1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/mman.h> 72 #include <sys/mount.h> 73 #include <sys/kernel.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> /* for curproc, pageproc */ 77 #include <sys/socket.h> 78 #include <sys/vnode.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sx.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_pager.h> 90 #include <vm/swap_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 95 #define EASY_SCAN_FACTOR 8 96 97 #define MSYNC_FLUSH_HARDSEQ 0x01 98 #define MSYNC_FLUSH_SOFTSEQ 0x02 99 100 /* 101 * msync / VM object flushing optimizations 102 */ 103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ; 104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, 105 CTLFLAG_RW, &msync_flush_flags, 0, ""); 106 107 static int old_msync; 108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 109 "Use old (insecure) msync behavior"); 110 111 static void vm_object_qcollapse(vm_object_t object); 112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags); 113 static void vm_object_vndeallocate(vm_object_t object); 114 115 /* 116 * Virtual memory objects maintain the actual data 117 * associated with allocated virtual memory. A given 118 * page of memory exists within exactly one object. 119 * 120 * An object is only deallocated when all "references" 121 * are given up. Only one "reference" to a given 122 * region of an object should be writeable. 123 * 124 * Associated with each object is a list of all resident 125 * memory pages belonging to that object; this list is 126 * maintained by the "vm_page" module, and locked by the object's 127 * lock. 128 * 129 * Each object also records a "pager" routine which is 130 * used to retrieve (and store) pages to the proper backing 131 * storage. In addition, objects may be backed by other 132 * objects from which they were virtual-copied. 133 * 134 * The only items within the object structure which are 135 * modified after time of creation are: 136 * reference count locked by object's lock 137 * pager routine locked by object's lock 138 * 139 */ 140 141 struct object_q vm_object_list; 142 struct mtx vm_object_list_mtx; /* lock for object list and count */ 143 144 struct vm_object kernel_object_store; 145 struct vm_object kmem_object_store; 146 147 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(TAILQ_EMPTY(&object->memq), 171 ("object %p has resident pages", 172 object)); 173 KASSERT(object->cache == NULL, 174 ("object %p has cached pages", 175 object)); 176 KASSERT(object->paging_in_progress == 0, 177 ("object %p paging_in_progress = %d", 178 object, object->paging_in_progress)); 179 KASSERT(object->resident_page_count == 0, 180 ("object %p resident_page_count = %d", 181 object, object->resident_page_count)); 182 KASSERT(object->shadow_count == 0, 183 ("object %p shadow_count = %d", 184 object, object->shadow_count)); 185 } 186 #endif 187 188 static int 189 vm_object_zinit(void *mem, int size, int flags) 190 { 191 vm_object_t object; 192 193 object = (vm_object_t)mem; 194 bzero(&object->mtx, sizeof(object->mtx)); 195 VM_OBJECT_LOCK_INIT(object, "standard object"); 196 197 /* These are true for any object that has been freed */ 198 object->paging_in_progress = 0; 199 object->resident_page_count = 0; 200 object->shadow_count = 0; 201 return (0); 202 } 203 204 void 205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 206 { 207 208 TAILQ_INIT(&object->memq); 209 LIST_INIT(&object->shadow_head); 210 211 object->root = NULL; 212 object->type = type; 213 object->size = size; 214 object->generation = 1; 215 object->ref_count = 1; 216 object->flags = 0; 217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 218 object->flags = OBJ_ONEMAPPING; 219 object->pg_color = 0; 220 object->handle = NULL; 221 object->backing_object = NULL; 222 object->backing_object_offset = (vm_ooffset_t) 0; 223 object->cache = NULL; 224 225 mtx_lock(&vm_object_list_mtx); 226 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 227 mtx_unlock(&vm_object_list_mtx); 228 } 229 230 /* 231 * vm_object_init: 232 * 233 * Initialize the VM objects module. 234 */ 235 void 236 vm_object_init(void) 237 { 238 TAILQ_INIT(&vm_object_list); 239 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 240 241 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object"); 242 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 243 kernel_object); 244 245 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object"); 246 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 247 kmem_object); 248 249 /* 250 * The lock portion of struct vm_object must be type stable due 251 * to vm_pageout_fallback_object_lock locking a vm object 252 * without holding any references to it. 253 */ 254 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 255 #ifdef INVARIANTS 256 vm_object_zdtor, 257 #else 258 NULL, 259 #endif 260 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 261 } 262 263 void 264 vm_object_clear_flag(vm_object_t object, u_short bits) 265 { 266 267 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 268 object->flags &= ~bits; 269 } 270 271 void 272 vm_object_pip_add(vm_object_t object, short i) 273 { 274 275 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 276 object->paging_in_progress += i; 277 } 278 279 void 280 vm_object_pip_subtract(vm_object_t object, short i) 281 { 282 283 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 284 object->paging_in_progress -= i; 285 } 286 287 void 288 vm_object_pip_wakeup(vm_object_t object) 289 { 290 291 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 292 object->paging_in_progress--; 293 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 294 vm_object_clear_flag(object, OBJ_PIPWNT); 295 wakeup(object); 296 } 297 } 298 299 void 300 vm_object_pip_wakeupn(vm_object_t object, short i) 301 { 302 303 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 304 if (i) 305 object->paging_in_progress -= i; 306 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 307 vm_object_clear_flag(object, OBJ_PIPWNT); 308 wakeup(object); 309 } 310 } 311 312 void 313 vm_object_pip_wait(vm_object_t object, char *waitid) 314 { 315 316 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 317 while (object->paging_in_progress) { 318 object->flags |= OBJ_PIPWNT; 319 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 320 } 321 } 322 323 /* 324 * vm_object_allocate: 325 * 326 * Returns a new object with the given size. 327 */ 328 vm_object_t 329 vm_object_allocate(objtype_t type, vm_pindex_t size) 330 { 331 vm_object_t object; 332 333 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 334 _vm_object_allocate(type, size, object); 335 return (object); 336 } 337 338 339 /* 340 * vm_object_reference: 341 * 342 * Gets another reference to the given object. Note: OBJ_DEAD 343 * objects can be referenced during final cleaning. 344 */ 345 void 346 vm_object_reference(vm_object_t object) 347 { 348 struct vnode *vp; 349 350 if (object == NULL) 351 return; 352 VM_OBJECT_LOCK(object); 353 object->ref_count++; 354 if (object->type == OBJT_VNODE) { 355 int vfslocked; 356 357 vp = object->handle; 358 VM_OBJECT_UNLOCK(object); 359 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 360 vget(vp, LK_RETRY, curthread); 361 VFS_UNLOCK_GIANT(vfslocked); 362 } else 363 VM_OBJECT_UNLOCK(object); 364 } 365 366 /* 367 * vm_object_reference_locked: 368 * 369 * Gets another reference to the given object. 370 * 371 * The object must be locked. 372 */ 373 void 374 vm_object_reference_locked(vm_object_t object) 375 { 376 struct vnode *vp; 377 378 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 379 KASSERT((object->flags & OBJ_DEAD) == 0, 380 ("vm_object_reference_locked: dead object referenced")); 381 object->ref_count++; 382 if (object->type == OBJT_VNODE) { 383 vp = object->handle; 384 vref(vp); 385 } 386 } 387 388 /* 389 * Handle deallocating an object of type OBJT_VNODE. 390 */ 391 static void 392 vm_object_vndeallocate(vm_object_t object) 393 { 394 struct vnode *vp = (struct vnode *) object->handle; 395 396 VFS_ASSERT_GIANT(vp->v_mount); 397 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 398 KASSERT(object->type == OBJT_VNODE, 399 ("vm_object_vndeallocate: not a vnode object")); 400 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 401 #ifdef INVARIANTS 402 if (object->ref_count == 0) { 403 vprint("vm_object_vndeallocate", vp); 404 panic("vm_object_vndeallocate: bad object reference count"); 405 } 406 #endif 407 408 object->ref_count--; 409 if (object->ref_count == 0) { 410 mp_fixme("Unlocked vflag access."); 411 vp->v_vflag &= ~VV_TEXT; 412 } 413 VM_OBJECT_UNLOCK(object); 414 /* 415 * vrele may need a vop lock 416 */ 417 vrele(vp); 418 } 419 420 /* 421 * vm_object_deallocate: 422 * 423 * Release a reference to the specified object, 424 * gained either through a vm_object_allocate 425 * or a vm_object_reference call. When all references 426 * are gone, storage associated with this object 427 * may be relinquished. 428 * 429 * No object may be locked. 430 */ 431 void 432 vm_object_deallocate(vm_object_t object) 433 { 434 vm_object_t temp; 435 436 while (object != NULL) { 437 int vfslocked; 438 439 vfslocked = 0; 440 restart: 441 VM_OBJECT_LOCK(object); 442 if (object->type == OBJT_VNODE) { 443 struct vnode *vp = (struct vnode *) object->handle; 444 445 /* 446 * Conditionally acquire Giant for a vnode-backed 447 * object. We have to be careful since the type of 448 * a vnode object can change while the object is 449 * unlocked. 450 */ 451 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 452 vfslocked = 1; 453 if (!mtx_trylock(&Giant)) { 454 VM_OBJECT_UNLOCK(object); 455 mtx_lock(&Giant); 456 goto restart; 457 } 458 } 459 vm_object_vndeallocate(object); 460 VFS_UNLOCK_GIANT(vfslocked); 461 return; 462 } else 463 /* 464 * This is to handle the case that the object 465 * changed type while we dropped its lock to 466 * obtain Giant. 467 */ 468 VFS_UNLOCK_GIANT(vfslocked); 469 470 KASSERT(object->ref_count != 0, 471 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 472 473 /* 474 * If the reference count goes to 0 we start calling 475 * vm_object_terminate() on the object chain. 476 * A ref count of 1 may be a special case depending on the 477 * shadow count being 0 or 1. 478 */ 479 object->ref_count--; 480 if (object->ref_count > 1) { 481 VM_OBJECT_UNLOCK(object); 482 return; 483 } else if (object->ref_count == 1) { 484 if (object->shadow_count == 0) { 485 vm_object_set_flag(object, OBJ_ONEMAPPING); 486 } else if ((object->shadow_count == 1) && 487 (object->handle == NULL) && 488 (object->type == OBJT_DEFAULT || 489 object->type == OBJT_SWAP)) { 490 vm_object_t robject; 491 492 robject = LIST_FIRST(&object->shadow_head); 493 KASSERT(robject != NULL, 494 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 495 object->ref_count, 496 object->shadow_count)); 497 if (!VM_OBJECT_TRYLOCK(robject)) { 498 /* 499 * Avoid a potential deadlock. 500 */ 501 object->ref_count++; 502 VM_OBJECT_UNLOCK(object); 503 /* 504 * More likely than not the thread 505 * holding robject's lock has lower 506 * priority than the current thread. 507 * Let the lower priority thread run. 508 */ 509 pause("vmo_de", 1); 510 continue; 511 } 512 /* 513 * Collapse object into its shadow unless its 514 * shadow is dead. In that case, object will 515 * be deallocated by the thread that is 516 * deallocating its shadow. 517 */ 518 if ((robject->flags & OBJ_DEAD) == 0 && 519 (robject->handle == NULL) && 520 (robject->type == OBJT_DEFAULT || 521 robject->type == OBJT_SWAP)) { 522 523 robject->ref_count++; 524 retry: 525 if (robject->paging_in_progress) { 526 VM_OBJECT_UNLOCK(object); 527 vm_object_pip_wait(robject, 528 "objde1"); 529 temp = robject->backing_object; 530 if (object == temp) { 531 VM_OBJECT_LOCK(object); 532 goto retry; 533 } 534 } else if (object->paging_in_progress) { 535 VM_OBJECT_UNLOCK(robject); 536 object->flags |= OBJ_PIPWNT; 537 msleep(object, 538 VM_OBJECT_MTX(object), 539 PDROP | PVM, "objde2", 0); 540 VM_OBJECT_LOCK(robject); 541 temp = robject->backing_object; 542 if (object == temp) { 543 VM_OBJECT_LOCK(object); 544 goto retry; 545 } 546 } else 547 VM_OBJECT_UNLOCK(object); 548 549 if (robject->ref_count == 1) { 550 robject->ref_count--; 551 object = robject; 552 goto doterm; 553 } 554 object = robject; 555 vm_object_collapse(object); 556 VM_OBJECT_UNLOCK(object); 557 continue; 558 } 559 VM_OBJECT_UNLOCK(robject); 560 } 561 VM_OBJECT_UNLOCK(object); 562 return; 563 } 564 doterm: 565 temp = object->backing_object; 566 if (temp != NULL) { 567 VM_OBJECT_LOCK(temp); 568 LIST_REMOVE(object, shadow_list); 569 temp->shadow_count--; 570 temp->generation++; 571 VM_OBJECT_UNLOCK(temp); 572 object->backing_object = NULL; 573 } 574 /* 575 * Don't double-terminate, we could be in a termination 576 * recursion due to the terminate having to sync data 577 * to disk. 578 */ 579 if ((object->flags & OBJ_DEAD) == 0) 580 vm_object_terminate(object); 581 else 582 VM_OBJECT_UNLOCK(object); 583 object = temp; 584 } 585 } 586 587 /* 588 * vm_object_terminate actually destroys the specified object, freeing 589 * up all previously used resources. 590 * 591 * The object must be locked. 592 * This routine may block. 593 */ 594 void 595 vm_object_terminate(vm_object_t object) 596 { 597 vm_page_t p; 598 599 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 600 601 /* 602 * Make sure no one uses us. 603 */ 604 vm_object_set_flag(object, OBJ_DEAD); 605 606 /* 607 * wait for the pageout daemon to be done with the object 608 */ 609 vm_object_pip_wait(object, "objtrm"); 610 611 KASSERT(!object->paging_in_progress, 612 ("vm_object_terminate: pageout in progress")); 613 614 /* 615 * Clean and free the pages, as appropriate. All references to the 616 * object are gone, so we don't need to lock it. 617 */ 618 if (object->type == OBJT_VNODE) { 619 struct vnode *vp = (struct vnode *)object->handle; 620 621 /* 622 * Clean pages and flush buffers. 623 */ 624 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 625 VM_OBJECT_UNLOCK(object); 626 627 vinvalbuf(vp, V_SAVE, NULL, 0, 0); 628 629 VM_OBJECT_LOCK(object); 630 } 631 632 KASSERT(object->ref_count == 0, 633 ("vm_object_terminate: object with references, ref_count=%d", 634 object->ref_count)); 635 636 /* 637 * Now free any remaining pages. For internal objects, this also 638 * removes them from paging queues. Don't free wired pages, just 639 * remove them from the object. 640 */ 641 vm_page_lock_queues(); 642 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 643 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 644 ("vm_object_terminate: freeing busy page %p " 645 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags)); 646 if (p->wire_count == 0) { 647 vm_page_free(p); 648 cnt.v_pfree++; 649 } else { 650 vm_page_remove(p); 651 } 652 } 653 vm_page_unlock_queues(); 654 655 if (__predict_false(object->cache != NULL)) 656 vm_page_cache_free(object, 0, 0); 657 658 /* 659 * Let the pager know object is dead. 660 */ 661 vm_pager_deallocate(object); 662 VM_OBJECT_UNLOCK(object); 663 664 /* 665 * Remove the object from the global object list. 666 */ 667 mtx_lock(&vm_object_list_mtx); 668 TAILQ_REMOVE(&vm_object_list, object, object_list); 669 mtx_unlock(&vm_object_list_mtx); 670 671 /* 672 * Free the space for the object. 673 */ 674 uma_zfree(obj_zone, object); 675 } 676 677 /* 678 * vm_object_page_clean 679 * 680 * Clean all dirty pages in the specified range of object. Leaves page 681 * on whatever queue it is currently on. If NOSYNC is set then do not 682 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 683 * leaving the object dirty. 684 * 685 * When stuffing pages asynchronously, allow clustering. XXX we need a 686 * synchronous clustering mode implementation. 687 * 688 * Odd semantics: if start == end, we clean everything. 689 * 690 * The object must be locked. 691 */ 692 void 693 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags) 694 { 695 vm_page_t p, np; 696 vm_pindex_t tstart, tend; 697 vm_pindex_t pi; 698 int clearobjflags; 699 int pagerflags; 700 int curgeneration; 701 702 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 703 if (object->type != OBJT_VNODE || 704 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 705 return; 706 707 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 708 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 709 710 vm_object_set_flag(object, OBJ_CLEANING); 711 712 tstart = start; 713 if (end == 0) { 714 tend = object->size; 715 } else { 716 tend = end; 717 } 718 719 vm_page_lock_queues(); 720 /* 721 * If the caller is smart and only msync()s a range he knows is 722 * dirty, we may be able to avoid an object scan. This results in 723 * a phenominal improvement in performance. We cannot do this 724 * as a matter of course because the object may be huge - e.g. 725 * the size might be in the gigabytes or terrabytes. 726 */ 727 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) { 728 vm_pindex_t tscan; 729 int scanlimit; 730 int scanreset; 731 732 scanreset = object->resident_page_count / EASY_SCAN_FACTOR; 733 if (scanreset < 16) 734 scanreset = 16; 735 pagerflags |= VM_PAGER_IGNORE_CLEANCHK; 736 737 scanlimit = scanreset; 738 tscan = tstart; 739 while (tscan < tend) { 740 curgeneration = object->generation; 741 p = vm_page_lookup(object, tscan); 742 if (p == NULL || p->valid == 0) { 743 if (--scanlimit == 0) 744 break; 745 ++tscan; 746 continue; 747 } 748 vm_page_test_dirty(p); 749 if ((p->dirty & p->valid) == 0) { 750 if (--scanlimit == 0) 751 break; 752 ++tscan; 753 continue; 754 } 755 /* 756 * If we have been asked to skip nosync pages and 757 * this is a nosync page, we can't continue. 758 */ 759 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) { 760 if (--scanlimit == 0) 761 break; 762 ++tscan; 763 continue; 764 } 765 scanlimit = scanreset; 766 767 /* 768 * This returns 0 if it was unable to busy the first 769 * page (i.e. had to sleep). 770 */ 771 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags); 772 } 773 774 /* 775 * If everything was dirty and we flushed it successfully, 776 * and the requested range is not the entire object, we 777 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can 778 * return immediately. 779 */ 780 if (tscan >= tend && (tstart || tend < object->size)) { 781 vm_page_unlock_queues(); 782 vm_object_clear_flag(object, OBJ_CLEANING); 783 return; 784 } 785 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK; 786 } 787 788 /* 789 * Generally set CLEANCHK interlock and make the page read-only so 790 * we can then clear the object flags. 791 * 792 * However, if this is a nosync mmap then the object is likely to 793 * stay dirty so do not mess with the page and do not clear the 794 * object flags. 795 */ 796 clearobjflags = 1; 797 TAILQ_FOREACH(p, &object->memq, listq) { 798 p->oflags |= VPO_CLEANCHK; 799 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) 800 clearobjflags = 0; 801 else 802 pmap_remove_write(p); 803 } 804 805 if (clearobjflags && (tstart == 0) && (tend == object->size)) { 806 struct vnode *vp; 807 808 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 809 if (object->type == OBJT_VNODE && 810 (vp = (struct vnode *)object->handle) != NULL) { 811 VI_LOCK(vp); 812 if (vp->v_iflag & VI_OBJDIRTY) 813 vp->v_iflag &= ~VI_OBJDIRTY; 814 VI_UNLOCK(vp); 815 } 816 } 817 818 rescan: 819 curgeneration = object->generation; 820 821 for (p = TAILQ_FIRST(&object->memq); p; p = np) { 822 int n; 823 824 np = TAILQ_NEXT(p, listq); 825 826 again: 827 pi = p->pindex; 828 if ((p->oflags & VPO_CLEANCHK) == 0 || 829 (pi < tstart) || (pi >= tend) || 830 p->valid == 0) { 831 p->oflags &= ~VPO_CLEANCHK; 832 continue; 833 } 834 835 vm_page_test_dirty(p); 836 if ((p->dirty & p->valid) == 0) { 837 p->oflags &= ~VPO_CLEANCHK; 838 continue; 839 } 840 841 /* 842 * If we have been asked to skip nosync pages and this is a 843 * nosync page, skip it. Note that the object flags were 844 * not cleared in this case so we do not have to set them. 845 */ 846 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) { 847 p->oflags &= ~VPO_CLEANCHK; 848 continue; 849 } 850 851 n = vm_object_page_collect_flush(object, p, 852 curgeneration, pagerflags); 853 if (n == 0) 854 goto rescan; 855 856 if (object->generation != curgeneration) 857 goto rescan; 858 859 /* 860 * Try to optimize the next page. If we can't we pick up 861 * our (random) scan where we left off. 862 */ 863 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) { 864 if ((p = vm_page_lookup(object, pi + n)) != NULL) 865 goto again; 866 } 867 } 868 vm_page_unlock_queues(); 869 #if 0 870 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 871 #endif 872 873 vm_object_clear_flag(object, OBJ_CLEANING); 874 return; 875 } 876 877 static int 878 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags) 879 { 880 int runlen; 881 int maxf; 882 int chkb; 883 int maxb; 884 int i; 885 vm_pindex_t pi; 886 vm_page_t maf[vm_pageout_page_count]; 887 vm_page_t mab[vm_pageout_page_count]; 888 vm_page_t ma[vm_pageout_page_count]; 889 890 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 891 pi = p->pindex; 892 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 893 vm_page_lock_queues(); 894 if (object->generation != curgeneration) { 895 return(0); 896 } 897 } 898 maxf = 0; 899 for(i = 1; i < vm_pageout_page_count; i++) { 900 vm_page_t tp; 901 902 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 903 if ((tp->oflags & VPO_BUSY) || 904 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 905 (tp->oflags & VPO_CLEANCHK) == 0) || 906 (tp->busy != 0)) 907 break; 908 vm_page_test_dirty(tp); 909 if ((tp->dirty & tp->valid) == 0) { 910 tp->oflags &= ~VPO_CLEANCHK; 911 break; 912 } 913 maf[ i - 1 ] = tp; 914 maxf++; 915 continue; 916 } 917 break; 918 } 919 920 maxb = 0; 921 chkb = vm_pageout_page_count - maxf; 922 if (chkb) { 923 for(i = 1; i < chkb;i++) { 924 vm_page_t tp; 925 926 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 927 if ((tp->oflags & VPO_BUSY) || 928 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 929 (tp->oflags & VPO_CLEANCHK) == 0) || 930 (tp->busy != 0)) 931 break; 932 vm_page_test_dirty(tp); 933 if ((tp->dirty & tp->valid) == 0) { 934 tp->oflags &= ~VPO_CLEANCHK; 935 break; 936 } 937 mab[ i - 1 ] = tp; 938 maxb++; 939 continue; 940 } 941 break; 942 } 943 } 944 945 for(i = 0; i < maxb; i++) { 946 int index = (maxb - i) - 1; 947 ma[index] = mab[i]; 948 ma[index]->oflags &= ~VPO_CLEANCHK; 949 } 950 p->oflags &= ~VPO_CLEANCHK; 951 ma[maxb] = p; 952 for(i = 0; i < maxf; i++) { 953 int index = (maxb + i) + 1; 954 ma[index] = maf[i]; 955 ma[index]->oflags &= ~VPO_CLEANCHK; 956 } 957 runlen = maxb + maxf + 1; 958 959 vm_pageout_flush(ma, runlen, pagerflags); 960 for (i = 0; i < runlen; i++) { 961 if (ma[i]->valid & ma[i]->dirty) { 962 pmap_remove_write(ma[i]); 963 ma[i]->oflags |= VPO_CLEANCHK; 964 965 /* 966 * maxf will end up being the actual number of pages 967 * we wrote out contiguously, non-inclusive of the 968 * first page. We do not count look-behind pages. 969 */ 970 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 971 maxf = i - maxb - 1; 972 } 973 } 974 return(maxf + 1); 975 } 976 977 /* 978 * Note that there is absolutely no sense in writing out 979 * anonymous objects, so we track down the vnode object 980 * to write out. 981 * We invalidate (remove) all pages from the address space 982 * for semantic correctness. 983 * 984 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 985 * may start out with a NULL object. 986 */ 987 void 988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 989 boolean_t syncio, boolean_t invalidate) 990 { 991 vm_object_t backing_object; 992 struct vnode *vp; 993 struct mount *mp; 994 int flags; 995 996 if (object == NULL) 997 return; 998 VM_OBJECT_LOCK(object); 999 while ((backing_object = object->backing_object) != NULL) { 1000 VM_OBJECT_LOCK(backing_object); 1001 offset += object->backing_object_offset; 1002 VM_OBJECT_UNLOCK(object); 1003 object = backing_object; 1004 if (object->size < OFF_TO_IDX(offset + size)) 1005 size = IDX_TO_OFF(object->size) - offset; 1006 } 1007 /* 1008 * Flush pages if writing is allowed, invalidate them 1009 * if invalidation requested. Pages undergoing I/O 1010 * will be ignored by vm_object_page_remove(). 1011 * 1012 * We cannot lock the vnode and then wait for paging 1013 * to complete without deadlocking against vm_fault. 1014 * Instead we simply call vm_object_page_remove() and 1015 * allow it to block internally on a page-by-page 1016 * basis when it encounters pages undergoing async 1017 * I/O. 1018 */ 1019 if (object->type == OBJT_VNODE && 1020 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1021 int vfslocked; 1022 vp = object->handle; 1023 VM_OBJECT_UNLOCK(object); 1024 (void) vn_start_write(vp, &mp, V_WAIT); 1025 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1026 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread); 1027 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1028 flags |= invalidate ? OBJPC_INVAL : 0; 1029 VM_OBJECT_LOCK(object); 1030 vm_object_page_clean(object, 1031 OFF_TO_IDX(offset), 1032 OFF_TO_IDX(offset + size + PAGE_MASK), 1033 flags); 1034 VM_OBJECT_UNLOCK(object); 1035 VOP_UNLOCK(vp, 0, curthread); 1036 VFS_UNLOCK_GIANT(vfslocked); 1037 vn_finished_write(mp); 1038 VM_OBJECT_LOCK(object); 1039 } 1040 if ((object->type == OBJT_VNODE || 1041 object->type == OBJT_DEVICE) && invalidate) { 1042 boolean_t purge; 1043 purge = old_msync || (object->type == OBJT_DEVICE); 1044 vm_object_page_remove(object, 1045 OFF_TO_IDX(offset), 1046 OFF_TO_IDX(offset + size + PAGE_MASK), 1047 purge ? FALSE : TRUE); 1048 } 1049 VM_OBJECT_UNLOCK(object); 1050 } 1051 1052 /* 1053 * vm_object_madvise: 1054 * 1055 * Implements the madvise function at the object/page level. 1056 * 1057 * MADV_WILLNEED (any object) 1058 * 1059 * Activate the specified pages if they are resident. 1060 * 1061 * MADV_DONTNEED (any object) 1062 * 1063 * Deactivate the specified pages if they are resident. 1064 * 1065 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1066 * OBJ_ONEMAPPING only) 1067 * 1068 * Deactivate and clean the specified pages if they are 1069 * resident. This permits the process to reuse the pages 1070 * without faulting or the kernel to reclaim the pages 1071 * without I/O. 1072 */ 1073 void 1074 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1075 { 1076 vm_pindex_t end, tpindex; 1077 vm_object_t backing_object, tobject; 1078 vm_page_t m; 1079 1080 if (object == NULL) 1081 return; 1082 VM_OBJECT_LOCK(object); 1083 end = pindex + count; 1084 /* 1085 * Locate and adjust resident pages 1086 */ 1087 for (; pindex < end; pindex += 1) { 1088 relookup: 1089 tobject = object; 1090 tpindex = pindex; 1091 shadowlookup: 1092 /* 1093 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1094 * and those pages must be OBJ_ONEMAPPING. 1095 */ 1096 if (advise == MADV_FREE) { 1097 if ((tobject->type != OBJT_DEFAULT && 1098 tobject->type != OBJT_SWAP) || 1099 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1100 goto unlock_tobject; 1101 } 1102 } 1103 m = vm_page_lookup(tobject, tpindex); 1104 if (m == NULL && advise == MADV_WILLNEED) { 1105 /* 1106 * If the page is cached, reactivate it. 1107 */ 1108 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1109 VM_ALLOC_NOBUSY); 1110 } 1111 if (m == NULL) { 1112 /* 1113 * There may be swap even if there is no backing page 1114 */ 1115 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1116 swap_pager_freespace(tobject, tpindex, 1); 1117 /* 1118 * next object 1119 */ 1120 backing_object = tobject->backing_object; 1121 if (backing_object == NULL) 1122 goto unlock_tobject; 1123 VM_OBJECT_LOCK(backing_object); 1124 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1125 if (tobject != object) 1126 VM_OBJECT_UNLOCK(tobject); 1127 tobject = backing_object; 1128 goto shadowlookup; 1129 } 1130 /* 1131 * If the page is busy or not in a normal active state, 1132 * we skip it. If the page is not managed there are no 1133 * page queues to mess with. Things can break if we mess 1134 * with pages in any of the below states. 1135 */ 1136 vm_page_lock_queues(); 1137 if (m->hold_count || 1138 m->wire_count || 1139 (m->flags & PG_UNMANAGED) || 1140 m->valid != VM_PAGE_BITS_ALL) { 1141 vm_page_unlock_queues(); 1142 goto unlock_tobject; 1143 } 1144 if ((m->oflags & VPO_BUSY) || m->busy) { 1145 vm_page_flag_set(m, PG_REFERENCED); 1146 vm_page_unlock_queues(); 1147 if (object != tobject) 1148 VM_OBJECT_UNLOCK(object); 1149 m->oflags |= VPO_WANTED; 1150 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0); 1151 VM_OBJECT_LOCK(object); 1152 goto relookup; 1153 } 1154 if (advise == MADV_WILLNEED) { 1155 vm_page_activate(m); 1156 } else if (advise == MADV_DONTNEED) { 1157 vm_page_dontneed(m); 1158 } else if (advise == MADV_FREE) { 1159 /* 1160 * Mark the page clean. This will allow the page 1161 * to be freed up by the system. However, such pages 1162 * are often reused quickly by malloc()/free() 1163 * so we do not do anything that would cause 1164 * a page fault if we can help it. 1165 * 1166 * Specifically, we do not try to actually free 1167 * the page now nor do we try to put it in the 1168 * cache (which would cause a page fault on reuse). 1169 * 1170 * But we do make the page is freeable as we 1171 * can without actually taking the step of unmapping 1172 * it. 1173 */ 1174 pmap_clear_modify(m); 1175 m->dirty = 0; 1176 m->act_count = 0; 1177 vm_page_dontneed(m); 1178 } 1179 vm_page_unlock_queues(); 1180 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1181 swap_pager_freespace(tobject, tpindex, 1); 1182 unlock_tobject: 1183 if (tobject != object) 1184 VM_OBJECT_UNLOCK(tobject); 1185 } 1186 VM_OBJECT_UNLOCK(object); 1187 } 1188 1189 /* 1190 * vm_object_shadow: 1191 * 1192 * Create a new object which is backed by the 1193 * specified existing object range. The source 1194 * object reference is deallocated. 1195 * 1196 * The new object and offset into that object 1197 * are returned in the source parameters. 1198 */ 1199 void 1200 vm_object_shadow( 1201 vm_object_t *object, /* IN/OUT */ 1202 vm_ooffset_t *offset, /* IN/OUT */ 1203 vm_size_t length) 1204 { 1205 vm_object_t source; 1206 vm_object_t result; 1207 1208 source = *object; 1209 1210 /* 1211 * Don't create the new object if the old object isn't shared. 1212 */ 1213 if (source != NULL) { 1214 VM_OBJECT_LOCK(source); 1215 if (source->ref_count == 1 && 1216 source->handle == NULL && 1217 (source->type == OBJT_DEFAULT || 1218 source->type == OBJT_SWAP)) { 1219 VM_OBJECT_UNLOCK(source); 1220 return; 1221 } 1222 VM_OBJECT_UNLOCK(source); 1223 } 1224 1225 /* 1226 * Allocate a new object with the given length. 1227 */ 1228 result = vm_object_allocate(OBJT_DEFAULT, length); 1229 1230 /* 1231 * The new object shadows the source object, adding a reference to it. 1232 * Our caller changes his reference to point to the new object, 1233 * removing a reference to the source object. Net result: no change 1234 * of reference count. 1235 * 1236 * Try to optimize the result object's page color when shadowing 1237 * in order to maintain page coloring consistency in the combined 1238 * shadowed object. 1239 */ 1240 result->backing_object = source; 1241 /* 1242 * Store the offset into the source object, and fix up the offset into 1243 * the new object. 1244 */ 1245 result->backing_object_offset = *offset; 1246 if (source != NULL) { 1247 VM_OBJECT_LOCK(source); 1248 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1249 source->shadow_count++; 1250 source->generation++; 1251 result->flags |= source->flags & OBJ_NEEDGIANT; 1252 VM_OBJECT_UNLOCK(source); 1253 } 1254 1255 1256 /* 1257 * Return the new things 1258 */ 1259 *offset = 0; 1260 *object = result; 1261 } 1262 1263 /* 1264 * vm_object_split: 1265 * 1266 * Split the pages in a map entry into a new object. This affords 1267 * easier removal of unused pages, and keeps object inheritance from 1268 * being a negative impact on memory usage. 1269 */ 1270 void 1271 vm_object_split(vm_map_entry_t entry) 1272 { 1273 vm_page_t m, m_next; 1274 vm_object_t orig_object, new_object, source; 1275 vm_pindex_t idx, offidxstart; 1276 vm_size_t size; 1277 1278 orig_object = entry->object.vm_object; 1279 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1280 return; 1281 if (orig_object->ref_count <= 1) 1282 return; 1283 VM_OBJECT_UNLOCK(orig_object); 1284 1285 offidxstart = OFF_TO_IDX(entry->offset); 1286 size = atop(entry->end - entry->start); 1287 1288 /* 1289 * If swap_pager_copy() is later called, it will convert new_object 1290 * into a swap object. 1291 */ 1292 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1293 1294 /* 1295 * At this point, the new object is still private, so the order in 1296 * which the original and new objects are locked does not matter. 1297 */ 1298 VM_OBJECT_LOCK(new_object); 1299 VM_OBJECT_LOCK(orig_object); 1300 source = orig_object->backing_object; 1301 if (source != NULL) { 1302 VM_OBJECT_LOCK(source); 1303 if ((source->flags & OBJ_DEAD) != 0) { 1304 VM_OBJECT_UNLOCK(source); 1305 VM_OBJECT_UNLOCK(orig_object); 1306 VM_OBJECT_UNLOCK(new_object); 1307 vm_object_deallocate(new_object); 1308 VM_OBJECT_LOCK(orig_object); 1309 return; 1310 } 1311 LIST_INSERT_HEAD(&source->shadow_head, 1312 new_object, shadow_list); 1313 source->shadow_count++; 1314 source->generation++; 1315 vm_object_reference_locked(source); /* for new_object */ 1316 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1317 VM_OBJECT_UNLOCK(source); 1318 new_object->backing_object_offset = 1319 orig_object->backing_object_offset + entry->offset; 1320 new_object->backing_object = source; 1321 } 1322 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT; 1323 retry: 1324 if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) { 1325 if (m->pindex < offidxstart) { 1326 m = vm_page_splay(offidxstart, orig_object->root); 1327 if ((orig_object->root = m)->pindex < offidxstart) 1328 m = TAILQ_NEXT(m, listq); 1329 } 1330 } 1331 vm_page_lock_queues(); 1332 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1333 m = m_next) { 1334 m_next = TAILQ_NEXT(m, listq); 1335 1336 /* 1337 * We must wait for pending I/O to complete before we can 1338 * rename the page. 1339 * 1340 * We do not have to VM_PROT_NONE the page as mappings should 1341 * not be changed by this operation. 1342 */ 1343 if ((m->oflags & VPO_BUSY) || m->busy) { 1344 vm_page_flag_set(m, PG_REFERENCED); 1345 vm_page_unlock_queues(); 1346 VM_OBJECT_UNLOCK(new_object); 1347 m->oflags |= VPO_WANTED; 1348 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1349 VM_OBJECT_LOCK(new_object); 1350 goto retry; 1351 } 1352 vm_page_rename(m, new_object, idx); 1353 /* page automatically made dirty by rename and cache handled */ 1354 vm_page_busy(m); 1355 } 1356 vm_page_unlock_queues(); 1357 if (orig_object->type == OBJT_SWAP) { 1358 /* 1359 * swap_pager_copy() can sleep, in which case the orig_object's 1360 * and new_object's locks are released and reacquired. 1361 */ 1362 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1363 1364 /* 1365 * Transfer any cached pages from orig_object to new_object. 1366 */ 1367 if (__predict_false(orig_object->cache != NULL)) 1368 vm_page_cache_transfer(orig_object, offidxstart, 1369 new_object); 1370 } 1371 VM_OBJECT_UNLOCK(orig_object); 1372 TAILQ_FOREACH(m, &new_object->memq, listq) 1373 vm_page_wakeup(m); 1374 VM_OBJECT_UNLOCK(new_object); 1375 entry->object.vm_object = new_object; 1376 entry->offset = 0LL; 1377 vm_object_deallocate(orig_object); 1378 VM_OBJECT_LOCK(new_object); 1379 } 1380 1381 #define OBSC_TEST_ALL_SHADOWED 0x0001 1382 #define OBSC_COLLAPSE_NOWAIT 0x0002 1383 #define OBSC_COLLAPSE_WAIT 0x0004 1384 1385 static int 1386 vm_object_backing_scan(vm_object_t object, int op) 1387 { 1388 int r = 1; 1389 vm_page_t p; 1390 vm_object_t backing_object; 1391 vm_pindex_t backing_offset_index; 1392 1393 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1394 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1395 1396 backing_object = object->backing_object; 1397 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1398 1399 /* 1400 * Initial conditions 1401 */ 1402 if (op & OBSC_TEST_ALL_SHADOWED) { 1403 /* 1404 * We do not want to have to test for the existence of cache 1405 * or swap pages in the backing object. XXX but with the 1406 * new swapper this would be pretty easy to do. 1407 * 1408 * XXX what about anonymous MAP_SHARED memory that hasn't 1409 * been ZFOD faulted yet? If we do not test for this, the 1410 * shadow test may succeed! XXX 1411 */ 1412 if (backing_object->type != OBJT_DEFAULT) { 1413 return (0); 1414 } 1415 } 1416 if (op & OBSC_COLLAPSE_WAIT) { 1417 vm_object_set_flag(backing_object, OBJ_DEAD); 1418 } 1419 1420 /* 1421 * Our scan 1422 */ 1423 p = TAILQ_FIRST(&backing_object->memq); 1424 while (p) { 1425 vm_page_t next = TAILQ_NEXT(p, listq); 1426 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1427 1428 if (op & OBSC_TEST_ALL_SHADOWED) { 1429 vm_page_t pp; 1430 1431 /* 1432 * Ignore pages outside the parent object's range 1433 * and outside the parent object's mapping of the 1434 * backing object. 1435 * 1436 * note that we do not busy the backing object's 1437 * page. 1438 */ 1439 if ( 1440 p->pindex < backing_offset_index || 1441 new_pindex >= object->size 1442 ) { 1443 p = next; 1444 continue; 1445 } 1446 1447 /* 1448 * See if the parent has the page or if the parent's 1449 * object pager has the page. If the parent has the 1450 * page but the page is not valid, the parent's 1451 * object pager must have the page. 1452 * 1453 * If this fails, the parent does not completely shadow 1454 * the object and we might as well give up now. 1455 */ 1456 1457 pp = vm_page_lookup(object, new_pindex); 1458 if ( 1459 (pp == NULL || pp->valid == 0) && 1460 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1461 ) { 1462 r = 0; 1463 break; 1464 } 1465 } 1466 1467 /* 1468 * Check for busy page 1469 */ 1470 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1471 vm_page_t pp; 1472 1473 if (op & OBSC_COLLAPSE_NOWAIT) { 1474 if ((p->oflags & VPO_BUSY) || 1475 !p->valid || 1476 p->busy) { 1477 p = next; 1478 continue; 1479 } 1480 } else if (op & OBSC_COLLAPSE_WAIT) { 1481 if ((p->oflags & VPO_BUSY) || p->busy) { 1482 vm_page_lock_queues(); 1483 vm_page_flag_set(p, PG_REFERENCED); 1484 vm_page_unlock_queues(); 1485 VM_OBJECT_UNLOCK(object); 1486 p->oflags |= VPO_WANTED; 1487 msleep(p, VM_OBJECT_MTX(backing_object), 1488 PDROP | PVM, "vmocol", 0); 1489 VM_OBJECT_LOCK(object); 1490 VM_OBJECT_LOCK(backing_object); 1491 /* 1492 * If we slept, anything could have 1493 * happened. Since the object is 1494 * marked dead, the backing offset 1495 * should not have changed so we 1496 * just restart our scan. 1497 */ 1498 p = TAILQ_FIRST(&backing_object->memq); 1499 continue; 1500 } 1501 } 1502 1503 KASSERT( 1504 p->object == backing_object, 1505 ("vm_object_backing_scan: object mismatch") 1506 ); 1507 1508 /* 1509 * Destroy any associated swap 1510 */ 1511 if (backing_object->type == OBJT_SWAP) { 1512 swap_pager_freespace( 1513 backing_object, 1514 p->pindex, 1515 1 1516 ); 1517 } 1518 1519 if ( 1520 p->pindex < backing_offset_index || 1521 new_pindex >= object->size 1522 ) { 1523 /* 1524 * Page is out of the parent object's range, we 1525 * can simply destroy it. 1526 */ 1527 vm_page_lock_queues(); 1528 KASSERT(!pmap_page_is_mapped(p), 1529 ("freeing mapped page %p", p)); 1530 if (p->wire_count == 0) 1531 vm_page_free(p); 1532 else 1533 vm_page_remove(p); 1534 vm_page_unlock_queues(); 1535 p = next; 1536 continue; 1537 } 1538 1539 pp = vm_page_lookup(object, new_pindex); 1540 if ( 1541 pp != NULL || 1542 vm_pager_has_page(object, new_pindex, NULL, NULL) 1543 ) { 1544 /* 1545 * page already exists in parent OR swap exists 1546 * for this location in the parent. Destroy 1547 * the original page from the backing object. 1548 * 1549 * Leave the parent's page alone 1550 */ 1551 vm_page_lock_queues(); 1552 KASSERT(!pmap_page_is_mapped(p), 1553 ("freeing mapped page %p", p)); 1554 if (p->wire_count == 0) 1555 vm_page_free(p); 1556 else 1557 vm_page_remove(p); 1558 vm_page_unlock_queues(); 1559 p = next; 1560 continue; 1561 } 1562 1563 /* 1564 * Page does not exist in parent, rename the 1565 * page from the backing object to the main object. 1566 * 1567 * If the page was mapped to a process, it can remain 1568 * mapped through the rename. 1569 */ 1570 vm_page_lock_queues(); 1571 vm_page_rename(p, object, new_pindex); 1572 vm_page_unlock_queues(); 1573 /* page automatically made dirty by rename */ 1574 } 1575 p = next; 1576 } 1577 return (r); 1578 } 1579 1580 1581 /* 1582 * this version of collapse allows the operation to occur earlier and 1583 * when paging_in_progress is true for an object... This is not a complete 1584 * operation, but should plug 99.9% of the rest of the leaks. 1585 */ 1586 static void 1587 vm_object_qcollapse(vm_object_t object) 1588 { 1589 vm_object_t backing_object = object->backing_object; 1590 1591 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1592 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1593 1594 if (backing_object->ref_count != 1) 1595 return; 1596 1597 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1598 } 1599 1600 /* 1601 * vm_object_collapse: 1602 * 1603 * Collapse an object with the object backing it. 1604 * Pages in the backing object are moved into the 1605 * parent, and the backing object is deallocated. 1606 */ 1607 void 1608 vm_object_collapse(vm_object_t object) 1609 { 1610 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1611 1612 while (TRUE) { 1613 vm_object_t backing_object; 1614 1615 /* 1616 * Verify that the conditions are right for collapse: 1617 * 1618 * The object exists and the backing object exists. 1619 */ 1620 if ((backing_object = object->backing_object) == NULL) 1621 break; 1622 1623 /* 1624 * we check the backing object first, because it is most likely 1625 * not collapsable. 1626 */ 1627 VM_OBJECT_LOCK(backing_object); 1628 if (backing_object->handle != NULL || 1629 (backing_object->type != OBJT_DEFAULT && 1630 backing_object->type != OBJT_SWAP) || 1631 (backing_object->flags & OBJ_DEAD) || 1632 object->handle != NULL || 1633 (object->type != OBJT_DEFAULT && 1634 object->type != OBJT_SWAP) || 1635 (object->flags & OBJ_DEAD)) { 1636 VM_OBJECT_UNLOCK(backing_object); 1637 break; 1638 } 1639 1640 if ( 1641 object->paging_in_progress != 0 || 1642 backing_object->paging_in_progress != 0 1643 ) { 1644 vm_object_qcollapse(object); 1645 VM_OBJECT_UNLOCK(backing_object); 1646 break; 1647 } 1648 /* 1649 * We know that we can either collapse the backing object (if 1650 * the parent is the only reference to it) or (perhaps) have 1651 * the parent bypass the object if the parent happens to shadow 1652 * all the resident pages in the entire backing object. 1653 * 1654 * This is ignoring pager-backed pages such as swap pages. 1655 * vm_object_backing_scan fails the shadowing test in this 1656 * case. 1657 */ 1658 if (backing_object->ref_count == 1) { 1659 /* 1660 * If there is exactly one reference to the backing 1661 * object, we can collapse it into the parent. 1662 */ 1663 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1664 1665 /* 1666 * Move the pager from backing_object to object. 1667 */ 1668 if (backing_object->type == OBJT_SWAP) { 1669 /* 1670 * swap_pager_copy() can sleep, in which case 1671 * the backing_object's and object's locks are 1672 * released and reacquired. 1673 */ 1674 swap_pager_copy( 1675 backing_object, 1676 object, 1677 OFF_TO_IDX(object->backing_object_offset), TRUE); 1678 1679 /* 1680 * Free any cached pages from backing_object. 1681 */ 1682 if (__predict_false(backing_object->cache != NULL)) 1683 vm_page_cache_free(backing_object, 0, 0); 1684 } 1685 /* 1686 * Object now shadows whatever backing_object did. 1687 * Note that the reference to 1688 * backing_object->backing_object moves from within 1689 * backing_object to within object. 1690 */ 1691 LIST_REMOVE(object, shadow_list); 1692 backing_object->shadow_count--; 1693 backing_object->generation++; 1694 if (backing_object->backing_object) { 1695 VM_OBJECT_LOCK(backing_object->backing_object); 1696 LIST_REMOVE(backing_object, shadow_list); 1697 LIST_INSERT_HEAD( 1698 &backing_object->backing_object->shadow_head, 1699 object, shadow_list); 1700 /* 1701 * The shadow_count has not changed. 1702 */ 1703 backing_object->backing_object->generation++; 1704 VM_OBJECT_UNLOCK(backing_object->backing_object); 1705 } 1706 object->backing_object = backing_object->backing_object; 1707 object->backing_object_offset += 1708 backing_object->backing_object_offset; 1709 1710 /* 1711 * Discard backing_object. 1712 * 1713 * Since the backing object has no pages, no pager left, 1714 * and no object references within it, all that is 1715 * necessary is to dispose of it. 1716 */ 1717 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object)); 1718 VM_OBJECT_UNLOCK(backing_object); 1719 1720 mtx_lock(&vm_object_list_mtx); 1721 TAILQ_REMOVE( 1722 &vm_object_list, 1723 backing_object, 1724 object_list 1725 ); 1726 mtx_unlock(&vm_object_list_mtx); 1727 1728 uma_zfree(obj_zone, backing_object); 1729 1730 object_collapses++; 1731 } else { 1732 vm_object_t new_backing_object; 1733 1734 /* 1735 * If we do not entirely shadow the backing object, 1736 * there is nothing we can do so we give up. 1737 */ 1738 if (object->resident_page_count != object->size && 1739 vm_object_backing_scan(object, 1740 OBSC_TEST_ALL_SHADOWED) == 0) { 1741 VM_OBJECT_UNLOCK(backing_object); 1742 break; 1743 } 1744 1745 /* 1746 * Make the parent shadow the next object in the 1747 * chain. Deallocating backing_object will not remove 1748 * it, since its reference count is at least 2. 1749 */ 1750 LIST_REMOVE(object, shadow_list); 1751 backing_object->shadow_count--; 1752 backing_object->generation++; 1753 1754 new_backing_object = backing_object->backing_object; 1755 if ((object->backing_object = new_backing_object) != NULL) { 1756 VM_OBJECT_LOCK(new_backing_object); 1757 LIST_INSERT_HEAD( 1758 &new_backing_object->shadow_head, 1759 object, 1760 shadow_list 1761 ); 1762 new_backing_object->shadow_count++; 1763 new_backing_object->generation++; 1764 vm_object_reference_locked(new_backing_object); 1765 VM_OBJECT_UNLOCK(new_backing_object); 1766 object->backing_object_offset += 1767 backing_object->backing_object_offset; 1768 } 1769 1770 /* 1771 * Drop the reference count on backing_object. Since 1772 * its ref_count was at least 2, it will not vanish. 1773 */ 1774 backing_object->ref_count--; 1775 VM_OBJECT_UNLOCK(backing_object); 1776 object_bypasses++; 1777 } 1778 1779 /* 1780 * Try again with this object's new backing object. 1781 */ 1782 } 1783 } 1784 1785 /* 1786 * vm_object_page_remove: 1787 * 1788 * Removes all physical pages in the given range from the 1789 * object's list of pages. If the range's end is zero, all 1790 * physical pages from the range's start to the end of the object 1791 * are deleted. 1792 * 1793 * The object must be locked. 1794 */ 1795 void 1796 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1797 boolean_t clean_only) 1798 { 1799 vm_page_t p, next; 1800 int wirings; 1801 1802 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1803 if (object->resident_page_count == 0) 1804 goto skipmemq; 1805 1806 /* 1807 * Since physically-backed objects do not use managed pages, we can't 1808 * remove pages from the object (we must instead remove the page 1809 * references, and then destroy the object). 1810 */ 1811 KASSERT(object->type != OBJT_PHYS || object == kernel_object || 1812 object == kmem_object, 1813 ("attempt to remove pages from a physical object")); 1814 1815 vm_object_pip_add(object, 1); 1816 again: 1817 vm_page_lock_queues(); 1818 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1819 if (p->pindex < start) { 1820 p = vm_page_splay(start, object->root); 1821 if ((object->root = p)->pindex < start) 1822 p = TAILQ_NEXT(p, listq); 1823 } 1824 } 1825 /* 1826 * Assert: the variable p is either (1) the page with the 1827 * least pindex greater than or equal to the parameter pindex 1828 * or (2) NULL. 1829 */ 1830 for (; 1831 p != NULL && (p->pindex < end || end == 0); 1832 p = next) { 1833 next = TAILQ_NEXT(p, listq); 1834 1835 /* 1836 * If the page is wired for any reason besides the 1837 * existence of managed, wired mappings, then it cannot 1838 * be freed. 1839 */ 1840 if ((wirings = p->wire_count) != 0 && 1841 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1842 pmap_remove_all(p); 1843 /* Account for removal of managed, wired mappings. */ 1844 p->wire_count -= wirings; 1845 if (!clean_only) 1846 p->valid = 0; 1847 continue; 1848 } 1849 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1850 goto again; 1851 if (clean_only && p->valid) { 1852 pmap_remove_write(p); 1853 if (p->valid & p->dirty) 1854 continue; 1855 } 1856 pmap_remove_all(p); 1857 /* Account for removal of managed, wired mappings. */ 1858 if (wirings != 0) 1859 p->wire_count -= wirings; 1860 vm_page_free(p); 1861 } 1862 vm_page_unlock_queues(); 1863 vm_object_pip_wakeup(object); 1864 skipmemq: 1865 if (__predict_false(object->cache != NULL)) 1866 vm_page_cache_free(object, start, end); 1867 } 1868 1869 /* 1870 * Routine: vm_object_coalesce 1871 * Function: Coalesces two objects backing up adjoining 1872 * regions of memory into a single object. 1873 * 1874 * returns TRUE if objects were combined. 1875 * 1876 * NOTE: Only works at the moment if the second object is NULL - 1877 * if it's not, which object do we lock first? 1878 * 1879 * Parameters: 1880 * prev_object First object to coalesce 1881 * prev_offset Offset into prev_object 1882 * prev_size Size of reference to prev_object 1883 * next_size Size of reference to the second object 1884 * 1885 * Conditions: 1886 * The object must *not* be locked. 1887 */ 1888 boolean_t 1889 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1890 vm_size_t prev_size, vm_size_t next_size) 1891 { 1892 vm_pindex_t next_pindex; 1893 1894 if (prev_object == NULL) 1895 return (TRUE); 1896 VM_OBJECT_LOCK(prev_object); 1897 if (prev_object->type != OBJT_DEFAULT && 1898 prev_object->type != OBJT_SWAP) { 1899 VM_OBJECT_UNLOCK(prev_object); 1900 return (FALSE); 1901 } 1902 1903 /* 1904 * Try to collapse the object first 1905 */ 1906 vm_object_collapse(prev_object); 1907 1908 /* 1909 * Can't coalesce if: . more than one reference . paged out . shadows 1910 * another object . has a copy elsewhere (any of which mean that the 1911 * pages not mapped to prev_entry may be in use anyway) 1912 */ 1913 if (prev_object->backing_object != NULL) { 1914 VM_OBJECT_UNLOCK(prev_object); 1915 return (FALSE); 1916 } 1917 1918 prev_size >>= PAGE_SHIFT; 1919 next_size >>= PAGE_SHIFT; 1920 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1921 1922 if ((prev_object->ref_count > 1) && 1923 (prev_object->size != next_pindex)) { 1924 VM_OBJECT_UNLOCK(prev_object); 1925 return (FALSE); 1926 } 1927 1928 /* 1929 * Remove any pages that may still be in the object from a previous 1930 * deallocation. 1931 */ 1932 if (next_pindex < prev_object->size) { 1933 vm_object_page_remove(prev_object, 1934 next_pindex, 1935 next_pindex + next_size, FALSE); 1936 if (prev_object->type == OBJT_SWAP) 1937 swap_pager_freespace(prev_object, 1938 next_pindex, next_size); 1939 } 1940 1941 /* 1942 * Extend the object if necessary. 1943 */ 1944 if (next_pindex + next_size > prev_object->size) 1945 prev_object->size = next_pindex + next_size; 1946 1947 VM_OBJECT_UNLOCK(prev_object); 1948 return (TRUE); 1949 } 1950 1951 void 1952 vm_object_set_writeable_dirty(vm_object_t object) 1953 { 1954 struct vnode *vp; 1955 1956 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1957 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 1958 return; 1959 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 1960 if (object->type == OBJT_VNODE && 1961 (vp = (struct vnode *)object->handle) != NULL) { 1962 VI_LOCK(vp); 1963 vp->v_iflag |= VI_OBJDIRTY; 1964 VI_UNLOCK(vp); 1965 } 1966 } 1967 1968 #include "opt_ddb.h" 1969 #ifdef DDB 1970 #include <sys/kernel.h> 1971 1972 #include <sys/cons.h> 1973 1974 #include <ddb/ddb.h> 1975 1976 static int 1977 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 1978 { 1979 vm_map_t tmpm; 1980 vm_map_entry_t tmpe; 1981 vm_object_t obj; 1982 int entcount; 1983 1984 if (map == 0) 1985 return 0; 1986 1987 if (entry == 0) { 1988 tmpe = map->header.next; 1989 entcount = map->nentries; 1990 while (entcount-- && (tmpe != &map->header)) { 1991 if (_vm_object_in_map(map, object, tmpe)) { 1992 return 1; 1993 } 1994 tmpe = tmpe->next; 1995 } 1996 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1997 tmpm = entry->object.sub_map; 1998 tmpe = tmpm->header.next; 1999 entcount = tmpm->nentries; 2000 while (entcount-- && tmpe != &tmpm->header) { 2001 if (_vm_object_in_map(tmpm, object, tmpe)) { 2002 return 1; 2003 } 2004 tmpe = tmpe->next; 2005 } 2006 } else if ((obj = entry->object.vm_object) != NULL) { 2007 for (; obj; obj = obj->backing_object) 2008 if (obj == object) { 2009 return 1; 2010 } 2011 } 2012 return 0; 2013 } 2014 2015 static int 2016 vm_object_in_map(vm_object_t object) 2017 { 2018 struct proc *p; 2019 2020 /* sx_slock(&allproc_lock); */ 2021 FOREACH_PROC_IN_SYSTEM(p) { 2022 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2023 continue; 2024 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2025 /* sx_sunlock(&allproc_lock); */ 2026 return 1; 2027 } 2028 } 2029 /* sx_sunlock(&allproc_lock); */ 2030 if (_vm_object_in_map(kernel_map, object, 0)) 2031 return 1; 2032 if (_vm_object_in_map(kmem_map, object, 0)) 2033 return 1; 2034 if (_vm_object_in_map(pager_map, object, 0)) 2035 return 1; 2036 if (_vm_object_in_map(buffer_map, object, 0)) 2037 return 1; 2038 return 0; 2039 } 2040 2041 DB_SHOW_COMMAND(vmochk, vm_object_check) 2042 { 2043 vm_object_t object; 2044 2045 /* 2046 * make sure that internal objs are in a map somewhere 2047 * and none have zero ref counts. 2048 */ 2049 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2050 if (object->handle == NULL && 2051 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2052 if (object->ref_count == 0) { 2053 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2054 (long)object->size); 2055 } 2056 if (!vm_object_in_map(object)) { 2057 db_printf( 2058 "vmochk: internal obj is not in a map: " 2059 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2060 object->ref_count, (u_long)object->size, 2061 (u_long)object->size, 2062 (void *)object->backing_object); 2063 } 2064 } 2065 } 2066 } 2067 2068 /* 2069 * vm_object_print: [ debug ] 2070 */ 2071 DB_SHOW_COMMAND(object, vm_object_print_static) 2072 { 2073 /* XXX convert args. */ 2074 vm_object_t object = (vm_object_t)addr; 2075 boolean_t full = have_addr; 2076 2077 vm_page_t p; 2078 2079 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2080 #define count was_count 2081 2082 int count; 2083 2084 if (object == NULL) 2085 return; 2086 2087 db_iprintf( 2088 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n", 2089 object, (int)object->type, (uintmax_t)object->size, 2090 object->resident_page_count, object->ref_count, object->flags); 2091 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2092 object->shadow_count, 2093 object->backing_object ? object->backing_object->ref_count : 0, 2094 object->backing_object, (uintmax_t)object->backing_object_offset); 2095 2096 if (!full) 2097 return; 2098 2099 db_indent += 2; 2100 count = 0; 2101 TAILQ_FOREACH(p, &object->memq, listq) { 2102 if (count == 0) 2103 db_iprintf("memory:="); 2104 else if (count == 6) { 2105 db_printf("\n"); 2106 db_iprintf(" ..."); 2107 count = 0; 2108 } else 2109 db_printf(","); 2110 count++; 2111 2112 db_printf("(off=0x%jx,page=0x%jx)", 2113 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2114 } 2115 if (count != 0) 2116 db_printf("\n"); 2117 db_indent -= 2; 2118 } 2119 2120 /* XXX. */ 2121 #undef count 2122 2123 /* XXX need this non-static entry for calling from vm_map_print. */ 2124 void 2125 vm_object_print( 2126 /* db_expr_t */ long addr, 2127 boolean_t have_addr, 2128 /* db_expr_t */ long count, 2129 char *modif) 2130 { 2131 vm_object_print_static(addr, have_addr, count, modif); 2132 } 2133 2134 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2135 { 2136 vm_object_t object; 2137 int nl = 0; 2138 int c; 2139 2140 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2141 vm_pindex_t idx, fidx; 2142 vm_pindex_t osize; 2143 vm_paddr_t pa = -1; 2144 int rcount; 2145 vm_page_t m; 2146 2147 db_printf("new object: %p\n", (void *)object); 2148 if (nl > 18) { 2149 c = cngetc(); 2150 if (c != ' ') 2151 return; 2152 nl = 0; 2153 } 2154 nl++; 2155 rcount = 0; 2156 fidx = 0; 2157 osize = object->size; 2158 if (osize > 128) 2159 osize = 128; 2160 for (idx = 0; idx < osize; idx++) { 2161 m = vm_page_lookup(object, idx); 2162 if (m == NULL) { 2163 if (rcount) { 2164 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2165 (long)fidx, rcount, (long)pa); 2166 if (nl > 18) { 2167 c = cngetc(); 2168 if (c != ' ') 2169 return; 2170 nl = 0; 2171 } 2172 nl++; 2173 rcount = 0; 2174 } 2175 continue; 2176 } 2177 2178 2179 if (rcount && 2180 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2181 ++rcount; 2182 continue; 2183 } 2184 if (rcount) { 2185 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2186 (long)fidx, rcount, (long)pa); 2187 if (nl > 18) { 2188 c = cngetc(); 2189 if (c != ' ') 2190 return; 2191 nl = 0; 2192 } 2193 nl++; 2194 } 2195 fidx = idx; 2196 pa = VM_PAGE_TO_PHYS(m); 2197 rcount = 1; 2198 } 2199 if (rcount) { 2200 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2201 (long)fidx, rcount, (long)pa); 2202 if (nl > 18) { 2203 c = cngetc(); 2204 if (c != ' ') 2205 return; 2206 nl = 0; 2207 } 2208 nl++; 2209 } 2210 } 2211 } 2212 #endif /* DDB */ 2213