1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/cpuset.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/refcount.h> 87 #include <sys/rwlock.h> 88 #include <sys/user.h> 89 #include <sys/vnode.h> 90 #include <sys/vmmeter.h> 91 #include <sys/sx.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_param.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/swap_pager.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/uma.h> 109 110 static int old_msync; 111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 112 "Use old (insecure) msync behavior"); 113 114 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 115 int pagerflags, int flags, boolean_t *allclean, 116 boolean_t *eio); 117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 118 boolean_t *allclean); 119 static void vm_object_qcollapse(vm_object_t object); 120 static void vm_object_vndeallocate(vm_object_t object); 121 static void vm_object_backing_remove(vm_object_t object); 122 123 /* 124 * Virtual memory objects maintain the actual data 125 * associated with allocated virtual memory. A given 126 * page of memory exists within exactly one object. 127 * 128 * An object is only deallocated when all "references" 129 * are given up. Only one "reference" to a given 130 * region of an object should be writeable. 131 * 132 * Associated with each object is a list of all resident 133 * memory pages belonging to that object; this list is 134 * maintained by the "vm_page" module, and locked by the object's 135 * lock. 136 * 137 * Each object also records a "pager" routine which is 138 * used to retrieve (and store) pages to the proper backing 139 * storage. In addition, objects may be backed by other 140 * objects from which they were virtual-copied. 141 * 142 * The only items within the object structure which are 143 * modified after time of creation are: 144 * reference count locked by object's lock 145 * pager routine locked by object's lock 146 * 147 */ 148 149 struct object_q vm_object_list; 150 struct mtx vm_object_list_mtx; /* lock for object list and count */ 151 152 struct vm_object kernel_object_store; 153 154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 155 "VM object stats"); 156 157 static counter_u64_t object_collapses = EARLY_COUNTER; 158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 159 &object_collapses, 160 "VM object collapses"); 161 162 static counter_u64_t object_bypasses = EARLY_COUNTER; 163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 164 &object_bypasses, 165 "VM object bypasses"); 166 167 static void 168 counter_startup(void) 169 { 170 171 object_collapses = counter_u64_alloc(M_WAITOK); 172 object_bypasses = counter_u64_alloc(M_WAITOK); 173 } 174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 175 176 static uma_zone_t obj_zone; 177 178 static int vm_object_zinit(void *mem, int size, int flags); 179 180 #ifdef INVARIANTS 181 static void vm_object_zdtor(void *mem, int size, void *arg); 182 183 static void 184 vm_object_zdtor(void *mem, int size, void *arg) 185 { 186 vm_object_t object; 187 188 object = (vm_object_t)mem; 189 KASSERT(object->ref_count == 0, 190 ("object %p ref_count = %d", object, object->ref_count)); 191 KASSERT(TAILQ_EMPTY(&object->memq), 192 ("object %p has resident pages in its memq", object)); 193 KASSERT(vm_radix_is_empty(&object->rtree), 194 ("object %p has resident pages in its trie", object)); 195 #if VM_NRESERVLEVEL > 0 196 KASSERT(LIST_EMPTY(&object->rvq), 197 ("object %p has reservations", 198 object)); 199 #endif 200 KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0, 201 ("object %p paging_in_progress = %d", 202 object, REFCOUNT_COUNT(object->paging_in_progress))); 203 KASSERT(object->busy == 0, 204 ("object %p busy = %d", 205 object, object->busy)); 206 KASSERT(object->resident_page_count == 0, 207 ("object %p resident_page_count = %d", 208 object, object->resident_page_count)); 209 KASSERT(object->shadow_count == 0, 210 ("object %p shadow_count = %d", 211 object, object->shadow_count)); 212 KASSERT(object->type == OBJT_DEAD, 213 ("object %p has non-dead type %d", 214 object, object->type)); 215 } 216 #endif 217 218 static int 219 vm_object_zinit(void *mem, int size, int flags) 220 { 221 vm_object_t object; 222 223 object = (vm_object_t)mem; 224 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 225 226 /* These are true for any object that has been freed */ 227 object->type = OBJT_DEAD; 228 vm_radix_init(&object->rtree); 229 refcount_init(&object->ref_count, 0); 230 refcount_init(&object->paging_in_progress, 0); 231 refcount_init(&object->busy, 0); 232 object->resident_page_count = 0; 233 object->shadow_count = 0; 234 object->flags = OBJ_DEAD; 235 236 mtx_lock(&vm_object_list_mtx); 237 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 238 mtx_unlock(&vm_object_list_mtx); 239 return (0); 240 } 241 242 static void 243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 244 vm_object_t object) 245 { 246 247 TAILQ_INIT(&object->memq); 248 LIST_INIT(&object->shadow_head); 249 250 object->type = type; 251 if (type == OBJT_SWAP) 252 pctrie_init(&object->un_pager.swp.swp_blks); 253 254 /* 255 * Ensure that swap_pager_swapoff() iteration over object_list 256 * sees up to date type and pctrie head if it observed 257 * non-dead object. 258 */ 259 atomic_thread_fence_rel(); 260 261 object->pg_color = 0; 262 object->flags = flags; 263 object->size = size; 264 object->domain.dr_policy = NULL; 265 object->generation = 1; 266 object->cleangeneration = 1; 267 refcount_init(&object->ref_count, 1); 268 object->memattr = VM_MEMATTR_DEFAULT; 269 object->cred = NULL; 270 object->charge = 0; 271 object->handle = NULL; 272 object->backing_object = NULL; 273 object->backing_object_offset = (vm_ooffset_t) 0; 274 #if VM_NRESERVLEVEL > 0 275 LIST_INIT(&object->rvq); 276 #endif 277 umtx_shm_object_init(object); 278 } 279 280 /* 281 * vm_object_init: 282 * 283 * Initialize the VM objects module. 284 */ 285 void 286 vm_object_init(void) 287 { 288 TAILQ_INIT(&vm_object_list); 289 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 290 291 rw_init(&kernel_object->lock, "kernel vm object"); 292 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 293 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object); 294 #if VM_NRESERVLEVEL > 0 295 kernel_object->flags |= OBJ_COLORED; 296 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 297 #endif 298 299 /* 300 * The lock portion of struct vm_object must be type stable due 301 * to vm_pageout_fallback_object_lock locking a vm object 302 * without holding any references to it. 303 */ 304 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 305 #ifdef INVARIANTS 306 vm_object_zdtor, 307 #else 308 NULL, 309 #endif 310 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 311 312 vm_radix_zinit(); 313 } 314 315 void 316 vm_object_clear_flag(vm_object_t object, u_short bits) 317 { 318 319 VM_OBJECT_ASSERT_WLOCKED(object); 320 object->flags &= ~bits; 321 } 322 323 /* 324 * Sets the default memory attribute for the specified object. Pages 325 * that are allocated to this object are by default assigned this memory 326 * attribute. 327 * 328 * Presently, this function must be called before any pages are allocated 329 * to the object. In the future, this requirement may be relaxed for 330 * "default" and "swap" objects. 331 */ 332 int 333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 334 { 335 336 VM_OBJECT_ASSERT_WLOCKED(object); 337 switch (object->type) { 338 case OBJT_DEFAULT: 339 case OBJT_DEVICE: 340 case OBJT_MGTDEVICE: 341 case OBJT_PHYS: 342 case OBJT_SG: 343 case OBJT_SWAP: 344 case OBJT_VNODE: 345 if (!TAILQ_EMPTY(&object->memq)) 346 return (KERN_FAILURE); 347 break; 348 case OBJT_DEAD: 349 return (KERN_INVALID_ARGUMENT); 350 default: 351 panic("vm_object_set_memattr: object %p is of undefined type", 352 object); 353 } 354 object->memattr = memattr; 355 return (KERN_SUCCESS); 356 } 357 358 void 359 vm_object_pip_add(vm_object_t object, short i) 360 { 361 362 refcount_acquiren(&object->paging_in_progress, i); 363 } 364 365 void 366 vm_object_pip_wakeup(vm_object_t object) 367 { 368 369 refcount_release(&object->paging_in_progress); 370 } 371 372 void 373 vm_object_pip_wakeupn(vm_object_t object, short i) 374 { 375 376 refcount_releasen(&object->paging_in_progress, i); 377 } 378 379 void 380 vm_object_pip_wait(vm_object_t object, char *waitid) 381 { 382 383 VM_OBJECT_ASSERT_WLOCKED(object); 384 385 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 386 VM_OBJECT_WUNLOCK(object); 387 refcount_wait(&object->paging_in_progress, waitid, PVM); 388 VM_OBJECT_WLOCK(object); 389 } 390 } 391 392 void 393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid) 394 { 395 396 VM_OBJECT_ASSERT_UNLOCKED(object); 397 398 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) 399 refcount_wait(&object->paging_in_progress, waitid, PVM); 400 } 401 402 /* 403 * vm_object_allocate: 404 * 405 * Returns a new object with the given size. 406 */ 407 vm_object_t 408 vm_object_allocate(objtype_t type, vm_pindex_t size) 409 { 410 vm_object_t object; 411 u_short flags; 412 413 switch (type) { 414 case OBJT_DEAD: 415 panic("vm_object_allocate: can't create OBJT_DEAD"); 416 case OBJT_DEFAULT: 417 case OBJT_SWAP: 418 flags = OBJ_COLORED; 419 break; 420 case OBJT_DEVICE: 421 case OBJT_SG: 422 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 423 break; 424 case OBJT_MGTDEVICE: 425 flags = OBJ_FICTITIOUS; 426 break; 427 case OBJT_PHYS: 428 flags = OBJ_UNMANAGED; 429 break; 430 case OBJT_VNODE: 431 flags = 0; 432 break; 433 default: 434 panic("vm_object_allocate: type %d is undefined", type); 435 } 436 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 437 _vm_object_allocate(type, size, flags, object); 438 439 return (object); 440 } 441 442 /* 443 * vm_object_allocate_anon: 444 * 445 * Returns a new default object of the given size and marked as 446 * anonymous memory for special split/collapse handling. Color 447 * to be initialized by the caller. 448 */ 449 vm_object_t 450 vm_object_allocate_anon(vm_pindex_t size) 451 { 452 vm_object_t object; 453 454 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 455 _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING, 456 object); 457 458 return (object); 459 } 460 461 462 /* 463 * vm_object_reference: 464 * 465 * Gets another reference to the given object. Note: OBJ_DEAD 466 * objects can be referenced during final cleaning. 467 */ 468 void 469 vm_object_reference(vm_object_t object) 470 { 471 if (object == NULL) 472 return; 473 VM_OBJECT_RLOCK(object); 474 vm_object_reference_locked(object); 475 VM_OBJECT_RUNLOCK(object); 476 } 477 478 /* 479 * vm_object_reference_locked: 480 * 481 * Gets another reference to the given object. 482 * 483 * The object must be locked. 484 */ 485 void 486 vm_object_reference_locked(vm_object_t object) 487 { 488 struct vnode *vp; 489 490 VM_OBJECT_ASSERT_LOCKED(object); 491 refcount_acquire(&object->ref_count); 492 if (object->type == OBJT_VNODE) { 493 vp = object->handle; 494 vref(vp); 495 } 496 } 497 498 /* 499 * Handle deallocating an object of type OBJT_VNODE. 500 */ 501 static void 502 vm_object_vndeallocate(vm_object_t object) 503 { 504 struct vnode *vp = (struct vnode *) object->handle; 505 506 KASSERT(object->type == OBJT_VNODE, 507 ("vm_object_vndeallocate: not a vnode object")); 508 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 509 510 if (refcount_release(&object->ref_count) && 511 !umtx_shm_vnobj_persistent) 512 umtx_shm_object_terminated(object); 513 514 VM_OBJECT_RUNLOCK(object); 515 /* vrele may need the vnode lock. */ 516 vrele(vp); 517 } 518 519 /* 520 * vm_object_deallocate: 521 * 522 * Release a reference to the specified object, 523 * gained either through a vm_object_allocate 524 * or a vm_object_reference call. When all references 525 * are gone, storage associated with this object 526 * may be relinquished. 527 * 528 * No object may be locked. 529 */ 530 void 531 vm_object_deallocate(vm_object_t object) 532 { 533 vm_object_t temp; 534 bool released; 535 536 while (object != NULL) { 537 VM_OBJECT_RLOCK(object); 538 if (object->type == OBJT_VNODE) { 539 vm_object_vndeallocate(object); 540 return; 541 } 542 543 /* 544 * If the reference count goes to 0 we start calling 545 * vm_object_terminate() on the object chain. A ref count 546 * of 1 may be a special case depending on the shadow count 547 * being 0 or 1. These cases require a write lock on the 548 * object. 549 */ 550 if ((object->flags & OBJ_ANON) == 0) 551 released = refcount_release_if_gt(&object->ref_count, 1); 552 else 553 released = refcount_release_if_gt(&object->ref_count, 2); 554 VM_OBJECT_RUNLOCK(object); 555 if (released) 556 return; 557 558 VM_OBJECT_WLOCK(object); 559 KASSERT(object->ref_count != 0, 560 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 561 562 refcount_release(&object->ref_count); 563 if (object->ref_count > 1) { 564 VM_OBJECT_WUNLOCK(object); 565 return; 566 } else if (object->ref_count == 1) { 567 if (object->shadow_count == 0 && 568 object->handle == NULL && 569 (object->flags & OBJ_ANON) != 0) { 570 vm_object_set_flag(object, OBJ_ONEMAPPING); 571 } else if ((object->shadow_count == 1) && 572 (object->handle == NULL) && 573 (object->flags & OBJ_ANON) != 0) { 574 vm_object_t robject; 575 576 robject = LIST_FIRST(&object->shadow_head); 577 KASSERT(robject != NULL, 578 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 579 object->ref_count, 580 object->shadow_count)); 581 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 582 ("shadowed tmpfs v_object %p", object)); 583 if (!VM_OBJECT_TRYWLOCK(robject)) { 584 /* 585 * Avoid a potential deadlock. 586 */ 587 refcount_acquire(&object->ref_count); 588 VM_OBJECT_WUNLOCK(object); 589 /* 590 * More likely than not the thread 591 * holding robject's lock has lower 592 * priority than the current thread. 593 * Let the lower priority thread run. 594 */ 595 pause("vmo_de", 1); 596 continue; 597 } 598 /* 599 * Collapse object into its shadow unless its 600 * shadow is dead. In that case, object will 601 * be deallocated by the thread that is 602 * deallocating its shadow. 603 */ 604 if ((robject->flags & 605 (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON && 606 robject->handle == NULL) { 607 608 refcount_acquire(&robject->ref_count); 609 retry: 610 if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) { 611 VM_OBJECT_WUNLOCK(object); 612 vm_object_pip_wait(robject, 613 "objde1"); 614 temp = robject->backing_object; 615 if (object == temp) { 616 VM_OBJECT_WLOCK(object); 617 goto retry; 618 } 619 } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 620 VM_OBJECT_WUNLOCK(robject); 621 VM_OBJECT_WUNLOCK(object); 622 refcount_wait( 623 &object->paging_in_progress, 624 "objde2", PVM); 625 VM_OBJECT_WLOCK(robject); 626 temp = robject->backing_object; 627 if (object == temp) { 628 VM_OBJECT_WLOCK(object); 629 goto retry; 630 } 631 } else 632 VM_OBJECT_WUNLOCK(object); 633 634 if (robject->ref_count == 1) { 635 robject->ref_count--; 636 object = robject; 637 goto doterm; 638 } 639 object = robject; 640 vm_object_collapse(object); 641 VM_OBJECT_WUNLOCK(object); 642 continue; 643 } 644 VM_OBJECT_WUNLOCK(robject); 645 } 646 VM_OBJECT_WUNLOCK(object); 647 return; 648 } 649 doterm: 650 umtx_shm_object_terminated(object); 651 temp = object->backing_object; 652 if (temp != NULL) { 653 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 654 ("shadowed tmpfs v_object 2 %p", object)); 655 vm_object_backing_remove(object); 656 } 657 /* 658 * Don't double-terminate, we could be in a termination 659 * recursion due to the terminate having to sync data 660 * to disk. 661 */ 662 if ((object->flags & OBJ_DEAD) == 0) { 663 vm_object_set_flag(object, OBJ_DEAD); 664 vm_object_terminate(object); 665 } else 666 VM_OBJECT_WUNLOCK(object); 667 object = temp; 668 } 669 } 670 671 /* 672 * vm_object_destroy removes the object from the global object list 673 * and frees the space for the object. 674 */ 675 void 676 vm_object_destroy(vm_object_t object) 677 { 678 679 /* 680 * Release the allocation charge. 681 */ 682 if (object->cred != NULL) { 683 swap_release_by_cred(object->charge, object->cred); 684 object->charge = 0; 685 crfree(object->cred); 686 object->cred = NULL; 687 } 688 689 /* 690 * Free the space for the object. 691 */ 692 uma_zfree(obj_zone, object); 693 } 694 695 static void 696 vm_object_backing_remove_locked(vm_object_t object) 697 { 698 vm_object_t backing_object; 699 700 backing_object = object->backing_object; 701 VM_OBJECT_ASSERT_WLOCKED(object); 702 VM_OBJECT_ASSERT_WLOCKED(backing_object); 703 704 if ((object->flags & OBJ_SHADOWLIST) != 0) { 705 LIST_REMOVE(object, shadow_list); 706 backing_object->shadow_count--; 707 object->flags &= ~OBJ_SHADOWLIST; 708 } 709 object->backing_object = NULL; 710 } 711 712 static void 713 vm_object_backing_remove(vm_object_t object) 714 { 715 vm_object_t backing_object; 716 717 VM_OBJECT_ASSERT_WLOCKED(object); 718 719 if ((object->flags & OBJ_SHADOWLIST) != 0) { 720 backing_object = object->backing_object; 721 VM_OBJECT_WLOCK(backing_object); 722 vm_object_backing_remove_locked(object); 723 VM_OBJECT_WUNLOCK(backing_object); 724 } else 725 object->backing_object = NULL; 726 } 727 728 static void 729 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 730 { 731 732 VM_OBJECT_ASSERT_WLOCKED(object); 733 734 if ((backing_object->flags & OBJ_ANON) != 0) { 735 VM_OBJECT_ASSERT_WLOCKED(backing_object); 736 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 737 shadow_list); 738 backing_object->shadow_count++; 739 object->flags |= OBJ_SHADOWLIST; 740 } 741 object->backing_object = backing_object; 742 } 743 744 static void 745 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 746 { 747 748 VM_OBJECT_ASSERT_WLOCKED(object); 749 750 if ((backing_object->flags & OBJ_ANON) != 0) { 751 VM_OBJECT_WLOCK(backing_object); 752 vm_object_backing_insert_locked(object, backing_object); 753 VM_OBJECT_WUNLOCK(backing_object); 754 } else 755 object->backing_object = backing_object; 756 } 757 758 759 /* 760 * vm_object_terminate_pages removes any remaining pageable pages 761 * from the object and resets the object to an empty state. 762 */ 763 static void 764 vm_object_terminate_pages(vm_object_t object) 765 { 766 vm_page_t p, p_next; 767 768 VM_OBJECT_ASSERT_WLOCKED(object); 769 770 /* 771 * Free any remaining pageable pages. This also removes them from the 772 * paging queues. However, don't free wired pages, just remove them 773 * from the object. Rather than incrementally removing each page from 774 * the object, the page and object are reset to any empty state. 775 */ 776 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 777 vm_page_assert_unbusied(p); 778 KASSERT(p->object == object && 779 (p->ref_count & VPRC_OBJREF) != 0, 780 ("vm_object_terminate_pages: page %p is inconsistent", p)); 781 782 p->object = NULL; 783 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 784 VM_CNT_INC(v_pfree); 785 vm_page_free(p); 786 } 787 } 788 789 /* 790 * If the object contained any pages, then reset it to an empty state. 791 * None of the object's fields, including "resident_page_count", were 792 * modified by the preceding loop. 793 */ 794 if (object->resident_page_count != 0) { 795 vm_radix_reclaim_allnodes(&object->rtree); 796 TAILQ_INIT(&object->memq); 797 object->resident_page_count = 0; 798 if (object->type == OBJT_VNODE) 799 vdrop(object->handle); 800 } 801 } 802 803 /* 804 * vm_object_terminate actually destroys the specified object, freeing 805 * up all previously used resources. 806 * 807 * The object must be locked. 808 * This routine may block. 809 */ 810 void 811 vm_object_terminate(vm_object_t object) 812 { 813 VM_OBJECT_ASSERT_WLOCKED(object); 814 KASSERT((object->flags & OBJ_DEAD) != 0, 815 ("terminating non-dead obj %p", object)); 816 817 /* 818 * wait for the pageout daemon to be done with the object 819 */ 820 vm_object_pip_wait(object, "objtrm"); 821 822 KASSERT(!REFCOUNT_COUNT(object->paging_in_progress), 823 ("vm_object_terminate: pageout in progress")); 824 825 KASSERT(object->ref_count == 0, 826 ("vm_object_terminate: object with references, ref_count=%d", 827 object->ref_count)); 828 829 if ((object->flags & OBJ_PG_DTOR) == 0) 830 vm_object_terminate_pages(object); 831 832 #if VM_NRESERVLEVEL > 0 833 if (__predict_false(!LIST_EMPTY(&object->rvq))) 834 vm_reserv_break_all(object); 835 #endif 836 837 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 838 object->type == OBJT_SWAP, 839 ("%s: non-swap obj %p has cred", __func__, object)); 840 841 /* 842 * Let the pager know object is dead. 843 */ 844 vm_pager_deallocate(object); 845 VM_OBJECT_WUNLOCK(object); 846 847 vm_object_destroy(object); 848 } 849 850 /* 851 * Make the page read-only so that we can clear the object flags. However, if 852 * this is a nosync mmap then the object is likely to stay dirty so do not 853 * mess with the page and do not clear the object flags. Returns TRUE if the 854 * page should be flushed, and FALSE otherwise. 855 */ 856 static boolean_t 857 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 858 { 859 860 vm_page_assert_busied(p); 861 862 /* 863 * If we have been asked to skip nosync pages and this is a 864 * nosync page, skip it. Note that the object flags were not 865 * cleared in this case so we do not have to set them. 866 */ 867 if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) { 868 *allclean = FALSE; 869 return (FALSE); 870 } else { 871 pmap_remove_write(p); 872 return (p->dirty != 0); 873 } 874 } 875 876 /* 877 * vm_object_page_clean 878 * 879 * Clean all dirty pages in the specified range of object. Leaves page 880 * on whatever queue it is currently on. If NOSYNC is set then do not 881 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 882 * leaving the object dirty. 883 * 884 * When stuffing pages asynchronously, allow clustering. XXX we need a 885 * synchronous clustering mode implementation. 886 * 887 * Odd semantics: if start == end, we clean everything. 888 * 889 * The object must be locked. 890 * 891 * Returns FALSE if some page from the range was not written, as 892 * reported by the pager, and TRUE otherwise. 893 */ 894 boolean_t 895 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 896 int flags) 897 { 898 vm_page_t np, p; 899 vm_pindex_t pi, tend, tstart; 900 int curgeneration, n, pagerflags; 901 boolean_t eio, res, allclean; 902 903 VM_OBJECT_ASSERT_WLOCKED(object); 904 905 if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) || 906 object->resident_page_count == 0) 907 return (TRUE); 908 909 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 910 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 911 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 912 913 tstart = OFF_TO_IDX(start); 914 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 915 allclean = tstart == 0 && tend >= object->size; 916 res = TRUE; 917 918 rescan: 919 curgeneration = object->generation; 920 921 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 922 pi = p->pindex; 923 if (pi >= tend) 924 break; 925 np = TAILQ_NEXT(p, listq); 926 if (vm_page_none_valid(p)) 927 continue; 928 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 929 if (object->generation != curgeneration && 930 (flags & OBJPC_SYNC) != 0) 931 goto rescan; 932 np = vm_page_find_least(object, pi); 933 continue; 934 } 935 if (!vm_object_page_remove_write(p, flags, &allclean)) { 936 vm_page_xunbusy(p); 937 continue; 938 } 939 940 n = vm_object_page_collect_flush(object, p, pagerflags, 941 flags, &allclean, &eio); 942 if (eio) { 943 res = FALSE; 944 allclean = FALSE; 945 } 946 if (object->generation != curgeneration && 947 (flags & OBJPC_SYNC) != 0) 948 goto rescan; 949 950 /* 951 * If the VOP_PUTPAGES() did a truncated write, so 952 * that even the first page of the run is not fully 953 * written, vm_pageout_flush() returns 0 as the run 954 * length. Since the condition that caused truncated 955 * write may be permanent, e.g. exhausted free space, 956 * accepting n == 0 would cause an infinite loop. 957 * 958 * Forwarding the iterator leaves the unwritten page 959 * behind, but there is not much we can do there if 960 * filesystem refuses to write it. 961 */ 962 if (n == 0) { 963 n = 1; 964 allclean = FALSE; 965 } 966 np = vm_page_find_least(object, pi + n); 967 } 968 #if 0 969 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 970 #endif 971 972 if (allclean) 973 object->cleangeneration = curgeneration; 974 return (res); 975 } 976 977 static int 978 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 979 int flags, boolean_t *allclean, boolean_t *eio) 980 { 981 vm_page_t ma[vm_pageout_page_count], p_first, tp; 982 int count, i, mreq, runlen; 983 984 vm_page_lock_assert(p, MA_NOTOWNED); 985 vm_page_assert_xbusied(p); 986 VM_OBJECT_ASSERT_WLOCKED(object); 987 988 count = 1; 989 mreq = 0; 990 991 for (tp = p; count < vm_pageout_page_count; count++) { 992 tp = vm_page_next(tp); 993 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 994 break; 995 if (!vm_object_page_remove_write(tp, flags, allclean)) { 996 vm_page_xunbusy(tp); 997 break; 998 } 999 } 1000 1001 for (p_first = p; count < vm_pageout_page_count; count++) { 1002 tp = vm_page_prev(p_first); 1003 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1004 break; 1005 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1006 vm_page_xunbusy(tp); 1007 break; 1008 } 1009 p_first = tp; 1010 mreq++; 1011 } 1012 1013 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1014 ma[i] = tp; 1015 1016 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1017 return (runlen); 1018 } 1019 1020 /* 1021 * Note that there is absolutely no sense in writing out 1022 * anonymous objects, so we track down the vnode object 1023 * to write out. 1024 * We invalidate (remove) all pages from the address space 1025 * for semantic correctness. 1026 * 1027 * If the backing object is a device object with unmanaged pages, then any 1028 * mappings to the specified range of pages must be removed before this 1029 * function is called. 1030 * 1031 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1032 * may start out with a NULL object. 1033 */ 1034 boolean_t 1035 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1036 boolean_t syncio, boolean_t invalidate) 1037 { 1038 vm_object_t backing_object; 1039 struct vnode *vp; 1040 struct mount *mp; 1041 int error, flags, fsync_after; 1042 boolean_t res; 1043 1044 if (object == NULL) 1045 return (TRUE); 1046 res = TRUE; 1047 error = 0; 1048 VM_OBJECT_WLOCK(object); 1049 while ((backing_object = object->backing_object) != NULL) { 1050 VM_OBJECT_WLOCK(backing_object); 1051 offset += object->backing_object_offset; 1052 VM_OBJECT_WUNLOCK(object); 1053 object = backing_object; 1054 if (object->size < OFF_TO_IDX(offset + size)) 1055 size = IDX_TO_OFF(object->size) - offset; 1056 } 1057 /* 1058 * Flush pages if writing is allowed, invalidate them 1059 * if invalidation requested. Pages undergoing I/O 1060 * will be ignored by vm_object_page_remove(). 1061 * 1062 * We cannot lock the vnode and then wait for paging 1063 * to complete without deadlocking against vm_fault. 1064 * Instead we simply call vm_object_page_remove() and 1065 * allow it to block internally on a page-by-page 1066 * basis when it encounters pages undergoing async 1067 * I/O. 1068 */ 1069 if (object->type == OBJT_VNODE && 1070 vm_object_mightbedirty(object) != 0 && 1071 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1072 VM_OBJECT_WUNLOCK(object); 1073 (void) vn_start_write(vp, &mp, V_WAIT); 1074 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1075 if (syncio && !invalidate && offset == 0 && 1076 atop(size) == object->size) { 1077 /* 1078 * If syncing the whole mapping of the file, 1079 * it is faster to schedule all the writes in 1080 * async mode, also allowing the clustering, 1081 * and then wait for i/o to complete. 1082 */ 1083 flags = 0; 1084 fsync_after = TRUE; 1085 } else { 1086 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1087 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1088 fsync_after = FALSE; 1089 } 1090 VM_OBJECT_WLOCK(object); 1091 res = vm_object_page_clean(object, offset, offset + size, 1092 flags); 1093 VM_OBJECT_WUNLOCK(object); 1094 if (fsync_after) 1095 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1096 VOP_UNLOCK(vp, 0); 1097 vn_finished_write(mp); 1098 if (error != 0) 1099 res = FALSE; 1100 VM_OBJECT_WLOCK(object); 1101 } 1102 if ((object->type == OBJT_VNODE || 1103 object->type == OBJT_DEVICE) && invalidate) { 1104 if (object->type == OBJT_DEVICE) 1105 /* 1106 * The option OBJPR_NOTMAPPED must be passed here 1107 * because vm_object_page_remove() cannot remove 1108 * unmanaged mappings. 1109 */ 1110 flags = OBJPR_NOTMAPPED; 1111 else if (old_msync) 1112 flags = 0; 1113 else 1114 flags = OBJPR_CLEANONLY; 1115 vm_object_page_remove(object, OFF_TO_IDX(offset), 1116 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1117 } 1118 VM_OBJECT_WUNLOCK(object); 1119 return (res); 1120 } 1121 1122 /* 1123 * Determine whether the given advice can be applied to the object. Advice is 1124 * not applied to unmanaged pages since they never belong to page queues, and 1125 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1126 * have been mapped at most once. 1127 */ 1128 static bool 1129 vm_object_advice_applies(vm_object_t object, int advice) 1130 { 1131 1132 if ((object->flags & OBJ_UNMANAGED) != 0) 1133 return (false); 1134 if (advice != MADV_FREE) 1135 return (true); 1136 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1137 (OBJ_ONEMAPPING | OBJ_ANON)); 1138 } 1139 1140 static void 1141 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1142 vm_size_t size) 1143 { 1144 1145 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1146 swap_pager_freespace(object, pindex, size); 1147 } 1148 1149 /* 1150 * vm_object_madvise: 1151 * 1152 * Implements the madvise function at the object/page level. 1153 * 1154 * MADV_WILLNEED (any object) 1155 * 1156 * Activate the specified pages if they are resident. 1157 * 1158 * MADV_DONTNEED (any object) 1159 * 1160 * Deactivate the specified pages if they are resident. 1161 * 1162 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1163 * OBJ_ONEMAPPING only) 1164 * 1165 * Deactivate and clean the specified pages if they are 1166 * resident. This permits the process to reuse the pages 1167 * without faulting or the kernel to reclaim the pages 1168 * without I/O. 1169 */ 1170 void 1171 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1172 int advice) 1173 { 1174 vm_pindex_t tpindex; 1175 vm_object_t backing_object, tobject; 1176 vm_page_t m, tm; 1177 1178 if (object == NULL) 1179 return; 1180 1181 relookup: 1182 VM_OBJECT_WLOCK(object); 1183 if (!vm_object_advice_applies(object, advice)) { 1184 VM_OBJECT_WUNLOCK(object); 1185 return; 1186 } 1187 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1188 tobject = object; 1189 1190 /* 1191 * If the next page isn't resident in the top-level object, we 1192 * need to search the shadow chain. When applying MADV_FREE, we 1193 * take care to release any swap space used to store 1194 * non-resident pages. 1195 */ 1196 if (m == NULL || pindex < m->pindex) { 1197 /* 1198 * Optimize a common case: if the top-level object has 1199 * no backing object, we can skip over the non-resident 1200 * range in constant time. 1201 */ 1202 if (object->backing_object == NULL) { 1203 tpindex = (m != NULL && m->pindex < end) ? 1204 m->pindex : end; 1205 vm_object_madvise_freespace(object, advice, 1206 pindex, tpindex - pindex); 1207 if ((pindex = tpindex) == end) 1208 break; 1209 goto next_page; 1210 } 1211 1212 tpindex = pindex; 1213 do { 1214 vm_object_madvise_freespace(tobject, advice, 1215 tpindex, 1); 1216 /* 1217 * Prepare to search the next object in the 1218 * chain. 1219 */ 1220 backing_object = tobject->backing_object; 1221 if (backing_object == NULL) 1222 goto next_pindex; 1223 VM_OBJECT_WLOCK(backing_object); 1224 tpindex += 1225 OFF_TO_IDX(tobject->backing_object_offset); 1226 if (tobject != object) 1227 VM_OBJECT_WUNLOCK(tobject); 1228 tobject = backing_object; 1229 if (!vm_object_advice_applies(tobject, advice)) 1230 goto next_pindex; 1231 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1232 NULL); 1233 } else { 1234 next_page: 1235 tm = m; 1236 m = TAILQ_NEXT(m, listq); 1237 } 1238 1239 /* 1240 * If the page is not in a normal state, skip it. The page 1241 * can not be invalidated while the object lock is held. 1242 */ 1243 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1244 goto next_pindex; 1245 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1246 ("vm_object_madvise: page %p is fictitious", tm)); 1247 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1248 ("vm_object_madvise: page %p is not managed", tm)); 1249 if (vm_page_tryxbusy(tm) == 0) { 1250 if (object != tobject) 1251 VM_OBJECT_WUNLOCK(object); 1252 if (advice == MADV_WILLNEED) { 1253 /* 1254 * Reference the page before unlocking and 1255 * sleeping so that the page daemon is less 1256 * likely to reclaim it. 1257 */ 1258 vm_page_aflag_set(tm, PGA_REFERENCED); 1259 } 1260 vm_page_busy_sleep(tm, "madvpo", false); 1261 goto relookup; 1262 } 1263 vm_page_lock(tm); 1264 vm_page_advise(tm, advice); 1265 vm_page_unlock(tm); 1266 vm_page_xunbusy(tm); 1267 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1268 next_pindex: 1269 if (tobject != object) 1270 VM_OBJECT_WUNLOCK(tobject); 1271 } 1272 VM_OBJECT_WUNLOCK(object); 1273 } 1274 1275 /* 1276 * vm_object_shadow: 1277 * 1278 * Create a new object which is backed by the 1279 * specified existing object range. The source 1280 * object reference is deallocated. 1281 * 1282 * The new object and offset into that object 1283 * are returned in the source parameters. 1284 */ 1285 void 1286 vm_object_shadow( 1287 vm_object_t *object, /* IN/OUT */ 1288 vm_ooffset_t *offset, /* IN/OUT */ 1289 vm_size_t length) 1290 { 1291 vm_object_t source; 1292 vm_object_t result; 1293 1294 source = *object; 1295 1296 /* 1297 * Don't create the new object if the old object isn't shared. 1298 * 1299 * If we hold the only reference we can guarantee that it won't 1300 * increase while we have the map locked. Otherwise the race is 1301 * harmless and we will end up with an extra shadow object that 1302 * will be collapsed later. 1303 */ 1304 if (source != NULL && source->ref_count == 1 && 1305 source->handle == NULL && (source->flags & OBJ_ANON) != 0) 1306 return; 1307 1308 /* 1309 * Allocate a new object with the given length. 1310 */ 1311 result = vm_object_allocate_anon(atop(length)); 1312 1313 /* 1314 * Store the offset into the source object, and fix up the offset into 1315 * the new object. 1316 */ 1317 result->backing_object_offset = *offset; 1318 1319 /* 1320 * The new object shadows the source object, adding a reference to it. 1321 * Our caller changes his reference to point to the new object, 1322 * removing a reference to the source object. Net result: no change 1323 * of reference count. 1324 * 1325 * Try to optimize the result object's page color when shadowing 1326 * in order to maintain page coloring consistency in the combined 1327 * shadowed object. 1328 */ 1329 if (source != NULL) { 1330 VM_OBJECT_WLOCK(result); 1331 vm_object_backing_insert(result, source); 1332 result->domain = source->domain; 1333 #if VM_NRESERVLEVEL > 0 1334 result->flags |= source->flags & OBJ_COLORED; 1335 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1336 ((1 << (VM_NFREEORDER - 1)) - 1); 1337 #endif 1338 VM_OBJECT_WUNLOCK(result); 1339 } 1340 1341 /* 1342 * Return the new things 1343 */ 1344 *offset = 0; 1345 *object = result; 1346 } 1347 1348 /* 1349 * vm_object_split: 1350 * 1351 * Split the pages in a map entry into a new object. This affords 1352 * easier removal of unused pages, and keeps object inheritance from 1353 * being a negative impact on memory usage. 1354 */ 1355 void 1356 vm_object_split(vm_map_entry_t entry) 1357 { 1358 vm_page_t m, m_next; 1359 vm_object_t orig_object, new_object, source; 1360 vm_pindex_t idx, offidxstart; 1361 vm_size_t size; 1362 1363 orig_object = entry->object.vm_object; 1364 if ((orig_object->flags & OBJ_ANON) == 0) 1365 return; 1366 if (orig_object->ref_count <= 1) 1367 return; 1368 VM_OBJECT_WUNLOCK(orig_object); 1369 1370 offidxstart = OFF_TO_IDX(entry->offset); 1371 size = atop(entry->end - entry->start); 1372 1373 /* 1374 * If swap_pager_copy() is later called, it will convert new_object 1375 * into a swap object. 1376 */ 1377 new_object = vm_object_allocate_anon(size); 1378 1379 /* 1380 * At this point, the new object is still private, so the order in 1381 * which the original and new objects are locked does not matter. 1382 */ 1383 VM_OBJECT_WLOCK(new_object); 1384 VM_OBJECT_WLOCK(orig_object); 1385 new_object->domain = orig_object->domain; 1386 source = orig_object->backing_object; 1387 if (source != NULL) { 1388 if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) { 1389 VM_OBJECT_WLOCK(source); 1390 if ((source->flags & OBJ_DEAD) != 0) { 1391 VM_OBJECT_WUNLOCK(source); 1392 VM_OBJECT_WUNLOCK(orig_object); 1393 VM_OBJECT_WUNLOCK(new_object); 1394 vm_object_deallocate(new_object); 1395 VM_OBJECT_WLOCK(orig_object); 1396 return; 1397 } 1398 vm_object_backing_insert_locked(new_object, source); 1399 vm_object_reference_locked(source); /* for new_object */ 1400 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1401 VM_OBJECT_WUNLOCK(source); 1402 } else { 1403 vm_object_backing_insert(new_object, source); 1404 vm_object_reference(source); 1405 } 1406 new_object->backing_object_offset = 1407 orig_object->backing_object_offset + entry->offset; 1408 } 1409 if (orig_object->cred != NULL) { 1410 new_object->cred = orig_object->cred; 1411 crhold(orig_object->cred); 1412 new_object->charge = ptoa(size); 1413 KASSERT(orig_object->charge >= ptoa(size), 1414 ("orig_object->charge < 0")); 1415 orig_object->charge -= ptoa(size); 1416 } 1417 retry: 1418 m = vm_page_find_least(orig_object, offidxstart); 1419 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1420 m = m_next) { 1421 m_next = TAILQ_NEXT(m, listq); 1422 1423 /* 1424 * We must wait for pending I/O to complete before we can 1425 * rename the page. 1426 * 1427 * We do not have to VM_PROT_NONE the page as mappings should 1428 * not be changed by this operation. 1429 */ 1430 if (vm_page_tryxbusy(m) == 0) { 1431 VM_OBJECT_WUNLOCK(new_object); 1432 vm_page_sleep_if_busy(m, "spltwt"); 1433 VM_OBJECT_WLOCK(new_object); 1434 goto retry; 1435 } 1436 1437 /* vm_page_rename() will dirty the page. */ 1438 if (vm_page_rename(m, new_object, idx)) { 1439 vm_page_xunbusy(m); 1440 VM_OBJECT_WUNLOCK(new_object); 1441 VM_OBJECT_WUNLOCK(orig_object); 1442 vm_radix_wait(); 1443 VM_OBJECT_WLOCK(orig_object); 1444 VM_OBJECT_WLOCK(new_object); 1445 goto retry; 1446 } 1447 1448 #if VM_NRESERVLEVEL > 0 1449 /* 1450 * If some of the reservation's allocated pages remain with 1451 * the original object, then transferring the reservation to 1452 * the new object is neither particularly beneficial nor 1453 * particularly harmful as compared to leaving the reservation 1454 * with the original object. If, however, all of the 1455 * reservation's allocated pages are transferred to the new 1456 * object, then transferring the reservation is typically 1457 * beneficial. Determining which of these two cases applies 1458 * would be more costly than unconditionally renaming the 1459 * reservation. 1460 */ 1461 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1462 #endif 1463 if (orig_object->type != OBJT_SWAP) 1464 vm_page_xunbusy(m); 1465 } 1466 if (orig_object->type == OBJT_SWAP) { 1467 /* 1468 * swap_pager_copy() can sleep, in which case the orig_object's 1469 * and new_object's locks are released and reacquired. 1470 */ 1471 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1472 TAILQ_FOREACH(m, &new_object->memq, listq) 1473 vm_page_xunbusy(m); 1474 } 1475 VM_OBJECT_WUNLOCK(orig_object); 1476 VM_OBJECT_WUNLOCK(new_object); 1477 entry->object.vm_object = new_object; 1478 entry->offset = 0LL; 1479 vm_object_deallocate(orig_object); 1480 VM_OBJECT_WLOCK(new_object); 1481 } 1482 1483 #define OBSC_COLLAPSE_NOWAIT 0x0002 1484 #define OBSC_COLLAPSE_WAIT 0x0004 1485 1486 static vm_page_t 1487 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1488 int op) 1489 { 1490 vm_object_t backing_object; 1491 1492 VM_OBJECT_ASSERT_WLOCKED(object); 1493 backing_object = object->backing_object; 1494 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1495 1496 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1497 ("invalid ownership %p %p %p", p, object, backing_object)); 1498 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1499 return (next); 1500 /* The page is only NULL when rename fails. */ 1501 if (p == NULL) { 1502 vm_radix_wait(); 1503 } else { 1504 if (p->object == object) 1505 VM_OBJECT_WUNLOCK(backing_object); 1506 else 1507 VM_OBJECT_WUNLOCK(object); 1508 vm_page_busy_sleep(p, "vmocol", false); 1509 } 1510 VM_OBJECT_WLOCK(object); 1511 VM_OBJECT_WLOCK(backing_object); 1512 return (TAILQ_FIRST(&backing_object->memq)); 1513 } 1514 1515 static bool 1516 vm_object_scan_all_shadowed(vm_object_t object) 1517 { 1518 vm_object_t backing_object; 1519 vm_page_t p, pp; 1520 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1521 1522 VM_OBJECT_ASSERT_WLOCKED(object); 1523 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1524 1525 backing_object = object->backing_object; 1526 1527 if ((backing_object->flags & OBJ_ANON) == 0) 1528 return (false); 1529 1530 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1531 p = vm_page_find_least(backing_object, pi); 1532 ps = swap_pager_find_least(backing_object, pi); 1533 1534 /* 1535 * Only check pages inside the parent object's range and 1536 * inside the parent object's mapping of the backing object. 1537 */ 1538 for (;; pi++) { 1539 if (p != NULL && p->pindex < pi) 1540 p = TAILQ_NEXT(p, listq); 1541 if (ps < pi) 1542 ps = swap_pager_find_least(backing_object, pi); 1543 if (p == NULL && ps >= backing_object->size) 1544 break; 1545 else if (p == NULL) 1546 pi = ps; 1547 else 1548 pi = MIN(p->pindex, ps); 1549 1550 new_pindex = pi - backing_offset_index; 1551 if (new_pindex >= object->size) 1552 break; 1553 1554 /* 1555 * See if the parent has the page or if the parent's object 1556 * pager has the page. If the parent has the page but the page 1557 * is not valid, the parent's object pager must have the page. 1558 * 1559 * If this fails, the parent does not completely shadow the 1560 * object and we might as well give up now. 1561 */ 1562 pp = vm_page_lookup(object, new_pindex); 1563 /* 1564 * The valid check here is stable due to object lock being 1565 * required to clear valid and initiate paging. 1566 */ 1567 if ((pp == NULL || vm_page_none_valid(pp)) && 1568 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1569 return (false); 1570 } 1571 return (true); 1572 } 1573 1574 static bool 1575 vm_object_collapse_scan(vm_object_t object, int op) 1576 { 1577 vm_object_t backing_object; 1578 vm_page_t next, p, pp; 1579 vm_pindex_t backing_offset_index, new_pindex; 1580 1581 VM_OBJECT_ASSERT_WLOCKED(object); 1582 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1583 1584 backing_object = object->backing_object; 1585 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1586 1587 /* 1588 * Initial conditions 1589 */ 1590 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1591 vm_object_set_flag(backing_object, OBJ_DEAD); 1592 1593 /* 1594 * Our scan 1595 */ 1596 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1597 next = TAILQ_NEXT(p, listq); 1598 new_pindex = p->pindex - backing_offset_index; 1599 1600 /* 1601 * Check for busy page 1602 */ 1603 if (vm_page_tryxbusy(p) == 0) { 1604 next = vm_object_collapse_scan_wait(object, p, next, op); 1605 continue; 1606 } 1607 1608 KASSERT(p->object == backing_object, 1609 ("vm_object_collapse_scan: object mismatch")); 1610 1611 if (p->pindex < backing_offset_index || 1612 new_pindex >= object->size) { 1613 if (backing_object->type == OBJT_SWAP) 1614 swap_pager_freespace(backing_object, p->pindex, 1615 1); 1616 1617 KASSERT(!pmap_page_is_mapped(p), 1618 ("freeing mapped page %p", p)); 1619 if (vm_page_remove(p)) 1620 vm_page_free(p); 1621 else 1622 vm_page_xunbusy(p); 1623 continue; 1624 } 1625 1626 pp = vm_page_lookup(object, new_pindex); 1627 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1628 vm_page_xunbusy(p); 1629 /* 1630 * The page in the parent is busy and possibly not 1631 * (yet) valid. Until its state is finalized by the 1632 * busy bit owner, we can't tell whether it shadows the 1633 * original page. Therefore, we must either skip it 1634 * and the original (backing_object) page or wait for 1635 * its state to be finalized. 1636 * 1637 * This is due to a race with vm_fault() where we must 1638 * unbusy the original (backing_obj) page before we can 1639 * (re)lock the parent. Hence we can get here. 1640 */ 1641 next = vm_object_collapse_scan_wait(object, pp, next, 1642 op); 1643 continue; 1644 } 1645 1646 KASSERT(pp == NULL || !vm_page_none_valid(pp), 1647 ("unbusy invalid page %p", pp)); 1648 1649 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1650 NULL)) { 1651 /* 1652 * The page already exists in the parent OR swap exists 1653 * for this location in the parent. Leave the parent's 1654 * page alone. Destroy the original page from the 1655 * backing object. 1656 */ 1657 if (backing_object->type == OBJT_SWAP) 1658 swap_pager_freespace(backing_object, p->pindex, 1659 1); 1660 KASSERT(!pmap_page_is_mapped(p), 1661 ("freeing mapped page %p", p)); 1662 if (vm_page_remove(p)) 1663 vm_page_free(p); 1664 else 1665 vm_page_xunbusy(p); 1666 if (pp != NULL) 1667 vm_page_xunbusy(pp); 1668 continue; 1669 } 1670 1671 /* 1672 * Page does not exist in parent, rename the page from the 1673 * backing object to the main object. 1674 * 1675 * If the page was mapped to a process, it can remain mapped 1676 * through the rename. vm_page_rename() will dirty the page. 1677 */ 1678 if (vm_page_rename(p, object, new_pindex)) { 1679 vm_page_xunbusy(p); 1680 if (pp != NULL) 1681 vm_page_xunbusy(pp); 1682 next = vm_object_collapse_scan_wait(object, NULL, next, 1683 op); 1684 continue; 1685 } 1686 1687 /* Use the old pindex to free the right page. */ 1688 if (backing_object->type == OBJT_SWAP) 1689 swap_pager_freespace(backing_object, 1690 new_pindex + backing_offset_index, 1); 1691 1692 #if VM_NRESERVLEVEL > 0 1693 /* 1694 * Rename the reservation. 1695 */ 1696 vm_reserv_rename(p, object, backing_object, 1697 backing_offset_index); 1698 #endif 1699 vm_page_xunbusy(p); 1700 } 1701 return (true); 1702 } 1703 1704 1705 /* 1706 * this version of collapse allows the operation to occur earlier and 1707 * when paging_in_progress is true for an object... This is not a complete 1708 * operation, but should plug 99.9% of the rest of the leaks. 1709 */ 1710 static void 1711 vm_object_qcollapse(vm_object_t object) 1712 { 1713 vm_object_t backing_object = object->backing_object; 1714 1715 VM_OBJECT_ASSERT_WLOCKED(object); 1716 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1717 1718 if (backing_object->ref_count != 1) 1719 return; 1720 1721 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1722 } 1723 1724 /* 1725 * vm_object_collapse: 1726 * 1727 * Collapse an object with the object backing it. 1728 * Pages in the backing object are moved into the 1729 * parent, and the backing object is deallocated. 1730 */ 1731 void 1732 vm_object_collapse(vm_object_t object) 1733 { 1734 vm_object_t backing_object, new_backing_object; 1735 1736 VM_OBJECT_ASSERT_WLOCKED(object); 1737 1738 while (TRUE) { 1739 /* 1740 * Verify that the conditions are right for collapse: 1741 * 1742 * The object exists and the backing object exists. 1743 */ 1744 if ((backing_object = object->backing_object) == NULL) 1745 break; 1746 1747 /* 1748 * we check the backing object first, because it is most likely 1749 * not collapsable. 1750 */ 1751 if ((backing_object->flags & OBJ_ANON) == 0) 1752 break; 1753 VM_OBJECT_WLOCK(backing_object); 1754 if (backing_object->handle != NULL || 1755 (backing_object->flags & OBJ_DEAD) != 0 || 1756 object->handle != NULL || 1757 (object->flags & OBJ_DEAD) != 0) { 1758 VM_OBJECT_WUNLOCK(backing_object); 1759 break; 1760 } 1761 1762 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 || 1763 REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) { 1764 vm_object_qcollapse(object); 1765 VM_OBJECT_WUNLOCK(backing_object); 1766 break; 1767 } 1768 1769 /* 1770 * We know that we can either collapse the backing object (if 1771 * the parent is the only reference to it) or (perhaps) have 1772 * the parent bypass the object if the parent happens to shadow 1773 * all the resident pages in the entire backing object. 1774 * 1775 * This is ignoring pager-backed pages such as swap pages. 1776 * vm_object_collapse_scan fails the shadowing test in this 1777 * case. 1778 */ 1779 if (backing_object->ref_count == 1) { 1780 vm_object_pip_add(object, 1); 1781 vm_object_pip_add(backing_object, 1); 1782 1783 /* 1784 * If there is exactly one reference to the backing 1785 * object, we can collapse it into the parent. 1786 */ 1787 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1788 1789 #if VM_NRESERVLEVEL > 0 1790 /* 1791 * Break any reservations from backing_object. 1792 */ 1793 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1794 vm_reserv_break_all(backing_object); 1795 #endif 1796 1797 /* 1798 * Move the pager from backing_object to object. 1799 */ 1800 if (backing_object->type == OBJT_SWAP) { 1801 /* 1802 * swap_pager_copy() can sleep, in which case 1803 * the backing_object's and object's locks are 1804 * released and reacquired. 1805 * Since swap_pager_copy() is being asked to 1806 * destroy the source, it will change the 1807 * backing_object's type to OBJT_DEFAULT. 1808 */ 1809 swap_pager_copy( 1810 backing_object, 1811 object, 1812 OFF_TO_IDX(object->backing_object_offset), TRUE); 1813 } 1814 /* 1815 * Object now shadows whatever backing_object did. 1816 * Note that the reference to 1817 * backing_object->backing_object moves from within 1818 * backing_object to within object. 1819 */ 1820 vm_object_backing_remove_locked(object); 1821 new_backing_object = backing_object->backing_object; 1822 if (new_backing_object != NULL) { 1823 VM_OBJECT_WLOCK(new_backing_object); 1824 vm_object_backing_remove_locked(backing_object); 1825 vm_object_backing_insert_locked(object, 1826 new_backing_object); 1827 VM_OBJECT_WUNLOCK(new_backing_object); 1828 } 1829 object->backing_object_offset += 1830 backing_object->backing_object_offset; 1831 1832 /* 1833 * Discard backing_object. 1834 * 1835 * Since the backing object has no pages, no pager left, 1836 * and no object references within it, all that is 1837 * necessary is to dispose of it. 1838 */ 1839 KASSERT(backing_object->ref_count == 1, ( 1840 "backing_object %p was somehow re-referenced during collapse!", 1841 backing_object)); 1842 vm_object_pip_wakeup(backing_object); 1843 backing_object->type = OBJT_DEAD; 1844 backing_object->ref_count = 0; 1845 VM_OBJECT_WUNLOCK(backing_object); 1846 vm_object_destroy(backing_object); 1847 1848 vm_object_pip_wakeup(object); 1849 counter_u64_add(object_collapses, 1); 1850 } else { 1851 /* 1852 * If we do not entirely shadow the backing object, 1853 * there is nothing we can do so we give up. 1854 */ 1855 if (object->resident_page_count != object->size && 1856 !vm_object_scan_all_shadowed(object)) { 1857 VM_OBJECT_WUNLOCK(backing_object); 1858 break; 1859 } 1860 1861 /* 1862 * Make the parent shadow the next object in the 1863 * chain. Deallocating backing_object will not remove 1864 * it, since its reference count is at least 2. 1865 */ 1866 vm_object_backing_remove_locked(object); 1867 1868 new_backing_object = backing_object->backing_object; 1869 if (new_backing_object != NULL) { 1870 vm_object_backing_insert(object, 1871 new_backing_object); 1872 vm_object_reference(new_backing_object); 1873 object->backing_object_offset += 1874 backing_object->backing_object_offset; 1875 } 1876 1877 /* 1878 * Drop the reference count on backing_object. Since 1879 * its ref_count was at least 2, it will not vanish. 1880 */ 1881 refcount_release(&backing_object->ref_count); 1882 VM_OBJECT_WUNLOCK(backing_object); 1883 counter_u64_add(object_bypasses, 1); 1884 } 1885 1886 /* 1887 * Try again with this object's new backing object. 1888 */ 1889 } 1890 } 1891 1892 /* 1893 * vm_object_page_remove: 1894 * 1895 * For the given object, either frees or invalidates each of the 1896 * specified pages. In general, a page is freed. However, if a page is 1897 * wired for any reason other than the existence of a managed, wired 1898 * mapping, then it may be invalidated but not removed from the object. 1899 * Pages are specified by the given range ["start", "end") and the option 1900 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1901 * extends from "start" to the end of the object. If the option 1902 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1903 * specified range are affected. If the option OBJPR_NOTMAPPED is 1904 * specified, then the pages within the specified range must have no 1905 * mappings. Otherwise, if this option is not specified, any mappings to 1906 * the specified pages are removed before the pages are freed or 1907 * invalidated. 1908 * 1909 * In general, this operation should only be performed on objects that 1910 * contain managed pages. There are, however, two exceptions. First, it 1911 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1912 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1913 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1914 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1915 * 1916 * The object must be locked. 1917 */ 1918 void 1919 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1920 int options) 1921 { 1922 vm_page_t p, next; 1923 1924 VM_OBJECT_ASSERT_WLOCKED(object); 1925 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1926 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1927 ("vm_object_page_remove: illegal options for object %p", object)); 1928 if (object->resident_page_count == 0) 1929 return; 1930 vm_object_pip_add(object, 1); 1931 again: 1932 p = vm_page_find_least(object, start); 1933 1934 /* 1935 * Here, the variable "p" is either (1) the page with the least pindex 1936 * greater than or equal to the parameter "start" or (2) NULL. 1937 */ 1938 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1939 next = TAILQ_NEXT(p, listq); 1940 1941 /* 1942 * If the page is wired for any reason besides the existence 1943 * of managed, wired mappings, then it cannot be freed. For 1944 * example, fictitious pages, which represent device memory, 1945 * are inherently wired and cannot be freed. They can, 1946 * however, be invalidated if the option OBJPR_CLEANONLY is 1947 * not specified. 1948 */ 1949 if (vm_page_tryxbusy(p) == 0) { 1950 vm_page_sleep_if_busy(p, "vmopar"); 1951 goto again; 1952 } 1953 if (vm_page_wired(p)) { 1954 wired: 1955 if ((options & OBJPR_NOTMAPPED) == 0 && 1956 object->ref_count != 0) 1957 pmap_remove_all(p); 1958 if ((options & OBJPR_CLEANONLY) == 0) { 1959 vm_page_invalid(p); 1960 vm_page_undirty(p); 1961 } 1962 vm_page_xunbusy(p); 1963 continue; 1964 } 1965 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1966 ("vm_object_page_remove: page %p is fictitious", p)); 1967 if ((options & OBJPR_CLEANONLY) != 0 && 1968 !vm_page_none_valid(p)) { 1969 if ((options & OBJPR_NOTMAPPED) == 0 && 1970 object->ref_count != 0 && 1971 !vm_page_try_remove_write(p)) 1972 goto wired; 1973 if (p->dirty != 0) { 1974 vm_page_xunbusy(p); 1975 continue; 1976 } 1977 } 1978 if ((options & OBJPR_NOTMAPPED) == 0 && 1979 object->ref_count != 0 && !vm_page_try_remove_all(p)) 1980 goto wired; 1981 vm_page_free(p); 1982 } 1983 vm_object_pip_wakeup(object); 1984 } 1985 1986 /* 1987 * vm_object_page_noreuse: 1988 * 1989 * For the given object, attempt to move the specified pages to 1990 * the head of the inactive queue. This bypasses regular LRU 1991 * operation and allows the pages to be reused quickly under memory 1992 * pressure. If a page is wired for any reason, then it will not 1993 * be queued. Pages are specified by the range ["start", "end"). 1994 * As a special case, if "end" is zero, then the range extends from 1995 * "start" to the end of the object. 1996 * 1997 * This operation should only be performed on objects that 1998 * contain non-fictitious, managed pages. 1999 * 2000 * The object must be locked. 2001 */ 2002 void 2003 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2004 { 2005 struct mtx *mtx; 2006 vm_page_t p, next; 2007 2008 VM_OBJECT_ASSERT_LOCKED(object); 2009 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2010 ("vm_object_page_noreuse: illegal object %p", object)); 2011 if (object->resident_page_count == 0) 2012 return; 2013 p = vm_page_find_least(object, start); 2014 2015 /* 2016 * Here, the variable "p" is either (1) the page with the least pindex 2017 * greater than or equal to the parameter "start" or (2) NULL. 2018 */ 2019 mtx = NULL; 2020 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2021 next = TAILQ_NEXT(p, listq); 2022 vm_page_change_lock(p, &mtx); 2023 vm_page_deactivate_noreuse(p); 2024 } 2025 if (mtx != NULL) 2026 mtx_unlock(mtx); 2027 } 2028 2029 /* 2030 * Populate the specified range of the object with valid pages. Returns 2031 * TRUE if the range is successfully populated and FALSE otherwise. 2032 * 2033 * Note: This function should be optimized to pass a larger array of 2034 * pages to vm_pager_get_pages() before it is applied to a non- 2035 * OBJT_DEVICE object. 2036 * 2037 * The object must be locked. 2038 */ 2039 boolean_t 2040 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2041 { 2042 vm_page_t m; 2043 vm_pindex_t pindex; 2044 int rv; 2045 2046 VM_OBJECT_ASSERT_WLOCKED(object); 2047 for (pindex = start; pindex < end; pindex++) { 2048 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2049 if (rv != VM_PAGER_OK) 2050 break; 2051 2052 /* 2053 * Keep "m" busy because a subsequent iteration may unlock 2054 * the object. 2055 */ 2056 } 2057 if (pindex > start) { 2058 m = vm_page_lookup(object, start); 2059 while (m != NULL && m->pindex < pindex) { 2060 vm_page_xunbusy(m); 2061 m = TAILQ_NEXT(m, listq); 2062 } 2063 } 2064 return (pindex == end); 2065 } 2066 2067 /* 2068 * Routine: vm_object_coalesce 2069 * Function: Coalesces two objects backing up adjoining 2070 * regions of memory into a single object. 2071 * 2072 * returns TRUE if objects were combined. 2073 * 2074 * NOTE: Only works at the moment if the second object is NULL - 2075 * if it's not, which object do we lock first? 2076 * 2077 * Parameters: 2078 * prev_object First object to coalesce 2079 * prev_offset Offset into prev_object 2080 * prev_size Size of reference to prev_object 2081 * next_size Size of reference to the second object 2082 * reserved Indicator that extension region has 2083 * swap accounted for 2084 * 2085 * Conditions: 2086 * The object must *not* be locked. 2087 */ 2088 boolean_t 2089 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2090 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2091 { 2092 vm_pindex_t next_pindex; 2093 2094 if (prev_object == NULL) 2095 return (TRUE); 2096 if ((prev_object->flags & OBJ_ANON) == 0) 2097 return (FALSE); 2098 2099 VM_OBJECT_WLOCK(prev_object); 2100 /* 2101 * Try to collapse the object first 2102 */ 2103 vm_object_collapse(prev_object); 2104 2105 /* 2106 * Can't coalesce if: . more than one reference . paged out . shadows 2107 * another object . has a copy elsewhere (any of which mean that the 2108 * pages not mapped to prev_entry may be in use anyway) 2109 */ 2110 if (prev_object->backing_object != NULL) { 2111 VM_OBJECT_WUNLOCK(prev_object); 2112 return (FALSE); 2113 } 2114 2115 prev_size >>= PAGE_SHIFT; 2116 next_size >>= PAGE_SHIFT; 2117 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2118 2119 if (prev_object->ref_count > 1 && 2120 prev_object->size != next_pindex && 2121 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2122 VM_OBJECT_WUNLOCK(prev_object); 2123 return (FALSE); 2124 } 2125 2126 /* 2127 * Account for the charge. 2128 */ 2129 if (prev_object->cred != NULL) { 2130 2131 /* 2132 * If prev_object was charged, then this mapping, 2133 * although not charged now, may become writable 2134 * later. Non-NULL cred in the object would prevent 2135 * swap reservation during enabling of the write 2136 * access, so reserve swap now. Failed reservation 2137 * cause allocation of the separate object for the map 2138 * entry, and swap reservation for this entry is 2139 * managed in appropriate time. 2140 */ 2141 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2142 prev_object->cred)) { 2143 VM_OBJECT_WUNLOCK(prev_object); 2144 return (FALSE); 2145 } 2146 prev_object->charge += ptoa(next_size); 2147 } 2148 2149 /* 2150 * Remove any pages that may still be in the object from a previous 2151 * deallocation. 2152 */ 2153 if (next_pindex < prev_object->size) { 2154 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2155 next_size, 0); 2156 if (prev_object->type == OBJT_SWAP) 2157 swap_pager_freespace(prev_object, 2158 next_pindex, next_size); 2159 #if 0 2160 if (prev_object->cred != NULL) { 2161 KASSERT(prev_object->charge >= 2162 ptoa(prev_object->size - next_pindex), 2163 ("object %p overcharged 1 %jx %jx", prev_object, 2164 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2165 prev_object->charge -= ptoa(prev_object->size - 2166 next_pindex); 2167 } 2168 #endif 2169 } 2170 2171 /* 2172 * Extend the object if necessary. 2173 */ 2174 if (next_pindex + next_size > prev_object->size) 2175 prev_object->size = next_pindex + next_size; 2176 2177 VM_OBJECT_WUNLOCK(prev_object); 2178 return (TRUE); 2179 } 2180 2181 void 2182 vm_object_set_writeable_dirty(vm_object_t object) 2183 { 2184 2185 VM_OBJECT_ASSERT_LOCKED(object); 2186 2187 /* Only set for vnodes & tmpfs */ 2188 if (object->type != OBJT_VNODE && 2189 (object->flags & OBJ_TMPFS_NODE) == 0) 2190 return; 2191 atomic_add_int(&object->generation, 1); 2192 } 2193 2194 /* 2195 * vm_object_unwire: 2196 * 2197 * For each page offset within the specified range of the given object, 2198 * find the highest-level page in the shadow chain and unwire it. A page 2199 * must exist at every page offset, and the highest-level page must be 2200 * wired. 2201 */ 2202 void 2203 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2204 uint8_t queue) 2205 { 2206 vm_object_t tobject, t1object; 2207 vm_page_t m, tm; 2208 vm_pindex_t end_pindex, pindex, tpindex; 2209 int depth, locked_depth; 2210 2211 KASSERT((offset & PAGE_MASK) == 0, 2212 ("vm_object_unwire: offset is not page aligned")); 2213 KASSERT((length & PAGE_MASK) == 0, 2214 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2215 /* The wired count of a fictitious page never changes. */ 2216 if ((object->flags & OBJ_FICTITIOUS) != 0) 2217 return; 2218 pindex = OFF_TO_IDX(offset); 2219 end_pindex = pindex + atop(length); 2220 again: 2221 locked_depth = 1; 2222 VM_OBJECT_RLOCK(object); 2223 m = vm_page_find_least(object, pindex); 2224 while (pindex < end_pindex) { 2225 if (m == NULL || pindex < m->pindex) { 2226 /* 2227 * The first object in the shadow chain doesn't 2228 * contain a page at the current index. Therefore, 2229 * the page must exist in a backing object. 2230 */ 2231 tobject = object; 2232 tpindex = pindex; 2233 depth = 0; 2234 do { 2235 tpindex += 2236 OFF_TO_IDX(tobject->backing_object_offset); 2237 tobject = tobject->backing_object; 2238 KASSERT(tobject != NULL, 2239 ("vm_object_unwire: missing page")); 2240 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2241 goto next_page; 2242 depth++; 2243 if (depth == locked_depth) { 2244 locked_depth++; 2245 VM_OBJECT_RLOCK(tobject); 2246 } 2247 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2248 NULL); 2249 } else { 2250 tm = m; 2251 m = TAILQ_NEXT(m, listq); 2252 } 2253 if (vm_page_trysbusy(tm) == 0) { 2254 for (tobject = object; locked_depth >= 1; 2255 locked_depth--) { 2256 t1object = tobject->backing_object; 2257 if (tm->object != tobject) 2258 VM_OBJECT_RUNLOCK(tobject); 2259 tobject = t1object; 2260 } 2261 vm_page_busy_sleep(tm, "unwbo", true); 2262 goto again; 2263 } 2264 vm_page_unwire(tm, queue); 2265 vm_page_sunbusy(tm); 2266 next_page: 2267 pindex++; 2268 } 2269 /* Release the accumulated object locks. */ 2270 for (tobject = object; locked_depth >= 1; locked_depth--) { 2271 t1object = tobject->backing_object; 2272 VM_OBJECT_RUNLOCK(tobject); 2273 tobject = t1object; 2274 } 2275 } 2276 2277 /* 2278 * Return the vnode for the given object, or NULL if none exists. 2279 * For tmpfs objects, the function may return NULL if there is 2280 * no vnode allocated at the time of the call. 2281 */ 2282 struct vnode * 2283 vm_object_vnode(vm_object_t object) 2284 { 2285 struct vnode *vp; 2286 2287 VM_OBJECT_ASSERT_LOCKED(object); 2288 if (object->type == OBJT_VNODE) { 2289 vp = object->handle; 2290 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2291 } else if (object->type == OBJT_SWAP && 2292 (object->flags & OBJ_TMPFS) != 0) { 2293 vp = object->un_pager.swp.swp_tmpfs; 2294 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2295 } else { 2296 vp = NULL; 2297 } 2298 return (vp); 2299 } 2300 2301 2302 /* 2303 * Busy the vm object. This prevents new pages belonging to the object from 2304 * becoming busy. Existing pages persist as busy. Callers are responsible 2305 * for checking page state before proceeding. 2306 */ 2307 void 2308 vm_object_busy(vm_object_t obj) 2309 { 2310 2311 VM_OBJECT_ASSERT_LOCKED(obj); 2312 2313 refcount_acquire(&obj->busy); 2314 /* The fence is required to order loads of page busy. */ 2315 atomic_thread_fence_acq_rel(); 2316 } 2317 2318 void 2319 vm_object_unbusy(vm_object_t obj) 2320 { 2321 2322 2323 refcount_release(&obj->busy); 2324 } 2325 2326 void 2327 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2328 { 2329 2330 VM_OBJECT_ASSERT_UNLOCKED(obj); 2331 2332 if (obj->busy) 2333 refcount_sleep(&obj->busy, wmesg, PVM); 2334 } 2335 2336 /* 2337 * Return the kvme type of the given object. 2338 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2339 */ 2340 int 2341 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2342 { 2343 2344 VM_OBJECT_ASSERT_LOCKED(object); 2345 if (vpp != NULL) 2346 *vpp = vm_object_vnode(object); 2347 switch (object->type) { 2348 case OBJT_DEFAULT: 2349 return (KVME_TYPE_DEFAULT); 2350 case OBJT_VNODE: 2351 return (KVME_TYPE_VNODE); 2352 case OBJT_SWAP: 2353 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2354 return (KVME_TYPE_VNODE); 2355 return (KVME_TYPE_SWAP); 2356 case OBJT_DEVICE: 2357 return (KVME_TYPE_DEVICE); 2358 case OBJT_PHYS: 2359 return (KVME_TYPE_PHYS); 2360 case OBJT_DEAD: 2361 return (KVME_TYPE_DEAD); 2362 case OBJT_SG: 2363 return (KVME_TYPE_SG); 2364 case OBJT_MGTDEVICE: 2365 return (KVME_TYPE_MGTDEVICE); 2366 default: 2367 return (KVME_TYPE_UNKNOWN); 2368 } 2369 } 2370 2371 static int 2372 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2373 { 2374 struct kinfo_vmobject *kvo; 2375 char *fullpath, *freepath; 2376 struct vnode *vp; 2377 struct vattr va; 2378 vm_object_t obj; 2379 vm_page_t m; 2380 int count, error; 2381 2382 if (req->oldptr == NULL) { 2383 /* 2384 * If an old buffer has not been provided, generate an 2385 * estimate of the space needed for a subsequent call. 2386 */ 2387 mtx_lock(&vm_object_list_mtx); 2388 count = 0; 2389 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2390 if (obj->type == OBJT_DEAD) 2391 continue; 2392 count++; 2393 } 2394 mtx_unlock(&vm_object_list_mtx); 2395 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2396 count * 11 / 10)); 2397 } 2398 2399 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2400 error = 0; 2401 2402 /* 2403 * VM objects are type stable and are never removed from the 2404 * list once added. This allows us to safely read obj->object_list 2405 * after reacquiring the VM object lock. 2406 */ 2407 mtx_lock(&vm_object_list_mtx); 2408 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2409 if (obj->type == OBJT_DEAD) 2410 continue; 2411 VM_OBJECT_RLOCK(obj); 2412 if (obj->type == OBJT_DEAD) { 2413 VM_OBJECT_RUNLOCK(obj); 2414 continue; 2415 } 2416 mtx_unlock(&vm_object_list_mtx); 2417 kvo->kvo_size = ptoa(obj->size); 2418 kvo->kvo_resident = obj->resident_page_count; 2419 kvo->kvo_ref_count = obj->ref_count; 2420 kvo->kvo_shadow_count = obj->shadow_count; 2421 kvo->kvo_memattr = obj->memattr; 2422 kvo->kvo_active = 0; 2423 kvo->kvo_inactive = 0; 2424 TAILQ_FOREACH(m, &obj->memq, listq) { 2425 /* 2426 * A page may belong to the object but be 2427 * dequeued and set to PQ_NONE while the 2428 * object lock is not held. This makes the 2429 * reads of m->queue below racy, and we do not 2430 * count pages set to PQ_NONE. However, this 2431 * sysctl is only meant to give an 2432 * approximation of the system anyway. 2433 */ 2434 if (m->queue == PQ_ACTIVE) 2435 kvo->kvo_active++; 2436 else if (m->queue == PQ_INACTIVE) 2437 kvo->kvo_inactive++; 2438 } 2439 2440 kvo->kvo_vn_fileid = 0; 2441 kvo->kvo_vn_fsid = 0; 2442 kvo->kvo_vn_fsid_freebsd11 = 0; 2443 freepath = NULL; 2444 fullpath = ""; 2445 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2446 if (vp != NULL) 2447 vref(vp); 2448 VM_OBJECT_RUNLOCK(obj); 2449 if (vp != NULL) { 2450 vn_fullpath(curthread, vp, &fullpath, &freepath); 2451 vn_lock(vp, LK_SHARED | LK_RETRY); 2452 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2453 kvo->kvo_vn_fileid = va.va_fileid; 2454 kvo->kvo_vn_fsid = va.va_fsid; 2455 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2456 /* truncate */ 2457 } 2458 vput(vp); 2459 } 2460 2461 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2462 if (freepath != NULL) 2463 free(freepath, M_TEMP); 2464 2465 /* Pack record size down */ 2466 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2467 + strlen(kvo->kvo_path) + 1; 2468 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2469 sizeof(uint64_t)); 2470 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2471 mtx_lock(&vm_object_list_mtx); 2472 if (error) 2473 break; 2474 } 2475 mtx_unlock(&vm_object_list_mtx); 2476 free(kvo, M_TEMP); 2477 return (error); 2478 } 2479 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2480 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2481 "List of VM objects"); 2482 2483 #include "opt_ddb.h" 2484 #ifdef DDB 2485 #include <sys/kernel.h> 2486 2487 #include <sys/cons.h> 2488 2489 #include <ddb/ddb.h> 2490 2491 static int 2492 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2493 { 2494 vm_map_t tmpm; 2495 vm_map_entry_t tmpe; 2496 vm_object_t obj; 2497 2498 if (map == 0) 2499 return 0; 2500 2501 if (entry == 0) { 2502 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2503 if (_vm_object_in_map(map, object, tmpe)) { 2504 return 1; 2505 } 2506 } 2507 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2508 tmpm = entry->object.sub_map; 2509 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2510 if (_vm_object_in_map(tmpm, object, tmpe)) { 2511 return 1; 2512 } 2513 } 2514 } else if ((obj = entry->object.vm_object) != NULL) { 2515 for (; obj; obj = obj->backing_object) 2516 if (obj == object) { 2517 return 1; 2518 } 2519 } 2520 return 0; 2521 } 2522 2523 static int 2524 vm_object_in_map(vm_object_t object) 2525 { 2526 struct proc *p; 2527 2528 /* sx_slock(&allproc_lock); */ 2529 FOREACH_PROC_IN_SYSTEM(p) { 2530 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2531 continue; 2532 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2533 /* sx_sunlock(&allproc_lock); */ 2534 return 1; 2535 } 2536 } 2537 /* sx_sunlock(&allproc_lock); */ 2538 if (_vm_object_in_map(kernel_map, object, 0)) 2539 return 1; 2540 return 0; 2541 } 2542 2543 DB_SHOW_COMMAND(vmochk, vm_object_check) 2544 { 2545 vm_object_t object; 2546 2547 /* 2548 * make sure that internal objs are in a map somewhere 2549 * and none have zero ref counts. 2550 */ 2551 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2552 if (object->handle == NULL && 2553 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2554 if (object->ref_count == 0) { 2555 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2556 (long)object->size); 2557 } 2558 if (!vm_object_in_map(object)) { 2559 db_printf( 2560 "vmochk: internal obj is not in a map: " 2561 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2562 object->ref_count, (u_long)object->size, 2563 (u_long)object->size, 2564 (void *)object->backing_object); 2565 } 2566 } 2567 } 2568 } 2569 2570 /* 2571 * vm_object_print: [ debug ] 2572 */ 2573 DB_SHOW_COMMAND(object, vm_object_print_static) 2574 { 2575 /* XXX convert args. */ 2576 vm_object_t object = (vm_object_t)addr; 2577 boolean_t full = have_addr; 2578 2579 vm_page_t p; 2580 2581 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2582 #define count was_count 2583 2584 int count; 2585 2586 if (object == NULL) 2587 return; 2588 2589 db_iprintf( 2590 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2591 object, (int)object->type, (uintmax_t)object->size, 2592 object->resident_page_count, object->ref_count, object->flags, 2593 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2594 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2595 object->shadow_count, 2596 object->backing_object ? object->backing_object->ref_count : 0, 2597 object->backing_object, (uintmax_t)object->backing_object_offset); 2598 2599 if (!full) 2600 return; 2601 2602 db_indent += 2; 2603 count = 0; 2604 TAILQ_FOREACH(p, &object->memq, listq) { 2605 if (count == 0) 2606 db_iprintf("memory:="); 2607 else if (count == 6) { 2608 db_printf("\n"); 2609 db_iprintf(" ..."); 2610 count = 0; 2611 } else 2612 db_printf(","); 2613 count++; 2614 2615 db_printf("(off=0x%jx,page=0x%jx)", 2616 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2617 } 2618 if (count != 0) 2619 db_printf("\n"); 2620 db_indent -= 2; 2621 } 2622 2623 /* XXX. */ 2624 #undef count 2625 2626 /* XXX need this non-static entry for calling from vm_map_print. */ 2627 void 2628 vm_object_print( 2629 /* db_expr_t */ long addr, 2630 boolean_t have_addr, 2631 /* db_expr_t */ long count, 2632 char *modif) 2633 { 2634 vm_object_print_static(addr, have_addr, count, modif); 2635 } 2636 2637 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2638 { 2639 vm_object_t object; 2640 vm_pindex_t fidx; 2641 vm_paddr_t pa; 2642 vm_page_t m, prev_m; 2643 int rcount, nl, c; 2644 2645 nl = 0; 2646 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2647 db_printf("new object: %p\n", (void *)object); 2648 if (nl > 18) { 2649 c = cngetc(); 2650 if (c != ' ') 2651 return; 2652 nl = 0; 2653 } 2654 nl++; 2655 rcount = 0; 2656 fidx = 0; 2657 pa = -1; 2658 TAILQ_FOREACH(m, &object->memq, listq) { 2659 if (m->pindex > 128) 2660 break; 2661 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2662 prev_m->pindex + 1 != m->pindex) { 2663 if (rcount) { 2664 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2665 (long)fidx, rcount, (long)pa); 2666 if (nl > 18) { 2667 c = cngetc(); 2668 if (c != ' ') 2669 return; 2670 nl = 0; 2671 } 2672 nl++; 2673 rcount = 0; 2674 } 2675 } 2676 if (rcount && 2677 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2678 ++rcount; 2679 continue; 2680 } 2681 if (rcount) { 2682 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2683 (long)fidx, rcount, (long)pa); 2684 if (nl > 18) { 2685 c = cngetc(); 2686 if (c != ' ') 2687 return; 2688 nl = 0; 2689 } 2690 nl++; 2691 } 2692 fidx = m->pindex; 2693 pa = VM_PAGE_TO_PHYS(m); 2694 rcount = 1; 2695 } 2696 if (rcount) { 2697 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2698 (long)fidx, rcount, (long)pa); 2699 if (nl > 18) { 2700 c = cngetc(); 2701 if (c != ' ') 2702 return; 2703 nl = 0; 2704 } 2705 nl++; 2706 } 2707 } 2708 } 2709 #endif /* DDB */ 2710