1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/vnode.h> 83 #include <sys/vmmeter.h> 84 #include <sys/sx.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_reserv.h> 99 #include <vm/uma.h> 100 101 static int old_msync; 102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 103 "Use old (insecure) msync behavior"); 104 105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 106 int pagerflags, int flags, boolean_t *clearobjflags, 107 boolean_t *eio); 108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 109 boolean_t *clearobjflags); 110 static void vm_object_qcollapse(vm_object_t object); 111 static void vm_object_vndeallocate(vm_object_t object); 112 113 /* 114 * Virtual memory objects maintain the actual data 115 * associated with allocated virtual memory. A given 116 * page of memory exists within exactly one object. 117 * 118 * An object is only deallocated when all "references" 119 * are given up. Only one "reference" to a given 120 * region of an object should be writeable. 121 * 122 * Associated with each object is a list of all resident 123 * memory pages belonging to that object; this list is 124 * maintained by the "vm_page" module, and locked by the object's 125 * lock. 126 * 127 * Each object also records a "pager" routine which is 128 * used to retrieve (and store) pages to the proper backing 129 * storage. In addition, objects may be backed by other 130 * objects from which they were virtual-copied. 131 * 132 * The only items within the object structure which are 133 * modified after time of creation are: 134 * reference count locked by object's lock 135 * pager routine locked by object's lock 136 * 137 */ 138 139 struct object_q vm_object_list; 140 struct mtx vm_object_list_mtx; /* lock for object list and count */ 141 142 struct vm_object kernel_object_store; 143 struct vm_object kmem_object_store; 144 145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 146 "VM object stats"); 147 148 static long object_collapses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 150 &object_collapses, 0, "VM object collapses"); 151 152 static long object_bypasses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 154 &object_bypasses, 0, "VM object bypasses"); 155 156 static uma_zone_t obj_zone; 157 158 static int vm_object_zinit(void *mem, int size, int flags); 159 160 #ifdef INVARIANTS 161 static void vm_object_zdtor(void *mem, int size, void *arg); 162 163 static void 164 vm_object_zdtor(void *mem, int size, void *arg) 165 { 166 vm_object_t object; 167 168 object = (vm_object_t)mem; 169 KASSERT(TAILQ_EMPTY(&object->memq), 170 ("object %p has resident pages in its memq", object)); 171 KASSERT(vm_radix_is_empty(&object->rtree), 172 ("object %p has resident pages in its trie", object)); 173 #if VM_NRESERVLEVEL > 0 174 KASSERT(LIST_EMPTY(&object->rvq), 175 ("object %p has reservations", 176 object)); 177 #endif 178 KASSERT(vm_object_cache_is_empty(object), 179 ("object %p has cached pages", 180 object)); 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 } 191 #endif 192 193 static int 194 vm_object_zinit(void *mem, int size, int flags) 195 { 196 vm_object_t object; 197 198 object = (vm_object_t)mem; 199 bzero(&object->lock, sizeof(object->lock)); 200 rw_init_flags(&object->lock, "vm object", RW_DUPOK); 201 202 /* These are true for any object that has been freed */ 203 object->rtree.rt_root = 0; 204 object->rtree.rt_flags = 0; 205 object->paging_in_progress = 0; 206 object->resident_page_count = 0; 207 object->shadow_count = 0; 208 object->cache.rt_root = 0; 209 object->cache.rt_flags = 0; 210 return (0); 211 } 212 213 static void 214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 215 { 216 217 TAILQ_INIT(&object->memq); 218 LIST_INIT(&object->shadow_head); 219 220 object->type = type; 221 switch (type) { 222 case OBJT_DEAD: 223 panic("_vm_object_allocate: can't create OBJT_DEAD"); 224 case OBJT_DEFAULT: 225 case OBJT_SWAP: 226 object->flags = OBJ_ONEMAPPING; 227 break; 228 case OBJT_DEVICE: 229 case OBJT_SG: 230 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 231 break; 232 case OBJT_MGTDEVICE: 233 object->flags = OBJ_FICTITIOUS; 234 break; 235 case OBJT_PHYS: 236 object->flags = OBJ_UNMANAGED; 237 break; 238 case OBJT_VNODE: 239 object->flags = 0; 240 break; 241 default: 242 panic("_vm_object_allocate: type %d is undefined", type); 243 } 244 object->size = size; 245 object->generation = 1; 246 object->ref_count = 1; 247 object->memattr = VM_MEMATTR_DEFAULT; 248 object->cred = NULL; 249 object->charge = 0; 250 object->handle = NULL; 251 object->backing_object = NULL; 252 object->backing_object_offset = (vm_ooffset_t) 0; 253 #if VM_NRESERVLEVEL > 0 254 LIST_INIT(&object->rvq); 255 #endif 256 257 mtx_lock(&vm_object_list_mtx); 258 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 259 mtx_unlock(&vm_object_list_mtx); 260 } 261 262 /* 263 * vm_object_init: 264 * 265 * Initialize the VM objects module. 266 */ 267 void 268 vm_object_init(void) 269 { 270 TAILQ_INIT(&vm_object_list); 271 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 272 273 rw_init(&kernel_object->lock, "kernel vm object"); 274 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 275 kernel_object); 276 #if VM_NRESERVLEVEL > 0 277 kernel_object->flags |= OBJ_COLORED; 278 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 279 #endif 280 281 rw_init(&kmem_object->lock, "kmem vm object"); 282 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 283 kmem_object); 284 #if VM_NRESERVLEVEL > 0 285 kmem_object->flags |= OBJ_COLORED; 286 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 287 #endif 288 289 /* 290 * The lock portion of struct vm_object must be type stable due 291 * to vm_pageout_fallback_object_lock locking a vm object 292 * without holding any references to it. 293 */ 294 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 295 #ifdef INVARIANTS 296 vm_object_zdtor, 297 #else 298 NULL, 299 #endif 300 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 301 302 vm_radix_init(); 303 } 304 305 void 306 vm_object_clear_flag(vm_object_t object, u_short bits) 307 { 308 309 VM_OBJECT_ASSERT_WLOCKED(object); 310 object->flags &= ~bits; 311 } 312 313 /* 314 * Sets the default memory attribute for the specified object. Pages 315 * that are allocated to this object are by default assigned this memory 316 * attribute. 317 * 318 * Presently, this function must be called before any pages are allocated 319 * to the object. In the future, this requirement may be relaxed for 320 * "default" and "swap" objects. 321 */ 322 int 323 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 324 { 325 326 VM_OBJECT_ASSERT_WLOCKED(object); 327 switch (object->type) { 328 case OBJT_DEFAULT: 329 case OBJT_DEVICE: 330 case OBJT_MGTDEVICE: 331 case OBJT_PHYS: 332 case OBJT_SG: 333 case OBJT_SWAP: 334 case OBJT_VNODE: 335 if (!TAILQ_EMPTY(&object->memq)) 336 return (KERN_FAILURE); 337 break; 338 case OBJT_DEAD: 339 return (KERN_INVALID_ARGUMENT); 340 default: 341 panic("vm_object_set_memattr: object %p is of undefined type", 342 object); 343 } 344 object->memattr = memattr; 345 return (KERN_SUCCESS); 346 } 347 348 void 349 vm_object_pip_add(vm_object_t object, short i) 350 { 351 352 VM_OBJECT_ASSERT_WLOCKED(object); 353 object->paging_in_progress += i; 354 } 355 356 void 357 vm_object_pip_subtract(vm_object_t object, short i) 358 { 359 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 object->paging_in_progress -= i; 362 } 363 364 void 365 vm_object_pip_wakeup(vm_object_t object) 366 { 367 368 VM_OBJECT_ASSERT_WLOCKED(object); 369 object->paging_in_progress--; 370 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 371 vm_object_clear_flag(object, OBJ_PIPWNT); 372 wakeup(object); 373 } 374 } 375 376 void 377 vm_object_pip_wakeupn(vm_object_t object, short i) 378 { 379 380 VM_OBJECT_ASSERT_WLOCKED(object); 381 if (i) 382 object->paging_in_progress -= i; 383 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 384 vm_object_clear_flag(object, OBJ_PIPWNT); 385 wakeup(object); 386 } 387 } 388 389 void 390 vm_object_pip_wait(vm_object_t object, char *waitid) 391 { 392 393 VM_OBJECT_ASSERT_WLOCKED(object); 394 while (object->paging_in_progress) { 395 object->flags |= OBJ_PIPWNT; 396 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 397 } 398 } 399 400 /* 401 * vm_object_allocate: 402 * 403 * Returns a new object with the given size. 404 */ 405 vm_object_t 406 vm_object_allocate(objtype_t type, vm_pindex_t size) 407 { 408 vm_object_t object; 409 410 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 411 _vm_object_allocate(type, size, object); 412 return (object); 413 } 414 415 416 /* 417 * vm_object_reference: 418 * 419 * Gets another reference to the given object. Note: OBJ_DEAD 420 * objects can be referenced during final cleaning. 421 */ 422 void 423 vm_object_reference(vm_object_t object) 424 { 425 if (object == NULL) 426 return; 427 VM_OBJECT_WLOCK(object); 428 vm_object_reference_locked(object); 429 VM_OBJECT_WUNLOCK(object); 430 } 431 432 /* 433 * vm_object_reference_locked: 434 * 435 * Gets another reference to the given object. 436 * 437 * The object must be locked. 438 */ 439 void 440 vm_object_reference_locked(vm_object_t object) 441 { 442 struct vnode *vp; 443 444 VM_OBJECT_ASSERT_WLOCKED(object); 445 object->ref_count++; 446 if (object->type == OBJT_VNODE) { 447 vp = object->handle; 448 vref(vp); 449 } 450 } 451 452 /* 453 * Handle deallocating an object of type OBJT_VNODE. 454 */ 455 static void 456 vm_object_vndeallocate(vm_object_t object) 457 { 458 struct vnode *vp = (struct vnode *) object->handle; 459 460 VM_OBJECT_ASSERT_WLOCKED(object); 461 KASSERT(object->type == OBJT_VNODE, 462 ("vm_object_vndeallocate: not a vnode object")); 463 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 464 #ifdef INVARIANTS 465 if (object->ref_count == 0) { 466 vprint("vm_object_vndeallocate", vp); 467 panic("vm_object_vndeallocate: bad object reference count"); 468 } 469 #endif 470 471 if (object->ref_count > 1) { 472 object->ref_count--; 473 VM_OBJECT_WUNLOCK(object); 474 /* vrele may need the vnode lock. */ 475 vrele(vp); 476 } else { 477 vhold(vp); 478 VM_OBJECT_WUNLOCK(object); 479 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 480 vdrop(vp); 481 VM_OBJECT_WLOCK(object); 482 object->ref_count--; 483 if (object->type == OBJT_DEAD) { 484 VM_OBJECT_WUNLOCK(object); 485 VOP_UNLOCK(vp, 0); 486 } else { 487 if (object->ref_count == 0) 488 VOP_UNSET_TEXT(vp); 489 VM_OBJECT_WUNLOCK(object); 490 vput(vp); 491 } 492 } 493 } 494 495 /* 496 * vm_object_deallocate: 497 * 498 * Release a reference to the specified object, 499 * gained either through a vm_object_allocate 500 * or a vm_object_reference call. When all references 501 * are gone, storage associated with this object 502 * may be relinquished. 503 * 504 * No object may be locked. 505 */ 506 void 507 vm_object_deallocate(vm_object_t object) 508 { 509 vm_object_t temp; 510 struct vnode *vp; 511 512 while (object != NULL) { 513 VM_OBJECT_WLOCK(object); 514 if (object->type == OBJT_VNODE) { 515 vm_object_vndeallocate(object); 516 return; 517 } 518 519 KASSERT(object->ref_count != 0, 520 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 521 522 /* 523 * If the reference count goes to 0 we start calling 524 * vm_object_terminate() on the object chain. 525 * A ref count of 1 may be a special case depending on the 526 * shadow count being 0 or 1. 527 */ 528 object->ref_count--; 529 if (object->ref_count > 1) { 530 VM_OBJECT_WUNLOCK(object); 531 return; 532 } else if (object->ref_count == 1) { 533 if (object->type == OBJT_SWAP && 534 (object->flags & OBJ_TMPFS) != 0) { 535 vp = object->un_pager.swp.swp_tmpfs; 536 vhold(vp); 537 VM_OBJECT_WUNLOCK(object); 538 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 539 vdrop(vp); 540 VM_OBJECT_WLOCK(object); 541 if (object->type == OBJT_DEAD || 542 object->ref_count != 1) { 543 VM_OBJECT_WUNLOCK(object); 544 VOP_UNLOCK(vp, 0); 545 return; 546 } 547 if ((object->flags & OBJ_TMPFS) != 0) 548 VOP_UNSET_TEXT(vp); 549 VOP_UNLOCK(vp, 0); 550 } 551 if (object->shadow_count == 0 && 552 object->handle == NULL && 553 (object->type == OBJT_DEFAULT || 554 (object->type == OBJT_SWAP && 555 (object->flags & OBJ_TMPFS) == 0))) { 556 vm_object_set_flag(object, OBJ_ONEMAPPING); 557 } else if ((object->shadow_count == 1) && 558 (object->handle == NULL) && 559 (object->type == OBJT_DEFAULT || 560 object->type == OBJT_SWAP)) { 561 KASSERT((object->flags & OBJ_TMPFS) == 0, 562 ("shadowed tmpfs v_object %p", object)); 563 vm_object_t robject; 564 565 robject = LIST_FIRST(&object->shadow_head); 566 KASSERT(robject != NULL, 567 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 568 object->ref_count, 569 object->shadow_count)); 570 if (!VM_OBJECT_TRYWLOCK(robject)) { 571 /* 572 * Avoid a potential deadlock. 573 */ 574 object->ref_count++; 575 VM_OBJECT_WUNLOCK(object); 576 /* 577 * More likely than not the thread 578 * holding robject's lock has lower 579 * priority than the current thread. 580 * Let the lower priority thread run. 581 */ 582 pause("vmo_de", 1); 583 continue; 584 } 585 /* 586 * Collapse object into its shadow unless its 587 * shadow is dead. In that case, object will 588 * be deallocated by the thread that is 589 * deallocating its shadow. 590 */ 591 if ((robject->flags & OBJ_DEAD) == 0 && 592 (robject->handle == NULL) && 593 (robject->type == OBJT_DEFAULT || 594 robject->type == OBJT_SWAP)) { 595 596 robject->ref_count++; 597 retry: 598 if (robject->paging_in_progress) { 599 VM_OBJECT_WUNLOCK(object); 600 vm_object_pip_wait(robject, 601 "objde1"); 602 temp = robject->backing_object; 603 if (object == temp) { 604 VM_OBJECT_WLOCK(object); 605 goto retry; 606 } 607 } else if (object->paging_in_progress) { 608 VM_OBJECT_WUNLOCK(robject); 609 object->flags |= OBJ_PIPWNT; 610 VM_OBJECT_SLEEP(object, object, 611 PDROP | PVM, "objde2", 0); 612 VM_OBJECT_WLOCK(robject); 613 temp = robject->backing_object; 614 if (object == temp) { 615 VM_OBJECT_WLOCK(object); 616 goto retry; 617 } 618 } else 619 VM_OBJECT_WUNLOCK(object); 620 621 if (robject->ref_count == 1) { 622 robject->ref_count--; 623 object = robject; 624 goto doterm; 625 } 626 object = robject; 627 vm_object_collapse(object); 628 VM_OBJECT_WUNLOCK(object); 629 continue; 630 } 631 VM_OBJECT_WUNLOCK(robject); 632 } 633 VM_OBJECT_WUNLOCK(object); 634 return; 635 } 636 doterm: 637 temp = object->backing_object; 638 if (temp != NULL) { 639 VM_OBJECT_WLOCK(temp); 640 LIST_REMOVE(object, shadow_list); 641 temp->shadow_count--; 642 VM_OBJECT_WUNLOCK(temp); 643 object->backing_object = NULL; 644 } 645 /* 646 * Don't double-terminate, we could be in a termination 647 * recursion due to the terminate having to sync data 648 * to disk. 649 */ 650 if ((object->flags & OBJ_DEAD) == 0) 651 vm_object_terminate(object); 652 else 653 VM_OBJECT_WUNLOCK(object); 654 object = temp; 655 } 656 } 657 658 /* 659 * vm_object_destroy removes the object from the global object list 660 * and frees the space for the object. 661 */ 662 void 663 vm_object_destroy(vm_object_t object) 664 { 665 666 /* 667 * Remove the object from the global object list. 668 */ 669 mtx_lock(&vm_object_list_mtx); 670 TAILQ_REMOVE(&vm_object_list, object, object_list); 671 mtx_unlock(&vm_object_list_mtx); 672 673 /* 674 * Release the allocation charge. 675 */ 676 if (object->cred != NULL) { 677 KASSERT(object->type == OBJT_DEFAULT || 678 object->type == OBJT_SWAP, 679 ("vm_object_terminate: non-swap obj %p has cred", 680 object)); 681 swap_release_by_cred(object->charge, object->cred); 682 object->charge = 0; 683 crfree(object->cred); 684 object->cred = NULL; 685 } 686 687 /* 688 * Free the space for the object. 689 */ 690 uma_zfree(obj_zone, object); 691 } 692 693 /* 694 * vm_object_terminate actually destroys the specified object, freeing 695 * up all previously used resources. 696 * 697 * The object must be locked. 698 * This routine may block. 699 */ 700 void 701 vm_object_terminate(vm_object_t object) 702 { 703 vm_page_t p, p_next; 704 705 VM_OBJECT_ASSERT_WLOCKED(object); 706 707 /* 708 * Make sure no one uses us. 709 */ 710 vm_object_set_flag(object, OBJ_DEAD); 711 712 /* 713 * wait for the pageout daemon to be done with the object 714 */ 715 vm_object_pip_wait(object, "objtrm"); 716 717 KASSERT(!object->paging_in_progress, 718 ("vm_object_terminate: pageout in progress")); 719 720 /* 721 * Clean and free the pages, as appropriate. All references to the 722 * object are gone, so we don't need to lock it. 723 */ 724 if (object->type == OBJT_VNODE) { 725 struct vnode *vp = (struct vnode *)object->handle; 726 727 /* 728 * Clean pages and flush buffers. 729 */ 730 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 731 VM_OBJECT_WUNLOCK(object); 732 733 vinvalbuf(vp, V_SAVE, 0, 0); 734 735 VM_OBJECT_WLOCK(object); 736 } 737 738 KASSERT(object->ref_count == 0, 739 ("vm_object_terminate: object with references, ref_count=%d", 740 object->ref_count)); 741 742 /* 743 * Free any remaining pageable pages. This also removes them from the 744 * paging queues. However, don't free wired pages, just remove them 745 * from the object. Rather than incrementally removing each page from 746 * the object, the page and object are reset to any empty state. 747 */ 748 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 749 vm_page_assert_unbusied(p); 750 vm_page_lock(p); 751 /* 752 * Optimize the page's removal from the object by resetting 753 * its "object" field. Specifically, if the page is not 754 * wired, then the effect of this assignment is that 755 * vm_page_free()'s call to vm_page_remove() will return 756 * immediately without modifying the page or the object. 757 */ 758 p->object = NULL; 759 if (p->wire_count == 0) { 760 vm_page_free(p); 761 PCPU_INC(cnt.v_pfree); 762 } 763 vm_page_unlock(p); 764 } 765 /* 766 * If the object contained any pages, then reset it to an empty state. 767 * None of the object's fields, including "resident_page_count", were 768 * modified by the preceding loop. 769 */ 770 if (object->resident_page_count != 0) { 771 vm_radix_reclaim_allnodes(&object->rtree); 772 TAILQ_INIT(&object->memq); 773 object->resident_page_count = 0; 774 if (object->type == OBJT_VNODE) 775 vdrop(object->handle); 776 } 777 778 #if VM_NRESERVLEVEL > 0 779 if (__predict_false(!LIST_EMPTY(&object->rvq))) 780 vm_reserv_break_all(object); 781 #endif 782 if (__predict_false(!vm_object_cache_is_empty(object))) 783 vm_page_cache_free(object, 0, 0); 784 785 /* 786 * Let the pager know object is dead. 787 */ 788 vm_pager_deallocate(object); 789 VM_OBJECT_WUNLOCK(object); 790 791 vm_object_destroy(object); 792 } 793 794 /* 795 * Make the page read-only so that we can clear the object flags. However, if 796 * this is a nosync mmap then the object is likely to stay dirty so do not 797 * mess with the page and do not clear the object flags. Returns TRUE if the 798 * page should be flushed, and FALSE otherwise. 799 */ 800 static boolean_t 801 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 802 { 803 804 /* 805 * If we have been asked to skip nosync pages and this is a 806 * nosync page, skip it. Note that the object flags were not 807 * cleared in this case so we do not have to set them. 808 */ 809 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 810 *clearobjflags = FALSE; 811 return (FALSE); 812 } else { 813 pmap_remove_write(p); 814 return (p->dirty != 0); 815 } 816 } 817 818 /* 819 * vm_object_page_clean 820 * 821 * Clean all dirty pages in the specified range of object. Leaves page 822 * on whatever queue it is currently on. If NOSYNC is set then do not 823 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 824 * leaving the object dirty. 825 * 826 * When stuffing pages asynchronously, allow clustering. XXX we need a 827 * synchronous clustering mode implementation. 828 * 829 * Odd semantics: if start == end, we clean everything. 830 * 831 * The object must be locked. 832 * 833 * Returns FALSE if some page from the range was not written, as 834 * reported by the pager, and TRUE otherwise. 835 */ 836 boolean_t 837 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 838 int flags) 839 { 840 vm_page_t np, p; 841 vm_pindex_t pi, tend, tstart; 842 int curgeneration, n, pagerflags; 843 boolean_t clearobjflags, eio, res; 844 845 VM_OBJECT_ASSERT_WLOCKED(object); 846 847 /* 848 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 849 * objects. The check below prevents the function from 850 * operating on non-vnode objects. 851 */ 852 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 853 object->resident_page_count == 0) 854 return (TRUE); 855 856 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 857 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 858 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 859 860 tstart = OFF_TO_IDX(start); 861 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 862 clearobjflags = tstart == 0 && tend >= object->size; 863 res = TRUE; 864 865 rescan: 866 curgeneration = object->generation; 867 868 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 869 pi = p->pindex; 870 if (pi >= tend) 871 break; 872 np = TAILQ_NEXT(p, listq); 873 if (p->valid == 0) 874 continue; 875 if (vm_page_sleep_if_busy(p, "vpcwai")) { 876 if (object->generation != curgeneration) { 877 if ((flags & OBJPC_SYNC) != 0) 878 goto rescan; 879 else 880 clearobjflags = FALSE; 881 } 882 np = vm_page_find_least(object, pi); 883 continue; 884 } 885 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 886 continue; 887 888 n = vm_object_page_collect_flush(object, p, pagerflags, 889 flags, &clearobjflags, &eio); 890 if (eio) { 891 res = FALSE; 892 clearobjflags = FALSE; 893 } 894 if (object->generation != curgeneration) { 895 if ((flags & OBJPC_SYNC) != 0) 896 goto rescan; 897 else 898 clearobjflags = FALSE; 899 } 900 901 /* 902 * If the VOP_PUTPAGES() did a truncated write, so 903 * that even the first page of the run is not fully 904 * written, vm_pageout_flush() returns 0 as the run 905 * length. Since the condition that caused truncated 906 * write may be permanent, e.g. exhausted free space, 907 * accepting n == 0 would cause an infinite loop. 908 * 909 * Forwarding the iterator leaves the unwritten page 910 * behind, but there is not much we can do there if 911 * filesystem refuses to write it. 912 */ 913 if (n == 0) { 914 n = 1; 915 clearobjflags = FALSE; 916 } 917 np = vm_page_find_least(object, pi + n); 918 } 919 #if 0 920 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 921 #endif 922 923 if (clearobjflags) 924 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 925 return (res); 926 } 927 928 static int 929 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 930 int flags, boolean_t *clearobjflags, boolean_t *eio) 931 { 932 vm_page_t ma[vm_pageout_page_count], p_first, tp; 933 int count, i, mreq, runlen; 934 935 vm_page_lock_assert(p, MA_NOTOWNED); 936 VM_OBJECT_ASSERT_WLOCKED(object); 937 938 count = 1; 939 mreq = 0; 940 941 for (tp = p; count < vm_pageout_page_count; count++) { 942 tp = vm_page_next(tp); 943 if (tp == NULL || vm_page_busied(tp)) 944 break; 945 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 946 break; 947 } 948 949 for (p_first = p; count < vm_pageout_page_count; count++) { 950 tp = vm_page_prev(p_first); 951 if (tp == NULL || vm_page_busied(tp)) 952 break; 953 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 954 break; 955 p_first = tp; 956 mreq++; 957 } 958 959 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 960 ma[i] = tp; 961 962 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 963 return (runlen); 964 } 965 966 /* 967 * Note that there is absolutely no sense in writing out 968 * anonymous objects, so we track down the vnode object 969 * to write out. 970 * We invalidate (remove) all pages from the address space 971 * for semantic correctness. 972 * 973 * If the backing object is a device object with unmanaged pages, then any 974 * mappings to the specified range of pages must be removed before this 975 * function is called. 976 * 977 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 978 * may start out with a NULL object. 979 */ 980 boolean_t 981 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 982 boolean_t syncio, boolean_t invalidate) 983 { 984 vm_object_t backing_object; 985 struct vnode *vp; 986 struct mount *mp; 987 int error, flags, fsync_after; 988 boolean_t res; 989 990 if (object == NULL) 991 return (TRUE); 992 res = TRUE; 993 error = 0; 994 VM_OBJECT_WLOCK(object); 995 while ((backing_object = object->backing_object) != NULL) { 996 VM_OBJECT_WLOCK(backing_object); 997 offset += object->backing_object_offset; 998 VM_OBJECT_WUNLOCK(object); 999 object = backing_object; 1000 if (object->size < OFF_TO_IDX(offset + size)) 1001 size = IDX_TO_OFF(object->size) - offset; 1002 } 1003 /* 1004 * Flush pages if writing is allowed, invalidate them 1005 * if invalidation requested. Pages undergoing I/O 1006 * will be ignored by vm_object_page_remove(). 1007 * 1008 * We cannot lock the vnode and then wait for paging 1009 * to complete without deadlocking against vm_fault. 1010 * Instead we simply call vm_object_page_remove() and 1011 * allow it to block internally on a page-by-page 1012 * basis when it encounters pages undergoing async 1013 * I/O. 1014 */ 1015 if (object->type == OBJT_VNODE && 1016 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1017 vp = object->handle; 1018 VM_OBJECT_WUNLOCK(object); 1019 (void) vn_start_write(vp, &mp, V_WAIT); 1020 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1021 if (syncio && !invalidate && offset == 0 && 1022 OFF_TO_IDX(size) == object->size) { 1023 /* 1024 * If syncing the whole mapping of the file, 1025 * it is faster to schedule all the writes in 1026 * async mode, also allowing the clustering, 1027 * and then wait for i/o to complete. 1028 */ 1029 flags = 0; 1030 fsync_after = TRUE; 1031 } else { 1032 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1033 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1034 fsync_after = FALSE; 1035 } 1036 VM_OBJECT_WLOCK(object); 1037 res = vm_object_page_clean(object, offset, offset + size, 1038 flags); 1039 VM_OBJECT_WUNLOCK(object); 1040 if (fsync_after) 1041 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1042 VOP_UNLOCK(vp, 0); 1043 vn_finished_write(mp); 1044 if (error != 0) 1045 res = FALSE; 1046 VM_OBJECT_WLOCK(object); 1047 } 1048 if ((object->type == OBJT_VNODE || 1049 object->type == OBJT_DEVICE) && invalidate) { 1050 if (object->type == OBJT_DEVICE) 1051 /* 1052 * The option OBJPR_NOTMAPPED must be passed here 1053 * because vm_object_page_remove() cannot remove 1054 * unmanaged mappings. 1055 */ 1056 flags = OBJPR_NOTMAPPED; 1057 else if (old_msync) 1058 flags = OBJPR_NOTWIRED; 1059 else 1060 flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED; 1061 vm_object_page_remove(object, OFF_TO_IDX(offset), 1062 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1063 } 1064 VM_OBJECT_WUNLOCK(object); 1065 return (res); 1066 } 1067 1068 /* 1069 * vm_object_madvise: 1070 * 1071 * Implements the madvise function at the object/page level. 1072 * 1073 * MADV_WILLNEED (any object) 1074 * 1075 * Activate the specified pages if they are resident. 1076 * 1077 * MADV_DONTNEED (any object) 1078 * 1079 * Deactivate the specified pages if they are resident. 1080 * 1081 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1082 * OBJ_ONEMAPPING only) 1083 * 1084 * Deactivate and clean the specified pages if they are 1085 * resident. This permits the process to reuse the pages 1086 * without faulting or the kernel to reclaim the pages 1087 * without I/O. 1088 */ 1089 void 1090 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1091 int advise) 1092 { 1093 vm_pindex_t tpindex; 1094 vm_object_t backing_object, tobject; 1095 vm_page_t m; 1096 1097 if (object == NULL) 1098 return; 1099 VM_OBJECT_WLOCK(object); 1100 /* 1101 * Locate and adjust resident pages 1102 */ 1103 for (; pindex < end; pindex += 1) { 1104 relookup: 1105 tobject = object; 1106 tpindex = pindex; 1107 shadowlookup: 1108 /* 1109 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1110 * and those pages must be OBJ_ONEMAPPING. 1111 */ 1112 if (advise == MADV_FREE) { 1113 if ((tobject->type != OBJT_DEFAULT && 1114 tobject->type != OBJT_SWAP) || 1115 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1116 goto unlock_tobject; 1117 } 1118 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1119 goto unlock_tobject; 1120 m = vm_page_lookup(tobject, tpindex); 1121 if (m == NULL && advise == MADV_WILLNEED) { 1122 /* 1123 * If the page is cached, reactivate it. 1124 */ 1125 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1126 VM_ALLOC_NOBUSY); 1127 } 1128 if (m == NULL) { 1129 /* 1130 * There may be swap even if there is no backing page 1131 */ 1132 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1133 swap_pager_freespace(tobject, tpindex, 1); 1134 /* 1135 * next object 1136 */ 1137 backing_object = tobject->backing_object; 1138 if (backing_object == NULL) 1139 goto unlock_tobject; 1140 VM_OBJECT_WLOCK(backing_object); 1141 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1142 if (tobject != object) 1143 VM_OBJECT_WUNLOCK(tobject); 1144 tobject = backing_object; 1145 goto shadowlookup; 1146 } else if (m->valid != VM_PAGE_BITS_ALL) 1147 goto unlock_tobject; 1148 /* 1149 * If the page is not in a normal state, skip it. 1150 */ 1151 vm_page_lock(m); 1152 if (m->hold_count != 0 || m->wire_count != 0) { 1153 vm_page_unlock(m); 1154 goto unlock_tobject; 1155 } 1156 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1157 ("vm_object_madvise: page %p is fictitious", m)); 1158 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1159 ("vm_object_madvise: page %p is not managed", m)); 1160 if (vm_page_busied(m)) { 1161 if (advise == MADV_WILLNEED) { 1162 /* 1163 * Reference the page before unlocking and 1164 * sleeping so that the page daemon is less 1165 * likely to reclaim it. 1166 */ 1167 vm_page_aflag_set(m, PGA_REFERENCED); 1168 } 1169 if (object != tobject) 1170 VM_OBJECT_WUNLOCK(object); 1171 VM_OBJECT_WUNLOCK(tobject); 1172 vm_page_busy_sleep(m, "madvpo"); 1173 VM_OBJECT_WLOCK(object); 1174 goto relookup; 1175 } 1176 if (advise == MADV_WILLNEED) { 1177 vm_page_activate(m); 1178 } else { 1179 vm_page_advise(m, advise); 1180 } 1181 vm_page_unlock(m); 1182 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1183 swap_pager_freespace(tobject, tpindex, 1); 1184 unlock_tobject: 1185 if (tobject != object) 1186 VM_OBJECT_WUNLOCK(tobject); 1187 } 1188 VM_OBJECT_WUNLOCK(object); 1189 } 1190 1191 /* 1192 * vm_object_shadow: 1193 * 1194 * Create a new object which is backed by the 1195 * specified existing object range. The source 1196 * object reference is deallocated. 1197 * 1198 * The new object and offset into that object 1199 * are returned in the source parameters. 1200 */ 1201 void 1202 vm_object_shadow( 1203 vm_object_t *object, /* IN/OUT */ 1204 vm_ooffset_t *offset, /* IN/OUT */ 1205 vm_size_t length) 1206 { 1207 vm_object_t source; 1208 vm_object_t result; 1209 1210 source = *object; 1211 1212 /* 1213 * Don't create the new object if the old object isn't shared. 1214 */ 1215 if (source != NULL) { 1216 VM_OBJECT_WLOCK(source); 1217 if (source->ref_count == 1 && 1218 source->handle == NULL && 1219 (source->type == OBJT_DEFAULT || 1220 source->type == OBJT_SWAP)) { 1221 VM_OBJECT_WUNLOCK(source); 1222 return; 1223 } 1224 VM_OBJECT_WUNLOCK(source); 1225 } 1226 1227 /* 1228 * Allocate a new object with the given length. 1229 */ 1230 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1231 1232 /* 1233 * The new object shadows the source object, adding a reference to it. 1234 * Our caller changes his reference to point to the new object, 1235 * removing a reference to the source object. Net result: no change 1236 * of reference count. 1237 * 1238 * Try to optimize the result object's page color when shadowing 1239 * in order to maintain page coloring consistency in the combined 1240 * shadowed object. 1241 */ 1242 result->backing_object = source; 1243 /* 1244 * Store the offset into the source object, and fix up the offset into 1245 * the new object. 1246 */ 1247 result->backing_object_offset = *offset; 1248 if (source != NULL) { 1249 VM_OBJECT_WLOCK(source); 1250 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1251 source->shadow_count++; 1252 #if VM_NRESERVLEVEL > 0 1253 result->flags |= source->flags & OBJ_COLORED; 1254 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1255 ((1 << (VM_NFREEORDER - 1)) - 1); 1256 #endif 1257 VM_OBJECT_WUNLOCK(source); 1258 } 1259 1260 1261 /* 1262 * Return the new things 1263 */ 1264 *offset = 0; 1265 *object = result; 1266 } 1267 1268 /* 1269 * vm_object_split: 1270 * 1271 * Split the pages in a map entry into a new object. This affords 1272 * easier removal of unused pages, and keeps object inheritance from 1273 * being a negative impact on memory usage. 1274 */ 1275 void 1276 vm_object_split(vm_map_entry_t entry) 1277 { 1278 vm_page_t m, m_next; 1279 vm_object_t orig_object, new_object, source; 1280 vm_pindex_t idx, offidxstart; 1281 vm_size_t size; 1282 1283 orig_object = entry->object.vm_object; 1284 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1285 return; 1286 if (orig_object->ref_count <= 1) 1287 return; 1288 VM_OBJECT_WUNLOCK(orig_object); 1289 1290 offidxstart = OFF_TO_IDX(entry->offset); 1291 size = atop(entry->end - entry->start); 1292 1293 /* 1294 * If swap_pager_copy() is later called, it will convert new_object 1295 * into a swap object. 1296 */ 1297 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1298 1299 /* 1300 * At this point, the new object is still private, so the order in 1301 * which the original and new objects are locked does not matter. 1302 */ 1303 VM_OBJECT_WLOCK(new_object); 1304 VM_OBJECT_WLOCK(orig_object); 1305 source = orig_object->backing_object; 1306 if (source != NULL) { 1307 VM_OBJECT_WLOCK(source); 1308 if ((source->flags & OBJ_DEAD) != 0) { 1309 VM_OBJECT_WUNLOCK(source); 1310 VM_OBJECT_WUNLOCK(orig_object); 1311 VM_OBJECT_WUNLOCK(new_object); 1312 vm_object_deallocate(new_object); 1313 VM_OBJECT_WLOCK(orig_object); 1314 return; 1315 } 1316 LIST_INSERT_HEAD(&source->shadow_head, 1317 new_object, shadow_list); 1318 source->shadow_count++; 1319 vm_object_reference_locked(source); /* for new_object */ 1320 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1321 VM_OBJECT_WUNLOCK(source); 1322 new_object->backing_object_offset = 1323 orig_object->backing_object_offset + entry->offset; 1324 new_object->backing_object = source; 1325 } 1326 if (orig_object->cred != NULL) { 1327 new_object->cred = orig_object->cred; 1328 crhold(orig_object->cred); 1329 new_object->charge = ptoa(size); 1330 KASSERT(orig_object->charge >= ptoa(size), 1331 ("orig_object->charge < 0")); 1332 orig_object->charge -= ptoa(size); 1333 } 1334 retry: 1335 m = vm_page_find_least(orig_object, offidxstart); 1336 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1337 m = m_next) { 1338 m_next = TAILQ_NEXT(m, listq); 1339 1340 /* 1341 * We must wait for pending I/O to complete before we can 1342 * rename the page. 1343 * 1344 * We do not have to VM_PROT_NONE the page as mappings should 1345 * not be changed by this operation. 1346 */ 1347 if (vm_page_busied(m)) { 1348 VM_OBJECT_WUNLOCK(new_object); 1349 vm_page_lock(m); 1350 VM_OBJECT_WUNLOCK(orig_object); 1351 vm_page_busy_sleep(m, "spltwt"); 1352 VM_OBJECT_WLOCK(orig_object); 1353 VM_OBJECT_WLOCK(new_object); 1354 goto retry; 1355 } 1356 1357 /* vm_page_rename() will handle dirty and cache. */ 1358 if (vm_page_rename(m, new_object, idx)) { 1359 VM_OBJECT_WUNLOCK(new_object); 1360 VM_OBJECT_WUNLOCK(orig_object); 1361 VM_WAIT; 1362 VM_OBJECT_WLOCK(orig_object); 1363 VM_OBJECT_WLOCK(new_object); 1364 goto retry; 1365 } 1366 #if VM_NRESERVLEVEL > 0 1367 /* 1368 * If some of the reservation's allocated pages remain with 1369 * the original object, then transferring the reservation to 1370 * the new object is neither particularly beneficial nor 1371 * particularly harmful as compared to leaving the reservation 1372 * with the original object. If, however, all of the 1373 * reservation's allocated pages are transferred to the new 1374 * object, then transferring the reservation is typically 1375 * beneficial. Determining which of these two cases applies 1376 * would be more costly than unconditionally renaming the 1377 * reservation. 1378 */ 1379 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1380 #endif 1381 if (orig_object->type == OBJT_SWAP) 1382 vm_page_xbusy(m); 1383 } 1384 if (orig_object->type == OBJT_SWAP) { 1385 /* 1386 * swap_pager_copy() can sleep, in which case the orig_object's 1387 * and new_object's locks are released and reacquired. 1388 */ 1389 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1390 TAILQ_FOREACH(m, &new_object->memq, listq) 1391 vm_page_xunbusy(m); 1392 1393 /* 1394 * Transfer any cached pages from orig_object to new_object. 1395 * If swap_pager_copy() found swapped out pages within the 1396 * specified range of orig_object, then it changed 1397 * new_object's type to OBJT_SWAP when it transferred those 1398 * pages to new_object. Otherwise, new_object's type 1399 * should still be OBJT_DEFAULT and orig_object should not 1400 * contain any cached pages within the specified range. 1401 */ 1402 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1403 vm_page_cache_transfer(orig_object, offidxstart, 1404 new_object); 1405 } 1406 VM_OBJECT_WUNLOCK(orig_object); 1407 VM_OBJECT_WUNLOCK(new_object); 1408 entry->object.vm_object = new_object; 1409 entry->offset = 0LL; 1410 vm_object_deallocate(orig_object); 1411 VM_OBJECT_WLOCK(new_object); 1412 } 1413 1414 #define OBSC_TEST_ALL_SHADOWED 0x0001 1415 #define OBSC_COLLAPSE_NOWAIT 0x0002 1416 #define OBSC_COLLAPSE_WAIT 0x0004 1417 1418 static int 1419 vm_object_backing_scan(vm_object_t object, int op) 1420 { 1421 int r = 1; 1422 vm_page_t p; 1423 vm_object_t backing_object; 1424 vm_pindex_t backing_offset_index; 1425 1426 VM_OBJECT_ASSERT_WLOCKED(object); 1427 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1428 1429 backing_object = object->backing_object; 1430 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1431 1432 /* 1433 * Initial conditions 1434 */ 1435 if (op & OBSC_TEST_ALL_SHADOWED) { 1436 /* 1437 * We do not want to have to test for the existence of cache 1438 * or swap pages in the backing object. XXX but with the 1439 * new swapper this would be pretty easy to do. 1440 * 1441 * XXX what about anonymous MAP_SHARED memory that hasn't 1442 * been ZFOD faulted yet? If we do not test for this, the 1443 * shadow test may succeed! XXX 1444 */ 1445 if (backing_object->type != OBJT_DEFAULT) { 1446 return (0); 1447 } 1448 } 1449 if (op & OBSC_COLLAPSE_WAIT) { 1450 vm_object_set_flag(backing_object, OBJ_DEAD); 1451 } 1452 1453 /* 1454 * Our scan 1455 */ 1456 p = TAILQ_FIRST(&backing_object->memq); 1457 while (p) { 1458 vm_page_t next = TAILQ_NEXT(p, listq); 1459 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1460 1461 if (op & OBSC_TEST_ALL_SHADOWED) { 1462 vm_page_t pp; 1463 1464 /* 1465 * Ignore pages outside the parent object's range 1466 * and outside the parent object's mapping of the 1467 * backing object. 1468 * 1469 * note that we do not busy the backing object's 1470 * page. 1471 */ 1472 if ( 1473 p->pindex < backing_offset_index || 1474 new_pindex >= object->size 1475 ) { 1476 p = next; 1477 continue; 1478 } 1479 1480 /* 1481 * See if the parent has the page or if the parent's 1482 * object pager has the page. If the parent has the 1483 * page but the page is not valid, the parent's 1484 * object pager must have the page. 1485 * 1486 * If this fails, the parent does not completely shadow 1487 * the object and we might as well give up now. 1488 */ 1489 1490 pp = vm_page_lookup(object, new_pindex); 1491 if ( 1492 (pp == NULL || pp->valid == 0) && 1493 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1494 ) { 1495 r = 0; 1496 break; 1497 } 1498 } 1499 1500 /* 1501 * Check for busy page 1502 */ 1503 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1504 vm_page_t pp; 1505 1506 if (op & OBSC_COLLAPSE_NOWAIT) { 1507 if (!p->valid || vm_page_busied(p)) { 1508 p = next; 1509 continue; 1510 } 1511 } else if (op & OBSC_COLLAPSE_WAIT) { 1512 if (vm_page_busied(p)) { 1513 VM_OBJECT_WUNLOCK(object); 1514 vm_page_lock(p); 1515 VM_OBJECT_WUNLOCK(backing_object); 1516 vm_page_busy_sleep(p, "vmocol"); 1517 VM_OBJECT_WLOCK(object); 1518 VM_OBJECT_WLOCK(backing_object); 1519 /* 1520 * If we slept, anything could have 1521 * happened. Since the object is 1522 * marked dead, the backing offset 1523 * should not have changed so we 1524 * just restart our scan. 1525 */ 1526 p = TAILQ_FIRST(&backing_object->memq); 1527 continue; 1528 } 1529 } 1530 1531 KASSERT( 1532 p->object == backing_object, 1533 ("vm_object_backing_scan: object mismatch") 1534 ); 1535 1536 if ( 1537 p->pindex < backing_offset_index || 1538 new_pindex >= object->size 1539 ) { 1540 if (backing_object->type == OBJT_SWAP) 1541 swap_pager_freespace(backing_object, 1542 p->pindex, 1); 1543 1544 /* 1545 * Page is out of the parent object's range, we 1546 * can simply destroy it. 1547 */ 1548 vm_page_lock(p); 1549 KASSERT(!pmap_page_is_mapped(p), 1550 ("freeing mapped page %p", p)); 1551 if (p->wire_count == 0) 1552 vm_page_free(p); 1553 else 1554 vm_page_remove(p); 1555 vm_page_unlock(p); 1556 p = next; 1557 continue; 1558 } 1559 1560 pp = vm_page_lookup(object, new_pindex); 1561 if ( 1562 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1563 (pp != NULL && pp->valid == 0) 1564 ) { 1565 if (backing_object->type == OBJT_SWAP) 1566 swap_pager_freespace(backing_object, 1567 p->pindex, 1); 1568 1569 /* 1570 * The page in the parent is not (yet) valid. 1571 * We don't know anything about the state of 1572 * the original page. It might be mapped, 1573 * so we must avoid the next if here. 1574 * 1575 * This is due to a race in vm_fault() where 1576 * we must unbusy the original (backing_obj) 1577 * page before we can (re)lock the parent. 1578 * Hence we can get here. 1579 */ 1580 p = next; 1581 continue; 1582 } 1583 if ( 1584 pp != NULL || 1585 vm_pager_has_page(object, new_pindex, NULL, NULL) 1586 ) { 1587 if (backing_object->type == OBJT_SWAP) 1588 swap_pager_freespace(backing_object, 1589 p->pindex, 1); 1590 1591 /* 1592 * page already exists in parent OR swap exists 1593 * for this location in the parent. Destroy 1594 * the original page from the backing object. 1595 * 1596 * Leave the parent's page alone 1597 */ 1598 vm_page_lock(p); 1599 KASSERT(!pmap_page_is_mapped(p), 1600 ("freeing mapped page %p", p)); 1601 if (p->wire_count == 0) 1602 vm_page_free(p); 1603 else 1604 vm_page_remove(p); 1605 vm_page_unlock(p); 1606 p = next; 1607 continue; 1608 } 1609 1610 /* 1611 * Page does not exist in parent, rename the 1612 * page from the backing object to the main object. 1613 * 1614 * If the page was mapped to a process, it can remain 1615 * mapped through the rename. 1616 * vm_page_rename() will handle dirty and cache. 1617 */ 1618 if (vm_page_rename(p, object, new_pindex)) { 1619 if (op & OBSC_COLLAPSE_NOWAIT) { 1620 p = next; 1621 continue; 1622 } 1623 VM_OBJECT_WLOCK(backing_object); 1624 VM_OBJECT_WUNLOCK(object); 1625 VM_WAIT; 1626 VM_OBJECT_WLOCK(object); 1627 VM_OBJECT_WLOCK(backing_object); 1628 p = TAILQ_FIRST(&backing_object->memq); 1629 continue; 1630 } 1631 if (backing_object->type == OBJT_SWAP) 1632 swap_pager_freespace(backing_object, p->pindex, 1633 1); 1634 1635 #if VM_NRESERVLEVEL > 0 1636 /* 1637 * Rename the reservation. 1638 */ 1639 vm_reserv_rename(p, object, backing_object, 1640 backing_offset_index); 1641 #endif 1642 } 1643 p = next; 1644 } 1645 return (r); 1646 } 1647 1648 1649 /* 1650 * this version of collapse allows the operation to occur earlier and 1651 * when paging_in_progress is true for an object... This is not a complete 1652 * operation, but should plug 99.9% of the rest of the leaks. 1653 */ 1654 static void 1655 vm_object_qcollapse(vm_object_t object) 1656 { 1657 vm_object_t backing_object = object->backing_object; 1658 1659 VM_OBJECT_ASSERT_WLOCKED(object); 1660 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1661 1662 if (backing_object->ref_count != 1) 1663 return; 1664 1665 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1666 } 1667 1668 /* 1669 * vm_object_collapse: 1670 * 1671 * Collapse an object with the object backing it. 1672 * Pages in the backing object are moved into the 1673 * parent, and the backing object is deallocated. 1674 */ 1675 void 1676 vm_object_collapse(vm_object_t object) 1677 { 1678 VM_OBJECT_ASSERT_WLOCKED(object); 1679 1680 while (TRUE) { 1681 vm_object_t backing_object; 1682 1683 /* 1684 * Verify that the conditions are right for collapse: 1685 * 1686 * The object exists and the backing object exists. 1687 */ 1688 if ((backing_object = object->backing_object) == NULL) 1689 break; 1690 1691 /* 1692 * we check the backing object first, because it is most likely 1693 * not collapsable. 1694 */ 1695 VM_OBJECT_WLOCK(backing_object); 1696 if (backing_object->handle != NULL || 1697 (backing_object->type != OBJT_DEFAULT && 1698 backing_object->type != OBJT_SWAP) || 1699 (backing_object->flags & OBJ_DEAD) || 1700 object->handle != NULL || 1701 (object->type != OBJT_DEFAULT && 1702 object->type != OBJT_SWAP) || 1703 (object->flags & OBJ_DEAD)) { 1704 VM_OBJECT_WUNLOCK(backing_object); 1705 break; 1706 } 1707 1708 if ( 1709 object->paging_in_progress != 0 || 1710 backing_object->paging_in_progress != 0 1711 ) { 1712 vm_object_qcollapse(object); 1713 VM_OBJECT_WUNLOCK(backing_object); 1714 break; 1715 } 1716 /* 1717 * We know that we can either collapse the backing object (if 1718 * the parent is the only reference to it) or (perhaps) have 1719 * the parent bypass the object if the parent happens to shadow 1720 * all the resident pages in the entire backing object. 1721 * 1722 * This is ignoring pager-backed pages such as swap pages. 1723 * vm_object_backing_scan fails the shadowing test in this 1724 * case. 1725 */ 1726 if (backing_object->ref_count == 1) { 1727 /* 1728 * If there is exactly one reference to the backing 1729 * object, we can collapse it into the parent. 1730 */ 1731 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1732 1733 #if VM_NRESERVLEVEL > 0 1734 /* 1735 * Break any reservations from backing_object. 1736 */ 1737 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1738 vm_reserv_break_all(backing_object); 1739 #endif 1740 1741 /* 1742 * Move the pager from backing_object to object. 1743 */ 1744 if (backing_object->type == OBJT_SWAP) { 1745 /* 1746 * swap_pager_copy() can sleep, in which case 1747 * the backing_object's and object's locks are 1748 * released and reacquired. 1749 * Since swap_pager_copy() is being asked to 1750 * destroy the source, it will change the 1751 * backing_object's type to OBJT_DEFAULT. 1752 */ 1753 swap_pager_copy( 1754 backing_object, 1755 object, 1756 OFF_TO_IDX(object->backing_object_offset), TRUE); 1757 1758 /* 1759 * Free any cached pages from backing_object. 1760 */ 1761 if (__predict_false( 1762 !vm_object_cache_is_empty(backing_object))) 1763 vm_page_cache_free(backing_object, 0, 0); 1764 } 1765 /* 1766 * Object now shadows whatever backing_object did. 1767 * Note that the reference to 1768 * backing_object->backing_object moves from within 1769 * backing_object to within object. 1770 */ 1771 LIST_REMOVE(object, shadow_list); 1772 backing_object->shadow_count--; 1773 if (backing_object->backing_object) { 1774 VM_OBJECT_WLOCK(backing_object->backing_object); 1775 LIST_REMOVE(backing_object, shadow_list); 1776 LIST_INSERT_HEAD( 1777 &backing_object->backing_object->shadow_head, 1778 object, shadow_list); 1779 /* 1780 * The shadow_count has not changed. 1781 */ 1782 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1783 } 1784 object->backing_object = backing_object->backing_object; 1785 object->backing_object_offset += 1786 backing_object->backing_object_offset; 1787 1788 /* 1789 * Discard backing_object. 1790 * 1791 * Since the backing object has no pages, no pager left, 1792 * and no object references within it, all that is 1793 * necessary is to dispose of it. 1794 */ 1795 KASSERT(backing_object->ref_count == 1, ( 1796 "backing_object %p was somehow re-referenced during collapse!", 1797 backing_object)); 1798 VM_OBJECT_WUNLOCK(backing_object); 1799 vm_object_destroy(backing_object); 1800 1801 object_collapses++; 1802 } else { 1803 vm_object_t new_backing_object; 1804 1805 /* 1806 * If we do not entirely shadow the backing object, 1807 * there is nothing we can do so we give up. 1808 */ 1809 if (object->resident_page_count != object->size && 1810 vm_object_backing_scan(object, 1811 OBSC_TEST_ALL_SHADOWED) == 0) { 1812 VM_OBJECT_WUNLOCK(backing_object); 1813 break; 1814 } 1815 1816 /* 1817 * Make the parent shadow the next object in the 1818 * chain. Deallocating backing_object will not remove 1819 * it, since its reference count is at least 2. 1820 */ 1821 LIST_REMOVE(object, shadow_list); 1822 backing_object->shadow_count--; 1823 1824 new_backing_object = backing_object->backing_object; 1825 if ((object->backing_object = new_backing_object) != NULL) { 1826 VM_OBJECT_WLOCK(new_backing_object); 1827 LIST_INSERT_HEAD( 1828 &new_backing_object->shadow_head, 1829 object, 1830 shadow_list 1831 ); 1832 new_backing_object->shadow_count++; 1833 vm_object_reference_locked(new_backing_object); 1834 VM_OBJECT_WUNLOCK(new_backing_object); 1835 object->backing_object_offset += 1836 backing_object->backing_object_offset; 1837 } 1838 1839 /* 1840 * Drop the reference count on backing_object. Since 1841 * its ref_count was at least 2, it will not vanish. 1842 */ 1843 backing_object->ref_count--; 1844 VM_OBJECT_WUNLOCK(backing_object); 1845 object_bypasses++; 1846 } 1847 1848 /* 1849 * Try again with this object's new backing object. 1850 */ 1851 } 1852 } 1853 1854 /* 1855 * vm_object_page_remove: 1856 * 1857 * For the given object, either frees or invalidates each of the 1858 * specified pages. In general, a page is freed. However, if a page is 1859 * wired for any reason other than the existence of a managed, wired 1860 * mapping, then it may be invalidated but not removed from the object. 1861 * Pages are specified by the given range ["start", "end") and the option 1862 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1863 * extends from "start" to the end of the object. If the option 1864 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1865 * specified range are affected. If the option OBJPR_NOTMAPPED is 1866 * specified, then the pages within the specified range must have no 1867 * mappings. Otherwise, if this option is not specified, any mappings to 1868 * the specified pages are removed before the pages are freed or 1869 * invalidated. 1870 * 1871 * In general, this operation should only be performed on objects that 1872 * contain managed pages. There are, however, two exceptions. First, it 1873 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1874 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1875 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1876 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1877 * 1878 * The object must be locked. 1879 */ 1880 void 1881 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1882 int options) 1883 { 1884 vm_page_t p, next; 1885 int wirings; 1886 1887 VM_OBJECT_ASSERT_WLOCKED(object); 1888 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1889 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1890 ("vm_object_page_remove: illegal options for object %p", object)); 1891 if (object->resident_page_count == 0) 1892 goto skipmemq; 1893 vm_object_pip_add(object, 1); 1894 again: 1895 p = vm_page_find_least(object, start); 1896 1897 /* 1898 * Here, the variable "p" is either (1) the page with the least pindex 1899 * greater than or equal to the parameter "start" or (2) NULL. 1900 */ 1901 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1902 next = TAILQ_NEXT(p, listq); 1903 1904 /* 1905 * If the page is wired for any reason besides the existence 1906 * of managed, wired mappings, then it cannot be freed. For 1907 * example, fictitious pages, which represent device memory, 1908 * are inherently wired and cannot be freed. They can, 1909 * however, be invalidated if the option OBJPR_CLEANONLY is 1910 * not specified. 1911 */ 1912 vm_page_lock(p); 1913 if (vm_page_xbusied(p)) { 1914 VM_OBJECT_WUNLOCK(object); 1915 vm_page_busy_sleep(p, "vmopax"); 1916 VM_OBJECT_WLOCK(object); 1917 goto again; 1918 } 1919 if ((wirings = p->wire_count) != 0 && 1920 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1921 if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) == 1922 0) { 1923 pmap_remove_all(p); 1924 /* Account for removal of wired mappings. */ 1925 if (wirings != 0) 1926 p->wire_count -= wirings; 1927 } 1928 if ((options & OBJPR_CLEANONLY) == 0) { 1929 p->valid = 0; 1930 vm_page_undirty(p); 1931 } 1932 goto next; 1933 } 1934 if (vm_page_busied(p)) { 1935 VM_OBJECT_WUNLOCK(object); 1936 vm_page_busy_sleep(p, "vmopar"); 1937 VM_OBJECT_WLOCK(object); 1938 goto again; 1939 } 1940 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1941 ("vm_object_page_remove: page %p is fictitious", p)); 1942 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1943 if ((options & OBJPR_NOTMAPPED) == 0) 1944 pmap_remove_write(p); 1945 if (p->dirty) 1946 goto next; 1947 } 1948 if ((options & OBJPR_NOTMAPPED) == 0) { 1949 if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0) 1950 goto next; 1951 pmap_remove_all(p); 1952 /* Account for removal of wired mappings. */ 1953 if (wirings != 0) { 1954 KASSERT(p->wire_count == wirings, 1955 ("inconsistent wire count %d %d %p", 1956 p->wire_count, wirings, p)); 1957 p->wire_count = 0; 1958 atomic_subtract_int(&cnt.v_wire_count, 1); 1959 } 1960 } 1961 vm_page_free(p); 1962 next: 1963 vm_page_unlock(p); 1964 } 1965 vm_object_pip_wakeup(object); 1966 skipmemq: 1967 if (__predict_false(!vm_object_cache_is_empty(object))) 1968 vm_page_cache_free(object, start, end); 1969 } 1970 1971 /* 1972 * vm_object_page_cache: 1973 * 1974 * For the given object, attempt to move the specified clean 1975 * pages to the cache queue. If a page is wired for any reason, 1976 * then it will not be changed. Pages are specified by the given 1977 * range ["start", "end"). As a special case, if "end" is zero, 1978 * then the range extends from "start" to the end of the object. 1979 * Any mappings to the specified pages are removed before the 1980 * pages are moved to the cache queue. 1981 * 1982 * This operation should only be performed on objects that 1983 * contain non-fictitious, managed pages. 1984 * 1985 * The object must be locked. 1986 */ 1987 void 1988 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1989 { 1990 struct mtx *mtx, *new_mtx; 1991 vm_page_t p, next; 1992 1993 VM_OBJECT_ASSERT_WLOCKED(object); 1994 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1995 ("vm_object_page_cache: illegal object %p", object)); 1996 if (object->resident_page_count == 0) 1997 return; 1998 p = vm_page_find_least(object, start); 1999 2000 /* 2001 * Here, the variable "p" is either (1) the page with the least pindex 2002 * greater than or equal to the parameter "start" or (2) NULL. 2003 */ 2004 mtx = NULL; 2005 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2006 next = TAILQ_NEXT(p, listq); 2007 2008 /* 2009 * Avoid releasing and reacquiring the same page lock. 2010 */ 2011 new_mtx = vm_page_lockptr(p); 2012 if (mtx != new_mtx) { 2013 if (mtx != NULL) 2014 mtx_unlock(mtx); 2015 mtx = new_mtx; 2016 mtx_lock(mtx); 2017 } 2018 vm_page_try_to_cache(p); 2019 } 2020 if (mtx != NULL) 2021 mtx_unlock(mtx); 2022 } 2023 2024 /* 2025 * Populate the specified range of the object with valid pages. Returns 2026 * TRUE if the range is successfully populated and FALSE otherwise. 2027 * 2028 * Note: This function should be optimized to pass a larger array of 2029 * pages to vm_pager_get_pages() before it is applied to a non- 2030 * OBJT_DEVICE object. 2031 * 2032 * The object must be locked. 2033 */ 2034 boolean_t 2035 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2036 { 2037 vm_page_t m, ma[1]; 2038 vm_pindex_t pindex; 2039 int rv; 2040 2041 VM_OBJECT_ASSERT_WLOCKED(object); 2042 for (pindex = start; pindex < end; pindex++) { 2043 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2044 if (m->valid != VM_PAGE_BITS_ALL) { 2045 ma[0] = m; 2046 rv = vm_pager_get_pages(object, ma, 1, 0); 2047 m = vm_page_lookup(object, pindex); 2048 if (m == NULL) 2049 break; 2050 if (rv != VM_PAGER_OK) { 2051 vm_page_lock(m); 2052 vm_page_free(m); 2053 vm_page_unlock(m); 2054 break; 2055 } 2056 } 2057 /* 2058 * Keep "m" busy because a subsequent iteration may unlock 2059 * the object. 2060 */ 2061 } 2062 if (pindex > start) { 2063 m = vm_page_lookup(object, start); 2064 while (m != NULL && m->pindex < pindex) { 2065 vm_page_xunbusy(m); 2066 m = TAILQ_NEXT(m, listq); 2067 } 2068 } 2069 return (pindex == end); 2070 } 2071 2072 /* 2073 * Routine: vm_object_coalesce 2074 * Function: Coalesces two objects backing up adjoining 2075 * regions of memory into a single object. 2076 * 2077 * returns TRUE if objects were combined. 2078 * 2079 * NOTE: Only works at the moment if the second object is NULL - 2080 * if it's not, which object do we lock first? 2081 * 2082 * Parameters: 2083 * prev_object First object to coalesce 2084 * prev_offset Offset into prev_object 2085 * prev_size Size of reference to prev_object 2086 * next_size Size of reference to the second object 2087 * reserved Indicator that extension region has 2088 * swap accounted for 2089 * 2090 * Conditions: 2091 * The object must *not* be locked. 2092 */ 2093 boolean_t 2094 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2095 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2096 { 2097 vm_pindex_t next_pindex; 2098 2099 if (prev_object == NULL) 2100 return (TRUE); 2101 VM_OBJECT_WLOCK(prev_object); 2102 if (prev_object->type != OBJT_DEFAULT && 2103 prev_object->type != OBJT_SWAP) { 2104 VM_OBJECT_WUNLOCK(prev_object); 2105 return (FALSE); 2106 } 2107 2108 /* 2109 * Try to collapse the object first 2110 */ 2111 vm_object_collapse(prev_object); 2112 2113 /* 2114 * Can't coalesce if: . more than one reference . paged out . shadows 2115 * another object . has a copy elsewhere (any of which mean that the 2116 * pages not mapped to prev_entry may be in use anyway) 2117 */ 2118 if (prev_object->backing_object != NULL) { 2119 VM_OBJECT_WUNLOCK(prev_object); 2120 return (FALSE); 2121 } 2122 2123 prev_size >>= PAGE_SHIFT; 2124 next_size >>= PAGE_SHIFT; 2125 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2126 2127 if ((prev_object->ref_count > 1) && 2128 (prev_object->size != next_pindex)) { 2129 VM_OBJECT_WUNLOCK(prev_object); 2130 return (FALSE); 2131 } 2132 2133 /* 2134 * Account for the charge. 2135 */ 2136 if (prev_object->cred != NULL) { 2137 2138 /* 2139 * If prev_object was charged, then this mapping, 2140 * althought not charged now, may become writable 2141 * later. Non-NULL cred in the object would prevent 2142 * swap reservation during enabling of the write 2143 * access, so reserve swap now. Failed reservation 2144 * cause allocation of the separate object for the map 2145 * entry, and swap reservation for this entry is 2146 * managed in appropriate time. 2147 */ 2148 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2149 prev_object->cred)) { 2150 return (FALSE); 2151 } 2152 prev_object->charge += ptoa(next_size); 2153 } 2154 2155 /* 2156 * Remove any pages that may still be in the object from a previous 2157 * deallocation. 2158 */ 2159 if (next_pindex < prev_object->size) { 2160 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2161 next_size, 0); 2162 if (prev_object->type == OBJT_SWAP) 2163 swap_pager_freespace(prev_object, 2164 next_pindex, next_size); 2165 #if 0 2166 if (prev_object->cred != NULL) { 2167 KASSERT(prev_object->charge >= 2168 ptoa(prev_object->size - next_pindex), 2169 ("object %p overcharged 1 %jx %jx", prev_object, 2170 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2171 prev_object->charge -= ptoa(prev_object->size - 2172 next_pindex); 2173 } 2174 #endif 2175 } 2176 2177 /* 2178 * Extend the object if necessary. 2179 */ 2180 if (next_pindex + next_size > prev_object->size) 2181 prev_object->size = next_pindex + next_size; 2182 2183 VM_OBJECT_WUNLOCK(prev_object); 2184 return (TRUE); 2185 } 2186 2187 void 2188 vm_object_set_writeable_dirty(vm_object_t object) 2189 { 2190 2191 VM_OBJECT_ASSERT_WLOCKED(object); 2192 if (object->type != OBJT_VNODE) 2193 return; 2194 object->generation++; 2195 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2196 return; 2197 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2198 } 2199 2200 #include "opt_ddb.h" 2201 #ifdef DDB 2202 #include <sys/kernel.h> 2203 2204 #include <sys/cons.h> 2205 2206 #include <ddb/ddb.h> 2207 2208 static int 2209 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2210 { 2211 vm_map_t tmpm; 2212 vm_map_entry_t tmpe; 2213 vm_object_t obj; 2214 int entcount; 2215 2216 if (map == 0) 2217 return 0; 2218 2219 if (entry == 0) { 2220 tmpe = map->header.next; 2221 entcount = map->nentries; 2222 while (entcount-- && (tmpe != &map->header)) { 2223 if (_vm_object_in_map(map, object, tmpe)) { 2224 return 1; 2225 } 2226 tmpe = tmpe->next; 2227 } 2228 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2229 tmpm = entry->object.sub_map; 2230 tmpe = tmpm->header.next; 2231 entcount = tmpm->nentries; 2232 while (entcount-- && tmpe != &tmpm->header) { 2233 if (_vm_object_in_map(tmpm, object, tmpe)) { 2234 return 1; 2235 } 2236 tmpe = tmpe->next; 2237 } 2238 } else if ((obj = entry->object.vm_object) != NULL) { 2239 for (; obj; obj = obj->backing_object) 2240 if (obj == object) { 2241 return 1; 2242 } 2243 } 2244 return 0; 2245 } 2246 2247 static int 2248 vm_object_in_map(vm_object_t object) 2249 { 2250 struct proc *p; 2251 2252 /* sx_slock(&allproc_lock); */ 2253 FOREACH_PROC_IN_SYSTEM(p) { 2254 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2255 continue; 2256 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2257 /* sx_sunlock(&allproc_lock); */ 2258 return 1; 2259 } 2260 } 2261 /* sx_sunlock(&allproc_lock); */ 2262 if (_vm_object_in_map(kernel_map, object, 0)) 2263 return 1; 2264 return 0; 2265 } 2266 2267 DB_SHOW_COMMAND(vmochk, vm_object_check) 2268 { 2269 vm_object_t object; 2270 2271 /* 2272 * make sure that internal objs are in a map somewhere 2273 * and none have zero ref counts. 2274 */ 2275 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2276 if (object->handle == NULL && 2277 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2278 if (object->ref_count == 0) { 2279 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2280 (long)object->size); 2281 } 2282 if (!vm_object_in_map(object)) { 2283 db_printf( 2284 "vmochk: internal obj is not in a map: " 2285 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2286 object->ref_count, (u_long)object->size, 2287 (u_long)object->size, 2288 (void *)object->backing_object); 2289 } 2290 } 2291 } 2292 } 2293 2294 /* 2295 * vm_object_print: [ debug ] 2296 */ 2297 DB_SHOW_COMMAND(object, vm_object_print_static) 2298 { 2299 /* XXX convert args. */ 2300 vm_object_t object = (vm_object_t)addr; 2301 boolean_t full = have_addr; 2302 2303 vm_page_t p; 2304 2305 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2306 #define count was_count 2307 2308 int count; 2309 2310 if (object == NULL) 2311 return; 2312 2313 db_iprintf( 2314 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2315 object, (int)object->type, (uintmax_t)object->size, 2316 object->resident_page_count, object->ref_count, object->flags, 2317 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2318 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2319 object->shadow_count, 2320 object->backing_object ? object->backing_object->ref_count : 0, 2321 object->backing_object, (uintmax_t)object->backing_object_offset); 2322 2323 if (!full) 2324 return; 2325 2326 db_indent += 2; 2327 count = 0; 2328 TAILQ_FOREACH(p, &object->memq, listq) { 2329 if (count == 0) 2330 db_iprintf("memory:="); 2331 else if (count == 6) { 2332 db_printf("\n"); 2333 db_iprintf(" ..."); 2334 count = 0; 2335 } else 2336 db_printf(","); 2337 count++; 2338 2339 db_printf("(off=0x%jx,page=0x%jx)", 2340 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2341 } 2342 if (count != 0) 2343 db_printf("\n"); 2344 db_indent -= 2; 2345 } 2346 2347 /* XXX. */ 2348 #undef count 2349 2350 /* XXX need this non-static entry for calling from vm_map_print. */ 2351 void 2352 vm_object_print( 2353 /* db_expr_t */ long addr, 2354 boolean_t have_addr, 2355 /* db_expr_t */ long count, 2356 char *modif) 2357 { 2358 vm_object_print_static(addr, have_addr, count, modif); 2359 } 2360 2361 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2362 { 2363 vm_object_t object; 2364 vm_pindex_t fidx; 2365 vm_paddr_t pa; 2366 vm_page_t m, prev_m; 2367 int rcount, nl, c; 2368 2369 nl = 0; 2370 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2371 db_printf("new object: %p\n", (void *)object); 2372 if (nl > 18) { 2373 c = cngetc(); 2374 if (c != ' ') 2375 return; 2376 nl = 0; 2377 } 2378 nl++; 2379 rcount = 0; 2380 fidx = 0; 2381 pa = -1; 2382 TAILQ_FOREACH(m, &object->memq, listq) { 2383 if (m->pindex > 128) 2384 break; 2385 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2386 prev_m->pindex + 1 != m->pindex) { 2387 if (rcount) { 2388 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2389 (long)fidx, rcount, (long)pa); 2390 if (nl > 18) { 2391 c = cngetc(); 2392 if (c != ' ') 2393 return; 2394 nl = 0; 2395 } 2396 nl++; 2397 rcount = 0; 2398 } 2399 } 2400 if (rcount && 2401 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2402 ++rcount; 2403 continue; 2404 } 2405 if (rcount) { 2406 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2407 (long)fidx, rcount, (long)pa); 2408 if (nl > 18) { 2409 c = cngetc(); 2410 if (c != ' ') 2411 return; 2412 nl = 0; 2413 } 2414 nl++; 2415 } 2416 fidx = m->pindex; 2417 pa = VM_PAGE_TO_PHYS(m); 2418 rcount = 1; 2419 } 2420 if (rcount) { 2421 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2422 (long)fidx, rcount, (long)pa); 2423 if (nl > 18) { 2424 c = cngetc(); 2425 if (c != ' ') 2426 return; 2427 nl = 0; 2428 } 2429 nl++; 2430 } 2431 } 2432 } 2433 #endif /* DDB */ 2434