xref: /freebsd/sys/vm/vm_object.c (revision 8b238f4126d32df3e70056bc32536b7248ebffa0)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *allclean,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *allclean);
119 static void	vm_object_qcollapse(vm_object_t object);
120 static void	vm_object_vndeallocate(vm_object_t object);
121 static void	vm_object_backing_remove(vm_object_t object);
122 
123 /*
124  *	Virtual memory objects maintain the actual data
125  *	associated with allocated virtual memory.  A given
126  *	page of memory exists within exactly one object.
127  *
128  *	An object is only deallocated when all "references"
129  *	are given up.  Only one "reference" to a given
130  *	region of an object should be writeable.
131  *
132  *	Associated with each object is a list of all resident
133  *	memory pages belonging to that object; this list is
134  *	maintained by the "vm_page" module, and locked by the object's
135  *	lock.
136  *
137  *	Each object also records a "pager" routine which is
138  *	used to retrieve (and store) pages to the proper backing
139  *	storage.  In addition, objects may be backed by other
140  *	objects from which they were virtual-copied.
141  *
142  *	The only items within the object structure which are
143  *	modified after time of creation are:
144  *		reference count		locked by object's lock
145  *		pager routine		locked by object's lock
146  *
147  */
148 
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;	/* lock for object list and count */
151 
152 struct vm_object kernel_object_store;
153 
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
155     "VM object stats");
156 
157 static counter_u64_t object_collapses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161 
162 static counter_u64_t object_bypasses = EARLY_COUNTER;
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166 
167 static void
168 counter_startup(void)
169 {
170 
171 	object_collapses = counter_u64_alloc(M_WAITOK);
172 	object_bypasses = counter_u64_alloc(M_WAITOK);
173 }
174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
175 
176 static uma_zone_t obj_zone;
177 
178 static int vm_object_zinit(void *mem, int size, int flags);
179 
180 #ifdef INVARIANTS
181 static void vm_object_zdtor(void *mem, int size, void *arg);
182 
183 static void
184 vm_object_zdtor(void *mem, int size, void *arg)
185 {
186 	vm_object_t object;
187 
188 	object = (vm_object_t)mem;
189 	KASSERT(object->ref_count == 0,
190 	    ("object %p ref_count = %d", object, object->ref_count));
191 	KASSERT(TAILQ_EMPTY(&object->memq),
192 	    ("object %p has resident pages in its memq", object));
193 	KASSERT(vm_radix_is_empty(&object->rtree),
194 	    ("object %p has resident pages in its trie", object));
195 #if VM_NRESERVLEVEL > 0
196 	KASSERT(LIST_EMPTY(&object->rvq),
197 	    ("object %p has reservations",
198 	    object));
199 #endif
200 	KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
201 	    ("object %p paging_in_progress = %d",
202 	    object, REFCOUNT_COUNT(object->paging_in_progress)));
203 	KASSERT(object->busy == 0,
204 	    ("object %p busy = %d",
205 	    object, object->busy));
206 	KASSERT(object->resident_page_count == 0,
207 	    ("object %p resident_page_count = %d",
208 	    object, object->resident_page_count));
209 	KASSERT(object->shadow_count == 0,
210 	    ("object %p shadow_count = %d",
211 	    object, object->shadow_count));
212 	KASSERT(object->type == OBJT_DEAD,
213 	    ("object %p has non-dead type %d",
214 	    object, object->type));
215 }
216 #endif
217 
218 static int
219 vm_object_zinit(void *mem, int size, int flags)
220 {
221 	vm_object_t object;
222 
223 	object = (vm_object_t)mem;
224 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
225 
226 	/* These are true for any object that has been freed */
227 	object->type = OBJT_DEAD;
228 	vm_radix_init(&object->rtree);
229 	refcount_init(&object->ref_count, 0);
230 	refcount_init(&object->paging_in_progress, 0);
231 	refcount_init(&object->busy, 0);
232 	object->resident_page_count = 0;
233 	object->shadow_count = 0;
234 	object->flags = OBJ_DEAD;
235 
236 	mtx_lock(&vm_object_list_mtx);
237 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238 	mtx_unlock(&vm_object_list_mtx);
239 	return (0);
240 }
241 
242 static void
243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
244     vm_object_t object, void *handle)
245 {
246 
247 	TAILQ_INIT(&object->memq);
248 	LIST_INIT(&object->shadow_head);
249 
250 	object->type = type;
251 	if (type == OBJT_SWAP)
252 		pctrie_init(&object->un_pager.swp.swp_blks);
253 
254 	/*
255 	 * Ensure that swap_pager_swapoff() iteration over object_list
256 	 * sees up to date type and pctrie head if it observed
257 	 * non-dead object.
258 	 */
259 	atomic_thread_fence_rel();
260 
261 	object->pg_color = 0;
262 	object->flags = flags;
263 	object->size = size;
264 	object->domain.dr_policy = NULL;
265 	object->generation = 1;
266 	object->cleangeneration = 1;
267 	refcount_init(&object->ref_count, 1);
268 	object->memattr = VM_MEMATTR_DEFAULT;
269 	object->cred = NULL;
270 	object->charge = 0;
271 	object->handle = handle;
272 	object->backing_object = NULL;
273 	object->backing_object_offset = (vm_ooffset_t) 0;
274 #if VM_NRESERVLEVEL > 0
275 	LIST_INIT(&object->rvq);
276 #endif
277 	umtx_shm_object_init(object);
278 }
279 
280 /*
281  *	vm_object_init:
282  *
283  *	Initialize the VM objects module.
284  */
285 void
286 vm_object_init(void)
287 {
288 	TAILQ_INIT(&vm_object_list);
289 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
290 
291 	rw_init(&kernel_object->lock, "kernel vm object");
292 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
293 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
294 #if VM_NRESERVLEVEL > 0
295 	kernel_object->flags |= OBJ_COLORED;
296 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
297 #endif
298 
299 	/*
300 	 * The lock portion of struct vm_object must be type stable due
301 	 * to vm_pageout_fallback_object_lock locking a vm object
302 	 * without holding any references to it.
303 	 */
304 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
305 #ifdef INVARIANTS
306 	    vm_object_zdtor,
307 #else
308 	    NULL,
309 #endif
310 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
311 
312 	vm_radix_zinit();
313 }
314 
315 void
316 vm_object_clear_flag(vm_object_t object, u_short bits)
317 {
318 
319 	VM_OBJECT_ASSERT_WLOCKED(object);
320 	object->flags &= ~bits;
321 }
322 
323 /*
324  *	Sets the default memory attribute for the specified object.  Pages
325  *	that are allocated to this object are by default assigned this memory
326  *	attribute.
327  *
328  *	Presently, this function must be called before any pages are allocated
329  *	to the object.  In the future, this requirement may be relaxed for
330  *	"default" and "swap" objects.
331  */
332 int
333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
334 {
335 
336 	VM_OBJECT_ASSERT_WLOCKED(object);
337 	switch (object->type) {
338 	case OBJT_DEFAULT:
339 	case OBJT_DEVICE:
340 	case OBJT_MGTDEVICE:
341 	case OBJT_PHYS:
342 	case OBJT_SG:
343 	case OBJT_SWAP:
344 	case OBJT_VNODE:
345 		if (!TAILQ_EMPTY(&object->memq))
346 			return (KERN_FAILURE);
347 		break;
348 	case OBJT_DEAD:
349 		return (KERN_INVALID_ARGUMENT);
350 	default:
351 		panic("vm_object_set_memattr: object %p is of undefined type",
352 		    object);
353 	}
354 	object->memattr = memattr;
355 	return (KERN_SUCCESS);
356 }
357 
358 void
359 vm_object_pip_add(vm_object_t object, short i)
360 {
361 
362 	refcount_acquiren(&object->paging_in_progress, i);
363 }
364 
365 void
366 vm_object_pip_wakeup(vm_object_t object)
367 {
368 
369 	refcount_release(&object->paging_in_progress);
370 }
371 
372 void
373 vm_object_pip_wakeupn(vm_object_t object, short i)
374 {
375 
376 	refcount_releasen(&object->paging_in_progress, i);
377 }
378 
379 void
380 vm_object_pip_wait(vm_object_t object, char *waitid)
381 {
382 
383 	VM_OBJECT_ASSERT_WLOCKED(object);
384 
385 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
386 		VM_OBJECT_WUNLOCK(object);
387 		refcount_wait(&object->paging_in_progress, waitid, PVM);
388 		VM_OBJECT_WLOCK(object);
389 	}
390 }
391 
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
394 {
395 
396 	VM_OBJECT_ASSERT_UNLOCKED(object);
397 
398 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
399 		refcount_wait(&object->paging_in_progress, waitid, PVM);
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 	u_short flags;
412 
413 	switch (type) {
414 	case OBJT_DEAD:
415 		panic("vm_object_allocate: can't create OBJT_DEAD");
416 	case OBJT_DEFAULT:
417 	case OBJT_SWAP:
418 		flags = OBJ_COLORED;
419 		break;
420 	case OBJT_DEVICE:
421 	case OBJT_SG:
422 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423 		break;
424 	case OBJT_MGTDEVICE:
425 		flags = OBJ_FICTITIOUS;
426 		break;
427 	case OBJT_PHYS:
428 		flags = OBJ_UNMANAGED;
429 		break;
430 	case OBJT_VNODE:
431 		flags = 0;
432 		break;
433 	default:
434 		panic("vm_object_allocate: type %d is undefined", type);
435 	}
436 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437 	_vm_object_allocate(type, size, flags, object, NULL);
438 
439 	return (object);
440 }
441 
442 /*
443  *	vm_object_allocate_anon:
444  *
445  *	Returns a new default object of the given size and marked as
446  *	anonymous memory for special split/collapse handling.  Color
447  *	to be initialized by the caller.
448  */
449 vm_object_t
450 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
451     struct ucred *cred, vm_size_t charge)
452 {
453 	vm_object_t handle, object;
454 
455 	if (backing_object == NULL)
456 		handle = NULL;
457 	else if ((backing_object->flags & OBJ_ANON) != 0)
458 		handle = backing_object->handle;
459 	else
460 		handle = backing_object;
461 	object = uma_zalloc(obj_zone, M_WAITOK);
462 	_vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
463 	    object, handle);
464 	object->cred = cred;
465 	object->charge = cred != NULL ? charge : 0;
466 	return (object);
467 }
468 
469 
470 /*
471  *	vm_object_reference:
472  *
473  *	Gets another reference to the given object.  Note: OBJ_DEAD
474  *	objects can be referenced during final cleaning.
475  */
476 void
477 vm_object_reference(vm_object_t object)
478 {
479 	struct vnode *vp;
480 	u_int old;
481 
482 	if (object == NULL)
483 		return;
484 
485 	/*
486 	 * Many places assume exclusive access to objects with a single
487 	 * ref. vm_object_collapse() in particular will directly mainpulate
488 	 * references for objects in this state.  vnode objects only need
489 	 * the lock for the first ref to reference the vnode.
490 	 */
491 	if (!refcount_acquire_if_gt(&object->ref_count,
492 	    object->type == OBJT_VNODE ? 0 : 1)) {
493 		VM_OBJECT_RLOCK(object);
494 		old = refcount_acquire(&object->ref_count);
495 		if (object->type == OBJT_VNODE && old == 0) {
496 			vp = object->handle;
497 			vref(vp);
498 		}
499 		VM_OBJECT_RUNLOCK(object);
500 	}
501 }
502 
503 /*
504  *	vm_object_reference_locked:
505  *
506  *	Gets another reference to the given object.
507  *
508  *	The object must be locked.
509  */
510 void
511 vm_object_reference_locked(vm_object_t object)
512 {
513 	struct vnode *vp;
514 	u_int old;
515 
516 	VM_OBJECT_ASSERT_LOCKED(object);
517 	old = refcount_acquire(&object->ref_count);
518 	if (object->type == OBJT_VNODE && old == 0) {
519 		vp = object->handle;
520 		vref(vp);
521 	}
522 }
523 
524 /*
525  * Handle deallocating an object of type OBJT_VNODE.
526  */
527 static void
528 vm_object_vndeallocate(vm_object_t object)
529 {
530 	struct vnode *vp = (struct vnode *) object->handle;
531 	bool last;
532 
533 	KASSERT(object->type == OBJT_VNODE,
534 	    ("vm_object_vndeallocate: not a vnode object"));
535 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
536 
537 	/* Object lock to protect handle lookup. */
538 	last = refcount_release(&object->ref_count);
539 	VM_OBJECT_RUNLOCK(object);
540 
541 	if (!last)
542 		return;
543 
544 	if (!umtx_shm_vnobj_persistent)
545 		umtx_shm_object_terminated(object);
546 
547 	/* vrele may need the vnode lock. */
548 	vrele(vp);
549 }
550 
551 /*
552  *	vm_object_deallocate:
553  *
554  *	Release a reference to the specified object,
555  *	gained either through a vm_object_allocate
556  *	or a vm_object_reference call.  When all references
557  *	are gone, storage associated with this object
558  *	may be relinquished.
559  *
560  *	No object may be locked.
561  */
562 void
563 vm_object_deallocate(vm_object_t object)
564 {
565 	vm_object_t robject, temp;
566 	bool released;
567 
568 	while (object != NULL) {
569 		/*
570 		 * If the reference count goes to 0 we start calling
571 		 * vm_object_terminate() on the object chain.  A ref count
572 		 * of 1 may be a special case depending on the shadow count
573 		 * being 0 or 1.  These cases require a write lock on the
574 		 * object.
575 		 */
576 		if ((object->flags & OBJ_ANON) == 0)
577 			released = refcount_release_if_gt(&object->ref_count, 1);
578 		else
579 			released = refcount_release_if_gt(&object->ref_count, 2);
580 		if (released)
581 			return;
582 
583 		if (object->type == OBJT_VNODE) {
584 			VM_OBJECT_RLOCK(object);
585 			if (object->type == OBJT_VNODE) {
586 				vm_object_vndeallocate(object);
587 				return;
588 			}
589 			VM_OBJECT_RUNLOCK(object);
590 		}
591 
592 		VM_OBJECT_WLOCK(object);
593 		KASSERT(object->ref_count > 0,
594 		    ("vm_object_deallocate: object deallocated too many times: %d",
595 		    object->type));
596 
597 		if (refcount_release(&object->ref_count))
598 			goto doterm;
599 		if (object->ref_count > 1) {
600 			VM_OBJECT_WUNLOCK(object);
601 			return;
602 		} else if (object->ref_count == 1) {
603 			if (object->shadow_count == 0 &&
604 			    (object->flags & OBJ_ANON) != 0) {
605 				vm_object_set_flag(object, OBJ_ONEMAPPING);
606 			} else if (object->shadow_count == 1) {
607 				KASSERT((object->flags & OBJ_ANON) != 0,
608 				    ("obj %p with shadow_count > 0 is not anon",
609 				    object));
610 				robject = LIST_FIRST(&object->shadow_head);
611 				KASSERT(robject != NULL,
612 				    ("vm_object_deallocate: ref_count: %d, "
613 				    "shadow_count: %d", object->ref_count,
614 				    object->shadow_count));
615 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
616 				    ("shadowed tmpfs v_object %p", object));
617 				if (!VM_OBJECT_TRYWLOCK(robject)) {
618 					/*
619 					 * Avoid a potential deadlock.
620 					 */
621 					refcount_acquire(&object->ref_count);
622 					VM_OBJECT_WUNLOCK(object);
623 					/*
624 					 * More likely than not the thread
625 					 * holding robject's lock has lower
626 					 * priority than the current thread.
627 					 * Let the lower priority thread run.
628 					 */
629 					pause("vmo_de", 1);
630 					continue;
631 				}
632 				/*
633 				 * Collapse object into its shadow unless its
634 				 * shadow is dead.  In that case, object will
635 				 * be deallocated by the thread that is
636 				 * deallocating its shadow.
637 				 */
638 				if ((robject->flags &
639 				    (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON) {
640 
641 					refcount_acquire(&robject->ref_count);
642 retry:
643 					if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
644 						VM_OBJECT_WUNLOCK(object);
645 						vm_object_pip_wait(robject,
646 						    "objde1");
647 						temp = robject->backing_object;
648 						if (object == temp) {
649 							VM_OBJECT_WLOCK(object);
650 							goto retry;
651 						}
652 					} else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
653 						VM_OBJECT_WUNLOCK(robject);
654 						VM_OBJECT_WUNLOCK(object);
655 						refcount_wait(
656 						    &object->paging_in_progress,
657 						    "objde2", PVM);
658 						VM_OBJECT_WLOCK(robject);
659 						temp = robject->backing_object;
660 						if (object == temp) {
661 							VM_OBJECT_WLOCK(object);
662 							goto retry;
663 						}
664 					} else
665 						VM_OBJECT_WUNLOCK(object);
666 
667 					if (robject->ref_count == 1) {
668 						refcount_release(&robject->ref_count);
669 						object = robject;
670 						goto doterm;
671 					}
672 					object = robject;
673 					vm_object_collapse(object);
674 					VM_OBJECT_WUNLOCK(object);
675 					continue;
676 				}
677 				VM_OBJECT_WUNLOCK(robject);
678 			}
679 			VM_OBJECT_WUNLOCK(object);
680 			return;
681 		}
682 doterm:
683 		umtx_shm_object_terminated(object);
684 		temp = object->backing_object;
685 		if (temp != NULL) {
686 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
687 			    ("shadowed tmpfs v_object 2 %p", object));
688 			vm_object_backing_remove(object);
689 		}
690 		/*
691 		 * Don't double-terminate, we could be in a termination
692 		 * recursion due to the terminate having to sync data
693 		 * to disk.
694 		 */
695 		if ((object->flags & OBJ_DEAD) == 0) {
696 			vm_object_set_flag(object, OBJ_DEAD);
697 			vm_object_terminate(object);
698 		} else
699 			VM_OBJECT_WUNLOCK(object);
700 		object = temp;
701 	}
702 }
703 
704 /*
705  *	vm_object_destroy removes the object from the global object list
706  *      and frees the space for the object.
707  */
708 void
709 vm_object_destroy(vm_object_t object)
710 {
711 
712 	/*
713 	 * Release the allocation charge.
714 	 */
715 	if (object->cred != NULL) {
716 		swap_release_by_cred(object->charge, object->cred);
717 		object->charge = 0;
718 		crfree(object->cred);
719 		object->cred = NULL;
720 	}
721 
722 	/*
723 	 * Free the space for the object.
724 	 */
725 	uma_zfree(obj_zone, object);
726 }
727 
728 static void
729 vm_object_backing_remove_locked(vm_object_t object)
730 {
731 	vm_object_t backing_object;
732 
733 	backing_object = object->backing_object;
734 	VM_OBJECT_ASSERT_WLOCKED(object);
735 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
736 
737 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
738 		LIST_REMOVE(object, shadow_list);
739 		backing_object->shadow_count--;
740 		object->flags &= ~OBJ_SHADOWLIST;
741 	}
742 	object->backing_object = NULL;
743 }
744 
745 static void
746 vm_object_backing_remove(vm_object_t object)
747 {
748 	vm_object_t backing_object;
749 
750 	VM_OBJECT_ASSERT_WLOCKED(object);
751 
752 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
753 		backing_object = object->backing_object;
754 		VM_OBJECT_WLOCK(backing_object);
755 		vm_object_backing_remove_locked(object);
756 		VM_OBJECT_WUNLOCK(backing_object);
757 	} else
758 		object->backing_object = NULL;
759 }
760 
761 static void
762 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
763 {
764 
765 	VM_OBJECT_ASSERT_WLOCKED(object);
766 
767 	if ((backing_object->flags & OBJ_ANON) != 0) {
768 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
769 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
770 		    shadow_list);
771 		backing_object->shadow_count++;
772 		object->flags |= OBJ_SHADOWLIST;
773 	}
774 	object->backing_object = backing_object;
775 }
776 
777 static void
778 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
779 {
780 
781 	VM_OBJECT_ASSERT_WLOCKED(object);
782 
783 	if ((backing_object->flags & OBJ_ANON) != 0) {
784 		VM_OBJECT_WLOCK(backing_object);
785 		vm_object_backing_insert_locked(object, backing_object);
786 		VM_OBJECT_WUNLOCK(backing_object);
787 	} else
788 		object->backing_object = backing_object;
789 }
790 
791 
792 /*
793  *	vm_object_terminate_pages removes any remaining pageable pages
794  *	from the object and resets the object to an empty state.
795  */
796 static void
797 vm_object_terminate_pages(vm_object_t object)
798 {
799 	vm_page_t p, p_next;
800 
801 	VM_OBJECT_ASSERT_WLOCKED(object);
802 
803 	/*
804 	 * Free any remaining pageable pages.  This also removes them from the
805 	 * paging queues.  However, don't free wired pages, just remove them
806 	 * from the object.  Rather than incrementally removing each page from
807 	 * the object, the page and object are reset to any empty state.
808 	 */
809 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
810 		vm_page_assert_unbusied(p);
811 		KASSERT(p->object == object &&
812 		    (p->ref_count & VPRC_OBJREF) != 0,
813 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
814 
815 		p->object = NULL;
816 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
817 			VM_CNT_INC(v_pfree);
818 			vm_page_free(p);
819 		}
820 	}
821 
822 	/*
823 	 * If the object contained any pages, then reset it to an empty state.
824 	 * None of the object's fields, including "resident_page_count", were
825 	 * modified by the preceding loop.
826 	 */
827 	if (object->resident_page_count != 0) {
828 		vm_radix_reclaim_allnodes(&object->rtree);
829 		TAILQ_INIT(&object->memq);
830 		object->resident_page_count = 0;
831 		if (object->type == OBJT_VNODE)
832 			vdrop(object->handle);
833 	}
834 }
835 
836 /*
837  *	vm_object_terminate actually destroys the specified object, freeing
838  *	up all previously used resources.
839  *
840  *	The object must be locked.
841  *	This routine may block.
842  */
843 void
844 vm_object_terminate(vm_object_t object)
845 {
846 	VM_OBJECT_ASSERT_WLOCKED(object);
847 	KASSERT((object->flags & OBJ_DEAD) != 0,
848 	    ("terminating non-dead obj %p", object));
849 
850 	/*
851 	 * wait for the pageout daemon to be done with the object
852 	 */
853 	vm_object_pip_wait(object, "objtrm");
854 
855 	KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
856 		("vm_object_terminate: pageout in progress"));
857 
858 	KASSERT(object->ref_count == 0,
859 		("vm_object_terminate: object with references, ref_count=%d",
860 		object->ref_count));
861 
862 	if ((object->flags & OBJ_PG_DTOR) == 0)
863 		vm_object_terminate_pages(object);
864 
865 #if VM_NRESERVLEVEL > 0
866 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
867 		vm_reserv_break_all(object);
868 #endif
869 
870 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
871 	    object->type == OBJT_SWAP,
872 	    ("%s: non-swap obj %p has cred", __func__, object));
873 
874 	/*
875 	 * Let the pager know object is dead.
876 	 */
877 	vm_pager_deallocate(object);
878 	VM_OBJECT_WUNLOCK(object);
879 
880 	vm_object_destroy(object);
881 }
882 
883 /*
884  * Make the page read-only so that we can clear the object flags.  However, if
885  * this is a nosync mmap then the object is likely to stay dirty so do not
886  * mess with the page and do not clear the object flags.  Returns TRUE if the
887  * page should be flushed, and FALSE otherwise.
888  */
889 static boolean_t
890 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
891 {
892 
893 	vm_page_assert_busied(p);
894 
895 	/*
896 	 * If we have been asked to skip nosync pages and this is a
897 	 * nosync page, skip it.  Note that the object flags were not
898 	 * cleared in this case so we do not have to set them.
899 	 */
900 	if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
901 		*allclean = FALSE;
902 		return (FALSE);
903 	} else {
904 		pmap_remove_write(p);
905 		return (p->dirty != 0);
906 	}
907 }
908 
909 /*
910  *	vm_object_page_clean
911  *
912  *	Clean all dirty pages in the specified range of object.  Leaves page
913  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
914  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
915  *	leaving the object dirty.
916  *
917  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
918  *	synchronous clustering mode implementation.
919  *
920  *	Odd semantics: if start == end, we clean everything.
921  *
922  *	The object must be locked.
923  *
924  *	Returns FALSE if some page from the range was not written, as
925  *	reported by the pager, and TRUE otherwise.
926  */
927 boolean_t
928 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
929     int flags)
930 {
931 	vm_page_t np, p;
932 	vm_pindex_t pi, tend, tstart;
933 	int curgeneration, n, pagerflags;
934 	boolean_t eio, res, allclean;
935 
936 	VM_OBJECT_ASSERT_WLOCKED(object);
937 
938 	if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
939 	    object->resident_page_count == 0)
940 		return (TRUE);
941 
942 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
943 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
944 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
945 
946 	tstart = OFF_TO_IDX(start);
947 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
948 	allclean = tstart == 0 && tend >= object->size;
949 	res = TRUE;
950 
951 rescan:
952 	curgeneration = object->generation;
953 
954 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
955 		pi = p->pindex;
956 		if (pi >= tend)
957 			break;
958 		np = TAILQ_NEXT(p, listq);
959 		if (vm_page_none_valid(p))
960 			continue;
961 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
962 			if (object->generation != curgeneration &&
963 			    (flags & OBJPC_SYNC) != 0)
964 				goto rescan;
965 			np = vm_page_find_least(object, pi);
966 			continue;
967 		}
968 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
969 			vm_page_xunbusy(p);
970 			continue;
971 		}
972 
973 		n = vm_object_page_collect_flush(object, p, pagerflags,
974 		    flags, &allclean, &eio);
975 		if (eio) {
976 			res = FALSE;
977 			allclean = FALSE;
978 		}
979 		if (object->generation != curgeneration &&
980 		    (flags & OBJPC_SYNC) != 0)
981 			goto rescan;
982 
983 		/*
984 		 * If the VOP_PUTPAGES() did a truncated write, so
985 		 * that even the first page of the run is not fully
986 		 * written, vm_pageout_flush() returns 0 as the run
987 		 * length.  Since the condition that caused truncated
988 		 * write may be permanent, e.g. exhausted free space,
989 		 * accepting n == 0 would cause an infinite loop.
990 		 *
991 		 * Forwarding the iterator leaves the unwritten page
992 		 * behind, but there is not much we can do there if
993 		 * filesystem refuses to write it.
994 		 */
995 		if (n == 0) {
996 			n = 1;
997 			allclean = FALSE;
998 		}
999 		np = vm_page_find_least(object, pi + n);
1000 	}
1001 #if 0
1002 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1003 #endif
1004 
1005 	if (allclean)
1006 		object->cleangeneration = curgeneration;
1007 	return (res);
1008 }
1009 
1010 static int
1011 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1012     int flags, boolean_t *allclean, boolean_t *eio)
1013 {
1014 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1015 	int count, i, mreq, runlen;
1016 
1017 	vm_page_lock_assert(p, MA_NOTOWNED);
1018 	vm_page_assert_xbusied(p);
1019 	VM_OBJECT_ASSERT_WLOCKED(object);
1020 
1021 	count = 1;
1022 	mreq = 0;
1023 
1024 	for (tp = p; count < vm_pageout_page_count; count++) {
1025 		tp = vm_page_next(tp);
1026 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1027 			break;
1028 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1029 			vm_page_xunbusy(tp);
1030 			break;
1031 		}
1032 	}
1033 
1034 	for (p_first = p; count < vm_pageout_page_count; count++) {
1035 		tp = vm_page_prev(p_first);
1036 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1037 			break;
1038 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1039 			vm_page_xunbusy(tp);
1040 			break;
1041 		}
1042 		p_first = tp;
1043 		mreq++;
1044 	}
1045 
1046 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1047 		ma[i] = tp;
1048 
1049 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1050 	return (runlen);
1051 }
1052 
1053 /*
1054  * Note that there is absolutely no sense in writing out
1055  * anonymous objects, so we track down the vnode object
1056  * to write out.
1057  * We invalidate (remove) all pages from the address space
1058  * for semantic correctness.
1059  *
1060  * If the backing object is a device object with unmanaged pages, then any
1061  * mappings to the specified range of pages must be removed before this
1062  * function is called.
1063  *
1064  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1065  * may start out with a NULL object.
1066  */
1067 boolean_t
1068 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1069     boolean_t syncio, boolean_t invalidate)
1070 {
1071 	vm_object_t backing_object;
1072 	struct vnode *vp;
1073 	struct mount *mp;
1074 	int error, flags, fsync_after;
1075 	boolean_t res;
1076 
1077 	if (object == NULL)
1078 		return (TRUE);
1079 	res = TRUE;
1080 	error = 0;
1081 	VM_OBJECT_WLOCK(object);
1082 	while ((backing_object = object->backing_object) != NULL) {
1083 		VM_OBJECT_WLOCK(backing_object);
1084 		offset += object->backing_object_offset;
1085 		VM_OBJECT_WUNLOCK(object);
1086 		object = backing_object;
1087 		if (object->size < OFF_TO_IDX(offset + size))
1088 			size = IDX_TO_OFF(object->size) - offset;
1089 	}
1090 	/*
1091 	 * Flush pages if writing is allowed, invalidate them
1092 	 * if invalidation requested.  Pages undergoing I/O
1093 	 * will be ignored by vm_object_page_remove().
1094 	 *
1095 	 * We cannot lock the vnode and then wait for paging
1096 	 * to complete without deadlocking against vm_fault.
1097 	 * Instead we simply call vm_object_page_remove() and
1098 	 * allow it to block internally on a page-by-page
1099 	 * basis when it encounters pages undergoing async
1100 	 * I/O.
1101 	 */
1102 	if (object->type == OBJT_VNODE &&
1103 	    vm_object_mightbedirty(object) != 0 &&
1104 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1105 		VM_OBJECT_WUNLOCK(object);
1106 		(void) vn_start_write(vp, &mp, V_WAIT);
1107 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1108 		if (syncio && !invalidate && offset == 0 &&
1109 		    atop(size) == object->size) {
1110 			/*
1111 			 * If syncing the whole mapping of the file,
1112 			 * it is faster to schedule all the writes in
1113 			 * async mode, also allowing the clustering,
1114 			 * and then wait for i/o to complete.
1115 			 */
1116 			flags = 0;
1117 			fsync_after = TRUE;
1118 		} else {
1119 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1120 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1121 			fsync_after = FALSE;
1122 		}
1123 		VM_OBJECT_WLOCK(object);
1124 		res = vm_object_page_clean(object, offset, offset + size,
1125 		    flags);
1126 		VM_OBJECT_WUNLOCK(object);
1127 		if (fsync_after)
1128 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1129 		VOP_UNLOCK(vp, 0);
1130 		vn_finished_write(mp);
1131 		if (error != 0)
1132 			res = FALSE;
1133 		VM_OBJECT_WLOCK(object);
1134 	}
1135 	if ((object->type == OBJT_VNODE ||
1136 	     object->type == OBJT_DEVICE) && invalidate) {
1137 		if (object->type == OBJT_DEVICE)
1138 			/*
1139 			 * The option OBJPR_NOTMAPPED must be passed here
1140 			 * because vm_object_page_remove() cannot remove
1141 			 * unmanaged mappings.
1142 			 */
1143 			flags = OBJPR_NOTMAPPED;
1144 		else if (old_msync)
1145 			flags = 0;
1146 		else
1147 			flags = OBJPR_CLEANONLY;
1148 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1149 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1150 	}
1151 	VM_OBJECT_WUNLOCK(object);
1152 	return (res);
1153 }
1154 
1155 /*
1156  * Determine whether the given advice can be applied to the object.  Advice is
1157  * not applied to unmanaged pages since they never belong to page queues, and
1158  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1159  * have been mapped at most once.
1160  */
1161 static bool
1162 vm_object_advice_applies(vm_object_t object, int advice)
1163 {
1164 
1165 	if ((object->flags & OBJ_UNMANAGED) != 0)
1166 		return (false);
1167 	if (advice != MADV_FREE)
1168 		return (true);
1169 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1170 	    (OBJ_ONEMAPPING | OBJ_ANON));
1171 }
1172 
1173 static void
1174 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1175     vm_size_t size)
1176 {
1177 
1178 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1179 		swap_pager_freespace(object, pindex, size);
1180 }
1181 
1182 /*
1183  *	vm_object_madvise:
1184  *
1185  *	Implements the madvise function at the object/page level.
1186  *
1187  *	MADV_WILLNEED	(any object)
1188  *
1189  *	    Activate the specified pages if they are resident.
1190  *
1191  *	MADV_DONTNEED	(any object)
1192  *
1193  *	    Deactivate the specified pages if they are resident.
1194  *
1195  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1196  *			 OBJ_ONEMAPPING only)
1197  *
1198  *	    Deactivate and clean the specified pages if they are
1199  *	    resident.  This permits the process to reuse the pages
1200  *	    without faulting or the kernel to reclaim the pages
1201  *	    without I/O.
1202  */
1203 void
1204 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1205     int advice)
1206 {
1207 	vm_pindex_t tpindex;
1208 	vm_object_t backing_object, tobject;
1209 	vm_page_t m, tm;
1210 
1211 	if (object == NULL)
1212 		return;
1213 
1214 relookup:
1215 	VM_OBJECT_WLOCK(object);
1216 	if (!vm_object_advice_applies(object, advice)) {
1217 		VM_OBJECT_WUNLOCK(object);
1218 		return;
1219 	}
1220 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1221 		tobject = object;
1222 
1223 		/*
1224 		 * If the next page isn't resident in the top-level object, we
1225 		 * need to search the shadow chain.  When applying MADV_FREE, we
1226 		 * take care to release any swap space used to store
1227 		 * non-resident pages.
1228 		 */
1229 		if (m == NULL || pindex < m->pindex) {
1230 			/*
1231 			 * Optimize a common case: if the top-level object has
1232 			 * no backing object, we can skip over the non-resident
1233 			 * range in constant time.
1234 			 */
1235 			if (object->backing_object == NULL) {
1236 				tpindex = (m != NULL && m->pindex < end) ?
1237 				    m->pindex : end;
1238 				vm_object_madvise_freespace(object, advice,
1239 				    pindex, tpindex - pindex);
1240 				if ((pindex = tpindex) == end)
1241 					break;
1242 				goto next_page;
1243 			}
1244 
1245 			tpindex = pindex;
1246 			do {
1247 				vm_object_madvise_freespace(tobject, advice,
1248 				    tpindex, 1);
1249 				/*
1250 				 * Prepare to search the next object in the
1251 				 * chain.
1252 				 */
1253 				backing_object = tobject->backing_object;
1254 				if (backing_object == NULL)
1255 					goto next_pindex;
1256 				VM_OBJECT_WLOCK(backing_object);
1257 				tpindex +=
1258 				    OFF_TO_IDX(tobject->backing_object_offset);
1259 				if (tobject != object)
1260 					VM_OBJECT_WUNLOCK(tobject);
1261 				tobject = backing_object;
1262 				if (!vm_object_advice_applies(tobject, advice))
1263 					goto next_pindex;
1264 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1265 			    NULL);
1266 		} else {
1267 next_page:
1268 			tm = m;
1269 			m = TAILQ_NEXT(m, listq);
1270 		}
1271 
1272 		/*
1273 		 * If the page is not in a normal state, skip it.  The page
1274 		 * can not be invalidated while the object lock is held.
1275 		 */
1276 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1277 			goto next_pindex;
1278 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1279 		    ("vm_object_madvise: page %p is fictitious", tm));
1280 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1281 		    ("vm_object_madvise: page %p is not managed", tm));
1282 		if (vm_page_tryxbusy(tm) == 0) {
1283 			if (object != tobject)
1284 				VM_OBJECT_WUNLOCK(object);
1285 			if (advice == MADV_WILLNEED) {
1286 				/*
1287 				 * Reference the page before unlocking and
1288 				 * sleeping so that the page daemon is less
1289 				 * likely to reclaim it.
1290 				 */
1291 				vm_page_aflag_set(tm, PGA_REFERENCED);
1292 			}
1293 			vm_page_busy_sleep(tm, "madvpo", false);
1294   			goto relookup;
1295 		}
1296 		vm_page_lock(tm);
1297 		vm_page_advise(tm, advice);
1298 		vm_page_unlock(tm);
1299 		vm_page_xunbusy(tm);
1300 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1301 next_pindex:
1302 		if (tobject != object)
1303 			VM_OBJECT_WUNLOCK(tobject);
1304 	}
1305 	VM_OBJECT_WUNLOCK(object);
1306 }
1307 
1308 /*
1309  *	vm_object_shadow:
1310  *
1311  *	Create a new object which is backed by the
1312  *	specified existing object range.  The source
1313  *	object reference is deallocated.
1314  *
1315  *	The new object and offset into that object
1316  *	are returned in the source parameters.
1317  */
1318 void
1319 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1320     struct ucred *cred, bool shared)
1321 {
1322 	vm_object_t source;
1323 	vm_object_t result;
1324 
1325 	source = *object;
1326 
1327 	/*
1328 	 * Don't create the new object if the old object isn't shared.
1329 	 *
1330 	 * If we hold the only reference we can guarantee that it won't
1331 	 * increase while we have the map locked.  Otherwise the race is
1332 	 * harmless and we will end up with an extra shadow object that
1333 	 * will be collapsed later.
1334 	 */
1335 	if (source != NULL && source->ref_count == 1 &&
1336 	    (source->flags & OBJ_ANON) != 0)
1337 		return;
1338 
1339 	/*
1340 	 * Allocate a new object with the given length.
1341 	 */
1342 	result = vm_object_allocate_anon(atop(length), source, cred, length);
1343 
1344 	/*
1345 	 * Store the offset into the source object, and fix up the offset into
1346 	 * the new object.
1347 	 */
1348 	result->backing_object_offset = *offset;
1349 
1350 	if (shared || source != NULL) {
1351 		VM_OBJECT_WLOCK(result);
1352 
1353 		/*
1354 		 * The new object shadows the source object, adding a
1355 		 * reference to it.  Our caller changes his reference
1356 		 * to point to the new object, removing a reference to
1357 		 * the source object.  Net result: no change of
1358 		 * reference count, unless the caller needs to add one
1359 		 * more reference due to forking a shared map entry.
1360 		 */
1361 		if (shared) {
1362 			vm_object_reference_locked(result);
1363 			vm_object_clear_flag(result, OBJ_ONEMAPPING);
1364 		}
1365 
1366 		/*
1367 		 * Try to optimize the result object's page color when
1368 		 * shadowing in order to maintain page coloring
1369 		 * consistency in the combined shadowed object.
1370 		 */
1371 		if (source != NULL) {
1372 			vm_object_backing_insert(result, source);
1373 			result->domain = source->domain;
1374 #if VM_NRESERVLEVEL > 0
1375 			result->flags |= source->flags & OBJ_COLORED;
1376 			result->pg_color = (source->pg_color +
1377 			    OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1378 			    1)) - 1);
1379 #endif
1380 		}
1381 		VM_OBJECT_WUNLOCK(result);
1382 	}
1383 
1384 	/*
1385 	 * Return the new things
1386 	 */
1387 	*offset = 0;
1388 	*object = result;
1389 }
1390 
1391 /*
1392  *	vm_object_split:
1393  *
1394  * Split the pages in a map entry into a new object.  This affords
1395  * easier removal of unused pages, and keeps object inheritance from
1396  * being a negative impact on memory usage.
1397  */
1398 void
1399 vm_object_split(vm_map_entry_t entry)
1400 {
1401 	vm_page_t m, m_next;
1402 	vm_object_t orig_object, new_object, source;
1403 	vm_pindex_t idx, offidxstart;
1404 	vm_size_t size;
1405 
1406 	orig_object = entry->object.vm_object;
1407 	if ((orig_object->flags & OBJ_ANON) == 0)
1408 		return;
1409 	if (orig_object->ref_count <= 1)
1410 		return;
1411 	VM_OBJECT_WUNLOCK(orig_object);
1412 
1413 	offidxstart = OFF_TO_IDX(entry->offset);
1414 	size = atop(entry->end - entry->start);
1415 
1416 	/*
1417 	 * If swap_pager_copy() is later called, it will convert new_object
1418 	 * into a swap object.
1419 	 */
1420 	new_object = vm_object_allocate_anon(size, orig_object,
1421 	    orig_object->cred, ptoa(size));
1422 
1423 	/*
1424 	 * At this point, the new object is still private, so the order in
1425 	 * which the original and new objects are locked does not matter.
1426 	 */
1427 	VM_OBJECT_WLOCK(new_object);
1428 	VM_OBJECT_WLOCK(orig_object);
1429 	new_object->domain = orig_object->domain;
1430 	source = orig_object->backing_object;
1431 	if (source != NULL) {
1432 		if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) {
1433 			VM_OBJECT_WLOCK(source);
1434 			if ((source->flags & OBJ_DEAD) != 0) {
1435 				VM_OBJECT_WUNLOCK(source);
1436 				VM_OBJECT_WUNLOCK(orig_object);
1437 				VM_OBJECT_WUNLOCK(new_object);
1438 				new_object->cred = NULL;
1439 				vm_object_deallocate(new_object);
1440 				VM_OBJECT_WLOCK(orig_object);
1441 				return;
1442 			}
1443 			vm_object_backing_insert_locked(new_object, source);
1444 			vm_object_reference_locked(source);	/* for new_object */
1445 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1446 			VM_OBJECT_WUNLOCK(source);
1447 		} else {
1448 			vm_object_backing_insert(new_object, source);
1449 			vm_object_reference(source);
1450 		}
1451 		new_object->backing_object_offset =
1452 			orig_object->backing_object_offset + entry->offset;
1453 	}
1454 	if (orig_object->cred != NULL) {
1455 		crhold(orig_object->cred);
1456 		KASSERT(orig_object->charge >= ptoa(size),
1457 		    ("orig_object->charge < 0"));
1458 		orig_object->charge -= ptoa(size);
1459 	}
1460 retry:
1461 	m = vm_page_find_least(orig_object, offidxstart);
1462 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1463 	    m = m_next) {
1464 		m_next = TAILQ_NEXT(m, listq);
1465 
1466 		/*
1467 		 * We must wait for pending I/O to complete before we can
1468 		 * rename the page.
1469 		 *
1470 		 * We do not have to VM_PROT_NONE the page as mappings should
1471 		 * not be changed by this operation.
1472 		 */
1473 		if (vm_page_tryxbusy(m) == 0) {
1474 			VM_OBJECT_WUNLOCK(new_object);
1475 			vm_page_sleep_if_busy(m, "spltwt");
1476 			VM_OBJECT_WLOCK(new_object);
1477 			goto retry;
1478 		}
1479 
1480 		/* vm_page_rename() will dirty the page. */
1481 		if (vm_page_rename(m, new_object, idx)) {
1482 			vm_page_xunbusy(m);
1483 			VM_OBJECT_WUNLOCK(new_object);
1484 			VM_OBJECT_WUNLOCK(orig_object);
1485 			vm_radix_wait();
1486 			VM_OBJECT_WLOCK(orig_object);
1487 			VM_OBJECT_WLOCK(new_object);
1488 			goto retry;
1489 		}
1490 
1491 #if VM_NRESERVLEVEL > 0
1492 		/*
1493 		 * If some of the reservation's allocated pages remain with
1494 		 * the original object, then transferring the reservation to
1495 		 * the new object is neither particularly beneficial nor
1496 		 * particularly harmful as compared to leaving the reservation
1497 		 * with the original object.  If, however, all of the
1498 		 * reservation's allocated pages are transferred to the new
1499 		 * object, then transferring the reservation is typically
1500 		 * beneficial.  Determining which of these two cases applies
1501 		 * would be more costly than unconditionally renaming the
1502 		 * reservation.
1503 		 */
1504 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1505 #endif
1506 		if (orig_object->type != OBJT_SWAP)
1507 			vm_page_xunbusy(m);
1508 	}
1509 	if (orig_object->type == OBJT_SWAP) {
1510 		/*
1511 		 * swap_pager_copy() can sleep, in which case the orig_object's
1512 		 * and new_object's locks are released and reacquired.
1513 		 */
1514 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1515 		TAILQ_FOREACH(m, &new_object->memq, listq)
1516 			vm_page_xunbusy(m);
1517 	}
1518 	VM_OBJECT_WUNLOCK(orig_object);
1519 	VM_OBJECT_WUNLOCK(new_object);
1520 	entry->object.vm_object = new_object;
1521 	entry->offset = 0LL;
1522 	vm_object_deallocate(orig_object);
1523 	VM_OBJECT_WLOCK(new_object);
1524 }
1525 
1526 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1527 #define	OBSC_COLLAPSE_WAIT	0x0004
1528 
1529 static vm_page_t
1530 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1531     int op)
1532 {
1533 	vm_object_t backing_object;
1534 
1535 	VM_OBJECT_ASSERT_WLOCKED(object);
1536 	backing_object = object->backing_object;
1537 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1538 
1539 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1540 	    ("invalid ownership %p %p %p", p, object, backing_object));
1541 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1542 		return (next);
1543 	/* The page is only NULL when rename fails. */
1544 	if (p == NULL) {
1545 		VM_OBJECT_WUNLOCK(object);
1546 		VM_OBJECT_WUNLOCK(backing_object);
1547 		vm_radix_wait();
1548 	} else {
1549 		if (p->object == object)
1550 			VM_OBJECT_WUNLOCK(backing_object);
1551 		else
1552 			VM_OBJECT_WUNLOCK(object);
1553 		vm_page_busy_sleep(p, "vmocol", false);
1554 	}
1555 	VM_OBJECT_WLOCK(object);
1556 	VM_OBJECT_WLOCK(backing_object);
1557 	return (TAILQ_FIRST(&backing_object->memq));
1558 }
1559 
1560 static bool
1561 vm_object_scan_all_shadowed(vm_object_t object)
1562 {
1563 	vm_object_t backing_object;
1564 	vm_page_t p, pp;
1565 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1566 
1567 	VM_OBJECT_ASSERT_WLOCKED(object);
1568 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1569 
1570 	backing_object = object->backing_object;
1571 
1572 	if ((backing_object->flags & OBJ_ANON) == 0)
1573 		return (false);
1574 
1575 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1576 	p = vm_page_find_least(backing_object, pi);
1577 	ps = swap_pager_find_least(backing_object, pi);
1578 
1579 	/*
1580 	 * Only check pages inside the parent object's range and
1581 	 * inside the parent object's mapping of the backing object.
1582 	 */
1583 	for (;; pi++) {
1584 		if (p != NULL && p->pindex < pi)
1585 			p = TAILQ_NEXT(p, listq);
1586 		if (ps < pi)
1587 			ps = swap_pager_find_least(backing_object, pi);
1588 		if (p == NULL && ps >= backing_object->size)
1589 			break;
1590 		else if (p == NULL)
1591 			pi = ps;
1592 		else
1593 			pi = MIN(p->pindex, ps);
1594 
1595 		new_pindex = pi - backing_offset_index;
1596 		if (new_pindex >= object->size)
1597 			break;
1598 
1599 		/*
1600 		 * See if the parent has the page or if the parent's object
1601 		 * pager has the page.  If the parent has the page but the page
1602 		 * is not valid, the parent's object pager must have the page.
1603 		 *
1604 		 * If this fails, the parent does not completely shadow the
1605 		 * object and we might as well give up now.
1606 		 */
1607 		pp = vm_page_lookup(object, new_pindex);
1608 		/*
1609 		 * The valid check here is stable due to object lock being
1610 		 * required to clear valid and initiate paging.
1611 		 */
1612 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1613 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1614 			return (false);
1615 	}
1616 	return (true);
1617 }
1618 
1619 static bool
1620 vm_object_collapse_scan(vm_object_t object, int op)
1621 {
1622 	vm_object_t backing_object;
1623 	vm_page_t next, p, pp;
1624 	vm_pindex_t backing_offset_index, new_pindex;
1625 
1626 	VM_OBJECT_ASSERT_WLOCKED(object);
1627 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1628 
1629 	backing_object = object->backing_object;
1630 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1631 
1632 	/*
1633 	 * Initial conditions
1634 	 */
1635 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1636 		vm_object_set_flag(backing_object, OBJ_DEAD);
1637 
1638 	/*
1639 	 * Our scan
1640 	 */
1641 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1642 		next = TAILQ_NEXT(p, listq);
1643 		new_pindex = p->pindex - backing_offset_index;
1644 
1645 		/*
1646 		 * Check for busy page
1647 		 */
1648 		if (vm_page_tryxbusy(p) == 0) {
1649 			next = vm_object_collapse_scan_wait(object, p, next, op);
1650 			continue;
1651 		}
1652 
1653 		KASSERT(p->object == backing_object,
1654 		    ("vm_object_collapse_scan: object mismatch"));
1655 
1656 		if (p->pindex < backing_offset_index ||
1657 		    new_pindex >= object->size) {
1658 			if (backing_object->type == OBJT_SWAP)
1659 				swap_pager_freespace(backing_object, p->pindex,
1660 				    1);
1661 
1662 			KASSERT(!pmap_page_is_mapped(p),
1663 			    ("freeing mapped page %p", p));
1664 			if (vm_page_remove(p))
1665 				vm_page_free(p);
1666 			else
1667 				vm_page_xunbusy(p);
1668 			continue;
1669 		}
1670 
1671 		pp = vm_page_lookup(object, new_pindex);
1672 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1673 			vm_page_xunbusy(p);
1674 			/*
1675 			 * The page in the parent is busy and possibly not
1676 			 * (yet) valid.  Until its state is finalized by the
1677 			 * busy bit owner, we can't tell whether it shadows the
1678 			 * original page.  Therefore, we must either skip it
1679 			 * and the original (backing_object) page or wait for
1680 			 * its state to be finalized.
1681 			 *
1682 			 * This is due to a race with vm_fault() where we must
1683 			 * unbusy the original (backing_obj) page before we can
1684 			 * (re)lock the parent.  Hence we can get here.
1685 			 */
1686 			next = vm_object_collapse_scan_wait(object, pp, next,
1687 			    op);
1688 			continue;
1689 		}
1690 
1691 		KASSERT(pp == NULL || !vm_page_none_valid(pp),
1692 		    ("unbusy invalid page %p", pp));
1693 
1694 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1695 			NULL)) {
1696 			/*
1697 			 * The page already exists in the parent OR swap exists
1698 			 * for this location in the parent.  Leave the parent's
1699 			 * page alone.  Destroy the original page from the
1700 			 * backing object.
1701 			 */
1702 			if (backing_object->type == OBJT_SWAP)
1703 				swap_pager_freespace(backing_object, p->pindex,
1704 				    1);
1705 			KASSERT(!pmap_page_is_mapped(p),
1706 			    ("freeing mapped page %p", p));
1707 			if (vm_page_remove(p))
1708 				vm_page_free(p);
1709 			else
1710 				vm_page_xunbusy(p);
1711 			if (pp != NULL)
1712 				vm_page_xunbusy(pp);
1713 			continue;
1714 		}
1715 
1716 		/*
1717 		 * Page does not exist in parent, rename the page from the
1718 		 * backing object to the main object.
1719 		 *
1720 		 * If the page was mapped to a process, it can remain mapped
1721 		 * through the rename.  vm_page_rename() will dirty the page.
1722 		 */
1723 		if (vm_page_rename(p, object, new_pindex)) {
1724 			vm_page_xunbusy(p);
1725 			if (pp != NULL)
1726 				vm_page_xunbusy(pp);
1727 			next = vm_object_collapse_scan_wait(object, NULL, next,
1728 			    op);
1729 			continue;
1730 		}
1731 
1732 		/* Use the old pindex to free the right page. */
1733 		if (backing_object->type == OBJT_SWAP)
1734 			swap_pager_freespace(backing_object,
1735 			    new_pindex + backing_offset_index, 1);
1736 
1737 #if VM_NRESERVLEVEL > 0
1738 		/*
1739 		 * Rename the reservation.
1740 		 */
1741 		vm_reserv_rename(p, object, backing_object,
1742 		    backing_offset_index);
1743 #endif
1744 		vm_page_xunbusy(p);
1745 	}
1746 	return (true);
1747 }
1748 
1749 
1750 /*
1751  * this version of collapse allows the operation to occur earlier and
1752  * when paging_in_progress is true for an object...  This is not a complete
1753  * operation, but should plug 99.9% of the rest of the leaks.
1754  */
1755 static void
1756 vm_object_qcollapse(vm_object_t object)
1757 {
1758 	vm_object_t backing_object = object->backing_object;
1759 
1760 	VM_OBJECT_ASSERT_WLOCKED(object);
1761 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1762 
1763 	if (backing_object->ref_count != 1)
1764 		return;
1765 
1766 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1767 }
1768 
1769 /*
1770  *	vm_object_collapse:
1771  *
1772  *	Collapse an object with the object backing it.
1773  *	Pages in the backing object are moved into the
1774  *	parent, and the backing object is deallocated.
1775  */
1776 void
1777 vm_object_collapse(vm_object_t object)
1778 {
1779 	vm_object_t backing_object, new_backing_object;
1780 
1781 	VM_OBJECT_ASSERT_WLOCKED(object);
1782 
1783 	while (TRUE) {
1784 		/*
1785 		 * Verify that the conditions are right for collapse:
1786 		 *
1787 		 * The object exists and the backing object exists.
1788 		 */
1789 		if ((backing_object = object->backing_object) == NULL)
1790 			break;
1791 
1792 		/*
1793 		 * we check the backing object first, because it is most likely
1794 		 * not collapsable.
1795 		 */
1796 		if ((backing_object->flags & OBJ_ANON) == 0)
1797 			break;
1798 		VM_OBJECT_WLOCK(backing_object);
1799 		if ((backing_object->flags & OBJ_DEAD) != 0 ||
1800 		    (object->flags & (OBJ_DEAD | OBJ_ANON)) != OBJ_ANON) {
1801 			VM_OBJECT_WUNLOCK(backing_object);
1802 			break;
1803 		}
1804 
1805 		if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1806 		    REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1807 			vm_object_qcollapse(object);
1808 			VM_OBJECT_WUNLOCK(backing_object);
1809 			break;
1810 		}
1811 
1812 		/*
1813 		 * We know that we can either collapse the backing object (if
1814 		 * the parent is the only reference to it) or (perhaps) have
1815 		 * the parent bypass the object if the parent happens to shadow
1816 		 * all the resident pages in the entire backing object.
1817 		 *
1818 		 * This is ignoring pager-backed pages such as swap pages.
1819 		 * vm_object_collapse_scan fails the shadowing test in this
1820 		 * case.
1821 		 */
1822 		if (backing_object->ref_count == 1) {
1823 			vm_object_pip_add(object, 1);
1824 			vm_object_pip_add(backing_object, 1);
1825 
1826 			/*
1827 			 * If there is exactly one reference to the backing
1828 			 * object, we can collapse it into the parent.
1829 			 */
1830 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1831 
1832 #if VM_NRESERVLEVEL > 0
1833 			/*
1834 			 * Break any reservations from backing_object.
1835 			 */
1836 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1837 				vm_reserv_break_all(backing_object);
1838 #endif
1839 
1840 			/*
1841 			 * Move the pager from backing_object to object.
1842 			 */
1843 			if (backing_object->type == OBJT_SWAP) {
1844 				/*
1845 				 * swap_pager_copy() can sleep, in which case
1846 				 * the backing_object's and object's locks are
1847 				 * released and reacquired.
1848 				 * Since swap_pager_copy() is being asked to
1849 				 * destroy the source, it will change the
1850 				 * backing_object's type to OBJT_DEFAULT.
1851 				 */
1852 				swap_pager_copy(
1853 				    backing_object,
1854 				    object,
1855 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1856 			}
1857 			/*
1858 			 * Object now shadows whatever backing_object did.
1859 			 * Note that the reference to
1860 			 * backing_object->backing_object moves from within
1861 			 * backing_object to within object.
1862 			 */
1863 			vm_object_backing_remove_locked(object);
1864 			new_backing_object = backing_object->backing_object;
1865 			if (new_backing_object != NULL) {
1866 				VM_OBJECT_WLOCK(new_backing_object);
1867 				vm_object_backing_remove_locked(backing_object);
1868 				vm_object_backing_insert_locked(object,
1869 				    new_backing_object);
1870 				VM_OBJECT_WUNLOCK(new_backing_object);
1871 			}
1872 			object->backing_object_offset +=
1873 			    backing_object->backing_object_offset;
1874 
1875 			/*
1876 			 * Discard backing_object.
1877 			 *
1878 			 * Since the backing object has no pages, no pager left,
1879 			 * and no object references within it, all that is
1880 			 * necessary is to dispose of it.
1881 			 */
1882 			KASSERT(backing_object->ref_count == 1, (
1883 "backing_object %p was somehow re-referenced during collapse!",
1884 			    backing_object));
1885 			vm_object_pip_wakeup(backing_object);
1886 			backing_object->type = OBJT_DEAD;
1887 			refcount_release(&backing_object->ref_count);
1888 			VM_OBJECT_WUNLOCK(backing_object);
1889 			vm_object_destroy(backing_object);
1890 
1891 			vm_object_pip_wakeup(object);
1892 			counter_u64_add(object_collapses, 1);
1893 		} else {
1894 			/*
1895 			 * If we do not entirely shadow the backing object,
1896 			 * there is nothing we can do so we give up.
1897 			 */
1898 			if (object->resident_page_count != object->size &&
1899 			    !vm_object_scan_all_shadowed(object)) {
1900 				VM_OBJECT_WUNLOCK(backing_object);
1901 				break;
1902 			}
1903 
1904 			/*
1905 			 * Make the parent shadow the next object in the
1906 			 * chain.  Deallocating backing_object will not remove
1907 			 * it, since its reference count is at least 2.
1908 			 */
1909 			vm_object_backing_remove_locked(object);
1910 
1911 			new_backing_object = backing_object->backing_object;
1912 			if (new_backing_object != NULL) {
1913 				vm_object_backing_insert(object,
1914 				    new_backing_object);
1915 				vm_object_reference(new_backing_object);
1916 				object->backing_object_offset +=
1917 					backing_object->backing_object_offset;
1918 			}
1919 
1920 			/*
1921 			 * Drop the reference count on backing_object. Since
1922 			 * its ref_count was at least 2, it will not vanish.
1923 			 */
1924 			refcount_release(&backing_object->ref_count);
1925 			VM_OBJECT_WUNLOCK(backing_object);
1926 			counter_u64_add(object_bypasses, 1);
1927 		}
1928 
1929 		/*
1930 		 * Try again with this object's new backing object.
1931 		 */
1932 	}
1933 }
1934 
1935 /*
1936  *	vm_object_page_remove:
1937  *
1938  *	For the given object, either frees or invalidates each of the
1939  *	specified pages.  In general, a page is freed.  However, if a page is
1940  *	wired for any reason other than the existence of a managed, wired
1941  *	mapping, then it may be invalidated but not removed from the object.
1942  *	Pages are specified by the given range ["start", "end") and the option
1943  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1944  *	extends from "start" to the end of the object.  If the option
1945  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1946  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1947  *	specified, then the pages within the specified range must have no
1948  *	mappings.  Otherwise, if this option is not specified, any mappings to
1949  *	the specified pages are removed before the pages are freed or
1950  *	invalidated.
1951  *
1952  *	In general, this operation should only be performed on objects that
1953  *	contain managed pages.  There are, however, two exceptions.  First, it
1954  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1955  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1956  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1957  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1958  *
1959  *	The object must be locked.
1960  */
1961 void
1962 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1963     int options)
1964 {
1965 	vm_page_t p, next;
1966 
1967 	VM_OBJECT_ASSERT_WLOCKED(object);
1968 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1969 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1970 	    ("vm_object_page_remove: illegal options for object %p", object));
1971 	if (object->resident_page_count == 0)
1972 		return;
1973 	vm_object_pip_add(object, 1);
1974 again:
1975 	p = vm_page_find_least(object, start);
1976 
1977 	/*
1978 	 * Here, the variable "p" is either (1) the page with the least pindex
1979 	 * greater than or equal to the parameter "start" or (2) NULL.
1980 	 */
1981 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1982 		next = TAILQ_NEXT(p, listq);
1983 
1984 		/*
1985 		 * If the page is wired for any reason besides the existence
1986 		 * of managed, wired mappings, then it cannot be freed.  For
1987 		 * example, fictitious pages, which represent device memory,
1988 		 * are inherently wired and cannot be freed.  They can,
1989 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1990 		 * not specified.
1991 		 */
1992 		if (vm_page_tryxbusy(p) == 0) {
1993 			vm_page_sleep_if_busy(p, "vmopar");
1994 			goto again;
1995 		}
1996 		if (vm_page_wired(p)) {
1997 wired:
1998 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1999 			    object->ref_count != 0)
2000 				pmap_remove_all(p);
2001 			if ((options & OBJPR_CLEANONLY) == 0) {
2002 				vm_page_invalid(p);
2003 				vm_page_undirty(p);
2004 			}
2005 			vm_page_xunbusy(p);
2006 			continue;
2007 		}
2008 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2009 		    ("vm_object_page_remove: page %p is fictitious", p));
2010 		if ((options & OBJPR_CLEANONLY) != 0 &&
2011 		    !vm_page_none_valid(p)) {
2012 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2013 			    object->ref_count != 0 &&
2014 			    !vm_page_try_remove_write(p))
2015 				goto wired;
2016 			if (p->dirty != 0) {
2017 				vm_page_xunbusy(p);
2018 				continue;
2019 			}
2020 		}
2021 		if ((options & OBJPR_NOTMAPPED) == 0 &&
2022 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
2023 			goto wired;
2024 		vm_page_free(p);
2025 	}
2026 	vm_object_pip_wakeup(object);
2027 }
2028 
2029 /*
2030  *	vm_object_page_noreuse:
2031  *
2032  *	For the given object, attempt to move the specified pages to
2033  *	the head of the inactive queue.  This bypasses regular LRU
2034  *	operation and allows the pages to be reused quickly under memory
2035  *	pressure.  If a page is wired for any reason, then it will not
2036  *	be queued.  Pages are specified by the range ["start", "end").
2037  *	As a special case, if "end" is zero, then the range extends from
2038  *	"start" to the end of the object.
2039  *
2040  *	This operation should only be performed on objects that
2041  *	contain non-fictitious, managed pages.
2042  *
2043  *	The object must be locked.
2044  */
2045 void
2046 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2047 {
2048 	struct mtx *mtx;
2049 	vm_page_t p, next;
2050 
2051 	VM_OBJECT_ASSERT_LOCKED(object);
2052 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2053 	    ("vm_object_page_noreuse: illegal object %p", object));
2054 	if (object->resident_page_count == 0)
2055 		return;
2056 	p = vm_page_find_least(object, start);
2057 
2058 	/*
2059 	 * Here, the variable "p" is either (1) the page with the least pindex
2060 	 * greater than or equal to the parameter "start" or (2) NULL.
2061 	 */
2062 	mtx = NULL;
2063 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2064 		next = TAILQ_NEXT(p, listq);
2065 		vm_page_change_lock(p, &mtx);
2066 		vm_page_deactivate_noreuse(p);
2067 	}
2068 	if (mtx != NULL)
2069 		mtx_unlock(mtx);
2070 }
2071 
2072 /*
2073  *	Populate the specified range of the object with valid pages.  Returns
2074  *	TRUE if the range is successfully populated and FALSE otherwise.
2075  *
2076  *	Note: This function should be optimized to pass a larger array of
2077  *	pages to vm_pager_get_pages() before it is applied to a non-
2078  *	OBJT_DEVICE object.
2079  *
2080  *	The object must be locked.
2081  */
2082 boolean_t
2083 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2084 {
2085 	vm_page_t m;
2086 	vm_pindex_t pindex;
2087 	int rv;
2088 
2089 	VM_OBJECT_ASSERT_WLOCKED(object);
2090 	for (pindex = start; pindex < end; pindex++) {
2091 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2092 		if (rv != VM_PAGER_OK)
2093 			break;
2094 
2095 		/*
2096 		 * Keep "m" busy because a subsequent iteration may unlock
2097 		 * the object.
2098 		 */
2099 	}
2100 	if (pindex > start) {
2101 		m = vm_page_lookup(object, start);
2102 		while (m != NULL && m->pindex < pindex) {
2103 			vm_page_xunbusy(m);
2104 			m = TAILQ_NEXT(m, listq);
2105 		}
2106 	}
2107 	return (pindex == end);
2108 }
2109 
2110 /*
2111  *	Routine:	vm_object_coalesce
2112  *	Function:	Coalesces two objects backing up adjoining
2113  *			regions of memory into a single object.
2114  *
2115  *	returns TRUE if objects were combined.
2116  *
2117  *	NOTE:	Only works at the moment if the second object is NULL -
2118  *		if it's not, which object do we lock first?
2119  *
2120  *	Parameters:
2121  *		prev_object	First object to coalesce
2122  *		prev_offset	Offset into prev_object
2123  *		prev_size	Size of reference to prev_object
2124  *		next_size	Size of reference to the second object
2125  *		reserved	Indicator that extension region has
2126  *				swap accounted for
2127  *
2128  *	Conditions:
2129  *	The object must *not* be locked.
2130  */
2131 boolean_t
2132 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2133     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2134 {
2135 	vm_pindex_t next_pindex;
2136 
2137 	if (prev_object == NULL)
2138 		return (TRUE);
2139 	if ((prev_object->flags & OBJ_ANON) == 0)
2140 		return (FALSE);
2141 
2142 	VM_OBJECT_WLOCK(prev_object);
2143 	/*
2144 	 * Try to collapse the object first
2145 	 */
2146 	vm_object_collapse(prev_object);
2147 
2148 	/*
2149 	 * Can't coalesce if: . more than one reference . paged out . shadows
2150 	 * another object . has a copy elsewhere (any of which mean that the
2151 	 * pages not mapped to prev_entry may be in use anyway)
2152 	 */
2153 	if (prev_object->backing_object != NULL) {
2154 		VM_OBJECT_WUNLOCK(prev_object);
2155 		return (FALSE);
2156 	}
2157 
2158 	prev_size >>= PAGE_SHIFT;
2159 	next_size >>= PAGE_SHIFT;
2160 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2161 
2162 	if (prev_object->ref_count > 1 &&
2163 	    prev_object->size != next_pindex &&
2164 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2165 		VM_OBJECT_WUNLOCK(prev_object);
2166 		return (FALSE);
2167 	}
2168 
2169 	/*
2170 	 * Account for the charge.
2171 	 */
2172 	if (prev_object->cred != NULL) {
2173 
2174 		/*
2175 		 * If prev_object was charged, then this mapping,
2176 		 * although not charged now, may become writable
2177 		 * later. Non-NULL cred in the object would prevent
2178 		 * swap reservation during enabling of the write
2179 		 * access, so reserve swap now. Failed reservation
2180 		 * cause allocation of the separate object for the map
2181 		 * entry, and swap reservation for this entry is
2182 		 * managed in appropriate time.
2183 		 */
2184 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2185 		    prev_object->cred)) {
2186 			VM_OBJECT_WUNLOCK(prev_object);
2187 			return (FALSE);
2188 		}
2189 		prev_object->charge += ptoa(next_size);
2190 	}
2191 
2192 	/*
2193 	 * Remove any pages that may still be in the object from a previous
2194 	 * deallocation.
2195 	 */
2196 	if (next_pindex < prev_object->size) {
2197 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2198 		    next_size, 0);
2199 		if (prev_object->type == OBJT_SWAP)
2200 			swap_pager_freespace(prev_object,
2201 					     next_pindex, next_size);
2202 #if 0
2203 		if (prev_object->cred != NULL) {
2204 			KASSERT(prev_object->charge >=
2205 			    ptoa(prev_object->size - next_pindex),
2206 			    ("object %p overcharged 1 %jx %jx", prev_object,
2207 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2208 			prev_object->charge -= ptoa(prev_object->size -
2209 			    next_pindex);
2210 		}
2211 #endif
2212 	}
2213 
2214 	/*
2215 	 * Extend the object if necessary.
2216 	 */
2217 	if (next_pindex + next_size > prev_object->size)
2218 		prev_object->size = next_pindex + next_size;
2219 
2220 	VM_OBJECT_WUNLOCK(prev_object);
2221 	return (TRUE);
2222 }
2223 
2224 void
2225 vm_object_set_writeable_dirty(vm_object_t object)
2226 {
2227 
2228 	/* Only set for vnodes & tmpfs */
2229 	if (object->type != OBJT_VNODE &&
2230 	    (object->flags & OBJ_TMPFS_NODE) == 0)
2231 		return;
2232 	atomic_add_int(&object->generation, 1);
2233 }
2234 
2235 /*
2236  *	vm_object_unwire:
2237  *
2238  *	For each page offset within the specified range of the given object,
2239  *	find the highest-level page in the shadow chain and unwire it.  A page
2240  *	must exist at every page offset, and the highest-level page must be
2241  *	wired.
2242  */
2243 void
2244 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2245     uint8_t queue)
2246 {
2247 	vm_object_t tobject, t1object;
2248 	vm_page_t m, tm;
2249 	vm_pindex_t end_pindex, pindex, tpindex;
2250 	int depth, locked_depth;
2251 
2252 	KASSERT((offset & PAGE_MASK) == 0,
2253 	    ("vm_object_unwire: offset is not page aligned"));
2254 	KASSERT((length & PAGE_MASK) == 0,
2255 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2256 	/* The wired count of a fictitious page never changes. */
2257 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2258 		return;
2259 	pindex = OFF_TO_IDX(offset);
2260 	end_pindex = pindex + atop(length);
2261 again:
2262 	locked_depth = 1;
2263 	VM_OBJECT_RLOCK(object);
2264 	m = vm_page_find_least(object, pindex);
2265 	while (pindex < end_pindex) {
2266 		if (m == NULL || pindex < m->pindex) {
2267 			/*
2268 			 * The first object in the shadow chain doesn't
2269 			 * contain a page at the current index.  Therefore,
2270 			 * the page must exist in a backing object.
2271 			 */
2272 			tobject = object;
2273 			tpindex = pindex;
2274 			depth = 0;
2275 			do {
2276 				tpindex +=
2277 				    OFF_TO_IDX(tobject->backing_object_offset);
2278 				tobject = tobject->backing_object;
2279 				KASSERT(tobject != NULL,
2280 				    ("vm_object_unwire: missing page"));
2281 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2282 					goto next_page;
2283 				depth++;
2284 				if (depth == locked_depth) {
2285 					locked_depth++;
2286 					VM_OBJECT_RLOCK(tobject);
2287 				}
2288 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2289 			    NULL);
2290 		} else {
2291 			tm = m;
2292 			m = TAILQ_NEXT(m, listq);
2293 		}
2294 		if (vm_page_trysbusy(tm) == 0) {
2295 			for (tobject = object; locked_depth >= 1;
2296 			    locked_depth--) {
2297 				t1object = tobject->backing_object;
2298 				if (tm->object != tobject)
2299 					VM_OBJECT_RUNLOCK(tobject);
2300 				tobject = t1object;
2301 			}
2302 			vm_page_busy_sleep(tm, "unwbo", true);
2303 			goto again;
2304 		}
2305 		vm_page_unwire(tm, queue);
2306 		vm_page_sunbusy(tm);
2307 next_page:
2308 		pindex++;
2309 	}
2310 	/* Release the accumulated object locks. */
2311 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2312 		t1object = tobject->backing_object;
2313 		VM_OBJECT_RUNLOCK(tobject);
2314 		tobject = t1object;
2315 	}
2316 }
2317 
2318 /*
2319  * Return the vnode for the given object, or NULL if none exists.
2320  * For tmpfs objects, the function may return NULL if there is
2321  * no vnode allocated at the time of the call.
2322  */
2323 struct vnode *
2324 vm_object_vnode(vm_object_t object)
2325 {
2326 	struct vnode *vp;
2327 
2328 	VM_OBJECT_ASSERT_LOCKED(object);
2329 	if (object->type == OBJT_VNODE) {
2330 		vp = object->handle;
2331 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2332 	} else if (object->type == OBJT_SWAP &&
2333 	    (object->flags & OBJ_TMPFS) != 0) {
2334 		vp = object->un_pager.swp.swp_tmpfs;
2335 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2336 	} else {
2337 		vp = NULL;
2338 	}
2339 	return (vp);
2340 }
2341 
2342 
2343 /*
2344  * Busy the vm object.  This prevents new pages belonging to the object from
2345  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2346  * for checking page state before proceeding.
2347  */
2348 void
2349 vm_object_busy(vm_object_t obj)
2350 {
2351 
2352 	VM_OBJECT_ASSERT_LOCKED(obj);
2353 
2354 	refcount_acquire(&obj->busy);
2355 	/* The fence is required to order loads of page busy. */
2356 	atomic_thread_fence_acq_rel();
2357 }
2358 
2359 void
2360 vm_object_unbusy(vm_object_t obj)
2361 {
2362 
2363 
2364 	refcount_release(&obj->busy);
2365 }
2366 
2367 void
2368 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2369 {
2370 
2371 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2372 
2373 	if (obj->busy)
2374 		refcount_sleep(&obj->busy, wmesg, PVM);
2375 }
2376 
2377 /*
2378  * Return the kvme type of the given object.
2379  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2380  */
2381 int
2382 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2383 {
2384 
2385 	VM_OBJECT_ASSERT_LOCKED(object);
2386 	if (vpp != NULL)
2387 		*vpp = vm_object_vnode(object);
2388 	switch (object->type) {
2389 	case OBJT_DEFAULT:
2390 		return (KVME_TYPE_DEFAULT);
2391 	case OBJT_VNODE:
2392 		return (KVME_TYPE_VNODE);
2393 	case OBJT_SWAP:
2394 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2395 			return (KVME_TYPE_VNODE);
2396 		return (KVME_TYPE_SWAP);
2397 	case OBJT_DEVICE:
2398 		return (KVME_TYPE_DEVICE);
2399 	case OBJT_PHYS:
2400 		return (KVME_TYPE_PHYS);
2401 	case OBJT_DEAD:
2402 		return (KVME_TYPE_DEAD);
2403 	case OBJT_SG:
2404 		return (KVME_TYPE_SG);
2405 	case OBJT_MGTDEVICE:
2406 		return (KVME_TYPE_MGTDEVICE);
2407 	default:
2408 		return (KVME_TYPE_UNKNOWN);
2409 	}
2410 }
2411 
2412 static int
2413 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2414 {
2415 	struct kinfo_vmobject *kvo;
2416 	char *fullpath, *freepath;
2417 	struct vnode *vp;
2418 	struct vattr va;
2419 	vm_object_t obj;
2420 	vm_page_t m;
2421 	int count, error;
2422 
2423 	if (req->oldptr == NULL) {
2424 		/*
2425 		 * If an old buffer has not been provided, generate an
2426 		 * estimate of the space needed for a subsequent call.
2427 		 */
2428 		mtx_lock(&vm_object_list_mtx);
2429 		count = 0;
2430 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2431 			if (obj->type == OBJT_DEAD)
2432 				continue;
2433 			count++;
2434 		}
2435 		mtx_unlock(&vm_object_list_mtx);
2436 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2437 		    count * 11 / 10));
2438 	}
2439 
2440 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2441 	error = 0;
2442 
2443 	/*
2444 	 * VM objects are type stable and are never removed from the
2445 	 * list once added.  This allows us to safely read obj->object_list
2446 	 * after reacquiring the VM object lock.
2447 	 */
2448 	mtx_lock(&vm_object_list_mtx);
2449 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2450 		if (obj->type == OBJT_DEAD)
2451 			continue;
2452 		VM_OBJECT_RLOCK(obj);
2453 		if (obj->type == OBJT_DEAD) {
2454 			VM_OBJECT_RUNLOCK(obj);
2455 			continue;
2456 		}
2457 		mtx_unlock(&vm_object_list_mtx);
2458 		kvo->kvo_size = ptoa(obj->size);
2459 		kvo->kvo_resident = obj->resident_page_count;
2460 		kvo->kvo_ref_count = obj->ref_count;
2461 		kvo->kvo_shadow_count = obj->shadow_count;
2462 		kvo->kvo_memattr = obj->memattr;
2463 		kvo->kvo_active = 0;
2464 		kvo->kvo_inactive = 0;
2465 		TAILQ_FOREACH(m, &obj->memq, listq) {
2466 			/*
2467 			 * A page may belong to the object but be
2468 			 * dequeued and set to PQ_NONE while the
2469 			 * object lock is not held.  This makes the
2470 			 * reads of m->queue below racy, and we do not
2471 			 * count pages set to PQ_NONE.  However, this
2472 			 * sysctl is only meant to give an
2473 			 * approximation of the system anyway.
2474 			 */
2475 			if (m->a.queue == PQ_ACTIVE)
2476 				kvo->kvo_active++;
2477 			else if (m->a.queue == PQ_INACTIVE)
2478 				kvo->kvo_inactive++;
2479 		}
2480 
2481 		kvo->kvo_vn_fileid = 0;
2482 		kvo->kvo_vn_fsid = 0;
2483 		kvo->kvo_vn_fsid_freebsd11 = 0;
2484 		freepath = NULL;
2485 		fullpath = "";
2486 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2487 		if (vp != NULL)
2488 			vref(vp);
2489 		VM_OBJECT_RUNLOCK(obj);
2490 		if (vp != NULL) {
2491 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2492 			vn_lock(vp, LK_SHARED | LK_RETRY);
2493 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2494 				kvo->kvo_vn_fileid = va.va_fileid;
2495 				kvo->kvo_vn_fsid = va.va_fsid;
2496 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2497 								/* truncate */
2498 			}
2499 			vput(vp);
2500 		}
2501 
2502 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2503 		if (freepath != NULL)
2504 			free(freepath, M_TEMP);
2505 
2506 		/* Pack record size down */
2507 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2508 		    + strlen(kvo->kvo_path) + 1;
2509 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2510 		    sizeof(uint64_t));
2511 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2512 		mtx_lock(&vm_object_list_mtx);
2513 		if (error)
2514 			break;
2515 	}
2516 	mtx_unlock(&vm_object_list_mtx);
2517 	free(kvo, M_TEMP);
2518 	return (error);
2519 }
2520 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2521     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2522     "List of VM objects");
2523 
2524 #include "opt_ddb.h"
2525 #ifdef DDB
2526 #include <sys/kernel.h>
2527 
2528 #include <sys/cons.h>
2529 
2530 #include <ddb/ddb.h>
2531 
2532 static int
2533 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2534 {
2535 	vm_map_t tmpm;
2536 	vm_map_entry_t tmpe;
2537 	vm_object_t obj;
2538 
2539 	if (map == 0)
2540 		return 0;
2541 
2542 	if (entry == 0) {
2543 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2544 			if (_vm_object_in_map(map, object, tmpe)) {
2545 				return 1;
2546 			}
2547 		}
2548 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2549 		tmpm = entry->object.sub_map;
2550 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2551 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2552 				return 1;
2553 			}
2554 		}
2555 	} else if ((obj = entry->object.vm_object) != NULL) {
2556 		for (; obj; obj = obj->backing_object)
2557 			if (obj == object) {
2558 				return 1;
2559 			}
2560 	}
2561 	return 0;
2562 }
2563 
2564 static int
2565 vm_object_in_map(vm_object_t object)
2566 {
2567 	struct proc *p;
2568 
2569 	/* sx_slock(&allproc_lock); */
2570 	FOREACH_PROC_IN_SYSTEM(p) {
2571 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2572 			continue;
2573 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2574 			/* sx_sunlock(&allproc_lock); */
2575 			return 1;
2576 		}
2577 	}
2578 	/* sx_sunlock(&allproc_lock); */
2579 	if (_vm_object_in_map(kernel_map, object, 0))
2580 		return 1;
2581 	return 0;
2582 }
2583 
2584 DB_SHOW_COMMAND(vmochk, vm_object_check)
2585 {
2586 	vm_object_t object;
2587 
2588 	/*
2589 	 * make sure that internal objs are in a map somewhere
2590 	 * and none have zero ref counts.
2591 	 */
2592 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2593 		if ((object->flags & OBJ_ANON) != 0) {
2594 			if (object->ref_count == 0) {
2595 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2596 					(long)object->size);
2597 			}
2598 			if (!vm_object_in_map(object)) {
2599 				db_printf(
2600 			"vmochk: internal obj is not in a map: "
2601 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2602 				    object->ref_count, (u_long)object->size,
2603 				    (u_long)object->size,
2604 				    (void *)object->backing_object);
2605 			}
2606 		}
2607 	}
2608 }
2609 
2610 /*
2611  *	vm_object_print:	[ debug ]
2612  */
2613 DB_SHOW_COMMAND(object, vm_object_print_static)
2614 {
2615 	/* XXX convert args. */
2616 	vm_object_t object = (vm_object_t)addr;
2617 	boolean_t full = have_addr;
2618 
2619 	vm_page_t p;
2620 
2621 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2622 #define	count	was_count
2623 
2624 	int count;
2625 
2626 	if (object == NULL)
2627 		return;
2628 
2629 	db_iprintf(
2630 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2631 	    object, (int)object->type, (uintmax_t)object->size,
2632 	    object->resident_page_count, object->ref_count, object->flags,
2633 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2634 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2635 	    object->shadow_count,
2636 	    object->backing_object ? object->backing_object->ref_count : 0,
2637 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2638 
2639 	if (!full)
2640 		return;
2641 
2642 	db_indent += 2;
2643 	count = 0;
2644 	TAILQ_FOREACH(p, &object->memq, listq) {
2645 		if (count == 0)
2646 			db_iprintf("memory:=");
2647 		else if (count == 6) {
2648 			db_printf("\n");
2649 			db_iprintf(" ...");
2650 			count = 0;
2651 		} else
2652 			db_printf(",");
2653 		count++;
2654 
2655 		db_printf("(off=0x%jx,page=0x%jx)",
2656 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2657 	}
2658 	if (count != 0)
2659 		db_printf("\n");
2660 	db_indent -= 2;
2661 }
2662 
2663 /* XXX. */
2664 #undef count
2665 
2666 /* XXX need this non-static entry for calling from vm_map_print. */
2667 void
2668 vm_object_print(
2669         /* db_expr_t */ long addr,
2670 	boolean_t have_addr,
2671 	/* db_expr_t */ long count,
2672 	char *modif)
2673 {
2674 	vm_object_print_static(addr, have_addr, count, modif);
2675 }
2676 
2677 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2678 {
2679 	vm_object_t object;
2680 	vm_pindex_t fidx;
2681 	vm_paddr_t pa;
2682 	vm_page_t m, prev_m;
2683 	int rcount, nl, c;
2684 
2685 	nl = 0;
2686 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2687 		db_printf("new object: %p\n", (void *)object);
2688 		if (nl > 18) {
2689 			c = cngetc();
2690 			if (c != ' ')
2691 				return;
2692 			nl = 0;
2693 		}
2694 		nl++;
2695 		rcount = 0;
2696 		fidx = 0;
2697 		pa = -1;
2698 		TAILQ_FOREACH(m, &object->memq, listq) {
2699 			if (m->pindex > 128)
2700 				break;
2701 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2702 			    prev_m->pindex + 1 != m->pindex) {
2703 				if (rcount) {
2704 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2705 						(long)fidx, rcount, (long)pa);
2706 					if (nl > 18) {
2707 						c = cngetc();
2708 						if (c != ' ')
2709 							return;
2710 						nl = 0;
2711 					}
2712 					nl++;
2713 					rcount = 0;
2714 				}
2715 			}
2716 			if (rcount &&
2717 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2718 				++rcount;
2719 				continue;
2720 			}
2721 			if (rcount) {
2722 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2723 					(long)fidx, rcount, (long)pa);
2724 				if (nl > 18) {
2725 					c = cngetc();
2726 					if (c != ' ')
2727 						return;
2728 					nl = 0;
2729 				}
2730 				nl++;
2731 			}
2732 			fidx = m->pindex;
2733 			pa = VM_PAGE_TO_PHYS(m);
2734 			rcount = 1;
2735 		}
2736 		if (rcount) {
2737 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2738 				(long)fidx, rcount, (long)pa);
2739 			if (nl > 18) {
2740 				c = cngetc();
2741 				if (c != ' ')
2742 					return;
2743 				nl = 0;
2744 			}
2745 			nl++;
2746 		}
2747 	}
2748 }
2749 #endif /* DDB */
2750