages, offidxstart); m != NULL;
1580 	    m = vm_radix_iter_step(&pages)) {
1581 		/*
1582 		 * We must wait for pending I/O to complete before we can
1583 		 * rename the page.
1584 		 *
1585 		 * We do not have to VM_PROT_NONE the page as mappings should
1586 		 * not be changed by this operation.
1587 		 */
1588 		if (vm_page_tryxbusy(m) == 0) {
1589 			VM_OBJECT_WUNLOCK(new_object);
1590 			if (vm_page_busy_sleep(m, "spltwt", 0))
1591 				VM_OBJECT_WLOCK(orig_object);
1592 			pctrie_iter_reset(&pages);
1593 			VM_OBJECT_WLOCK(new_object);
1594 			goto retry;
1595 		}
1596 
1597 		/*
1598 		 * If the page was left invalid, it was likely placed there by
1599 		 * an incomplete fault.  Just remove and ignore.
1600 		 *
1601 		 * One other possibility is that the map entry is wired, in
1602 		 * which case we must hang on to the page to avoid leaking it,
1603 		 * as the map entry owns the wiring.  This case can arise if the
1604 		 * backing object is truncated by the pager.
1605 		 */
1606 		if (vm_page_none_valid(m) && entry->wired_count == 0) {
1607 			if (vm_page_iter_remove(&pages, m))
1608 				vm_page_free(m);
1609 			continue;
1610 		}
1611 
1612 		/* vm_page_iter_rename() will dirty the page if it is valid. */
1613 		if (!vm_page_iter_rename(&pages, m, new_object, m->pindex -
1614 		    offidxstart)) {
1615 			vm_page_xunbusy(m);
1616 			VM_OBJECT_WUNLOCK(new_object);
1617 			VM_OBJECT_WUNLOCK(orig_object);
1618 			vm_radix_wait();
1619 			pctrie_iter_reset(&pages);
1620 			VM_OBJECT_WLOCK(orig_object);
1621 			VM_OBJECT_WLOCK(new_object);
1622 			goto retry;
1623 		}
1624 
1625 #if VM_NRESERVLEVEL > 0
1626 		/*
1627 		 * If some of the reservation's allocated pages remain with
1628 		 * the original object, then transferring the reservation to
1629 		 * the new object is neither particularly beneficial nor
1630 		 * particularly harmful as compared to leaving the reservation
1631 		 * with the original object.  If, however, all of the
1632 		 * reservation's allocated pages are transferred to the new
1633 		 * object, then transferring the reservation is typically
1634 		 * beneficial.  Determining which of these two cases applies
1635 		 * would be more costly than unconditionally renaming the
1636 		 * reservation.
1637 		 */
1638 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1639 #endif
1640 	}
1641 
1642 	/*
1643 	 * swap_pager_copy() can sleep, in which case the orig_object's
1644 	 * and new_object's locks are released and reacquired.
1645 	 */
1646 	swap_pager_copy(orig_object, new_object, offidxstart, 0);
1647 	vm_page_iter_init(&pages, new_object);
1648 	VM_RADIX_FOREACH(m, &pages)
1649 		vm_page_xunbusy(m);
1650 
1651 	vm_object_clear_flag(orig_object, OBJ_SPLIT);
1652 	VM_OBJECT_WUNLOCK(orig_object);
1653 	VM_OBJECT_WUNLOCK(new_object);
1654 	entry->object.vm_object = new_object;
1655 	entry->offset = 0LL;
1656 	vm_object_deallocate(orig_object);
1657 	VM_OBJECT_WLOCK(new_object);
1658 }
1659 
1660 static vm_page_t
1661 vm_object_collapse_scan_wait(struct pctrie_iter *pages, vm_object_t object,
1662     vm_page_t p)
1663 {
1664 	vm_object_t backing_object;
1665 
1666 	VM_OBJECT_ASSERT_WLOCKED(object);
1667 	backing_object = object->backing_object;
1668 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1669 
1670 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1671 	    ("invalid ownership %p %p %p", p, object, backing_object));
1672 	/* The page is only NULL when rename fails. */
1673 	if (p == NULL) {
1674 		VM_OBJECT_WUNLOCK(object);
1675 		VM_OBJECT_WUNLOCK(backing_object);
1676 		vm_radix_wait();
1677 		VM_OBJECT_WLOCK(object);
1678 	} else if (p->object == object) {
1679 		VM_OBJECT_WUNLOCK(backing_object);
1680 		if (vm_page_busy_sleep(p, "vmocol", 0))
1681 			VM_OBJECT_WLOCK(object);
1682 	} else {
1683 		VM_OBJECT_WUNLOCK(object);
1684 		if (!vm_page_busy_sleep(p, "vmocol", 0))
1685 			VM_OBJECT_WUNLOCK(backing_object);
1686 		VM_OBJECT_WLOCK(object);
1687 	}
1688 	VM_OBJECT_WLOCK(backing_object);
1689 	vm_page_iter_init(pages, backing_object);
1690 	return (vm_radix_iter_lookup_ge(pages, 0));
1691 }
1692 
1693 static void
1694 vm_object_collapse_scan(vm_object_t object)
1695 {
1696 	struct pctrie_iter pages;
1697 	vm_object_t backing_object;
1698 	vm_page_t next, p, pp;
1699 	vm_pindex_t backing_offset_index, new_pindex;
1700 
1701 	VM_OBJECT_ASSERT_WLOCKED(object);
1702 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1703 
1704 	backing_object = object->backing_object;
1705 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1706 
1707 	/*
1708 	 * Our scan
1709 	 */
1710 	vm_page_iter_init(&pages, backing_object);
1711 	for (p = vm_radix_iter_lookup_ge(&pages, 0); p != NULL; p = next) {
1712 		/*
1713 		 * Check for busy page
1714 		 */
1715 		if (vm_page_tryxbusy(p) == 0) {
1716 			next = vm_object_collapse_scan_wait(&pages, object, p);
1717 			continue;
1718 		}
1719 
1720 		KASSERT(object->backing_object == backing_object,
1721 		    ("vm_object_collapse_scan: backing object mismatch %p != %p",
1722 		    object->backing_object, backing_object));
1723 		KASSERT(p->object == backing_object,
1724 		    ("vm_object_collapse_scan: object mismatch %p != %p",
1725 		    p->object, backing_object));
1726 
1727 		if (p->pindex < backing_offset_index || object->size <=
1728 		    (new_pindex = p->pindex - backing_offset_index)) {
1729 			vm_pager_freespace(backing_object, p->pindex, 1);
1730 
1731 			KASSERT(!pmap_page_is_mapped(p),
1732 			    ("freeing mapped page %p", p));
1733 			if (vm_page_iter_remove(&pages, p))
1734 				vm_page_free(p);
1735 			next = vm_radix_iter_step(&pages);
1736 			continue;
1737 		}
1738 
1739 		if (!vm_page_all_valid(p)) {
1740 			KASSERT(!pmap_page_is_mapped(p),
1741 			    ("freeing mapped page %p", p));
1742 			if (vm_page_iter_remove(&pages, p))
1743 				vm_page_free(p);
1744 			next = vm_radix_iter_step(&pages);
1745 			continue;
1746 		}
1747 
1748 		pp = vm_page_lookup(object, new_pindex);
1749 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1750 			vm_page_xunbusy(p);
1751 			/*
1752 			 * The page in the parent is busy and possibly not
1753 			 * (yet) valid.  Until its state is finalized by the
1754 			 * busy bit owner, we can't tell whether it shadows the
1755 			 * original page.
1756 			 */
1757 			next = vm_object_collapse_scan_wait(&pages, object, pp);
1758 			continue;
1759 		}
1760 
1761 		if (pp != NULL && vm_page_none_valid(pp)) {
1762 			/*
1763 			 * The page was invalid in the parent.  Likely placed
1764 			 * there by an incomplete fault.  Just remove and
1765 			 * ignore.  p can replace it.
1766 			 */
1767 			if (vm_page_remove(pp))
1768 				vm_page_free(pp);
1769 			pp = NULL;
1770 		}
1771 
1772 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1773 			NULL)) {
1774 			/*
1775 			 * The page already exists in the parent OR swap exists
1776 			 * for this location in the parent.  Leave the parent's
1777 			 * page alone.  Destroy the original page from the
1778 			 * backing object.
1779 			 */
1780 			vm_pager_freespace(backing_object, p->pindex, 1);
1781 			KASSERT(!pmap_page_is_mapped(p),
1782 			    ("freeing mapped page %p", p));
1783 			if (pp != NULL)
1784 				vm_page_xunbusy(pp);
1785 			if (vm_page_iter_remove(&pages, p))
1786 				vm_page_free(p);
1787 			next = vm_radix_iter_step(&pages);
1788 			continue;
1789 		}
1790 
1791 		/*
1792 		 * Page does not exist in parent, rename the page from the
1793 		 * backing object to the main object.
1794 		 *
1795 		 * If the page was mapped to a process, it can remain mapped
1796 		 * through the rename.  vm_page_iter_rename() will dirty the
1797 		 * page.
1798 		 */
1799 		if (!vm_page_iter_rename(&pages, p, object, new_pindex)) {
1800 			vm_page_xunbusy(p);
1801 			next = vm_object_collapse_scan_wait(&pages, object,
1802 			    NULL);
1803 			continue;
1804 		}
1805 
1806 		/* Use the old pindex to free the right page. */
1807 		vm_pager_freespace(backing_object, new_pindex +
1808 		    backing_offset_index, 1);
1809 
1810 #if VM_NRESERVLEVEL > 0
1811 		/*
1812 		 * Rename the reservation.
1813 		 */
1814 		vm_reserv_rename(p, object, backing_object,
1815 		    backing_offset_index);
1816 #endif
1817 		vm_page_xunbusy(p);
1818 		next = vm_radix_iter_step(&pages);
1819 	}
1820 	return;
1821 }
1822 
1823 /*
1824  *	vm_object_collapse:
1825  *
1826  *	Collapse an object with the object backing it.
1827  *	Pages in the backing object are moved into the
1828  *	parent, and the backing object is deallocated.
1829  */
1830 void
1831 vm_object_collapse(vm_object_t object)
1832 {
1833 	vm_object_t backing_object, new_backing_object;
1834 
1835 	VM_OBJECT_ASSERT_WLOCKED(object);
1836 
1837 	while (TRUE) {
1838 		KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1839 		    ("collapsing invalid object"));
1840 
1841 		/*
1842 		 * Wait for the backing_object to finish any pending
1843 		 * collapse so that the caller sees the shortest possible
1844 		 * shadow chain.
1845 		 */
1846 		backing_object = vm_object_backing_collapse_wait(object);
1847 		if (backing_object == NULL)
1848 			return;
1849 
1850 		KASSERT(object->ref_count > 0 &&
1851 		    object->ref_count > atomic_load_int(&object->shadow_count),
1852 		    ("collapse with invalid ref %d or shadow %d count.",
1853 		    object->ref_count, atomic_load_int(&object->shadow_count)));
1854 		KASSERT((backing_object->flags &
1855 		    (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1856 		    ("vm_object_collapse: Backing object already collapsing."));
1857 		KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1858 		    ("vm_object_collapse: object is already collapsing."));
1859 
1860 		/*
1861 		 * We know that we can either collapse the backing object if
1862 		 * the parent is the only reference to it, or (perhaps) have
1863 		 * the parent bypass the object if the parent happens to shadow
1864 		 * all the resident pages in the entire backing object.
1865 		 */
1866 		if (backing_object->ref_count == 1) {
1867 			KASSERT(atomic_load_int(&backing_object->shadow_count)
1868 			    == 1,
1869 			    ("vm_object_collapse: shadow_count: %d",
1870 			    atomic_load_int(&backing_object->shadow_count)));
1871 			vm_object_pip_add(object, 1);
1872 			vm_object_set_flag(object, OBJ_COLLAPSING);
1873 			vm_object_pip_add(backing_object, 1);
1874 			vm_object_set_flag(backing_object, OBJ_DEAD);
1875 
1876 			/*
1877 			 * If there is exactly one reference to the backing
1878 			 * object, we can collapse it into the parent.
1879 			 */
1880 			vm_object_collapse_scan(object);
1881 
1882 			/*
1883 			 * Move the pager from backing_object to object.
1884 			 *
1885 			 * swap_pager_copy() can sleep, in which case the
1886 			 * backing_object's and object's locks are released and
1887 			 * reacquired.
1888 			 */
1889 			swap_pager_copy(backing_object, object,
1890 			    OFF_TO_IDX(object->backing_object_offset), TRUE);
1891 
1892 			/*
1893 			 * Object now shadows whatever backing_object did.
1894 			 */
1895 			vm_object_clear_flag(object, OBJ_COLLAPSING);
1896 			vm_object_backing_transfer(object, backing_object);
1897 			object->backing_object_offset +=
1898 			    backing_object->backing_object_offset;
1899 			VM_OBJECT_WUNLOCK(object);
1900 			vm_object_pip_wakeup(object);
1901 
1902 			/*
1903 			 * Discard backing_object.
1904 			 *
1905 			 * Since the backing object has no pages, no pager left,
1906 			 * and no object references within it, all that is
1907 			 * necessary is to dispose of it.
1908 			 */
1909 			KASSERT(backing_object->ref_count == 1, (
1910 "backing_object %p was somehow re-referenced during collapse!",
1911 			    backing_object));
1912 			vm_object_pip_wakeup(backing_object);
1913 			(void)refcount_release(&backing_object->ref_count);
1914 			umtx_shm_object_terminated(backing_object);
1915 			vm_object_terminate(backing_object);
1916 			counter_u64_add(object_collapses, 1);
1917 			VM_OBJECT_WLOCK(object);
1918 		} else {
1919 			/*
1920 			 * If we do not entirely shadow the backing object,
1921 			 * there is nothing we can do so we give up.
1922 			 *
1923 			 * The object lock and backing_object lock must not
1924 			 * be dropped during this sequence.
1925 			 */
1926 			if (!swap_pager_scan_all_shadowed(object)) {
1927 				VM_OBJECT_WUNLOCK(backing_object);
1928 				break;
1929 			}
1930 
1931 			/*
1932 			 * Make the parent shadow the next object in the
1933 			 * chain.  Deallocating backing_object will not remove
1934 			 * it, since its reference count is at least 2.
1935 			 */
1936 			vm_object_backing_remove_locked(object);
1937 			new_backing_object = backing_object->backing_object;
1938 			if (new_backing_object != NULL) {
1939 				vm_object_backing_insert_ref(object,
1940 				    new_backing_object);
1941 				object->backing_object_offset +=
1942 				    backing_object->backing_object_offset;
1943 			}
1944 
1945 			/*
1946 			 * Drop the reference count on backing_object. Since
1947 			 * its ref_count was at least 2, it will not vanish.
1948 			 */
1949 			(void)refcount_release(&backing_object->ref_count);
1950 			KASSERT(backing_object->ref_count >= 1, (
1951 "backing_object %p was somehow dereferenced during collapse!",
1952 			    backing_object));
1953 			VM_OBJECT_WUNLOCK(backing_object);
1954 			counter_u64_add(object_bypasses, 1);
1955 		}
1956 
1957 		/*
1958 		 * Try again with this object's new backing object.
1959 		 */
1960 	}
1961 }
1962 
1963 /*
1964  *	vm_object_page_remove:
1965  *
1966  *	For the given object, either frees or invalidates each of the
1967  *	specified pages.  In general, a page is freed.  However, if a page is
1968  *	wired for any reason other than the existence of a managed, wired
1969  *	mapping, then it may be invalidated but not removed from the object.
1970  *	Pages are specified by the given range ["start", "end") and the option
1971  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1972  *	extends from "start" to the end of the object.  If the option
1973  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1974  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1975  *	specified, then the pages within the specified range must have no
1976  *	mappings.  Otherwise, if this option is not specified, any mappings to
1977  *	the specified pages are removed before the pages are freed or
1978  *	invalidated.
1979  *
1980  *	In general, this operation should only be performed on objects that
1981  *	contain managed pages.  There are, however, two exceptions.  First, it
1982  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1983  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1984  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1985  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1986  *
1987  *	The object must be locked.
1988  */
1989 void
1990 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1991     int options)
1992 {
1993 	struct pctrie_iter pages;
1994 	vm_page_t p;
1995 
1996 	VM_OBJECT_ASSERT_WLOCKED(object);
1997 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1998 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1999 	    ("vm_object_page_remove: illegal options for object %p", object));
2000 	if (object->resident_page_count == 0)
2001 		goto remove_pager;
2002 	vm_object_pip_add(object, 1);
2003 	vm_page_iter_limit_init(&pages, object, end);
2004 again:
2005 	KASSERT(pctrie_iter_is_reset(&pages),
2006 	    ("%s: pctrie_iter not reset for retry", __func__));
2007 	for (p = vm_radix_iter_lookup_ge(&pages, start); p != NULL;
2008 	     p = vm_radix_iter_step(&pages)) {
2009 		/*
2010 		 * Skip invalid pages if asked to do so.  Try to avoid acquiring
2011 		 * the busy lock, as some consumers rely on this to avoid
2012 		 * deadlocks.
2013 		 *
2014 		 * A thread may concurrently transition the page from invalid to
2015 		 * valid using only the busy lock, so the result of this check
2016 		 * is immediately stale.  It is up to consumers to handle this,
2017 		 * for instance by ensuring that all invalid->valid transitions
2018 		 * happen with a mutex held, as may be possible for a
2019 		 * filesystem.
2020 		 */
2021 		if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2022 			continue;
2023 
2024 		/*
2025 		 * If the page is wired for any reason besides the existence
2026 		 * of managed, wired mappings, then it cannot be freed.  For
2027 		 * example, fictitious pages, which represent device memory,
2028 		 * are inherently wired and cannot be freed.  They can,
2029 		 * however, be invalidated if the option OBJPR_CLEANONLY is
2030 		 * not specified.
2031 		 */
2032 		if (vm_page_tryxbusy(p) == 0) {
2033 			if (vm_page_busy_sleep(p, "vmopar", 0))
2034 				VM_OBJECT_WLOCK(object);
2035 			pctrie_iter_reset(&pages);
2036 			goto again;
2037 		}
2038 		if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2039 			vm_page_xunbusy(p);
2040 			continue;
2041 		}
2042 		if (vm_page_wired(p)) {
2043 wired:
2044 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2045 			    object->ref_count != 0)
2046 				pmap_remove_all(p);
2047 			if ((options & OBJPR_CLEANONLY) == 0) {
2048 				vm_page_invalid(p);
2049 				vm_page_undirty(p);
2050 			}
2051 			vm_page_xunbusy(p);
2052 			continue;
2053 		}
2054 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2055 		    ("vm_object_page_remove: page %p is fictitious", p));
2056 		if ((options & OBJPR_CLEANONLY) != 0 &&
2057 		    !vm_page_none_valid(p)) {
2058 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2059 			    object->ref_count != 0 &&
2060 			    !vm_page_try_remove_write(p))
2061 				goto wired;
2062 			if (p->dirty != 0) {
2063 				vm_page_xunbusy(p);
2064 				continue;
2065 			}
2066 		}
2067 		if ((options & OBJPR_NOTMAPPED) == 0 &&
2068 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
2069 			goto wired;
2070 		vm_page_iter_free(&pages, p);
2071 	}
2072 	vm_object_pip_wakeup(object);
2073 
2074 remove_pager:
2075 	vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2076 	    start);
2077 }
2078 
2079 /*
2080  *	vm_object_page_noreuse:
2081  *
2082  *	For the given object, attempt to move the specified pages to
2083  *	the head of the inactive queue.  This bypasses regular LRU
2084  *	operation and allows the pages to be reused quickly under memory
2085  *	pressure.  If a page is wired for any reason, then it will not
2086  *	be queued.  Pages are specified by the range ["start", "end").
2087  *	As a special case, if "end" is zero, then the range extends from
2088  *	"start" to the end of the object.
2089  *
2090  *	This operation should only be performed on objects that
2091  *	contain non-fictitious, managed pages.
2092  *
2093  *	The object must be locked.
2094  */
2095 void
2096 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2097 {
2098 	struct pctrie_iter pages;
2099 	vm_page_t p;
2100 
2101 	VM_OBJECT_ASSERT_LOCKED(object);
2102 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2103 	    ("vm_object_page_noreuse: illegal object %p", object));
2104 	if (object->resident_page_count == 0)
2105 		return;
2106 
2107 	vm_page_iter_limit_init(&pages, object, end);
2108 	VM_RADIX_FOREACH_FROM(p, &pages, start)
2109 		vm_page_deactivate_noreuse(p);
2110 }
2111 
2112 /*
2113  *	Populate the specified range of the object with valid pages.  Returns
2114  *	TRUE if the range is successfully populated and FALSE otherwise.
2115  *
2116  *	Note: This function should be optimized to pass a larger array of
2117  *	pages to vm_pager_get_pages() before it is applied to a non-
2118  *	OBJT_DEVICE object.
2119  *
2120  *	The object must be locked.
2121  */
2122 boolean_t
2123 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2124 {
2125 	struct pctrie_iter pages;
2126 	vm_page_t m;
2127 	vm_pindex_t pindex;
2128 	int rv;
2129 
2130 	vm_page_iter_init(&pages, object);
2131 	VM_OBJECT_ASSERT_WLOCKED(object);
2132 	for (pindex = start; pindex < end; pindex++) {
2133 		rv = vm_page_grab_valid_iter(&m, object, pindex,
2134 		    VM_ALLOC_NORMAL, &pages);
2135 		if (rv != VM_PAGER_OK)
2136 			break;
2137 
2138 		/*
2139 		 * Keep "m" busy because a subsequent iteration may unlock
2140 		 * the object.
2141 		 */
2142 	}
2143 	if (pindex > start) {
2144 		pages.limit = pindex;
2145 		VM_RADIX_FORALL_FROM(m, &pages, start)
2146 			vm_page_xunbusy(m);
2147 	}
2148 	return (pindex == end);
2149 }
2150 
2151 /*
2152  *	Routine:	vm_object_coalesce
2153  *	Function:	Coalesces two objects backing up adjoining
2154  *			regions of memory into a single object.
2155  *
2156  *	returns TRUE if objects were combined.
2157  *
2158  *	NOTE:	Only works at the moment if the second object is NULL -
2159  *		if it's not, which object do we lock first?
2160  *
2161  *	Parameters:
2162  *		prev_object	First object to coalesce
2163  *		prev_offset	Offset into prev_object
2164  *		prev_size	Size of reference to prev_object
2165  *		next_size	Size of reference to the second object
2166  *		reserved	Indicator that extension region has
2167  *				swap accounted for
2168  *
2169  *	Conditions:
2170  *	The object must *not* be locked.
2171  */
2172 boolean_t
2173 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2174     vm_size_t prev_size, vm_size_t next_size, int cflags)
2175 {
2176 	vm_pindex_t next_end, next_pindex;
2177 
2178 	if (prev_object == NULL)
2179 		return (TRUE);
2180 	if ((prev_object->flags & OBJ_ANON) == 0)
2181 		return (FALSE);
2182 
2183 	VM_OBJECT_WLOCK(prev_object);
2184 	/*
2185 	 * Try to collapse the object first.
2186 	 */
2187 	vm_object_collapse(prev_object);
2188 
2189 	/*
2190 	 * Can't coalesce if: . more than one reference . paged out . shadows
2191 	 * another object . has a copy elsewhere (any of which mean that the
2192 	 * pages not mapped to prev_entry may be in use anyway)
2193 	 */
2194 	if (prev_object->backing_object != NULL) {
2195 		VM_OBJECT_WUNLOCK(prev_object);
2196 		return (FALSE);
2197 	}
2198 
2199 	prev_size >>= PAGE_SHIFT;
2200 	next_size >>= PAGE_SHIFT;
2201 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2202 
2203 	if (prev_object->ref_count > 1 &&
2204 	    prev_object->size != next_pindex &&
2205 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2206 		VM_OBJECT_WUNLOCK(prev_object);
2207 		return (FALSE);
2208 	}
2209 
2210 	next_end = next_pindex + next_size;
2211 
2212 	/*
2213 	 * Account for the charge.
2214 	 */
2215 	if (prev_object->cred != NULL && (cflags & OBJCO_NO_CHARGE) == 0) {
2216 		/*
2217 		 * If prev_object was charged, then this mapping,
2218 		 * although not charged now, may become writable
2219 		 * later. Non-NULL cred in the object would prevent
2220 		 * swap reservation during enabling of the write
2221 		 * access, so reserve swap now. Failed reservation
2222 		 * cause allocation of the separate object for the map
2223 		 * entry, and swap reservation for this entry is
2224 		 * managed in appropriate time.
2225 		 */
2226 		if (next_end > prev_object->size) {
2227 			vm_size_t charge = ptoa(next_end - prev_object->size);
2228 
2229 			if ((cflags & OBJCO_CHARGED) == 0) {
2230 				if (!swap_reserve_by_cred(charge,
2231 				    prev_object->cred)) {
2232 					VM_OBJECT_WUNLOCK(prev_object);
2233 					return (FALSE);
2234 				}
2235 			} else if (prev_object->size > next_pindex) {
2236 				/*
2237 				 * The caller charged, but:
2238 				 * - the object has already accounted for the
2239 				 *   space,
2240 				 * - and the object end is between previous
2241 				 *   mapping end and next_end.
2242 				 */
2243 				swap_release_by_cred(ptoa(prev_object->size -
2244 				    next_pindex), prev_object->cred);
2245 			}
2246 		} else if ((cflags & OBJCO_CHARGED) != 0) {
2247 			/*
2248 			 * The caller charged, but the object has
2249 			 * already accounted for the space.  Whole new
2250 			 * mapping charge should be released,
2251 			 */
2252 			swap_release_by_cred(ptoa(next_size),
2253 			    prev_object->cred);
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * Remove any pages that may still be in the object from a previous
2259 	 * deallocation.
2260 	 */
2261 	if (next_pindex < prev_object->size)
2262 		vm_object_page_remove(prev_object, next_pindex, next_end, 0);
2263 
2264 	/*
2265 	 * Extend the object if necessary.
2266 	 */
2267 	if (next_end > prev_object->size)
2268 		prev_object->size = next_end;
2269 
2270 #ifdef INVARIANTS
2271 	/*
2272 	 * Re-check: there must be no pages in the next range backed
2273 	 * by prev_entry's object.  Otherwise, the resulting
2274 	 * corruption is same as faulting in a non-zeroed page.
2275 	 */
2276 	if (vm_check_pg_zero) {
2277 		vm_pindex_t pidx;
2278 
2279 		pidx = swap_pager_seek_data(prev_object, next_pindex);
2280 		KASSERT(pidx >= next_end,
2281 		    ("found obj %p pindex %#jx e %#jx %#jx %#jx",
2282 		    prev_object, pidx, (uintmax_t)prev_offset,
2283 		    (uintmax_t)prev_size, (uintmax_t)next_size));
2284 	}
2285 #endif
2286 
2287 	VM_OBJECT_WUNLOCK(prev_object);
2288 	return (TRUE);
2289 }
2290 
2291 /*
2292  * Fill in the m_dst array with up to *rbehind optional pages before m_src[0]
2293  * and up to *rahead optional pages after m_src[count - 1].  In both cases, stop
2294  * the filling-in short on encountering a cached page, an object boundary limit,
2295  * or an allocation error.  Update *rbehind and *rahead to indicate the number
2296  * of pages allocated.  Copy elements of m_src into array elements from
2297  * m_dst[*rbehind] to m_dst[*rbehind + count -1].
2298  */
2299 void
2300 vm_object_prepare_buf_pages(vm_object_t object, vm_page_t *ma_dst, int count,
2301     int *rbehind, int *rahead, vm_page_t *ma_src)
2302 {
2303 	struct pctrie_iter pages;
2304 	vm_pindex_t pindex;
2305 	vm_page_t m, mpred, msucc;
2306 
2307 	vm_page_iter_init(&pages, object);
2308 	VM_OBJECT_ASSERT_LOCKED(object);
2309 	if (*rbehind != 0) {
2310 		m = ma_src[0];
2311 		pindex = m->pindex;
2312 		mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2313 		*rbehind = MIN(*rbehind,
2314 		    pindex - (mpred != NULL ? mpred->pindex + 1 : 0));
2315 		for (int i = 0; i < *rbehind; i++) {
2316 			m = vm_page_alloc_iter(object, pindex - i - 1,
2317 			    VM_ALLOC_NORMAL, &pages);
2318 			if (m == NULL) {
2319 				/* Shift the array. */
2320 				for (int j = 0; j < i; j++)
2321 					ma_dst[j] = ma_dst[j + *rbehind - i];
2322 				*rbehind = i;
2323 				*rahead = 0;
2324 				break;
2325 			}
2326 			ma_dst[*rbehind - i - 1] = m;
2327 		}
2328 	}
2329 	for (int i = 0; i < count; i++)
2330 		ma_dst[*rbehind + i] = ma_src[i];
2331 	if (*rahead != 0) {
2332 		m = ma_src[count - 1];
2333 		pindex = m->pindex + 1;
2334 		msucc = vm_radix_iter_lookup_ge(&pages, pindex);
2335 		*rahead = MIN(*rahead,
2336 		    (msucc != NULL ? msucc->pindex : object->size) - pindex);
2337 		for (int i = 0; i < *rahead; i++) {
2338 			m = vm_page_alloc_iter(object, pindex + i,
2339 			    VM_ALLOC_NORMAL, &pages);
2340 			if (m == NULL) {
2341 				*rahead = i;
2342 				break;
2343 			}
2344 			ma_dst[*rbehind + count + i] = m;
2345 		}
2346 	}
2347 }
2348 
2349 void
2350 vm_object_set_writeable_dirty_(vm_object_t object)
2351 {
2352 	atomic_add_int(&object->generation, 1);
2353 }
2354 
2355 bool
2356 vm_object_mightbedirty_(vm_object_t object)
2357 {
2358 	return (object->generation != object->cleangeneration);
2359 }
2360 
2361 /*
2362  *	vm_object_unwire:
2363  *
2364  *	For each page offset within the specified range of the given object,
2365  *	find the highest-level page in the shadow chain and unwire it.  A page
2366  *	must exist at every page offset, and the highest-level page must be
2367  *	wired.
2368  */
2369 void
2370 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2371     uint8_t queue)
2372 {
2373 	struct pctrie_iter pages;
2374 	vm_object_t tobject, t1object;
2375 	vm_page_t m, tm;
2376 	vm_pindex_t end_pindex, pindex, tpindex;
2377 	int depth, locked_depth;
2378 
2379 	KASSERT((offset & PAGE_MASK) == 0,
2380 	    ("vm_object_unwire: offset is not page aligned"));
2381 	KASSERT((length & PAGE_MASK) == 0,
2382 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2383 	/* The wired count of a fictitious page never changes. */
2384 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2385 		return;
2386 	pindex = OFF_TO_IDX(offset);
2387 	end_pindex = pindex + atop(length);
2388 	vm_page_iter_init(&pages, object);
2389 again:
2390 	locked_depth = 1;
2391 	VM_OBJECT_RLOCK(object);
2392 	m = vm_radix_iter_lookup_ge(&pages, pindex);
2393 	while (pindex < end_pindex) {
2394 		if (m == NULL || pindex < m->pindex) {
2395 			/*
2396 			 * The first object in the shadow chain doesn't
2397 			 * contain a page at the current index.  Therefore,
2398 			 * the page must exist in a backing object.
2399 			 */
2400 			tobject = object;
2401 			tpindex = pindex;
2402 			depth = 0;
2403 			do {
2404 				tpindex +=
2405 				    OFF_TO_IDX(tobject->backing_object_offset);
2406 				tobject = tobject->backing_object;
2407 				KASSERT(tobject != NULL,
2408 				    ("vm_object_unwire: missing page"));
2409 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2410 					goto next_page;
2411 				depth++;
2412 				if (depth == locked_depth) {
2413 					locked_depth++;
2414 					VM_OBJECT_RLOCK(tobject);
2415 				}
2416 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2417 			    NULL);
2418 		} else {
2419 			tm = m;
2420 			m = vm_radix_iter_step(&pages);
2421 		}
2422 		if (vm_page_trysbusy(tm) == 0) {
2423 			for (tobject = object; locked_depth >= 1;
2424 			    locked_depth--) {
2425 				t1object = tobject->backing_object;
2426 				if (tm->object != tobject)
2427 					VM_OBJECT_RUNLOCK(tobject);
2428 				tobject = t1object;
2429 			}
2430 			tobject = tm->object;
2431 			if (!vm_page_busy_sleep(tm, "unwbo",
2432 			    VM_ALLOC_IGN_SBUSY))
2433 				VM_OBJECT_RUNLOCK(tobject);
2434 			pctrie_iter_reset(&pages);
2435 			goto again;
2436 		}
2437 		vm_page_unwire(tm, queue);
2438 		vm_page_sunbusy(tm);
2439 next_page:
2440 		pindex++;
2441 	}
2442 	/* Release the accumulated object locks. */
2443 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2444 		t1object = tobject->backing_object;
2445 		VM_OBJECT_RUNLOCK(tobject);
2446 		tobject = t1object;
2447 	}
2448 }
2449 
2450 /*
2451  * Return the vnode for the given object, or NULL if none exists.
2452  * For tmpfs objects, the function may return NULL if there is
2453  * no vnode allocated at the time of the call.
2454  */
2455 struct vnode *
2456 vm_object_vnode(vm_object_t object)
2457 {
2458 	struct vnode *vp;
2459 
2460 	VM_OBJECT_ASSERT_LOCKED(object);
2461 	vm_pager_getvp(object, &vp, NULL);
2462 	return (vp);
2463 }
2464 
2465 /*
2466  * Busy the vm object.  This prevents new pages belonging to the object from
2467  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2468  * for checking page state before proceeding.
2469  */
2470 void
2471 vm_object_busy(vm_object_t obj)
2472 {
2473 
2474 	VM_OBJECT_ASSERT_LOCKED(obj);
2475 
2476 	blockcount_acquire(&obj->busy, 1);
2477 	/* The fence is required to order loads of page busy. */
2478 	atomic_thread_fence_acq_rel();
2479 }
2480 
2481 void
2482 vm_object_unbusy(vm_object_t obj)
2483 {
2484 
2485 	blockcount_release(&obj->busy, 1);
2486 }
2487 
2488 void
2489 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2490 {
2491 
2492 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2493 
2494 	(void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2495 }
2496 
2497 /*
2498  * This function aims to determine if the object is mapped,
2499  * specifically, if it is referenced by a vm_map_entry.  Because
2500  * objects occasionally acquire transient references that do not
2501  * represent a mapping, the method used here is inexact.  However, it
2502  * has very low overhead and is good enough for the advisory
2503  * vm.vmtotal sysctl.
2504  */
2505 bool
2506 vm_object_is_active(vm_object_t obj)
2507 {
2508 
2509 	return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2510 }
2511 
2512 static int
2513 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2514 {
2515 	struct pctrie_iter pages;
2516 	struct kinfo_vmobject *kvo;
2517 	char *fullpath, *freepath;
2518 	struct vnode *vp;
2519 	struct vattr va;
2520 	vm_object_t obj;
2521 	vm_page_t m;
2522 	u_long sp;
2523 	int count, error;
2524 	key_t key;
2525 	unsigned short seq;
2526 	bool want_path;
2527 
2528 	if (req->oldptr == NULL) {
2529 		/*
2530 		 * If an old buffer has not been provided, generate an
2531 		 * estimate of the space needed for a subsequent call.
2532 		 */
2533 		mtx_lock(&vm_object_list_mtx);
2534 		count = 0;
2535 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2536 			if (obj->type == OBJT_DEAD)
2537 				continue;
2538 			count++;
2539 		}
2540 		mtx_unlock(&vm_object_list_mtx);
2541 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2542 		    count * 11 / 10));
2543 	}
2544 
2545 	want_path = !(swap_only || jailed(curthread->td_ucred));
2546 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2547 	error = 0;
2548 
2549 	/*
2550 	 * VM objects are type stable and are never removed from the
2551 	 * list once added.  This allows us to safely read obj->object_list
2552 	 * after reacquiring the VM object lock.
2553 	 */
2554 	mtx_lock(&vm_object_list_mtx);
2555 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2556 		if (obj->type == OBJT_DEAD ||
2557 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2558 			continue;
2559 		VM_OBJECT_RLOCK(obj);
2560 		if (obj->type == OBJT_DEAD ||
2561 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2562 			VM_OBJECT_RUNLOCK(obj);
2563 			continue;
2564 		}
2565 		mtx_unlock(&vm_object_list_mtx);
2566 
2567 		memset(kvo, 0, sizeof(*kvo));
2568 		kvo->kvo_size = ptoa(obj->size);
2569 		kvo->kvo_resident = obj->resident_page_count;
2570 		kvo->kvo_ref_count = obj->ref_count;
2571 		kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2572 		kvo->kvo_memattr = obj->memattr;
2573 		if (!swap_only) {
2574 			vm_page_iter_init(&pages, obj);
2575 			VM_RADIX_FOREACH(m, &pages) {
2576 				/*
2577 				 * A page may belong to the object but be
2578 				 * dequeued and set to PQ_NONE while the
2579 				 * object lock is not held.  This makes the
2580 				 * reads of m->queue below racy, and we do not
2581 				 * count pages set to PQ_NONE.  However, this
2582 				 * sysctl is only meant to give an
2583 				 * approximation of the system anyway.
2584 				 */
2585 				if (vm_page_active(m))
2586 					kvo->kvo_active++;
2587 				else if (vm_page_inactive(m))
2588 					kvo->kvo_inactive++;
2589 				else if (vm_page_in_laundry(m))
2590 					kvo->kvo_laundry++;
2591 
2592 				if (vm_page_wired(m))
2593 					kvo->kvo_wired++;
2594 			}
2595 		}
2596 
2597 		freepath = NULL;
2598 		fullpath = "";
2599 		vp = NULL;
2600 		kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp :
2601 		    NULL);
2602 		if (vp != NULL) {
2603 			vref(vp);
2604 		} else if ((obj->flags & OBJ_ANON) != 0) {
2605 			MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2606 			kvo->kvo_me = (uintptr_t)obj;
2607 			/* tmpfs objs are reported as vnodes */
2608 			kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2609 			sp = swap_pager_swapped_pages(obj);
2610 			kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2611 		}
2612 		if (obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) {
2613 			cdev_pager_get_path(obj, kvo->kvo_path,
2614 			    sizeof(kvo->kvo_path));
2615 		}
2616 		VM_OBJECT_RUNLOCK(obj);
2617 		if ((obj->flags & OBJ_SYSVSHM) != 0) {
2618 			kvo->kvo_flags |= KVMO_FLAG_SYSVSHM;
2619 			shmobjinfo(obj, &key, &seq);
2620 			kvo->kvo_vn_fileid = key;
2621 			kvo->kvo_vn_fsid_freebsd11 = seq;
2622 		}
2623 		if ((obj->flags & OBJ_POSIXSHM) != 0) {
2624 			kvo->kvo_flags |= KVMO_FLAG_POSIXSHM;
2625 			shm_get_path(obj, kvo->kvo_path,
2626 			    sizeof(kvo->kvo_path));
2627 		}
2628 		if (vp != NULL) {
2629 			vn_fullpath(vp, &fullpath, &freepath);
2630 			vn_lock(vp, LK_SHARED | LK_RETRY);
2631 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2632 				kvo->kvo_vn_fileid = va.va_fileid;
2633 				kvo->kvo_vn_fsid = va.va_fsid;
2634 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2635 								/* truncate */
2636 			}
2637 			vput(vp);
2638 			strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2639 			free(freepath, M_TEMP);
2640 		}
2641 
2642 		/* Pack record size down */
2643 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2644 		    + strlen(kvo->kvo_path) + 1;
2645 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2646 		    sizeof(uint64_t));
2647 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2648 		maybe_yield();
2649 		mtx_lock(&vm_object_list_mtx);
2650 		if (error)
2651 			break;
2652 	}
2653 	mtx_unlock(&vm_object_list_mtx);
2654 	free(kvo, M_TEMP);
2655 	return (error);
2656 }
2657 
2658 static int
2659 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2660 {
2661 	return (vm_object_list_handler(req, false));
2662 }
2663 
2664 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2665     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2666     "List of VM objects");
2667 
2668 static int
2669 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2670 {
2671 	return (vm_object_list_handler(req, true));
2672 }
2673 
2674 /*
2675  * This sysctl returns list of the anonymous or swap objects. Intent
2676  * is to provide stripped optimized list useful to analyze swap use.
2677  * Since technically non-swap (default) objects participate in the
2678  * shadow chains, and are converted to swap type as needed by swap
2679  * pager, we must report them.
2680  */
2681 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2682     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2683     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2684     "List of swap VM objects");
2685 
2686 #include "opt_ddb.h"
2687 #ifdef DDB
2688 #include <sys/kernel.h>
2689 
2690 #include <sys/cons.h>
2691 
2692 #include <ddb/ddb.h>
2693 
2694 static int
2695 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2696 {
2697 	vm_map_t tmpm;
2698 	vm_map_entry_t tmpe;
2699 	vm_object_t obj;
2700 
2701 	if (map == 0)
2702 		return 0;
2703 
2704 	if (entry == 0) {
2705 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2706 			if (_vm_object_in_map(map, object, tmpe)) {
2707 				return 1;
2708 			}
2709 		}
2710 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2711 		tmpm = entry->object.sub_map;
2712 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2713 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2714 				return 1;
2715 			}
2716 		}
2717 	} else if ((obj = entry->object.vm_object) != NULL) {
2718 		for (; obj; obj = obj->backing_object)
2719 			if (obj == object) {
2720 				return 1;
2721 			}
2722 	}
2723 	return 0;
2724 }
2725 
2726 static int
2727 vm_object_in_map(vm_object_t object)
2728 {
2729 	struct proc *p;
2730 
2731 	/* sx_slock(&allproc_lock); */
2732 	FOREACH_PROC_IN_SYSTEM(p) {
2733 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2734 			continue;
2735 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2736 			/* sx_sunlock(&allproc_lock); */
2737 			return 1;
2738 		}
2739 	}
2740 	/* sx_sunlock(&allproc_lock); */
2741 	if (_vm_object_in_map(kernel_map, object, 0))
2742 		return 1;
2743 	return 0;
2744 }
2745 
2746 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2747 {
2748 	vm_object_t object;
2749 
2750 	/*
2751 	 * make sure that internal objs are in a map somewhere
2752 	 * and none have zero ref counts.
2753 	 */
2754 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2755 		if ((object->flags & OBJ_ANON) != 0) {
2756 			if (object->ref_count == 0) {
2757 				db_printf(
2758 			"vmochk: internal obj has zero ref count: %lu\n",
2759 				    (u_long)object->size);
2760 			}
2761 			if (!vm_object_in_map(object)) {
2762 				db_printf(
2763 			"vmochk: internal obj is not in a map: "
2764 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2765 				    object->ref_count, (u_long)object->size,
2766 				    (u_long)object->size,
2767 				    (void *)object->backing_object);
2768 			}
2769 		}
2770 		if (db_pager_quit)
2771 			return;
2772 	}
2773 }
2774 
2775 /*
2776  *	vm_object_print:	[ debug ]
2777  */
2778 DB_SHOW_COMMAND(object, vm_object_print_static)
2779 {
2780 	struct pctrie_iter pages;
2781 	/* XXX convert args. */
2782 	vm_object_t object = (vm_object_t)addr;
2783 	boolean_t full = have_addr;
2784 
2785 	vm_page_t p;
2786 
2787 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2788 #define	count	was_count
2789 
2790 	int count;
2791 
2792 	if (object == NULL)
2793 		return;
2794 
2795 	db_iprintf("Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x",
2796 	    object, (int)object->type, (uintmax_t)object->size,
2797 	    object->resident_page_count, object->ref_count, object->flags);
2798 	db_iprintf(" ruid %d\n",
2799 	    object->cred ? object->cred->cr_ruid : -1);
2800 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2801 	    atomic_load_int(&object->shadow_count),
2802 	    object->backing_object ? object->backing_object->ref_count : 0,
2803 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2804 
2805 	if (!full)
2806 		return;
2807 
2808 	db_indent += 2;
2809 	count = 0;
2810 	vm_page_iter_init(&pages, object);
2811 	VM_RADIX_FOREACH(p, &pages) {
2812 		if (count == 0)
2813 			db_iprintf("memory:=");
2814 		else if (count == 6) {
2815 			db_printf("\n");
2816 			db_iprintf(" ...");
2817 			count = 0;
2818 		} else
2819 			db_printf(",");
2820 		count++;
2821 
2822 		db_printf("(off=0x%jx,page=0x%jx)",
2823 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2824 
2825 		if (db_pager_quit)
2826 			break;
2827 	}
2828 	if (count != 0)
2829 		db_printf("\n");
2830 	db_indent -= 2;
2831 }
2832 
2833 /* XXX. */
2834 #undef count
2835 
2836 /* XXX need this non-static entry for calling from vm_map_print. */
2837 void
2838 vm_object_print(
2839         /* db_expr_t */ long addr,
2840 	boolean_t have_addr,
2841 	/* db_expr_t */ long count,
2842 	char *modif)
2843 {
2844 	vm_object_print_static(addr, have_addr, count, modif);
2845 }
2846 
2847 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2848 {
2849 	struct pctrie_iter pages;
2850 	vm_object_t object;
2851 	vm_page_t m, start_m;
2852 	int rcount;
2853 
2854 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2855 		db_printf("new object: %p\n", (void *)object);
2856 		if (db_pager_quit)
2857 			return;
2858 		start_m = NULL;
2859 		vm_page_iter_init(&pages, object);
2860 		VM_RADIX_FOREACH(m, &pages) {
2861 			if (start_m == NULL) {
2862 				start_m = m;
2863 				rcount = 0;
2864 			} else if (start_m->pindex + rcount != m->pindex ||
2865 			    VM_PAGE_TO_PHYS(start_m)  + ptoa(rcount) !=
2866 			    VM_PAGE_TO_PHYS(m)) {
2867 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2868 				    (long)start_m->pindex, rcount,
2869 				    (long)VM_PAGE_TO_PHYS(start_m));
2870 				if (db_pager_quit)
2871 					return;
2872 				start_m = m;
2873 				rcount = 0;
2874 			}
2875 			rcount++;
2876 		}
2877 		if (start_m != NULL) {
2878 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2879 			    (long)start_m->pindex, rcount,
2880 			    (long)VM_PAGE_TO_PHYS(start_m));
2881 			if (db_pager_quit)
2882 				return;
2883 		}
2884 	}
2885 }
2886 #endif /* DDB */
2887