xref: /freebsd/sys/vm/vm_object.c (revision 90aac0d83bc9645f51ef0c2aeae6f9c0540bb031)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/blockcount.h>
73 #include <sys/cpuset.h>
74 #include <sys/limits.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *allclean,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *allclean);
119 static void	vm_object_backing_remove(vm_object_t object);
120 
121 /*
122  *	Virtual memory objects maintain the actual data
123  *	associated with allocated virtual memory.  A given
124  *	page of memory exists within exactly one object.
125  *
126  *	An object is only deallocated when all "references"
127  *	are given up.  Only one "reference" to a given
128  *	region of an object should be writeable.
129  *
130  *	Associated with each object is a list of all resident
131  *	memory pages belonging to that object; this list is
132  *	maintained by the "vm_page" module, and locked by the object's
133  *	lock.
134  *
135  *	Each object also records a "pager" routine which is
136  *	used to retrieve (and store) pages to the proper backing
137  *	storage.  In addition, objects may be backed by other
138  *	objects from which they were virtual-copied.
139  *
140  *	The only items within the object structure which are
141  *	modified after time of creation are:
142  *		reference count		locked by object's lock
143  *		pager routine		locked by object's lock
144  *
145  */
146 
147 struct object_q vm_object_list;
148 struct mtx vm_object_list_mtx;	/* lock for object list and count */
149 
150 struct vm_object kernel_object_store;
151 
152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
153     "VM object stats");
154 
155 static COUNTER_U64_DEFINE_EARLY(object_collapses);
156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
157     &object_collapses,
158     "VM object collapses");
159 
160 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
162     &object_bypasses,
163     "VM object bypasses");
164 
165 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
166 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
167     &object_collapse_waits,
168     "Number of sleeps for collapse");
169 
170 static uma_zone_t obj_zone;
171 
172 static int vm_object_zinit(void *mem, int size, int flags);
173 
174 #ifdef INVARIANTS
175 static void vm_object_zdtor(void *mem, int size, void *arg);
176 
177 static void
178 vm_object_zdtor(void *mem, int size, void *arg)
179 {
180 	vm_object_t object;
181 
182 	object = (vm_object_t)mem;
183 	KASSERT(object->ref_count == 0,
184 	    ("object %p ref_count = %d", object, object->ref_count));
185 	KASSERT(TAILQ_EMPTY(&object->memq),
186 	    ("object %p has resident pages in its memq", object));
187 	KASSERT(vm_radix_is_empty(&object->rtree),
188 	    ("object %p has resident pages in its trie", object));
189 #if VM_NRESERVLEVEL > 0
190 	KASSERT(LIST_EMPTY(&object->rvq),
191 	    ("object %p has reservations",
192 	    object));
193 #endif
194 	KASSERT(!vm_object_busied(object),
195 	    ("object %p busy = %d", object, blockcount_read(&object->busy)));
196 	KASSERT(object->resident_page_count == 0,
197 	    ("object %p resident_page_count = %d",
198 	    object, object->resident_page_count));
199 	KASSERT(atomic_load_int(&object->shadow_count) == 0,
200 	    ("object %p shadow_count = %d",
201 	    object, atomic_load_int(&object->shadow_count)));
202 	KASSERT(object->type == OBJT_DEAD,
203 	    ("object %p has non-dead type %d",
204 	    object, object->type));
205 	KASSERT(object->charge == 0 && object->cred == NULL,
206 	    ("object %p has non-zero charge %ju (%p)",
207 	    object, (uintmax_t)object->charge, object->cred));
208 }
209 #endif
210 
211 static int
212 vm_object_zinit(void *mem, int size, int flags)
213 {
214 	vm_object_t object;
215 
216 	object = (vm_object_t)mem;
217 	rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
218 
219 	/* These are true for any object that has been freed */
220 	object->type = OBJT_DEAD;
221 	vm_radix_init(&object->rtree);
222 	refcount_init(&object->ref_count, 0);
223 	blockcount_init(&object->paging_in_progress);
224 	blockcount_init(&object->busy);
225 	object->resident_page_count = 0;
226 	atomic_store_int(&object->shadow_count, 0);
227 	object->flags = OBJ_DEAD;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 	return (0);
233 }
234 
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
237     vm_object_t object, void *handle)
238 {
239 
240 	TAILQ_INIT(&object->memq);
241 	LIST_INIT(&object->shadow_head);
242 
243 	object->type = type;
244 	object->flags = flags;
245 	if ((flags & OBJ_SWAP) != 0) {
246 		pctrie_init(&object->un_pager.swp.swp_blks);
247 		object->un_pager.swp.writemappings = 0;
248 	}
249 
250 	/*
251 	 * Ensure that swap_pager_swapoff() iteration over object_list
252 	 * sees up to date type and pctrie head if it observed
253 	 * non-dead object.
254 	 */
255 	atomic_thread_fence_rel();
256 
257 	object->pg_color = 0;
258 	object->size = size;
259 	object->domain.dr_policy = NULL;
260 	object->generation = 1;
261 	object->cleangeneration = 1;
262 	refcount_init(&object->ref_count, 1);
263 	object->memattr = VM_MEMATTR_DEFAULT;
264 	object->cred = NULL;
265 	object->charge = 0;
266 	object->handle = handle;
267 	object->backing_object = NULL;
268 	object->backing_object_offset = (vm_ooffset_t) 0;
269 #if VM_NRESERVLEVEL > 0
270 	LIST_INIT(&object->rvq);
271 #endif
272 	umtx_shm_object_init(object);
273 }
274 
275 /*
276  *	vm_object_init:
277  *
278  *	Initialize the VM objects module.
279  */
280 void
281 vm_object_init(void)
282 {
283 	TAILQ_INIT(&vm_object_list);
284 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
285 
286 	rw_init(&kernel_object->lock, "kernel vm object");
287 	vm_radix_init(&kernel_object->rtree);
288 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
290 #if VM_NRESERVLEVEL > 0
291 	kernel_object->flags |= OBJ_COLORED;
292 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294 	kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
295 
296 	/*
297 	 * The lock portion of struct vm_object must be type stable due
298 	 * to vm_pageout_fallback_object_lock locking a vm object
299 	 * without holding any references to it.
300 	 *
301 	 * paging_in_progress is valid always.  Lockless references to
302 	 * the objects may acquire pip and then check OBJ_DEAD.
303 	 */
304 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
305 #ifdef INVARIANTS
306 	    vm_object_zdtor,
307 #else
308 	    NULL,
309 #endif
310 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
311 
312 	vm_radix_zinit();
313 }
314 
315 void
316 vm_object_clear_flag(vm_object_t object, u_short bits)
317 {
318 
319 	VM_OBJECT_ASSERT_WLOCKED(object);
320 	object->flags &= ~bits;
321 }
322 
323 /*
324  *	Sets the default memory attribute for the specified object.  Pages
325  *	that are allocated to this object are by default assigned this memory
326  *	attribute.
327  *
328  *	Presently, this function must be called before any pages are allocated
329  *	to the object.  In the future, this requirement may be relaxed for
330  *	"default" and "swap" objects.
331  */
332 int
333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
334 {
335 
336 	VM_OBJECT_ASSERT_WLOCKED(object);
337 
338 	if (object->type == OBJT_DEAD)
339 		return (KERN_INVALID_ARGUMENT);
340 	if (!TAILQ_EMPTY(&object->memq))
341 		return (KERN_FAILURE);
342 
343 	object->memattr = memattr;
344 	return (KERN_SUCCESS);
345 }
346 
347 void
348 vm_object_pip_add(vm_object_t object, short i)
349 {
350 
351 	if (i > 0)
352 		blockcount_acquire(&object->paging_in_progress, i);
353 }
354 
355 void
356 vm_object_pip_wakeup(vm_object_t object)
357 {
358 
359 	vm_object_pip_wakeupn(object, 1);
360 }
361 
362 void
363 vm_object_pip_wakeupn(vm_object_t object, short i)
364 {
365 
366 	if (i > 0)
367 		blockcount_release(&object->paging_in_progress, i);
368 }
369 
370 /*
371  * Atomically drop the object lock and wait for pip to drain.  This protects
372  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
373  * on return.
374  */
375 static void
376 vm_object_pip_sleep(vm_object_t object, const char *waitid)
377 {
378 
379 	(void)blockcount_sleep(&object->paging_in_progress, &object->lock,
380 	    waitid, PVM | PDROP);
381 }
382 
383 void
384 vm_object_pip_wait(vm_object_t object, const char *waitid)
385 {
386 
387 	VM_OBJECT_ASSERT_WLOCKED(object);
388 
389 	blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
390 	    PVM);
391 }
392 
393 void
394 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
395 {
396 
397 	VM_OBJECT_ASSERT_UNLOCKED(object);
398 
399 	blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 	u_short flags;
412 
413 	switch (type) {
414 	case OBJT_DEAD:
415 		panic("vm_object_allocate: can't create OBJT_DEAD");
416 	case OBJT_SWAP:
417 		flags = OBJ_COLORED | OBJ_SWAP;
418 		break;
419 	case OBJT_DEVICE:
420 	case OBJT_SG:
421 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
422 		break;
423 	case OBJT_MGTDEVICE:
424 		flags = OBJ_FICTITIOUS;
425 		break;
426 	case OBJT_PHYS:
427 		flags = OBJ_UNMANAGED;
428 		break;
429 	case OBJT_VNODE:
430 		flags = 0;
431 		break;
432 	default:
433 		panic("vm_object_allocate: type %d is undefined or dynamic",
434 		    type);
435 	}
436 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437 	_vm_object_allocate(type, size, flags, object, NULL);
438 
439 	return (object);
440 }
441 
442 vm_object_t
443 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
444 {
445 	vm_object_t object;
446 
447 	MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
448 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
449 	_vm_object_allocate(dyntype, size, flags, object, NULL);
450 
451 	return (object);
452 }
453 
454 /*
455  *	vm_object_allocate_anon:
456  *
457  *	Returns a new default object of the given size and marked as
458  *	anonymous memory for special split/collapse handling.  Color
459  *	to be initialized by the caller.
460  */
461 vm_object_t
462 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
463     struct ucred *cred, vm_size_t charge)
464 {
465 	vm_object_t handle, object;
466 
467 	if (backing_object == NULL)
468 		handle = NULL;
469 	else if ((backing_object->flags & OBJ_ANON) != 0)
470 		handle = backing_object->handle;
471 	else
472 		handle = backing_object;
473 	object = uma_zalloc(obj_zone, M_WAITOK);
474 	_vm_object_allocate(OBJT_SWAP, size,
475 	    OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
476 	object->cred = cred;
477 	object->charge = cred != NULL ? charge : 0;
478 	return (object);
479 }
480 
481 static void
482 vm_object_reference_vnode(vm_object_t object)
483 {
484 	u_int old;
485 
486 	/*
487 	 * vnode objects need the lock for the first reference
488 	 * to serialize with vnode_object_deallocate().
489 	 */
490 	if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
491 		VM_OBJECT_RLOCK(object);
492 		old = refcount_acquire(&object->ref_count);
493 		if (object->type == OBJT_VNODE && old == 0)
494 			vref(object->handle);
495 		VM_OBJECT_RUNLOCK(object);
496 	}
497 }
498 
499 /*
500  *	vm_object_reference:
501  *
502  *	Acquires a reference to the given object.
503  */
504 void
505 vm_object_reference(vm_object_t object)
506 {
507 
508 	if (object == NULL)
509 		return;
510 
511 	if (object->type == OBJT_VNODE)
512 		vm_object_reference_vnode(object);
513 	else
514 		refcount_acquire(&object->ref_count);
515 	KASSERT((object->flags & OBJ_DEAD) == 0,
516 	    ("vm_object_reference: Referenced dead object."));
517 }
518 
519 /*
520  *	vm_object_reference_locked:
521  *
522  *	Gets another reference to the given object.
523  *
524  *	The object must be locked.
525  */
526 void
527 vm_object_reference_locked(vm_object_t object)
528 {
529 	u_int old;
530 
531 	VM_OBJECT_ASSERT_LOCKED(object);
532 	old = refcount_acquire(&object->ref_count);
533 	if (object->type == OBJT_VNODE && old == 0)
534 		vref(object->handle);
535 	KASSERT((object->flags & OBJ_DEAD) == 0,
536 	    ("vm_object_reference: Referenced dead object."));
537 }
538 
539 /*
540  * Handle deallocating an object of type OBJT_VNODE.
541  */
542 static void
543 vm_object_deallocate_vnode(vm_object_t object)
544 {
545 	struct vnode *vp = (struct vnode *) object->handle;
546 	bool last;
547 
548 	KASSERT(object->type == OBJT_VNODE,
549 	    ("vm_object_deallocate_vnode: not a vnode object"));
550 	KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
551 
552 	/* Object lock to protect handle lookup. */
553 	last = refcount_release(&object->ref_count);
554 	VM_OBJECT_RUNLOCK(object);
555 
556 	if (!last)
557 		return;
558 
559 	if (!umtx_shm_vnobj_persistent)
560 		umtx_shm_object_terminated(object);
561 
562 	/* vrele may need the vnode lock. */
563 	vrele(vp);
564 }
565 
566 /*
567  * We dropped a reference on an object and discovered that it had a
568  * single remaining shadow.  This is a sibling of the reference we
569  * dropped.  Attempt to collapse the sibling and backing object.
570  */
571 static vm_object_t
572 vm_object_deallocate_anon(vm_object_t backing_object)
573 {
574 	vm_object_t object;
575 
576 	/* Fetch the final shadow.  */
577 	object = LIST_FIRST(&backing_object->shadow_head);
578 	KASSERT(object != NULL &&
579 	    atomic_load_int(&backing_object->shadow_count) == 1,
580 	    ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
581 	    backing_object->ref_count,
582 	    atomic_load_int(&backing_object->shadow_count)));
583 	KASSERT((object->flags & OBJ_ANON) != 0,
584 	    ("invalid shadow object %p", object));
585 
586 	if (!VM_OBJECT_TRYWLOCK(object)) {
587 		/*
588 		 * Prevent object from disappearing since we do not have a
589 		 * reference.
590 		 */
591 		vm_object_pip_add(object, 1);
592 		VM_OBJECT_WUNLOCK(backing_object);
593 		VM_OBJECT_WLOCK(object);
594 		vm_object_pip_wakeup(object);
595 	} else
596 		VM_OBJECT_WUNLOCK(backing_object);
597 
598 	/*
599 	 * Check for a collapse/terminate race with the last reference holder.
600 	 */
601 	if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
602 	    !refcount_acquire_if_not_zero(&object->ref_count)) {
603 		VM_OBJECT_WUNLOCK(object);
604 		return (NULL);
605 	}
606 	backing_object = object->backing_object;
607 	if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
608 		vm_object_collapse(object);
609 	VM_OBJECT_WUNLOCK(object);
610 
611 	return (object);
612 }
613 
614 /*
615  *	vm_object_deallocate:
616  *
617  *	Release a reference to the specified object,
618  *	gained either through a vm_object_allocate
619  *	or a vm_object_reference call.  When all references
620  *	are gone, storage associated with this object
621  *	may be relinquished.
622  *
623  *	No object may be locked.
624  */
625 void
626 vm_object_deallocate(vm_object_t object)
627 {
628 	vm_object_t temp;
629 	bool released;
630 
631 	while (object != NULL) {
632 		/*
633 		 * If the reference count goes to 0 we start calling
634 		 * vm_object_terminate() on the object chain.  A ref count
635 		 * of 1 may be a special case depending on the shadow count
636 		 * being 0 or 1.  These cases require a write lock on the
637 		 * object.
638 		 */
639 		if ((object->flags & OBJ_ANON) == 0)
640 			released = refcount_release_if_gt(&object->ref_count, 1);
641 		else
642 			released = refcount_release_if_gt(&object->ref_count, 2);
643 		if (released)
644 			return;
645 
646 		if (object->type == OBJT_VNODE) {
647 			VM_OBJECT_RLOCK(object);
648 			if (object->type == OBJT_VNODE) {
649 				vm_object_deallocate_vnode(object);
650 				return;
651 			}
652 			VM_OBJECT_RUNLOCK(object);
653 		}
654 
655 		VM_OBJECT_WLOCK(object);
656 		KASSERT(object->ref_count > 0,
657 		    ("vm_object_deallocate: object deallocated too many times: %d",
658 		    object->type));
659 
660 		/*
661 		 * If this is not the final reference to an anonymous
662 		 * object we may need to collapse the shadow chain.
663 		 */
664 		if (!refcount_release(&object->ref_count)) {
665 			if (object->ref_count > 1 ||
666 			    atomic_load_int(&object->shadow_count) == 0) {
667 				if ((object->flags & OBJ_ANON) != 0 &&
668 				    object->ref_count == 1)
669 					vm_object_set_flag(object,
670 					    OBJ_ONEMAPPING);
671 				VM_OBJECT_WUNLOCK(object);
672 				return;
673 			}
674 
675 			/* Handle collapsing last ref on anonymous objects. */
676 			object = vm_object_deallocate_anon(object);
677 			continue;
678 		}
679 
680 		/*
681 		 * Handle the final reference to an object.  We restart
682 		 * the loop with the backing object to avoid recursion.
683 		 */
684 		umtx_shm_object_terminated(object);
685 		temp = object->backing_object;
686 		if (temp != NULL) {
687 			KASSERT(object->type == OBJT_SWAP,
688 			    ("shadowed tmpfs v_object 2 %p", object));
689 			vm_object_backing_remove(object);
690 		}
691 
692 		KASSERT((object->flags & OBJ_DEAD) == 0,
693 		    ("vm_object_deallocate: Terminating dead object."));
694 		vm_object_set_flag(object, OBJ_DEAD);
695 		vm_object_terminate(object);
696 		object = temp;
697 	}
698 }
699 
700 void
701 vm_object_destroy(vm_object_t object)
702 {
703 	uma_zfree(obj_zone, object);
704 }
705 
706 static void
707 vm_object_sub_shadow(vm_object_t object)
708 {
709 	KASSERT(object->shadow_count >= 1,
710 	    ("object %p sub_shadow count zero", object));
711 	atomic_subtract_int(&object->shadow_count, 1);
712 }
713 
714 static void
715 vm_object_backing_remove_locked(vm_object_t object)
716 {
717 	vm_object_t backing_object;
718 
719 	backing_object = object->backing_object;
720 	VM_OBJECT_ASSERT_WLOCKED(object);
721 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
722 
723 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
724 	    ("vm_object_backing_remove: Removing collapsing object."));
725 
726 	vm_object_sub_shadow(backing_object);
727 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
728 		LIST_REMOVE(object, shadow_list);
729 		vm_object_clear_flag(object, OBJ_SHADOWLIST);
730 	}
731 	object->backing_object = NULL;
732 }
733 
734 static void
735 vm_object_backing_remove(vm_object_t object)
736 {
737 	vm_object_t backing_object;
738 
739 	VM_OBJECT_ASSERT_WLOCKED(object);
740 
741 	backing_object = object->backing_object;
742 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
743 		VM_OBJECT_WLOCK(backing_object);
744 		vm_object_backing_remove_locked(object);
745 		VM_OBJECT_WUNLOCK(backing_object);
746 	} else {
747 		object->backing_object = NULL;
748 		vm_object_sub_shadow(backing_object);
749 	}
750 }
751 
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755 
756 	VM_OBJECT_ASSERT_WLOCKED(object);
757 
758 	atomic_add_int(&backing_object->shadow_count, 1);
759 	if ((backing_object->flags & OBJ_ANON) != 0) {
760 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
761 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
762 		    shadow_list);
763 		vm_object_set_flag(object, OBJ_SHADOWLIST);
764 	}
765 	object->backing_object = backing_object;
766 }
767 
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771 
772 	VM_OBJECT_ASSERT_WLOCKED(object);
773 
774 	if ((backing_object->flags & OBJ_ANON) != 0) {
775 		VM_OBJECT_WLOCK(backing_object);
776 		vm_object_backing_insert_locked(object, backing_object);
777 		VM_OBJECT_WUNLOCK(backing_object);
778 	} else {
779 		object->backing_object = backing_object;
780 		atomic_add_int(&backing_object->shadow_count, 1);
781 	}
782 }
783 
784 /*
785  * Insert an object into a backing_object's shadow list with an additional
786  * reference to the backing_object added.
787  */
788 static void
789 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
790 {
791 
792 	VM_OBJECT_ASSERT_WLOCKED(object);
793 
794 	if ((backing_object->flags & OBJ_ANON) != 0) {
795 		VM_OBJECT_WLOCK(backing_object);
796 		KASSERT((backing_object->flags & OBJ_DEAD) == 0,
797 		    ("shadowing dead anonymous object"));
798 		vm_object_reference_locked(backing_object);
799 		vm_object_backing_insert_locked(object, backing_object);
800 		vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
801 		VM_OBJECT_WUNLOCK(backing_object);
802 	} else {
803 		vm_object_reference(backing_object);
804 		atomic_add_int(&backing_object->shadow_count, 1);
805 		object->backing_object = backing_object;
806 	}
807 }
808 
809 /*
810  * Transfer a backing reference from backing_object to object.
811  */
812 static void
813 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
814 {
815 	vm_object_t new_backing_object;
816 
817 	/*
818 	 * Note that the reference to backing_object->backing_object
819 	 * moves from within backing_object to within object.
820 	 */
821 	vm_object_backing_remove_locked(object);
822 	new_backing_object = backing_object->backing_object;
823 	if (new_backing_object == NULL)
824 		return;
825 	if ((new_backing_object->flags & OBJ_ANON) != 0) {
826 		VM_OBJECT_WLOCK(new_backing_object);
827 		vm_object_backing_remove_locked(backing_object);
828 		vm_object_backing_insert_locked(object, new_backing_object);
829 		VM_OBJECT_WUNLOCK(new_backing_object);
830 	} else {
831 		/*
832 		 * shadow_count for new_backing_object is left
833 		 * unchanged, its reference provided by backing_object
834 		 * is replaced by object.
835 		 */
836 		object->backing_object = new_backing_object;
837 		backing_object->backing_object = NULL;
838 	}
839 }
840 
841 /*
842  * Wait for a concurrent collapse to settle.
843  */
844 static void
845 vm_object_collapse_wait(vm_object_t object)
846 {
847 
848 	VM_OBJECT_ASSERT_WLOCKED(object);
849 
850 	while ((object->flags & OBJ_COLLAPSING) != 0) {
851 		vm_object_pip_wait(object, "vmcolwait");
852 		counter_u64_add(object_collapse_waits, 1);
853 	}
854 }
855 
856 /*
857  * Waits for a backing object to clear a pending collapse and returns
858  * it locked if it is an ANON object.
859  */
860 static vm_object_t
861 vm_object_backing_collapse_wait(vm_object_t object)
862 {
863 	vm_object_t backing_object;
864 
865 	VM_OBJECT_ASSERT_WLOCKED(object);
866 
867 	for (;;) {
868 		backing_object = object->backing_object;
869 		if (backing_object == NULL ||
870 		    (backing_object->flags & OBJ_ANON) == 0)
871 			return (NULL);
872 		VM_OBJECT_WLOCK(backing_object);
873 		if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
874 			break;
875 		VM_OBJECT_WUNLOCK(object);
876 		vm_object_pip_sleep(backing_object, "vmbckwait");
877 		counter_u64_add(object_collapse_waits, 1);
878 		VM_OBJECT_WLOCK(object);
879 	}
880 	return (backing_object);
881 }
882 
883 /*
884  *	vm_object_terminate_pages removes any remaining pageable pages
885  *	from the object and resets the object to an empty state.
886  */
887 static void
888 vm_object_terminate_pages(vm_object_t object)
889 {
890 	vm_page_t p, p_next;
891 
892 	VM_OBJECT_ASSERT_WLOCKED(object);
893 
894 	/*
895 	 * Free any remaining pageable pages.  This also removes them from the
896 	 * paging queues.  However, don't free wired pages, just remove them
897 	 * from the object.  Rather than incrementally removing each page from
898 	 * the object, the page and object are reset to any empty state.
899 	 */
900 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
901 		vm_page_assert_unbusied(p);
902 		KASSERT(p->object == object &&
903 		    (p->ref_count & VPRC_OBJREF) != 0,
904 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
905 
906 		p->object = NULL;
907 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
908 			VM_CNT_INC(v_pfree);
909 			vm_page_free(p);
910 		}
911 	}
912 
913 	/*
914 	 * If the object contained any pages, then reset it to an empty state.
915 	 * None of the object's fields, including "resident_page_count", were
916 	 * modified by the preceding loop.
917 	 */
918 	if (object->resident_page_count != 0) {
919 		vm_radix_reclaim_allnodes(&object->rtree);
920 		TAILQ_INIT(&object->memq);
921 		object->resident_page_count = 0;
922 		if (object->type == OBJT_VNODE)
923 			vdrop(object->handle);
924 	}
925 }
926 
927 /*
928  *	vm_object_terminate actually destroys the specified object, freeing
929  *	up all previously used resources.
930  *
931  *	The object must be locked.
932  *	This routine may block.
933  */
934 void
935 vm_object_terminate(vm_object_t object)
936 {
937 
938 	VM_OBJECT_ASSERT_WLOCKED(object);
939 	KASSERT((object->flags & OBJ_DEAD) != 0,
940 	    ("terminating non-dead obj %p", object));
941 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
942 	    ("terminating collapsing obj %p", object));
943 	KASSERT(object->backing_object == NULL,
944 	    ("terminating shadow obj %p", object));
945 
946 	/*
947 	 * Wait for the pageout daemon and other current users to be
948 	 * done with the object.  Note that new paging_in_progress
949 	 * users can come after this wait, but they must check
950 	 * OBJ_DEAD flag set (without unlocking the object), and avoid
951 	 * the object being terminated.
952 	 */
953 	vm_object_pip_wait(object, "objtrm");
954 
955 	KASSERT(object->ref_count == 0,
956 	    ("vm_object_terminate: object with references, ref_count=%d",
957 	    object->ref_count));
958 
959 	if ((object->flags & OBJ_PG_DTOR) == 0)
960 		vm_object_terminate_pages(object);
961 
962 #if VM_NRESERVLEVEL > 0
963 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
964 		vm_reserv_break_all(object);
965 #endif
966 
967 	KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
968 	    ("%s: non-swap obj %p has cred", __func__, object));
969 
970 	/*
971 	 * Let the pager know object is dead.
972 	 */
973 	vm_pager_deallocate(object);
974 	VM_OBJECT_WUNLOCK(object);
975 
976 	vm_object_destroy(object);
977 }
978 
979 /*
980  * Make the page read-only so that we can clear the object flags.  However, if
981  * this is a nosync mmap then the object is likely to stay dirty so do not
982  * mess with the page and do not clear the object flags.  Returns TRUE if the
983  * page should be flushed, and FALSE otherwise.
984  */
985 static boolean_t
986 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
987 {
988 
989 	vm_page_assert_busied(p);
990 
991 	/*
992 	 * If we have been asked to skip nosync pages and this is a
993 	 * nosync page, skip it.  Note that the object flags were not
994 	 * cleared in this case so we do not have to set them.
995 	 */
996 	if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
997 		*allclean = FALSE;
998 		return (FALSE);
999 	} else {
1000 		pmap_remove_write(p);
1001 		return (p->dirty != 0);
1002 	}
1003 }
1004 
1005 /*
1006  *	vm_object_page_clean
1007  *
1008  *	Clean all dirty pages in the specified range of object.  Leaves page
1009  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
1010  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1011  *	leaving the object dirty.
1012  *
1013  *	For swap objects backing tmpfs regular files, do not flush anything,
1014  *	but remove write protection on the mapped pages to update mtime through
1015  *	mmaped writes.
1016  *
1017  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
1018  *	synchronous clustering mode implementation.
1019  *
1020  *	Odd semantics: if start == end, we clean everything.
1021  *
1022  *	The object must be locked.
1023  *
1024  *	Returns FALSE if some page from the range was not written, as
1025  *	reported by the pager, and TRUE otherwise.
1026  */
1027 boolean_t
1028 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1029     int flags)
1030 {
1031 	vm_page_t np, p;
1032 	vm_pindex_t pi, tend, tstart;
1033 	int curgeneration, n, pagerflags;
1034 	boolean_t eio, res, allclean;
1035 
1036 	VM_OBJECT_ASSERT_WLOCKED(object);
1037 
1038 	if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1039 		return (TRUE);
1040 
1041 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1042 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1043 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1044 
1045 	tstart = OFF_TO_IDX(start);
1046 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1047 	allclean = tstart == 0 && tend >= object->size;
1048 	res = TRUE;
1049 
1050 rescan:
1051 	curgeneration = object->generation;
1052 
1053 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1054 		pi = p->pindex;
1055 		if (pi >= tend)
1056 			break;
1057 		np = TAILQ_NEXT(p, listq);
1058 		if (vm_page_none_valid(p))
1059 			continue;
1060 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1061 			if (object->generation != curgeneration &&
1062 			    (flags & OBJPC_SYNC) != 0)
1063 				goto rescan;
1064 			np = vm_page_find_least(object, pi);
1065 			continue;
1066 		}
1067 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
1068 			vm_page_xunbusy(p);
1069 			continue;
1070 		}
1071 		if (object->type == OBJT_VNODE) {
1072 			n = vm_object_page_collect_flush(object, p, pagerflags,
1073 			    flags, &allclean, &eio);
1074 			if (eio) {
1075 				res = FALSE;
1076 				allclean = FALSE;
1077 			}
1078 			if (object->generation != curgeneration &&
1079 			    (flags & OBJPC_SYNC) != 0)
1080 				goto rescan;
1081 
1082 			/*
1083 			 * If the VOP_PUTPAGES() did a truncated write, so
1084 			 * that even the first page of the run is not fully
1085 			 * written, vm_pageout_flush() returns 0 as the run
1086 			 * length.  Since the condition that caused truncated
1087 			 * write may be permanent, e.g. exhausted free space,
1088 			 * accepting n == 0 would cause an infinite loop.
1089 			 *
1090 			 * Forwarding the iterator leaves the unwritten page
1091 			 * behind, but there is not much we can do there if
1092 			 * filesystem refuses to write it.
1093 			 */
1094 			if (n == 0) {
1095 				n = 1;
1096 				allclean = FALSE;
1097 			}
1098 		} else {
1099 			n = 1;
1100 			vm_page_xunbusy(p);
1101 		}
1102 		np = vm_page_find_least(object, pi + n);
1103 	}
1104 #if 0
1105 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1106 #endif
1107 
1108 	/*
1109 	 * Leave updating cleangeneration for tmpfs objects to tmpfs
1110 	 * scan.  It needs to update mtime, which happens for other
1111 	 * filesystems during page writeouts.
1112 	 */
1113 	if (allclean && object->type == OBJT_VNODE)
1114 		object->cleangeneration = curgeneration;
1115 	return (res);
1116 }
1117 
1118 static int
1119 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1120     int flags, boolean_t *allclean, boolean_t *eio)
1121 {
1122 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1123 	int count, i, mreq, runlen;
1124 
1125 	vm_page_lock_assert(p, MA_NOTOWNED);
1126 	vm_page_assert_xbusied(p);
1127 	VM_OBJECT_ASSERT_WLOCKED(object);
1128 
1129 	count = 1;
1130 	mreq = 0;
1131 
1132 	for (tp = p; count < vm_pageout_page_count; count++) {
1133 		tp = vm_page_next(tp);
1134 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1135 			break;
1136 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1137 			vm_page_xunbusy(tp);
1138 			break;
1139 		}
1140 	}
1141 
1142 	for (p_first = p; count < vm_pageout_page_count; count++) {
1143 		tp = vm_page_prev(p_first);
1144 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1145 			break;
1146 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1147 			vm_page_xunbusy(tp);
1148 			break;
1149 		}
1150 		p_first = tp;
1151 		mreq++;
1152 	}
1153 
1154 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1155 		ma[i] = tp;
1156 
1157 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1158 	return (runlen);
1159 }
1160 
1161 /*
1162  * Note that there is absolutely no sense in writing out
1163  * anonymous objects, so we track down the vnode object
1164  * to write out.
1165  * We invalidate (remove) all pages from the address space
1166  * for semantic correctness.
1167  *
1168  * If the backing object is a device object with unmanaged pages, then any
1169  * mappings to the specified range of pages must be removed before this
1170  * function is called.
1171  *
1172  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1173  * may start out with a NULL object.
1174  */
1175 boolean_t
1176 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1177     boolean_t syncio, boolean_t invalidate)
1178 {
1179 	vm_object_t backing_object;
1180 	struct vnode *vp;
1181 	struct mount *mp;
1182 	int error, flags, fsync_after;
1183 	boolean_t res;
1184 
1185 	if (object == NULL)
1186 		return (TRUE);
1187 	res = TRUE;
1188 	error = 0;
1189 	VM_OBJECT_WLOCK(object);
1190 	while ((backing_object = object->backing_object) != NULL) {
1191 		VM_OBJECT_WLOCK(backing_object);
1192 		offset += object->backing_object_offset;
1193 		VM_OBJECT_WUNLOCK(object);
1194 		object = backing_object;
1195 		if (object->size < OFF_TO_IDX(offset + size))
1196 			size = IDX_TO_OFF(object->size) - offset;
1197 	}
1198 	/*
1199 	 * Flush pages if writing is allowed, invalidate them
1200 	 * if invalidation requested.  Pages undergoing I/O
1201 	 * will be ignored by vm_object_page_remove().
1202 	 *
1203 	 * We cannot lock the vnode and then wait for paging
1204 	 * to complete without deadlocking against vm_fault.
1205 	 * Instead we simply call vm_object_page_remove() and
1206 	 * allow it to block internally on a page-by-page
1207 	 * basis when it encounters pages undergoing async
1208 	 * I/O.
1209 	 */
1210 	if (object->type == OBJT_VNODE &&
1211 	    vm_object_mightbedirty(object) != 0 &&
1212 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1213 		VM_OBJECT_WUNLOCK(object);
1214 		(void)vn_start_write(vp, &mp, V_WAIT);
1215 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1216 		if (syncio && !invalidate && offset == 0 &&
1217 		    atop(size) == object->size) {
1218 			/*
1219 			 * If syncing the whole mapping of the file,
1220 			 * it is faster to schedule all the writes in
1221 			 * async mode, also allowing the clustering,
1222 			 * and then wait for i/o to complete.
1223 			 */
1224 			flags = 0;
1225 			fsync_after = TRUE;
1226 		} else {
1227 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1228 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1229 			fsync_after = FALSE;
1230 		}
1231 		VM_OBJECT_WLOCK(object);
1232 		res = vm_object_page_clean(object, offset, offset + size,
1233 		    flags);
1234 		VM_OBJECT_WUNLOCK(object);
1235 		if (fsync_after) {
1236 			for (;;) {
1237 				error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1238 				if (error != ERELOOKUP)
1239 					break;
1240 
1241 				/*
1242 				 * Allow SU/bufdaemon to handle more
1243 				 * dependencies in the meantime.
1244 				 */
1245 				VOP_UNLOCK(vp);
1246 				vn_finished_write(mp);
1247 
1248 				(void)vn_start_write(vp, &mp, V_WAIT);
1249 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1250 			}
1251 		}
1252 		VOP_UNLOCK(vp);
1253 		vn_finished_write(mp);
1254 		if (error != 0)
1255 			res = FALSE;
1256 		VM_OBJECT_WLOCK(object);
1257 	}
1258 	if ((object->type == OBJT_VNODE ||
1259 	     object->type == OBJT_DEVICE) && invalidate) {
1260 		if (object->type == OBJT_DEVICE)
1261 			/*
1262 			 * The option OBJPR_NOTMAPPED must be passed here
1263 			 * because vm_object_page_remove() cannot remove
1264 			 * unmanaged mappings.
1265 			 */
1266 			flags = OBJPR_NOTMAPPED;
1267 		else if (old_msync)
1268 			flags = 0;
1269 		else
1270 			flags = OBJPR_CLEANONLY;
1271 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1272 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1273 	}
1274 	VM_OBJECT_WUNLOCK(object);
1275 	return (res);
1276 }
1277 
1278 /*
1279  * Determine whether the given advice can be applied to the object.  Advice is
1280  * not applied to unmanaged pages since they never belong to page queues, and
1281  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1282  * have been mapped at most once.
1283  */
1284 static bool
1285 vm_object_advice_applies(vm_object_t object, int advice)
1286 {
1287 
1288 	if ((object->flags & OBJ_UNMANAGED) != 0)
1289 		return (false);
1290 	if (advice != MADV_FREE)
1291 		return (true);
1292 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1293 	    (OBJ_ONEMAPPING | OBJ_ANON));
1294 }
1295 
1296 static void
1297 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1298     vm_size_t size)
1299 {
1300 
1301 	if (advice == MADV_FREE)
1302 		vm_pager_freespace(object, pindex, size);
1303 }
1304 
1305 /*
1306  *	vm_object_madvise:
1307  *
1308  *	Implements the madvise function at the object/page level.
1309  *
1310  *	MADV_WILLNEED	(any object)
1311  *
1312  *	    Activate the specified pages if they are resident.
1313  *
1314  *	MADV_DONTNEED	(any object)
1315  *
1316  *	    Deactivate the specified pages if they are resident.
1317  *
1318  *	MADV_FREE	(OBJT_SWAP objects, OBJ_ONEMAPPING only)
1319  *
1320  *	    Deactivate and clean the specified pages if they are
1321  *	    resident.  This permits the process to reuse the pages
1322  *	    without faulting or the kernel to reclaim the pages
1323  *	    without I/O.
1324  */
1325 void
1326 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1327     int advice)
1328 {
1329 	vm_pindex_t tpindex;
1330 	vm_object_t backing_object, tobject;
1331 	vm_page_t m, tm;
1332 
1333 	if (object == NULL)
1334 		return;
1335 
1336 relookup:
1337 	VM_OBJECT_WLOCK(object);
1338 	if (!vm_object_advice_applies(object, advice)) {
1339 		VM_OBJECT_WUNLOCK(object);
1340 		return;
1341 	}
1342 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1343 		tobject = object;
1344 
1345 		/*
1346 		 * If the next page isn't resident in the top-level object, we
1347 		 * need to search the shadow chain.  When applying MADV_FREE, we
1348 		 * take care to release any swap space used to store
1349 		 * non-resident pages.
1350 		 */
1351 		if (m == NULL || pindex < m->pindex) {
1352 			/*
1353 			 * Optimize a common case: if the top-level object has
1354 			 * no backing object, we can skip over the non-resident
1355 			 * range in constant time.
1356 			 */
1357 			if (object->backing_object == NULL) {
1358 				tpindex = (m != NULL && m->pindex < end) ?
1359 				    m->pindex : end;
1360 				vm_object_madvise_freespace(object, advice,
1361 				    pindex, tpindex - pindex);
1362 				if ((pindex = tpindex) == end)
1363 					break;
1364 				goto next_page;
1365 			}
1366 
1367 			tpindex = pindex;
1368 			do {
1369 				vm_object_madvise_freespace(tobject, advice,
1370 				    tpindex, 1);
1371 				/*
1372 				 * Prepare to search the next object in the
1373 				 * chain.
1374 				 */
1375 				backing_object = tobject->backing_object;
1376 				if (backing_object == NULL)
1377 					goto next_pindex;
1378 				VM_OBJECT_WLOCK(backing_object);
1379 				tpindex +=
1380 				    OFF_TO_IDX(tobject->backing_object_offset);
1381 				if (tobject != object)
1382 					VM_OBJECT_WUNLOCK(tobject);
1383 				tobject = backing_object;
1384 				if (!vm_object_advice_applies(tobject, advice))
1385 					goto next_pindex;
1386 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1387 			    NULL);
1388 		} else {
1389 next_page:
1390 			tm = m;
1391 			m = TAILQ_NEXT(m, listq);
1392 		}
1393 
1394 		/*
1395 		 * If the page is not in a normal state, skip it.  The page
1396 		 * can not be invalidated while the object lock is held.
1397 		 */
1398 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1399 			goto next_pindex;
1400 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1401 		    ("vm_object_madvise: page %p is fictitious", tm));
1402 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1403 		    ("vm_object_madvise: page %p is not managed", tm));
1404 		if (vm_page_tryxbusy(tm) == 0) {
1405 			if (object != tobject)
1406 				VM_OBJECT_WUNLOCK(object);
1407 			if (advice == MADV_WILLNEED) {
1408 				/*
1409 				 * Reference the page before unlocking and
1410 				 * sleeping so that the page daemon is less
1411 				 * likely to reclaim it.
1412 				 */
1413 				vm_page_aflag_set(tm, PGA_REFERENCED);
1414 			}
1415 			if (!vm_page_busy_sleep(tm, "madvpo", 0))
1416 				VM_OBJECT_WUNLOCK(tobject);
1417   			goto relookup;
1418 		}
1419 		vm_page_advise(tm, advice);
1420 		vm_page_xunbusy(tm);
1421 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1422 next_pindex:
1423 		if (tobject != object)
1424 			VM_OBJECT_WUNLOCK(tobject);
1425 	}
1426 	VM_OBJECT_WUNLOCK(object);
1427 }
1428 
1429 /*
1430  *	vm_object_shadow:
1431  *
1432  *	Create a new object which is backed by the
1433  *	specified existing object range.  The source
1434  *	object reference is deallocated.
1435  *
1436  *	The new object and offset into that object
1437  *	are returned in the source parameters.
1438  */
1439 void
1440 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1441     struct ucred *cred, bool shared)
1442 {
1443 	vm_object_t source;
1444 	vm_object_t result;
1445 
1446 	source = *object;
1447 
1448 	/*
1449 	 * Don't create the new object if the old object isn't shared.
1450 	 *
1451 	 * If we hold the only reference we can guarantee that it won't
1452 	 * increase while we have the map locked.  Otherwise the race is
1453 	 * harmless and we will end up with an extra shadow object that
1454 	 * will be collapsed later.
1455 	 */
1456 	if (source != NULL && source->ref_count == 1 &&
1457 	    (source->flags & OBJ_ANON) != 0)
1458 		return;
1459 
1460 	/*
1461 	 * Allocate a new object with the given length.
1462 	 */
1463 	result = vm_object_allocate_anon(atop(length), source, cred, length);
1464 
1465 	/*
1466 	 * Store the offset into the source object, and fix up the offset into
1467 	 * the new object.
1468 	 */
1469 	result->backing_object_offset = *offset;
1470 
1471 	if (shared || source != NULL) {
1472 		VM_OBJECT_WLOCK(result);
1473 
1474 		/*
1475 		 * The new object shadows the source object, adding a
1476 		 * reference to it.  Our caller changes his reference
1477 		 * to point to the new object, removing a reference to
1478 		 * the source object.  Net result: no change of
1479 		 * reference count, unless the caller needs to add one
1480 		 * more reference due to forking a shared map entry.
1481 		 */
1482 		if (shared) {
1483 			vm_object_reference_locked(result);
1484 			vm_object_clear_flag(result, OBJ_ONEMAPPING);
1485 		}
1486 
1487 		/*
1488 		 * Try to optimize the result object's page color when
1489 		 * shadowing in order to maintain page coloring
1490 		 * consistency in the combined shadowed object.
1491 		 */
1492 		if (source != NULL) {
1493 			vm_object_backing_insert(result, source);
1494 			result->domain = source->domain;
1495 #if VM_NRESERVLEVEL > 0
1496 			vm_object_set_flag(result,
1497 			    (source->flags & OBJ_COLORED));
1498 			result->pg_color = (source->pg_color +
1499 			    OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1500 			    1)) - 1);
1501 #endif
1502 		}
1503 		VM_OBJECT_WUNLOCK(result);
1504 	}
1505 
1506 	/*
1507 	 * Return the new things
1508 	 */
1509 	*offset = 0;
1510 	*object = result;
1511 }
1512 
1513 /*
1514  *	vm_object_split:
1515  *
1516  * Split the pages in a map entry into a new object.  This affords
1517  * easier removal of unused pages, and keeps object inheritance from
1518  * being a negative impact on memory usage.
1519  */
1520 void
1521 vm_object_split(vm_map_entry_t entry)
1522 {
1523 	vm_page_t m, m_next;
1524 	vm_object_t orig_object, new_object, backing_object;
1525 	vm_pindex_t idx, offidxstart;
1526 	vm_size_t size;
1527 
1528 	orig_object = entry->object.vm_object;
1529 	KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1530 	    ("vm_object_split:  Splitting object with multiple mappings."));
1531 	if ((orig_object->flags & OBJ_ANON) == 0)
1532 		return;
1533 	if (orig_object->ref_count <= 1)
1534 		return;
1535 	VM_OBJECT_WUNLOCK(orig_object);
1536 
1537 	offidxstart = OFF_TO_IDX(entry->offset);
1538 	size = atop(entry->end - entry->start);
1539 
1540 	new_object = vm_object_allocate_anon(size, orig_object,
1541 	    orig_object->cred, ptoa(size));
1542 
1543 	/*
1544 	 * We must wait for the orig_object to complete any in-progress
1545 	 * collapse so that the swap blocks are stable below.  The
1546 	 * additional reference on backing_object by new object will
1547 	 * prevent further collapse operations until split completes.
1548 	 */
1549 	VM_OBJECT_WLOCK(orig_object);
1550 	vm_object_collapse_wait(orig_object);
1551 
1552 	/*
1553 	 * At this point, the new object is still private, so the order in
1554 	 * which the original and new objects are locked does not matter.
1555 	 */
1556 	VM_OBJECT_WLOCK(new_object);
1557 	new_object->domain = orig_object->domain;
1558 	backing_object = orig_object->backing_object;
1559 	if (backing_object != NULL) {
1560 		vm_object_backing_insert_ref(new_object, backing_object);
1561 		new_object->backing_object_offset =
1562 		    orig_object->backing_object_offset + entry->offset;
1563 	}
1564 	if (orig_object->cred != NULL) {
1565 		crhold(orig_object->cred);
1566 		KASSERT(orig_object->charge >= ptoa(size),
1567 		    ("orig_object->charge < 0"));
1568 		orig_object->charge -= ptoa(size);
1569 	}
1570 
1571 	/*
1572 	 * Mark the split operation so that swap_pager_getpages() knows
1573 	 * that the object is in transition.
1574 	 */
1575 	vm_object_set_flag(orig_object, OBJ_SPLIT);
1576 #ifdef INVARIANTS
1577 	idx = 0;
1578 #endif
1579 retry:
1580 	m = vm_page_find_least(orig_object, offidxstart);
1581 	KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1582 	    ("%s: object %p was repopulated", __func__, orig_object));
1583 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1584 	    m = m_next) {
1585 		m_next = TAILQ_NEXT(m, listq);
1586 
1587 		/*
1588 		 * We must wait for pending I/O to complete before we can
1589 		 * rename the page.
1590 		 *
1591 		 * We do not have to VM_PROT_NONE the page as mappings should
1592 		 * not be changed by this operation.
1593 		 */
1594 		if (vm_page_tryxbusy(m) == 0) {
1595 			VM_OBJECT_WUNLOCK(new_object);
1596 			if (vm_page_busy_sleep(m, "spltwt", 0))
1597 				VM_OBJECT_WLOCK(orig_object);
1598 			VM_OBJECT_WLOCK(new_object);
1599 			goto retry;
1600 		}
1601 
1602 		/*
1603 		 * The page was left invalid.  Likely placed there by
1604 		 * an incomplete fault.  Just remove and ignore.
1605 		 */
1606 		if (vm_page_none_valid(m)) {
1607 			if (vm_page_remove(m))
1608 				vm_page_free(m);
1609 			continue;
1610 		}
1611 
1612 		/* vm_page_rename() will dirty the page. */
1613 		if (vm_page_rename(m, new_object, idx)) {
1614 			vm_page_xunbusy(m);
1615 			VM_OBJECT_WUNLOCK(new_object);
1616 			VM_OBJECT_WUNLOCK(orig_object);
1617 			vm_radix_wait();
1618 			VM_OBJECT_WLOCK(orig_object);
1619 			VM_OBJECT_WLOCK(new_object);
1620 			goto retry;
1621 		}
1622 
1623 #if VM_NRESERVLEVEL > 0
1624 		/*
1625 		 * If some of the reservation's allocated pages remain with
1626 		 * the original object, then transferring the reservation to
1627 		 * the new object is neither particularly beneficial nor
1628 		 * particularly harmful as compared to leaving the reservation
1629 		 * with the original object.  If, however, all of the
1630 		 * reservation's allocated pages are transferred to the new
1631 		 * object, then transferring the reservation is typically
1632 		 * beneficial.  Determining which of these two cases applies
1633 		 * would be more costly than unconditionally renaming the
1634 		 * reservation.
1635 		 */
1636 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1637 #endif
1638 	}
1639 
1640 	/*
1641 	 * swap_pager_copy() can sleep, in which case the orig_object's
1642 	 * and new_object's locks are released and reacquired.
1643 	 */
1644 	swap_pager_copy(orig_object, new_object, offidxstart, 0);
1645 
1646 	TAILQ_FOREACH(m, &new_object->memq, listq)
1647 		vm_page_xunbusy(m);
1648 
1649 	vm_object_clear_flag(orig_object, OBJ_SPLIT);
1650 	VM_OBJECT_WUNLOCK(orig_object);
1651 	VM_OBJECT_WUNLOCK(new_object);
1652 	entry->object.vm_object = new_object;
1653 	entry->offset = 0LL;
1654 	vm_object_deallocate(orig_object);
1655 	VM_OBJECT_WLOCK(new_object);
1656 }
1657 
1658 static vm_page_t
1659 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1660 {
1661 	vm_object_t backing_object;
1662 
1663 	VM_OBJECT_ASSERT_WLOCKED(object);
1664 	backing_object = object->backing_object;
1665 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1666 
1667 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1668 	    ("invalid ownership %p %p %p", p, object, backing_object));
1669 	/* The page is only NULL when rename fails. */
1670 	if (p == NULL) {
1671 		VM_OBJECT_WUNLOCK(object);
1672 		VM_OBJECT_WUNLOCK(backing_object);
1673 		vm_radix_wait();
1674 		VM_OBJECT_WLOCK(object);
1675 	} else if (p->object == object) {
1676 		VM_OBJECT_WUNLOCK(backing_object);
1677 		if (vm_page_busy_sleep(p, "vmocol", 0))
1678 			VM_OBJECT_WLOCK(object);
1679 	} else {
1680 		VM_OBJECT_WUNLOCK(object);
1681 		if (!vm_page_busy_sleep(p, "vmocol", 0))
1682 			VM_OBJECT_WUNLOCK(backing_object);
1683 		VM_OBJECT_WLOCK(object);
1684 	}
1685 	VM_OBJECT_WLOCK(backing_object);
1686 	return (TAILQ_FIRST(&backing_object->memq));
1687 }
1688 
1689 static bool
1690 vm_object_scan_all_shadowed(vm_object_t object)
1691 {
1692 	vm_object_t backing_object;
1693 	vm_page_t p, pp;
1694 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1695 
1696 	VM_OBJECT_ASSERT_WLOCKED(object);
1697 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1698 
1699 	backing_object = object->backing_object;
1700 
1701 	if ((backing_object->flags & OBJ_ANON) == 0)
1702 		return (false);
1703 
1704 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1705 	p = vm_page_find_least(backing_object, pi);
1706 	ps = swap_pager_find_least(backing_object, pi);
1707 
1708 	/*
1709 	 * Only check pages inside the parent object's range and
1710 	 * inside the parent object's mapping of the backing object.
1711 	 */
1712 	for (;; pi++) {
1713 		if (p != NULL && p->pindex < pi)
1714 			p = TAILQ_NEXT(p, listq);
1715 		if (ps < pi)
1716 			ps = swap_pager_find_least(backing_object, pi);
1717 		if (p == NULL && ps >= backing_object->size)
1718 			break;
1719 		else if (p == NULL)
1720 			pi = ps;
1721 		else
1722 			pi = MIN(p->pindex, ps);
1723 
1724 		new_pindex = pi - backing_offset_index;
1725 		if (new_pindex >= object->size)
1726 			break;
1727 
1728 		if (p != NULL) {
1729 			/*
1730 			 * If the backing object page is busy a
1731 			 * grandparent or older page may still be
1732 			 * undergoing CoW.  It is not safe to collapse
1733 			 * the backing object until it is quiesced.
1734 			 */
1735 			if (vm_page_tryxbusy(p) == 0)
1736 				return (false);
1737 
1738 			/*
1739 			 * We raced with the fault handler that left
1740 			 * newly allocated invalid page on the object
1741 			 * queue and retried.
1742 			 */
1743 			if (!vm_page_all_valid(p))
1744 				goto unbusy_ret;
1745 		}
1746 
1747 		/*
1748 		 * See if the parent has the page or if the parent's object
1749 		 * pager has the page.  If the parent has the page but the page
1750 		 * is not valid, the parent's object pager must have the page.
1751 		 *
1752 		 * If this fails, the parent does not completely shadow the
1753 		 * object and we might as well give up now.
1754 		 */
1755 		pp = vm_page_lookup(object, new_pindex);
1756 
1757 		/*
1758 		 * The valid check here is stable due to object lock
1759 		 * being required to clear valid and initiate paging.
1760 		 * Busy of p disallows fault handler to validate pp.
1761 		 */
1762 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1763 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1764 			goto unbusy_ret;
1765 		if (p != NULL)
1766 			vm_page_xunbusy(p);
1767 	}
1768 	return (true);
1769 
1770 unbusy_ret:
1771 	if (p != NULL)
1772 		vm_page_xunbusy(p);
1773 	return (false);
1774 }
1775 
1776 static void
1777 vm_object_collapse_scan(vm_object_t object)
1778 {
1779 	vm_object_t backing_object;
1780 	vm_page_t next, p, pp;
1781 	vm_pindex_t backing_offset_index, new_pindex;
1782 
1783 	VM_OBJECT_ASSERT_WLOCKED(object);
1784 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1785 
1786 	backing_object = object->backing_object;
1787 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1788 
1789 	/*
1790 	 * Our scan
1791 	 */
1792 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1793 		next = TAILQ_NEXT(p, listq);
1794 		new_pindex = p->pindex - backing_offset_index;
1795 
1796 		/*
1797 		 * Check for busy page
1798 		 */
1799 		if (vm_page_tryxbusy(p) == 0) {
1800 			next = vm_object_collapse_scan_wait(object, p);
1801 			continue;
1802 		}
1803 
1804 		KASSERT(object->backing_object == backing_object,
1805 		    ("vm_object_collapse_scan: backing object mismatch %p != %p",
1806 		    object->backing_object, backing_object));
1807 		KASSERT(p->object == backing_object,
1808 		    ("vm_object_collapse_scan: object mismatch %p != %p",
1809 		    p->object, backing_object));
1810 
1811 		if (p->pindex < backing_offset_index ||
1812 		    new_pindex >= object->size) {
1813 			vm_pager_freespace(backing_object, p->pindex, 1);
1814 
1815 			KASSERT(!pmap_page_is_mapped(p),
1816 			    ("freeing mapped page %p", p));
1817 			if (vm_page_remove(p))
1818 				vm_page_free(p);
1819 			continue;
1820 		}
1821 
1822 		if (!vm_page_all_valid(p)) {
1823 			KASSERT(!pmap_page_is_mapped(p),
1824 			    ("freeing mapped page %p", p));
1825 			if (vm_page_remove(p))
1826 				vm_page_free(p);
1827 			continue;
1828 		}
1829 
1830 		pp = vm_page_lookup(object, new_pindex);
1831 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1832 			vm_page_xunbusy(p);
1833 			/*
1834 			 * The page in the parent is busy and possibly not
1835 			 * (yet) valid.  Until its state is finalized by the
1836 			 * busy bit owner, we can't tell whether it shadows the
1837 			 * original page.
1838 			 */
1839 			next = vm_object_collapse_scan_wait(object, pp);
1840 			continue;
1841 		}
1842 
1843 		if (pp != NULL && vm_page_none_valid(pp)) {
1844 			/*
1845 			 * The page was invalid in the parent.  Likely placed
1846 			 * there by an incomplete fault.  Just remove and
1847 			 * ignore.  p can replace it.
1848 			 */
1849 			if (vm_page_remove(pp))
1850 				vm_page_free(pp);
1851 			pp = NULL;
1852 		}
1853 
1854 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1855 			NULL)) {
1856 			/*
1857 			 * The page already exists in the parent OR swap exists
1858 			 * for this location in the parent.  Leave the parent's
1859 			 * page alone.  Destroy the original page from the
1860 			 * backing object.
1861 			 */
1862 			vm_pager_freespace(backing_object, p->pindex, 1);
1863 			KASSERT(!pmap_page_is_mapped(p),
1864 			    ("freeing mapped page %p", p));
1865 			if (vm_page_remove(p))
1866 				vm_page_free(p);
1867 			if (pp != NULL)
1868 				vm_page_xunbusy(pp);
1869 			continue;
1870 		}
1871 
1872 		/*
1873 		 * Page does not exist in parent, rename the page from the
1874 		 * backing object to the main object.
1875 		 *
1876 		 * If the page was mapped to a process, it can remain mapped
1877 		 * through the rename.  vm_page_rename() will dirty the page.
1878 		 */
1879 		if (vm_page_rename(p, object, new_pindex)) {
1880 			vm_page_xunbusy(p);
1881 			next = vm_object_collapse_scan_wait(object, NULL);
1882 			continue;
1883 		}
1884 
1885 		/* Use the old pindex to free the right page. */
1886 		vm_pager_freespace(backing_object, new_pindex +
1887 		    backing_offset_index, 1);
1888 
1889 #if VM_NRESERVLEVEL > 0
1890 		/*
1891 		 * Rename the reservation.
1892 		 */
1893 		vm_reserv_rename(p, object, backing_object,
1894 		    backing_offset_index);
1895 #endif
1896 		vm_page_xunbusy(p);
1897 	}
1898 	return;
1899 }
1900 
1901 /*
1902  *	vm_object_collapse:
1903  *
1904  *	Collapse an object with the object backing it.
1905  *	Pages in the backing object are moved into the
1906  *	parent, and the backing object is deallocated.
1907  */
1908 void
1909 vm_object_collapse(vm_object_t object)
1910 {
1911 	vm_object_t backing_object, new_backing_object;
1912 
1913 	VM_OBJECT_ASSERT_WLOCKED(object);
1914 
1915 	while (TRUE) {
1916 		KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1917 		    ("collapsing invalid object"));
1918 
1919 		/*
1920 		 * Wait for the backing_object to finish any pending
1921 		 * collapse so that the caller sees the shortest possible
1922 		 * shadow chain.
1923 		 */
1924 		backing_object = vm_object_backing_collapse_wait(object);
1925 		if (backing_object == NULL)
1926 			return;
1927 
1928 		KASSERT(object->ref_count > 0 &&
1929 		    object->ref_count > atomic_load_int(&object->shadow_count),
1930 		    ("collapse with invalid ref %d or shadow %d count.",
1931 		    object->ref_count, atomic_load_int(&object->shadow_count)));
1932 		KASSERT((backing_object->flags &
1933 		    (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1934 		    ("vm_object_collapse: Backing object already collapsing."));
1935 		KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1936 		    ("vm_object_collapse: object is already collapsing."));
1937 
1938 		/*
1939 		 * We know that we can either collapse the backing object if
1940 		 * the parent is the only reference to it, or (perhaps) have
1941 		 * the parent bypass the object if the parent happens to shadow
1942 		 * all the resident pages in the entire backing object.
1943 		 */
1944 		if (backing_object->ref_count == 1) {
1945 			KASSERT(atomic_load_int(&backing_object->shadow_count)
1946 			    == 1,
1947 			    ("vm_object_collapse: shadow_count: %d",
1948 			    atomic_load_int(&backing_object->shadow_count)));
1949 			vm_object_pip_add(object, 1);
1950 			vm_object_set_flag(object, OBJ_COLLAPSING);
1951 			vm_object_pip_add(backing_object, 1);
1952 			vm_object_set_flag(backing_object, OBJ_DEAD);
1953 
1954 			/*
1955 			 * If there is exactly one reference to the backing
1956 			 * object, we can collapse it into the parent.
1957 			 */
1958 			vm_object_collapse_scan(object);
1959 
1960 #if VM_NRESERVLEVEL > 0
1961 			/*
1962 			 * Break any reservations from backing_object.
1963 			 */
1964 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1965 				vm_reserv_break_all(backing_object);
1966 #endif
1967 
1968 			/*
1969 			 * Move the pager from backing_object to object.
1970 			 *
1971 			 * swap_pager_copy() can sleep, in which case the
1972 			 * backing_object's and object's locks are released and
1973 			 * reacquired.
1974 			 */
1975 			swap_pager_copy(backing_object, object,
1976 			    OFF_TO_IDX(object->backing_object_offset), TRUE);
1977 
1978 			/*
1979 			 * Object now shadows whatever backing_object did.
1980 			 */
1981 			vm_object_clear_flag(object, OBJ_COLLAPSING);
1982 			vm_object_backing_transfer(object, backing_object);
1983 			object->backing_object_offset +=
1984 			    backing_object->backing_object_offset;
1985 			VM_OBJECT_WUNLOCK(object);
1986 			vm_object_pip_wakeup(object);
1987 
1988 			/*
1989 			 * Discard backing_object.
1990 			 *
1991 			 * Since the backing object has no pages, no pager left,
1992 			 * and no object references within it, all that is
1993 			 * necessary is to dispose of it.
1994 			 */
1995 			KASSERT(backing_object->ref_count == 1, (
1996 "backing_object %p was somehow re-referenced during collapse!",
1997 			    backing_object));
1998 			vm_object_pip_wakeup(backing_object);
1999 			(void)refcount_release(&backing_object->ref_count);
2000 			vm_object_terminate(backing_object);
2001 			counter_u64_add(object_collapses, 1);
2002 			VM_OBJECT_WLOCK(object);
2003 		} else {
2004 			/*
2005 			 * If we do not entirely shadow the backing object,
2006 			 * there is nothing we can do so we give up.
2007 			 *
2008 			 * The object lock and backing_object lock must not
2009 			 * be dropped during this sequence.
2010 			 */
2011 			if (!vm_object_scan_all_shadowed(object)) {
2012 				VM_OBJECT_WUNLOCK(backing_object);
2013 				break;
2014 			}
2015 
2016 			/*
2017 			 * Make the parent shadow the next object in the
2018 			 * chain.  Deallocating backing_object will not remove
2019 			 * it, since its reference count is at least 2.
2020 			 */
2021 			vm_object_backing_remove_locked(object);
2022 			new_backing_object = backing_object->backing_object;
2023 			if (new_backing_object != NULL) {
2024 				vm_object_backing_insert_ref(object,
2025 				    new_backing_object);
2026 				object->backing_object_offset +=
2027 				    backing_object->backing_object_offset;
2028 			}
2029 
2030 			/*
2031 			 * Drop the reference count on backing_object. Since
2032 			 * its ref_count was at least 2, it will not vanish.
2033 			 */
2034 			(void)refcount_release(&backing_object->ref_count);
2035 			KASSERT(backing_object->ref_count >= 1, (
2036 "backing_object %p was somehow dereferenced during collapse!",
2037 			    backing_object));
2038 			VM_OBJECT_WUNLOCK(backing_object);
2039 			counter_u64_add(object_bypasses, 1);
2040 		}
2041 
2042 		/*
2043 		 * Try again with this object's new backing object.
2044 		 */
2045 	}
2046 }
2047 
2048 /*
2049  *	vm_object_page_remove:
2050  *
2051  *	For the given object, either frees or invalidates each of the
2052  *	specified pages.  In general, a page is freed.  However, if a page is
2053  *	wired for any reason other than the existence of a managed, wired
2054  *	mapping, then it may be invalidated but not removed from the object.
2055  *	Pages are specified by the given range ["start", "end") and the option
2056  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2057  *	extends from "start" to the end of the object.  If the option
2058  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2059  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
2060  *	specified, then the pages within the specified range must have no
2061  *	mappings.  Otherwise, if this option is not specified, any mappings to
2062  *	the specified pages are removed before the pages are freed or
2063  *	invalidated.
2064  *
2065  *	In general, this operation should only be performed on objects that
2066  *	contain managed pages.  There are, however, two exceptions.  First, it
2067  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
2068  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2069  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2070  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
2071  *
2072  *	The object must be locked.
2073  */
2074 void
2075 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2076     int options)
2077 {
2078 	vm_page_t p, next;
2079 
2080 	VM_OBJECT_ASSERT_WLOCKED(object);
2081 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2082 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2083 	    ("vm_object_page_remove: illegal options for object %p", object));
2084 	if (object->resident_page_count == 0)
2085 		return;
2086 	vm_object_pip_add(object, 1);
2087 again:
2088 	p = vm_page_find_least(object, start);
2089 
2090 	/*
2091 	 * Here, the variable "p" is either (1) the page with the least pindex
2092 	 * greater than or equal to the parameter "start" or (2) NULL.
2093 	 */
2094 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2095 		next = TAILQ_NEXT(p, listq);
2096 
2097 		/*
2098 		 * Skip invalid pages if asked to do so.  Try to avoid acquiring
2099 		 * the busy lock, as some consumers rely on this to avoid
2100 		 * deadlocks.
2101 		 *
2102 		 * A thread may concurrently transition the page from invalid to
2103 		 * valid using only the busy lock, so the result of this check
2104 		 * is immediately stale.  It is up to consumers to handle this,
2105 		 * for instance by ensuring that all invalid->valid transitions
2106 		 * happen with a mutex held, as may be possible for a
2107 		 * filesystem.
2108 		 */
2109 		if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2110 			continue;
2111 
2112 		/*
2113 		 * If the page is wired for any reason besides the existence
2114 		 * of managed, wired mappings, then it cannot be freed.  For
2115 		 * example, fictitious pages, which represent device memory,
2116 		 * are inherently wired and cannot be freed.  They can,
2117 		 * however, be invalidated if the option OBJPR_CLEANONLY is
2118 		 * not specified.
2119 		 */
2120 		if (vm_page_tryxbusy(p) == 0) {
2121 			if (vm_page_busy_sleep(p, "vmopar", 0))
2122 				VM_OBJECT_WLOCK(object);
2123 			goto again;
2124 		}
2125 		if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2126 			vm_page_xunbusy(p);
2127 			continue;
2128 		}
2129 		if (vm_page_wired(p)) {
2130 wired:
2131 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2132 			    object->ref_count != 0)
2133 				pmap_remove_all(p);
2134 			if ((options & OBJPR_CLEANONLY) == 0) {
2135 				vm_page_invalid(p);
2136 				vm_page_undirty(p);
2137 			}
2138 			vm_page_xunbusy(p);
2139 			continue;
2140 		}
2141 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2142 		    ("vm_object_page_remove: page %p is fictitious", p));
2143 		if ((options & OBJPR_CLEANONLY) != 0 &&
2144 		    !vm_page_none_valid(p)) {
2145 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2146 			    object->ref_count != 0 &&
2147 			    !vm_page_try_remove_write(p))
2148 				goto wired;
2149 			if (p->dirty != 0) {
2150 				vm_page_xunbusy(p);
2151 				continue;
2152 			}
2153 		}
2154 		if ((options & OBJPR_NOTMAPPED) == 0 &&
2155 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
2156 			goto wired;
2157 		vm_page_free(p);
2158 	}
2159 	vm_object_pip_wakeup(object);
2160 
2161 	vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2162 	    start);
2163 }
2164 
2165 /*
2166  *	vm_object_page_noreuse:
2167  *
2168  *	For the given object, attempt to move the specified pages to
2169  *	the head of the inactive queue.  This bypasses regular LRU
2170  *	operation and allows the pages to be reused quickly under memory
2171  *	pressure.  If a page is wired for any reason, then it will not
2172  *	be queued.  Pages are specified by the range ["start", "end").
2173  *	As a special case, if "end" is zero, then the range extends from
2174  *	"start" to the end of the object.
2175  *
2176  *	This operation should only be performed on objects that
2177  *	contain non-fictitious, managed pages.
2178  *
2179  *	The object must be locked.
2180  */
2181 void
2182 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2183 {
2184 	vm_page_t p, next;
2185 
2186 	VM_OBJECT_ASSERT_LOCKED(object);
2187 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2188 	    ("vm_object_page_noreuse: illegal object %p", object));
2189 	if (object->resident_page_count == 0)
2190 		return;
2191 	p = vm_page_find_least(object, start);
2192 
2193 	/*
2194 	 * Here, the variable "p" is either (1) the page with the least pindex
2195 	 * greater than or equal to the parameter "start" or (2) NULL.
2196 	 */
2197 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2198 		next = TAILQ_NEXT(p, listq);
2199 		vm_page_deactivate_noreuse(p);
2200 	}
2201 }
2202 
2203 /*
2204  *	Populate the specified range of the object with valid pages.  Returns
2205  *	TRUE if the range is successfully populated and FALSE otherwise.
2206  *
2207  *	Note: This function should be optimized to pass a larger array of
2208  *	pages to vm_pager_get_pages() before it is applied to a non-
2209  *	OBJT_DEVICE object.
2210  *
2211  *	The object must be locked.
2212  */
2213 boolean_t
2214 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2215 {
2216 	vm_page_t m;
2217 	vm_pindex_t pindex;
2218 	int rv;
2219 
2220 	VM_OBJECT_ASSERT_WLOCKED(object);
2221 	for (pindex = start; pindex < end; pindex++) {
2222 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2223 		if (rv != VM_PAGER_OK)
2224 			break;
2225 
2226 		/*
2227 		 * Keep "m" busy because a subsequent iteration may unlock
2228 		 * the object.
2229 		 */
2230 	}
2231 	if (pindex > start) {
2232 		m = vm_page_lookup(object, start);
2233 		while (m != NULL && m->pindex < pindex) {
2234 			vm_page_xunbusy(m);
2235 			m = TAILQ_NEXT(m, listq);
2236 		}
2237 	}
2238 	return (pindex == end);
2239 }
2240 
2241 /*
2242  *	Routine:	vm_object_coalesce
2243  *	Function:	Coalesces two objects backing up adjoining
2244  *			regions of memory into a single object.
2245  *
2246  *	returns TRUE if objects were combined.
2247  *
2248  *	NOTE:	Only works at the moment if the second object is NULL -
2249  *		if it's not, which object do we lock first?
2250  *
2251  *	Parameters:
2252  *		prev_object	First object to coalesce
2253  *		prev_offset	Offset into prev_object
2254  *		prev_size	Size of reference to prev_object
2255  *		next_size	Size of reference to the second object
2256  *		reserved	Indicator that extension region has
2257  *				swap accounted for
2258  *
2259  *	Conditions:
2260  *	The object must *not* be locked.
2261  */
2262 boolean_t
2263 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2264     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2265 {
2266 	vm_pindex_t next_pindex;
2267 
2268 	if (prev_object == NULL)
2269 		return (TRUE);
2270 	if ((prev_object->flags & OBJ_ANON) == 0)
2271 		return (FALSE);
2272 
2273 	VM_OBJECT_WLOCK(prev_object);
2274 	/*
2275 	 * Try to collapse the object first.
2276 	 */
2277 	vm_object_collapse(prev_object);
2278 
2279 	/*
2280 	 * Can't coalesce if: . more than one reference . paged out . shadows
2281 	 * another object . has a copy elsewhere (any of which mean that the
2282 	 * pages not mapped to prev_entry may be in use anyway)
2283 	 */
2284 	if (prev_object->backing_object != NULL) {
2285 		VM_OBJECT_WUNLOCK(prev_object);
2286 		return (FALSE);
2287 	}
2288 
2289 	prev_size >>= PAGE_SHIFT;
2290 	next_size >>= PAGE_SHIFT;
2291 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2292 
2293 	if (prev_object->ref_count > 1 &&
2294 	    prev_object->size != next_pindex &&
2295 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2296 		VM_OBJECT_WUNLOCK(prev_object);
2297 		return (FALSE);
2298 	}
2299 
2300 	/*
2301 	 * Account for the charge.
2302 	 */
2303 	if (prev_object->cred != NULL) {
2304 		/*
2305 		 * If prev_object was charged, then this mapping,
2306 		 * although not charged now, may become writable
2307 		 * later. Non-NULL cred in the object would prevent
2308 		 * swap reservation during enabling of the write
2309 		 * access, so reserve swap now. Failed reservation
2310 		 * cause allocation of the separate object for the map
2311 		 * entry, and swap reservation for this entry is
2312 		 * managed in appropriate time.
2313 		 */
2314 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2315 		    prev_object->cred)) {
2316 			VM_OBJECT_WUNLOCK(prev_object);
2317 			return (FALSE);
2318 		}
2319 		prev_object->charge += ptoa(next_size);
2320 	}
2321 
2322 	/*
2323 	 * Remove any pages that may still be in the object from a previous
2324 	 * deallocation.
2325 	 */
2326 	if (next_pindex < prev_object->size) {
2327 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2328 		    next_size, 0);
2329 #if 0
2330 		if (prev_object->cred != NULL) {
2331 			KASSERT(prev_object->charge >=
2332 			    ptoa(prev_object->size - next_pindex),
2333 			    ("object %p overcharged 1 %jx %jx", prev_object,
2334 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2335 			prev_object->charge -= ptoa(prev_object->size -
2336 			    next_pindex);
2337 		}
2338 #endif
2339 	}
2340 
2341 	/*
2342 	 * Extend the object if necessary.
2343 	 */
2344 	if (next_pindex + next_size > prev_object->size)
2345 		prev_object->size = next_pindex + next_size;
2346 
2347 	VM_OBJECT_WUNLOCK(prev_object);
2348 	return (TRUE);
2349 }
2350 
2351 void
2352 vm_object_set_writeable_dirty_(vm_object_t object)
2353 {
2354 	atomic_add_int(&object->generation, 1);
2355 }
2356 
2357 bool
2358 vm_object_mightbedirty_(vm_object_t object)
2359 {
2360 	return (object->generation != object->cleangeneration);
2361 }
2362 
2363 /*
2364  *	vm_object_unwire:
2365  *
2366  *	For each page offset within the specified range of the given object,
2367  *	find the highest-level page in the shadow chain and unwire it.  A page
2368  *	must exist at every page offset, and the highest-level page must be
2369  *	wired.
2370  */
2371 void
2372 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2373     uint8_t queue)
2374 {
2375 	vm_object_t tobject, t1object;
2376 	vm_page_t m, tm;
2377 	vm_pindex_t end_pindex, pindex, tpindex;
2378 	int depth, locked_depth;
2379 
2380 	KASSERT((offset & PAGE_MASK) == 0,
2381 	    ("vm_object_unwire: offset is not page aligned"));
2382 	KASSERT((length & PAGE_MASK) == 0,
2383 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2384 	/* The wired count of a fictitious page never changes. */
2385 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2386 		return;
2387 	pindex = OFF_TO_IDX(offset);
2388 	end_pindex = pindex + atop(length);
2389 again:
2390 	locked_depth = 1;
2391 	VM_OBJECT_RLOCK(object);
2392 	m = vm_page_find_least(object, pindex);
2393 	while (pindex < end_pindex) {
2394 		if (m == NULL || pindex < m->pindex) {
2395 			/*
2396 			 * The first object in the shadow chain doesn't
2397 			 * contain a page at the current index.  Therefore,
2398 			 * the page must exist in a backing object.
2399 			 */
2400 			tobject = object;
2401 			tpindex = pindex;
2402 			depth = 0;
2403 			do {
2404 				tpindex +=
2405 				    OFF_TO_IDX(tobject->backing_object_offset);
2406 				tobject = tobject->backing_object;
2407 				KASSERT(tobject != NULL,
2408 				    ("vm_object_unwire: missing page"));
2409 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2410 					goto next_page;
2411 				depth++;
2412 				if (depth == locked_depth) {
2413 					locked_depth++;
2414 					VM_OBJECT_RLOCK(tobject);
2415 				}
2416 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2417 			    NULL);
2418 		} else {
2419 			tm = m;
2420 			m = TAILQ_NEXT(m, listq);
2421 		}
2422 		if (vm_page_trysbusy(tm) == 0) {
2423 			for (tobject = object; locked_depth >= 1;
2424 			    locked_depth--) {
2425 				t1object = tobject->backing_object;
2426 				if (tm->object != tobject)
2427 					VM_OBJECT_RUNLOCK(tobject);
2428 				tobject = t1object;
2429 			}
2430 			tobject = tm->object;
2431 			if (!vm_page_busy_sleep(tm, "unwbo",
2432 			    VM_ALLOC_IGN_SBUSY))
2433 				VM_OBJECT_RUNLOCK(tobject);
2434 			goto again;
2435 		}
2436 		vm_page_unwire(tm, queue);
2437 		vm_page_sunbusy(tm);
2438 next_page:
2439 		pindex++;
2440 	}
2441 	/* Release the accumulated object locks. */
2442 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2443 		t1object = tobject->backing_object;
2444 		VM_OBJECT_RUNLOCK(tobject);
2445 		tobject = t1object;
2446 	}
2447 }
2448 
2449 /*
2450  * Return the vnode for the given object, or NULL if none exists.
2451  * For tmpfs objects, the function may return NULL if there is
2452  * no vnode allocated at the time of the call.
2453  */
2454 struct vnode *
2455 vm_object_vnode(vm_object_t object)
2456 {
2457 	struct vnode *vp;
2458 
2459 	VM_OBJECT_ASSERT_LOCKED(object);
2460 	vm_pager_getvp(object, &vp, NULL);
2461 	return (vp);
2462 }
2463 
2464 /*
2465  * Busy the vm object.  This prevents new pages belonging to the object from
2466  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2467  * for checking page state before proceeding.
2468  */
2469 void
2470 vm_object_busy(vm_object_t obj)
2471 {
2472 
2473 	VM_OBJECT_ASSERT_LOCKED(obj);
2474 
2475 	blockcount_acquire(&obj->busy, 1);
2476 	/* The fence is required to order loads of page busy. */
2477 	atomic_thread_fence_acq_rel();
2478 }
2479 
2480 void
2481 vm_object_unbusy(vm_object_t obj)
2482 {
2483 
2484 	blockcount_release(&obj->busy, 1);
2485 }
2486 
2487 void
2488 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2489 {
2490 
2491 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2492 
2493 	(void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2494 }
2495 
2496 /*
2497  * This function aims to determine if the object is mapped,
2498  * specifically, if it is referenced by a vm_map_entry.  Because
2499  * objects occasionally acquire transient references that do not
2500  * represent a mapping, the method used here is inexact.  However, it
2501  * has very low overhead and is good enough for the advisory
2502  * vm.vmtotal sysctl.
2503  */
2504 bool
2505 vm_object_is_active(vm_object_t obj)
2506 {
2507 
2508 	return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2509 }
2510 
2511 static int
2512 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2513 {
2514 	struct kinfo_vmobject *kvo;
2515 	char *fullpath, *freepath;
2516 	struct vnode *vp;
2517 	struct vattr va;
2518 	vm_object_t obj;
2519 	vm_page_t m;
2520 	u_long sp;
2521 	int count, error;
2522 
2523 	if (req->oldptr == NULL) {
2524 		/*
2525 		 * If an old buffer has not been provided, generate an
2526 		 * estimate of the space needed for a subsequent call.
2527 		 */
2528 		mtx_lock(&vm_object_list_mtx);
2529 		count = 0;
2530 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2531 			if (obj->type == OBJT_DEAD)
2532 				continue;
2533 			count++;
2534 		}
2535 		mtx_unlock(&vm_object_list_mtx);
2536 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2537 		    count * 11 / 10));
2538 	}
2539 
2540 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2541 	error = 0;
2542 
2543 	/*
2544 	 * VM objects are type stable and are never removed from the
2545 	 * list once added.  This allows us to safely read obj->object_list
2546 	 * after reacquiring the VM object lock.
2547 	 */
2548 	mtx_lock(&vm_object_list_mtx);
2549 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2550 		if (obj->type == OBJT_DEAD ||
2551 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2552 			continue;
2553 		VM_OBJECT_RLOCK(obj);
2554 		if (obj->type == OBJT_DEAD ||
2555 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2556 			VM_OBJECT_RUNLOCK(obj);
2557 			continue;
2558 		}
2559 		mtx_unlock(&vm_object_list_mtx);
2560 		kvo->kvo_size = ptoa(obj->size);
2561 		kvo->kvo_resident = obj->resident_page_count;
2562 		kvo->kvo_ref_count = obj->ref_count;
2563 		kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2564 		kvo->kvo_memattr = obj->memattr;
2565 		kvo->kvo_active = 0;
2566 		kvo->kvo_inactive = 0;
2567 		if (!swap_only) {
2568 			TAILQ_FOREACH(m, &obj->memq, listq) {
2569 				/*
2570 				 * A page may belong to the object but be
2571 				 * dequeued and set to PQ_NONE while the
2572 				 * object lock is not held.  This makes the
2573 				 * reads of m->queue below racy, and we do not
2574 				 * count pages set to PQ_NONE.  However, this
2575 				 * sysctl is only meant to give an
2576 				 * approximation of the system anyway.
2577 				 */
2578 				if (m->a.queue == PQ_ACTIVE)
2579 					kvo->kvo_active++;
2580 				else if (m->a.queue == PQ_INACTIVE)
2581 					kvo->kvo_inactive++;
2582 			}
2583 		}
2584 
2585 		kvo->kvo_vn_fileid = 0;
2586 		kvo->kvo_vn_fsid = 0;
2587 		kvo->kvo_vn_fsid_freebsd11 = 0;
2588 		freepath = NULL;
2589 		fullpath = "";
2590 		vp = NULL;
2591 		kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2592 		if (vp != NULL) {
2593 			vref(vp);
2594 		} else if ((obj->flags & OBJ_ANON) != 0) {
2595 			MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2596 			kvo->kvo_me = (uintptr_t)obj;
2597 			/* tmpfs objs are reported as vnodes */
2598 			kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2599 			sp = swap_pager_swapped_pages(obj);
2600 			kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2601 		}
2602 		VM_OBJECT_RUNLOCK(obj);
2603 		if (vp != NULL) {
2604 			vn_fullpath(vp, &fullpath, &freepath);
2605 			vn_lock(vp, LK_SHARED | LK_RETRY);
2606 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2607 				kvo->kvo_vn_fileid = va.va_fileid;
2608 				kvo->kvo_vn_fsid = va.va_fsid;
2609 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2610 								/* truncate */
2611 			}
2612 			vput(vp);
2613 		}
2614 
2615 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2616 		if (freepath != NULL)
2617 			free(freepath, M_TEMP);
2618 
2619 		/* Pack record size down */
2620 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2621 		    + strlen(kvo->kvo_path) + 1;
2622 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2623 		    sizeof(uint64_t));
2624 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2625 		maybe_yield();
2626 		mtx_lock(&vm_object_list_mtx);
2627 		if (error)
2628 			break;
2629 	}
2630 	mtx_unlock(&vm_object_list_mtx);
2631 	free(kvo, M_TEMP);
2632 	return (error);
2633 }
2634 
2635 static int
2636 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2637 {
2638 	return (vm_object_list_handler(req, false));
2639 }
2640 
2641 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2642     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2643     "List of VM objects");
2644 
2645 static int
2646 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2647 {
2648 	return (vm_object_list_handler(req, true));
2649 }
2650 
2651 /*
2652  * This sysctl returns list of the anonymous or swap objects. Intent
2653  * is to provide stripped optimized list useful to analyze swap use.
2654  * Since technically non-swap (default) objects participate in the
2655  * shadow chains, and are converted to swap type as needed by swap
2656  * pager, we must report them.
2657  */
2658 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2659     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2660     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2661     "List of swap VM objects");
2662 
2663 #include "opt_ddb.h"
2664 #ifdef DDB
2665 #include <sys/kernel.h>
2666 
2667 #include <sys/cons.h>
2668 
2669 #include <ddb/ddb.h>
2670 
2671 static int
2672 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2673 {
2674 	vm_map_t tmpm;
2675 	vm_map_entry_t tmpe;
2676 	vm_object_t obj;
2677 
2678 	if (map == 0)
2679 		return 0;
2680 
2681 	if (entry == 0) {
2682 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2683 			if (_vm_object_in_map(map, object, tmpe)) {
2684 				return 1;
2685 			}
2686 		}
2687 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2688 		tmpm = entry->object.sub_map;
2689 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2690 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2691 				return 1;
2692 			}
2693 		}
2694 	} else if ((obj = entry->object.vm_object) != NULL) {
2695 		for (; obj; obj = obj->backing_object)
2696 			if (obj == object) {
2697 				return 1;
2698 			}
2699 	}
2700 	return 0;
2701 }
2702 
2703 static int
2704 vm_object_in_map(vm_object_t object)
2705 {
2706 	struct proc *p;
2707 
2708 	/* sx_slock(&allproc_lock); */
2709 	FOREACH_PROC_IN_SYSTEM(p) {
2710 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2711 			continue;
2712 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2713 			/* sx_sunlock(&allproc_lock); */
2714 			return 1;
2715 		}
2716 	}
2717 	/* sx_sunlock(&allproc_lock); */
2718 	if (_vm_object_in_map(kernel_map, object, 0))
2719 		return 1;
2720 	return 0;
2721 }
2722 
2723 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2724 {
2725 	vm_object_t object;
2726 
2727 	/*
2728 	 * make sure that internal objs are in a map somewhere
2729 	 * and none have zero ref counts.
2730 	 */
2731 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2732 		if ((object->flags & OBJ_ANON) != 0) {
2733 			if (object->ref_count == 0) {
2734 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2735 					(long)object->size);
2736 			}
2737 			if (!vm_object_in_map(object)) {
2738 				db_printf(
2739 			"vmochk: internal obj is not in a map: "
2740 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2741 				    object->ref_count, (u_long)object->size,
2742 				    (u_long)object->size,
2743 				    (void *)object->backing_object);
2744 			}
2745 		}
2746 		if (db_pager_quit)
2747 			return;
2748 	}
2749 }
2750 
2751 /*
2752  *	vm_object_print:	[ debug ]
2753  */
2754 DB_SHOW_COMMAND(object, vm_object_print_static)
2755 {
2756 	/* XXX convert args. */
2757 	vm_object_t object = (vm_object_t)addr;
2758 	boolean_t full = have_addr;
2759 
2760 	vm_page_t p;
2761 
2762 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2763 #define	count	was_count
2764 
2765 	int count;
2766 
2767 	if (object == NULL)
2768 		return;
2769 
2770 	db_iprintf(
2771 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2772 	    object, (int)object->type, (uintmax_t)object->size,
2773 	    object->resident_page_count, object->ref_count, object->flags,
2774 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2775 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2776 	    atomic_load_int(&object->shadow_count),
2777 	    object->backing_object ? object->backing_object->ref_count : 0,
2778 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2779 
2780 	if (!full)
2781 		return;
2782 
2783 	db_indent += 2;
2784 	count = 0;
2785 	TAILQ_FOREACH(p, &object->memq, listq) {
2786 		if (count == 0)
2787 			db_iprintf("memory:=");
2788 		else if (count == 6) {
2789 			db_printf("\n");
2790 			db_iprintf(" ...");
2791 			count = 0;
2792 		} else
2793 			db_printf(",");
2794 		count++;
2795 
2796 		db_printf("(off=0x%jx,page=0x%jx)",
2797 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2798 
2799 		if (db_pager_quit)
2800 			break;
2801 	}
2802 	if (count != 0)
2803 		db_printf("\n");
2804 	db_indent -= 2;
2805 }
2806 
2807 /* XXX. */
2808 #undef count
2809 
2810 /* XXX need this non-static entry for calling from vm_map_print. */
2811 void
2812 vm_object_print(
2813         /* db_expr_t */ long addr,
2814 	boolean_t have_addr,
2815 	/* db_expr_t */ long count,
2816 	char *modif)
2817 {
2818 	vm_object_print_static(addr, have_addr, count, modif);
2819 }
2820 
2821 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2822 {
2823 	vm_object_t object;
2824 	vm_pindex_t fidx;
2825 	vm_paddr_t pa;
2826 	vm_page_t m, prev_m;
2827 	int rcount;
2828 
2829 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2830 		db_printf("new object: %p\n", (void *)object);
2831 		if (db_pager_quit)
2832 			return;
2833 
2834 		rcount = 0;
2835 		fidx = 0;
2836 		pa = -1;
2837 		TAILQ_FOREACH(m, &object->memq, listq) {
2838 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2839 			    prev_m->pindex + 1 != m->pindex) {
2840 				if (rcount) {
2841 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2842 						(long)fidx, rcount, (long)pa);
2843 					if (db_pager_quit)
2844 						return;
2845 					rcount = 0;
2846 				}
2847 			}
2848 			if (rcount &&
2849 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2850 				++rcount;
2851 				continue;
2852 			}
2853 			if (rcount) {
2854 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2855 					(long)fidx, rcount, (long)pa);
2856 				if (db_pager_quit)
2857 					return;
2858 			}
2859 			fidx = m->pindex;
2860 			pa = VM_PAGE_TO_PHYS(m);
2861 			rcount = 1;
2862 		}
2863 		if (rcount) {
2864 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2865 				(long)fidx, rcount, (long)pa);
2866 			if (db_pager_quit)
2867 				return;
2868 		}
2869 	}
2870 }
2871 #endif /* DDB */
2872