xref: /freebsd/sys/vm/vm_object.c (revision 9af6c78cd43b18e169f10802142c61638bd62bed)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *allclean,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *allclean);
119 static void	vm_object_qcollapse(vm_object_t object);
120 static void	vm_object_vndeallocate(vm_object_t object);
121 static void	vm_object_backing_remove(vm_object_t object);
122 
123 /*
124  *	Virtual memory objects maintain the actual data
125  *	associated with allocated virtual memory.  A given
126  *	page of memory exists within exactly one object.
127  *
128  *	An object is only deallocated when all "references"
129  *	are given up.  Only one "reference" to a given
130  *	region of an object should be writeable.
131  *
132  *	Associated with each object is a list of all resident
133  *	memory pages belonging to that object; this list is
134  *	maintained by the "vm_page" module, and locked by the object's
135  *	lock.
136  *
137  *	Each object also records a "pager" routine which is
138  *	used to retrieve (and store) pages to the proper backing
139  *	storage.  In addition, objects may be backed by other
140  *	objects from which they were virtual-copied.
141  *
142  *	The only items within the object structure which are
143  *	modified after time of creation are:
144  *		reference count		locked by object's lock
145  *		pager routine		locked by object's lock
146  *
147  */
148 
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;	/* lock for object list and count */
151 
152 struct vm_object kernel_object_store;
153 
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
155     "VM object stats");
156 
157 static counter_u64_t object_collapses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161 
162 static counter_u64_t object_bypasses = EARLY_COUNTER;
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166 
167 static void
168 counter_startup(void)
169 {
170 
171 	object_collapses = counter_u64_alloc(M_WAITOK);
172 	object_bypasses = counter_u64_alloc(M_WAITOK);
173 }
174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
175 
176 static uma_zone_t obj_zone;
177 
178 static int vm_object_zinit(void *mem, int size, int flags);
179 
180 #ifdef INVARIANTS
181 static void vm_object_zdtor(void *mem, int size, void *arg);
182 
183 static void
184 vm_object_zdtor(void *mem, int size, void *arg)
185 {
186 	vm_object_t object;
187 
188 	object = (vm_object_t)mem;
189 	KASSERT(object->ref_count == 0,
190 	    ("object %p ref_count = %d", object, object->ref_count));
191 	KASSERT(TAILQ_EMPTY(&object->memq),
192 	    ("object %p has resident pages in its memq", object));
193 	KASSERT(vm_radix_is_empty(&object->rtree),
194 	    ("object %p has resident pages in its trie", object));
195 #if VM_NRESERVLEVEL > 0
196 	KASSERT(LIST_EMPTY(&object->rvq),
197 	    ("object %p has reservations",
198 	    object));
199 #endif
200 	KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
201 	    ("object %p paging_in_progress = %d",
202 	    object, REFCOUNT_COUNT(object->paging_in_progress)));
203 	KASSERT(object->busy == 0,
204 	    ("object %p busy = %d",
205 	    object, object->busy));
206 	KASSERT(object->resident_page_count == 0,
207 	    ("object %p resident_page_count = %d",
208 	    object, object->resident_page_count));
209 	KASSERT(object->shadow_count == 0,
210 	    ("object %p shadow_count = %d",
211 	    object, object->shadow_count));
212 	KASSERT(object->type == OBJT_DEAD,
213 	    ("object %p has non-dead type %d",
214 	    object, object->type));
215 }
216 #endif
217 
218 static int
219 vm_object_zinit(void *mem, int size, int flags)
220 {
221 	vm_object_t object;
222 
223 	object = (vm_object_t)mem;
224 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
225 
226 	/* These are true for any object that has been freed */
227 	object->type = OBJT_DEAD;
228 	vm_radix_init(&object->rtree);
229 	refcount_init(&object->ref_count, 0);
230 	refcount_init(&object->paging_in_progress, 0);
231 	refcount_init(&object->busy, 0);
232 	object->resident_page_count = 0;
233 	object->shadow_count = 0;
234 	object->flags = OBJ_DEAD;
235 
236 	mtx_lock(&vm_object_list_mtx);
237 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238 	mtx_unlock(&vm_object_list_mtx);
239 	return (0);
240 }
241 
242 static void
243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
244     vm_object_t object)
245 {
246 
247 	TAILQ_INIT(&object->memq);
248 	LIST_INIT(&object->shadow_head);
249 
250 	object->type = type;
251 	if (type == OBJT_SWAP)
252 		pctrie_init(&object->un_pager.swp.swp_blks);
253 
254 	/*
255 	 * Ensure that swap_pager_swapoff() iteration over object_list
256 	 * sees up to date type and pctrie head if it observed
257 	 * non-dead object.
258 	 */
259 	atomic_thread_fence_rel();
260 
261 	object->pg_color = 0;
262 	object->flags = flags;
263 	object->size = size;
264 	object->domain.dr_policy = NULL;
265 	object->generation = 1;
266 	object->cleangeneration = 1;
267 	refcount_init(&object->ref_count, 1);
268 	object->memattr = VM_MEMATTR_DEFAULT;
269 	object->cred = NULL;
270 	object->charge = 0;
271 	object->handle = NULL;
272 	object->backing_object = NULL;
273 	object->backing_object_offset = (vm_ooffset_t) 0;
274 #if VM_NRESERVLEVEL > 0
275 	LIST_INIT(&object->rvq);
276 #endif
277 	umtx_shm_object_init(object);
278 }
279 
280 /*
281  *	vm_object_init:
282  *
283  *	Initialize the VM objects module.
284  */
285 void
286 vm_object_init(void)
287 {
288 	TAILQ_INIT(&vm_object_list);
289 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
290 
291 	rw_init(&kernel_object->lock, "kernel vm object");
292 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
293 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object);
294 #if VM_NRESERVLEVEL > 0
295 	kernel_object->flags |= OBJ_COLORED;
296 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
297 #endif
298 
299 	/*
300 	 * The lock portion of struct vm_object must be type stable due
301 	 * to vm_pageout_fallback_object_lock locking a vm object
302 	 * without holding any references to it.
303 	 */
304 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
305 #ifdef INVARIANTS
306 	    vm_object_zdtor,
307 #else
308 	    NULL,
309 #endif
310 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
311 
312 	vm_radix_zinit();
313 }
314 
315 void
316 vm_object_clear_flag(vm_object_t object, u_short bits)
317 {
318 
319 	VM_OBJECT_ASSERT_WLOCKED(object);
320 	object->flags &= ~bits;
321 }
322 
323 /*
324  *	Sets the default memory attribute for the specified object.  Pages
325  *	that are allocated to this object are by default assigned this memory
326  *	attribute.
327  *
328  *	Presently, this function must be called before any pages are allocated
329  *	to the object.  In the future, this requirement may be relaxed for
330  *	"default" and "swap" objects.
331  */
332 int
333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
334 {
335 
336 	VM_OBJECT_ASSERT_WLOCKED(object);
337 	switch (object->type) {
338 	case OBJT_DEFAULT:
339 	case OBJT_DEVICE:
340 	case OBJT_MGTDEVICE:
341 	case OBJT_PHYS:
342 	case OBJT_SG:
343 	case OBJT_SWAP:
344 	case OBJT_VNODE:
345 		if (!TAILQ_EMPTY(&object->memq))
346 			return (KERN_FAILURE);
347 		break;
348 	case OBJT_DEAD:
349 		return (KERN_INVALID_ARGUMENT);
350 	default:
351 		panic("vm_object_set_memattr: object %p is of undefined type",
352 		    object);
353 	}
354 	object->memattr = memattr;
355 	return (KERN_SUCCESS);
356 }
357 
358 void
359 vm_object_pip_add(vm_object_t object, short i)
360 {
361 
362 	refcount_acquiren(&object->paging_in_progress, i);
363 }
364 
365 void
366 vm_object_pip_wakeup(vm_object_t object)
367 {
368 
369 	refcount_release(&object->paging_in_progress);
370 }
371 
372 void
373 vm_object_pip_wakeupn(vm_object_t object, short i)
374 {
375 
376 	refcount_releasen(&object->paging_in_progress, i);
377 }
378 
379 void
380 vm_object_pip_wait(vm_object_t object, char *waitid)
381 {
382 
383 	VM_OBJECT_ASSERT_WLOCKED(object);
384 
385 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
386 		VM_OBJECT_WUNLOCK(object);
387 		refcount_wait(&object->paging_in_progress, waitid, PVM);
388 		VM_OBJECT_WLOCK(object);
389 	}
390 }
391 
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
394 {
395 
396 	VM_OBJECT_ASSERT_UNLOCKED(object);
397 
398 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
399 		refcount_wait(&object->paging_in_progress, waitid, PVM);
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 	u_short flags;
412 
413 	switch (type) {
414 	case OBJT_DEAD:
415 		panic("vm_object_allocate: can't create OBJT_DEAD");
416 	case OBJT_DEFAULT:
417 	case OBJT_SWAP:
418 		flags = OBJ_COLORED;
419 		break;
420 	case OBJT_DEVICE:
421 	case OBJT_SG:
422 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423 		break;
424 	case OBJT_MGTDEVICE:
425 		flags = OBJ_FICTITIOUS;
426 		break;
427 	case OBJT_PHYS:
428 		flags = OBJ_UNMANAGED;
429 		break;
430 	case OBJT_VNODE:
431 		flags = 0;
432 		break;
433 	default:
434 		panic("vm_object_allocate: type %d is undefined", type);
435 	}
436 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437 	_vm_object_allocate(type, size, flags, object);
438 
439 	return (object);
440 }
441 
442 /*
443  *	vm_object_allocate_anon:
444  *
445  *	Returns a new default object of the given size and marked as
446  *	anonymous memory for special split/collapse handling.  Color
447  *	to be initialized by the caller.
448  */
449 vm_object_t
450 vm_object_allocate_anon(vm_pindex_t size)
451 {
452 	vm_object_t object;
453 
454 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
455 	_vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
456 	    object);
457 
458 	return (object);
459 }
460 
461 
462 /*
463  *	vm_object_reference:
464  *
465  *	Gets another reference to the given object.  Note: OBJ_DEAD
466  *	objects can be referenced during final cleaning.
467  */
468 void
469 vm_object_reference(vm_object_t object)
470 {
471 	if (object == NULL)
472 		return;
473 	VM_OBJECT_RLOCK(object);
474 	vm_object_reference_locked(object);
475 	VM_OBJECT_RUNLOCK(object);
476 }
477 
478 /*
479  *	vm_object_reference_locked:
480  *
481  *	Gets another reference to the given object.
482  *
483  *	The object must be locked.
484  */
485 void
486 vm_object_reference_locked(vm_object_t object)
487 {
488 	struct vnode *vp;
489 
490 	VM_OBJECT_ASSERT_LOCKED(object);
491 	refcount_acquire(&object->ref_count);
492 	if (object->type == OBJT_VNODE) {
493 		vp = object->handle;
494 		vref(vp);
495 	}
496 }
497 
498 /*
499  * Handle deallocating an object of type OBJT_VNODE.
500  */
501 static void
502 vm_object_vndeallocate(vm_object_t object)
503 {
504 	struct vnode *vp = (struct vnode *) object->handle;
505 
506 	KASSERT(object->type == OBJT_VNODE,
507 	    ("vm_object_vndeallocate: not a vnode object"));
508 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
509 
510 	if (refcount_release(&object->ref_count) &&
511 	    !umtx_shm_vnobj_persistent)
512 		umtx_shm_object_terminated(object);
513 
514 	VM_OBJECT_RUNLOCK(object);
515 	/* vrele may need the vnode lock. */
516 	vrele(vp);
517 }
518 
519 /*
520  *	vm_object_deallocate:
521  *
522  *	Release a reference to the specified object,
523  *	gained either through a vm_object_allocate
524  *	or a vm_object_reference call.  When all references
525  *	are gone, storage associated with this object
526  *	may be relinquished.
527  *
528  *	No object may be locked.
529  */
530 void
531 vm_object_deallocate(vm_object_t object)
532 {
533 	vm_object_t temp;
534 	bool released;
535 
536 	while (object != NULL) {
537 		VM_OBJECT_RLOCK(object);
538 		if (object->type == OBJT_VNODE) {
539 			vm_object_vndeallocate(object);
540 			return;
541 		}
542 
543 		/*
544 		 * If the reference count goes to 0 we start calling
545 		 * vm_object_terminate() on the object chain.  A ref count
546 		 * of 1 may be a special case depending on the shadow count
547 		 * being 0 or 1.  These cases require a write lock on the
548 		 * object.
549 		 */
550 		if ((object->flags & OBJ_ANON) == 0)
551 			released = refcount_release_if_gt(&object->ref_count, 1);
552 		else
553 			released = refcount_release_if_gt(&object->ref_count, 2);
554 		VM_OBJECT_RUNLOCK(object);
555 		if (released)
556 			return;
557 
558 		VM_OBJECT_WLOCK(object);
559 		KASSERT(object->ref_count != 0,
560 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
561 
562 		refcount_release(&object->ref_count);
563 		if (object->ref_count > 1) {
564 			VM_OBJECT_WUNLOCK(object);
565 			return;
566 		} else if (object->ref_count == 1) {
567 			if (object->shadow_count == 0 &&
568 			    object->handle == NULL &&
569 			    (object->flags & OBJ_ANON) != 0) {
570 				vm_object_set_flag(object, OBJ_ONEMAPPING);
571 			} else if ((object->shadow_count == 1) &&
572 			    (object->handle == NULL) &&
573 			    (object->flags & OBJ_ANON) != 0) {
574 				vm_object_t robject;
575 
576 				robject = LIST_FIRST(&object->shadow_head);
577 				KASSERT(robject != NULL,
578 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
579 					 object->ref_count,
580 					 object->shadow_count));
581 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
582 				    ("shadowed tmpfs v_object %p", object));
583 				if (!VM_OBJECT_TRYWLOCK(robject)) {
584 					/*
585 					 * Avoid a potential deadlock.
586 					 */
587 					refcount_acquire(&object->ref_count);
588 					VM_OBJECT_WUNLOCK(object);
589 					/*
590 					 * More likely than not the thread
591 					 * holding robject's lock has lower
592 					 * priority than the current thread.
593 					 * Let the lower priority thread run.
594 					 */
595 					pause("vmo_de", 1);
596 					continue;
597 				}
598 				/*
599 				 * Collapse object into its shadow unless its
600 				 * shadow is dead.  In that case, object will
601 				 * be deallocated by the thread that is
602 				 * deallocating its shadow.
603 				 */
604 				if ((robject->flags &
605 				    (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON &&
606 				    robject->handle == NULL) {
607 
608 					refcount_acquire(&robject->ref_count);
609 retry:
610 					if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
611 						VM_OBJECT_WUNLOCK(object);
612 						vm_object_pip_wait(robject,
613 						    "objde1");
614 						temp = robject->backing_object;
615 						if (object == temp) {
616 							VM_OBJECT_WLOCK(object);
617 							goto retry;
618 						}
619 					} else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
620 						VM_OBJECT_WUNLOCK(robject);
621 						VM_OBJECT_WUNLOCK(object);
622 						refcount_wait(
623 						    &object->paging_in_progress,
624 						    "objde2", PVM);
625 						VM_OBJECT_WLOCK(robject);
626 						temp = robject->backing_object;
627 						if (object == temp) {
628 							VM_OBJECT_WLOCK(object);
629 							goto retry;
630 						}
631 					} else
632 						VM_OBJECT_WUNLOCK(object);
633 
634 					if (robject->ref_count == 1) {
635 						robject->ref_count--;
636 						object = robject;
637 						goto doterm;
638 					}
639 					object = robject;
640 					vm_object_collapse(object);
641 					VM_OBJECT_WUNLOCK(object);
642 					continue;
643 				}
644 				VM_OBJECT_WUNLOCK(robject);
645 			}
646 			VM_OBJECT_WUNLOCK(object);
647 			return;
648 		}
649 doterm:
650 		umtx_shm_object_terminated(object);
651 		temp = object->backing_object;
652 		if (temp != NULL) {
653 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
654 			    ("shadowed tmpfs v_object 2 %p", object));
655 			vm_object_backing_remove(object);
656 		}
657 		/*
658 		 * Don't double-terminate, we could be in a termination
659 		 * recursion due to the terminate having to sync data
660 		 * to disk.
661 		 */
662 		if ((object->flags & OBJ_DEAD) == 0) {
663 			vm_object_set_flag(object, OBJ_DEAD);
664 			vm_object_terminate(object);
665 		} else
666 			VM_OBJECT_WUNLOCK(object);
667 		object = temp;
668 	}
669 }
670 
671 /*
672  *	vm_object_destroy removes the object from the global object list
673  *      and frees the space for the object.
674  */
675 void
676 vm_object_destroy(vm_object_t object)
677 {
678 
679 	/*
680 	 * Release the allocation charge.
681 	 */
682 	if (object->cred != NULL) {
683 		swap_release_by_cred(object->charge, object->cred);
684 		object->charge = 0;
685 		crfree(object->cred);
686 		object->cred = NULL;
687 	}
688 
689 	/*
690 	 * Free the space for the object.
691 	 */
692 	uma_zfree(obj_zone, object);
693 }
694 
695 static void
696 vm_object_backing_remove_locked(vm_object_t object)
697 {
698 	vm_object_t backing_object;
699 
700 	backing_object = object->backing_object;
701 	VM_OBJECT_ASSERT_WLOCKED(object);
702 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
703 
704 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
705 		LIST_REMOVE(object, shadow_list);
706 		backing_object->shadow_count--;
707 		object->flags &= ~OBJ_SHADOWLIST;
708 	}
709 	object->backing_object = NULL;
710 }
711 
712 static void
713 vm_object_backing_remove(vm_object_t object)
714 {
715 	vm_object_t backing_object;
716 
717 	VM_OBJECT_ASSERT_WLOCKED(object);
718 
719 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
720 		backing_object = object->backing_object;
721 		VM_OBJECT_WLOCK(backing_object);
722 		vm_object_backing_remove_locked(object);
723 		VM_OBJECT_WUNLOCK(backing_object);
724 	} else
725 		object->backing_object = NULL;
726 }
727 
728 static void
729 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
730 {
731 
732 	VM_OBJECT_ASSERT_WLOCKED(object);
733 
734 	if ((backing_object->flags & OBJ_ANON) != 0) {
735 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
736 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
737 		    shadow_list);
738 		backing_object->shadow_count++;
739 		object->flags |= OBJ_SHADOWLIST;
740 	}
741 	object->backing_object = backing_object;
742 }
743 
744 static void
745 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
746 {
747 
748 	VM_OBJECT_ASSERT_WLOCKED(object);
749 
750 	if ((backing_object->flags & OBJ_ANON) != 0) {
751 		VM_OBJECT_WLOCK(backing_object);
752 		vm_object_backing_insert_locked(object, backing_object);
753 		VM_OBJECT_WUNLOCK(backing_object);
754 	} else
755 		object->backing_object = backing_object;
756 }
757 
758 
759 /*
760  *	vm_object_terminate_pages removes any remaining pageable pages
761  *	from the object and resets the object to an empty state.
762  */
763 static void
764 vm_object_terminate_pages(vm_object_t object)
765 {
766 	vm_page_t p, p_next;
767 
768 	VM_OBJECT_ASSERT_WLOCKED(object);
769 
770 	/*
771 	 * Free any remaining pageable pages.  This also removes them from the
772 	 * paging queues.  However, don't free wired pages, just remove them
773 	 * from the object.  Rather than incrementally removing each page from
774 	 * the object, the page and object are reset to any empty state.
775 	 */
776 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
777 		vm_page_assert_unbusied(p);
778 		KASSERT(p->object == object &&
779 		    (p->ref_count & VPRC_OBJREF) != 0,
780 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
781 
782 		p->object = NULL;
783 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
784 			VM_CNT_INC(v_pfree);
785 			vm_page_free(p);
786 		}
787 	}
788 
789 	/*
790 	 * If the object contained any pages, then reset it to an empty state.
791 	 * None of the object's fields, including "resident_page_count", were
792 	 * modified by the preceding loop.
793 	 */
794 	if (object->resident_page_count != 0) {
795 		vm_radix_reclaim_allnodes(&object->rtree);
796 		TAILQ_INIT(&object->memq);
797 		object->resident_page_count = 0;
798 		if (object->type == OBJT_VNODE)
799 			vdrop(object->handle);
800 	}
801 }
802 
803 /*
804  *	vm_object_terminate actually destroys the specified object, freeing
805  *	up all previously used resources.
806  *
807  *	The object must be locked.
808  *	This routine may block.
809  */
810 void
811 vm_object_terminate(vm_object_t object)
812 {
813 	VM_OBJECT_ASSERT_WLOCKED(object);
814 	KASSERT((object->flags & OBJ_DEAD) != 0,
815 	    ("terminating non-dead obj %p", object));
816 
817 	/*
818 	 * wait for the pageout daemon to be done with the object
819 	 */
820 	vm_object_pip_wait(object, "objtrm");
821 
822 	KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
823 		("vm_object_terminate: pageout in progress"));
824 
825 	KASSERT(object->ref_count == 0,
826 		("vm_object_terminate: object with references, ref_count=%d",
827 		object->ref_count));
828 
829 	if ((object->flags & OBJ_PG_DTOR) == 0)
830 		vm_object_terminate_pages(object);
831 
832 #if VM_NRESERVLEVEL > 0
833 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
834 		vm_reserv_break_all(object);
835 #endif
836 
837 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
838 	    object->type == OBJT_SWAP,
839 	    ("%s: non-swap obj %p has cred", __func__, object));
840 
841 	/*
842 	 * Let the pager know object is dead.
843 	 */
844 	vm_pager_deallocate(object);
845 	VM_OBJECT_WUNLOCK(object);
846 
847 	vm_object_destroy(object);
848 }
849 
850 /*
851  * Make the page read-only so that we can clear the object flags.  However, if
852  * this is a nosync mmap then the object is likely to stay dirty so do not
853  * mess with the page and do not clear the object flags.  Returns TRUE if the
854  * page should be flushed, and FALSE otherwise.
855  */
856 static boolean_t
857 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
858 {
859 
860 	vm_page_assert_busied(p);
861 
862 	/*
863 	 * If we have been asked to skip nosync pages and this is a
864 	 * nosync page, skip it.  Note that the object flags were not
865 	 * cleared in this case so we do not have to set them.
866 	 */
867 	if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) {
868 		*allclean = FALSE;
869 		return (FALSE);
870 	} else {
871 		pmap_remove_write(p);
872 		return (p->dirty != 0);
873 	}
874 }
875 
876 /*
877  *	vm_object_page_clean
878  *
879  *	Clean all dirty pages in the specified range of object.  Leaves page
880  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
881  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
882  *	leaving the object dirty.
883  *
884  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
885  *	synchronous clustering mode implementation.
886  *
887  *	Odd semantics: if start == end, we clean everything.
888  *
889  *	The object must be locked.
890  *
891  *	Returns FALSE if some page from the range was not written, as
892  *	reported by the pager, and TRUE otherwise.
893  */
894 boolean_t
895 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
896     int flags)
897 {
898 	vm_page_t np, p;
899 	vm_pindex_t pi, tend, tstart;
900 	int curgeneration, n, pagerflags;
901 	boolean_t eio, res, allclean;
902 
903 	VM_OBJECT_ASSERT_WLOCKED(object);
904 
905 	if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
906 	    object->resident_page_count == 0)
907 		return (TRUE);
908 
909 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
910 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
911 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
912 
913 	tstart = OFF_TO_IDX(start);
914 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
915 	allclean = tstart == 0 && tend >= object->size;
916 	res = TRUE;
917 
918 rescan:
919 	curgeneration = object->generation;
920 
921 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
922 		pi = p->pindex;
923 		if (pi >= tend)
924 			break;
925 		np = TAILQ_NEXT(p, listq);
926 		if (vm_page_none_valid(p))
927 			continue;
928 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
929 			if (object->generation != curgeneration &&
930 			    (flags & OBJPC_SYNC) != 0)
931 				goto rescan;
932 			np = vm_page_find_least(object, pi);
933 			continue;
934 		}
935 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
936 			vm_page_xunbusy(p);
937 			continue;
938 		}
939 
940 		n = vm_object_page_collect_flush(object, p, pagerflags,
941 		    flags, &allclean, &eio);
942 		if (eio) {
943 			res = FALSE;
944 			allclean = FALSE;
945 		}
946 		if (object->generation != curgeneration &&
947 		    (flags & OBJPC_SYNC) != 0)
948 			goto rescan;
949 
950 		/*
951 		 * If the VOP_PUTPAGES() did a truncated write, so
952 		 * that even the first page of the run is not fully
953 		 * written, vm_pageout_flush() returns 0 as the run
954 		 * length.  Since the condition that caused truncated
955 		 * write may be permanent, e.g. exhausted free space,
956 		 * accepting n == 0 would cause an infinite loop.
957 		 *
958 		 * Forwarding the iterator leaves the unwritten page
959 		 * behind, but there is not much we can do there if
960 		 * filesystem refuses to write it.
961 		 */
962 		if (n == 0) {
963 			n = 1;
964 			allclean = FALSE;
965 		}
966 		np = vm_page_find_least(object, pi + n);
967 	}
968 #if 0
969 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
970 #endif
971 
972 	if (allclean)
973 		object->cleangeneration = curgeneration;
974 	return (res);
975 }
976 
977 static int
978 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
979     int flags, boolean_t *allclean, boolean_t *eio)
980 {
981 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
982 	int count, i, mreq, runlen;
983 
984 	vm_page_lock_assert(p, MA_NOTOWNED);
985 	vm_page_assert_xbusied(p);
986 	VM_OBJECT_ASSERT_WLOCKED(object);
987 
988 	count = 1;
989 	mreq = 0;
990 
991 	for (tp = p; count < vm_pageout_page_count; count++) {
992 		tp = vm_page_next(tp);
993 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
994 			break;
995 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
996 			vm_page_xunbusy(tp);
997 			break;
998 		}
999 	}
1000 
1001 	for (p_first = p; count < vm_pageout_page_count; count++) {
1002 		tp = vm_page_prev(p_first);
1003 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1004 			break;
1005 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1006 			vm_page_xunbusy(tp);
1007 			break;
1008 		}
1009 		p_first = tp;
1010 		mreq++;
1011 	}
1012 
1013 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1014 		ma[i] = tp;
1015 
1016 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1017 	return (runlen);
1018 }
1019 
1020 /*
1021  * Note that there is absolutely no sense in writing out
1022  * anonymous objects, so we track down the vnode object
1023  * to write out.
1024  * We invalidate (remove) all pages from the address space
1025  * for semantic correctness.
1026  *
1027  * If the backing object is a device object with unmanaged pages, then any
1028  * mappings to the specified range of pages must be removed before this
1029  * function is called.
1030  *
1031  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1032  * may start out with a NULL object.
1033  */
1034 boolean_t
1035 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1036     boolean_t syncio, boolean_t invalidate)
1037 {
1038 	vm_object_t backing_object;
1039 	struct vnode *vp;
1040 	struct mount *mp;
1041 	int error, flags, fsync_after;
1042 	boolean_t res;
1043 
1044 	if (object == NULL)
1045 		return (TRUE);
1046 	res = TRUE;
1047 	error = 0;
1048 	VM_OBJECT_WLOCK(object);
1049 	while ((backing_object = object->backing_object) != NULL) {
1050 		VM_OBJECT_WLOCK(backing_object);
1051 		offset += object->backing_object_offset;
1052 		VM_OBJECT_WUNLOCK(object);
1053 		object = backing_object;
1054 		if (object->size < OFF_TO_IDX(offset + size))
1055 			size = IDX_TO_OFF(object->size) - offset;
1056 	}
1057 	/*
1058 	 * Flush pages if writing is allowed, invalidate them
1059 	 * if invalidation requested.  Pages undergoing I/O
1060 	 * will be ignored by vm_object_page_remove().
1061 	 *
1062 	 * We cannot lock the vnode and then wait for paging
1063 	 * to complete without deadlocking against vm_fault.
1064 	 * Instead we simply call vm_object_page_remove() and
1065 	 * allow it to block internally on a page-by-page
1066 	 * basis when it encounters pages undergoing async
1067 	 * I/O.
1068 	 */
1069 	if (object->type == OBJT_VNODE &&
1070 	    vm_object_mightbedirty(object) != 0 &&
1071 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1072 		VM_OBJECT_WUNLOCK(object);
1073 		(void) vn_start_write(vp, &mp, V_WAIT);
1074 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1075 		if (syncio && !invalidate && offset == 0 &&
1076 		    atop(size) == object->size) {
1077 			/*
1078 			 * If syncing the whole mapping of the file,
1079 			 * it is faster to schedule all the writes in
1080 			 * async mode, also allowing the clustering,
1081 			 * and then wait for i/o to complete.
1082 			 */
1083 			flags = 0;
1084 			fsync_after = TRUE;
1085 		} else {
1086 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1087 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1088 			fsync_after = FALSE;
1089 		}
1090 		VM_OBJECT_WLOCK(object);
1091 		res = vm_object_page_clean(object, offset, offset + size,
1092 		    flags);
1093 		VM_OBJECT_WUNLOCK(object);
1094 		if (fsync_after)
1095 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1096 		VOP_UNLOCK(vp, 0);
1097 		vn_finished_write(mp);
1098 		if (error != 0)
1099 			res = FALSE;
1100 		VM_OBJECT_WLOCK(object);
1101 	}
1102 	if ((object->type == OBJT_VNODE ||
1103 	     object->type == OBJT_DEVICE) && invalidate) {
1104 		if (object->type == OBJT_DEVICE)
1105 			/*
1106 			 * The option OBJPR_NOTMAPPED must be passed here
1107 			 * because vm_object_page_remove() cannot remove
1108 			 * unmanaged mappings.
1109 			 */
1110 			flags = OBJPR_NOTMAPPED;
1111 		else if (old_msync)
1112 			flags = 0;
1113 		else
1114 			flags = OBJPR_CLEANONLY;
1115 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1116 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1117 	}
1118 	VM_OBJECT_WUNLOCK(object);
1119 	return (res);
1120 }
1121 
1122 /*
1123  * Determine whether the given advice can be applied to the object.  Advice is
1124  * not applied to unmanaged pages since they never belong to page queues, and
1125  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1126  * have been mapped at most once.
1127  */
1128 static bool
1129 vm_object_advice_applies(vm_object_t object, int advice)
1130 {
1131 
1132 	if ((object->flags & OBJ_UNMANAGED) != 0)
1133 		return (false);
1134 	if (advice != MADV_FREE)
1135 		return (true);
1136 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1137 	    (OBJ_ONEMAPPING | OBJ_ANON));
1138 }
1139 
1140 static void
1141 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1142     vm_size_t size)
1143 {
1144 
1145 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1146 		swap_pager_freespace(object, pindex, size);
1147 }
1148 
1149 /*
1150  *	vm_object_madvise:
1151  *
1152  *	Implements the madvise function at the object/page level.
1153  *
1154  *	MADV_WILLNEED	(any object)
1155  *
1156  *	    Activate the specified pages if they are resident.
1157  *
1158  *	MADV_DONTNEED	(any object)
1159  *
1160  *	    Deactivate the specified pages if they are resident.
1161  *
1162  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1163  *			 OBJ_ONEMAPPING only)
1164  *
1165  *	    Deactivate and clean the specified pages if they are
1166  *	    resident.  This permits the process to reuse the pages
1167  *	    without faulting or the kernel to reclaim the pages
1168  *	    without I/O.
1169  */
1170 void
1171 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1172     int advice)
1173 {
1174 	vm_pindex_t tpindex;
1175 	vm_object_t backing_object, tobject;
1176 	vm_page_t m, tm;
1177 
1178 	if (object == NULL)
1179 		return;
1180 
1181 relookup:
1182 	VM_OBJECT_WLOCK(object);
1183 	if (!vm_object_advice_applies(object, advice)) {
1184 		VM_OBJECT_WUNLOCK(object);
1185 		return;
1186 	}
1187 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1188 		tobject = object;
1189 
1190 		/*
1191 		 * If the next page isn't resident in the top-level object, we
1192 		 * need to search the shadow chain.  When applying MADV_FREE, we
1193 		 * take care to release any swap space used to store
1194 		 * non-resident pages.
1195 		 */
1196 		if (m == NULL || pindex < m->pindex) {
1197 			/*
1198 			 * Optimize a common case: if the top-level object has
1199 			 * no backing object, we can skip over the non-resident
1200 			 * range in constant time.
1201 			 */
1202 			if (object->backing_object == NULL) {
1203 				tpindex = (m != NULL && m->pindex < end) ?
1204 				    m->pindex : end;
1205 				vm_object_madvise_freespace(object, advice,
1206 				    pindex, tpindex - pindex);
1207 				if ((pindex = tpindex) == end)
1208 					break;
1209 				goto next_page;
1210 			}
1211 
1212 			tpindex = pindex;
1213 			do {
1214 				vm_object_madvise_freespace(tobject, advice,
1215 				    tpindex, 1);
1216 				/*
1217 				 * Prepare to search the next object in the
1218 				 * chain.
1219 				 */
1220 				backing_object = tobject->backing_object;
1221 				if (backing_object == NULL)
1222 					goto next_pindex;
1223 				VM_OBJECT_WLOCK(backing_object);
1224 				tpindex +=
1225 				    OFF_TO_IDX(tobject->backing_object_offset);
1226 				if (tobject != object)
1227 					VM_OBJECT_WUNLOCK(tobject);
1228 				tobject = backing_object;
1229 				if (!vm_object_advice_applies(tobject, advice))
1230 					goto next_pindex;
1231 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1232 			    NULL);
1233 		} else {
1234 next_page:
1235 			tm = m;
1236 			m = TAILQ_NEXT(m, listq);
1237 		}
1238 
1239 		/*
1240 		 * If the page is not in a normal state, skip it.  The page
1241 		 * can not be invalidated while the object lock is held.
1242 		 */
1243 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1244 			goto next_pindex;
1245 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1246 		    ("vm_object_madvise: page %p is fictitious", tm));
1247 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1248 		    ("vm_object_madvise: page %p is not managed", tm));
1249 		if (vm_page_tryxbusy(tm) == 0) {
1250 			if (object != tobject)
1251 				VM_OBJECT_WUNLOCK(object);
1252 			if (advice == MADV_WILLNEED) {
1253 				/*
1254 				 * Reference the page before unlocking and
1255 				 * sleeping so that the page daemon is less
1256 				 * likely to reclaim it.
1257 				 */
1258 				vm_page_aflag_set(tm, PGA_REFERENCED);
1259 			}
1260 			vm_page_busy_sleep(tm, "madvpo", false);
1261   			goto relookup;
1262 		}
1263 		vm_page_lock(tm);
1264 		vm_page_advise(tm, advice);
1265 		vm_page_unlock(tm);
1266 		vm_page_xunbusy(tm);
1267 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1268 next_pindex:
1269 		if (tobject != object)
1270 			VM_OBJECT_WUNLOCK(tobject);
1271 	}
1272 	VM_OBJECT_WUNLOCK(object);
1273 }
1274 
1275 /*
1276  *	vm_object_shadow:
1277  *
1278  *	Create a new object which is backed by the
1279  *	specified existing object range.  The source
1280  *	object reference is deallocated.
1281  *
1282  *	The new object and offset into that object
1283  *	are returned in the source parameters.
1284  */
1285 void
1286 vm_object_shadow(
1287 	vm_object_t *object,	/* IN/OUT */
1288 	vm_ooffset_t *offset,	/* IN/OUT */
1289 	vm_size_t length)
1290 {
1291 	vm_object_t source;
1292 	vm_object_t result;
1293 
1294 	source = *object;
1295 
1296 	/*
1297 	 * Don't create the new object if the old object isn't shared.
1298 	 *
1299 	 * If we hold the only reference we can guarantee that it won't
1300 	 * increase while we have the map locked.  Otherwise the race is
1301 	 * harmless and we will end up with an extra shadow object that
1302 	 * will be collapsed later.
1303 	 */
1304 	if (source != NULL && source->ref_count == 1 &&
1305 	    source->handle == NULL && (source->flags & OBJ_ANON) != 0)
1306 		return;
1307 
1308 	/*
1309 	 * Allocate a new object with the given length.
1310 	 */
1311 	result = vm_object_allocate_anon(atop(length));
1312 
1313 	/*
1314 	 * Store the offset into the source object, and fix up the offset into
1315 	 * the new object.
1316 	 */
1317 	result->backing_object_offset = *offset;
1318 
1319 	/*
1320 	 * The new object shadows the source object, adding a reference to it.
1321 	 * Our caller changes his reference to point to the new object,
1322 	 * removing a reference to the source object.  Net result: no change
1323 	 * of reference count.
1324 	 *
1325 	 * Try to optimize the result object's page color when shadowing
1326 	 * in order to maintain page coloring consistency in the combined
1327 	 * shadowed object.
1328 	 */
1329 	if (source != NULL) {
1330 		VM_OBJECT_WLOCK(result);
1331 		vm_object_backing_insert(result, source);
1332 		result->domain = source->domain;
1333 #if VM_NRESERVLEVEL > 0
1334 		result->flags |= source->flags & OBJ_COLORED;
1335 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1336 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1337 #endif
1338 		VM_OBJECT_WUNLOCK(result);
1339 	}
1340 
1341 	/*
1342 	 * Return the new things
1343 	 */
1344 	*offset = 0;
1345 	*object = result;
1346 }
1347 
1348 /*
1349  *	vm_object_split:
1350  *
1351  * Split the pages in a map entry into a new object.  This affords
1352  * easier removal of unused pages, and keeps object inheritance from
1353  * being a negative impact on memory usage.
1354  */
1355 void
1356 vm_object_split(vm_map_entry_t entry)
1357 {
1358 	vm_page_t m, m_next;
1359 	vm_object_t orig_object, new_object, source;
1360 	vm_pindex_t idx, offidxstart;
1361 	vm_size_t size;
1362 
1363 	orig_object = entry->object.vm_object;
1364 	if ((orig_object->flags & OBJ_ANON) == 0)
1365 		return;
1366 	if (orig_object->ref_count <= 1)
1367 		return;
1368 	VM_OBJECT_WUNLOCK(orig_object);
1369 
1370 	offidxstart = OFF_TO_IDX(entry->offset);
1371 	size = atop(entry->end - entry->start);
1372 
1373 	/*
1374 	 * If swap_pager_copy() is later called, it will convert new_object
1375 	 * into a swap object.
1376 	 */
1377 	new_object = vm_object_allocate_anon(size);
1378 
1379 	/*
1380 	 * At this point, the new object is still private, so the order in
1381 	 * which the original and new objects are locked does not matter.
1382 	 */
1383 	VM_OBJECT_WLOCK(new_object);
1384 	VM_OBJECT_WLOCK(orig_object);
1385 	new_object->domain = orig_object->domain;
1386 	source = orig_object->backing_object;
1387 	if (source != NULL) {
1388 		if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) {
1389 			VM_OBJECT_WLOCK(source);
1390 			if ((source->flags & OBJ_DEAD) != 0) {
1391 				VM_OBJECT_WUNLOCK(source);
1392 				VM_OBJECT_WUNLOCK(orig_object);
1393 				VM_OBJECT_WUNLOCK(new_object);
1394 				vm_object_deallocate(new_object);
1395 				VM_OBJECT_WLOCK(orig_object);
1396 				return;
1397 			}
1398 			vm_object_backing_insert_locked(new_object, source);
1399 			vm_object_reference_locked(source);	/* for new_object */
1400 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1401 			VM_OBJECT_WUNLOCK(source);
1402 		} else {
1403 			vm_object_backing_insert(new_object, source);
1404 			vm_object_reference(source);
1405 		}
1406 		new_object->backing_object_offset =
1407 			orig_object->backing_object_offset + entry->offset;
1408 	}
1409 	if (orig_object->cred != NULL) {
1410 		new_object->cred = orig_object->cred;
1411 		crhold(orig_object->cred);
1412 		new_object->charge = ptoa(size);
1413 		KASSERT(orig_object->charge >= ptoa(size),
1414 		    ("orig_object->charge < 0"));
1415 		orig_object->charge -= ptoa(size);
1416 	}
1417 retry:
1418 	m = vm_page_find_least(orig_object, offidxstart);
1419 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1420 	    m = m_next) {
1421 		m_next = TAILQ_NEXT(m, listq);
1422 
1423 		/*
1424 		 * We must wait for pending I/O to complete before we can
1425 		 * rename the page.
1426 		 *
1427 		 * We do not have to VM_PROT_NONE the page as mappings should
1428 		 * not be changed by this operation.
1429 		 */
1430 		if (vm_page_tryxbusy(m) == 0) {
1431 			VM_OBJECT_WUNLOCK(new_object);
1432 			vm_page_sleep_if_busy(m, "spltwt");
1433 			VM_OBJECT_WLOCK(new_object);
1434 			goto retry;
1435 		}
1436 
1437 		/* vm_page_rename() will dirty the page. */
1438 		if (vm_page_rename(m, new_object, idx)) {
1439 			vm_page_xunbusy(m);
1440 			VM_OBJECT_WUNLOCK(new_object);
1441 			VM_OBJECT_WUNLOCK(orig_object);
1442 			vm_radix_wait();
1443 			VM_OBJECT_WLOCK(orig_object);
1444 			VM_OBJECT_WLOCK(new_object);
1445 			goto retry;
1446 		}
1447 
1448 #if VM_NRESERVLEVEL > 0
1449 		/*
1450 		 * If some of the reservation's allocated pages remain with
1451 		 * the original object, then transferring the reservation to
1452 		 * the new object is neither particularly beneficial nor
1453 		 * particularly harmful as compared to leaving the reservation
1454 		 * with the original object.  If, however, all of the
1455 		 * reservation's allocated pages are transferred to the new
1456 		 * object, then transferring the reservation is typically
1457 		 * beneficial.  Determining which of these two cases applies
1458 		 * would be more costly than unconditionally renaming the
1459 		 * reservation.
1460 		 */
1461 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1462 #endif
1463 		if (orig_object->type != OBJT_SWAP)
1464 			vm_page_xunbusy(m);
1465 	}
1466 	if (orig_object->type == OBJT_SWAP) {
1467 		/*
1468 		 * swap_pager_copy() can sleep, in which case the orig_object's
1469 		 * and new_object's locks are released and reacquired.
1470 		 */
1471 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1472 		TAILQ_FOREACH(m, &new_object->memq, listq)
1473 			vm_page_xunbusy(m);
1474 	}
1475 	VM_OBJECT_WUNLOCK(orig_object);
1476 	VM_OBJECT_WUNLOCK(new_object);
1477 	entry->object.vm_object = new_object;
1478 	entry->offset = 0LL;
1479 	vm_object_deallocate(orig_object);
1480 	VM_OBJECT_WLOCK(new_object);
1481 }
1482 
1483 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1484 #define	OBSC_COLLAPSE_WAIT	0x0004
1485 
1486 static vm_page_t
1487 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1488     int op)
1489 {
1490 	vm_object_t backing_object;
1491 
1492 	VM_OBJECT_ASSERT_WLOCKED(object);
1493 	backing_object = object->backing_object;
1494 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1495 
1496 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1497 	    ("invalid ownership %p %p %p", p, object, backing_object));
1498 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1499 		return (next);
1500 	/* The page is only NULL when rename fails. */
1501 	if (p == NULL) {
1502 		vm_radix_wait();
1503 	} else {
1504 		if (p->object == object)
1505 			VM_OBJECT_WUNLOCK(backing_object);
1506 		else
1507 			VM_OBJECT_WUNLOCK(object);
1508 		vm_page_busy_sleep(p, "vmocol", false);
1509 	}
1510 	VM_OBJECT_WLOCK(object);
1511 	VM_OBJECT_WLOCK(backing_object);
1512 	return (TAILQ_FIRST(&backing_object->memq));
1513 }
1514 
1515 static bool
1516 vm_object_scan_all_shadowed(vm_object_t object)
1517 {
1518 	vm_object_t backing_object;
1519 	vm_page_t p, pp;
1520 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1521 
1522 	VM_OBJECT_ASSERT_WLOCKED(object);
1523 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1524 
1525 	backing_object = object->backing_object;
1526 
1527 	if ((backing_object->flags & OBJ_ANON) == 0)
1528 		return (false);
1529 
1530 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1531 	p = vm_page_find_least(backing_object, pi);
1532 	ps = swap_pager_find_least(backing_object, pi);
1533 
1534 	/*
1535 	 * Only check pages inside the parent object's range and
1536 	 * inside the parent object's mapping of the backing object.
1537 	 */
1538 	for (;; pi++) {
1539 		if (p != NULL && p->pindex < pi)
1540 			p = TAILQ_NEXT(p, listq);
1541 		if (ps < pi)
1542 			ps = swap_pager_find_least(backing_object, pi);
1543 		if (p == NULL && ps >= backing_object->size)
1544 			break;
1545 		else if (p == NULL)
1546 			pi = ps;
1547 		else
1548 			pi = MIN(p->pindex, ps);
1549 
1550 		new_pindex = pi - backing_offset_index;
1551 		if (new_pindex >= object->size)
1552 			break;
1553 
1554 		/*
1555 		 * See if the parent has the page or if the parent's object
1556 		 * pager has the page.  If the parent has the page but the page
1557 		 * is not valid, the parent's object pager must have the page.
1558 		 *
1559 		 * If this fails, the parent does not completely shadow the
1560 		 * object and we might as well give up now.
1561 		 */
1562 		pp = vm_page_lookup(object, new_pindex);
1563 		/*
1564 		 * The valid check here is stable due to object lock being
1565 		 * required to clear valid and initiate paging.
1566 		 */
1567 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1568 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1569 			return (false);
1570 	}
1571 	return (true);
1572 }
1573 
1574 static bool
1575 vm_object_collapse_scan(vm_object_t object, int op)
1576 {
1577 	vm_object_t backing_object;
1578 	vm_page_t next, p, pp;
1579 	vm_pindex_t backing_offset_index, new_pindex;
1580 
1581 	VM_OBJECT_ASSERT_WLOCKED(object);
1582 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1583 
1584 	backing_object = object->backing_object;
1585 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1586 
1587 	/*
1588 	 * Initial conditions
1589 	 */
1590 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1591 		vm_object_set_flag(backing_object, OBJ_DEAD);
1592 
1593 	/*
1594 	 * Our scan
1595 	 */
1596 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1597 		next = TAILQ_NEXT(p, listq);
1598 		new_pindex = p->pindex - backing_offset_index;
1599 
1600 		/*
1601 		 * Check for busy page
1602 		 */
1603 		if (vm_page_tryxbusy(p) == 0) {
1604 			next = vm_object_collapse_scan_wait(object, p, next, op);
1605 			continue;
1606 		}
1607 
1608 		KASSERT(p->object == backing_object,
1609 		    ("vm_object_collapse_scan: object mismatch"));
1610 
1611 		if (p->pindex < backing_offset_index ||
1612 		    new_pindex >= object->size) {
1613 			if (backing_object->type == OBJT_SWAP)
1614 				swap_pager_freespace(backing_object, p->pindex,
1615 				    1);
1616 
1617 			KASSERT(!pmap_page_is_mapped(p),
1618 			    ("freeing mapped page %p", p));
1619 			if (vm_page_remove(p))
1620 				vm_page_free(p);
1621 			else
1622 				vm_page_xunbusy(p);
1623 			continue;
1624 		}
1625 
1626 		pp = vm_page_lookup(object, new_pindex);
1627 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1628 			vm_page_xunbusy(p);
1629 			/*
1630 			 * The page in the parent is busy and possibly not
1631 			 * (yet) valid.  Until its state is finalized by the
1632 			 * busy bit owner, we can't tell whether it shadows the
1633 			 * original page.  Therefore, we must either skip it
1634 			 * and the original (backing_object) page or wait for
1635 			 * its state to be finalized.
1636 			 *
1637 			 * This is due to a race with vm_fault() where we must
1638 			 * unbusy the original (backing_obj) page before we can
1639 			 * (re)lock the parent.  Hence we can get here.
1640 			 */
1641 			next = vm_object_collapse_scan_wait(object, pp, next,
1642 			    op);
1643 			continue;
1644 		}
1645 
1646 		KASSERT(pp == NULL || !vm_page_none_valid(pp),
1647 		    ("unbusy invalid page %p", pp));
1648 
1649 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1650 			NULL)) {
1651 			/*
1652 			 * The page already exists in the parent OR swap exists
1653 			 * for this location in the parent.  Leave the parent's
1654 			 * page alone.  Destroy the original page from the
1655 			 * backing object.
1656 			 */
1657 			if (backing_object->type == OBJT_SWAP)
1658 				swap_pager_freespace(backing_object, p->pindex,
1659 				    1);
1660 			KASSERT(!pmap_page_is_mapped(p),
1661 			    ("freeing mapped page %p", p));
1662 			if (vm_page_remove(p))
1663 				vm_page_free(p);
1664 			else
1665 				vm_page_xunbusy(p);
1666 			if (pp != NULL)
1667 				vm_page_xunbusy(pp);
1668 			continue;
1669 		}
1670 
1671 		/*
1672 		 * Page does not exist in parent, rename the page from the
1673 		 * backing object to the main object.
1674 		 *
1675 		 * If the page was mapped to a process, it can remain mapped
1676 		 * through the rename.  vm_page_rename() will dirty the page.
1677 		 */
1678 		if (vm_page_rename(p, object, new_pindex)) {
1679 			vm_page_xunbusy(p);
1680 			if (pp != NULL)
1681 				vm_page_xunbusy(pp);
1682 			next = vm_object_collapse_scan_wait(object, NULL, next,
1683 			    op);
1684 			continue;
1685 		}
1686 
1687 		/* Use the old pindex to free the right page. */
1688 		if (backing_object->type == OBJT_SWAP)
1689 			swap_pager_freespace(backing_object,
1690 			    new_pindex + backing_offset_index, 1);
1691 
1692 #if VM_NRESERVLEVEL > 0
1693 		/*
1694 		 * Rename the reservation.
1695 		 */
1696 		vm_reserv_rename(p, object, backing_object,
1697 		    backing_offset_index);
1698 #endif
1699 		vm_page_xunbusy(p);
1700 	}
1701 	return (true);
1702 }
1703 
1704 
1705 /*
1706  * this version of collapse allows the operation to occur earlier and
1707  * when paging_in_progress is true for an object...  This is not a complete
1708  * operation, but should plug 99.9% of the rest of the leaks.
1709  */
1710 static void
1711 vm_object_qcollapse(vm_object_t object)
1712 {
1713 	vm_object_t backing_object = object->backing_object;
1714 
1715 	VM_OBJECT_ASSERT_WLOCKED(object);
1716 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1717 
1718 	if (backing_object->ref_count != 1)
1719 		return;
1720 
1721 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1722 }
1723 
1724 /*
1725  *	vm_object_collapse:
1726  *
1727  *	Collapse an object with the object backing it.
1728  *	Pages in the backing object are moved into the
1729  *	parent, and the backing object is deallocated.
1730  */
1731 void
1732 vm_object_collapse(vm_object_t object)
1733 {
1734 	vm_object_t backing_object, new_backing_object;
1735 
1736 	VM_OBJECT_ASSERT_WLOCKED(object);
1737 
1738 	while (TRUE) {
1739 		/*
1740 		 * Verify that the conditions are right for collapse:
1741 		 *
1742 		 * The object exists and the backing object exists.
1743 		 */
1744 		if ((backing_object = object->backing_object) == NULL)
1745 			break;
1746 
1747 		/*
1748 		 * we check the backing object first, because it is most likely
1749 		 * not collapsable.
1750 		 */
1751 		if ((backing_object->flags & OBJ_ANON) == 0)
1752 			break;
1753 		VM_OBJECT_WLOCK(backing_object);
1754 		if (backing_object->handle != NULL ||
1755 		    (backing_object->flags & OBJ_DEAD) != 0 ||
1756 		    object->handle != NULL ||
1757 		    (object->flags & OBJ_DEAD) != 0) {
1758 			VM_OBJECT_WUNLOCK(backing_object);
1759 			break;
1760 		}
1761 
1762 		if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1763 		    REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1764 			vm_object_qcollapse(object);
1765 			VM_OBJECT_WUNLOCK(backing_object);
1766 			break;
1767 		}
1768 
1769 		/*
1770 		 * We know that we can either collapse the backing object (if
1771 		 * the parent is the only reference to it) or (perhaps) have
1772 		 * the parent bypass the object if the parent happens to shadow
1773 		 * all the resident pages in the entire backing object.
1774 		 *
1775 		 * This is ignoring pager-backed pages such as swap pages.
1776 		 * vm_object_collapse_scan fails the shadowing test in this
1777 		 * case.
1778 		 */
1779 		if (backing_object->ref_count == 1) {
1780 			vm_object_pip_add(object, 1);
1781 			vm_object_pip_add(backing_object, 1);
1782 
1783 			/*
1784 			 * If there is exactly one reference to the backing
1785 			 * object, we can collapse it into the parent.
1786 			 */
1787 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1788 
1789 #if VM_NRESERVLEVEL > 0
1790 			/*
1791 			 * Break any reservations from backing_object.
1792 			 */
1793 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1794 				vm_reserv_break_all(backing_object);
1795 #endif
1796 
1797 			/*
1798 			 * Move the pager from backing_object to object.
1799 			 */
1800 			if (backing_object->type == OBJT_SWAP) {
1801 				/*
1802 				 * swap_pager_copy() can sleep, in which case
1803 				 * the backing_object's and object's locks are
1804 				 * released and reacquired.
1805 				 * Since swap_pager_copy() is being asked to
1806 				 * destroy the source, it will change the
1807 				 * backing_object's type to OBJT_DEFAULT.
1808 				 */
1809 				swap_pager_copy(
1810 				    backing_object,
1811 				    object,
1812 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1813 			}
1814 			/*
1815 			 * Object now shadows whatever backing_object did.
1816 			 * Note that the reference to
1817 			 * backing_object->backing_object moves from within
1818 			 * backing_object to within object.
1819 			 */
1820 			vm_object_backing_remove_locked(object);
1821 			new_backing_object = backing_object->backing_object;
1822 			if (new_backing_object != NULL) {
1823 				VM_OBJECT_WLOCK(new_backing_object);
1824 				vm_object_backing_remove_locked(backing_object);
1825 				vm_object_backing_insert_locked(object,
1826 				    new_backing_object);
1827 				VM_OBJECT_WUNLOCK(new_backing_object);
1828 			}
1829 			object->backing_object_offset +=
1830 			    backing_object->backing_object_offset;
1831 
1832 			/*
1833 			 * Discard backing_object.
1834 			 *
1835 			 * Since the backing object has no pages, no pager left,
1836 			 * and no object references within it, all that is
1837 			 * necessary is to dispose of it.
1838 			 */
1839 			KASSERT(backing_object->ref_count == 1, (
1840 "backing_object %p was somehow re-referenced during collapse!",
1841 			    backing_object));
1842 			vm_object_pip_wakeup(backing_object);
1843 			backing_object->type = OBJT_DEAD;
1844 			backing_object->ref_count = 0;
1845 			VM_OBJECT_WUNLOCK(backing_object);
1846 			vm_object_destroy(backing_object);
1847 
1848 			vm_object_pip_wakeup(object);
1849 			counter_u64_add(object_collapses, 1);
1850 		} else {
1851 			/*
1852 			 * If we do not entirely shadow the backing object,
1853 			 * there is nothing we can do so we give up.
1854 			 */
1855 			if (object->resident_page_count != object->size &&
1856 			    !vm_object_scan_all_shadowed(object)) {
1857 				VM_OBJECT_WUNLOCK(backing_object);
1858 				break;
1859 			}
1860 
1861 			/*
1862 			 * Make the parent shadow the next object in the
1863 			 * chain.  Deallocating backing_object will not remove
1864 			 * it, since its reference count is at least 2.
1865 			 */
1866 			vm_object_backing_remove_locked(object);
1867 
1868 			new_backing_object = backing_object->backing_object;
1869 			if (new_backing_object != NULL) {
1870 				vm_object_backing_insert(object,
1871 				    new_backing_object);
1872 				vm_object_reference(new_backing_object);
1873 				object->backing_object_offset +=
1874 					backing_object->backing_object_offset;
1875 			}
1876 
1877 			/*
1878 			 * Drop the reference count on backing_object. Since
1879 			 * its ref_count was at least 2, it will not vanish.
1880 			 */
1881 			refcount_release(&backing_object->ref_count);
1882 			VM_OBJECT_WUNLOCK(backing_object);
1883 			counter_u64_add(object_bypasses, 1);
1884 		}
1885 
1886 		/*
1887 		 * Try again with this object's new backing object.
1888 		 */
1889 	}
1890 }
1891 
1892 /*
1893  *	vm_object_page_remove:
1894  *
1895  *	For the given object, either frees or invalidates each of the
1896  *	specified pages.  In general, a page is freed.  However, if a page is
1897  *	wired for any reason other than the existence of a managed, wired
1898  *	mapping, then it may be invalidated but not removed from the object.
1899  *	Pages are specified by the given range ["start", "end") and the option
1900  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1901  *	extends from "start" to the end of the object.  If the option
1902  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1903  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1904  *	specified, then the pages within the specified range must have no
1905  *	mappings.  Otherwise, if this option is not specified, any mappings to
1906  *	the specified pages are removed before the pages are freed or
1907  *	invalidated.
1908  *
1909  *	In general, this operation should only be performed on objects that
1910  *	contain managed pages.  There are, however, two exceptions.  First, it
1911  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1912  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1913  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1914  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1915  *
1916  *	The object must be locked.
1917  */
1918 void
1919 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1920     int options)
1921 {
1922 	vm_page_t p, next;
1923 
1924 	VM_OBJECT_ASSERT_WLOCKED(object);
1925 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1926 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1927 	    ("vm_object_page_remove: illegal options for object %p", object));
1928 	if (object->resident_page_count == 0)
1929 		return;
1930 	vm_object_pip_add(object, 1);
1931 again:
1932 	p = vm_page_find_least(object, start);
1933 
1934 	/*
1935 	 * Here, the variable "p" is either (1) the page with the least pindex
1936 	 * greater than or equal to the parameter "start" or (2) NULL.
1937 	 */
1938 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1939 		next = TAILQ_NEXT(p, listq);
1940 
1941 		/*
1942 		 * If the page is wired for any reason besides the existence
1943 		 * of managed, wired mappings, then it cannot be freed.  For
1944 		 * example, fictitious pages, which represent device memory,
1945 		 * are inherently wired and cannot be freed.  They can,
1946 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1947 		 * not specified.
1948 		 */
1949 		if (vm_page_tryxbusy(p) == 0) {
1950 			vm_page_sleep_if_busy(p, "vmopar");
1951 			goto again;
1952 		}
1953 		if (vm_page_wired(p)) {
1954 wired:
1955 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1956 			    object->ref_count != 0)
1957 				pmap_remove_all(p);
1958 			if ((options & OBJPR_CLEANONLY) == 0) {
1959 				vm_page_invalid(p);
1960 				vm_page_undirty(p);
1961 			}
1962 			vm_page_xunbusy(p);
1963 			continue;
1964 		}
1965 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1966 		    ("vm_object_page_remove: page %p is fictitious", p));
1967 		if ((options & OBJPR_CLEANONLY) != 0 &&
1968 		    !vm_page_none_valid(p)) {
1969 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1970 			    object->ref_count != 0 &&
1971 			    !vm_page_try_remove_write(p))
1972 				goto wired;
1973 			if (p->dirty != 0) {
1974 				vm_page_xunbusy(p);
1975 				continue;
1976 			}
1977 		}
1978 		if ((options & OBJPR_NOTMAPPED) == 0 &&
1979 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
1980 			goto wired;
1981 		vm_page_free(p);
1982 	}
1983 	vm_object_pip_wakeup(object);
1984 }
1985 
1986 /*
1987  *	vm_object_page_noreuse:
1988  *
1989  *	For the given object, attempt to move the specified pages to
1990  *	the head of the inactive queue.  This bypasses regular LRU
1991  *	operation and allows the pages to be reused quickly under memory
1992  *	pressure.  If a page is wired for any reason, then it will not
1993  *	be queued.  Pages are specified by the range ["start", "end").
1994  *	As a special case, if "end" is zero, then the range extends from
1995  *	"start" to the end of the object.
1996  *
1997  *	This operation should only be performed on objects that
1998  *	contain non-fictitious, managed pages.
1999  *
2000  *	The object must be locked.
2001  */
2002 void
2003 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2004 {
2005 	struct mtx *mtx;
2006 	vm_page_t p, next;
2007 
2008 	VM_OBJECT_ASSERT_LOCKED(object);
2009 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2010 	    ("vm_object_page_noreuse: illegal object %p", object));
2011 	if (object->resident_page_count == 0)
2012 		return;
2013 	p = vm_page_find_least(object, start);
2014 
2015 	/*
2016 	 * Here, the variable "p" is either (1) the page with the least pindex
2017 	 * greater than or equal to the parameter "start" or (2) NULL.
2018 	 */
2019 	mtx = NULL;
2020 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2021 		next = TAILQ_NEXT(p, listq);
2022 		vm_page_change_lock(p, &mtx);
2023 		vm_page_deactivate_noreuse(p);
2024 	}
2025 	if (mtx != NULL)
2026 		mtx_unlock(mtx);
2027 }
2028 
2029 /*
2030  *	Populate the specified range of the object with valid pages.  Returns
2031  *	TRUE if the range is successfully populated and FALSE otherwise.
2032  *
2033  *	Note: This function should be optimized to pass a larger array of
2034  *	pages to vm_pager_get_pages() before it is applied to a non-
2035  *	OBJT_DEVICE object.
2036  *
2037  *	The object must be locked.
2038  */
2039 boolean_t
2040 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2041 {
2042 	vm_page_t m;
2043 	vm_pindex_t pindex;
2044 	int rv;
2045 
2046 	VM_OBJECT_ASSERT_WLOCKED(object);
2047 	for (pindex = start; pindex < end; pindex++) {
2048 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2049 		if (rv != VM_PAGER_OK)
2050 			break;
2051 
2052 		/*
2053 		 * Keep "m" busy because a subsequent iteration may unlock
2054 		 * the object.
2055 		 */
2056 	}
2057 	if (pindex > start) {
2058 		m = vm_page_lookup(object, start);
2059 		while (m != NULL && m->pindex < pindex) {
2060 			vm_page_xunbusy(m);
2061 			m = TAILQ_NEXT(m, listq);
2062 		}
2063 	}
2064 	return (pindex == end);
2065 }
2066 
2067 /*
2068  *	Routine:	vm_object_coalesce
2069  *	Function:	Coalesces two objects backing up adjoining
2070  *			regions of memory into a single object.
2071  *
2072  *	returns TRUE if objects were combined.
2073  *
2074  *	NOTE:	Only works at the moment if the second object is NULL -
2075  *		if it's not, which object do we lock first?
2076  *
2077  *	Parameters:
2078  *		prev_object	First object to coalesce
2079  *		prev_offset	Offset into prev_object
2080  *		prev_size	Size of reference to prev_object
2081  *		next_size	Size of reference to the second object
2082  *		reserved	Indicator that extension region has
2083  *				swap accounted for
2084  *
2085  *	Conditions:
2086  *	The object must *not* be locked.
2087  */
2088 boolean_t
2089 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2090     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2091 {
2092 	vm_pindex_t next_pindex;
2093 
2094 	if (prev_object == NULL)
2095 		return (TRUE);
2096 	if ((prev_object->flags & OBJ_ANON) == 0)
2097 		return (FALSE);
2098 
2099 	VM_OBJECT_WLOCK(prev_object);
2100 	/*
2101 	 * Try to collapse the object first
2102 	 */
2103 	vm_object_collapse(prev_object);
2104 
2105 	/*
2106 	 * Can't coalesce if: . more than one reference . paged out . shadows
2107 	 * another object . has a copy elsewhere (any of which mean that the
2108 	 * pages not mapped to prev_entry may be in use anyway)
2109 	 */
2110 	if (prev_object->backing_object != NULL) {
2111 		VM_OBJECT_WUNLOCK(prev_object);
2112 		return (FALSE);
2113 	}
2114 
2115 	prev_size >>= PAGE_SHIFT;
2116 	next_size >>= PAGE_SHIFT;
2117 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2118 
2119 	if (prev_object->ref_count > 1 &&
2120 	    prev_object->size != next_pindex &&
2121 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2122 		VM_OBJECT_WUNLOCK(prev_object);
2123 		return (FALSE);
2124 	}
2125 
2126 	/*
2127 	 * Account for the charge.
2128 	 */
2129 	if (prev_object->cred != NULL) {
2130 
2131 		/*
2132 		 * If prev_object was charged, then this mapping,
2133 		 * although not charged now, may become writable
2134 		 * later. Non-NULL cred in the object would prevent
2135 		 * swap reservation during enabling of the write
2136 		 * access, so reserve swap now. Failed reservation
2137 		 * cause allocation of the separate object for the map
2138 		 * entry, and swap reservation for this entry is
2139 		 * managed in appropriate time.
2140 		 */
2141 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2142 		    prev_object->cred)) {
2143 			VM_OBJECT_WUNLOCK(prev_object);
2144 			return (FALSE);
2145 		}
2146 		prev_object->charge += ptoa(next_size);
2147 	}
2148 
2149 	/*
2150 	 * Remove any pages that may still be in the object from a previous
2151 	 * deallocation.
2152 	 */
2153 	if (next_pindex < prev_object->size) {
2154 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2155 		    next_size, 0);
2156 		if (prev_object->type == OBJT_SWAP)
2157 			swap_pager_freespace(prev_object,
2158 					     next_pindex, next_size);
2159 #if 0
2160 		if (prev_object->cred != NULL) {
2161 			KASSERT(prev_object->charge >=
2162 			    ptoa(prev_object->size - next_pindex),
2163 			    ("object %p overcharged 1 %jx %jx", prev_object,
2164 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2165 			prev_object->charge -= ptoa(prev_object->size -
2166 			    next_pindex);
2167 		}
2168 #endif
2169 	}
2170 
2171 	/*
2172 	 * Extend the object if necessary.
2173 	 */
2174 	if (next_pindex + next_size > prev_object->size)
2175 		prev_object->size = next_pindex + next_size;
2176 
2177 	VM_OBJECT_WUNLOCK(prev_object);
2178 	return (TRUE);
2179 }
2180 
2181 void
2182 vm_object_set_writeable_dirty(vm_object_t object)
2183 {
2184 
2185 	VM_OBJECT_ASSERT_LOCKED(object);
2186 
2187 	/* Only set for vnodes & tmpfs */
2188 	if (object->type != OBJT_VNODE &&
2189 	    (object->flags & OBJ_TMPFS_NODE) == 0)
2190 		return;
2191 	atomic_add_int(&object->generation, 1);
2192 }
2193 
2194 /*
2195  *	vm_object_unwire:
2196  *
2197  *	For each page offset within the specified range of the given object,
2198  *	find the highest-level page in the shadow chain and unwire it.  A page
2199  *	must exist at every page offset, and the highest-level page must be
2200  *	wired.
2201  */
2202 void
2203 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2204     uint8_t queue)
2205 {
2206 	vm_object_t tobject, t1object;
2207 	vm_page_t m, tm;
2208 	vm_pindex_t end_pindex, pindex, tpindex;
2209 	int depth, locked_depth;
2210 
2211 	KASSERT((offset & PAGE_MASK) == 0,
2212 	    ("vm_object_unwire: offset is not page aligned"));
2213 	KASSERT((length & PAGE_MASK) == 0,
2214 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2215 	/* The wired count of a fictitious page never changes. */
2216 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2217 		return;
2218 	pindex = OFF_TO_IDX(offset);
2219 	end_pindex = pindex + atop(length);
2220 again:
2221 	locked_depth = 1;
2222 	VM_OBJECT_RLOCK(object);
2223 	m = vm_page_find_least(object, pindex);
2224 	while (pindex < end_pindex) {
2225 		if (m == NULL || pindex < m->pindex) {
2226 			/*
2227 			 * The first object in the shadow chain doesn't
2228 			 * contain a page at the current index.  Therefore,
2229 			 * the page must exist in a backing object.
2230 			 */
2231 			tobject = object;
2232 			tpindex = pindex;
2233 			depth = 0;
2234 			do {
2235 				tpindex +=
2236 				    OFF_TO_IDX(tobject->backing_object_offset);
2237 				tobject = tobject->backing_object;
2238 				KASSERT(tobject != NULL,
2239 				    ("vm_object_unwire: missing page"));
2240 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2241 					goto next_page;
2242 				depth++;
2243 				if (depth == locked_depth) {
2244 					locked_depth++;
2245 					VM_OBJECT_RLOCK(tobject);
2246 				}
2247 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2248 			    NULL);
2249 		} else {
2250 			tm = m;
2251 			m = TAILQ_NEXT(m, listq);
2252 		}
2253 		if (vm_page_trysbusy(tm) == 0) {
2254 			for (tobject = object; locked_depth >= 1;
2255 			    locked_depth--) {
2256 				t1object = tobject->backing_object;
2257 				if (tm->object != tobject)
2258 					VM_OBJECT_RUNLOCK(tobject);
2259 				tobject = t1object;
2260 			}
2261 			vm_page_busy_sleep(tm, "unwbo", true);
2262 			goto again;
2263 		}
2264 		vm_page_unwire(tm, queue);
2265 		vm_page_sunbusy(tm);
2266 next_page:
2267 		pindex++;
2268 	}
2269 	/* Release the accumulated object locks. */
2270 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2271 		t1object = tobject->backing_object;
2272 		VM_OBJECT_RUNLOCK(tobject);
2273 		tobject = t1object;
2274 	}
2275 }
2276 
2277 /*
2278  * Return the vnode for the given object, or NULL if none exists.
2279  * For tmpfs objects, the function may return NULL if there is
2280  * no vnode allocated at the time of the call.
2281  */
2282 struct vnode *
2283 vm_object_vnode(vm_object_t object)
2284 {
2285 	struct vnode *vp;
2286 
2287 	VM_OBJECT_ASSERT_LOCKED(object);
2288 	if (object->type == OBJT_VNODE) {
2289 		vp = object->handle;
2290 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2291 	} else if (object->type == OBJT_SWAP &&
2292 	    (object->flags & OBJ_TMPFS) != 0) {
2293 		vp = object->un_pager.swp.swp_tmpfs;
2294 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2295 	} else {
2296 		vp = NULL;
2297 	}
2298 	return (vp);
2299 }
2300 
2301 
2302 /*
2303  * Busy the vm object.  This prevents new pages belonging to the object from
2304  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2305  * for checking page state before proceeding.
2306  */
2307 void
2308 vm_object_busy(vm_object_t obj)
2309 {
2310 
2311 	VM_OBJECT_ASSERT_LOCKED(obj);
2312 
2313 	refcount_acquire(&obj->busy);
2314 	/* The fence is required to order loads of page busy. */
2315 	atomic_thread_fence_acq_rel();
2316 }
2317 
2318 void
2319 vm_object_unbusy(vm_object_t obj)
2320 {
2321 
2322 
2323 	refcount_release(&obj->busy);
2324 }
2325 
2326 void
2327 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2328 {
2329 
2330 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2331 
2332 	if (obj->busy)
2333 		refcount_sleep(&obj->busy, wmesg, PVM);
2334 }
2335 
2336 /*
2337  * Return the kvme type of the given object.
2338  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2339  */
2340 int
2341 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2342 {
2343 
2344 	VM_OBJECT_ASSERT_LOCKED(object);
2345 	if (vpp != NULL)
2346 		*vpp = vm_object_vnode(object);
2347 	switch (object->type) {
2348 	case OBJT_DEFAULT:
2349 		return (KVME_TYPE_DEFAULT);
2350 	case OBJT_VNODE:
2351 		return (KVME_TYPE_VNODE);
2352 	case OBJT_SWAP:
2353 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2354 			return (KVME_TYPE_VNODE);
2355 		return (KVME_TYPE_SWAP);
2356 	case OBJT_DEVICE:
2357 		return (KVME_TYPE_DEVICE);
2358 	case OBJT_PHYS:
2359 		return (KVME_TYPE_PHYS);
2360 	case OBJT_DEAD:
2361 		return (KVME_TYPE_DEAD);
2362 	case OBJT_SG:
2363 		return (KVME_TYPE_SG);
2364 	case OBJT_MGTDEVICE:
2365 		return (KVME_TYPE_MGTDEVICE);
2366 	default:
2367 		return (KVME_TYPE_UNKNOWN);
2368 	}
2369 }
2370 
2371 static int
2372 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2373 {
2374 	struct kinfo_vmobject *kvo;
2375 	char *fullpath, *freepath;
2376 	struct vnode *vp;
2377 	struct vattr va;
2378 	vm_object_t obj;
2379 	vm_page_t m;
2380 	int count, error;
2381 
2382 	if (req->oldptr == NULL) {
2383 		/*
2384 		 * If an old buffer has not been provided, generate an
2385 		 * estimate of the space needed for a subsequent call.
2386 		 */
2387 		mtx_lock(&vm_object_list_mtx);
2388 		count = 0;
2389 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2390 			if (obj->type == OBJT_DEAD)
2391 				continue;
2392 			count++;
2393 		}
2394 		mtx_unlock(&vm_object_list_mtx);
2395 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2396 		    count * 11 / 10));
2397 	}
2398 
2399 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2400 	error = 0;
2401 
2402 	/*
2403 	 * VM objects are type stable and are never removed from the
2404 	 * list once added.  This allows us to safely read obj->object_list
2405 	 * after reacquiring the VM object lock.
2406 	 */
2407 	mtx_lock(&vm_object_list_mtx);
2408 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2409 		if (obj->type == OBJT_DEAD)
2410 			continue;
2411 		VM_OBJECT_RLOCK(obj);
2412 		if (obj->type == OBJT_DEAD) {
2413 			VM_OBJECT_RUNLOCK(obj);
2414 			continue;
2415 		}
2416 		mtx_unlock(&vm_object_list_mtx);
2417 		kvo->kvo_size = ptoa(obj->size);
2418 		kvo->kvo_resident = obj->resident_page_count;
2419 		kvo->kvo_ref_count = obj->ref_count;
2420 		kvo->kvo_shadow_count = obj->shadow_count;
2421 		kvo->kvo_memattr = obj->memattr;
2422 		kvo->kvo_active = 0;
2423 		kvo->kvo_inactive = 0;
2424 		TAILQ_FOREACH(m, &obj->memq, listq) {
2425 			/*
2426 			 * A page may belong to the object but be
2427 			 * dequeued and set to PQ_NONE while the
2428 			 * object lock is not held.  This makes the
2429 			 * reads of m->queue below racy, and we do not
2430 			 * count pages set to PQ_NONE.  However, this
2431 			 * sysctl is only meant to give an
2432 			 * approximation of the system anyway.
2433 			 */
2434 			if (m->queue == PQ_ACTIVE)
2435 				kvo->kvo_active++;
2436 			else if (m->queue == PQ_INACTIVE)
2437 				kvo->kvo_inactive++;
2438 		}
2439 
2440 		kvo->kvo_vn_fileid = 0;
2441 		kvo->kvo_vn_fsid = 0;
2442 		kvo->kvo_vn_fsid_freebsd11 = 0;
2443 		freepath = NULL;
2444 		fullpath = "";
2445 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2446 		if (vp != NULL)
2447 			vref(vp);
2448 		VM_OBJECT_RUNLOCK(obj);
2449 		if (vp != NULL) {
2450 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2451 			vn_lock(vp, LK_SHARED | LK_RETRY);
2452 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2453 				kvo->kvo_vn_fileid = va.va_fileid;
2454 				kvo->kvo_vn_fsid = va.va_fsid;
2455 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2456 								/* truncate */
2457 			}
2458 			vput(vp);
2459 		}
2460 
2461 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2462 		if (freepath != NULL)
2463 			free(freepath, M_TEMP);
2464 
2465 		/* Pack record size down */
2466 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2467 		    + strlen(kvo->kvo_path) + 1;
2468 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2469 		    sizeof(uint64_t));
2470 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2471 		mtx_lock(&vm_object_list_mtx);
2472 		if (error)
2473 			break;
2474 	}
2475 	mtx_unlock(&vm_object_list_mtx);
2476 	free(kvo, M_TEMP);
2477 	return (error);
2478 }
2479 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2480     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2481     "List of VM objects");
2482 
2483 #include "opt_ddb.h"
2484 #ifdef DDB
2485 #include <sys/kernel.h>
2486 
2487 #include <sys/cons.h>
2488 
2489 #include <ddb/ddb.h>
2490 
2491 static int
2492 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2493 {
2494 	vm_map_t tmpm;
2495 	vm_map_entry_t tmpe;
2496 	vm_object_t obj;
2497 
2498 	if (map == 0)
2499 		return 0;
2500 
2501 	if (entry == 0) {
2502 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2503 			if (_vm_object_in_map(map, object, tmpe)) {
2504 				return 1;
2505 			}
2506 		}
2507 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2508 		tmpm = entry->object.sub_map;
2509 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2510 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2511 				return 1;
2512 			}
2513 		}
2514 	} else if ((obj = entry->object.vm_object) != NULL) {
2515 		for (; obj; obj = obj->backing_object)
2516 			if (obj == object) {
2517 				return 1;
2518 			}
2519 	}
2520 	return 0;
2521 }
2522 
2523 static int
2524 vm_object_in_map(vm_object_t object)
2525 {
2526 	struct proc *p;
2527 
2528 	/* sx_slock(&allproc_lock); */
2529 	FOREACH_PROC_IN_SYSTEM(p) {
2530 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2531 			continue;
2532 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2533 			/* sx_sunlock(&allproc_lock); */
2534 			return 1;
2535 		}
2536 	}
2537 	/* sx_sunlock(&allproc_lock); */
2538 	if (_vm_object_in_map(kernel_map, object, 0))
2539 		return 1;
2540 	return 0;
2541 }
2542 
2543 DB_SHOW_COMMAND(vmochk, vm_object_check)
2544 {
2545 	vm_object_t object;
2546 
2547 	/*
2548 	 * make sure that internal objs are in a map somewhere
2549 	 * and none have zero ref counts.
2550 	 */
2551 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2552 		if (object->handle == NULL &&
2553 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2554 			if (object->ref_count == 0) {
2555 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2556 					(long)object->size);
2557 			}
2558 			if (!vm_object_in_map(object)) {
2559 				db_printf(
2560 			"vmochk: internal obj is not in a map: "
2561 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2562 				    object->ref_count, (u_long)object->size,
2563 				    (u_long)object->size,
2564 				    (void *)object->backing_object);
2565 			}
2566 		}
2567 	}
2568 }
2569 
2570 /*
2571  *	vm_object_print:	[ debug ]
2572  */
2573 DB_SHOW_COMMAND(object, vm_object_print_static)
2574 {
2575 	/* XXX convert args. */
2576 	vm_object_t object = (vm_object_t)addr;
2577 	boolean_t full = have_addr;
2578 
2579 	vm_page_t p;
2580 
2581 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2582 #define	count	was_count
2583 
2584 	int count;
2585 
2586 	if (object == NULL)
2587 		return;
2588 
2589 	db_iprintf(
2590 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2591 	    object, (int)object->type, (uintmax_t)object->size,
2592 	    object->resident_page_count, object->ref_count, object->flags,
2593 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2594 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2595 	    object->shadow_count,
2596 	    object->backing_object ? object->backing_object->ref_count : 0,
2597 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2598 
2599 	if (!full)
2600 		return;
2601 
2602 	db_indent += 2;
2603 	count = 0;
2604 	TAILQ_FOREACH(p, &object->memq, listq) {
2605 		if (count == 0)
2606 			db_iprintf("memory:=");
2607 		else if (count == 6) {
2608 			db_printf("\n");
2609 			db_iprintf(" ...");
2610 			count = 0;
2611 		} else
2612 			db_printf(",");
2613 		count++;
2614 
2615 		db_printf("(off=0x%jx,page=0x%jx)",
2616 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2617 	}
2618 	if (count != 0)
2619 		db_printf("\n");
2620 	db_indent -= 2;
2621 }
2622 
2623 /* XXX. */
2624 #undef count
2625 
2626 /* XXX need this non-static entry for calling from vm_map_print. */
2627 void
2628 vm_object_print(
2629         /* db_expr_t */ long addr,
2630 	boolean_t have_addr,
2631 	/* db_expr_t */ long count,
2632 	char *modif)
2633 {
2634 	vm_object_print_static(addr, have_addr, count, modif);
2635 }
2636 
2637 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2638 {
2639 	vm_object_t object;
2640 	vm_pindex_t fidx;
2641 	vm_paddr_t pa;
2642 	vm_page_t m, prev_m;
2643 	int rcount, nl, c;
2644 
2645 	nl = 0;
2646 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2647 		db_printf("new object: %p\n", (void *)object);
2648 		if (nl > 18) {
2649 			c = cngetc();
2650 			if (c != ' ')
2651 				return;
2652 			nl = 0;
2653 		}
2654 		nl++;
2655 		rcount = 0;
2656 		fidx = 0;
2657 		pa = -1;
2658 		TAILQ_FOREACH(m, &object->memq, listq) {
2659 			if (m->pindex > 128)
2660 				break;
2661 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2662 			    prev_m->pindex + 1 != m->pindex) {
2663 				if (rcount) {
2664 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2665 						(long)fidx, rcount, (long)pa);
2666 					if (nl > 18) {
2667 						c = cngetc();
2668 						if (c != ' ')
2669 							return;
2670 						nl = 0;
2671 					}
2672 					nl++;
2673 					rcount = 0;
2674 				}
2675 			}
2676 			if (rcount &&
2677 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2678 				++rcount;
2679 				continue;
2680 			}
2681 			if (rcount) {
2682 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2683 					(long)fidx, rcount, (long)pa);
2684 				if (nl > 18) {
2685 					c = cngetc();
2686 					if (c != ' ')
2687 						return;
2688 					nl = 0;
2689 				}
2690 				nl++;
2691 			}
2692 			fidx = m->pindex;
2693 			pa = VM_PAGE_TO_PHYS(m);
2694 			rcount = 1;
2695 		}
2696 		if (rcount) {
2697 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2698 				(long)fidx, rcount, (long)pa);
2699 			if (nl > 18) {
2700 				c = cngetc();
2701 				if (c != ' ')
2702 					return;
2703 				nl = 0;
2704 			}
2705 			nl++;
2706 		}
2707 	}
2708 }
2709 #endif /* DDB */
2710