xref: /freebsd/sys/vm/vm_object.c (revision a783ff949cafa0efc59d68ca19224e62d73616b9)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Virtual memory object module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>		/* for curproc, pageproc */
81 #include <sys/socket.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 #define EASY_SCAN_FACTOR       8
100 
101 #define MSYNC_FLUSH_HARDSEQ	0x01
102 #define MSYNC_FLUSH_SOFTSEQ	0x02
103 
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109         CTLFLAG_RW, &msync_flush_flags, 0, "");
110 
111 static void	vm_object_qcollapse(vm_object_t object);
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static long object_collapses;
147 static long object_bypasses;
148 static int next_index;
149 static uma_zone_t obj_zone;
150 #define VM_OBJECTS_INIT 256
151 
152 static void vm_object_zinit(void *mem, int size);
153 
154 #ifdef INVARIANTS
155 static void vm_object_zdtor(void *mem, int size, void *arg);
156 
157 static void
158 vm_object_zdtor(void *mem, int size, void *arg)
159 {
160 	vm_object_t object;
161 
162 	object = (vm_object_t)mem;
163 	KASSERT(TAILQ_EMPTY(&object->memq),
164 	    ("object %p has resident pages",
165 	    object));
166 	KASSERT(object->paging_in_progress == 0,
167 	    ("object %p paging_in_progress = %d",
168 	    object, object->paging_in_progress));
169 	KASSERT(object->resident_page_count == 0,
170 	    ("object %p resident_page_count = %d",
171 	    object, object->resident_page_count));
172 	KASSERT(object->shadow_count == 0,
173 	    ("object %p shadow_count = %d",
174 	    object, object->shadow_count));
175 }
176 #endif
177 
178 static void
179 vm_object_zinit(void *mem, int size)
180 {
181 	vm_object_t object;
182 
183 	object = (vm_object_t)mem;
184 	bzero(&object->mtx, sizeof(object->mtx));
185 	VM_OBJECT_LOCK_INIT(object);
186 
187 	/* These are true for any object that has been freed */
188 	object->paging_in_progress = 0;
189 	object->resident_page_count = 0;
190 	object->shadow_count = 0;
191 }
192 
193 void
194 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
195 {
196 	int incr;
197 
198 	TAILQ_INIT(&object->memq);
199 	LIST_INIT(&object->shadow_head);
200 
201 	object->root = NULL;
202 	object->type = type;
203 	object->size = size;
204 	object->generation = 1;
205 	object->ref_count = 1;
206 	object->flags = 0;
207 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
208 		object->flags = OBJ_ONEMAPPING;
209 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
210 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
211 	else
212 		incr = size;
213 	do
214 		object->pg_color = next_index;
215 	while (!atomic_cmpset_int(&next_index, object->pg_color,
216 				  (object->pg_color + incr) & PQ_L2_MASK));
217 	object->handle = NULL;
218 	object->backing_object = NULL;
219 	object->backing_object_offset = (vm_ooffset_t) 0;
220 
221 	mtx_lock(&vm_object_list_mtx);
222 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
223 	mtx_unlock(&vm_object_list_mtx);
224 }
225 
226 /*
227  *	vm_object_init:
228  *
229  *	Initialize the VM objects module.
230  */
231 void
232 vm_object_init(void)
233 {
234 	TAILQ_INIT(&vm_object_list);
235 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
236 
237 	VM_OBJECT_LOCK_INIT(&kernel_object_store);
238 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
239 	    kernel_object);
240 
241 	/*
242 	 * The kmem object's mutex is given a unique name, instead of
243 	 * "vm object", to avoid false reports of lock-order reversal
244 	 * with a system map mutex.
245 	 */
246 	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
247 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
248 	    kmem_object);
249 
250 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
251 #ifdef INVARIANTS
252 	    vm_object_zdtor,
253 #else
254 	    NULL,
255 #endif
256 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
257 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
258 }
259 
260 void
261 vm_object_clear_flag(vm_object_t object, u_short bits)
262 {
263 
264 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
265 	object->flags &= ~bits;
266 }
267 
268 void
269 vm_object_pip_add(vm_object_t object, short i)
270 {
271 
272 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
273 	object->paging_in_progress += i;
274 }
275 
276 void
277 vm_object_pip_subtract(vm_object_t object, short i)
278 {
279 
280 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281 	object->paging_in_progress -= i;
282 }
283 
284 void
285 vm_object_pip_wakeup(vm_object_t object)
286 {
287 
288 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
289 	object->paging_in_progress--;
290 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
291 		vm_object_clear_flag(object, OBJ_PIPWNT);
292 		wakeup(object);
293 	}
294 }
295 
296 void
297 vm_object_pip_wakeupn(vm_object_t object, short i)
298 {
299 
300 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301 	if (i)
302 		object->paging_in_progress -= i;
303 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
304 		vm_object_clear_flag(object, OBJ_PIPWNT);
305 		wakeup(object);
306 	}
307 }
308 
309 void
310 vm_object_pip_wait(vm_object_t object, char *waitid)
311 {
312 
313 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
314 	while (object->paging_in_progress) {
315 		object->flags |= OBJ_PIPWNT;
316 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
317 	}
318 }
319 
320 /*
321  *	vm_object_allocate_wait
322  *
323  *	Return a new object with the given size, and give the user the
324  *	option of waiting for it to complete or failing if the needed
325  *	memory isn't available.
326  */
327 vm_object_t
328 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
329 {
330 	vm_object_t result;
331 
332 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
333 
334 	if (result != NULL)
335 		_vm_object_allocate(type, size, result);
336 
337 	return (result);
338 }
339 
340 /*
341  *	vm_object_allocate:
342  *
343  *	Returns a new object with the given size.
344  */
345 vm_object_t
346 vm_object_allocate(objtype_t type, vm_pindex_t size)
347 {
348 	return(vm_object_allocate_wait(type, size, M_WAITOK));
349 }
350 
351 
352 /*
353  *	vm_object_reference:
354  *
355  *	Gets another reference to the given object.  Note: OBJ_DEAD
356  *	objects can be referenced during final cleaning.
357  */
358 void
359 vm_object_reference(vm_object_t object)
360 {
361 	struct vnode *vp;
362 	int flags;
363 
364 	if (object == NULL)
365 		return;
366 	VM_OBJECT_LOCK(object);
367 	object->ref_count++;
368 	if (object->type == OBJT_VNODE) {
369 		vp = object->handle;
370 		VI_LOCK(vp);
371 		VM_OBJECT_UNLOCK(object);
372 		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
373 		     flags = 0)
374 			printf("vm_object_reference: delay in vget\n");
375 	} else
376 		VM_OBJECT_UNLOCK(object);
377 }
378 
379 /*
380  *	vm_object_reference_locked:
381  *
382  *	Gets another reference to the given object.
383  *
384  *	The object must be locked.
385  */
386 void
387 vm_object_reference_locked(vm_object_t object)
388 {
389 	struct vnode *vp;
390 
391 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
392 	KASSERT((object->flags & OBJ_DEAD) == 0,
393 	    ("vm_object_reference_locked: dead object referenced"));
394 	object->ref_count++;
395 	if (object->type == OBJT_VNODE) {
396 		vp = object->handle;
397 		vref(vp);
398 	}
399 }
400 
401 /*
402  * Handle deallocating an object of type OBJT_VNODE.
403  */
404 void
405 vm_object_vndeallocate(vm_object_t object)
406 {
407 	struct vnode *vp = (struct vnode *) object->handle;
408 
409 	GIANT_REQUIRED;
410 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
411 	KASSERT(object->type == OBJT_VNODE,
412 	    ("vm_object_vndeallocate: not a vnode object"));
413 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
414 #ifdef INVARIANTS
415 	if (object->ref_count == 0) {
416 		vprint("vm_object_vndeallocate", vp);
417 		panic("vm_object_vndeallocate: bad object reference count");
418 	}
419 #endif
420 
421 	object->ref_count--;
422 	if (object->ref_count == 0) {
423 		mp_fixme("Unlocked vflag access.");
424 		vp->v_vflag &= ~VV_TEXT;
425 	}
426 	VM_OBJECT_UNLOCK(object);
427 	/*
428 	 * vrele may need a vop lock
429 	 */
430 	vrele(vp);
431 }
432 
433 /*
434  *	vm_object_deallocate:
435  *
436  *	Release a reference to the specified object,
437  *	gained either through a vm_object_allocate
438  *	or a vm_object_reference call.  When all references
439  *	are gone, storage associated with this object
440  *	may be relinquished.
441  *
442  *	No object may be locked.
443  */
444 void
445 vm_object_deallocate(vm_object_t object)
446 {
447 	vm_object_t temp;
448 
449 	if (object != kmem_object)
450 		mtx_lock(&Giant);
451 	while (object != NULL) {
452 		VM_OBJECT_LOCK(object);
453 		if (object->type == OBJT_VNODE) {
454 			vm_object_vndeallocate(object);
455 			goto done;
456 		}
457 
458 		KASSERT(object->ref_count != 0,
459 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
460 
461 		/*
462 		 * If the reference count goes to 0 we start calling
463 		 * vm_object_terminate() on the object chain.
464 		 * A ref count of 1 may be a special case depending on the
465 		 * shadow count being 0 or 1.
466 		 */
467 		object->ref_count--;
468 		if (object->ref_count > 1) {
469 			VM_OBJECT_UNLOCK(object);
470 			goto done;
471 		} else if (object->ref_count == 1) {
472 			if (object->shadow_count == 0) {
473 				vm_object_set_flag(object, OBJ_ONEMAPPING);
474 			} else if ((object->shadow_count == 1) &&
475 			    (object->handle == NULL) &&
476 			    (object->type == OBJT_DEFAULT ||
477 			     object->type == OBJT_SWAP)) {
478 				vm_object_t robject;
479 
480 				robject = LIST_FIRST(&object->shadow_head);
481 				KASSERT(robject != NULL,
482 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
483 					 object->ref_count,
484 					 object->shadow_count));
485 				if (!VM_OBJECT_TRYLOCK(robject)) {
486 					/*
487 					 * Avoid a potential deadlock.
488 					 */
489 					object->ref_count++;
490 					VM_OBJECT_UNLOCK(object);
491 					continue;
492 				}
493 				if ((robject->handle == NULL) &&
494 				    (robject->type == OBJT_DEFAULT ||
495 				     robject->type == OBJT_SWAP)) {
496 
497 					robject->ref_count++;
498 retry:
499 					if (robject->paging_in_progress) {
500 						VM_OBJECT_UNLOCK(object);
501 						vm_object_pip_wait(robject,
502 						    "objde1");
503 						VM_OBJECT_LOCK(object);
504 						goto retry;
505 					} else if (object->paging_in_progress) {
506 						VM_OBJECT_UNLOCK(robject);
507 						object->flags |= OBJ_PIPWNT;
508 						msleep(object,
509 						    VM_OBJECT_MTX(object),
510 						    PDROP | PVM, "objde2", 0);
511 						VM_OBJECT_LOCK(robject);
512 						VM_OBJECT_LOCK(object);
513 						goto retry;
514 					}
515 					VM_OBJECT_UNLOCK(object);
516 					if (robject->ref_count == 1) {
517 						robject->ref_count--;
518 						object = robject;
519 						goto doterm;
520 					}
521 					object = robject;
522 					vm_object_collapse(object);
523 					VM_OBJECT_UNLOCK(object);
524 					continue;
525 				}
526 				VM_OBJECT_UNLOCK(robject);
527 			}
528 			VM_OBJECT_UNLOCK(object);
529 			goto done;
530 		}
531 doterm:
532 		temp = object->backing_object;
533 		if (temp != NULL) {
534 			VM_OBJECT_LOCK(temp);
535 			LIST_REMOVE(object, shadow_list);
536 			temp->shadow_count--;
537 			temp->generation++;
538 			VM_OBJECT_UNLOCK(temp);
539 			object->backing_object = NULL;
540 		}
541 		/*
542 		 * Don't double-terminate, we could be in a termination
543 		 * recursion due to the terminate having to sync data
544 		 * to disk.
545 		 */
546 		if ((object->flags & OBJ_DEAD) == 0)
547 			vm_object_terminate(object);
548 		else
549 			VM_OBJECT_UNLOCK(object);
550 		object = temp;
551 	}
552 done:
553 	if (object != kmem_object)
554 		mtx_unlock(&Giant);
555 }
556 
557 /*
558  *	vm_object_terminate actually destroys the specified object, freeing
559  *	up all previously used resources.
560  *
561  *	The object must be locked.
562  *	This routine may block.
563  */
564 void
565 vm_object_terminate(vm_object_t object)
566 {
567 	vm_page_t p;
568 	int s;
569 
570 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
571 
572 	/*
573 	 * Make sure no one uses us.
574 	 */
575 	vm_object_set_flag(object, OBJ_DEAD);
576 
577 	/*
578 	 * wait for the pageout daemon to be done with the object
579 	 */
580 	vm_object_pip_wait(object, "objtrm");
581 
582 	KASSERT(!object->paging_in_progress,
583 		("vm_object_terminate: pageout in progress"));
584 
585 	/*
586 	 * Clean and free the pages, as appropriate. All references to the
587 	 * object are gone, so we don't need to lock it.
588 	 */
589 	if (object->type == OBJT_VNODE) {
590 		struct vnode *vp = (struct vnode *)object->handle;
591 
592 		/*
593 		 * Clean pages and flush buffers.
594 		 */
595 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
596 		VM_OBJECT_UNLOCK(object);
597 
598 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
599 
600 		VM_OBJECT_LOCK(object);
601 	}
602 
603 	KASSERT(object->ref_count == 0,
604 		("vm_object_terminate: object with references, ref_count=%d",
605 		object->ref_count));
606 
607 	/*
608 	 * Now free any remaining pages. For internal objects, this also
609 	 * removes them from paging queues. Don't free wired pages, just
610 	 * remove them from the object.
611 	 */
612 	s = splvm();
613 	vm_page_lock_queues();
614 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
615 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
616 			("vm_object_terminate: freeing busy page %p "
617 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
618 		if (p->wire_count == 0) {
619 			vm_page_busy(p);
620 			vm_page_free(p);
621 			cnt.v_pfree++;
622 		} else {
623 			vm_page_busy(p);
624 			vm_page_remove(p);
625 		}
626 	}
627 	vm_page_unlock_queues();
628 	splx(s);
629 
630 	/*
631 	 * Let the pager know object is dead.
632 	 */
633 	vm_pager_deallocate(object);
634 	VM_OBJECT_UNLOCK(object);
635 
636 	/*
637 	 * Remove the object from the global object list.
638 	 */
639 	mtx_lock(&vm_object_list_mtx);
640 	TAILQ_REMOVE(&vm_object_list, object, object_list);
641 	mtx_unlock(&vm_object_list_mtx);
642 
643 	wakeup(object);
644 
645 	/*
646 	 * Free the space for the object.
647 	 */
648 	uma_zfree(obj_zone, object);
649 }
650 
651 /*
652  *	vm_object_page_clean
653  *
654  *	Clean all dirty pages in the specified range of object.  Leaves page
655  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
656  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
657  *	leaving the object dirty.
658  *
659  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
660  *	synchronous clustering mode implementation.
661  *
662  *	Odd semantics: if start == end, we clean everything.
663  *
664  *	The object must be locked.
665  */
666 void
667 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
668 {
669 	vm_page_t p, np;
670 	vm_pindex_t tstart, tend;
671 	vm_pindex_t pi;
672 	int clearobjflags;
673 	int pagerflags;
674 	int curgeneration;
675 
676 	GIANT_REQUIRED;
677 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678 	if (object->type != OBJT_VNODE ||
679 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
680 		return;
681 
682 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
683 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
684 
685 	vm_object_set_flag(object, OBJ_CLEANING);
686 
687 	tstart = start;
688 	if (end == 0) {
689 		tend = object->size;
690 	} else {
691 		tend = end;
692 	}
693 
694 	vm_page_lock_queues();
695 	/*
696 	 * If the caller is smart and only msync()s a range he knows is
697 	 * dirty, we may be able to avoid an object scan.  This results in
698 	 * a phenominal improvement in performance.  We cannot do this
699 	 * as a matter of course because the object may be huge - e.g.
700 	 * the size might be in the gigabytes or terrabytes.
701 	 */
702 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
703 		vm_pindex_t tscan;
704 		int scanlimit;
705 		int scanreset;
706 
707 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
708 		if (scanreset < 16)
709 			scanreset = 16;
710 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
711 
712 		scanlimit = scanreset;
713 		tscan = tstart;
714 		while (tscan < tend) {
715 			curgeneration = object->generation;
716 			p = vm_page_lookup(object, tscan);
717 			if (p == NULL || p->valid == 0 ||
718 			    (p->queue - p->pc) == PQ_CACHE) {
719 				if (--scanlimit == 0)
720 					break;
721 				++tscan;
722 				continue;
723 			}
724 			vm_page_test_dirty(p);
725 			if ((p->dirty & p->valid) == 0) {
726 				if (--scanlimit == 0)
727 					break;
728 				++tscan;
729 				continue;
730 			}
731 			/*
732 			 * If we have been asked to skip nosync pages and
733 			 * this is a nosync page, we can't continue.
734 			 */
735 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
736 				if (--scanlimit == 0)
737 					break;
738 				++tscan;
739 				continue;
740 			}
741 			scanlimit = scanreset;
742 
743 			/*
744 			 * This returns 0 if it was unable to busy the first
745 			 * page (i.e. had to sleep).
746 			 */
747 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
748 		}
749 
750 		/*
751 		 * If everything was dirty and we flushed it successfully,
752 		 * and the requested range is not the entire object, we
753 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
754 		 * return immediately.
755 		 */
756 		if (tscan >= tend && (tstart || tend < object->size)) {
757 			vm_page_unlock_queues();
758 			vm_object_clear_flag(object, OBJ_CLEANING);
759 			return;
760 		}
761 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
762 	}
763 
764 	/*
765 	 * Generally set CLEANCHK interlock and make the page read-only so
766 	 * we can then clear the object flags.
767 	 *
768 	 * However, if this is a nosync mmap then the object is likely to
769 	 * stay dirty so do not mess with the page and do not clear the
770 	 * object flags.
771 	 */
772 	clearobjflags = 1;
773 	TAILQ_FOREACH(p, &object->memq, listq) {
774 		vm_page_flag_set(p, PG_CLEANCHK);
775 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
776 			clearobjflags = 0;
777 		else
778 			pmap_page_protect(p, VM_PROT_READ);
779 	}
780 
781 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
782 		struct vnode *vp;
783 
784 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
785 		if (object->type == OBJT_VNODE &&
786 		    (vp = (struct vnode *)object->handle) != NULL) {
787 			VI_LOCK(vp);
788 			if (vp->v_iflag & VI_OBJDIRTY)
789 				vp->v_iflag &= ~VI_OBJDIRTY;
790 			VI_UNLOCK(vp);
791 		}
792 	}
793 
794 rescan:
795 	curgeneration = object->generation;
796 
797 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
798 		int n;
799 
800 		np = TAILQ_NEXT(p, listq);
801 
802 again:
803 		pi = p->pindex;
804 		if (((p->flags & PG_CLEANCHK) == 0) ||
805 			(pi < tstart) || (pi >= tend) ||
806 			(p->valid == 0) ||
807 			((p->queue - p->pc) == PQ_CACHE)) {
808 			vm_page_flag_clear(p, PG_CLEANCHK);
809 			continue;
810 		}
811 
812 		vm_page_test_dirty(p);
813 		if ((p->dirty & p->valid) == 0) {
814 			vm_page_flag_clear(p, PG_CLEANCHK);
815 			continue;
816 		}
817 
818 		/*
819 		 * If we have been asked to skip nosync pages and this is a
820 		 * nosync page, skip it.  Note that the object flags were
821 		 * not cleared in this case so we do not have to set them.
822 		 */
823 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
824 			vm_page_flag_clear(p, PG_CLEANCHK);
825 			continue;
826 		}
827 
828 		n = vm_object_page_collect_flush(object, p,
829 			curgeneration, pagerflags);
830 		if (n == 0)
831 			goto rescan;
832 
833 		if (object->generation != curgeneration)
834 			goto rescan;
835 
836 		/*
837 		 * Try to optimize the next page.  If we can't we pick up
838 		 * our (random) scan where we left off.
839 		 */
840 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
841 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
842 				goto again;
843 		}
844 	}
845 	vm_page_unlock_queues();
846 #if 0
847 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
848 #endif
849 
850 	vm_object_clear_flag(object, OBJ_CLEANING);
851 	return;
852 }
853 
854 static int
855 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
856 {
857 	int runlen;
858 	int s;
859 	int maxf;
860 	int chkb;
861 	int maxb;
862 	int i;
863 	vm_pindex_t pi;
864 	vm_page_t maf[vm_pageout_page_count];
865 	vm_page_t mab[vm_pageout_page_count];
866 	vm_page_t ma[vm_pageout_page_count];
867 
868 	s = splvm();
869 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
870 	pi = p->pindex;
871 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
872 		vm_page_lock_queues();
873 		if (object->generation != curgeneration) {
874 			splx(s);
875 			return(0);
876 		}
877 	}
878 	maxf = 0;
879 	for(i = 1; i < vm_pageout_page_count; i++) {
880 		vm_page_t tp;
881 
882 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
883 			if ((tp->flags & PG_BUSY) ||
884 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
885 				 (tp->flags & PG_CLEANCHK) == 0) ||
886 				(tp->busy != 0))
887 				break;
888 			if((tp->queue - tp->pc) == PQ_CACHE) {
889 				vm_page_flag_clear(tp, PG_CLEANCHK);
890 				break;
891 			}
892 			vm_page_test_dirty(tp);
893 			if ((tp->dirty & tp->valid) == 0) {
894 				vm_page_flag_clear(tp, PG_CLEANCHK);
895 				break;
896 			}
897 			maf[ i - 1 ] = tp;
898 			maxf++;
899 			continue;
900 		}
901 		break;
902 	}
903 
904 	maxb = 0;
905 	chkb = vm_pageout_page_count -  maxf;
906 	if (chkb) {
907 		for(i = 1; i < chkb;i++) {
908 			vm_page_t tp;
909 
910 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
911 				if ((tp->flags & PG_BUSY) ||
912 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
913 					 (tp->flags & PG_CLEANCHK) == 0) ||
914 					(tp->busy != 0))
915 					break;
916 				if ((tp->queue - tp->pc) == PQ_CACHE) {
917 					vm_page_flag_clear(tp, PG_CLEANCHK);
918 					break;
919 				}
920 				vm_page_test_dirty(tp);
921 				if ((tp->dirty & tp->valid) == 0) {
922 					vm_page_flag_clear(tp, PG_CLEANCHK);
923 					break;
924 				}
925 				mab[ i - 1 ] = tp;
926 				maxb++;
927 				continue;
928 			}
929 			break;
930 		}
931 	}
932 
933 	for(i = 0; i < maxb; i++) {
934 		int index = (maxb - i) - 1;
935 		ma[index] = mab[i];
936 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
937 	}
938 	vm_page_flag_clear(p, PG_CLEANCHK);
939 	ma[maxb] = p;
940 	for(i = 0; i < maxf; i++) {
941 		int index = (maxb + i) + 1;
942 		ma[index] = maf[i];
943 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
944 	}
945 	runlen = maxb + maxf + 1;
946 
947 	splx(s);
948 	vm_pageout_flush(ma, runlen, pagerflags);
949 	for (i = 0; i < runlen; i++) {
950 		if (ma[i]->valid & ma[i]->dirty) {
951 			pmap_page_protect(ma[i], VM_PROT_READ);
952 			vm_page_flag_set(ma[i], PG_CLEANCHK);
953 
954 			/*
955 			 * maxf will end up being the actual number of pages
956 			 * we wrote out contiguously, non-inclusive of the
957 			 * first page.  We do not count look-behind pages.
958 			 */
959 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
960 				maxf = i - maxb - 1;
961 		}
962 	}
963 	return(maxf + 1);
964 }
965 
966 /*
967  * Note that there is absolutely no sense in writing out
968  * anonymous objects, so we track down the vnode object
969  * to write out.
970  * We invalidate (remove) all pages from the address space
971  * for semantic correctness.
972  *
973  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
974  * may start out with a NULL object.
975  */
976 void
977 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
978     boolean_t syncio, boolean_t invalidate)
979 {
980 	vm_object_t backing_object;
981 	struct vnode *vp;
982 	int flags;
983 
984 	if (object == NULL)
985 		return;
986 	VM_OBJECT_LOCK(object);
987 	while ((backing_object = object->backing_object) != NULL) {
988 		VM_OBJECT_LOCK(backing_object);
989 		VM_OBJECT_UNLOCK(object);
990 		object = backing_object;
991 		offset += object->backing_object_offset;
992 		if (object->size < OFF_TO_IDX(offset + size))
993 			size = IDX_TO_OFF(object->size) - offset;
994 	}
995 	/*
996 	 * Flush pages if writing is allowed, invalidate them
997 	 * if invalidation requested.  Pages undergoing I/O
998 	 * will be ignored by vm_object_page_remove().
999 	 *
1000 	 * We cannot lock the vnode and then wait for paging
1001 	 * to complete without deadlocking against vm_fault.
1002 	 * Instead we simply call vm_object_page_remove() and
1003 	 * allow it to block internally on a page-by-page
1004 	 * basis when it encounters pages undergoing async
1005 	 * I/O.
1006 	 */
1007 	if (object->type == OBJT_VNODE &&
1008 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1009 		vp = object->handle;
1010 		VM_OBJECT_UNLOCK(object);
1011 		mtx_lock(&Giant);
1012 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1013 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1014 		flags |= invalidate ? OBJPC_INVAL : 0;
1015 		VM_OBJECT_LOCK(object);
1016 		vm_object_page_clean(object,
1017 		    OFF_TO_IDX(offset),
1018 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1019 		    flags);
1020 		VM_OBJECT_UNLOCK(object);
1021 		VOP_UNLOCK(vp, 0, curthread);
1022 		mtx_unlock(&Giant);
1023 		VM_OBJECT_LOCK(object);
1024 	}
1025 	if ((object->type == OBJT_VNODE ||
1026 	     object->type == OBJT_DEVICE) && invalidate) {
1027 		vm_object_page_remove(object,
1028 		    OFF_TO_IDX(offset),
1029 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1030 		    FALSE);
1031 	}
1032 	VM_OBJECT_UNLOCK(object);
1033 }
1034 
1035 /*
1036  *	vm_object_madvise:
1037  *
1038  *	Implements the madvise function at the object/page level.
1039  *
1040  *	MADV_WILLNEED	(any object)
1041  *
1042  *	    Activate the specified pages if they are resident.
1043  *
1044  *	MADV_DONTNEED	(any object)
1045  *
1046  *	    Deactivate the specified pages if they are resident.
1047  *
1048  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1049  *			 OBJ_ONEMAPPING only)
1050  *
1051  *	    Deactivate and clean the specified pages if they are
1052  *	    resident.  This permits the process to reuse the pages
1053  *	    without faulting or the kernel to reclaim the pages
1054  *	    without I/O.
1055  */
1056 void
1057 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1058 {
1059 	vm_pindex_t end, tpindex;
1060 	vm_object_t backing_object, tobject;
1061 	vm_page_t m;
1062 
1063 	if (object == NULL)
1064 		return;
1065 	end = pindex + count;
1066 	/*
1067 	 * Locate and adjust resident pages
1068 	 */
1069 	for (; pindex < end; pindex += 1) {
1070 relookup:
1071 		tobject = object;
1072 		tpindex = pindex;
1073 		VM_OBJECT_LOCK(tobject);
1074 shadowlookup:
1075 		/*
1076 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1077 		 * and those pages must be OBJ_ONEMAPPING.
1078 		 */
1079 		if (advise == MADV_FREE) {
1080 			if ((tobject->type != OBJT_DEFAULT &&
1081 			     tobject->type != OBJT_SWAP) ||
1082 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1083 				goto unlock_tobject;
1084 			}
1085 		}
1086 		m = vm_page_lookup(tobject, tpindex);
1087 		if (m == NULL) {
1088 			/*
1089 			 * There may be swap even if there is no backing page
1090 			 */
1091 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1092 				swap_pager_freespace(tobject, tpindex, 1);
1093 			/*
1094 			 * next object
1095 			 */
1096 			backing_object = tobject->backing_object;
1097 			if (backing_object == NULL)
1098 				goto unlock_tobject;
1099 			VM_OBJECT_LOCK(backing_object);
1100 			VM_OBJECT_UNLOCK(tobject);
1101 			tobject = backing_object;
1102 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1103 			goto shadowlookup;
1104 		}
1105 		/*
1106 		 * If the page is busy or not in a normal active state,
1107 		 * we skip it.  If the page is not managed there are no
1108 		 * page queues to mess with.  Things can break if we mess
1109 		 * with pages in any of the below states.
1110 		 */
1111 		vm_page_lock_queues();
1112 		if (m->hold_count ||
1113 		    m->wire_count ||
1114 		    (m->flags & PG_UNMANAGED) ||
1115 		    m->valid != VM_PAGE_BITS_ALL) {
1116 			vm_page_unlock_queues();
1117 			goto unlock_tobject;
1118 		}
1119  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1120 			VM_OBJECT_UNLOCK(tobject);
1121   			goto relookup;
1122 		}
1123 		if (advise == MADV_WILLNEED) {
1124 			vm_page_activate(m);
1125 		} else if (advise == MADV_DONTNEED) {
1126 			vm_page_dontneed(m);
1127 		} else if (advise == MADV_FREE) {
1128 			/*
1129 			 * Mark the page clean.  This will allow the page
1130 			 * to be freed up by the system.  However, such pages
1131 			 * are often reused quickly by malloc()/free()
1132 			 * so we do not do anything that would cause
1133 			 * a page fault if we can help it.
1134 			 *
1135 			 * Specifically, we do not try to actually free
1136 			 * the page now nor do we try to put it in the
1137 			 * cache (which would cause a page fault on reuse).
1138 			 *
1139 			 * But we do make the page is freeable as we
1140 			 * can without actually taking the step of unmapping
1141 			 * it.
1142 			 */
1143 			pmap_clear_modify(m);
1144 			m->dirty = 0;
1145 			m->act_count = 0;
1146 			vm_page_dontneed(m);
1147 		}
1148 		vm_page_unlock_queues();
1149 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1150 			swap_pager_freespace(tobject, tpindex, 1);
1151 unlock_tobject:
1152 		VM_OBJECT_UNLOCK(tobject);
1153 	}
1154 }
1155 
1156 /*
1157  *	vm_object_shadow:
1158  *
1159  *	Create a new object which is backed by the
1160  *	specified existing object range.  The source
1161  *	object reference is deallocated.
1162  *
1163  *	The new object and offset into that object
1164  *	are returned in the source parameters.
1165  */
1166 void
1167 vm_object_shadow(
1168 	vm_object_t *object,	/* IN/OUT */
1169 	vm_ooffset_t *offset,	/* IN/OUT */
1170 	vm_size_t length)
1171 {
1172 	vm_object_t source;
1173 	vm_object_t result;
1174 
1175 	source = *object;
1176 
1177 	/*
1178 	 * Don't create the new object if the old object isn't shared.
1179 	 */
1180 	if (source != NULL) {
1181 		VM_OBJECT_LOCK(source);
1182 		if (source->ref_count == 1 &&
1183 		    source->handle == NULL &&
1184 		    (source->type == OBJT_DEFAULT ||
1185 		     source->type == OBJT_SWAP)) {
1186 			VM_OBJECT_UNLOCK(source);
1187 			return;
1188 		}
1189 		VM_OBJECT_UNLOCK(source);
1190 	}
1191 
1192 	/*
1193 	 * Allocate a new object with the given length.
1194 	 */
1195 	result = vm_object_allocate(OBJT_DEFAULT, length);
1196 
1197 	/*
1198 	 * The new object shadows the source object, adding a reference to it.
1199 	 * Our caller changes his reference to point to the new object,
1200 	 * removing a reference to the source object.  Net result: no change
1201 	 * of reference count.
1202 	 *
1203 	 * Try to optimize the result object's page color when shadowing
1204 	 * in order to maintain page coloring consistency in the combined
1205 	 * shadowed object.
1206 	 */
1207 	result->backing_object = source;
1208 	if (source != NULL) {
1209 		VM_OBJECT_LOCK(source);
1210 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1211 		source->shadow_count++;
1212 		source->generation++;
1213 		if (length < source->size)
1214 			length = source->size;
1215 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1216 		    source->generation > 1)
1217 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1218 		result->pg_color = (source->pg_color +
1219 		    length * source->generation) & PQ_L2_MASK;
1220 		VM_OBJECT_UNLOCK(source);
1221 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1222 		    PQ_L2_MASK;
1223 	}
1224 
1225 	/*
1226 	 * Store the offset into the source object, and fix up the offset into
1227 	 * the new object.
1228 	 */
1229 	result->backing_object_offset = *offset;
1230 
1231 	/*
1232 	 * Return the new things
1233 	 */
1234 	*offset = 0;
1235 	*object = result;
1236 }
1237 
1238 /*
1239  *	vm_object_split:
1240  *
1241  * Split the pages in a map entry into a new object.  This affords
1242  * easier removal of unused pages, and keeps object inheritance from
1243  * being a negative impact on memory usage.
1244  */
1245 void
1246 vm_object_split(vm_map_entry_t entry)
1247 {
1248 	vm_page_t m;
1249 	vm_object_t orig_object, new_object, source;
1250 	vm_pindex_t offidxstart, offidxend;
1251 	vm_size_t idx, size;
1252 
1253 	orig_object = entry->object.vm_object;
1254 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1255 		return;
1256 	if (orig_object->ref_count <= 1)
1257 		return;
1258 	VM_OBJECT_UNLOCK(orig_object);
1259 
1260 	offidxstart = OFF_TO_IDX(entry->offset);
1261 	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1262 	size = offidxend - offidxstart;
1263 
1264 	/*
1265 	 * If swap_pager_copy() is later called, it will convert new_object
1266 	 * into a swap object.
1267 	 */
1268 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1269 
1270 	VM_OBJECT_LOCK(new_object);
1271 	VM_OBJECT_LOCK(orig_object);
1272 	source = orig_object->backing_object;
1273 	if (source != NULL) {
1274 		VM_OBJECT_LOCK(source);
1275 		LIST_INSERT_HEAD(&source->shadow_head,
1276 				  new_object, shadow_list);
1277 		source->shadow_count++;
1278 		source->generation++;
1279 		vm_object_reference_locked(source);	/* for new_object */
1280 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1281 		VM_OBJECT_UNLOCK(source);
1282 		new_object->backing_object_offset =
1283 			orig_object->backing_object_offset + entry->offset;
1284 		new_object->backing_object = source;
1285 	}
1286 	for (idx = 0; idx < size; idx++) {
1287 	retry:
1288 		m = vm_page_lookup(orig_object, offidxstart + idx);
1289 		if (m == NULL)
1290 			continue;
1291 
1292 		/*
1293 		 * We must wait for pending I/O to complete before we can
1294 		 * rename the page.
1295 		 *
1296 		 * We do not have to VM_PROT_NONE the page as mappings should
1297 		 * not be changed by this operation.
1298 		 */
1299 		vm_page_lock_queues();
1300 		if ((m->flags & PG_BUSY) || m->busy) {
1301 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1302 			VM_OBJECT_UNLOCK(orig_object);
1303 			VM_OBJECT_UNLOCK(new_object);
1304 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1305 			VM_OBJECT_LOCK(new_object);
1306 			VM_OBJECT_LOCK(orig_object);
1307 			goto retry;
1308 		}
1309 		vm_page_busy(m);
1310 		vm_page_rename(m, new_object, idx);
1311 		/* page automatically made dirty by rename and cache handled */
1312 		vm_page_busy(m);
1313 		vm_page_unlock_queues();
1314 	}
1315 	if (orig_object->type == OBJT_SWAP) {
1316 		/*
1317 		 * swap_pager_copy() can sleep, in which case the orig_object's
1318 		 * and new_object's locks are released and reacquired.
1319 		 */
1320 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1321 	}
1322 	VM_OBJECT_UNLOCK(orig_object);
1323 	vm_page_lock_queues();
1324 	TAILQ_FOREACH(m, &new_object->memq, listq)
1325 		vm_page_wakeup(m);
1326 	vm_page_unlock_queues();
1327 	VM_OBJECT_UNLOCK(new_object);
1328 	entry->object.vm_object = new_object;
1329 	entry->offset = 0LL;
1330 	vm_object_deallocate(orig_object);
1331 	VM_OBJECT_LOCK(new_object);
1332 }
1333 
1334 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1335 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1336 #define	OBSC_COLLAPSE_WAIT	0x0004
1337 
1338 static int
1339 vm_object_backing_scan(vm_object_t object, int op)
1340 {
1341 	int s;
1342 	int r = 1;
1343 	vm_page_t p;
1344 	vm_object_t backing_object;
1345 	vm_pindex_t backing_offset_index;
1346 
1347 	s = splvm();
1348 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1349 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1350 
1351 	backing_object = object->backing_object;
1352 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1353 
1354 	/*
1355 	 * Initial conditions
1356 	 */
1357 	if (op & OBSC_TEST_ALL_SHADOWED) {
1358 		/*
1359 		 * We do not want to have to test for the existence of
1360 		 * swap pages in the backing object.  XXX but with the
1361 		 * new swapper this would be pretty easy to do.
1362 		 *
1363 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1364 		 * been ZFOD faulted yet?  If we do not test for this, the
1365 		 * shadow test may succeed! XXX
1366 		 */
1367 		if (backing_object->type != OBJT_DEFAULT) {
1368 			splx(s);
1369 			return (0);
1370 		}
1371 	}
1372 	if (op & OBSC_COLLAPSE_WAIT) {
1373 		vm_object_set_flag(backing_object, OBJ_DEAD);
1374 	}
1375 
1376 	/*
1377 	 * Our scan
1378 	 */
1379 	p = TAILQ_FIRST(&backing_object->memq);
1380 	while (p) {
1381 		vm_page_t next = TAILQ_NEXT(p, listq);
1382 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1383 
1384 		if (op & OBSC_TEST_ALL_SHADOWED) {
1385 			vm_page_t pp;
1386 
1387 			/*
1388 			 * Ignore pages outside the parent object's range
1389 			 * and outside the parent object's mapping of the
1390 			 * backing object.
1391 			 *
1392 			 * note that we do not busy the backing object's
1393 			 * page.
1394 			 */
1395 			if (
1396 			    p->pindex < backing_offset_index ||
1397 			    new_pindex >= object->size
1398 			) {
1399 				p = next;
1400 				continue;
1401 			}
1402 
1403 			/*
1404 			 * See if the parent has the page or if the parent's
1405 			 * object pager has the page.  If the parent has the
1406 			 * page but the page is not valid, the parent's
1407 			 * object pager must have the page.
1408 			 *
1409 			 * If this fails, the parent does not completely shadow
1410 			 * the object and we might as well give up now.
1411 			 */
1412 
1413 			pp = vm_page_lookup(object, new_pindex);
1414 			if (
1415 			    (pp == NULL || pp->valid == 0) &&
1416 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1417 			) {
1418 				r = 0;
1419 				break;
1420 			}
1421 		}
1422 
1423 		/*
1424 		 * Check for busy page
1425 		 */
1426 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1427 			vm_page_t pp;
1428 
1429 			vm_page_lock_queues();
1430 			if (op & OBSC_COLLAPSE_NOWAIT) {
1431 				if ((p->flags & PG_BUSY) ||
1432 				    !p->valid ||
1433 				    p->hold_count ||
1434 				    p->wire_count ||
1435 				    p->busy) {
1436 					vm_page_unlock_queues();
1437 					p = next;
1438 					continue;
1439 				}
1440 			} else if (op & OBSC_COLLAPSE_WAIT) {
1441 				if ((p->flags & PG_BUSY) || p->busy) {
1442 					vm_page_flag_set(p,
1443 					    PG_WANTED | PG_REFERENCED);
1444 					VM_OBJECT_UNLOCK(backing_object);
1445 					VM_OBJECT_UNLOCK(object);
1446 					msleep(p, &vm_page_queue_mtx,
1447 					    PDROP | PVM, "vmocol", 0);
1448 					VM_OBJECT_LOCK(object);
1449 					VM_OBJECT_LOCK(backing_object);
1450 					/*
1451 					 * If we slept, anything could have
1452 					 * happened.  Since the object is
1453 					 * marked dead, the backing offset
1454 					 * should not have changed so we
1455 					 * just restart our scan.
1456 					 */
1457 					p = TAILQ_FIRST(&backing_object->memq);
1458 					continue;
1459 				}
1460 			}
1461 
1462 			/*
1463 			 * Busy the page
1464 			 */
1465 			vm_page_busy(p);
1466 			vm_page_unlock_queues();
1467 
1468 			KASSERT(
1469 			    p->object == backing_object,
1470 			    ("vm_object_qcollapse(): object mismatch")
1471 			);
1472 
1473 			/*
1474 			 * Destroy any associated swap
1475 			 */
1476 			if (backing_object->type == OBJT_SWAP) {
1477 				swap_pager_freespace(
1478 				    backing_object,
1479 				    p->pindex,
1480 				    1
1481 				);
1482 			}
1483 
1484 			if (
1485 			    p->pindex < backing_offset_index ||
1486 			    new_pindex >= object->size
1487 			) {
1488 				/*
1489 				 * Page is out of the parent object's range, we
1490 				 * can simply destroy it.
1491 				 */
1492 				vm_page_lock_queues();
1493 				pmap_remove_all(p);
1494 				vm_page_free(p);
1495 				vm_page_unlock_queues();
1496 				p = next;
1497 				continue;
1498 			}
1499 
1500 			pp = vm_page_lookup(object, new_pindex);
1501 			if (
1502 			    pp != NULL ||
1503 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1504 			) {
1505 				/*
1506 				 * page already exists in parent OR swap exists
1507 				 * for this location in the parent.  Destroy
1508 				 * the original page from the backing object.
1509 				 *
1510 				 * Leave the parent's page alone
1511 				 */
1512 				vm_page_lock_queues();
1513 				pmap_remove_all(p);
1514 				vm_page_free(p);
1515 				vm_page_unlock_queues();
1516 				p = next;
1517 				continue;
1518 			}
1519 
1520 			/*
1521 			 * Page does not exist in parent, rename the
1522 			 * page from the backing object to the main object.
1523 			 *
1524 			 * If the page was mapped to a process, it can remain
1525 			 * mapped through the rename.
1526 			 */
1527 			vm_page_lock_queues();
1528 			vm_page_rename(p, object, new_pindex);
1529 			vm_page_unlock_queues();
1530 			/* page automatically made dirty by rename */
1531 		}
1532 		p = next;
1533 	}
1534 	splx(s);
1535 	return (r);
1536 }
1537 
1538 
1539 /*
1540  * this version of collapse allows the operation to occur earlier and
1541  * when paging_in_progress is true for an object...  This is not a complete
1542  * operation, but should plug 99.9% of the rest of the leaks.
1543  */
1544 static void
1545 vm_object_qcollapse(vm_object_t object)
1546 {
1547 	vm_object_t backing_object = object->backing_object;
1548 
1549 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1550 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1551 
1552 	if (backing_object->ref_count != 1)
1553 		return;
1554 
1555 	backing_object->ref_count += 2;
1556 
1557 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1558 
1559 	backing_object->ref_count -= 2;
1560 }
1561 
1562 /*
1563  *	vm_object_collapse:
1564  *
1565  *	Collapse an object with the object backing it.
1566  *	Pages in the backing object are moved into the
1567  *	parent, and the backing object is deallocated.
1568  */
1569 void
1570 vm_object_collapse(vm_object_t object)
1571 {
1572 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1573 
1574 	while (TRUE) {
1575 		vm_object_t backing_object;
1576 
1577 		/*
1578 		 * Verify that the conditions are right for collapse:
1579 		 *
1580 		 * The object exists and the backing object exists.
1581 		 */
1582 		if ((backing_object = object->backing_object) == NULL)
1583 			break;
1584 
1585 		/*
1586 		 * we check the backing object first, because it is most likely
1587 		 * not collapsable.
1588 		 */
1589 		VM_OBJECT_LOCK(backing_object);
1590 		if (backing_object->handle != NULL ||
1591 		    (backing_object->type != OBJT_DEFAULT &&
1592 		     backing_object->type != OBJT_SWAP) ||
1593 		    (backing_object->flags & OBJ_DEAD) ||
1594 		    object->handle != NULL ||
1595 		    (object->type != OBJT_DEFAULT &&
1596 		     object->type != OBJT_SWAP) ||
1597 		    (object->flags & OBJ_DEAD)) {
1598 			VM_OBJECT_UNLOCK(backing_object);
1599 			break;
1600 		}
1601 
1602 		if (
1603 		    object->paging_in_progress != 0 ||
1604 		    backing_object->paging_in_progress != 0
1605 		) {
1606 			vm_object_qcollapse(object);
1607 			VM_OBJECT_UNLOCK(backing_object);
1608 			break;
1609 		}
1610 		/*
1611 		 * We know that we can either collapse the backing object (if
1612 		 * the parent is the only reference to it) or (perhaps) have
1613 		 * the parent bypass the object if the parent happens to shadow
1614 		 * all the resident pages in the entire backing object.
1615 		 *
1616 		 * This is ignoring pager-backed pages such as swap pages.
1617 		 * vm_object_backing_scan fails the shadowing test in this
1618 		 * case.
1619 		 */
1620 		if (backing_object->ref_count == 1) {
1621 			/*
1622 			 * If there is exactly one reference to the backing
1623 			 * object, we can collapse it into the parent.
1624 			 */
1625 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1626 
1627 			/*
1628 			 * Move the pager from backing_object to object.
1629 			 */
1630 			if (backing_object->type == OBJT_SWAP) {
1631 				/*
1632 				 * swap_pager_copy() can sleep, in which case
1633 				 * the backing_object's and object's locks are
1634 				 * released and reacquired.
1635 				 */
1636 				swap_pager_copy(
1637 				    backing_object,
1638 				    object,
1639 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1640 			}
1641 			/*
1642 			 * Object now shadows whatever backing_object did.
1643 			 * Note that the reference to
1644 			 * backing_object->backing_object moves from within
1645 			 * backing_object to within object.
1646 			 */
1647 			LIST_REMOVE(object, shadow_list);
1648 			backing_object->shadow_count--;
1649 			backing_object->generation++;
1650 			if (backing_object->backing_object) {
1651 				VM_OBJECT_LOCK(backing_object->backing_object);
1652 				LIST_REMOVE(backing_object, shadow_list);
1653 				LIST_INSERT_HEAD(
1654 				    &backing_object->backing_object->shadow_head,
1655 				    object, shadow_list);
1656 				/*
1657 				 * The shadow_count has not changed.
1658 				 */
1659 				backing_object->backing_object->generation++;
1660 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1661 			}
1662 			object->backing_object = backing_object->backing_object;
1663 			object->backing_object_offset +=
1664 			    backing_object->backing_object_offset;
1665 /* XXX */		VM_OBJECT_UNLOCK(object);
1666 
1667 			/*
1668 			 * Discard backing_object.
1669 			 *
1670 			 * Since the backing object has no pages, no pager left,
1671 			 * and no object references within it, all that is
1672 			 * necessary is to dispose of it.
1673 			 */
1674 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1675 			VM_OBJECT_UNLOCK(backing_object);
1676 
1677 			mtx_lock(&vm_object_list_mtx);
1678 			TAILQ_REMOVE(
1679 			    &vm_object_list,
1680 			    backing_object,
1681 			    object_list
1682 			);
1683 			mtx_unlock(&vm_object_list_mtx);
1684 
1685 /* XXX */		VM_OBJECT_LOCK(object);
1686 			uma_zfree(obj_zone, backing_object);
1687 
1688 			object_collapses++;
1689 		} else {
1690 			vm_object_t new_backing_object;
1691 
1692 			/*
1693 			 * If we do not entirely shadow the backing object,
1694 			 * there is nothing we can do so we give up.
1695 			 */
1696 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1697 				VM_OBJECT_UNLOCK(backing_object);
1698 				break;
1699 			}
1700 
1701 			/*
1702 			 * Make the parent shadow the next object in the
1703 			 * chain.  Deallocating backing_object will not remove
1704 			 * it, since its reference count is at least 2.
1705 			 */
1706 			LIST_REMOVE(object, shadow_list);
1707 			backing_object->shadow_count--;
1708 			backing_object->generation++;
1709 
1710 			new_backing_object = backing_object->backing_object;
1711 			if ((object->backing_object = new_backing_object) != NULL) {
1712 				VM_OBJECT_LOCK(new_backing_object);
1713 				LIST_INSERT_HEAD(
1714 				    &new_backing_object->shadow_head,
1715 				    object,
1716 				    shadow_list
1717 				);
1718 				new_backing_object->shadow_count++;
1719 				new_backing_object->generation++;
1720 				vm_object_reference_locked(new_backing_object);
1721 				VM_OBJECT_UNLOCK(new_backing_object);
1722 				object->backing_object_offset +=
1723 					backing_object->backing_object_offset;
1724 			}
1725 
1726 			/*
1727 			 * Drop the reference count on backing_object. Since
1728 			 * its ref_count was at least 2, it will not vanish.
1729 			 */
1730 			backing_object->ref_count--;
1731 			VM_OBJECT_UNLOCK(backing_object);
1732 			object_bypasses++;
1733 		}
1734 
1735 		/*
1736 		 * Try again with this object's new backing object.
1737 		 */
1738 	}
1739 }
1740 
1741 /*
1742  *	vm_object_page_remove:
1743  *
1744  *	Removes all physical pages in the given range from the
1745  *	object's list of pages.  If the range's end is zero, all
1746  *	physical pages from the range's start to the end of the object
1747  *	are deleted.
1748  *
1749  *	The object must be locked.
1750  */
1751 void
1752 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1753     boolean_t clean_only)
1754 {
1755 	vm_page_t p, next;
1756 
1757 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1758 	if (object->resident_page_count == 0)
1759 		return;
1760 
1761 	/*
1762 	 * Since physically-backed objects do not use managed pages, we can't
1763 	 * remove pages from the object (we must instead remove the page
1764 	 * references, and then destroy the object).
1765 	 */
1766 	KASSERT(object->type != OBJT_PHYS,
1767 	    ("attempt to remove pages from a physical object"));
1768 
1769 	vm_object_pip_add(object, 1);
1770 again:
1771 	vm_page_lock_queues();
1772 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1773 		if (p->pindex < start) {
1774 			p = vm_page_splay(start, object->root);
1775 			if ((object->root = p)->pindex < start)
1776 				p = TAILQ_NEXT(p, listq);
1777 		}
1778 	}
1779 	/*
1780 	 * Assert: the variable p is either (1) the page with the
1781 	 * least pindex greater than or equal to the parameter pindex
1782 	 * or (2) NULL.
1783 	 */
1784 	for (;
1785 	     p != NULL && (p->pindex < end || end == 0);
1786 	     p = next) {
1787 		next = TAILQ_NEXT(p, listq);
1788 
1789 		if (p->wire_count != 0) {
1790 			pmap_remove_all(p);
1791 			if (!clean_only)
1792 				p->valid = 0;
1793 			continue;
1794 		}
1795 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1796 			goto again;
1797 		if (clean_only && p->valid) {
1798 			vm_page_test_dirty(p);
1799 			if (p->valid & p->dirty)
1800 				continue;
1801 		}
1802 		vm_page_busy(p);
1803 		pmap_remove_all(p);
1804 		vm_page_free(p);
1805 	}
1806 	vm_page_unlock_queues();
1807 	vm_object_pip_wakeup(object);
1808 }
1809 
1810 /*
1811  *	Routine:	vm_object_coalesce
1812  *	Function:	Coalesces two objects backing up adjoining
1813  *			regions of memory into a single object.
1814  *
1815  *	returns TRUE if objects were combined.
1816  *
1817  *	NOTE:	Only works at the moment if the second object is NULL -
1818  *		if it's not, which object do we lock first?
1819  *
1820  *	Parameters:
1821  *		prev_object	First object to coalesce
1822  *		prev_offset	Offset into prev_object
1823  *		next_object	Second object into coalesce
1824  *		next_offset	Offset into next_object
1825  *
1826  *		prev_size	Size of reference to prev_object
1827  *		next_size	Size of reference to next_object
1828  *
1829  *	Conditions:
1830  *	The object must *not* be locked.
1831  */
1832 boolean_t
1833 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1834 	vm_size_t prev_size, vm_size_t next_size)
1835 {
1836 	vm_pindex_t next_pindex;
1837 
1838 	if (prev_object == NULL)
1839 		return (TRUE);
1840 	VM_OBJECT_LOCK(prev_object);
1841 	if (prev_object->type != OBJT_DEFAULT &&
1842 	    prev_object->type != OBJT_SWAP) {
1843 		VM_OBJECT_UNLOCK(prev_object);
1844 		return (FALSE);
1845 	}
1846 
1847 	/*
1848 	 * Try to collapse the object first
1849 	 */
1850 	vm_object_collapse(prev_object);
1851 
1852 	/*
1853 	 * Can't coalesce if: . more than one reference . paged out . shadows
1854 	 * another object . has a copy elsewhere (any of which mean that the
1855 	 * pages not mapped to prev_entry may be in use anyway)
1856 	 */
1857 	if (prev_object->backing_object != NULL) {
1858 		VM_OBJECT_UNLOCK(prev_object);
1859 		return (FALSE);
1860 	}
1861 
1862 	prev_size >>= PAGE_SHIFT;
1863 	next_size >>= PAGE_SHIFT;
1864 	next_pindex = prev_pindex + prev_size;
1865 
1866 	if ((prev_object->ref_count > 1) &&
1867 	    (prev_object->size != next_pindex)) {
1868 		VM_OBJECT_UNLOCK(prev_object);
1869 		return (FALSE);
1870 	}
1871 
1872 	/*
1873 	 * Remove any pages that may still be in the object from a previous
1874 	 * deallocation.
1875 	 */
1876 	if (next_pindex < prev_object->size) {
1877 		vm_object_page_remove(prev_object,
1878 				      next_pindex,
1879 				      next_pindex + next_size, FALSE);
1880 		if (prev_object->type == OBJT_SWAP)
1881 			swap_pager_freespace(prev_object,
1882 					     next_pindex, next_size);
1883 	}
1884 
1885 	/*
1886 	 * Extend the object if necessary.
1887 	 */
1888 	if (next_pindex + next_size > prev_object->size)
1889 		prev_object->size = next_pindex + next_size;
1890 
1891 	VM_OBJECT_UNLOCK(prev_object);
1892 	return (TRUE);
1893 }
1894 
1895 void
1896 vm_object_set_writeable_dirty(vm_object_t object)
1897 {
1898 	struct vnode *vp;
1899 
1900 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1901 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1902 	if (object->type == OBJT_VNODE &&
1903 	    (vp = (struct vnode *)object->handle) != NULL) {
1904 		VI_LOCK(vp);
1905 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1906 			vp->v_iflag |= VI_OBJDIRTY;
1907 		VI_UNLOCK(vp);
1908 	}
1909 }
1910 
1911 #include "opt_ddb.h"
1912 #ifdef DDB
1913 #include <sys/kernel.h>
1914 
1915 #include <sys/cons.h>
1916 
1917 #include <ddb/ddb.h>
1918 
1919 static int
1920 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1921 {
1922 	vm_map_t tmpm;
1923 	vm_map_entry_t tmpe;
1924 	vm_object_t obj;
1925 	int entcount;
1926 
1927 	if (map == 0)
1928 		return 0;
1929 
1930 	if (entry == 0) {
1931 		tmpe = map->header.next;
1932 		entcount = map->nentries;
1933 		while (entcount-- && (tmpe != &map->header)) {
1934 			if (_vm_object_in_map(map, object, tmpe)) {
1935 				return 1;
1936 			}
1937 			tmpe = tmpe->next;
1938 		}
1939 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1940 		tmpm = entry->object.sub_map;
1941 		tmpe = tmpm->header.next;
1942 		entcount = tmpm->nentries;
1943 		while (entcount-- && tmpe != &tmpm->header) {
1944 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1945 				return 1;
1946 			}
1947 			tmpe = tmpe->next;
1948 		}
1949 	} else if ((obj = entry->object.vm_object) != NULL) {
1950 		for (; obj; obj = obj->backing_object)
1951 			if (obj == object) {
1952 				return 1;
1953 			}
1954 	}
1955 	return 0;
1956 }
1957 
1958 static int
1959 vm_object_in_map(vm_object_t object)
1960 {
1961 	struct proc *p;
1962 
1963 	/* sx_slock(&allproc_lock); */
1964 	LIST_FOREACH(p, &allproc, p_list) {
1965 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1966 			continue;
1967 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1968 			/* sx_sunlock(&allproc_lock); */
1969 			return 1;
1970 		}
1971 	}
1972 	/* sx_sunlock(&allproc_lock); */
1973 	if (_vm_object_in_map(kernel_map, object, 0))
1974 		return 1;
1975 	if (_vm_object_in_map(kmem_map, object, 0))
1976 		return 1;
1977 	if (_vm_object_in_map(pager_map, object, 0))
1978 		return 1;
1979 	if (_vm_object_in_map(buffer_map, object, 0))
1980 		return 1;
1981 	return 0;
1982 }
1983 
1984 DB_SHOW_COMMAND(vmochk, vm_object_check)
1985 {
1986 	vm_object_t object;
1987 
1988 	/*
1989 	 * make sure that internal objs are in a map somewhere
1990 	 * and none have zero ref counts.
1991 	 */
1992 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1993 		if (object->handle == NULL &&
1994 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1995 			if (object->ref_count == 0) {
1996 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1997 					(long)object->size);
1998 			}
1999 			if (!vm_object_in_map(object)) {
2000 				db_printf(
2001 			"vmochk: internal obj is not in a map: "
2002 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2003 				    object->ref_count, (u_long)object->size,
2004 				    (u_long)object->size,
2005 				    (void *)object->backing_object);
2006 			}
2007 		}
2008 	}
2009 }
2010 
2011 /*
2012  *	vm_object_print:	[ debug ]
2013  */
2014 DB_SHOW_COMMAND(object, vm_object_print_static)
2015 {
2016 	/* XXX convert args. */
2017 	vm_object_t object = (vm_object_t)addr;
2018 	boolean_t full = have_addr;
2019 
2020 	vm_page_t p;
2021 
2022 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2023 #define	count	was_count
2024 
2025 	int count;
2026 
2027 	if (object == NULL)
2028 		return;
2029 
2030 	db_iprintf(
2031 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2032 	    object, (int)object->type, (uintmax_t)object->size,
2033 	    object->resident_page_count, object->ref_count, object->flags);
2034 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2035 	    object->shadow_count,
2036 	    object->backing_object ? object->backing_object->ref_count : 0,
2037 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2038 
2039 	if (!full)
2040 		return;
2041 
2042 	db_indent += 2;
2043 	count = 0;
2044 	TAILQ_FOREACH(p, &object->memq, listq) {
2045 		if (count == 0)
2046 			db_iprintf("memory:=");
2047 		else if (count == 6) {
2048 			db_printf("\n");
2049 			db_iprintf(" ...");
2050 			count = 0;
2051 		} else
2052 			db_printf(",");
2053 		count++;
2054 
2055 		db_printf("(off=0x%jx,page=0x%jx)",
2056 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2057 	}
2058 	if (count != 0)
2059 		db_printf("\n");
2060 	db_indent -= 2;
2061 }
2062 
2063 /* XXX. */
2064 #undef count
2065 
2066 /* XXX need this non-static entry for calling from vm_map_print. */
2067 void
2068 vm_object_print(
2069         /* db_expr_t */ long addr,
2070 	boolean_t have_addr,
2071 	/* db_expr_t */ long count,
2072 	char *modif)
2073 {
2074 	vm_object_print_static(addr, have_addr, count, modif);
2075 }
2076 
2077 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2078 {
2079 	vm_object_t object;
2080 	int nl = 0;
2081 	int c;
2082 
2083 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2084 		vm_pindex_t idx, fidx;
2085 		vm_pindex_t osize;
2086 		vm_paddr_t pa = -1, padiff;
2087 		int rcount;
2088 		vm_page_t m;
2089 
2090 		db_printf("new object: %p\n", (void *)object);
2091 		if (nl > 18) {
2092 			c = cngetc();
2093 			if (c != ' ')
2094 				return;
2095 			nl = 0;
2096 		}
2097 		nl++;
2098 		rcount = 0;
2099 		fidx = 0;
2100 		osize = object->size;
2101 		if (osize > 128)
2102 			osize = 128;
2103 		for (idx = 0; idx < osize; idx++) {
2104 			m = vm_page_lookup(object, idx);
2105 			if (m == NULL) {
2106 				if (rcount) {
2107 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2108 						(long)fidx, rcount, (long)pa);
2109 					if (nl > 18) {
2110 						c = cngetc();
2111 						if (c != ' ')
2112 							return;
2113 						nl = 0;
2114 					}
2115 					nl++;
2116 					rcount = 0;
2117 				}
2118 				continue;
2119 			}
2120 
2121 
2122 			if (rcount &&
2123 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2124 				++rcount;
2125 				continue;
2126 			}
2127 			if (rcount) {
2128 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2129 				padiff >>= PAGE_SHIFT;
2130 				padiff &= PQ_L2_MASK;
2131 				if (padiff == 0) {
2132 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2133 					++rcount;
2134 					continue;
2135 				}
2136 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2137 					(long)fidx, rcount, (long)pa);
2138 				db_printf("pd(%ld)\n", (long)padiff);
2139 				if (nl > 18) {
2140 					c = cngetc();
2141 					if (c != ' ')
2142 						return;
2143 					nl = 0;
2144 				}
2145 				nl++;
2146 			}
2147 			fidx = idx;
2148 			pa = VM_PAGE_TO_PHYS(m);
2149 			rcount = 1;
2150 		}
2151 		if (rcount) {
2152 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2153 				(long)fidx, rcount, (long)pa);
2154 			if (nl > 18) {
2155 				c = cngetc();
2156 				if (c != ' ')
2157 					return;
2158 				nl = 0;
2159 			}
2160 			nl++;
2161 		}
2162 	}
2163 }
2164 #endif /* DDB */
2165