1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory object module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> /* for curproc, pageproc */ 74 #include <sys/vnode.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/swap_pager.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_zone.h> 91 92 static void vm_object_qcollapse __P((vm_object_t object)); 93 94 /* 95 * Virtual memory objects maintain the actual data 96 * associated with allocated virtual memory. A given 97 * page of memory exists within exactly one object. 98 * 99 * An object is only deallocated when all "references" 100 * are given up. Only one "reference" to a given 101 * region of an object should be writeable. 102 * 103 * Associated with each object is a list of all resident 104 * memory pages belonging to that object; this list is 105 * maintained by the "vm_page" module, and locked by the object's 106 * lock. 107 * 108 * Each object also records a "pager" routine which is 109 * used to retrieve (and store) pages to the proper backing 110 * storage. In addition, objects may be backed by other 111 * objects from which they were virtual-copied. 112 * 113 * The only items within the object structure which are 114 * modified after time of creation are: 115 * reference count locked by object's lock 116 * pager routine locked by object's lock 117 * 118 */ 119 120 struct object_q vm_object_list; 121 #ifndef NULL_SIMPLELOCKS 122 static struct simplelock vm_object_list_lock; 123 #endif 124 static long vm_object_count; /* count of all objects */ 125 vm_object_t kernel_object; 126 vm_object_t kmem_object; 127 static struct vm_object kernel_object_store; 128 static struct vm_object kmem_object_store; 129 extern int vm_pageout_page_count; 130 131 static long object_collapses; 132 static long object_bypasses; 133 static int next_index; 134 static vm_zone_t obj_zone; 135 static struct vm_zone obj_zone_store; 136 static int object_hash_rand; 137 #define VM_OBJECTS_INIT 256 138 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 139 140 void 141 _vm_object_allocate(type, size, object) 142 objtype_t type; 143 vm_size_t size; 144 vm_object_t object; 145 { 146 int incr; 147 TAILQ_INIT(&object->memq); 148 TAILQ_INIT(&object->shadow_head); 149 150 object->type = type; 151 object->size = size; 152 object->ref_count = 1; 153 object->flags = 0; 154 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 155 vm_object_set_flag(object, OBJ_ONEMAPPING); 156 object->paging_in_progress = 0; 157 object->resident_page_count = 0; 158 object->shadow_count = 0; 159 object->pg_color = next_index; 160 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 161 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 162 else 163 incr = size; 164 next_index = (next_index + incr) & PQ_L2_MASK; 165 object->handle = NULL; 166 object->backing_object = NULL; 167 object->backing_object_offset = (vm_ooffset_t) 0; 168 /* 169 * Try to generate a number that will spread objects out in the 170 * hash table. We 'wipe' new objects across the hash in 128 page 171 * increments plus 1 more to offset it a little more by the time 172 * it wraps around. 173 */ 174 object->hash_rand = object_hash_rand - 129; 175 176 object->generation++; 177 178 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 179 vm_object_count++; 180 object_hash_rand = object->hash_rand; 181 } 182 183 /* 184 * vm_object_init: 185 * 186 * Initialize the VM objects module. 187 */ 188 void 189 vm_object_init() 190 { 191 TAILQ_INIT(&vm_object_list); 192 simple_lock_init(&vm_object_list_lock); 193 vm_object_count = 0; 194 195 kernel_object = &kernel_object_store; 196 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 197 kernel_object); 198 199 kmem_object = &kmem_object_store; 200 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 201 kmem_object); 202 203 obj_zone = &obj_zone_store; 204 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 205 vm_objects_init, VM_OBJECTS_INIT); 206 } 207 208 void 209 vm_object_init2() { 210 zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1); 211 } 212 213 /* 214 * vm_object_allocate: 215 * 216 * Returns a new object with the given size. 217 */ 218 219 vm_object_t 220 vm_object_allocate(type, size) 221 objtype_t type; 222 vm_size_t size; 223 { 224 vm_object_t result; 225 226 result = (vm_object_t) zalloc(obj_zone); 227 228 _vm_object_allocate(type, size, result); 229 230 return (result); 231 } 232 233 234 /* 235 * vm_object_reference: 236 * 237 * Gets another reference to the given object. 238 */ 239 void 240 vm_object_reference(object) 241 vm_object_t object; 242 { 243 if (object == NULL) 244 return; 245 246 KASSERT(!(object->flags & OBJ_DEAD), 247 ("vm_object_reference: attempting to reference dead obj")); 248 249 object->ref_count++; 250 if (object->type == OBJT_VNODE) { 251 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) { 252 #if !defined(MAX_PERF) 253 printf("vm_object_reference: delay in getting object\n"); 254 #endif 255 } 256 } 257 } 258 259 void 260 vm_object_vndeallocate(object) 261 vm_object_t object; 262 { 263 struct vnode *vp = (struct vnode *) object->handle; 264 265 KASSERT(object->type == OBJT_VNODE, 266 ("vm_object_vndeallocate: not a vnode object")); 267 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 268 #ifdef INVARIANTS 269 if (object->ref_count == 0) { 270 vprint("vm_object_vndeallocate", vp); 271 panic("vm_object_vndeallocate: bad object reference count"); 272 } 273 #endif 274 275 object->ref_count--; 276 if (object->ref_count == 0) { 277 vp->v_flag &= ~VTEXT; 278 vm_object_clear_flag(object, OBJ_OPT); 279 } 280 vrele(vp); 281 } 282 283 /* 284 * vm_object_deallocate: 285 * 286 * Release a reference to the specified object, 287 * gained either through a vm_object_allocate 288 * or a vm_object_reference call. When all references 289 * are gone, storage associated with this object 290 * may be relinquished. 291 * 292 * No object may be locked. 293 */ 294 void 295 vm_object_deallocate(object) 296 vm_object_t object; 297 { 298 vm_object_t temp; 299 300 while (object != NULL) { 301 302 if (object->type == OBJT_VNODE) { 303 vm_object_vndeallocate(object); 304 return; 305 } 306 307 if (object->ref_count == 0) { 308 panic("vm_object_deallocate: object deallocated too many times: %d", object->type); 309 } else if (object->ref_count > 2) { 310 object->ref_count--; 311 return; 312 } 313 314 /* 315 * Here on ref_count of one or two, which are special cases for 316 * objects. 317 */ 318 if ((object->ref_count == 2) && (object->shadow_count == 0)) { 319 vm_object_set_flag(object, OBJ_ONEMAPPING); 320 object->ref_count--; 321 return; 322 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) { 323 object->ref_count--; 324 if ((object->handle == NULL) && 325 (object->type == OBJT_DEFAULT || 326 object->type == OBJT_SWAP)) { 327 vm_object_t robject; 328 329 robject = TAILQ_FIRST(&object->shadow_head); 330 KASSERT(robject != NULL, 331 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 332 object->ref_count, 333 object->shadow_count)); 334 if ((robject->handle == NULL) && 335 (robject->type == OBJT_DEFAULT || 336 robject->type == OBJT_SWAP)) { 337 338 robject->ref_count++; 339 340 while ( 341 robject->paging_in_progress || 342 object->paging_in_progress 343 ) { 344 vm_object_pip_sleep(robject, "objde1"); 345 vm_object_pip_sleep(object, "objde2"); 346 } 347 348 if (robject->ref_count == 1) { 349 robject->ref_count--; 350 object = robject; 351 goto doterm; 352 } 353 354 object = robject; 355 vm_object_collapse(object); 356 continue; 357 } 358 } 359 360 return; 361 362 } else { 363 object->ref_count--; 364 if (object->ref_count != 0) 365 return; 366 } 367 368 doterm: 369 370 temp = object->backing_object; 371 if (temp) { 372 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list); 373 temp->shadow_count--; 374 if (temp->ref_count == 0) 375 vm_object_clear_flag(temp, OBJ_OPT); 376 temp->generation++; 377 object->backing_object = NULL; 378 } 379 vm_object_terminate(object); 380 /* unlocks and deallocates object */ 381 object = temp; 382 } 383 } 384 385 /* 386 * vm_object_terminate actually destroys the specified object, freeing 387 * up all previously used resources. 388 * 389 * The object must be locked. 390 * This routine may block. 391 */ 392 void 393 vm_object_terminate(object) 394 vm_object_t object; 395 { 396 vm_page_t p; 397 int s; 398 399 /* 400 * Make sure no one uses us. 401 */ 402 vm_object_set_flag(object, OBJ_DEAD); 403 404 /* 405 * wait for the pageout daemon to be done with the object 406 */ 407 vm_object_pip_wait(object, "objtrm"); 408 409 KASSERT(!object->paging_in_progress, 410 ("vm_object_terminate: pageout in progress")); 411 412 /* 413 * Clean and free the pages, as appropriate. All references to the 414 * object are gone, so we don't need to lock it. 415 */ 416 if (object->type == OBJT_VNODE) { 417 struct vnode *vp; 418 419 /* 420 * Freeze optimized copies. 421 */ 422 vm_freeze_copyopts(object, 0, object->size); 423 424 /* 425 * Clean pages and flush buffers. 426 */ 427 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 428 429 vp = (struct vnode *) object->handle; 430 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0); 431 } 432 433 if (object->ref_count != 0) 434 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count); 435 436 /* 437 * Now free any remaining pages. For internal objects, this also 438 * removes them from paging queues. Don't free wired pages, just 439 * remove them from the object. 440 */ 441 s = splvm(); 442 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 443 #if !defined(MAX_PERF) 444 if (p->busy || (p->flags & PG_BUSY)) 445 panic("vm_object_terminate: freeing busy page %p\n", p); 446 #endif 447 if (p->wire_count == 0) { 448 vm_page_busy(p); 449 vm_page_free(p); 450 cnt.v_pfree++; 451 } else { 452 vm_page_busy(p); 453 vm_page_remove(p); 454 } 455 } 456 splx(s); 457 458 /* 459 * Let the pager know object is dead. 460 */ 461 vm_pager_deallocate(object); 462 463 /* 464 * Remove the object from the global object list. 465 */ 466 simple_lock(&vm_object_list_lock); 467 TAILQ_REMOVE(&vm_object_list, object, object_list); 468 simple_unlock(&vm_object_list_lock); 469 470 wakeup(object); 471 472 /* 473 * Free the space for the object. 474 */ 475 zfree(obj_zone, object); 476 } 477 478 /* 479 * vm_object_page_clean 480 * 481 * Clean all dirty pages in the specified range of object. 482 * Leaves page on whatever queue it is currently on. 483 * 484 * Odd semantics: if start == end, we clean everything. 485 * 486 * The object must be locked. 487 */ 488 489 void 490 vm_object_page_clean(object, start, end, flags) 491 vm_object_t object; 492 vm_pindex_t start; 493 vm_pindex_t end; 494 int flags; 495 { 496 vm_page_t p, np, tp; 497 vm_offset_t tstart, tend; 498 vm_pindex_t pi; 499 int s; 500 struct vnode *vp; 501 int runlen; 502 int maxf; 503 int chkb; 504 int maxb; 505 int i; 506 int pagerflags; 507 vm_page_t maf[vm_pageout_page_count]; 508 vm_page_t mab[vm_pageout_page_count]; 509 vm_page_t ma[vm_pageout_page_count]; 510 int curgeneration; 511 512 if (object->type != OBJT_VNODE || 513 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 514 return; 515 516 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0; 517 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 518 519 vp = object->handle; 520 521 vm_object_set_flag(object, OBJ_CLEANING); 522 523 tstart = start; 524 if (end == 0) { 525 tend = object->size; 526 } else { 527 tend = end; 528 } 529 530 for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) { 531 vm_page_flag_set(p, PG_CLEANCHK); 532 vm_page_protect(p, VM_PROT_READ); 533 } 534 535 if ((tstart == 0) && (tend == object->size)) { 536 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 537 } 538 539 rescan: 540 curgeneration = object->generation; 541 542 for(p = TAILQ_FIRST(&object->memq); p; p = np) { 543 np = TAILQ_NEXT(p, listq); 544 545 pi = p->pindex; 546 if (((p->flags & PG_CLEANCHK) == 0) || 547 (pi < tstart) || (pi >= tend) || 548 (p->valid == 0) || 549 ((p->queue - p->pc) == PQ_CACHE)) { 550 vm_page_flag_clear(p, PG_CLEANCHK); 551 continue; 552 } 553 554 vm_page_test_dirty(p); 555 if ((p->dirty & p->valid) == 0) { 556 vm_page_flag_clear(p, PG_CLEANCHK); 557 continue; 558 } 559 560 s = splvm(); 561 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) { 562 if (object->generation != curgeneration) { 563 splx(s); 564 goto rescan; 565 } 566 } 567 568 maxf = 0; 569 for(i=1;i<vm_pageout_page_count;i++) { 570 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 571 if ((tp->flags & PG_BUSY) || 572 (tp->flags & PG_CLEANCHK) == 0 || 573 (tp->busy != 0)) 574 break; 575 if((tp->queue - tp->pc) == PQ_CACHE) { 576 vm_page_flag_clear(tp, PG_CLEANCHK); 577 break; 578 } 579 vm_page_test_dirty(tp); 580 if ((tp->dirty & tp->valid) == 0) { 581 vm_page_flag_clear(tp, PG_CLEANCHK); 582 break; 583 } 584 maf[ i - 1 ] = tp; 585 maxf++; 586 continue; 587 } 588 break; 589 } 590 591 maxb = 0; 592 chkb = vm_pageout_page_count - maxf; 593 if (chkb) { 594 for(i = 1; i < chkb;i++) { 595 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 596 if ((tp->flags & PG_BUSY) || 597 (tp->flags & PG_CLEANCHK) == 0 || 598 (tp->busy != 0)) 599 break; 600 if((tp->queue - tp->pc) == PQ_CACHE) { 601 vm_page_flag_clear(tp, PG_CLEANCHK); 602 break; 603 } 604 vm_page_test_dirty(tp); 605 if ((tp->dirty & tp->valid) == 0) { 606 vm_page_flag_clear(tp, PG_CLEANCHK); 607 break; 608 } 609 mab[ i - 1 ] = tp; 610 maxb++; 611 continue; 612 } 613 break; 614 } 615 } 616 617 for(i=0;i<maxb;i++) { 618 int index = (maxb - i) - 1; 619 ma[index] = mab[i]; 620 vm_page_flag_clear(ma[index], PG_CLEANCHK); 621 } 622 vm_page_flag_clear(p, PG_CLEANCHK); 623 ma[maxb] = p; 624 for(i=0;i<maxf;i++) { 625 int index = (maxb + i) + 1; 626 ma[index] = maf[i]; 627 vm_page_flag_clear(ma[index], PG_CLEANCHK); 628 } 629 runlen = maxb + maxf + 1; 630 631 splx(s); 632 vm_pageout_flush(ma, runlen, pagerflags); 633 for (i = 0; i<runlen; i++) { 634 if (ma[i]->valid & ma[i]->dirty) { 635 vm_page_protect(ma[i], VM_PROT_READ); 636 vm_page_flag_set(ma[i], PG_CLEANCHK); 637 } 638 } 639 if (object->generation != curgeneration) 640 goto rescan; 641 } 642 643 #if 0 644 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 645 #endif 646 647 vm_object_clear_flag(object, OBJ_CLEANING); 648 return; 649 } 650 651 #ifdef not_used 652 /* XXX I cannot tell if this should be an exported symbol */ 653 /* 654 * vm_object_deactivate_pages 655 * 656 * Deactivate all pages in the specified object. (Keep its pages 657 * in memory even though it is no longer referenced.) 658 * 659 * The object must be locked. 660 */ 661 static void 662 vm_object_deactivate_pages(object) 663 vm_object_t object; 664 { 665 vm_page_t p, next; 666 667 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 668 next = TAILQ_NEXT(p, listq); 669 vm_page_deactivate(p); 670 } 671 } 672 #endif 673 674 /* 675 * Same as vm_object_pmap_copy, except range checking really 676 * works, and is meant for small sections of an object. 677 * 678 * This code protects resident pages by making them read-only 679 * and is typically called on a fork or split when a page 680 * is converted to copy-on-write. 681 * 682 * NOTE: If the page is already at VM_PROT_NONE, calling 683 * vm_page_protect will have no effect. 684 */ 685 686 void 687 vm_object_pmap_copy_1(object, start, end) 688 vm_object_t object; 689 vm_pindex_t start; 690 vm_pindex_t end; 691 { 692 vm_pindex_t idx; 693 vm_page_t p; 694 695 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 696 return; 697 698 for (idx = start; idx < end; idx++) { 699 p = vm_page_lookup(object, idx); 700 if (p == NULL) 701 continue; 702 vm_page_protect(p, VM_PROT_READ); 703 } 704 } 705 706 /* 707 * vm_object_pmap_remove: 708 * 709 * Removes all physical pages in the specified 710 * object range from all physical maps. 711 * 712 * The object must *not* be locked. 713 */ 714 void 715 vm_object_pmap_remove(object, start, end) 716 vm_object_t object; 717 vm_pindex_t start; 718 vm_pindex_t end; 719 { 720 vm_page_t p; 721 722 if (object == NULL) 723 return; 724 for (p = TAILQ_FIRST(&object->memq); 725 p != NULL; 726 p = TAILQ_NEXT(p, listq)) { 727 if (p->pindex >= start && p->pindex < end) 728 vm_page_protect(p, VM_PROT_NONE); 729 } 730 if ((start == 0) && (object->size == end)) 731 vm_object_clear_flag(object, OBJ_WRITEABLE); 732 } 733 734 /* 735 * vm_object_madvise: 736 * 737 * Implements the madvise function at the object/page level. 738 * 739 * MADV_WILLNEED (any object) 740 * 741 * Activate the specified pages if they are resident. 742 * 743 * MADV_DONTNEED (any object) 744 * 745 * Deactivate the specified pages if they are resident. 746 * 747 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 748 * OBJ_ONEMAPPING only) 749 * 750 * Deactivate and clean the specified pages if they are 751 * resident. This permits the process to reuse the pages 752 * without faulting or the kernel to reclaim the pages 753 * without I/O. 754 */ 755 void 756 vm_object_madvise(object, pindex, count, advise) 757 vm_object_t object; 758 vm_pindex_t pindex; 759 int count; 760 int advise; 761 { 762 vm_pindex_t end, tpindex; 763 vm_object_t tobject; 764 vm_page_t m; 765 766 if (object == NULL) 767 return; 768 769 end = pindex + count; 770 771 /* 772 * Locate and adjust resident pages 773 */ 774 775 for (; pindex < end; pindex += 1) { 776 relookup: 777 tobject = object; 778 tpindex = pindex; 779 shadowlookup: 780 /* 781 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 782 * and those pages must be OBJ_ONEMAPPING. 783 */ 784 if (advise == MADV_FREE) { 785 if ((tobject->type != OBJT_DEFAULT && 786 tobject->type != OBJT_SWAP) || 787 (tobject->flags & OBJ_ONEMAPPING) == 0) { 788 continue; 789 } 790 } 791 792 m = vm_page_lookup(tobject, tpindex); 793 794 if (m == NULL) { 795 /* 796 * There may be swap even if there is no backing page 797 */ 798 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 799 swap_pager_freespace(tobject, tpindex, 1); 800 801 /* 802 * next object 803 */ 804 tobject = tobject->backing_object; 805 if (tobject == NULL) 806 continue; 807 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 808 goto shadowlookup; 809 } 810 811 /* 812 * If the page is busy or not in a normal active state, 813 * we skip it. Things can break if we mess with pages 814 * in any of the below states. 815 */ 816 if ( 817 m->hold_count || 818 m->wire_count || 819 m->valid != VM_PAGE_BITS_ALL 820 ) { 821 continue; 822 } 823 824 if (vm_page_sleep_busy(m, TRUE, "madvpo")) 825 goto relookup; 826 827 if (advise == MADV_WILLNEED) { 828 vm_page_activate(m); 829 } else if (advise == MADV_DONTNEED) { 830 vm_page_dontneed(m); 831 } else if (advise == MADV_FREE) { 832 /* 833 * Mark the page clean. This will allow the page 834 * to be freed up by the system. However, such pages 835 * are often reused quickly by malloc()/free() 836 * so we do not do anything that would cause 837 * a page fault if we can help it. 838 * 839 * Specifically, we do not try to actually free 840 * the page now nor do we try to put it in the 841 * cache (which would cause a page fault on reuse). 842 * 843 * But we do make the page is freeable as we 844 * can without actually taking the step of unmapping 845 * it. 846 */ 847 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 848 m->dirty = 0; 849 m->act_count = 0; 850 vm_page_dontneed(m); 851 if (tobject->type == OBJT_SWAP) 852 swap_pager_freespace(tobject, tpindex, 1); 853 } 854 } 855 } 856 857 /* 858 * vm_object_shadow: 859 * 860 * Create a new object which is backed by the 861 * specified existing object range. The source 862 * object reference is deallocated. 863 * 864 * The new object and offset into that object 865 * are returned in the source parameters. 866 */ 867 868 void 869 vm_object_shadow(object, offset, length) 870 vm_object_t *object; /* IN/OUT */ 871 vm_ooffset_t *offset; /* IN/OUT */ 872 vm_size_t length; 873 { 874 vm_object_t source; 875 vm_object_t result; 876 877 source = *object; 878 879 /* 880 * Don't create the new object if the old object isn't shared. 881 */ 882 883 if (source != NULL && 884 source->ref_count == 1 && 885 source->handle == NULL && 886 (source->type == OBJT_DEFAULT || 887 source->type == OBJT_SWAP)) 888 return; 889 890 KASSERT((source->flags & OBJ_ONEMAPPING) == 0, 891 ("vm_object_shadow: source object has OBJ_ONEMAPPING set.\n")); 892 893 /* 894 * Allocate a new object with the given length 895 */ 896 897 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 898 panic("vm_object_shadow: no object for shadowing"); 899 900 /* 901 * The new object shadows the source object, adding a reference to it. 902 * Our caller changes his reference to point to the new object, 903 * removing a reference to the source object. Net result: no change 904 * of reference count. 905 * 906 * Try to optimize the result object's page color when shadowing 907 * in order to maintain page coloring consistancy in the combined 908 * shadowed object. 909 */ 910 result->backing_object = source; 911 if (source) { 912 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list); 913 source->shadow_count++; 914 source->generation++; 915 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK; 916 } 917 918 /* 919 * Store the offset into the source object, and fix up the offset into 920 * the new object. 921 */ 922 923 result->backing_object_offset = *offset; 924 925 /* 926 * Return the new things 927 */ 928 929 *offset = 0; 930 *object = result; 931 } 932 933 #define OBSC_TEST_ALL_SHADOWED 0x0001 934 #define OBSC_COLLAPSE_NOWAIT 0x0002 935 #define OBSC_COLLAPSE_WAIT 0x0004 936 937 static __inline int 938 vm_object_backing_scan(vm_object_t object, int op) 939 { 940 int s; 941 int r = 1; 942 vm_page_t p; 943 vm_object_t backing_object; 944 vm_pindex_t backing_offset_index; 945 946 s = splvm(); 947 948 backing_object = object->backing_object; 949 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 950 951 /* 952 * Initial conditions 953 */ 954 955 if (op & OBSC_TEST_ALL_SHADOWED) { 956 /* 957 * We do not want to have to test for the existance of 958 * swap pages in the backing object. XXX but with the 959 * new swapper this would be pretty easy to do. 960 * 961 * XXX what about anonymous MAP_SHARED memory that hasn't 962 * been ZFOD faulted yet? If we do not test for this, the 963 * shadow test may succeed! XXX 964 */ 965 if (backing_object->type != OBJT_DEFAULT) { 966 splx(s); 967 return(0); 968 } 969 } 970 if (op & OBSC_COLLAPSE_WAIT) { 971 vm_object_set_flag(backing_object, OBJ_DEAD); 972 } 973 974 /* 975 * Our scan 976 */ 977 978 p = TAILQ_FIRST(&backing_object->memq); 979 while (p) { 980 vm_page_t next = TAILQ_NEXT(p, listq); 981 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 982 983 if (op & OBSC_TEST_ALL_SHADOWED) { 984 vm_page_t pp; 985 986 /* 987 * Ignore pages outside the parent object's range 988 * and outside the parent object's mapping of the 989 * backing object. 990 * 991 * note that we do not busy the backing object's 992 * page. 993 */ 994 995 if ( 996 p->pindex < backing_offset_index || 997 new_pindex >= object->size 998 ) { 999 p = next; 1000 continue; 1001 } 1002 1003 /* 1004 * See if the parent has the page or if the parent's 1005 * object pager has the page. If the parent has the 1006 * page but the page is not valid, the parent's 1007 * object pager must have the page. 1008 * 1009 * If this fails, the parent does not completely shadow 1010 * the object and we might as well give up now. 1011 */ 1012 1013 pp = vm_page_lookup(object, new_pindex); 1014 if ( 1015 (pp == NULL || pp->valid == 0) && 1016 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1017 ) { 1018 r = 0; 1019 break; 1020 } 1021 } 1022 1023 /* 1024 * Check for busy page 1025 */ 1026 1027 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1028 vm_page_t pp; 1029 1030 if (op & OBSC_COLLAPSE_NOWAIT) { 1031 if ( 1032 (p->flags & PG_BUSY) || 1033 !p->valid || 1034 p->hold_count || 1035 p->wire_count || 1036 p->busy 1037 ) { 1038 p = next; 1039 continue; 1040 } 1041 } else if (op & OBSC_COLLAPSE_WAIT) { 1042 if (vm_page_sleep_busy(p, TRUE, "vmocol")) { 1043 /* 1044 * If we slept, anything could have 1045 * happened. Since the object is 1046 * marked dead, the backing offset 1047 * should not have changed so we 1048 * just restart our scan. 1049 */ 1050 p = TAILQ_FIRST(&backing_object->memq); 1051 continue; 1052 } 1053 } 1054 1055 /* 1056 * Busy the page 1057 */ 1058 vm_page_busy(p); 1059 1060 KASSERT( 1061 p->object == backing_object, 1062 ("vm_object_qcollapse(): object mismatch") 1063 ); 1064 1065 /* 1066 * Destroy any associated swap 1067 */ 1068 if (backing_object->type == OBJT_SWAP) { 1069 swap_pager_freespace( 1070 backing_object, 1071 p->pindex, 1072 1 1073 ); 1074 } 1075 1076 if ( 1077 p->pindex < backing_offset_index || 1078 new_pindex >= object->size 1079 ) { 1080 /* 1081 * Page is out of the parent object's range, we 1082 * can simply destroy it. 1083 */ 1084 vm_page_protect(p, VM_PROT_NONE); 1085 vm_page_free(p); 1086 p = next; 1087 continue; 1088 } 1089 1090 pp = vm_page_lookup(object, new_pindex); 1091 if ( 1092 pp != NULL || 1093 vm_pager_has_page(object, new_pindex, NULL, NULL) 1094 ) { 1095 /* 1096 * page already exists in parent OR swap exists 1097 * for this location in the parent. Destroy 1098 * the original page from the backing object. 1099 * 1100 * Leave the parent's page alone 1101 */ 1102 vm_page_protect(p, VM_PROT_NONE); 1103 vm_page_free(p); 1104 p = next; 1105 continue; 1106 } 1107 1108 /* 1109 * Page does not exist in parent, rename the 1110 * page from the backing object to the main object. 1111 * 1112 * If the page was mapped to a process, it can remain 1113 * mapped through the rename. 1114 */ 1115 if ((p->queue - p->pc) == PQ_CACHE) 1116 vm_page_deactivate(p); 1117 1118 vm_page_rename(p, object, new_pindex); 1119 /* page automatically made dirty by rename */ 1120 } 1121 p = next; 1122 } 1123 splx(s); 1124 return(r); 1125 } 1126 1127 1128 /* 1129 * this version of collapse allows the operation to occur earlier and 1130 * when paging_in_progress is true for an object... This is not a complete 1131 * operation, but should plug 99.9% of the rest of the leaks. 1132 */ 1133 static void 1134 vm_object_qcollapse(object) 1135 vm_object_t object; 1136 { 1137 vm_object_t backing_object = object->backing_object; 1138 1139 if (backing_object->ref_count != 1) 1140 return; 1141 1142 backing_object->ref_count += 2; 1143 1144 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1145 1146 backing_object->ref_count -= 2; 1147 } 1148 1149 /* 1150 * vm_object_collapse: 1151 * 1152 * Collapse an object with the object backing it. 1153 * Pages in the backing object are moved into the 1154 * parent, and the backing object is deallocated. 1155 */ 1156 void 1157 vm_object_collapse(object) 1158 vm_object_t object; 1159 { 1160 while (TRUE) { 1161 vm_object_t backing_object; 1162 1163 /* 1164 * Verify that the conditions are right for collapse: 1165 * 1166 * The object exists and the backing object exists. 1167 */ 1168 if (object == NULL) 1169 break; 1170 1171 if ((backing_object = object->backing_object) == NULL) 1172 break; 1173 1174 /* 1175 * we check the backing object first, because it is most likely 1176 * not collapsable. 1177 */ 1178 if (backing_object->handle != NULL || 1179 (backing_object->type != OBJT_DEFAULT && 1180 backing_object->type != OBJT_SWAP) || 1181 (backing_object->flags & OBJ_DEAD) || 1182 object->handle != NULL || 1183 (object->type != OBJT_DEFAULT && 1184 object->type != OBJT_SWAP) || 1185 (object->flags & OBJ_DEAD)) { 1186 break; 1187 } 1188 1189 if ( 1190 object->paging_in_progress != 0 || 1191 backing_object->paging_in_progress != 0 1192 ) { 1193 vm_object_qcollapse(object); 1194 break; 1195 } 1196 1197 /* 1198 * We know that we can either collapse the backing object (if 1199 * the parent is the only reference to it) or (perhaps) have 1200 * the parent bypass the object if the parent happens to shadow 1201 * all the resident pages in the entire backing object. 1202 * 1203 * This is ignoring pager-backed pages such as swap pages. 1204 * vm_object_backing_scan fails the shadowing test in this 1205 * case. 1206 */ 1207 1208 if (backing_object->ref_count == 1) { 1209 /* 1210 * If there is exactly one reference to the backing 1211 * object, we can collapse it into the parent. 1212 */ 1213 1214 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1215 1216 /* 1217 * Move the pager from backing_object to object. 1218 */ 1219 1220 if (backing_object->type == OBJT_SWAP) { 1221 vm_object_pip_add(backing_object, 1); 1222 1223 /* 1224 * scrap the paging_offset junk and do a 1225 * discrete copy. This also removes major 1226 * assumptions about how the swap-pager 1227 * works from where it doesn't belong. The 1228 * new swapper is able to optimize the 1229 * destroy-source case. 1230 */ 1231 1232 vm_object_pip_add(object, 1); 1233 swap_pager_copy( 1234 backing_object, 1235 object, 1236 OFF_TO_IDX(object->backing_object_offset), TRUE); 1237 vm_object_pip_wakeup(object); 1238 1239 vm_object_pip_wakeup(backing_object); 1240 } 1241 /* 1242 * Object now shadows whatever backing_object did. 1243 * Note that the reference to 1244 * backing_object->backing_object moves from within 1245 * backing_object to within object. 1246 */ 1247 1248 TAILQ_REMOVE( 1249 &object->backing_object->shadow_head, 1250 object, 1251 shadow_list 1252 ); 1253 object->backing_object->shadow_count--; 1254 object->backing_object->generation++; 1255 if (backing_object->backing_object) { 1256 TAILQ_REMOVE( 1257 &backing_object->backing_object->shadow_head, 1258 backing_object, 1259 shadow_list 1260 ); 1261 backing_object->backing_object->shadow_count--; 1262 backing_object->backing_object->generation++; 1263 } 1264 object->backing_object = backing_object->backing_object; 1265 if (object->backing_object) { 1266 TAILQ_INSERT_TAIL( 1267 &object->backing_object->shadow_head, 1268 object, 1269 shadow_list 1270 ); 1271 object->backing_object->shadow_count++; 1272 object->backing_object->generation++; 1273 } 1274 1275 object->backing_object_offset += 1276 backing_object->backing_object_offset; 1277 1278 /* 1279 * Discard backing_object. 1280 * 1281 * Since the backing object has no pages, no pager left, 1282 * and no object references within it, all that is 1283 * necessary is to dispose of it. 1284 */ 1285 1286 TAILQ_REMOVE( 1287 &vm_object_list, 1288 backing_object, 1289 object_list 1290 ); 1291 vm_object_count--; 1292 1293 zfree(obj_zone, backing_object); 1294 1295 object_collapses++; 1296 } else { 1297 vm_object_t new_backing_object; 1298 1299 /* 1300 * If we do not entirely shadow the backing object, 1301 * there is nothing we can do so we give up. 1302 */ 1303 1304 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1305 break; 1306 } 1307 1308 /* 1309 * Make the parent shadow the next object in the 1310 * chain. Deallocating backing_object will not remove 1311 * it, since its reference count is at least 2. 1312 */ 1313 1314 TAILQ_REMOVE( 1315 &backing_object->shadow_head, 1316 object, 1317 shadow_list 1318 ); 1319 backing_object->shadow_count--; 1320 backing_object->generation++; 1321 1322 new_backing_object = backing_object->backing_object; 1323 if ((object->backing_object = new_backing_object) != NULL) { 1324 vm_object_reference(new_backing_object); 1325 TAILQ_INSERT_TAIL( 1326 &new_backing_object->shadow_head, 1327 object, 1328 shadow_list 1329 ); 1330 new_backing_object->shadow_count++; 1331 new_backing_object->generation++; 1332 object->backing_object_offset += 1333 backing_object->backing_object_offset; 1334 } 1335 1336 /* 1337 * Drop the reference count on backing_object. Since 1338 * its ref_count was at least 2, it will not vanish; 1339 * so we don't need to call vm_object_deallocate, but 1340 * we do anyway. 1341 */ 1342 vm_object_deallocate(backing_object); 1343 object_bypasses++; 1344 } 1345 1346 /* 1347 * Try again with this object's new backing object. 1348 */ 1349 } 1350 } 1351 1352 /* 1353 * vm_object_page_remove: [internal] 1354 * 1355 * Removes all physical pages in the specified 1356 * object range from the object's list of pages. 1357 * 1358 * The object must be locked. 1359 */ 1360 void 1361 vm_object_page_remove(object, start, end, clean_only) 1362 vm_object_t object; 1363 vm_pindex_t start; 1364 vm_pindex_t end; 1365 boolean_t clean_only; 1366 { 1367 vm_page_t p, next; 1368 unsigned int size; 1369 int all; 1370 1371 if (object == NULL || 1372 object->resident_page_count == 0) 1373 return; 1374 1375 all = ((end == 0) && (start == 0)); 1376 1377 vm_object_pip_add(object, 1); 1378 again: 1379 size = end - start; 1380 if (all || size > object->resident_page_count / 4) { 1381 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 1382 next = TAILQ_NEXT(p, listq); 1383 if (all || ((start <= p->pindex) && (p->pindex < end))) { 1384 if (p->wire_count != 0) { 1385 vm_page_protect(p, VM_PROT_NONE); 1386 if (!clean_only) 1387 p->valid = 0; 1388 continue; 1389 } 1390 1391 /* 1392 * The busy flags are only cleared at 1393 * interrupt -- minimize the spl transitions 1394 */ 1395 1396 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1397 goto again; 1398 1399 if (clean_only && p->valid) { 1400 vm_page_test_dirty(p); 1401 if (p->valid & p->dirty) 1402 continue; 1403 } 1404 1405 vm_page_busy(p); 1406 vm_page_protect(p, VM_PROT_NONE); 1407 vm_page_free(p); 1408 } 1409 } 1410 } else { 1411 while (size > 0) { 1412 if ((p = vm_page_lookup(object, start)) != 0) { 1413 1414 if (p->wire_count != 0) { 1415 vm_page_protect(p, VM_PROT_NONE); 1416 if (!clean_only) 1417 p->valid = 0; 1418 start += 1; 1419 size -= 1; 1420 continue; 1421 } 1422 1423 /* 1424 * The busy flags are only cleared at 1425 * interrupt -- minimize the spl transitions 1426 */ 1427 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1428 goto again; 1429 1430 if (clean_only && p->valid) { 1431 vm_page_test_dirty(p); 1432 if (p->valid & p->dirty) { 1433 start += 1; 1434 size -= 1; 1435 continue; 1436 } 1437 } 1438 1439 vm_page_busy(p); 1440 vm_page_protect(p, VM_PROT_NONE); 1441 vm_page_free(p); 1442 } 1443 start += 1; 1444 size -= 1; 1445 } 1446 } 1447 vm_object_pip_wakeup(object); 1448 } 1449 1450 /* 1451 * Routine: vm_object_coalesce 1452 * Function: Coalesces two objects backing up adjoining 1453 * regions of memory into a single object. 1454 * 1455 * returns TRUE if objects were combined. 1456 * 1457 * NOTE: Only works at the moment if the second object is NULL - 1458 * if it's not, which object do we lock first? 1459 * 1460 * Parameters: 1461 * prev_object First object to coalesce 1462 * prev_offset Offset into prev_object 1463 * next_object Second object into coalesce 1464 * next_offset Offset into next_object 1465 * 1466 * prev_size Size of reference to prev_object 1467 * next_size Size of reference to next_object 1468 * 1469 * Conditions: 1470 * The object must *not* be locked. 1471 */ 1472 boolean_t 1473 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size) 1474 vm_object_t prev_object; 1475 vm_pindex_t prev_pindex; 1476 vm_size_t prev_size, next_size; 1477 { 1478 vm_pindex_t next_pindex; 1479 1480 if (prev_object == NULL) { 1481 return (TRUE); 1482 } 1483 1484 if (prev_object->type != OBJT_DEFAULT && 1485 prev_object->type != OBJT_SWAP) { 1486 return (FALSE); 1487 } 1488 1489 /* 1490 * Try to collapse the object first 1491 */ 1492 vm_object_collapse(prev_object); 1493 1494 /* 1495 * Can't coalesce if: . more than one reference . paged out . shadows 1496 * another object . has a copy elsewhere (any of which mean that the 1497 * pages not mapped to prev_entry may be in use anyway) 1498 */ 1499 1500 if (prev_object->backing_object != NULL) { 1501 return (FALSE); 1502 } 1503 1504 prev_size >>= PAGE_SHIFT; 1505 next_size >>= PAGE_SHIFT; 1506 next_pindex = prev_pindex + prev_size; 1507 1508 if ((prev_object->ref_count > 1) && 1509 (prev_object->size != next_pindex)) { 1510 return (FALSE); 1511 } 1512 1513 /* 1514 * Remove any pages that may still be in the object from a previous 1515 * deallocation. 1516 */ 1517 if (next_pindex < prev_object->size) { 1518 vm_object_page_remove(prev_object, 1519 next_pindex, 1520 next_pindex + next_size, FALSE); 1521 if (prev_object->type == OBJT_SWAP) 1522 swap_pager_freespace(prev_object, 1523 next_pindex, next_size); 1524 } 1525 1526 /* 1527 * Extend the object if necessary. 1528 */ 1529 if (next_pindex + next_size > prev_object->size) 1530 prev_object->size = next_pindex + next_size; 1531 1532 return (TRUE); 1533 } 1534 1535 #include "opt_ddb.h" 1536 #ifdef DDB 1537 #include <sys/kernel.h> 1538 1539 #include <sys/cons.h> 1540 1541 #include <ddb/ddb.h> 1542 1543 static int _vm_object_in_map __P((vm_map_t map, vm_object_t object, 1544 vm_map_entry_t entry)); 1545 static int vm_object_in_map __P((vm_object_t object)); 1546 1547 static int 1548 _vm_object_in_map(map, object, entry) 1549 vm_map_t map; 1550 vm_object_t object; 1551 vm_map_entry_t entry; 1552 { 1553 vm_map_t tmpm; 1554 vm_map_entry_t tmpe; 1555 vm_object_t obj; 1556 int entcount; 1557 1558 if (map == 0) 1559 return 0; 1560 1561 if (entry == 0) { 1562 tmpe = map->header.next; 1563 entcount = map->nentries; 1564 while (entcount-- && (tmpe != &map->header)) { 1565 if( _vm_object_in_map(map, object, tmpe)) { 1566 return 1; 1567 } 1568 tmpe = tmpe->next; 1569 } 1570 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1571 tmpm = entry->object.sub_map; 1572 tmpe = tmpm->header.next; 1573 entcount = tmpm->nentries; 1574 while (entcount-- && tmpe != &tmpm->header) { 1575 if( _vm_object_in_map(tmpm, object, tmpe)) { 1576 return 1; 1577 } 1578 tmpe = tmpe->next; 1579 } 1580 } else if ((obj = entry->object.vm_object) != NULL) { 1581 for(; obj; obj=obj->backing_object) 1582 if( obj == object) { 1583 return 1; 1584 } 1585 } 1586 return 0; 1587 } 1588 1589 static int 1590 vm_object_in_map( object) 1591 vm_object_t object; 1592 { 1593 struct proc *p; 1594 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 1595 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1596 continue; 1597 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) 1598 return 1; 1599 } 1600 if( _vm_object_in_map( kernel_map, object, 0)) 1601 return 1; 1602 if( _vm_object_in_map( kmem_map, object, 0)) 1603 return 1; 1604 if( _vm_object_in_map( pager_map, object, 0)) 1605 return 1; 1606 if( _vm_object_in_map( buffer_map, object, 0)) 1607 return 1; 1608 if( _vm_object_in_map( mb_map, object, 0)) 1609 return 1; 1610 return 0; 1611 } 1612 1613 DB_SHOW_COMMAND(vmochk, vm_object_check) 1614 { 1615 vm_object_t object; 1616 1617 /* 1618 * make sure that internal objs are in a map somewhere 1619 * and none have zero ref counts. 1620 */ 1621 for (object = TAILQ_FIRST(&vm_object_list); 1622 object != NULL; 1623 object = TAILQ_NEXT(object, object_list)) { 1624 if (object->handle == NULL && 1625 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1626 if (object->ref_count == 0) { 1627 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1628 (long)object->size); 1629 } 1630 if (!vm_object_in_map(object)) { 1631 db_printf( 1632 "vmochk: internal obj is not in a map: " 1633 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1634 object->ref_count, (u_long)object->size, 1635 (u_long)object->size, 1636 (void *)object->backing_object); 1637 } 1638 } 1639 } 1640 } 1641 1642 /* 1643 * vm_object_print: [ debug ] 1644 */ 1645 DB_SHOW_COMMAND(object, vm_object_print_static) 1646 { 1647 /* XXX convert args. */ 1648 vm_object_t object = (vm_object_t)addr; 1649 boolean_t full = have_addr; 1650 1651 vm_page_t p; 1652 1653 /* XXX count is an (unused) arg. Avoid shadowing it. */ 1654 #define count was_count 1655 1656 int count; 1657 1658 if (object == NULL) 1659 return; 1660 1661 db_iprintf( 1662 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 1663 object, (int)object->type, (u_long)object->size, 1664 object->resident_page_count, object->ref_count, object->flags); 1665 /* 1666 * XXX no %qd in kernel. Truncate object->backing_object_offset. 1667 */ 1668 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 1669 object->shadow_count, 1670 object->backing_object ? object->backing_object->ref_count : 0, 1671 object->backing_object, (long)object->backing_object_offset); 1672 1673 if (!full) 1674 return; 1675 1676 db_indent += 2; 1677 count = 0; 1678 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) { 1679 if (count == 0) 1680 db_iprintf("memory:="); 1681 else if (count == 6) { 1682 db_printf("\n"); 1683 db_iprintf(" ..."); 1684 count = 0; 1685 } else 1686 db_printf(","); 1687 count++; 1688 1689 db_printf("(off=0x%lx,page=0x%lx)", 1690 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 1691 } 1692 if (count != 0) 1693 db_printf("\n"); 1694 db_indent -= 2; 1695 } 1696 1697 /* XXX. */ 1698 #undef count 1699 1700 /* XXX need this non-static entry for calling from vm_map_print. */ 1701 void 1702 vm_object_print(addr, have_addr, count, modif) 1703 /* db_expr_t */ long addr; 1704 boolean_t have_addr; 1705 /* db_expr_t */ long count; 1706 char *modif; 1707 { 1708 vm_object_print_static(addr, have_addr, count, modif); 1709 } 1710 1711 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 1712 { 1713 vm_object_t object; 1714 int nl = 0; 1715 int c; 1716 for (object = TAILQ_FIRST(&vm_object_list); 1717 object != NULL; 1718 object = TAILQ_NEXT(object, object_list)) { 1719 vm_pindex_t idx, fidx; 1720 vm_pindex_t osize; 1721 vm_offset_t pa = -1, padiff; 1722 int rcount; 1723 vm_page_t m; 1724 1725 db_printf("new object: %p\n", (void *)object); 1726 if ( nl > 18) { 1727 c = cngetc(); 1728 if (c != ' ') 1729 return; 1730 nl = 0; 1731 } 1732 nl++; 1733 rcount = 0; 1734 fidx = 0; 1735 osize = object->size; 1736 if (osize > 128) 1737 osize = 128; 1738 for(idx=0;idx<osize;idx++) { 1739 m = vm_page_lookup(object, idx); 1740 if (m == NULL) { 1741 if (rcount) { 1742 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1743 (long)fidx, rcount, (long)pa); 1744 if ( nl > 18) { 1745 c = cngetc(); 1746 if (c != ' ') 1747 return; 1748 nl = 0; 1749 } 1750 nl++; 1751 rcount = 0; 1752 } 1753 continue; 1754 } 1755 1756 1757 if (rcount && 1758 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 1759 ++rcount; 1760 continue; 1761 } 1762 if (rcount) { 1763 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 1764 padiff >>= PAGE_SHIFT; 1765 padiff &= PQ_L2_MASK; 1766 if (padiff == 0) { 1767 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 1768 ++rcount; 1769 continue; 1770 } 1771 db_printf(" index(%ld)run(%d)pa(0x%lx)", 1772 (long)fidx, rcount, (long)pa); 1773 db_printf("pd(%ld)\n", (long)padiff); 1774 if ( nl > 18) { 1775 c = cngetc(); 1776 if (c != ' ') 1777 return; 1778 nl = 0; 1779 } 1780 nl++; 1781 } 1782 fidx = idx; 1783 pa = VM_PAGE_TO_PHYS(m); 1784 rcount = 1; 1785 } 1786 if (rcount) { 1787 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1788 (long)fidx, rcount, (long)pa); 1789 if ( nl > 18) { 1790 c = cngetc(); 1791 if (c != ' ') 1792 return; 1793 nl = 0; 1794 } 1795 nl++; 1796 } 1797 } 1798 } 1799 #endif /* DDB */ 1800