1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, int *clearobjflags); 105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 106 int *clearobjflags); 107 static void vm_object_qcollapse(vm_object_t object); 108 static void vm_object_vndeallocate(vm_object_t object); 109 110 /* 111 * Virtual memory objects maintain the actual data 112 * associated with allocated virtual memory. A given 113 * page of memory exists within exactly one object. 114 * 115 * An object is only deallocated when all "references" 116 * are given up. Only one "reference" to a given 117 * region of an object should be writeable. 118 * 119 * Associated with each object is a list of all resident 120 * memory pages belonging to that object; this list is 121 * maintained by the "vm_page" module, and locked by the object's 122 * lock. 123 * 124 * Each object also records a "pager" routine which is 125 * used to retrieve (and store) pages to the proper backing 126 * storage. In addition, objects may be backed by other 127 * objects from which they were virtual-copied. 128 * 129 * The only items within the object structure which are 130 * modified after time of creation are: 131 * reference count locked by object's lock 132 * pager routine locked by object's lock 133 * 134 */ 135 136 struct object_q vm_object_list; 137 struct mtx vm_object_list_mtx; /* lock for object list and count */ 138 139 struct vm_object kernel_object_store; 140 struct vm_object kmem_object_store; 141 142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats"); 143 144 static long object_collapses; 145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 146 &object_collapses, 0, "VM object collapses"); 147 148 static long object_bypasses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 150 &object_bypasses, 0, "VM object bypasses"); 151 152 static uma_zone_t obj_zone; 153 154 static int vm_object_zinit(void *mem, int size, int flags); 155 156 #ifdef INVARIANTS 157 static void vm_object_zdtor(void *mem, int size, void *arg); 158 159 static void 160 vm_object_zdtor(void *mem, int size, void *arg) 161 { 162 vm_object_t object; 163 164 object = (vm_object_t)mem; 165 KASSERT(TAILQ_EMPTY(&object->memq), 166 ("object %p has resident pages", 167 object)); 168 #if VM_NRESERVLEVEL > 0 169 KASSERT(LIST_EMPTY(&object->rvq), 170 ("object %p has reservations", 171 object)); 172 #endif 173 KASSERT(object->cache == NULL, 174 ("object %p has cached pages", 175 object)); 176 KASSERT(object->paging_in_progress == 0, 177 ("object %p paging_in_progress = %d", 178 object, object->paging_in_progress)); 179 KASSERT(object->resident_page_count == 0, 180 ("object %p resident_page_count = %d", 181 object, object->resident_page_count)); 182 KASSERT(object->shadow_count == 0, 183 ("object %p shadow_count = %d", 184 object, object->shadow_count)); 185 } 186 #endif 187 188 static int 189 vm_object_zinit(void *mem, int size, int flags) 190 { 191 vm_object_t object; 192 193 object = (vm_object_t)mem; 194 bzero(&object->mtx, sizeof(object->mtx)); 195 VM_OBJECT_LOCK_INIT(object, "standard object"); 196 197 /* These are true for any object that has been freed */ 198 object->paging_in_progress = 0; 199 object->resident_page_count = 0; 200 object->shadow_count = 0; 201 return (0); 202 } 203 204 void 205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 206 { 207 208 TAILQ_INIT(&object->memq); 209 LIST_INIT(&object->shadow_head); 210 211 object->root = NULL; 212 object->type = type; 213 object->size = size; 214 object->generation = 1; 215 object->ref_count = 1; 216 object->memattr = VM_MEMATTR_DEFAULT; 217 object->flags = 0; 218 object->cred = NULL; 219 object->charge = 0; 220 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 221 object->flags = OBJ_ONEMAPPING; 222 object->pg_color = 0; 223 object->handle = NULL; 224 object->backing_object = NULL; 225 object->backing_object_offset = (vm_ooffset_t) 0; 226 #if VM_NRESERVLEVEL > 0 227 LIST_INIT(&object->rvq); 228 #endif 229 object->cache = NULL; 230 231 mtx_lock(&vm_object_list_mtx); 232 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 233 mtx_unlock(&vm_object_list_mtx); 234 } 235 236 /* 237 * vm_object_init: 238 * 239 * Initialize the VM objects module. 240 */ 241 void 242 vm_object_init(void) 243 { 244 TAILQ_INIT(&vm_object_list); 245 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 246 247 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 248 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 249 kernel_object); 250 #if VM_NRESERVLEVEL > 0 251 kernel_object->flags |= OBJ_COLORED; 252 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 253 #endif 254 255 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 256 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 257 kmem_object); 258 #if VM_NRESERVLEVEL > 0 259 kmem_object->flags |= OBJ_COLORED; 260 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 261 #endif 262 263 /* 264 * The lock portion of struct vm_object must be type stable due 265 * to vm_pageout_fallback_object_lock locking a vm object 266 * without holding any references to it. 267 */ 268 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 269 #ifdef INVARIANTS 270 vm_object_zdtor, 271 #else 272 NULL, 273 #endif 274 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 275 } 276 277 void 278 vm_object_clear_flag(vm_object_t object, u_short bits) 279 { 280 281 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 282 object->flags &= ~bits; 283 } 284 285 /* 286 * Sets the default memory attribute for the specified object. Pages 287 * that are allocated to this object are by default assigned this memory 288 * attribute. 289 * 290 * Presently, this function must be called before any pages are allocated 291 * to the object. In the future, this requirement may be relaxed for 292 * "default" and "swap" objects. 293 */ 294 int 295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 296 { 297 298 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 299 switch (object->type) { 300 case OBJT_DEFAULT: 301 case OBJT_DEVICE: 302 case OBJT_PHYS: 303 case OBJT_SG: 304 case OBJT_SWAP: 305 case OBJT_VNODE: 306 if (!TAILQ_EMPTY(&object->memq)) 307 return (KERN_FAILURE); 308 break; 309 case OBJT_DEAD: 310 return (KERN_INVALID_ARGUMENT); 311 } 312 object->memattr = memattr; 313 return (KERN_SUCCESS); 314 } 315 316 void 317 vm_object_pip_add(vm_object_t object, short i) 318 { 319 320 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 321 object->paging_in_progress += i; 322 } 323 324 void 325 vm_object_pip_subtract(vm_object_t object, short i) 326 { 327 328 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 329 object->paging_in_progress -= i; 330 } 331 332 void 333 vm_object_pip_wakeup(vm_object_t object) 334 { 335 336 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 337 object->paging_in_progress--; 338 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 339 vm_object_clear_flag(object, OBJ_PIPWNT); 340 wakeup(object); 341 } 342 } 343 344 void 345 vm_object_pip_wakeupn(vm_object_t object, short i) 346 { 347 348 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 349 if (i) 350 object->paging_in_progress -= i; 351 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 352 vm_object_clear_flag(object, OBJ_PIPWNT); 353 wakeup(object); 354 } 355 } 356 357 void 358 vm_object_pip_wait(vm_object_t object, char *waitid) 359 { 360 361 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 362 while (object->paging_in_progress) { 363 object->flags |= OBJ_PIPWNT; 364 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 365 } 366 } 367 368 /* 369 * vm_object_allocate: 370 * 371 * Returns a new object with the given size. 372 */ 373 vm_object_t 374 vm_object_allocate(objtype_t type, vm_pindex_t size) 375 { 376 vm_object_t object; 377 378 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 379 _vm_object_allocate(type, size, object); 380 return (object); 381 } 382 383 384 /* 385 * vm_object_reference: 386 * 387 * Gets another reference to the given object. Note: OBJ_DEAD 388 * objects can be referenced during final cleaning. 389 */ 390 void 391 vm_object_reference(vm_object_t object) 392 { 393 if (object == NULL) 394 return; 395 VM_OBJECT_LOCK(object); 396 vm_object_reference_locked(object); 397 VM_OBJECT_UNLOCK(object); 398 } 399 400 /* 401 * vm_object_reference_locked: 402 * 403 * Gets another reference to the given object. 404 * 405 * The object must be locked. 406 */ 407 void 408 vm_object_reference_locked(vm_object_t object) 409 { 410 struct vnode *vp; 411 412 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 413 object->ref_count++; 414 if (object->type == OBJT_VNODE) { 415 vp = object->handle; 416 vref(vp); 417 } 418 } 419 420 /* 421 * Handle deallocating an object of type OBJT_VNODE. 422 */ 423 static void 424 vm_object_vndeallocate(vm_object_t object) 425 { 426 struct vnode *vp = (struct vnode *) object->handle; 427 428 VFS_ASSERT_GIANT(vp->v_mount); 429 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 430 KASSERT(object->type == OBJT_VNODE, 431 ("vm_object_vndeallocate: not a vnode object")); 432 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 433 #ifdef INVARIANTS 434 if (object->ref_count == 0) { 435 vprint("vm_object_vndeallocate", vp); 436 panic("vm_object_vndeallocate: bad object reference count"); 437 } 438 #endif 439 440 if (object->ref_count > 1) { 441 object->ref_count--; 442 VM_OBJECT_UNLOCK(object); 443 /* vrele may need the vnode lock. */ 444 vrele(vp); 445 } else { 446 vhold(vp); 447 VM_OBJECT_UNLOCK(object); 448 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 449 vdrop(vp); 450 VM_OBJECT_LOCK(object); 451 object->ref_count--; 452 if (object->type == OBJT_DEAD) { 453 VM_OBJECT_UNLOCK(object); 454 VOP_UNLOCK(vp, 0); 455 } else { 456 if (object->ref_count == 0) 457 vp->v_vflag &= ~VV_TEXT; 458 VM_OBJECT_UNLOCK(object); 459 vput(vp); 460 } 461 } 462 } 463 464 /* 465 * vm_object_deallocate: 466 * 467 * Release a reference to the specified object, 468 * gained either through a vm_object_allocate 469 * or a vm_object_reference call. When all references 470 * are gone, storage associated with this object 471 * may be relinquished. 472 * 473 * No object may be locked. 474 */ 475 void 476 vm_object_deallocate(vm_object_t object) 477 { 478 vm_object_t temp; 479 480 while (object != NULL) { 481 int vfslocked; 482 483 vfslocked = 0; 484 restart: 485 VM_OBJECT_LOCK(object); 486 if (object->type == OBJT_VNODE) { 487 struct vnode *vp = (struct vnode *) object->handle; 488 489 /* 490 * Conditionally acquire Giant for a vnode-backed 491 * object. We have to be careful since the type of 492 * a vnode object can change while the object is 493 * unlocked. 494 */ 495 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 496 vfslocked = 1; 497 if (!mtx_trylock(&Giant)) { 498 VM_OBJECT_UNLOCK(object); 499 mtx_lock(&Giant); 500 goto restart; 501 } 502 } 503 vm_object_vndeallocate(object); 504 VFS_UNLOCK_GIANT(vfslocked); 505 return; 506 } else 507 /* 508 * This is to handle the case that the object 509 * changed type while we dropped its lock to 510 * obtain Giant. 511 */ 512 VFS_UNLOCK_GIANT(vfslocked); 513 514 KASSERT(object->ref_count != 0, 515 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 516 517 /* 518 * If the reference count goes to 0 we start calling 519 * vm_object_terminate() on the object chain. 520 * A ref count of 1 may be a special case depending on the 521 * shadow count being 0 or 1. 522 */ 523 object->ref_count--; 524 if (object->ref_count > 1) { 525 VM_OBJECT_UNLOCK(object); 526 return; 527 } else if (object->ref_count == 1) { 528 if (object->shadow_count == 0 && 529 object->handle == NULL && 530 (object->type == OBJT_DEFAULT || 531 object->type == OBJT_SWAP)) { 532 vm_object_set_flag(object, OBJ_ONEMAPPING); 533 } else if ((object->shadow_count == 1) && 534 (object->handle == NULL) && 535 (object->type == OBJT_DEFAULT || 536 object->type == OBJT_SWAP)) { 537 vm_object_t robject; 538 539 robject = LIST_FIRST(&object->shadow_head); 540 KASSERT(robject != NULL, 541 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 542 object->ref_count, 543 object->shadow_count)); 544 if (!VM_OBJECT_TRYLOCK(robject)) { 545 /* 546 * Avoid a potential deadlock. 547 */ 548 object->ref_count++; 549 VM_OBJECT_UNLOCK(object); 550 /* 551 * More likely than not the thread 552 * holding robject's lock has lower 553 * priority than the current thread. 554 * Let the lower priority thread run. 555 */ 556 pause("vmo_de", 1); 557 continue; 558 } 559 /* 560 * Collapse object into its shadow unless its 561 * shadow is dead. In that case, object will 562 * be deallocated by the thread that is 563 * deallocating its shadow. 564 */ 565 if ((robject->flags & OBJ_DEAD) == 0 && 566 (robject->handle == NULL) && 567 (robject->type == OBJT_DEFAULT || 568 robject->type == OBJT_SWAP)) { 569 570 robject->ref_count++; 571 retry: 572 if (robject->paging_in_progress) { 573 VM_OBJECT_UNLOCK(object); 574 vm_object_pip_wait(robject, 575 "objde1"); 576 temp = robject->backing_object; 577 if (object == temp) { 578 VM_OBJECT_LOCK(object); 579 goto retry; 580 } 581 } else if (object->paging_in_progress) { 582 VM_OBJECT_UNLOCK(robject); 583 object->flags |= OBJ_PIPWNT; 584 msleep(object, 585 VM_OBJECT_MTX(object), 586 PDROP | PVM, "objde2", 0); 587 VM_OBJECT_LOCK(robject); 588 temp = robject->backing_object; 589 if (object == temp) { 590 VM_OBJECT_LOCK(object); 591 goto retry; 592 } 593 } else 594 VM_OBJECT_UNLOCK(object); 595 596 if (robject->ref_count == 1) { 597 robject->ref_count--; 598 object = robject; 599 goto doterm; 600 } 601 object = robject; 602 vm_object_collapse(object); 603 VM_OBJECT_UNLOCK(object); 604 continue; 605 } 606 VM_OBJECT_UNLOCK(robject); 607 } 608 VM_OBJECT_UNLOCK(object); 609 return; 610 } 611 doterm: 612 temp = object->backing_object; 613 if (temp != NULL) { 614 VM_OBJECT_LOCK(temp); 615 LIST_REMOVE(object, shadow_list); 616 temp->shadow_count--; 617 VM_OBJECT_UNLOCK(temp); 618 object->backing_object = NULL; 619 } 620 /* 621 * Don't double-terminate, we could be in a termination 622 * recursion due to the terminate having to sync data 623 * to disk. 624 */ 625 if ((object->flags & OBJ_DEAD) == 0) 626 vm_object_terminate(object); 627 else 628 VM_OBJECT_UNLOCK(object); 629 object = temp; 630 } 631 } 632 633 /* 634 * vm_object_destroy removes the object from the global object list 635 * and frees the space for the object. 636 */ 637 void 638 vm_object_destroy(vm_object_t object) 639 { 640 641 /* 642 * Remove the object from the global object list. 643 */ 644 mtx_lock(&vm_object_list_mtx); 645 TAILQ_REMOVE(&vm_object_list, object, object_list); 646 mtx_unlock(&vm_object_list_mtx); 647 648 /* 649 * Release the allocation charge. 650 */ 651 if (object->cred != NULL) { 652 KASSERT(object->type == OBJT_DEFAULT || 653 object->type == OBJT_SWAP, 654 ("vm_object_terminate: non-swap obj %p has cred", 655 object)); 656 swap_release_by_cred(object->charge, object->cred); 657 object->charge = 0; 658 crfree(object->cred); 659 object->cred = NULL; 660 } 661 662 /* 663 * Free the space for the object. 664 */ 665 uma_zfree(obj_zone, object); 666 } 667 668 /* 669 * vm_object_terminate actually destroys the specified object, freeing 670 * up all previously used resources. 671 * 672 * The object must be locked. 673 * This routine may block. 674 */ 675 void 676 vm_object_terminate(vm_object_t object) 677 { 678 vm_page_t p, p_next; 679 680 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 681 682 /* 683 * Make sure no one uses us. 684 */ 685 vm_object_set_flag(object, OBJ_DEAD); 686 687 /* 688 * wait for the pageout daemon to be done with the object 689 */ 690 vm_object_pip_wait(object, "objtrm"); 691 692 KASSERT(!object->paging_in_progress, 693 ("vm_object_terminate: pageout in progress")); 694 695 /* 696 * Clean and free the pages, as appropriate. All references to the 697 * object are gone, so we don't need to lock it. 698 */ 699 if (object->type == OBJT_VNODE) { 700 struct vnode *vp = (struct vnode *)object->handle; 701 702 /* 703 * Clean pages and flush buffers. 704 */ 705 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 706 VM_OBJECT_UNLOCK(object); 707 708 vinvalbuf(vp, V_SAVE, 0, 0); 709 710 VM_OBJECT_LOCK(object); 711 } 712 713 KASSERT(object->ref_count == 0, 714 ("vm_object_terminate: object with references, ref_count=%d", 715 object->ref_count)); 716 717 /* 718 * Free any remaining pageable pages. This also removes them from the 719 * paging queues. However, don't free wired pages, just remove them 720 * from the object. Rather than incrementally removing each page from 721 * the object, the page and object are reset to any empty state. 722 */ 723 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 724 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 725 ("vm_object_terminate: freeing busy page %p", p)); 726 vm_page_lock(p); 727 /* 728 * Optimize the page's removal from the object by resetting 729 * its "object" field. Specifically, if the page is not 730 * wired, then the effect of this assignment is that 731 * vm_page_free()'s call to vm_page_remove() will return 732 * immediately without modifying the page or the object. 733 */ 734 p->object = NULL; 735 if (p->wire_count == 0) { 736 vm_page_free(p); 737 PCPU_INC(cnt.v_pfree); 738 } 739 vm_page_unlock(p); 740 } 741 /* 742 * If the object contained any pages, then reset it to an empty state. 743 * None of the object's fields, including "resident_page_count", were 744 * modified by the preceding loop. 745 */ 746 if (object->resident_page_count != 0) { 747 object->root = NULL; 748 TAILQ_INIT(&object->memq); 749 object->resident_page_count = 0; 750 if (object->type == OBJT_VNODE) 751 vdrop(object->handle); 752 } 753 754 #if VM_NRESERVLEVEL > 0 755 if (__predict_false(!LIST_EMPTY(&object->rvq))) 756 vm_reserv_break_all(object); 757 #endif 758 if (__predict_false(object->cache != NULL)) 759 vm_page_cache_free(object, 0, 0); 760 761 /* 762 * Let the pager know object is dead. 763 */ 764 vm_pager_deallocate(object); 765 VM_OBJECT_UNLOCK(object); 766 767 vm_object_destroy(object); 768 } 769 770 /* 771 * Make the page read-only so that we can clear the object flags. However, if 772 * this is a nosync mmap then the object is likely to stay dirty so do not 773 * mess with the page and do not clear the object flags. Returns TRUE if the 774 * page should be flushed, and FALSE otherwise. 775 */ 776 static boolean_t 777 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags) 778 { 779 780 /* 781 * If we have been asked to skip nosync pages and this is a 782 * nosync page, skip it. Note that the object flags were not 783 * cleared in this case so we do not have to set them. 784 */ 785 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 786 *clearobjflags = 0; 787 return (FALSE); 788 } else { 789 pmap_remove_write(p); 790 return (p->dirty != 0); 791 } 792 } 793 794 /* 795 * vm_object_page_clean 796 * 797 * Clean all dirty pages in the specified range of object. Leaves page 798 * on whatever queue it is currently on. If NOSYNC is set then do not 799 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 800 * leaving the object dirty. 801 * 802 * When stuffing pages asynchronously, allow clustering. XXX we need a 803 * synchronous clustering mode implementation. 804 * 805 * Odd semantics: if start == end, we clean everything. 806 * 807 * The object must be locked. 808 */ 809 void 810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 811 int flags) 812 { 813 vm_page_t np, p; 814 vm_pindex_t pi, tend, tstart; 815 int clearobjflags, curgeneration, n, pagerflags; 816 817 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 818 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 819 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 820 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 821 object->resident_page_count == 0) 822 return; 823 824 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 825 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 826 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 827 828 tstart = OFF_TO_IDX(start); 829 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 830 clearobjflags = tstart == 0 && tend >= object->size; 831 832 rescan: 833 curgeneration = object->generation; 834 835 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 836 pi = p->pindex; 837 if (pi >= tend) 838 break; 839 np = TAILQ_NEXT(p, listq); 840 if (p->valid == 0) 841 continue; 842 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 843 if (object->generation != curgeneration) 844 goto rescan; 845 np = vm_page_find_least(object, pi); 846 continue; 847 } 848 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 849 continue; 850 851 n = vm_object_page_collect_flush(object, p, pagerflags, 852 flags, &clearobjflags); 853 if (object->generation != curgeneration) 854 goto rescan; 855 856 /* 857 * If the VOP_PUTPAGES() did a truncated write, so 858 * that even the first page of the run is not fully 859 * written, vm_pageout_flush() returns 0 as the run 860 * length. Since the condition that caused truncated 861 * write may be permanent, e.g. exhausted free space, 862 * accepting n == 0 would cause an infinite loop. 863 * 864 * Forwarding the iterator leaves the unwritten page 865 * behind, but there is not much we can do there if 866 * filesystem refuses to write it. 867 */ 868 if (n == 0) 869 n = 1; 870 np = vm_page_find_least(object, pi + n); 871 } 872 #if 0 873 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 874 #endif 875 876 if (clearobjflags) 877 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 878 } 879 880 static int 881 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 882 int flags, int *clearobjflags) 883 { 884 vm_page_t ma[vm_pageout_page_count], p_first, tp; 885 int count, i, mreq, runlen; 886 887 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 888 vm_page_lock_assert(p, MA_NOTOWNED); 889 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 890 891 count = 1; 892 mreq = 0; 893 894 for (tp = p; count < vm_pageout_page_count; count++) { 895 tp = vm_page_next(tp); 896 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 897 break; 898 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 899 break; 900 } 901 902 for (p_first = p; count < vm_pageout_page_count; count++) { 903 tp = vm_page_prev(p_first); 904 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 905 break; 906 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 907 break; 908 p_first = tp; 909 mreq++; 910 } 911 912 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 913 ma[i] = tp; 914 915 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen); 916 return (runlen); 917 } 918 919 /* 920 * Note that there is absolutely no sense in writing out 921 * anonymous objects, so we track down the vnode object 922 * to write out. 923 * We invalidate (remove) all pages from the address space 924 * for semantic correctness. 925 * 926 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 927 * may start out with a NULL object. 928 */ 929 void 930 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 931 boolean_t syncio, boolean_t invalidate) 932 { 933 vm_object_t backing_object; 934 struct vnode *vp; 935 struct mount *mp; 936 int flags; 937 938 if (object == NULL) 939 return; 940 VM_OBJECT_LOCK(object); 941 while ((backing_object = object->backing_object) != NULL) { 942 VM_OBJECT_LOCK(backing_object); 943 offset += object->backing_object_offset; 944 VM_OBJECT_UNLOCK(object); 945 object = backing_object; 946 if (object->size < OFF_TO_IDX(offset + size)) 947 size = IDX_TO_OFF(object->size) - offset; 948 } 949 /* 950 * Flush pages if writing is allowed, invalidate them 951 * if invalidation requested. Pages undergoing I/O 952 * will be ignored by vm_object_page_remove(). 953 * 954 * We cannot lock the vnode and then wait for paging 955 * to complete without deadlocking against vm_fault. 956 * Instead we simply call vm_object_page_remove() and 957 * allow it to block internally on a page-by-page 958 * basis when it encounters pages undergoing async 959 * I/O. 960 */ 961 if (object->type == OBJT_VNODE && 962 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 963 int vfslocked; 964 vp = object->handle; 965 VM_OBJECT_UNLOCK(object); 966 (void) vn_start_write(vp, &mp, V_WAIT); 967 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 968 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 969 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 970 flags |= invalidate ? OBJPC_INVAL : 0; 971 VM_OBJECT_LOCK(object); 972 vm_object_page_clean(object, offset, offset + size, flags); 973 VM_OBJECT_UNLOCK(object); 974 VOP_UNLOCK(vp, 0); 975 VFS_UNLOCK_GIANT(vfslocked); 976 vn_finished_write(mp); 977 VM_OBJECT_LOCK(object); 978 } 979 if ((object->type == OBJT_VNODE || 980 object->type == OBJT_DEVICE) && invalidate) { 981 boolean_t purge; 982 purge = old_msync || (object->type == OBJT_DEVICE); 983 vm_object_page_remove(object, 984 OFF_TO_IDX(offset), 985 OFF_TO_IDX(offset + size + PAGE_MASK), 986 purge ? FALSE : TRUE); 987 } 988 VM_OBJECT_UNLOCK(object); 989 } 990 991 /* 992 * vm_object_madvise: 993 * 994 * Implements the madvise function at the object/page level. 995 * 996 * MADV_WILLNEED (any object) 997 * 998 * Activate the specified pages if they are resident. 999 * 1000 * MADV_DONTNEED (any object) 1001 * 1002 * Deactivate the specified pages if they are resident. 1003 * 1004 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1005 * OBJ_ONEMAPPING only) 1006 * 1007 * Deactivate and clean the specified pages if they are 1008 * resident. This permits the process to reuse the pages 1009 * without faulting or the kernel to reclaim the pages 1010 * without I/O. 1011 */ 1012 void 1013 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1014 { 1015 vm_pindex_t end, tpindex; 1016 vm_object_t backing_object, tobject; 1017 vm_page_t m; 1018 1019 if (object == NULL) 1020 return; 1021 VM_OBJECT_LOCK(object); 1022 end = pindex + count; 1023 /* 1024 * Locate and adjust resident pages 1025 */ 1026 for (; pindex < end; pindex += 1) { 1027 relookup: 1028 tobject = object; 1029 tpindex = pindex; 1030 shadowlookup: 1031 /* 1032 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1033 * and those pages must be OBJ_ONEMAPPING. 1034 */ 1035 if (advise == MADV_FREE) { 1036 if ((tobject->type != OBJT_DEFAULT && 1037 tobject->type != OBJT_SWAP) || 1038 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1039 goto unlock_tobject; 1040 } 1041 } else if (tobject->type == OBJT_PHYS) 1042 goto unlock_tobject; 1043 m = vm_page_lookup(tobject, tpindex); 1044 if (m == NULL && advise == MADV_WILLNEED) { 1045 /* 1046 * If the page is cached, reactivate it. 1047 */ 1048 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1049 VM_ALLOC_NOBUSY); 1050 } 1051 if (m == NULL) { 1052 /* 1053 * There may be swap even if there is no backing page 1054 */ 1055 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1056 swap_pager_freespace(tobject, tpindex, 1); 1057 /* 1058 * next object 1059 */ 1060 backing_object = tobject->backing_object; 1061 if (backing_object == NULL) 1062 goto unlock_tobject; 1063 VM_OBJECT_LOCK(backing_object); 1064 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1065 if (tobject != object) 1066 VM_OBJECT_UNLOCK(tobject); 1067 tobject = backing_object; 1068 goto shadowlookup; 1069 } else if (m->valid != VM_PAGE_BITS_ALL) 1070 goto unlock_tobject; 1071 /* 1072 * If the page is not in a normal state, skip it. 1073 */ 1074 vm_page_lock(m); 1075 if (m->hold_count != 0 || m->wire_count != 0) { 1076 vm_page_unlock(m); 1077 goto unlock_tobject; 1078 } 1079 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 1080 ("vm_object_madvise: page %p is not managed", m)); 1081 if ((m->oflags & VPO_BUSY) || m->busy) { 1082 if (advise == MADV_WILLNEED) { 1083 /* 1084 * Reference the page before unlocking and 1085 * sleeping so that the page daemon is less 1086 * likely to reclaim it. 1087 */ 1088 vm_page_lock_queues(); 1089 vm_page_flag_set(m, PG_REFERENCED); 1090 vm_page_unlock_queues(); 1091 } 1092 vm_page_unlock(m); 1093 if (object != tobject) 1094 VM_OBJECT_UNLOCK(object); 1095 m->oflags |= VPO_WANTED; 1096 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1097 0); 1098 VM_OBJECT_LOCK(object); 1099 goto relookup; 1100 } 1101 if (advise == MADV_WILLNEED) { 1102 vm_page_activate(m); 1103 } else if (advise == MADV_DONTNEED) { 1104 vm_page_dontneed(m); 1105 } else if (advise == MADV_FREE) { 1106 /* 1107 * Mark the page clean. This will allow the page 1108 * to be freed up by the system. However, such pages 1109 * are often reused quickly by malloc()/free() 1110 * so we do not do anything that would cause 1111 * a page fault if we can help it. 1112 * 1113 * Specifically, we do not try to actually free 1114 * the page now nor do we try to put it in the 1115 * cache (which would cause a page fault on reuse). 1116 * 1117 * But we do make the page is freeable as we 1118 * can without actually taking the step of unmapping 1119 * it. 1120 */ 1121 pmap_clear_modify(m); 1122 m->dirty = 0; 1123 m->act_count = 0; 1124 vm_page_dontneed(m); 1125 } 1126 vm_page_unlock(m); 1127 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1128 swap_pager_freespace(tobject, tpindex, 1); 1129 unlock_tobject: 1130 if (tobject != object) 1131 VM_OBJECT_UNLOCK(tobject); 1132 } 1133 VM_OBJECT_UNLOCK(object); 1134 } 1135 1136 /* 1137 * vm_object_shadow: 1138 * 1139 * Create a new object which is backed by the 1140 * specified existing object range. The source 1141 * object reference is deallocated. 1142 * 1143 * The new object and offset into that object 1144 * are returned in the source parameters. 1145 */ 1146 void 1147 vm_object_shadow( 1148 vm_object_t *object, /* IN/OUT */ 1149 vm_ooffset_t *offset, /* IN/OUT */ 1150 vm_size_t length) 1151 { 1152 vm_object_t source; 1153 vm_object_t result; 1154 1155 source = *object; 1156 1157 /* 1158 * Don't create the new object if the old object isn't shared. 1159 */ 1160 if (source != NULL) { 1161 VM_OBJECT_LOCK(source); 1162 if (source->ref_count == 1 && 1163 source->handle == NULL && 1164 (source->type == OBJT_DEFAULT || 1165 source->type == OBJT_SWAP)) { 1166 VM_OBJECT_UNLOCK(source); 1167 return; 1168 } 1169 VM_OBJECT_UNLOCK(source); 1170 } 1171 1172 /* 1173 * Allocate a new object with the given length. 1174 */ 1175 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1176 1177 /* 1178 * The new object shadows the source object, adding a reference to it. 1179 * Our caller changes his reference to point to the new object, 1180 * removing a reference to the source object. Net result: no change 1181 * of reference count. 1182 * 1183 * Try to optimize the result object's page color when shadowing 1184 * in order to maintain page coloring consistency in the combined 1185 * shadowed object. 1186 */ 1187 result->backing_object = source; 1188 /* 1189 * Store the offset into the source object, and fix up the offset into 1190 * the new object. 1191 */ 1192 result->backing_object_offset = *offset; 1193 if (source != NULL) { 1194 VM_OBJECT_LOCK(source); 1195 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1196 source->shadow_count++; 1197 #if VM_NRESERVLEVEL > 0 1198 result->flags |= source->flags & OBJ_COLORED; 1199 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1200 ((1 << (VM_NFREEORDER - 1)) - 1); 1201 #endif 1202 VM_OBJECT_UNLOCK(source); 1203 } 1204 1205 1206 /* 1207 * Return the new things 1208 */ 1209 *offset = 0; 1210 *object = result; 1211 } 1212 1213 /* 1214 * vm_object_split: 1215 * 1216 * Split the pages in a map entry into a new object. This affords 1217 * easier removal of unused pages, and keeps object inheritance from 1218 * being a negative impact on memory usage. 1219 */ 1220 void 1221 vm_object_split(vm_map_entry_t entry) 1222 { 1223 vm_page_t m, m_next; 1224 vm_object_t orig_object, new_object, source; 1225 vm_pindex_t idx, offidxstart; 1226 vm_size_t size; 1227 1228 orig_object = entry->object.vm_object; 1229 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1230 return; 1231 if (orig_object->ref_count <= 1) 1232 return; 1233 VM_OBJECT_UNLOCK(orig_object); 1234 1235 offidxstart = OFF_TO_IDX(entry->offset); 1236 size = atop(entry->end - entry->start); 1237 1238 /* 1239 * If swap_pager_copy() is later called, it will convert new_object 1240 * into a swap object. 1241 */ 1242 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1243 1244 /* 1245 * At this point, the new object is still private, so the order in 1246 * which the original and new objects are locked does not matter. 1247 */ 1248 VM_OBJECT_LOCK(new_object); 1249 VM_OBJECT_LOCK(orig_object); 1250 source = orig_object->backing_object; 1251 if (source != NULL) { 1252 VM_OBJECT_LOCK(source); 1253 if ((source->flags & OBJ_DEAD) != 0) { 1254 VM_OBJECT_UNLOCK(source); 1255 VM_OBJECT_UNLOCK(orig_object); 1256 VM_OBJECT_UNLOCK(new_object); 1257 vm_object_deallocate(new_object); 1258 VM_OBJECT_LOCK(orig_object); 1259 return; 1260 } 1261 LIST_INSERT_HEAD(&source->shadow_head, 1262 new_object, shadow_list); 1263 source->shadow_count++; 1264 vm_object_reference_locked(source); /* for new_object */ 1265 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1266 VM_OBJECT_UNLOCK(source); 1267 new_object->backing_object_offset = 1268 orig_object->backing_object_offset + entry->offset; 1269 new_object->backing_object = source; 1270 } 1271 if (orig_object->cred != NULL) { 1272 new_object->cred = orig_object->cred; 1273 crhold(orig_object->cred); 1274 new_object->charge = ptoa(size); 1275 KASSERT(orig_object->charge >= ptoa(size), 1276 ("orig_object->charge < 0")); 1277 orig_object->charge -= ptoa(size); 1278 } 1279 retry: 1280 m = vm_page_find_least(orig_object, offidxstart); 1281 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1282 m = m_next) { 1283 m_next = TAILQ_NEXT(m, listq); 1284 1285 /* 1286 * We must wait for pending I/O to complete before we can 1287 * rename the page. 1288 * 1289 * We do not have to VM_PROT_NONE the page as mappings should 1290 * not be changed by this operation. 1291 */ 1292 if ((m->oflags & VPO_BUSY) || m->busy) { 1293 VM_OBJECT_UNLOCK(new_object); 1294 m->oflags |= VPO_WANTED; 1295 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1296 VM_OBJECT_LOCK(new_object); 1297 goto retry; 1298 } 1299 vm_page_lock(m); 1300 vm_page_rename(m, new_object, idx); 1301 vm_page_unlock(m); 1302 /* page automatically made dirty by rename and cache handled */ 1303 vm_page_busy(m); 1304 } 1305 if (orig_object->type == OBJT_SWAP) { 1306 /* 1307 * swap_pager_copy() can sleep, in which case the orig_object's 1308 * and new_object's locks are released and reacquired. 1309 */ 1310 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1311 1312 /* 1313 * Transfer any cached pages from orig_object to new_object. 1314 */ 1315 if (__predict_false(orig_object->cache != NULL)) 1316 vm_page_cache_transfer(orig_object, offidxstart, 1317 new_object); 1318 } 1319 VM_OBJECT_UNLOCK(orig_object); 1320 TAILQ_FOREACH(m, &new_object->memq, listq) 1321 vm_page_wakeup(m); 1322 VM_OBJECT_UNLOCK(new_object); 1323 entry->object.vm_object = new_object; 1324 entry->offset = 0LL; 1325 vm_object_deallocate(orig_object); 1326 VM_OBJECT_LOCK(new_object); 1327 } 1328 1329 #define OBSC_TEST_ALL_SHADOWED 0x0001 1330 #define OBSC_COLLAPSE_NOWAIT 0x0002 1331 #define OBSC_COLLAPSE_WAIT 0x0004 1332 1333 static int 1334 vm_object_backing_scan(vm_object_t object, int op) 1335 { 1336 int r = 1; 1337 vm_page_t p; 1338 vm_object_t backing_object; 1339 vm_pindex_t backing_offset_index; 1340 1341 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1342 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1343 1344 backing_object = object->backing_object; 1345 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1346 1347 /* 1348 * Initial conditions 1349 */ 1350 if (op & OBSC_TEST_ALL_SHADOWED) { 1351 /* 1352 * We do not want to have to test for the existence of cache 1353 * or swap pages in the backing object. XXX but with the 1354 * new swapper this would be pretty easy to do. 1355 * 1356 * XXX what about anonymous MAP_SHARED memory that hasn't 1357 * been ZFOD faulted yet? If we do not test for this, the 1358 * shadow test may succeed! XXX 1359 */ 1360 if (backing_object->type != OBJT_DEFAULT) { 1361 return (0); 1362 } 1363 } 1364 if (op & OBSC_COLLAPSE_WAIT) { 1365 vm_object_set_flag(backing_object, OBJ_DEAD); 1366 } 1367 1368 /* 1369 * Our scan 1370 */ 1371 p = TAILQ_FIRST(&backing_object->memq); 1372 while (p) { 1373 vm_page_t next = TAILQ_NEXT(p, listq); 1374 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1375 1376 if (op & OBSC_TEST_ALL_SHADOWED) { 1377 vm_page_t pp; 1378 1379 /* 1380 * Ignore pages outside the parent object's range 1381 * and outside the parent object's mapping of the 1382 * backing object. 1383 * 1384 * note that we do not busy the backing object's 1385 * page. 1386 */ 1387 if ( 1388 p->pindex < backing_offset_index || 1389 new_pindex >= object->size 1390 ) { 1391 p = next; 1392 continue; 1393 } 1394 1395 /* 1396 * See if the parent has the page or if the parent's 1397 * object pager has the page. If the parent has the 1398 * page but the page is not valid, the parent's 1399 * object pager must have the page. 1400 * 1401 * If this fails, the parent does not completely shadow 1402 * the object and we might as well give up now. 1403 */ 1404 1405 pp = vm_page_lookup(object, new_pindex); 1406 if ( 1407 (pp == NULL || pp->valid == 0) && 1408 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1409 ) { 1410 r = 0; 1411 break; 1412 } 1413 } 1414 1415 /* 1416 * Check for busy page 1417 */ 1418 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1419 vm_page_t pp; 1420 1421 if (op & OBSC_COLLAPSE_NOWAIT) { 1422 if ((p->oflags & VPO_BUSY) || 1423 !p->valid || 1424 p->busy) { 1425 p = next; 1426 continue; 1427 } 1428 } else if (op & OBSC_COLLAPSE_WAIT) { 1429 if ((p->oflags & VPO_BUSY) || p->busy) { 1430 VM_OBJECT_UNLOCK(object); 1431 p->oflags |= VPO_WANTED; 1432 msleep(p, VM_OBJECT_MTX(backing_object), 1433 PDROP | PVM, "vmocol", 0); 1434 VM_OBJECT_LOCK(object); 1435 VM_OBJECT_LOCK(backing_object); 1436 /* 1437 * If we slept, anything could have 1438 * happened. Since the object is 1439 * marked dead, the backing offset 1440 * should not have changed so we 1441 * just restart our scan. 1442 */ 1443 p = TAILQ_FIRST(&backing_object->memq); 1444 continue; 1445 } 1446 } 1447 1448 KASSERT( 1449 p->object == backing_object, 1450 ("vm_object_backing_scan: object mismatch") 1451 ); 1452 1453 /* 1454 * Destroy any associated swap 1455 */ 1456 if (backing_object->type == OBJT_SWAP) { 1457 swap_pager_freespace( 1458 backing_object, 1459 p->pindex, 1460 1 1461 ); 1462 } 1463 1464 if ( 1465 p->pindex < backing_offset_index || 1466 new_pindex >= object->size 1467 ) { 1468 /* 1469 * Page is out of the parent object's range, we 1470 * can simply destroy it. 1471 */ 1472 vm_page_lock(p); 1473 KASSERT(!pmap_page_is_mapped(p), 1474 ("freeing mapped page %p", p)); 1475 if (p->wire_count == 0) 1476 vm_page_free(p); 1477 else 1478 vm_page_remove(p); 1479 vm_page_unlock(p); 1480 p = next; 1481 continue; 1482 } 1483 1484 pp = vm_page_lookup(object, new_pindex); 1485 if ( 1486 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1487 (pp != NULL && pp->valid == 0) 1488 ) { 1489 /* 1490 * The page in the parent is not (yet) valid. 1491 * We don't know anything about the state of 1492 * the original page. It might be mapped, 1493 * so we must avoid the next if here. 1494 * 1495 * This is due to a race in vm_fault() where 1496 * we must unbusy the original (backing_obj) 1497 * page before we can (re)lock the parent. 1498 * Hence we can get here. 1499 */ 1500 p = next; 1501 continue; 1502 } 1503 if ( 1504 pp != NULL || 1505 vm_pager_has_page(object, new_pindex, NULL, NULL) 1506 ) { 1507 /* 1508 * page already exists in parent OR swap exists 1509 * for this location in the parent. Destroy 1510 * the original page from the backing object. 1511 * 1512 * Leave the parent's page alone 1513 */ 1514 vm_page_lock(p); 1515 KASSERT(!pmap_page_is_mapped(p), 1516 ("freeing mapped page %p", p)); 1517 if (p->wire_count == 0) 1518 vm_page_free(p); 1519 else 1520 vm_page_remove(p); 1521 vm_page_unlock(p); 1522 p = next; 1523 continue; 1524 } 1525 1526 #if VM_NRESERVLEVEL > 0 1527 /* 1528 * Rename the reservation. 1529 */ 1530 vm_reserv_rename(p, object, backing_object, 1531 backing_offset_index); 1532 #endif 1533 1534 /* 1535 * Page does not exist in parent, rename the 1536 * page from the backing object to the main object. 1537 * 1538 * If the page was mapped to a process, it can remain 1539 * mapped through the rename. 1540 */ 1541 vm_page_lock(p); 1542 vm_page_rename(p, object, new_pindex); 1543 vm_page_unlock(p); 1544 /* page automatically made dirty by rename */ 1545 } 1546 p = next; 1547 } 1548 return (r); 1549 } 1550 1551 1552 /* 1553 * this version of collapse allows the operation to occur earlier and 1554 * when paging_in_progress is true for an object... This is not a complete 1555 * operation, but should plug 99.9% of the rest of the leaks. 1556 */ 1557 static void 1558 vm_object_qcollapse(vm_object_t object) 1559 { 1560 vm_object_t backing_object = object->backing_object; 1561 1562 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1563 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1564 1565 if (backing_object->ref_count != 1) 1566 return; 1567 1568 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1569 } 1570 1571 /* 1572 * vm_object_collapse: 1573 * 1574 * Collapse an object with the object backing it. 1575 * Pages in the backing object are moved into the 1576 * parent, and the backing object is deallocated. 1577 */ 1578 void 1579 vm_object_collapse(vm_object_t object) 1580 { 1581 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1582 1583 while (TRUE) { 1584 vm_object_t backing_object; 1585 1586 /* 1587 * Verify that the conditions are right for collapse: 1588 * 1589 * The object exists and the backing object exists. 1590 */ 1591 if ((backing_object = object->backing_object) == NULL) 1592 break; 1593 1594 /* 1595 * we check the backing object first, because it is most likely 1596 * not collapsable. 1597 */ 1598 VM_OBJECT_LOCK(backing_object); 1599 if (backing_object->handle != NULL || 1600 (backing_object->type != OBJT_DEFAULT && 1601 backing_object->type != OBJT_SWAP) || 1602 (backing_object->flags & OBJ_DEAD) || 1603 object->handle != NULL || 1604 (object->type != OBJT_DEFAULT && 1605 object->type != OBJT_SWAP) || 1606 (object->flags & OBJ_DEAD)) { 1607 VM_OBJECT_UNLOCK(backing_object); 1608 break; 1609 } 1610 1611 if ( 1612 object->paging_in_progress != 0 || 1613 backing_object->paging_in_progress != 0 1614 ) { 1615 vm_object_qcollapse(object); 1616 VM_OBJECT_UNLOCK(backing_object); 1617 break; 1618 } 1619 /* 1620 * We know that we can either collapse the backing object (if 1621 * the parent is the only reference to it) or (perhaps) have 1622 * the parent bypass the object if the parent happens to shadow 1623 * all the resident pages in the entire backing object. 1624 * 1625 * This is ignoring pager-backed pages such as swap pages. 1626 * vm_object_backing_scan fails the shadowing test in this 1627 * case. 1628 */ 1629 if (backing_object->ref_count == 1) { 1630 /* 1631 * If there is exactly one reference to the backing 1632 * object, we can collapse it into the parent. 1633 */ 1634 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1635 1636 #if VM_NRESERVLEVEL > 0 1637 /* 1638 * Break any reservations from backing_object. 1639 */ 1640 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1641 vm_reserv_break_all(backing_object); 1642 #endif 1643 1644 /* 1645 * Move the pager from backing_object to object. 1646 */ 1647 if (backing_object->type == OBJT_SWAP) { 1648 /* 1649 * swap_pager_copy() can sleep, in which case 1650 * the backing_object's and object's locks are 1651 * released and reacquired. 1652 */ 1653 swap_pager_copy( 1654 backing_object, 1655 object, 1656 OFF_TO_IDX(object->backing_object_offset), TRUE); 1657 1658 /* 1659 * Free any cached pages from backing_object. 1660 */ 1661 if (__predict_false(backing_object->cache != NULL)) 1662 vm_page_cache_free(backing_object, 0, 0); 1663 } 1664 /* 1665 * Object now shadows whatever backing_object did. 1666 * Note that the reference to 1667 * backing_object->backing_object moves from within 1668 * backing_object to within object. 1669 */ 1670 LIST_REMOVE(object, shadow_list); 1671 backing_object->shadow_count--; 1672 if (backing_object->backing_object) { 1673 VM_OBJECT_LOCK(backing_object->backing_object); 1674 LIST_REMOVE(backing_object, shadow_list); 1675 LIST_INSERT_HEAD( 1676 &backing_object->backing_object->shadow_head, 1677 object, shadow_list); 1678 /* 1679 * The shadow_count has not changed. 1680 */ 1681 VM_OBJECT_UNLOCK(backing_object->backing_object); 1682 } 1683 object->backing_object = backing_object->backing_object; 1684 object->backing_object_offset += 1685 backing_object->backing_object_offset; 1686 1687 /* 1688 * Discard backing_object. 1689 * 1690 * Since the backing object has no pages, no pager left, 1691 * and no object references within it, all that is 1692 * necessary is to dispose of it. 1693 */ 1694 KASSERT(backing_object->ref_count == 1, ( 1695 "backing_object %p was somehow re-referenced during collapse!", 1696 backing_object)); 1697 VM_OBJECT_UNLOCK(backing_object); 1698 vm_object_destroy(backing_object); 1699 1700 object_collapses++; 1701 } else { 1702 vm_object_t new_backing_object; 1703 1704 /* 1705 * If we do not entirely shadow the backing object, 1706 * there is nothing we can do so we give up. 1707 */ 1708 if (object->resident_page_count != object->size && 1709 vm_object_backing_scan(object, 1710 OBSC_TEST_ALL_SHADOWED) == 0) { 1711 VM_OBJECT_UNLOCK(backing_object); 1712 break; 1713 } 1714 1715 /* 1716 * Make the parent shadow the next object in the 1717 * chain. Deallocating backing_object will not remove 1718 * it, since its reference count is at least 2. 1719 */ 1720 LIST_REMOVE(object, shadow_list); 1721 backing_object->shadow_count--; 1722 1723 new_backing_object = backing_object->backing_object; 1724 if ((object->backing_object = new_backing_object) != NULL) { 1725 VM_OBJECT_LOCK(new_backing_object); 1726 LIST_INSERT_HEAD( 1727 &new_backing_object->shadow_head, 1728 object, 1729 shadow_list 1730 ); 1731 new_backing_object->shadow_count++; 1732 vm_object_reference_locked(new_backing_object); 1733 VM_OBJECT_UNLOCK(new_backing_object); 1734 object->backing_object_offset += 1735 backing_object->backing_object_offset; 1736 } 1737 1738 /* 1739 * Drop the reference count on backing_object. Since 1740 * its ref_count was at least 2, it will not vanish. 1741 */ 1742 backing_object->ref_count--; 1743 VM_OBJECT_UNLOCK(backing_object); 1744 object_bypasses++; 1745 } 1746 1747 /* 1748 * Try again with this object's new backing object. 1749 */ 1750 } 1751 } 1752 1753 /* 1754 * vm_object_page_remove: 1755 * 1756 * For the given object, either frees or invalidates each of the 1757 * specified pages. In general, a page is freed. However, if a 1758 * page is wired for any reason other than the existence of a 1759 * managed, wired mapping, then it may be invalidated but not 1760 * removed from the object. Pages are specified by the given 1761 * range ["start", "end") and Boolean "clean_only". As a 1762 * special case, if "end" is zero, then the range extends from 1763 * "start" to the end of the object. If "clean_only" is TRUE, 1764 * then only the non-dirty pages within the specified range are 1765 * affected. 1766 * 1767 * In general, this operation should only be performed on objects 1768 * that contain managed pages. There are two exceptions. First, 1769 * it may be performed on the kernel and kmem objects. Second, 1770 * it may be used by msync(..., MS_INVALIDATE) to invalidate 1771 * device-backed pages. In both of these cases, "clean_only" 1772 * must be FALSE. 1773 * 1774 * The object must be locked. 1775 */ 1776 void 1777 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1778 boolean_t clean_only) 1779 { 1780 vm_page_t p, next; 1781 int wirings; 1782 1783 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1784 if (object->resident_page_count == 0) 1785 goto skipmemq; 1786 1787 /* 1788 * Since physically-backed objects do not use managed pages, we can't 1789 * remove pages from the object (we must instead remove the page 1790 * references, and then destroy the object). 1791 */ 1792 KASSERT(object->type != OBJT_PHYS || object == kernel_object || 1793 object == kmem_object, 1794 ("attempt to remove pages from a physical object")); 1795 1796 vm_object_pip_add(object, 1); 1797 again: 1798 p = vm_page_find_least(object, start); 1799 1800 /* 1801 * Assert: the variable p is either (1) the page with the 1802 * least pindex greater than or equal to the parameter pindex 1803 * or (2) NULL. 1804 */ 1805 for (; 1806 p != NULL && (p->pindex < end || end == 0); 1807 p = next) { 1808 next = TAILQ_NEXT(p, listq); 1809 1810 /* 1811 * If the page is wired for any reason besides the 1812 * existence of managed, wired mappings, then it cannot 1813 * be freed. For example, fictitious pages, which 1814 * represent device memory, are inherently wired and 1815 * cannot be freed. They can, however, be invalidated 1816 * if "clean_only" is FALSE. 1817 */ 1818 vm_page_lock(p); 1819 if ((wirings = p->wire_count) != 0 && 1820 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1821 /* Fictitious pages do not have managed mappings. */ 1822 if ((p->flags & PG_FICTITIOUS) == 0) 1823 pmap_remove_all(p); 1824 /* Account for removal of managed, wired mappings. */ 1825 p->wire_count -= wirings; 1826 if (!clean_only) { 1827 p->valid = 0; 1828 vm_page_undirty(p); 1829 } 1830 vm_page_unlock(p); 1831 continue; 1832 } 1833 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1834 goto again; 1835 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1836 ("vm_object_page_remove: page %p is fictitious", p)); 1837 if (clean_only && p->valid) { 1838 pmap_remove_write(p); 1839 if (p->dirty) { 1840 vm_page_unlock(p); 1841 continue; 1842 } 1843 } 1844 pmap_remove_all(p); 1845 /* Account for removal of managed, wired mappings. */ 1846 if (wirings != 0) 1847 p->wire_count -= wirings; 1848 vm_page_free(p); 1849 vm_page_unlock(p); 1850 } 1851 vm_object_pip_wakeup(object); 1852 skipmemq: 1853 if (__predict_false(object->cache != NULL)) 1854 vm_page_cache_free(object, start, end); 1855 } 1856 1857 /* 1858 * Populate the specified range of the object with valid pages. Returns 1859 * TRUE if the range is successfully populated and FALSE otherwise. 1860 * 1861 * Note: This function should be optimized to pass a larger array of 1862 * pages to vm_pager_get_pages() before it is applied to a non- 1863 * OBJT_DEVICE object. 1864 * 1865 * The object must be locked. 1866 */ 1867 boolean_t 1868 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1869 { 1870 vm_page_t m, ma[1]; 1871 vm_pindex_t pindex; 1872 int rv; 1873 1874 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1875 for (pindex = start; pindex < end; pindex++) { 1876 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1877 VM_ALLOC_RETRY); 1878 if (m->valid != VM_PAGE_BITS_ALL) { 1879 ma[0] = m; 1880 rv = vm_pager_get_pages(object, ma, 1, 0); 1881 m = vm_page_lookup(object, pindex); 1882 if (m == NULL) 1883 break; 1884 if (rv != VM_PAGER_OK) { 1885 vm_page_lock(m); 1886 vm_page_free(m); 1887 vm_page_unlock(m); 1888 break; 1889 } 1890 } 1891 /* 1892 * Keep "m" busy because a subsequent iteration may unlock 1893 * the object. 1894 */ 1895 } 1896 if (pindex > start) { 1897 m = vm_page_lookup(object, start); 1898 while (m != NULL && m->pindex < pindex) { 1899 vm_page_wakeup(m); 1900 m = TAILQ_NEXT(m, listq); 1901 } 1902 } 1903 return (pindex == end); 1904 } 1905 1906 /* 1907 * Routine: vm_object_coalesce 1908 * Function: Coalesces two objects backing up adjoining 1909 * regions of memory into a single object. 1910 * 1911 * returns TRUE if objects were combined. 1912 * 1913 * NOTE: Only works at the moment if the second object is NULL - 1914 * if it's not, which object do we lock first? 1915 * 1916 * Parameters: 1917 * prev_object First object to coalesce 1918 * prev_offset Offset into prev_object 1919 * prev_size Size of reference to prev_object 1920 * next_size Size of reference to the second object 1921 * reserved Indicator that extension region has 1922 * swap accounted for 1923 * 1924 * Conditions: 1925 * The object must *not* be locked. 1926 */ 1927 boolean_t 1928 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1929 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 1930 { 1931 vm_pindex_t next_pindex; 1932 1933 if (prev_object == NULL) 1934 return (TRUE); 1935 VM_OBJECT_LOCK(prev_object); 1936 if (prev_object->type != OBJT_DEFAULT && 1937 prev_object->type != OBJT_SWAP) { 1938 VM_OBJECT_UNLOCK(prev_object); 1939 return (FALSE); 1940 } 1941 1942 /* 1943 * Try to collapse the object first 1944 */ 1945 vm_object_collapse(prev_object); 1946 1947 /* 1948 * Can't coalesce if: . more than one reference . paged out . shadows 1949 * another object . has a copy elsewhere (any of which mean that the 1950 * pages not mapped to prev_entry may be in use anyway) 1951 */ 1952 if (prev_object->backing_object != NULL) { 1953 VM_OBJECT_UNLOCK(prev_object); 1954 return (FALSE); 1955 } 1956 1957 prev_size >>= PAGE_SHIFT; 1958 next_size >>= PAGE_SHIFT; 1959 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1960 1961 if ((prev_object->ref_count > 1) && 1962 (prev_object->size != next_pindex)) { 1963 VM_OBJECT_UNLOCK(prev_object); 1964 return (FALSE); 1965 } 1966 1967 /* 1968 * Account for the charge. 1969 */ 1970 if (prev_object->cred != NULL) { 1971 1972 /* 1973 * If prev_object was charged, then this mapping, 1974 * althought not charged now, may become writable 1975 * later. Non-NULL cred in the object would prevent 1976 * swap reservation during enabling of the write 1977 * access, so reserve swap now. Failed reservation 1978 * cause allocation of the separate object for the map 1979 * entry, and swap reservation for this entry is 1980 * managed in appropriate time. 1981 */ 1982 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 1983 prev_object->cred)) { 1984 return (FALSE); 1985 } 1986 prev_object->charge += ptoa(next_size); 1987 } 1988 1989 /* 1990 * Remove any pages that may still be in the object from a previous 1991 * deallocation. 1992 */ 1993 if (next_pindex < prev_object->size) { 1994 vm_object_page_remove(prev_object, 1995 next_pindex, 1996 next_pindex + next_size, FALSE); 1997 if (prev_object->type == OBJT_SWAP) 1998 swap_pager_freespace(prev_object, 1999 next_pindex, next_size); 2000 #if 0 2001 if (prev_object->cred != NULL) { 2002 KASSERT(prev_object->charge >= 2003 ptoa(prev_object->size - next_pindex), 2004 ("object %p overcharged 1 %jx %jx", prev_object, 2005 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2006 prev_object->charge -= ptoa(prev_object->size - 2007 next_pindex); 2008 } 2009 #endif 2010 } 2011 2012 /* 2013 * Extend the object if necessary. 2014 */ 2015 if (next_pindex + next_size > prev_object->size) 2016 prev_object->size = next_pindex + next_size; 2017 2018 VM_OBJECT_UNLOCK(prev_object); 2019 return (TRUE); 2020 } 2021 2022 void 2023 vm_object_set_writeable_dirty(vm_object_t object) 2024 { 2025 2026 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2027 if (object->type != OBJT_VNODE) 2028 return; 2029 object->generation++; 2030 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2031 return; 2032 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2033 } 2034 2035 #include "opt_ddb.h" 2036 #ifdef DDB 2037 #include <sys/kernel.h> 2038 2039 #include <sys/cons.h> 2040 2041 #include <ddb/ddb.h> 2042 2043 static int 2044 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2045 { 2046 vm_map_t tmpm; 2047 vm_map_entry_t tmpe; 2048 vm_object_t obj; 2049 int entcount; 2050 2051 if (map == 0) 2052 return 0; 2053 2054 if (entry == 0) { 2055 tmpe = map->header.next; 2056 entcount = map->nentries; 2057 while (entcount-- && (tmpe != &map->header)) { 2058 if (_vm_object_in_map(map, object, tmpe)) { 2059 return 1; 2060 } 2061 tmpe = tmpe->next; 2062 } 2063 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2064 tmpm = entry->object.sub_map; 2065 tmpe = tmpm->header.next; 2066 entcount = tmpm->nentries; 2067 while (entcount-- && tmpe != &tmpm->header) { 2068 if (_vm_object_in_map(tmpm, object, tmpe)) { 2069 return 1; 2070 } 2071 tmpe = tmpe->next; 2072 } 2073 } else if ((obj = entry->object.vm_object) != NULL) { 2074 for (; obj; obj = obj->backing_object) 2075 if (obj == object) { 2076 return 1; 2077 } 2078 } 2079 return 0; 2080 } 2081 2082 static int 2083 vm_object_in_map(vm_object_t object) 2084 { 2085 struct proc *p; 2086 2087 /* sx_slock(&allproc_lock); */ 2088 FOREACH_PROC_IN_SYSTEM(p) { 2089 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2090 continue; 2091 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2092 /* sx_sunlock(&allproc_lock); */ 2093 return 1; 2094 } 2095 } 2096 /* sx_sunlock(&allproc_lock); */ 2097 if (_vm_object_in_map(kernel_map, object, 0)) 2098 return 1; 2099 if (_vm_object_in_map(kmem_map, object, 0)) 2100 return 1; 2101 if (_vm_object_in_map(pager_map, object, 0)) 2102 return 1; 2103 if (_vm_object_in_map(buffer_map, object, 0)) 2104 return 1; 2105 return 0; 2106 } 2107 2108 DB_SHOW_COMMAND(vmochk, vm_object_check) 2109 { 2110 vm_object_t object; 2111 2112 /* 2113 * make sure that internal objs are in a map somewhere 2114 * and none have zero ref counts. 2115 */ 2116 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2117 if (object->handle == NULL && 2118 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2119 if (object->ref_count == 0) { 2120 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2121 (long)object->size); 2122 } 2123 if (!vm_object_in_map(object)) { 2124 db_printf( 2125 "vmochk: internal obj is not in a map: " 2126 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2127 object->ref_count, (u_long)object->size, 2128 (u_long)object->size, 2129 (void *)object->backing_object); 2130 } 2131 } 2132 } 2133 } 2134 2135 /* 2136 * vm_object_print: [ debug ] 2137 */ 2138 DB_SHOW_COMMAND(object, vm_object_print_static) 2139 { 2140 /* XXX convert args. */ 2141 vm_object_t object = (vm_object_t)addr; 2142 boolean_t full = have_addr; 2143 2144 vm_page_t p; 2145 2146 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2147 #define count was_count 2148 2149 int count; 2150 2151 if (object == NULL) 2152 return; 2153 2154 db_iprintf( 2155 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2156 object, (int)object->type, (uintmax_t)object->size, 2157 object->resident_page_count, object->ref_count, object->flags, 2158 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2159 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2160 object->shadow_count, 2161 object->backing_object ? object->backing_object->ref_count : 0, 2162 object->backing_object, (uintmax_t)object->backing_object_offset); 2163 2164 if (!full) 2165 return; 2166 2167 db_indent += 2; 2168 count = 0; 2169 TAILQ_FOREACH(p, &object->memq, listq) { 2170 if (count == 0) 2171 db_iprintf("memory:="); 2172 else if (count == 6) { 2173 db_printf("\n"); 2174 db_iprintf(" ..."); 2175 count = 0; 2176 } else 2177 db_printf(","); 2178 count++; 2179 2180 db_printf("(off=0x%jx,page=0x%jx)", 2181 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2182 } 2183 if (count != 0) 2184 db_printf("\n"); 2185 db_indent -= 2; 2186 } 2187 2188 /* XXX. */ 2189 #undef count 2190 2191 /* XXX need this non-static entry for calling from vm_map_print. */ 2192 void 2193 vm_object_print( 2194 /* db_expr_t */ long addr, 2195 boolean_t have_addr, 2196 /* db_expr_t */ long count, 2197 char *modif) 2198 { 2199 vm_object_print_static(addr, have_addr, count, modif); 2200 } 2201 2202 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2203 { 2204 vm_object_t object; 2205 vm_pindex_t fidx; 2206 vm_paddr_t pa; 2207 vm_page_t m, prev_m; 2208 int rcount, nl, c; 2209 2210 nl = 0; 2211 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2212 db_printf("new object: %p\n", (void *)object); 2213 if (nl > 18) { 2214 c = cngetc(); 2215 if (c != ' ') 2216 return; 2217 nl = 0; 2218 } 2219 nl++; 2220 rcount = 0; 2221 fidx = 0; 2222 pa = -1; 2223 TAILQ_FOREACH(m, &object->memq, listq) { 2224 if (m->pindex > 128) 2225 break; 2226 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2227 prev_m->pindex + 1 != m->pindex) { 2228 if (rcount) { 2229 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2230 (long)fidx, rcount, (long)pa); 2231 if (nl > 18) { 2232 c = cngetc(); 2233 if (c != ' ') 2234 return; 2235 nl = 0; 2236 } 2237 nl++; 2238 rcount = 0; 2239 } 2240 } 2241 if (rcount && 2242 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2243 ++rcount; 2244 continue; 2245 } 2246 if (rcount) { 2247 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2248 (long)fidx, rcount, (long)pa); 2249 if (nl > 18) { 2250 c = cngetc(); 2251 if (c != ' ') 2252 return; 2253 nl = 0; 2254 } 2255 nl++; 2256 } 2257 fidx = m->pindex; 2258 pa = VM_PAGE_TO_PHYS(m); 2259 rcount = 1; 2260 } 2261 if (rcount) { 2262 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2263 (long)fidx, rcount, (long)pa); 2264 if (nl > 18) { 2265 c = cngetc(); 2266 if (c != ' ') 2267 return; 2268 nl = 0; 2269 } 2270 nl++; 2271 } 2272 } 2273 } 2274 #endif /* DDB */ 2275