1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include "opt_vm.h" 66 67 #include <sys/systm.h> 68 #include <sys/blockcount.h> 69 #include <sys/conf.h> 70 #include <sys/cpuset.h> 71 #include <sys/ipc.h> 72 #include <sys/jail.h> 73 #include <sys/limits.h> 74 #include <sys/lock.h> 75 #include <sys/mman.h> 76 #include <sys/mount.h> 77 #include <sys/kernel.h> 78 #include <sys/mutex.h> 79 #include <sys/pctrie.h> 80 #include <sys/proc.h> 81 #include <sys/refcount.h> 82 #include <sys/shm.h> 83 #include <sys/sx.h> 84 #include <sys/sysctl.h> 85 #include <sys/resourcevar.h> 86 #include <sys/refcount.h> 87 #include <sys/rwlock.h> 88 #include <sys/user.h> 89 #include <sys/vnode.h> 90 #include <sys/vmmeter.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_phys.h> 101 #include <vm/vm_pagequeue.h> 102 #include <vm/swap_pager.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_extern.h> 105 #include <vm/vm_radix.h> 106 #include <vm/vm_reserv.h> 107 #include <vm/uma.h> 108 109 static int old_msync; 110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 111 "Use old (insecure) msync behavior"); 112 113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 114 boolean_t *allclean); 115 static void vm_object_backing_remove(vm_object_t object); 116 117 /* 118 * Virtual memory objects maintain the actual data 119 * associated with allocated virtual memory. A given 120 * page of memory exists within exactly one object. 121 * 122 * An object is only deallocated when all "references" 123 * are given up. Only one "reference" to a given 124 * region of an object should be writeable. 125 * 126 * Associated with each object is a list of all resident 127 * memory pages belonging to that object; this list is 128 * maintained by the "vm_page" module, and locked by the object's 129 * lock. 130 * 131 * Each object also records a "pager" routine which is 132 * used to retrieve (and store) pages to the proper backing 133 * storage. In addition, objects may be backed by other 134 * objects from which they were virtual-copied. 135 * 136 * The only items within the object structure which are 137 * modified after time of creation are: 138 * reference count locked by object's lock 139 * pager routine locked by object's lock 140 * 141 */ 142 143 struct object_q vm_object_list; 144 struct mtx vm_object_list_mtx; /* lock for object list and count */ 145 146 struct vm_object kernel_object_store; 147 148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 149 "VM object stats"); 150 151 static COUNTER_U64_DEFINE_EARLY(object_collapses); 152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 153 &object_collapses, 154 "VM object collapses"); 155 156 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 158 &object_bypasses, 159 "VM object bypasses"); 160 161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 163 &object_collapse_waits, 164 "Number of sleeps for collapse"); 165 166 static uma_zone_t obj_zone; 167 168 static int vm_object_zinit(void *mem, int size, int flags); 169 170 #ifdef INVARIANTS 171 static void vm_object_zdtor(void *mem, int size, void *arg); 172 173 static void 174 vm_object_zdtor(void *mem, int size, void *arg) 175 { 176 vm_object_t object; 177 178 object = (vm_object_t)mem; 179 KASSERT(object->ref_count == 0, 180 ("object %p ref_count = %d", object, object->ref_count)); 181 KASSERT(vm_radix_is_empty(&object->rtree), 182 ("object %p has resident pages in its trie", object)); 183 #if VM_NRESERVLEVEL > 0 184 KASSERT(LIST_EMPTY(&object->rvq), 185 ("object %p has reservations", 186 object)); 187 #endif 188 KASSERT(!vm_object_busied(object), 189 ("object %p busy = %d", object, blockcount_read(&object->busy))); 190 KASSERT(object->resident_page_count == 0, 191 ("object %p resident_page_count = %d", 192 object, object->resident_page_count)); 193 KASSERT(atomic_load_int(&object->shadow_count) == 0, 194 ("object %p shadow_count = %d", 195 object, atomic_load_int(&object->shadow_count))); 196 KASSERT(object->type == OBJT_DEAD, 197 ("object %p has non-dead type %d", 198 object, object->type)); 199 KASSERT(object->cred == NULL, 200 ("object %p has non-zero charge cred %p", 201 object, object->cred)); 202 } 203 #endif 204 205 static int 206 vm_object_zinit(void *mem, int size, int flags) 207 { 208 vm_object_t object; 209 210 object = (vm_object_t)mem; 211 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW); 212 213 /* These are true for any object that has been freed */ 214 object->type = OBJT_DEAD; 215 vm_radix_init(&object->rtree); 216 refcount_init(&object->ref_count, 0); 217 blockcount_init(&object->paging_in_progress); 218 blockcount_init(&object->busy); 219 object->resident_page_count = 0; 220 atomic_store_int(&object->shadow_count, 0); 221 object->flags = OBJ_DEAD; 222 223 mtx_lock(&vm_object_list_mtx); 224 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 225 mtx_unlock(&vm_object_list_mtx); 226 return (0); 227 } 228 229 static void 230 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 231 vm_object_t object, void *handle) 232 { 233 LIST_INIT(&object->shadow_head); 234 235 object->type = type; 236 object->flags = flags; 237 if ((flags & OBJ_SWAP) != 0) { 238 pctrie_init(&object->un_pager.swp.swp_blks); 239 object->un_pager.swp.writemappings = 0; 240 } 241 242 /* 243 * Ensure that swap_pager_swapoff() iteration over object_list 244 * sees up to date type and pctrie head if it observed 245 * non-dead object. 246 */ 247 atomic_thread_fence_rel(); 248 249 object->pg_color = 0; 250 object->size = size; 251 object->domain.dr_policy = NULL; 252 object->generation = 1; 253 object->cleangeneration = 1; 254 refcount_init(&object->ref_count, 1); 255 object->memattr = VM_MEMATTR_DEFAULT; 256 object->cred = NULL; 257 object->handle = handle; 258 object->backing_object = NULL; 259 object->backing_object_offset = (vm_ooffset_t) 0; 260 #if VM_NRESERVLEVEL > 0 261 LIST_INIT(&object->rvq); 262 #endif 263 umtx_shm_object_init(object); 264 } 265 266 /* 267 * vm_object_init: 268 * 269 * Initialize the VM objects module. 270 */ 271 void 272 vm_object_init(void) 273 { 274 TAILQ_INIT(&vm_object_list); 275 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 276 277 rw_init(&kernel_object->lock, "kernel vm object"); 278 vm_radix_init(&kernel_object->rtree); 279 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 280 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 281 #if VM_NRESERVLEVEL > 0 282 kernel_object->flags |= OBJ_COLORED; 283 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 284 #endif 285 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 286 287 /* 288 * The lock portion of struct vm_object must be type stable due 289 * to vm_pageout_fallback_object_lock locking a vm object 290 * without holding any references to it. 291 * 292 * paging_in_progress is valid always. Lockless references to 293 * the objects may acquire pip and then check OBJ_DEAD. 294 */ 295 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 296 #ifdef INVARIANTS 297 vm_object_zdtor, 298 #else 299 NULL, 300 #endif 301 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 302 303 vm_radix_zinit(); 304 } 305 306 void 307 vm_object_clear_flag(vm_object_t object, u_short bits) 308 { 309 310 VM_OBJECT_ASSERT_WLOCKED(object); 311 object->flags &= ~bits; 312 } 313 314 /* 315 * Sets the default memory attribute for the specified object. Pages 316 * that are allocated to this object are by default assigned this memory 317 * attribute. 318 * 319 * Presently, this function must be called before any pages are allocated 320 * to the object. In the future, this requirement may be relaxed for 321 * "default" and "swap" objects. 322 */ 323 int 324 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 325 { 326 327 VM_OBJECT_ASSERT_WLOCKED(object); 328 329 if (object->type == OBJT_DEAD) 330 return (KERN_INVALID_ARGUMENT); 331 if (!vm_radix_is_empty(&object->rtree)) 332 return (KERN_FAILURE); 333 334 object->memattr = memattr; 335 return (KERN_SUCCESS); 336 } 337 338 void 339 vm_object_pip_add(vm_object_t object, short i) 340 { 341 342 if (i > 0) 343 blockcount_acquire(&object->paging_in_progress, i); 344 } 345 346 void 347 vm_object_pip_wakeup(vm_object_t object) 348 { 349 350 vm_object_pip_wakeupn(object, 1); 351 } 352 353 void 354 vm_object_pip_wakeupn(vm_object_t object, short i) 355 { 356 357 if (i > 0) 358 blockcount_release(&object->paging_in_progress, i); 359 } 360 361 /* 362 * Atomically drop the object lock and wait for pip to drain. This protects 363 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 364 * on return. 365 */ 366 static void 367 vm_object_pip_sleep(vm_object_t object, const char *waitid) 368 { 369 370 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 371 waitid, PVM | PDROP); 372 } 373 374 void 375 vm_object_pip_wait(vm_object_t object, const char *waitid) 376 { 377 378 VM_OBJECT_ASSERT_WLOCKED(object); 379 380 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 381 PVM); 382 } 383 384 void 385 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 386 { 387 388 VM_OBJECT_ASSERT_UNLOCKED(object); 389 390 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 391 } 392 393 /* 394 * vm_object_allocate: 395 * 396 * Returns a new object with the given size. 397 */ 398 vm_object_t 399 vm_object_allocate(objtype_t type, vm_pindex_t size) 400 { 401 vm_object_t object; 402 u_short flags; 403 404 switch (type) { 405 case OBJT_DEAD: 406 panic("vm_object_allocate: can't create OBJT_DEAD"); 407 case OBJT_SWAP: 408 flags = OBJ_COLORED | OBJ_SWAP; 409 break; 410 case OBJT_DEVICE: 411 case OBJT_SG: 412 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 413 break; 414 case OBJT_MGTDEVICE: 415 flags = OBJ_FICTITIOUS; 416 break; 417 case OBJT_PHYS: 418 flags = OBJ_UNMANAGED; 419 break; 420 case OBJT_VNODE: 421 flags = 0; 422 break; 423 default: 424 panic("vm_object_allocate: type %d is undefined or dynamic", 425 type); 426 } 427 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 428 _vm_object_allocate(type, size, flags, object, NULL); 429 430 return (object); 431 } 432 433 vm_object_t 434 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) 435 { 436 vm_object_t object; 437 438 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); 439 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 440 _vm_object_allocate(dyntype, size, flags, object, NULL); 441 442 return (object); 443 } 444 445 /* 446 * vm_object_allocate_anon: 447 * 448 * Returns a new default object of the given size and marked as 449 * anonymous memory for special split/collapse handling. Color 450 * to be initialized by the caller. 451 */ 452 vm_object_t 453 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 454 struct ucred *cred) 455 { 456 vm_object_t handle, object; 457 458 if (backing_object == NULL) 459 handle = NULL; 460 else if ((backing_object->flags & OBJ_ANON) != 0) 461 handle = backing_object->handle; 462 else 463 handle = backing_object; 464 object = uma_zalloc(obj_zone, M_WAITOK); 465 _vm_object_allocate(OBJT_SWAP, size, 466 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); 467 object->cred = cred; 468 return (object); 469 } 470 471 static void 472 vm_object_reference_vnode(vm_object_t object) 473 { 474 u_int old; 475 476 /* 477 * vnode objects need the lock for the first reference 478 * to serialize with vnode_object_deallocate(). 479 */ 480 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 481 VM_OBJECT_RLOCK(object); 482 old = refcount_acquire(&object->ref_count); 483 if (object->type == OBJT_VNODE && old == 0) 484 vref(object->handle); 485 VM_OBJECT_RUNLOCK(object); 486 } 487 } 488 489 /* 490 * vm_object_reference: 491 * 492 * Acquires a reference to the given object. 493 */ 494 void 495 vm_object_reference(vm_object_t object) 496 { 497 498 if (object == NULL) 499 return; 500 501 if (object->type == OBJT_VNODE) 502 vm_object_reference_vnode(object); 503 else 504 refcount_acquire(&object->ref_count); 505 KASSERT((object->flags & OBJ_DEAD) == 0, 506 ("vm_object_reference: Referenced dead object.")); 507 } 508 509 /* 510 * vm_object_reference_locked: 511 * 512 * Gets another reference to the given object. 513 * 514 * The object must be locked. 515 */ 516 void 517 vm_object_reference_locked(vm_object_t object) 518 { 519 u_int old; 520 521 VM_OBJECT_ASSERT_LOCKED(object); 522 old = refcount_acquire(&object->ref_count); 523 if (object->type == OBJT_VNODE && old == 0) 524 vref(object->handle); 525 KASSERT((object->flags & OBJ_DEAD) == 0, 526 ("vm_object_reference: Referenced dead object.")); 527 } 528 529 /* 530 * Handle deallocating an object of type OBJT_VNODE. 531 */ 532 static void 533 vm_object_deallocate_vnode(vm_object_t object) 534 { 535 struct vnode *vp = (struct vnode *) object->handle; 536 bool last; 537 538 KASSERT(object->type == OBJT_VNODE, 539 ("vm_object_deallocate_vnode: not a vnode object")); 540 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 541 542 /* Object lock to protect handle lookup. */ 543 last = refcount_release(&object->ref_count); 544 VM_OBJECT_RUNLOCK(object); 545 546 if (!last) 547 return; 548 549 if (!umtx_shm_vnobj_persistent) 550 umtx_shm_object_terminated(object); 551 552 /* vrele may need the vnode lock. */ 553 vrele(vp); 554 } 555 556 /* 557 * We dropped a reference on an object and discovered that it had a 558 * single remaining shadow. This is a sibling of the reference we 559 * dropped. Attempt to collapse the sibling and backing object. 560 */ 561 static vm_object_t 562 vm_object_deallocate_anon(vm_object_t backing_object) 563 { 564 vm_object_t object; 565 566 /* Fetch the final shadow. */ 567 object = LIST_FIRST(&backing_object->shadow_head); 568 KASSERT(object != NULL && 569 atomic_load_int(&backing_object->shadow_count) == 1, 570 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 571 backing_object->ref_count, 572 atomic_load_int(&backing_object->shadow_count))); 573 KASSERT((object->flags & OBJ_ANON) != 0, 574 ("invalid shadow object %p", object)); 575 576 if (!VM_OBJECT_TRYWLOCK(object)) { 577 /* 578 * Prevent object from disappearing since we do not have a 579 * reference. 580 */ 581 vm_object_pip_add(object, 1); 582 VM_OBJECT_WUNLOCK(backing_object); 583 VM_OBJECT_WLOCK(object); 584 vm_object_pip_wakeup(object); 585 } else 586 VM_OBJECT_WUNLOCK(backing_object); 587 588 /* 589 * Check for a collapse/terminate race with the last reference holder. 590 */ 591 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 592 !refcount_acquire_if_not_zero(&object->ref_count)) { 593 VM_OBJECT_WUNLOCK(object); 594 return (NULL); 595 } 596 backing_object = object->backing_object; 597 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 598 vm_object_collapse(object); 599 VM_OBJECT_WUNLOCK(object); 600 601 return (object); 602 } 603 604 /* 605 * vm_object_deallocate: 606 * 607 * Release a reference to the specified object, 608 * gained either through a vm_object_allocate 609 * or a vm_object_reference call. When all references 610 * are gone, storage associated with this object 611 * may be relinquished. 612 * 613 * No object may be locked. 614 */ 615 void 616 vm_object_deallocate(vm_object_t object) 617 { 618 vm_object_t temp; 619 bool released; 620 621 while (object != NULL) { 622 /* 623 * If the reference count goes to 0 we start calling 624 * vm_object_terminate() on the object chain. A ref count 625 * of 1 may be a special case depending on the shadow count 626 * being 0 or 1. These cases require a write lock on the 627 * object. 628 */ 629 if ((object->flags & OBJ_ANON) == 0) 630 released = refcount_release_if_gt(&object->ref_count, 1); 631 else 632 released = refcount_release_if_gt(&object->ref_count, 2); 633 if (released) 634 return; 635 636 if (object->type == OBJT_VNODE) { 637 VM_OBJECT_RLOCK(object); 638 if (object->type == OBJT_VNODE) { 639 vm_object_deallocate_vnode(object); 640 return; 641 } 642 VM_OBJECT_RUNLOCK(object); 643 } 644 645 VM_OBJECT_WLOCK(object); 646 KASSERT(object->ref_count > 0, 647 ("vm_object_deallocate: object deallocated too many times: %d", 648 object->type)); 649 650 /* 651 * If this is not the final reference to an anonymous 652 * object we may need to collapse the shadow chain. 653 */ 654 if (!refcount_release(&object->ref_count)) { 655 if (object->ref_count > 1 || 656 atomic_load_int(&object->shadow_count) == 0) { 657 if ((object->flags & OBJ_ANON) != 0 && 658 object->ref_count == 1) 659 vm_object_set_flag(object, 660 OBJ_ONEMAPPING); 661 VM_OBJECT_WUNLOCK(object); 662 return; 663 } 664 665 /* Handle collapsing last ref on anonymous objects. */ 666 object = vm_object_deallocate_anon(object); 667 continue; 668 } 669 670 /* 671 * Handle the final reference to an object. We restart 672 * the loop with the backing object to avoid recursion. 673 */ 674 umtx_shm_object_terminated(object); 675 temp = object->backing_object; 676 if (temp != NULL) { 677 KASSERT(object->type == OBJT_SWAP, 678 ("shadowed tmpfs v_object 2 %p", object)); 679 vm_object_backing_remove(object); 680 } 681 682 KASSERT((object->flags & OBJ_DEAD) == 0, 683 ("vm_object_deallocate: Terminating dead object.")); 684 vm_object_set_flag(object, OBJ_DEAD); 685 vm_object_terminate(object); 686 object = temp; 687 } 688 } 689 690 void 691 vm_object_destroy(vm_object_t object) 692 { 693 uma_zfree(obj_zone, object); 694 } 695 696 static void 697 vm_object_sub_shadow(vm_object_t object) 698 { 699 KASSERT(object->shadow_count >= 1, 700 ("object %p sub_shadow count zero", object)); 701 atomic_subtract_int(&object->shadow_count, 1); 702 } 703 704 static void 705 vm_object_backing_remove_locked(vm_object_t object) 706 { 707 vm_object_t backing_object; 708 709 backing_object = object->backing_object; 710 VM_OBJECT_ASSERT_WLOCKED(object); 711 VM_OBJECT_ASSERT_WLOCKED(backing_object); 712 713 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 714 ("vm_object_backing_remove: Removing collapsing object.")); 715 716 vm_object_sub_shadow(backing_object); 717 if ((object->flags & OBJ_SHADOWLIST) != 0) { 718 LIST_REMOVE(object, shadow_list); 719 vm_object_clear_flag(object, OBJ_SHADOWLIST); 720 } 721 object->backing_object = NULL; 722 } 723 724 static void 725 vm_object_backing_remove(vm_object_t object) 726 { 727 vm_object_t backing_object; 728 729 VM_OBJECT_ASSERT_WLOCKED(object); 730 731 backing_object = object->backing_object; 732 if ((object->flags & OBJ_SHADOWLIST) != 0) { 733 VM_OBJECT_WLOCK(backing_object); 734 vm_object_backing_remove_locked(object); 735 VM_OBJECT_WUNLOCK(backing_object); 736 } else { 737 object->backing_object = NULL; 738 vm_object_sub_shadow(backing_object); 739 } 740 } 741 742 static void 743 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 744 { 745 746 VM_OBJECT_ASSERT_WLOCKED(object); 747 748 atomic_add_int(&backing_object->shadow_count, 1); 749 if ((backing_object->flags & OBJ_ANON) != 0) { 750 VM_OBJECT_ASSERT_WLOCKED(backing_object); 751 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 752 shadow_list); 753 vm_object_set_flag(object, OBJ_SHADOWLIST); 754 } 755 object->backing_object = backing_object; 756 } 757 758 static void 759 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 760 { 761 762 VM_OBJECT_ASSERT_WLOCKED(object); 763 764 if ((backing_object->flags & OBJ_ANON) != 0) { 765 VM_OBJECT_WLOCK(backing_object); 766 vm_object_backing_insert_locked(object, backing_object); 767 VM_OBJECT_WUNLOCK(backing_object); 768 } else { 769 object->backing_object = backing_object; 770 atomic_add_int(&backing_object->shadow_count, 1); 771 } 772 } 773 774 /* 775 * Insert an object into a backing_object's shadow list with an additional 776 * reference to the backing_object added. 777 */ 778 static void 779 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 780 { 781 782 VM_OBJECT_ASSERT_WLOCKED(object); 783 784 if ((backing_object->flags & OBJ_ANON) != 0) { 785 VM_OBJECT_WLOCK(backing_object); 786 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 787 ("shadowing dead anonymous object")); 788 vm_object_reference_locked(backing_object); 789 vm_object_backing_insert_locked(object, backing_object); 790 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 791 VM_OBJECT_WUNLOCK(backing_object); 792 } else { 793 vm_object_reference(backing_object); 794 atomic_add_int(&backing_object->shadow_count, 1); 795 object->backing_object = backing_object; 796 } 797 } 798 799 /* 800 * Transfer a backing reference from backing_object to object. 801 */ 802 static void 803 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 804 { 805 vm_object_t new_backing_object; 806 807 /* 808 * Note that the reference to backing_object->backing_object 809 * moves from within backing_object to within object. 810 */ 811 vm_object_backing_remove_locked(object); 812 new_backing_object = backing_object->backing_object; 813 if (new_backing_object == NULL) 814 return; 815 if ((new_backing_object->flags & OBJ_ANON) != 0) { 816 VM_OBJECT_WLOCK(new_backing_object); 817 vm_object_backing_remove_locked(backing_object); 818 vm_object_backing_insert_locked(object, new_backing_object); 819 VM_OBJECT_WUNLOCK(new_backing_object); 820 } else { 821 /* 822 * shadow_count for new_backing_object is left 823 * unchanged, its reference provided by backing_object 824 * is replaced by object. 825 */ 826 object->backing_object = new_backing_object; 827 backing_object->backing_object = NULL; 828 } 829 } 830 831 /* 832 * Wait for a concurrent collapse to settle. 833 */ 834 static void 835 vm_object_collapse_wait(vm_object_t object) 836 { 837 838 VM_OBJECT_ASSERT_WLOCKED(object); 839 840 while ((object->flags & OBJ_COLLAPSING) != 0) { 841 vm_object_pip_wait(object, "vmcolwait"); 842 counter_u64_add(object_collapse_waits, 1); 843 } 844 } 845 846 /* 847 * Waits for a backing object to clear a pending collapse and returns 848 * it locked if it is an ANON object. 849 */ 850 static vm_object_t 851 vm_object_backing_collapse_wait(vm_object_t object) 852 { 853 vm_object_t backing_object; 854 855 VM_OBJECT_ASSERT_WLOCKED(object); 856 857 for (;;) { 858 backing_object = object->backing_object; 859 if (backing_object == NULL || 860 (backing_object->flags & OBJ_ANON) == 0) 861 return (NULL); 862 VM_OBJECT_WLOCK(backing_object); 863 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 864 break; 865 VM_OBJECT_WUNLOCK(object); 866 vm_object_pip_sleep(backing_object, "vmbckwait"); 867 counter_u64_add(object_collapse_waits, 1); 868 VM_OBJECT_WLOCK(object); 869 } 870 return (backing_object); 871 } 872 873 /* 874 * vm_object_terminate_single_page removes a pageable page from the object, 875 * and removes it from the paging queues and frees it, if it is not wired. 876 * It is invoked via callback from vm_object_terminate_pages. 877 */ 878 static void 879 vm_object_terminate_single_page(vm_page_t p, void *objectv) 880 { 881 vm_object_t object __diagused = objectv; 882 883 vm_page_assert_unbusied(p); 884 KASSERT(p->object == object && 885 (p->ref_count & VPRC_OBJREF) != 0, 886 ("%s: page %p is inconsistent", __func__, p)); 887 p->object = NULL; 888 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 889 KASSERT((object->flags & OBJ_UNMANAGED) != 0 || 890 vm_page_astate_load(p).queue != PQ_NONE, 891 ("%s: page %p does not belong to a queue", __func__, p)); 892 VM_CNT_INC(v_pfree); 893 vm_page_free(p); 894 } 895 } 896 897 /* 898 * vm_object_terminate_pages removes any remaining pageable pages 899 * from the object and resets the object to an empty state. 900 */ 901 static void 902 vm_object_terminate_pages(vm_object_t object) 903 { 904 VM_OBJECT_ASSERT_WLOCKED(object); 905 906 /* 907 * If the object contained any pages, then reset it to an empty state. 908 * Rather than incrementally removing each page from the object, the 909 * page and object are reset to any empty state. 910 */ 911 if (object->resident_page_count == 0) 912 return; 913 914 vm_radix_reclaim_callback(&object->rtree, 915 vm_object_terminate_single_page, object); 916 object->resident_page_count = 0; 917 if (object->type == OBJT_VNODE) 918 vdrop(object->handle); 919 } 920 921 /* 922 * vm_object_terminate actually destroys the specified object, freeing 923 * up all previously used resources. 924 * 925 * The object must be locked. 926 * This routine may block. 927 */ 928 void 929 vm_object_terminate(vm_object_t object) 930 { 931 932 VM_OBJECT_ASSERT_WLOCKED(object); 933 KASSERT((object->flags & OBJ_DEAD) != 0, 934 ("terminating non-dead obj %p", object)); 935 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 936 ("terminating collapsing obj %p", object)); 937 KASSERT(object->backing_object == NULL, 938 ("terminating shadow obj %p", object)); 939 940 /* 941 * Wait for the pageout daemon and other current users to be 942 * done with the object. Note that new paging_in_progress 943 * users can come after this wait, but they must check 944 * OBJ_DEAD flag set (without unlocking the object), and avoid 945 * the object being terminated. 946 */ 947 vm_object_pip_wait(object, "objtrm"); 948 949 KASSERT(object->ref_count == 0, 950 ("vm_object_terminate: object with references, ref_count=%d", 951 object->ref_count)); 952 953 if ((object->flags & OBJ_PG_DTOR) == 0) 954 vm_object_terminate_pages(object); 955 956 #if VM_NRESERVLEVEL > 0 957 if (__predict_false(!LIST_EMPTY(&object->rvq))) 958 vm_reserv_break_all(object); 959 #endif 960 961 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, 962 ("%s: non-swap obj %p has cred", __func__, object)); 963 964 /* 965 * Let the pager know object is dead. 966 */ 967 vm_pager_deallocate(object); 968 VM_OBJECT_WUNLOCK(object); 969 970 vm_object_destroy(object); 971 } 972 973 /* 974 * Make the page read-only so that we can clear the object flags. However, if 975 * this is a nosync mmap then the object is likely to stay dirty so do not 976 * mess with the page and do not clear the object flags. Returns TRUE if the 977 * page should be flushed, and FALSE otherwise. 978 */ 979 static boolean_t 980 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 981 { 982 983 vm_page_assert_busied(p); 984 985 /* 986 * If we have been asked to skip nosync pages and this is a 987 * nosync page, skip it. Note that the object flags were not 988 * cleared in this case so we do not have to set them. 989 */ 990 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 991 *allclean = FALSE; 992 return (FALSE); 993 } else { 994 pmap_remove_write(p); 995 return (p->dirty != 0); 996 } 997 } 998 999 static int 1000 vm_object_page_clean_flush(struct pctrie_iter *pages, vm_page_t p, 1001 int pagerflags, int flags, boolean_t *allclean, bool *eio) 1002 { 1003 vm_page_t ma[vm_pageout_page_count]; 1004 int count, runlen; 1005 1006 vm_page_assert_xbusied(p); 1007 ma[0] = p; 1008 runlen = vm_radix_iter_lookup_range(pages, p->pindex + 1, 1009 &ma[1], vm_pageout_page_count - 1); 1010 for (count = 1; count <= runlen; count++) { 1011 p = ma[count]; 1012 if (vm_page_tryxbusy(p) == 0) 1013 break; 1014 if (!vm_object_page_remove_write(p, flags, allclean)) { 1015 vm_page_xunbusy(p); 1016 break; 1017 } 1018 } 1019 1020 return (vm_pageout_flush(ma, count, pagerflags, eio)); 1021 } 1022 1023 /* 1024 * vm_object_page_clean 1025 * 1026 * Clean all dirty pages in the specified range of object. Leaves page 1027 * on whatever queue it is currently on. If NOSYNC is set then do not 1028 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1029 * leaving the object dirty. 1030 * 1031 * For swap objects backing tmpfs regular files, do not flush anything, 1032 * but remove write protection on the mapped pages to update mtime through 1033 * mmaped writes. 1034 * 1035 * When stuffing pages asynchronously, allow clustering. XXX we need a 1036 * synchronous clustering mode implementation. 1037 * 1038 * Odd semantics: if start == end, we clean everything. 1039 * 1040 * The object must be locked. 1041 * 1042 * Returns FALSE if some page from the range was not written, as 1043 * reported by the pager, and TRUE otherwise. 1044 */ 1045 boolean_t 1046 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1047 int flags) 1048 { 1049 struct pctrie_iter pages; 1050 vm_page_t np, p; 1051 vm_pindex_t pi, tend, tstart; 1052 int curgeneration, n, pagerflags; 1053 boolean_t res, allclean; 1054 bool eio; 1055 1056 VM_OBJECT_ASSERT_WLOCKED(object); 1057 1058 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1059 return (TRUE); 1060 1061 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1062 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1063 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1064 1065 tstart = OFF_TO_IDX(start); 1066 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1067 allclean = tstart == 0 && tend >= object->size; 1068 res = TRUE; 1069 vm_page_iter_init(&pages, object); 1070 1071 rescan: 1072 curgeneration = object->generation; 1073 1074 for (p = vm_radix_iter_lookup_ge(&pages, tstart); p != NULL; p = np) { 1075 pi = p->pindex; 1076 if (pi >= tend) 1077 break; 1078 if (vm_page_none_valid(p)) { 1079 np = vm_radix_iter_step(&pages); 1080 continue; 1081 } 1082 if (!vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL)) { 1083 pctrie_iter_reset(&pages); 1084 if (object->generation != curgeneration && 1085 (flags & OBJPC_SYNC) != 0) 1086 goto rescan; 1087 np = vm_radix_iter_lookup_ge(&pages, pi); 1088 continue; 1089 } 1090 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1091 np = vm_radix_iter_step(&pages); 1092 vm_page_xunbusy(p); 1093 continue; 1094 } 1095 if (object->type == OBJT_VNODE) { 1096 n = vm_object_page_clean_flush(&pages, p, pagerflags, 1097 flags, &allclean, &eio); 1098 pctrie_iter_reset(&pages); 1099 if (eio) { 1100 res = FALSE; 1101 allclean = FALSE; 1102 } 1103 if (object->generation != curgeneration && 1104 (flags & OBJPC_SYNC) != 0) 1105 goto rescan; 1106 1107 /* 1108 * If the VOP_PUTPAGES() did a truncated write, so 1109 * that even the first page of the run is not fully 1110 * written, vm_pageout_flush() returns 0 as the run 1111 * length. Since the condition that caused truncated 1112 * write may be permanent, e.g. exhausted free space, 1113 * accepting n == 0 would cause an infinite loop. 1114 * 1115 * Forwarding the iterator leaves the unwritten page 1116 * behind, but there is not much we can do there if 1117 * filesystem refuses to write it. 1118 */ 1119 if (n == 0) { 1120 n = 1; 1121 allclean = FALSE; 1122 } 1123 } else { 1124 n = 1; 1125 vm_page_xunbusy(p); 1126 } 1127 np = vm_radix_iter_lookup_ge(&pages, pi + n); 1128 } 1129 #if 0 1130 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1131 #endif 1132 1133 /* 1134 * Leave updating cleangeneration for tmpfs objects to tmpfs 1135 * scan. It needs to update mtime, which happens for other 1136 * filesystems during page writeouts. 1137 */ 1138 if (allclean && object->type == OBJT_VNODE) 1139 object->cleangeneration = curgeneration; 1140 return (res); 1141 } 1142 1143 /* 1144 * Note that there is absolutely no sense in writing out 1145 * anonymous objects, so we track down the vnode object 1146 * to write out. 1147 * We invalidate (remove) all pages from the address space 1148 * for semantic correctness. 1149 * 1150 * If the backing object is a device object with unmanaged pages, then any 1151 * mappings to the specified range of pages must be removed before this 1152 * function is called. 1153 * 1154 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1155 * may start out with a NULL object. 1156 */ 1157 boolean_t 1158 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1159 boolean_t syncio, boolean_t invalidate) 1160 { 1161 vm_object_t backing_object; 1162 struct vnode *vp; 1163 struct mount *mp; 1164 int error, flags, fsync_after; 1165 boolean_t res; 1166 1167 if (object == NULL) 1168 return (TRUE); 1169 res = TRUE; 1170 error = 0; 1171 VM_OBJECT_WLOCK(object); 1172 while ((backing_object = object->backing_object) != NULL) { 1173 VM_OBJECT_WLOCK(backing_object); 1174 offset += object->backing_object_offset; 1175 VM_OBJECT_WUNLOCK(object); 1176 object = backing_object; 1177 if (object->size < OFF_TO_IDX(offset + size)) 1178 size = IDX_TO_OFF(object->size) - offset; 1179 } 1180 /* 1181 * Flush pages if writing is allowed, invalidate them 1182 * if invalidation requested. Pages undergoing I/O 1183 * will be ignored by vm_object_page_remove(). 1184 * 1185 * We cannot lock the vnode and then wait for paging 1186 * to complete without deadlocking against vm_fault. 1187 * Instead we simply call vm_object_page_remove() and 1188 * allow it to block internally on a page-by-page 1189 * basis when it encounters pages undergoing async 1190 * I/O. 1191 */ 1192 if (object->type == OBJT_VNODE && 1193 vm_object_mightbedirty(object) != 0 && 1194 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1195 VM_OBJECT_WUNLOCK(object); 1196 (void)vn_start_write(vp, &mp, V_WAIT); 1197 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1198 if (syncio && !invalidate && offset == 0 && 1199 atop(size) == object->size) { 1200 /* 1201 * If syncing the whole mapping of the file, 1202 * it is faster to schedule all the writes in 1203 * async mode, also allowing the clustering, 1204 * and then wait for i/o to complete. 1205 */ 1206 flags = 0; 1207 fsync_after = TRUE; 1208 } else { 1209 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1210 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1211 fsync_after = FALSE; 1212 } 1213 VM_OBJECT_WLOCK(object); 1214 res = vm_object_page_clean(object, offset, offset + size, 1215 flags); 1216 VM_OBJECT_WUNLOCK(object); 1217 if (fsync_after) { 1218 for (;;) { 1219 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1220 if (error != ERELOOKUP) 1221 break; 1222 1223 /* 1224 * Allow SU/bufdaemon to handle more 1225 * dependencies in the meantime. 1226 */ 1227 VOP_UNLOCK(vp); 1228 vn_finished_write(mp); 1229 1230 (void)vn_start_write(vp, &mp, V_WAIT); 1231 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1232 } 1233 } 1234 VOP_UNLOCK(vp); 1235 vn_finished_write(mp); 1236 if (error != 0) 1237 res = FALSE; 1238 VM_OBJECT_WLOCK(object); 1239 } 1240 if ((object->type == OBJT_VNODE || 1241 object->type == OBJT_DEVICE) && invalidate) { 1242 if (object->type == OBJT_DEVICE) 1243 /* 1244 * The option OBJPR_NOTMAPPED must be passed here 1245 * because vm_object_page_remove() cannot remove 1246 * unmanaged mappings. 1247 */ 1248 flags = OBJPR_NOTMAPPED; 1249 else if (old_msync) 1250 flags = 0; 1251 else 1252 flags = OBJPR_CLEANONLY; 1253 vm_object_page_remove(object, OFF_TO_IDX(offset), 1254 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1255 } 1256 VM_OBJECT_WUNLOCK(object); 1257 return (res); 1258 } 1259 1260 /* 1261 * Determine whether the given advice can be applied to the object. Advice is 1262 * not applied to unmanaged pages since they never belong to page queues, and 1263 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1264 * have been mapped at most once. 1265 */ 1266 static bool 1267 vm_object_advice_applies(vm_object_t object, int advice) 1268 { 1269 1270 if ((object->flags & OBJ_UNMANAGED) != 0) 1271 return (false); 1272 if (advice != MADV_FREE) 1273 return (true); 1274 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1275 (OBJ_ONEMAPPING | OBJ_ANON)); 1276 } 1277 1278 static void 1279 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1280 vm_size_t size) 1281 { 1282 1283 if (advice == MADV_FREE) 1284 vm_pager_freespace(object, pindex, size); 1285 } 1286 1287 /* 1288 * vm_object_madvise: 1289 * 1290 * Implements the madvise function at the object/page level. 1291 * 1292 * MADV_WILLNEED (any object) 1293 * 1294 * Activate the specified pages if they are resident. 1295 * 1296 * MADV_DONTNEED (any object) 1297 * 1298 * Deactivate the specified pages if they are resident. 1299 * 1300 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) 1301 * 1302 * Deactivate and clean the specified pages if they are 1303 * resident. This permits the process to reuse the pages 1304 * without faulting or the kernel to reclaim the pages 1305 * without I/O. 1306 */ 1307 void 1308 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1309 int advice) 1310 { 1311 struct pctrie_iter pages; 1312 vm_pindex_t tpindex; 1313 vm_object_t backing_object, tobject; 1314 vm_page_t m, tm; 1315 1316 if (object == NULL) 1317 return; 1318 1319 vm_page_iter_init(&pages, object); 1320 relookup: 1321 VM_OBJECT_WLOCK(object); 1322 if (!vm_object_advice_applies(object, advice)) { 1323 VM_OBJECT_WUNLOCK(object); 1324 return; 1325 } 1326 for (m = vm_radix_iter_lookup_ge(&pages, pindex); pindex < end; 1327 pindex++) { 1328 tobject = object; 1329 1330 /* 1331 * If the next page isn't resident in the top-level object, we 1332 * need to search the shadow chain. When applying MADV_FREE, we 1333 * take care to release any swap space used to store 1334 * non-resident pages. 1335 */ 1336 if (m == NULL || pindex < m->pindex) { 1337 /* 1338 * Optimize a common case: if the top-level object has 1339 * no backing object, we can skip over the non-resident 1340 * range in constant time. 1341 */ 1342 if (object->backing_object == NULL) { 1343 tpindex = (m != NULL && m->pindex < end) ? 1344 m->pindex : end; 1345 vm_object_madvise_freespace(object, advice, 1346 pindex, tpindex - pindex); 1347 if ((pindex = tpindex) == end) 1348 break; 1349 goto next_page; 1350 } 1351 1352 tpindex = pindex; 1353 do { 1354 vm_object_madvise_freespace(tobject, advice, 1355 tpindex, 1); 1356 /* 1357 * Prepare to search the next object in the 1358 * chain. 1359 */ 1360 backing_object = tobject->backing_object; 1361 if (backing_object == NULL) 1362 goto next_pindex; 1363 VM_OBJECT_WLOCK(backing_object); 1364 tpindex += 1365 OFF_TO_IDX(tobject->backing_object_offset); 1366 if (tobject != object) 1367 VM_OBJECT_WUNLOCK(tobject); 1368 tobject = backing_object; 1369 if (!vm_object_advice_applies(tobject, advice)) 1370 goto next_pindex; 1371 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1372 NULL); 1373 } else { 1374 next_page: 1375 tm = m; 1376 m = vm_radix_iter_step(&pages); 1377 } 1378 1379 /* 1380 * If the page is not in a normal state, skip it. The page 1381 * can not be invalidated while the object lock is held. 1382 */ 1383 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1384 goto next_pindex; 1385 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1386 ("vm_object_madvise: page %p is fictitious", tm)); 1387 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1388 ("vm_object_madvise: page %p is not managed", tm)); 1389 if (vm_page_tryxbusy(tm) == 0) { 1390 if (object != tobject) 1391 VM_OBJECT_WUNLOCK(object); 1392 if (advice == MADV_WILLNEED) { 1393 /* 1394 * Reference the page before unlocking and 1395 * sleeping so that the page daemon is less 1396 * likely to reclaim it. 1397 */ 1398 vm_page_aflag_set(tm, PGA_REFERENCED); 1399 } 1400 if (!vm_page_busy_sleep(tm, "madvpo", 0)) 1401 VM_OBJECT_WUNLOCK(tobject); 1402 pctrie_iter_reset(&pages); 1403 goto relookup; 1404 } 1405 vm_page_advise(tm, advice); 1406 vm_page_xunbusy(tm); 1407 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1408 next_pindex: 1409 if (tobject != object) 1410 VM_OBJECT_WUNLOCK(tobject); 1411 } 1412 VM_OBJECT_WUNLOCK(object); 1413 } 1414 1415 /* 1416 * vm_object_shadow: 1417 * 1418 * Create a new object which is backed by the 1419 * specified existing object range. The source 1420 * object reference is deallocated. 1421 * 1422 * The new object and offset into that object 1423 * are returned in the source parameters. 1424 */ 1425 void 1426 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1427 struct ucred *cred, bool shared) 1428 { 1429 vm_object_t source; 1430 vm_object_t result; 1431 1432 source = *object; 1433 1434 /* 1435 * Don't create the new object if the old object isn't shared. 1436 * 1437 * If we hold the only reference we can guarantee that it won't 1438 * increase while we have the map locked. Otherwise the race is 1439 * harmless and we will end up with an extra shadow object that 1440 * will be collapsed later. 1441 */ 1442 if (source != NULL && source->ref_count == 1 && 1443 (source->flags & OBJ_ANON) != 0) 1444 return; 1445 1446 /* 1447 * Allocate a new object with the given length. 1448 */ 1449 result = vm_object_allocate_anon(atop(length), source, cred); 1450 1451 /* 1452 * Store the offset into the source object, and fix up the offset into 1453 * the new object. 1454 */ 1455 result->backing_object_offset = *offset; 1456 1457 if (shared || source != NULL) { 1458 VM_OBJECT_WLOCK(result); 1459 1460 /* 1461 * The new object shadows the source object, adding a 1462 * reference to it. Our caller changes his reference 1463 * to point to the new object, removing a reference to 1464 * the source object. Net result: no change of 1465 * reference count, unless the caller needs to add one 1466 * more reference due to forking a shared map entry. 1467 */ 1468 if (shared) { 1469 vm_object_reference_locked(result); 1470 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1471 } 1472 1473 /* 1474 * Try to optimize the result object's page color when 1475 * shadowing in order to maintain page coloring 1476 * consistency in the combined shadowed object. 1477 */ 1478 if (source != NULL) { 1479 vm_object_backing_insert(result, source); 1480 result->domain = source->domain; 1481 #if VM_NRESERVLEVEL > 0 1482 vm_object_set_flag(result, 1483 (source->flags & OBJ_COLORED)); 1484 result->pg_color = (source->pg_color + 1485 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1486 1)) - 1); 1487 #endif 1488 } 1489 VM_OBJECT_WUNLOCK(result); 1490 } 1491 1492 /* 1493 * Return the new things 1494 */ 1495 *offset = 0; 1496 *object = result; 1497 } 1498 1499 /* 1500 * vm_object_split: 1501 * 1502 * Split the pages in a map entry into a new object. This affords 1503 * easier removal of unused pages, and keeps object inheritance from 1504 * being a negative impact on memory usage. 1505 */ 1506 void 1507 vm_object_split(vm_map_entry_t entry) 1508 { 1509 struct pctrie_iter pages; 1510 vm_page_t m; 1511 vm_object_t orig_object, new_object, backing_object; 1512 struct ucred *cred; 1513 vm_pindex_t offidxstart; 1514 vm_size_t size; 1515 1516 orig_object = entry->object.vm_object; 1517 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1518 ("vm_object_split: Splitting object with multiple mappings.")); 1519 if ((orig_object->flags & OBJ_ANON) == 0) 1520 return; 1521 if (orig_object->ref_count <= 1) 1522 return; 1523 VM_OBJECT_WUNLOCK(orig_object); 1524 1525 offidxstart = OFF_TO_IDX(entry->offset); 1526 size = atop(entry->end - entry->start); 1527 if (orig_object->cred != NULL) { 1528 /* 1529 * vm_object_split() is currently called from 1530 * vmspace_fork(), and it might be tempting to add the 1531 * charge for the split object to fork_charge. But 1532 * fork_charge is discharged on error when the copied 1533 * vmspace is destroyed. Since the split object is 1534 * inserted into the shadow hierarchy serving the 1535 * source vm_map, it is kept even after the 1536 * unsuccessful fork, meaning that we have to force 1537 * its swap usage. 1538 */ 1539 cred = curthread->td_ucred; 1540 crhold(cred); 1541 swap_reserve_force_by_cred(ptoa(size), cred); 1542 } else { 1543 cred = NULL; 1544 } 1545 1546 new_object = vm_object_allocate_anon(size, orig_object, cred); 1547 1548 /* 1549 * We must wait for the orig_object to complete any in-progress 1550 * collapse so that the swap blocks are stable below. The 1551 * additional reference on backing_object by new object will 1552 * prevent further collapse operations until split completes. 1553 */ 1554 VM_OBJECT_WLOCK(orig_object); 1555 vm_object_collapse_wait(orig_object); 1556 1557 /* 1558 * At this point, the new object is still private, so the order in 1559 * which the original and new objects are locked does not matter. 1560 */ 1561 VM_OBJECT_WLOCK(new_object); 1562 new_object->domain = orig_object->domain; 1563 backing_object = orig_object->backing_object; 1564 if (backing_object != NULL) { 1565 vm_object_backing_insert_ref(new_object, backing_object); 1566 new_object->backing_object_offset = 1567 orig_object->backing_object_offset + entry->offset; 1568 } 1569 1570 /* 1571 * Mark the split operation so that swap_pager_getpages() knows 1572 * that the object is in transition. 1573 */ 1574 vm_object_set_flag(orig_object, OBJ_SPLIT); 1575 vm_page_iter_limit_init(&pages, orig_object, offidxstart + size); 1576 retry: 1577 KASSERT(pctrie_iter_is_reset(&pages), 1578 ("%s: pctrie_iter not reset for retry", __func__)); 1579 for (m = vm_radix_iter_lookup_ge(&pages, offidxstart); m != NULL; 1580 m = vm_radix_iter_step(&pages)) { 1581 /* 1582 * We must wait for pending I/O to complete before we can 1583 * rename the page. 1584 * 1585 * We do not have to VM_PROT_NONE the page as mappings should 1586 * not be changed by this operation. 1587 */ 1588 if (vm_page_tryxbusy(m) == 0) { 1589 VM_OBJECT_WUNLOCK(new_object); 1590 if (vm_page_busy_sleep(m, "spltwt", 0)) 1591 VM_OBJECT_WLOCK(orig_object); 1592 pctrie_iter_reset(&pages); 1593 VM_OBJECT_WLOCK(new_object); 1594 goto retry; 1595 } 1596 1597 /* 1598 * If the page was left invalid, it was likely placed there by 1599 * an incomplete fault. Just remove and ignore. 1600 * 1601 * One other possibility is that the map entry is wired, in 1602 * which case we must hang on to the page to avoid leaking it, 1603 * as the map entry owns the wiring. This case can arise if the 1604 * backing object is truncated by the pager. 1605 */ 1606 if (vm_page_none_valid(m) && entry->wired_count == 0) { 1607 if (vm_page_iter_remove(&pages, m)) 1608 vm_page_free(m); 1609 continue; 1610 } 1611 1612 /* vm_page_iter_rename() will dirty the page if it is valid. */ 1613 if (!vm_page_iter_rename(&pages, m, new_object, m->pindex - 1614 offidxstart)) { 1615 vm_page_xunbusy(m); 1616 VM_OBJECT_WUNLOCK(new_object); 1617 VM_OBJECT_WUNLOCK(orig_object); 1618 vm_radix_wait(); 1619 pctrie_iter_reset(&pages); 1620 VM_OBJECT_WLOCK(orig_object); 1621 VM_OBJECT_WLOCK(new_object); 1622 goto retry; 1623 } 1624 1625 #if VM_NRESERVLEVEL > 0 1626 /* 1627 * If some of the reservation's allocated pages remain with 1628 * the original object, then transferring the reservation to 1629 * the new object is neither particularly beneficial nor 1630 * particularly harmful as compared to leaving the reservation 1631 * with the original object. If, however, all of the 1632 * reservation's allocated pages are transferred to the new 1633 * object, then transferring the reservation is typically 1634 * beneficial. Determining which of these two cases applies 1635 * would be more costly than unconditionally renaming the 1636 * reservation. 1637 */ 1638 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1639 #endif 1640 } 1641 1642 /* 1643 * swap_pager_copy() can sleep, in which case the orig_object's 1644 * and new_object's locks are released and reacquired. 1645 */ 1646 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1647 vm_page_iter_init(&pages, new_object); 1648 VM_RADIX_FOREACH(m, &pages) 1649 vm_page_xunbusy(m); 1650 1651 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1652 VM_OBJECT_WUNLOCK(orig_object); 1653 VM_OBJECT_WUNLOCK(new_object); 1654 entry->object.vm_object = new_object; 1655 entry->offset = 0LL; 1656 vm_object_deallocate(orig_object); 1657 VM_OBJECT_WLOCK(new_object); 1658 } 1659 1660 static vm_page_t 1661 vm_object_collapse_scan_wait(struct pctrie_iter *pages, vm_object_t object, 1662 vm_page_t p) 1663 { 1664 vm_object_t backing_object; 1665 1666 VM_OBJECT_ASSERT_WLOCKED(object); 1667 backing_object = object->backing_object; 1668 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1669 1670 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1671 ("invalid ownership %p %p %p", p, object, backing_object)); 1672 /* The page is only NULL when rename fails. */ 1673 if (p == NULL) { 1674 VM_OBJECT_WUNLOCK(object); 1675 VM_OBJECT_WUNLOCK(backing_object); 1676 vm_radix_wait(); 1677 VM_OBJECT_WLOCK(object); 1678 } else if (p->object == object) { 1679 VM_OBJECT_WUNLOCK(backing_object); 1680 if (vm_page_busy_sleep(p, "vmocol", 0)) 1681 VM_OBJECT_WLOCK(object); 1682 } else { 1683 VM_OBJECT_WUNLOCK(object); 1684 if (!vm_page_busy_sleep(p, "vmocol", 0)) 1685 VM_OBJECT_WUNLOCK(backing_object); 1686 VM_OBJECT_WLOCK(object); 1687 } 1688 VM_OBJECT_WLOCK(backing_object); 1689 vm_page_iter_init(pages, backing_object); 1690 return (vm_radix_iter_lookup_ge(pages, 0)); 1691 } 1692 1693 static void 1694 vm_object_collapse_scan(vm_object_t object) 1695 { 1696 struct pctrie_iter pages; 1697 vm_object_t backing_object; 1698 vm_page_t next, p, pp; 1699 vm_pindex_t backing_offset_index, new_pindex; 1700 1701 VM_OBJECT_ASSERT_WLOCKED(object); 1702 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1703 1704 backing_object = object->backing_object; 1705 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1706 1707 /* 1708 * Our scan 1709 */ 1710 vm_page_iter_init(&pages, backing_object); 1711 for (p = vm_radix_iter_lookup_ge(&pages, 0); p != NULL; p = next) { 1712 /* 1713 * Check for busy page 1714 */ 1715 if (vm_page_tryxbusy(p) == 0) { 1716 next = vm_object_collapse_scan_wait(&pages, object, p); 1717 continue; 1718 } 1719 1720 KASSERT(object->backing_object == backing_object, 1721 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1722 object->backing_object, backing_object)); 1723 KASSERT(p->object == backing_object, 1724 ("vm_object_collapse_scan: object mismatch %p != %p", 1725 p->object, backing_object)); 1726 1727 if (p->pindex < backing_offset_index || object->size <= 1728 (new_pindex = p->pindex - backing_offset_index)) { 1729 vm_pager_freespace(backing_object, p->pindex, 1); 1730 1731 KASSERT(!pmap_page_is_mapped(p), 1732 ("freeing mapped page %p", p)); 1733 if (vm_page_iter_remove(&pages, p)) 1734 vm_page_free(p); 1735 next = vm_radix_iter_step(&pages); 1736 continue; 1737 } 1738 1739 if (!vm_page_all_valid(p)) { 1740 KASSERT(!pmap_page_is_mapped(p), 1741 ("freeing mapped page %p", p)); 1742 if (vm_page_iter_remove(&pages, p)) 1743 vm_page_free(p); 1744 next = vm_radix_iter_step(&pages); 1745 continue; 1746 } 1747 1748 pp = vm_page_lookup(object, new_pindex); 1749 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1750 vm_page_xunbusy(p); 1751 /* 1752 * The page in the parent is busy and possibly not 1753 * (yet) valid. Until its state is finalized by the 1754 * busy bit owner, we can't tell whether it shadows the 1755 * original page. 1756 */ 1757 next = vm_object_collapse_scan_wait(&pages, object, pp); 1758 continue; 1759 } 1760 1761 if (pp != NULL && vm_page_none_valid(pp)) { 1762 /* 1763 * The page was invalid in the parent. Likely placed 1764 * there by an incomplete fault. Just remove and 1765 * ignore. p can replace it. 1766 */ 1767 if (vm_page_remove(pp)) 1768 vm_page_free(pp); 1769 pp = NULL; 1770 } 1771 1772 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1773 NULL)) { 1774 /* 1775 * The page already exists in the parent OR swap exists 1776 * for this location in the parent. Leave the parent's 1777 * page alone. Destroy the original page from the 1778 * backing object. 1779 */ 1780 vm_pager_freespace(backing_object, p->pindex, 1); 1781 KASSERT(!pmap_page_is_mapped(p), 1782 ("freeing mapped page %p", p)); 1783 if (pp != NULL) 1784 vm_page_xunbusy(pp); 1785 if (vm_page_iter_remove(&pages, p)) 1786 vm_page_free(p); 1787 next = vm_radix_iter_step(&pages); 1788 continue; 1789 } 1790 1791 /* 1792 * Page does not exist in parent, rename the page from the 1793 * backing object to the main object. 1794 * 1795 * If the page was mapped to a process, it can remain mapped 1796 * through the rename. vm_page_iter_rename() will dirty the 1797 * page. 1798 */ 1799 if (!vm_page_iter_rename(&pages, p, object, new_pindex)) { 1800 vm_page_xunbusy(p); 1801 next = vm_object_collapse_scan_wait(&pages, object, 1802 NULL); 1803 continue; 1804 } 1805 1806 /* Use the old pindex to free the right page. */ 1807 vm_pager_freespace(backing_object, new_pindex + 1808 backing_offset_index, 1); 1809 1810 #if VM_NRESERVLEVEL > 0 1811 /* 1812 * Rename the reservation. 1813 */ 1814 vm_reserv_rename(p, object, backing_object, 1815 backing_offset_index); 1816 #endif 1817 vm_page_xunbusy(p); 1818 next = vm_radix_iter_step(&pages); 1819 } 1820 return; 1821 } 1822 1823 /* 1824 * vm_object_collapse: 1825 * 1826 * Collapse an object with the object backing it. 1827 * Pages in the backing object are moved into the 1828 * parent, and the backing object is deallocated. 1829 */ 1830 void 1831 vm_object_collapse(vm_object_t object) 1832 { 1833 vm_object_t backing_object, new_backing_object; 1834 1835 VM_OBJECT_ASSERT_WLOCKED(object); 1836 1837 while (TRUE) { 1838 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1839 ("collapsing invalid object")); 1840 1841 /* 1842 * Wait for the backing_object to finish any pending 1843 * collapse so that the caller sees the shortest possible 1844 * shadow chain. 1845 */ 1846 backing_object = vm_object_backing_collapse_wait(object); 1847 if (backing_object == NULL) 1848 return; 1849 1850 KASSERT(object->ref_count > 0 && 1851 object->ref_count > atomic_load_int(&object->shadow_count), 1852 ("collapse with invalid ref %d or shadow %d count.", 1853 object->ref_count, atomic_load_int(&object->shadow_count))); 1854 KASSERT((backing_object->flags & 1855 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1856 ("vm_object_collapse: Backing object already collapsing.")); 1857 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1858 ("vm_object_collapse: object is already collapsing.")); 1859 1860 /* 1861 * We know that we can either collapse the backing object if 1862 * the parent is the only reference to it, or (perhaps) have 1863 * the parent bypass the object if the parent happens to shadow 1864 * all the resident pages in the entire backing object. 1865 */ 1866 if (backing_object->ref_count == 1) { 1867 KASSERT(atomic_load_int(&backing_object->shadow_count) 1868 == 1, 1869 ("vm_object_collapse: shadow_count: %d", 1870 atomic_load_int(&backing_object->shadow_count))); 1871 vm_object_pip_add(object, 1); 1872 vm_object_set_flag(object, OBJ_COLLAPSING); 1873 vm_object_pip_add(backing_object, 1); 1874 vm_object_set_flag(backing_object, OBJ_DEAD); 1875 1876 /* 1877 * If there is exactly one reference to the backing 1878 * object, we can collapse it into the parent. 1879 */ 1880 vm_object_collapse_scan(object); 1881 1882 /* 1883 * Move the pager from backing_object to object. 1884 * 1885 * swap_pager_copy() can sleep, in which case the 1886 * backing_object's and object's locks are released and 1887 * reacquired. 1888 */ 1889 swap_pager_copy(backing_object, object, 1890 OFF_TO_IDX(object->backing_object_offset), TRUE); 1891 1892 /* 1893 * Object now shadows whatever backing_object did. 1894 */ 1895 vm_object_clear_flag(object, OBJ_COLLAPSING); 1896 vm_object_backing_transfer(object, backing_object); 1897 object->backing_object_offset += 1898 backing_object->backing_object_offset; 1899 VM_OBJECT_WUNLOCK(object); 1900 vm_object_pip_wakeup(object); 1901 1902 /* 1903 * Discard backing_object. 1904 * 1905 * Since the backing object has no pages, no pager left, 1906 * and no object references within it, all that is 1907 * necessary is to dispose of it. 1908 */ 1909 KASSERT(backing_object->ref_count == 1, ( 1910 "backing_object %p was somehow re-referenced during collapse!", 1911 backing_object)); 1912 vm_object_pip_wakeup(backing_object); 1913 (void)refcount_release(&backing_object->ref_count); 1914 umtx_shm_object_terminated(backing_object); 1915 vm_object_terminate(backing_object); 1916 counter_u64_add(object_collapses, 1); 1917 VM_OBJECT_WLOCK(object); 1918 } else { 1919 /* 1920 * If we do not entirely shadow the backing object, 1921 * there is nothing we can do so we give up. 1922 * 1923 * The object lock and backing_object lock must not 1924 * be dropped during this sequence. 1925 */ 1926 if (!swap_pager_scan_all_shadowed(object)) { 1927 VM_OBJECT_WUNLOCK(backing_object); 1928 break; 1929 } 1930 1931 /* 1932 * Make the parent shadow the next object in the 1933 * chain. Deallocating backing_object will not remove 1934 * it, since its reference count is at least 2. 1935 */ 1936 vm_object_backing_remove_locked(object); 1937 new_backing_object = backing_object->backing_object; 1938 if (new_backing_object != NULL) { 1939 vm_object_backing_insert_ref(object, 1940 new_backing_object); 1941 object->backing_object_offset += 1942 backing_object->backing_object_offset; 1943 } 1944 1945 /* 1946 * Drop the reference count on backing_object. Since 1947 * its ref_count was at least 2, it will not vanish. 1948 */ 1949 (void)refcount_release(&backing_object->ref_count); 1950 KASSERT(backing_object->ref_count >= 1, ( 1951 "backing_object %p was somehow dereferenced during collapse!", 1952 backing_object)); 1953 VM_OBJECT_WUNLOCK(backing_object); 1954 counter_u64_add(object_bypasses, 1); 1955 } 1956 1957 /* 1958 * Try again with this object's new backing object. 1959 */ 1960 } 1961 } 1962 1963 /* 1964 * vm_object_page_remove: 1965 * 1966 * For the given object, either frees or invalidates each of the 1967 * specified pages. In general, a page is freed. However, if a page is 1968 * wired for any reason other than the existence of a managed, wired 1969 * mapping, then it may be invalidated but not removed from the object. 1970 * Pages are specified by the given range ["start", "end") and the option 1971 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1972 * extends from "start" to the end of the object. If the option 1973 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1974 * specified range are affected. If the option OBJPR_NOTMAPPED is 1975 * specified, then the pages within the specified range must have no 1976 * mappings. Otherwise, if this option is not specified, any mappings to 1977 * the specified pages are removed before the pages are freed or 1978 * invalidated. 1979 * 1980 * In general, this operation should only be performed on objects that 1981 * contain managed pages. There are, however, two exceptions. First, it 1982 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1983 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1984 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1985 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1986 * 1987 * The object must be locked. 1988 */ 1989 void 1990 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1991 int options) 1992 { 1993 struct pctrie_iter pages; 1994 vm_page_t p; 1995 1996 VM_OBJECT_ASSERT_WLOCKED(object); 1997 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1998 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1999 ("vm_object_page_remove: illegal options for object %p", object)); 2000 if (object->resident_page_count == 0) 2001 goto remove_pager; 2002 vm_object_pip_add(object, 1); 2003 vm_page_iter_limit_init(&pages, object, end); 2004 again: 2005 KASSERT(pctrie_iter_is_reset(&pages), 2006 ("%s: pctrie_iter not reset for retry", __func__)); 2007 for (p = vm_radix_iter_lookup_ge(&pages, start); p != NULL; 2008 p = vm_radix_iter_step(&pages)) { 2009 /* 2010 * Skip invalid pages if asked to do so. Try to avoid acquiring 2011 * the busy lock, as some consumers rely on this to avoid 2012 * deadlocks. 2013 * 2014 * A thread may concurrently transition the page from invalid to 2015 * valid using only the busy lock, so the result of this check 2016 * is immediately stale. It is up to consumers to handle this, 2017 * for instance by ensuring that all invalid->valid transitions 2018 * happen with a mutex held, as may be possible for a 2019 * filesystem. 2020 */ 2021 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) 2022 continue; 2023 2024 /* 2025 * If the page is wired for any reason besides the existence 2026 * of managed, wired mappings, then it cannot be freed. For 2027 * example, fictitious pages, which represent device memory, 2028 * are inherently wired and cannot be freed. They can, 2029 * however, be invalidated if the option OBJPR_CLEANONLY is 2030 * not specified. 2031 */ 2032 if (vm_page_tryxbusy(p) == 0) { 2033 if (vm_page_busy_sleep(p, "vmopar", 0)) 2034 VM_OBJECT_WLOCK(object); 2035 pctrie_iter_reset(&pages); 2036 goto again; 2037 } 2038 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { 2039 vm_page_xunbusy(p); 2040 continue; 2041 } 2042 if (vm_page_wired(p)) { 2043 wired: 2044 if ((options & OBJPR_NOTMAPPED) == 0 && 2045 object->ref_count != 0) 2046 pmap_remove_all(p); 2047 if ((options & OBJPR_CLEANONLY) == 0) { 2048 vm_page_invalid(p); 2049 vm_page_undirty(p); 2050 } 2051 vm_page_xunbusy(p); 2052 continue; 2053 } 2054 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2055 ("vm_object_page_remove: page %p is fictitious", p)); 2056 if ((options & OBJPR_CLEANONLY) != 0 && 2057 !vm_page_none_valid(p)) { 2058 if ((options & OBJPR_NOTMAPPED) == 0 && 2059 object->ref_count != 0 && 2060 !vm_page_try_remove_write(p)) 2061 goto wired; 2062 if (p->dirty != 0) { 2063 vm_page_xunbusy(p); 2064 continue; 2065 } 2066 } 2067 if ((options & OBJPR_NOTMAPPED) == 0 && 2068 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2069 goto wired; 2070 vm_page_iter_free(&pages, p); 2071 } 2072 vm_object_pip_wakeup(object); 2073 2074 remove_pager: 2075 vm_pager_freespace(object, start, (end == 0 ? object->size : end) - 2076 start); 2077 } 2078 2079 /* 2080 * vm_object_page_noreuse: 2081 * 2082 * For the given object, attempt to move the specified pages to 2083 * the head of the inactive queue. This bypasses regular LRU 2084 * operation and allows the pages to be reused quickly under memory 2085 * pressure. If a page is wired for any reason, then it will not 2086 * be queued. Pages are specified by the range ["start", "end"). 2087 * As a special case, if "end" is zero, then the range extends from 2088 * "start" to the end of the object. 2089 * 2090 * This operation should only be performed on objects that 2091 * contain non-fictitious, managed pages. 2092 * 2093 * The object must be locked. 2094 */ 2095 void 2096 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2097 { 2098 struct pctrie_iter pages; 2099 vm_page_t p; 2100 2101 VM_OBJECT_ASSERT_LOCKED(object); 2102 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2103 ("vm_object_page_noreuse: illegal object %p", object)); 2104 if (object->resident_page_count == 0) 2105 return; 2106 2107 vm_page_iter_limit_init(&pages, object, end); 2108 VM_RADIX_FOREACH_FROM(p, &pages, start) 2109 vm_page_deactivate_noreuse(p); 2110 } 2111 2112 /* 2113 * Populate the specified range of the object with valid pages. Returns 2114 * TRUE if the range is successfully populated and FALSE otherwise. 2115 * 2116 * Note: This function should be optimized to pass a larger array of 2117 * pages to vm_pager_get_pages() before it is applied to a non- 2118 * OBJT_DEVICE object. 2119 * 2120 * The object must be locked. 2121 */ 2122 boolean_t 2123 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2124 { 2125 struct pctrie_iter pages; 2126 vm_page_t m; 2127 vm_pindex_t pindex; 2128 int rv; 2129 2130 vm_page_iter_init(&pages, object); 2131 VM_OBJECT_ASSERT_WLOCKED(object); 2132 for (pindex = start; pindex < end; pindex++) { 2133 rv = vm_page_grab_valid_iter(&m, object, pindex, 2134 VM_ALLOC_NORMAL, &pages); 2135 if (rv != VM_PAGER_OK) 2136 break; 2137 2138 /* 2139 * Keep "m" busy because a subsequent iteration may unlock 2140 * the object. 2141 */ 2142 } 2143 if (pindex > start) { 2144 pages.limit = pindex; 2145 VM_RADIX_FORALL_FROM(m, &pages, start) 2146 vm_page_xunbusy(m); 2147 } 2148 return (pindex == end); 2149 } 2150 2151 /* 2152 * Routine: vm_object_coalesce 2153 * Function: Coalesces two objects backing up adjoining 2154 * regions of memory into a single object. 2155 * 2156 * returns TRUE if objects were combined. 2157 * 2158 * NOTE: Only works at the moment if the second object is NULL - 2159 * if it's not, which object do we lock first? 2160 * 2161 * Parameters: 2162 * prev_object First object to coalesce 2163 * prev_offset Offset into prev_object 2164 * prev_size Size of reference to prev_object 2165 * next_size Size of reference to the second object 2166 * reserved Indicator that extension region has 2167 * swap accounted for 2168 * 2169 * Conditions: 2170 * The object must *not* be locked. 2171 */ 2172 boolean_t 2173 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2174 vm_size_t prev_size, vm_size_t next_size, int cflags) 2175 { 2176 vm_pindex_t next_end, next_pindex; 2177 2178 if (prev_object == NULL) 2179 return (TRUE); 2180 if ((prev_object->flags & OBJ_ANON) == 0) 2181 return (FALSE); 2182 2183 VM_OBJECT_WLOCK(prev_object); 2184 /* 2185 * Try to collapse the object first. 2186 */ 2187 vm_object_collapse(prev_object); 2188 2189 /* 2190 * Can't coalesce if: . more than one reference . paged out . shadows 2191 * another object . has a copy elsewhere (any of which mean that the 2192 * pages not mapped to prev_entry may be in use anyway) 2193 */ 2194 if (prev_object->backing_object != NULL) { 2195 VM_OBJECT_WUNLOCK(prev_object); 2196 return (FALSE); 2197 } 2198 2199 prev_size >>= PAGE_SHIFT; 2200 next_size >>= PAGE_SHIFT; 2201 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2202 2203 if (prev_object->ref_count > 1 && 2204 prev_object->size != next_pindex && 2205 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2206 VM_OBJECT_WUNLOCK(prev_object); 2207 return (FALSE); 2208 } 2209 2210 next_end = next_pindex + next_size; 2211 2212 /* 2213 * Account for the charge. 2214 */ 2215 if (prev_object->cred != NULL && (cflags & OBJCO_NO_CHARGE) == 0) { 2216 /* 2217 * If prev_object was charged, then this mapping, 2218 * although not charged now, may become writable 2219 * later. Non-NULL cred in the object would prevent 2220 * swap reservation during enabling of the write 2221 * access, so reserve swap now. Failed reservation 2222 * cause allocation of the separate object for the map 2223 * entry, and swap reservation for this entry is 2224 * managed in appropriate time. 2225 */ 2226 if (next_end > prev_object->size) { 2227 vm_size_t charge = ptoa(next_end - prev_object->size); 2228 2229 if ((cflags & OBJCO_CHARGED) == 0) { 2230 if (!swap_reserve_by_cred(charge, 2231 prev_object->cred)) { 2232 VM_OBJECT_WUNLOCK(prev_object); 2233 return (FALSE); 2234 } 2235 } else if (prev_object->size > next_pindex) { 2236 /* 2237 * The caller charged, but: 2238 * - the object has already accounted for the 2239 * space, 2240 * - and the object end is between previous 2241 * mapping end and next_end. 2242 */ 2243 swap_release_by_cred(ptoa(prev_object->size - 2244 next_pindex), prev_object->cred); 2245 } 2246 } else if ((cflags & OBJCO_CHARGED) != 0) { 2247 /* 2248 * The caller charged, but the object has 2249 * already accounted for the space. Whole new 2250 * mapping charge should be released, 2251 */ 2252 swap_release_by_cred(ptoa(next_size), 2253 prev_object->cred); 2254 } 2255 } 2256 2257 /* 2258 * Remove any pages that may still be in the object from a previous 2259 * deallocation. 2260 */ 2261 if (next_pindex < prev_object->size) 2262 vm_object_page_remove(prev_object, next_pindex, next_end, 0); 2263 2264 /* 2265 * Extend the object if necessary. 2266 */ 2267 if (next_end > prev_object->size) 2268 prev_object->size = next_end; 2269 2270 #ifdef INVARIANTS 2271 /* 2272 * Re-check: there must be no pages in the next range backed 2273 * by prev_entry's object. Otherwise, the resulting 2274 * corruption is same as faulting in a non-zeroed page. 2275 */ 2276 if (vm_check_pg_zero) { 2277 vm_pindex_t pidx; 2278 2279 pidx = swap_pager_seek_data(prev_object, next_pindex); 2280 KASSERT(pidx >= next_end, 2281 ("found obj %p pindex %#jx e %#jx %#jx %#jx", 2282 prev_object, pidx, (uintmax_t)prev_offset, 2283 (uintmax_t)prev_size, (uintmax_t)next_size)); 2284 } 2285 #endif 2286 2287 VM_OBJECT_WUNLOCK(prev_object); 2288 return (TRUE); 2289 } 2290 2291 /* 2292 * Fill in the m_dst array with up to *rbehind optional pages before m_src[0] 2293 * and up to *rahead optional pages after m_src[count - 1]. In both cases, stop 2294 * the filling-in short on encountering a cached page, an object boundary limit, 2295 * or an allocation error. Update *rbehind and *rahead to indicate the number 2296 * of pages allocated. Copy elements of m_src into array elements from 2297 * m_dst[*rbehind] to m_dst[*rbehind + count -1]. 2298 */ 2299 void 2300 vm_object_prepare_buf_pages(vm_object_t object, vm_page_t *ma_dst, int count, 2301 int *rbehind, int *rahead, vm_page_t *ma_src) 2302 { 2303 struct pctrie_iter pages; 2304 vm_pindex_t pindex; 2305 vm_page_t m, mpred, msucc; 2306 2307 vm_page_iter_init(&pages, object); 2308 VM_OBJECT_ASSERT_LOCKED(object); 2309 if (*rbehind != 0) { 2310 m = ma_src[0]; 2311 pindex = m->pindex; 2312 mpred = vm_radix_iter_lookup_lt(&pages, pindex); 2313 *rbehind = MIN(*rbehind, 2314 pindex - (mpred != NULL ? mpred->pindex + 1 : 0)); 2315 for (int i = 0; i < *rbehind; i++) { 2316 m = vm_page_alloc_iter(object, pindex - i - 1, 2317 VM_ALLOC_NORMAL, &pages); 2318 if (m == NULL) { 2319 /* Shift the array. */ 2320 for (int j = 0; j < i; j++) 2321 ma_dst[j] = ma_dst[j + *rbehind - i]; 2322 *rbehind = i; 2323 *rahead = 0; 2324 break; 2325 } 2326 ma_dst[*rbehind - i - 1] = m; 2327 } 2328 } 2329 for (int i = 0; i < count; i++) 2330 ma_dst[*rbehind + i] = ma_src[i]; 2331 if (*rahead != 0) { 2332 m = ma_src[count - 1]; 2333 pindex = m->pindex + 1; 2334 msucc = vm_radix_iter_lookup_ge(&pages, pindex); 2335 *rahead = MIN(*rahead, 2336 (msucc != NULL ? msucc->pindex : object->size) - pindex); 2337 for (int i = 0; i < *rahead; i++) { 2338 m = vm_page_alloc_iter(object, pindex + i, 2339 VM_ALLOC_NORMAL, &pages); 2340 if (m == NULL) { 2341 *rahead = i; 2342 break; 2343 } 2344 ma_dst[*rbehind + count + i] = m; 2345 } 2346 } 2347 } 2348 2349 void 2350 vm_object_set_writeable_dirty_(vm_object_t object) 2351 { 2352 atomic_add_int(&object->generation, 1); 2353 } 2354 2355 bool 2356 vm_object_mightbedirty_(vm_object_t object) 2357 { 2358 return (object->generation != object->cleangeneration); 2359 } 2360 2361 /* 2362 * vm_object_unwire: 2363 * 2364 * For each page offset within the specified range of the given object, 2365 * find the highest-level page in the shadow chain and unwire it. A page 2366 * must exist at every page offset, and the highest-level page must be 2367 * wired. 2368 */ 2369 void 2370 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2371 uint8_t queue) 2372 { 2373 struct pctrie_iter pages; 2374 vm_object_t tobject, t1object; 2375 vm_page_t m, tm; 2376 vm_pindex_t end_pindex, pindex, tpindex; 2377 int depth, locked_depth; 2378 2379 KASSERT((offset & PAGE_MASK) == 0, 2380 ("vm_object_unwire: offset is not page aligned")); 2381 KASSERT((length & PAGE_MASK) == 0, 2382 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2383 /* The wired count of a fictitious page never changes. */ 2384 if ((object->flags & OBJ_FICTITIOUS) != 0) 2385 return; 2386 pindex = OFF_TO_IDX(offset); 2387 end_pindex = pindex + atop(length); 2388 vm_page_iter_init(&pages, object); 2389 again: 2390 locked_depth = 1; 2391 VM_OBJECT_RLOCK(object); 2392 m = vm_radix_iter_lookup_ge(&pages, pindex); 2393 while (pindex < end_pindex) { 2394 if (m == NULL || pindex < m->pindex) { 2395 /* 2396 * The first object in the shadow chain doesn't 2397 * contain a page at the current index. Therefore, 2398 * the page must exist in a backing object. 2399 */ 2400 tobject = object; 2401 tpindex = pindex; 2402 depth = 0; 2403 do { 2404 tpindex += 2405 OFF_TO_IDX(tobject->backing_object_offset); 2406 tobject = tobject->backing_object; 2407 KASSERT(tobject != NULL, 2408 ("vm_object_unwire: missing page")); 2409 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2410 goto next_page; 2411 depth++; 2412 if (depth == locked_depth) { 2413 locked_depth++; 2414 VM_OBJECT_RLOCK(tobject); 2415 } 2416 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2417 NULL); 2418 } else { 2419 tm = m; 2420 m = vm_radix_iter_step(&pages); 2421 } 2422 if (vm_page_trysbusy(tm) == 0) { 2423 for (tobject = object; locked_depth >= 1; 2424 locked_depth--) { 2425 t1object = tobject->backing_object; 2426 if (tm->object != tobject) 2427 VM_OBJECT_RUNLOCK(tobject); 2428 tobject = t1object; 2429 } 2430 tobject = tm->object; 2431 if (!vm_page_busy_sleep(tm, "unwbo", 2432 VM_ALLOC_IGN_SBUSY)) 2433 VM_OBJECT_RUNLOCK(tobject); 2434 pctrie_iter_reset(&pages); 2435 goto again; 2436 } 2437 vm_page_unwire(tm, queue); 2438 vm_page_sunbusy(tm); 2439 next_page: 2440 pindex++; 2441 } 2442 /* Release the accumulated object locks. */ 2443 for (tobject = object; locked_depth >= 1; locked_depth--) { 2444 t1object = tobject->backing_object; 2445 VM_OBJECT_RUNLOCK(tobject); 2446 tobject = t1object; 2447 } 2448 } 2449 2450 /* 2451 * Return the vnode for the given object, or NULL if none exists. 2452 * For tmpfs objects, the function may return NULL if there is 2453 * no vnode allocated at the time of the call. 2454 */ 2455 struct vnode * 2456 vm_object_vnode(vm_object_t object) 2457 { 2458 struct vnode *vp; 2459 2460 VM_OBJECT_ASSERT_LOCKED(object); 2461 vm_pager_getvp(object, &vp, NULL); 2462 return (vp); 2463 } 2464 2465 /* 2466 * Busy the vm object. This prevents new pages belonging to the object from 2467 * becoming busy. Existing pages persist as busy. Callers are responsible 2468 * for checking page state before proceeding. 2469 */ 2470 void 2471 vm_object_busy(vm_object_t obj) 2472 { 2473 2474 VM_OBJECT_ASSERT_LOCKED(obj); 2475 2476 blockcount_acquire(&obj->busy, 1); 2477 /* The fence is required to order loads of page busy. */ 2478 atomic_thread_fence_acq_rel(); 2479 } 2480 2481 void 2482 vm_object_unbusy(vm_object_t obj) 2483 { 2484 2485 blockcount_release(&obj->busy, 1); 2486 } 2487 2488 void 2489 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2490 { 2491 2492 VM_OBJECT_ASSERT_UNLOCKED(obj); 2493 2494 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2495 } 2496 2497 /* 2498 * This function aims to determine if the object is mapped, 2499 * specifically, if it is referenced by a vm_map_entry. Because 2500 * objects occasionally acquire transient references that do not 2501 * represent a mapping, the method used here is inexact. However, it 2502 * has very low overhead and is good enough for the advisory 2503 * vm.vmtotal sysctl. 2504 */ 2505 bool 2506 vm_object_is_active(vm_object_t obj) 2507 { 2508 2509 return (obj->ref_count > atomic_load_int(&obj->shadow_count)); 2510 } 2511 2512 static int 2513 vm_object_list_handler(struct sysctl_req *req, bool swap_only) 2514 { 2515 struct pctrie_iter pages; 2516 struct kinfo_vmobject *kvo; 2517 char *fullpath, *freepath; 2518 struct vnode *vp; 2519 struct vattr va; 2520 vm_object_t obj; 2521 vm_page_t m; 2522 u_long sp; 2523 int count, error; 2524 key_t key; 2525 unsigned short seq; 2526 bool want_path; 2527 2528 if (req->oldptr == NULL) { 2529 /* 2530 * If an old buffer has not been provided, generate an 2531 * estimate of the space needed for a subsequent call. 2532 */ 2533 mtx_lock(&vm_object_list_mtx); 2534 count = 0; 2535 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2536 if (obj->type == OBJT_DEAD) 2537 continue; 2538 count++; 2539 } 2540 mtx_unlock(&vm_object_list_mtx); 2541 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2542 count * 11 / 10)); 2543 } 2544 2545 want_path = !(swap_only || jailed(curthread->td_ucred)); 2546 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO); 2547 error = 0; 2548 2549 /* 2550 * VM objects are type stable and are never removed from the 2551 * list once added. This allows us to safely read obj->object_list 2552 * after reacquiring the VM object lock. 2553 */ 2554 mtx_lock(&vm_object_list_mtx); 2555 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2556 if (obj->type == OBJT_DEAD || 2557 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) 2558 continue; 2559 VM_OBJECT_RLOCK(obj); 2560 if (obj->type == OBJT_DEAD || 2561 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { 2562 VM_OBJECT_RUNLOCK(obj); 2563 continue; 2564 } 2565 mtx_unlock(&vm_object_list_mtx); 2566 2567 memset(kvo, 0, sizeof(*kvo)); 2568 kvo->kvo_size = ptoa(obj->size); 2569 kvo->kvo_resident = obj->resident_page_count; 2570 kvo->kvo_ref_count = obj->ref_count; 2571 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); 2572 kvo->kvo_memattr = obj->memattr; 2573 if (!swap_only) { 2574 vm_page_iter_init(&pages, obj); 2575 VM_RADIX_FOREACH(m, &pages) { 2576 /* 2577 * A page may belong to the object but be 2578 * dequeued and set to PQ_NONE while the 2579 * object lock is not held. This makes the 2580 * reads of m->queue below racy, and we do not 2581 * count pages set to PQ_NONE. However, this 2582 * sysctl is only meant to give an 2583 * approximation of the system anyway. 2584 */ 2585 if (vm_page_active(m)) 2586 kvo->kvo_active++; 2587 else if (vm_page_inactive(m)) 2588 kvo->kvo_inactive++; 2589 else if (vm_page_in_laundry(m)) 2590 kvo->kvo_laundry++; 2591 2592 if (vm_page_wired(m)) 2593 kvo->kvo_wired++; 2594 } 2595 } 2596 2597 freepath = NULL; 2598 fullpath = ""; 2599 vp = NULL; 2600 kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp : 2601 NULL); 2602 if (vp != NULL) { 2603 vref(vp); 2604 } else if ((obj->flags & OBJ_ANON) != 0) { 2605 MPASS(kvo->kvo_type == KVME_TYPE_SWAP); 2606 kvo->kvo_me = (uintptr_t)obj; 2607 /* tmpfs objs are reported as vnodes */ 2608 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2609 sp = swap_pager_swapped_pages(obj); 2610 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2611 } 2612 if (obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) { 2613 cdev_pager_get_path(obj, kvo->kvo_path, 2614 sizeof(kvo->kvo_path)); 2615 } 2616 VM_OBJECT_RUNLOCK(obj); 2617 if ((obj->flags & OBJ_SYSVSHM) != 0) { 2618 kvo->kvo_flags |= KVMO_FLAG_SYSVSHM; 2619 shmobjinfo(obj, &key, &seq); 2620 kvo->kvo_vn_fileid = key; 2621 kvo->kvo_vn_fsid_freebsd11 = seq; 2622 } 2623 if ((obj->flags & OBJ_POSIXSHM) != 0) { 2624 kvo->kvo_flags |= KVMO_FLAG_POSIXSHM; 2625 shm_get_path(obj, kvo->kvo_path, 2626 sizeof(kvo->kvo_path)); 2627 } 2628 if (vp != NULL) { 2629 vn_fullpath(vp, &fullpath, &freepath); 2630 vn_lock(vp, LK_SHARED | LK_RETRY); 2631 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2632 kvo->kvo_vn_fileid = va.va_fileid; 2633 kvo->kvo_vn_fsid = va.va_fsid; 2634 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2635 /* truncate */ 2636 } 2637 vput(vp); 2638 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2639 free(freepath, M_TEMP); 2640 } 2641 2642 /* Pack record size down */ 2643 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2644 + strlen(kvo->kvo_path) + 1; 2645 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2646 sizeof(uint64_t)); 2647 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2648 maybe_yield(); 2649 mtx_lock(&vm_object_list_mtx); 2650 if (error) 2651 break; 2652 } 2653 mtx_unlock(&vm_object_list_mtx); 2654 free(kvo, M_TEMP); 2655 return (error); 2656 } 2657 2658 static int 2659 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2660 { 2661 return (vm_object_list_handler(req, false)); 2662 } 2663 2664 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2665 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2666 "List of VM objects"); 2667 2668 static int 2669 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) 2670 { 2671 return (vm_object_list_handler(req, true)); 2672 } 2673 2674 /* 2675 * This sysctl returns list of the anonymous or swap objects. Intent 2676 * is to provide stripped optimized list useful to analyze swap use. 2677 * Since technically non-swap (default) objects participate in the 2678 * shadow chains, and are converted to swap type as needed by swap 2679 * pager, we must report them. 2680 */ 2681 SYSCTL_PROC(_vm, OID_AUTO, swap_objects, 2682 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, 2683 sysctl_vm_object_list_swap, "S,kinfo_vmobject", 2684 "List of swap VM objects"); 2685 2686 #include "opt_ddb.h" 2687 #ifdef DDB 2688 #include <sys/kernel.h> 2689 2690 #include <sys/cons.h> 2691 2692 #include <ddb/ddb.h> 2693 2694 static int 2695 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2696 { 2697 vm_map_t tmpm; 2698 vm_map_entry_t tmpe; 2699 vm_object_t obj; 2700 2701 if (map == 0) 2702 return 0; 2703 2704 if (entry == 0) { 2705 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2706 if (_vm_object_in_map(map, object, tmpe)) { 2707 return 1; 2708 } 2709 } 2710 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2711 tmpm = entry->object.sub_map; 2712 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2713 if (_vm_object_in_map(tmpm, object, tmpe)) { 2714 return 1; 2715 } 2716 } 2717 } else if ((obj = entry->object.vm_object) != NULL) { 2718 for (; obj; obj = obj->backing_object) 2719 if (obj == object) { 2720 return 1; 2721 } 2722 } 2723 return 0; 2724 } 2725 2726 static int 2727 vm_object_in_map(vm_object_t object) 2728 { 2729 struct proc *p; 2730 2731 /* sx_slock(&allproc_lock); */ 2732 FOREACH_PROC_IN_SYSTEM(p) { 2733 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2734 continue; 2735 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2736 /* sx_sunlock(&allproc_lock); */ 2737 return 1; 2738 } 2739 } 2740 /* sx_sunlock(&allproc_lock); */ 2741 if (_vm_object_in_map(kernel_map, object, 0)) 2742 return 1; 2743 return 0; 2744 } 2745 2746 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) 2747 { 2748 vm_object_t object; 2749 2750 /* 2751 * make sure that internal objs are in a map somewhere 2752 * and none have zero ref counts. 2753 */ 2754 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2755 if ((object->flags & OBJ_ANON) != 0) { 2756 if (object->ref_count == 0) { 2757 db_printf( 2758 "vmochk: internal obj has zero ref count: %lu\n", 2759 (u_long)object->size); 2760 } 2761 if (!vm_object_in_map(object)) { 2762 db_printf( 2763 "vmochk: internal obj is not in a map: " 2764 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2765 object->ref_count, (u_long)object->size, 2766 (u_long)object->size, 2767 (void *)object->backing_object); 2768 } 2769 } 2770 if (db_pager_quit) 2771 return; 2772 } 2773 } 2774 2775 /* 2776 * vm_object_print: [ debug ] 2777 */ 2778 DB_SHOW_COMMAND(object, vm_object_print_static) 2779 { 2780 struct pctrie_iter pages; 2781 /* XXX convert args. */ 2782 vm_object_t object = (vm_object_t)addr; 2783 boolean_t full = have_addr; 2784 2785 vm_page_t p; 2786 2787 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2788 #define count was_count 2789 2790 int count; 2791 2792 if (object == NULL) 2793 return; 2794 2795 db_iprintf("Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x", 2796 object, (int)object->type, (uintmax_t)object->size, 2797 object->resident_page_count, object->ref_count, object->flags); 2798 db_iprintf(" ruid %d\n", 2799 object->cred ? object->cred->cr_ruid : -1); 2800 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2801 atomic_load_int(&object->shadow_count), 2802 object->backing_object ? object->backing_object->ref_count : 0, 2803 object->backing_object, (uintmax_t)object->backing_object_offset); 2804 2805 if (!full) 2806 return; 2807 2808 db_indent += 2; 2809 count = 0; 2810 vm_page_iter_init(&pages, object); 2811 VM_RADIX_FOREACH(p, &pages) { 2812 if (count == 0) 2813 db_iprintf("memory:="); 2814 else if (count == 6) { 2815 db_printf("\n"); 2816 db_iprintf(" ..."); 2817 count = 0; 2818 } else 2819 db_printf(","); 2820 count++; 2821 2822 db_printf("(off=0x%jx,page=0x%jx)", 2823 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2824 2825 if (db_pager_quit) 2826 break; 2827 } 2828 if (count != 0) 2829 db_printf("\n"); 2830 db_indent -= 2; 2831 } 2832 2833 /* XXX. */ 2834 #undef count 2835 2836 /* XXX need this non-static entry for calling from vm_map_print. */ 2837 void 2838 vm_object_print( 2839 /* db_expr_t */ long addr, 2840 boolean_t have_addr, 2841 /* db_expr_t */ long count, 2842 char *modif) 2843 { 2844 vm_object_print_static(addr, have_addr, count, modif); 2845 } 2846 2847 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) 2848 { 2849 struct pctrie_iter pages; 2850 vm_object_t object; 2851 vm_page_t m, start_m; 2852 int rcount; 2853 2854 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2855 db_printf("new object: %p\n", (void *)object); 2856 if (db_pager_quit) 2857 return; 2858 start_m = NULL; 2859 vm_page_iter_init(&pages, object); 2860 VM_RADIX_FOREACH(m, &pages) { 2861 if (start_m == NULL) { 2862 start_m = m; 2863 rcount = 0; 2864 } else if (start_m->pindex + rcount != m->pindex || 2865 VM_PAGE_TO_PHYS(start_m) + ptoa(rcount) != 2866 VM_PAGE_TO_PHYS(m)) { 2867 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2868 (long)start_m->pindex, rcount, 2869 (long)VM_PAGE_TO_PHYS(start_m)); 2870 if (db_pager_quit) 2871 return; 2872 start_m = m; 2873 rcount = 0; 2874 } 2875 rcount++; 2876 } 2877 if (start_m != NULL) { 2878 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2879 (long)start_m->pindex, rcount, 2880 (long)VM_PAGE_TO_PHYS(start_m)); 2881 if (db_pager_quit) 2882 return; 2883 } 2884 } 2885 } 2886 #endif /* DDB */ 2887