1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/mman.h> 72 #include <sys/mount.h> 73 #include <sys/kernel.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> /* for curproc, pageproc */ 77 #include <sys/socket.h> 78 #include <sys/vnode.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sx.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_pager.h> 90 #include <vm/swap_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 95 #define EASY_SCAN_FACTOR 8 96 97 #define MSYNC_FLUSH_HARDSEQ 0x01 98 #define MSYNC_FLUSH_SOFTSEQ 0x02 99 100 /* 101 * msync / VM object flushing optimizations 102 */ 103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ; 104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, 105 CTLFLAG_RW, &msync_flush_flags, 0, ""); 106 107 static int old_msync; 108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 109 "Use old (insecure) msync behavior"); 110 111 static void vm_object_qcollapse(vm_object_t object); 112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags); 113 static void vm_object_vndeallocate(vm_object_t object); 114 115 /* 116 * Virtual memory objects maintain the actual data 117 * associated with allocated virtual memory. A given 118 * page of memory exists within exactly one object. 119 * 120 * An object is only deallocated when all "references" 121 * are given up. Only one "reference" to a given 122 * region of an object should be writeable. 123 * 124 * Associated with each object is a list of all resident 125 * memory pages belonging to that object; this list is 126 * maintained by the "vm_page" module, and locked by the object's 127 * lock. 128 * 129 * Each object also records a "pager" routine which is 130 * used to retrieve (and store) pages to the proper backing 131 * storage. In addition, objects may be backed by other 132 * objects from which they were virtual-copied. 133 * 134 * The only items within the object structure which are 135 * modified after time of creation are: 136 * reference count locked by object's lock 137 * pager routine locked by object's lock 138 * 139 */ 140 141 struct object_q vm_object_list; 142 struct mtx vm_object_list_mtx; /* lock for object list and count */ 143 144 struct vm_object kernel_object_store; 145 struct vm_object kmem_object_store; 146 147 static long object_collapses; 148 static long object_bypasses; 149 150 /* 151 * next_index determines the page color that is assigned to the next 152 * allocated object. Accesses to next_index are not synchronized 153 * because the effects of two or more object allocations using 154 * next_index simultaneously are inconsequential. At any given time, 155 * numerous objects have the same page color. 156 */ 157 static int next_index; 158 159 static uma_zone_t obj_zone; 160 161 static int vm_object_zinit(void *mem, int size, int flags); 162 163 #ifdef INVARIANTS 164 static void vm_object_zdtor(void *mem, int size, void *arg); 165 166 static void 167 vm_object_zdtor(void *mem, int size, void *arg) 168 { 169 vm_object_t object; 170 171 object = (vm_object_t)mem; 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages", 174 object)); 175 KASSERT(object->paging_in_progress == 0, 176 ("object %p paging_in_progress = %d", 177 object, object->paging_in_progress)); 178 KASSERT(object->resident_page_count == 0, 179 ("object %p resident_page_count = %d", 180 object, object->resident_page_count)); 181 KASSERT(object->shadow_count == 0, 182 ("object %p shadow_count = %d", 183 object, object->shadow_count)); 184 } 185 #endif 186 187 static int 188 vm_object_zinit(void *mem, int size, int flags) 189 { 190 vm_object_t object; 191 192 object = (vm_object_t)mem; 193 bzero(&object->mtx, sizeof(object->mtx)); 194 VM_OBJECT_LOCK_INIT(object, "standard object"); 195 196 /* These are true for any object that has been freed */ 197 object->paging_in_progress = 0; 198 object->resident_page_count = 0; 199 object->shadow_count = 0; 200 return (0); 201 } 202 203 void 204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 205 { 206 int incr; 207 208 TAILQ_INIT(&object->memq); 209 LIST_INIT(&object->shadow_head); 210 211 object->root = NULL; 212 object->type = type; 213 object->size = size; 214 object->generation = 1; 215 object->ref_count = 1; 216 object->flags = 0; 217 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 218 object->flags = OBJ_ONEMAPPING; 219 incr = PQ_MAXLENGTH; 220 if (size <= incr) 221 incr = size; 222 object->pg_color = next_index; 223 next_index = (object->pg_color + incr) & PQ_COLORMASK; 224 object->handle = NULL; 225 object->backing_object = NULL; 226 object->backing_object_offset = (vm_ooffset_t) 0; 227 228 mtx_lock(&vm_object_list_mtx); 229 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 230 mtx_unlock(&vm_object_list_mtx); 231 } 232 233 /* 234 * vm_object_init: 235 * 236 * Initialize the VM objects module. 237 */ 238 void 239 vm_object_init(void) 240 { 241 TAILQ_INIT(&vm_object_list); 242 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 243 244 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object"); 245 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 246 kernel_object); 247 248 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object"); 249 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 250 kmem_object); 251 252 /* 253 * The lock portion of struct vm_object must be type stable due 254 * to vm_pageout_fallback_object_lock locking a vm object 255 * without holding any references to it. 256 */ 257 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 258 #ifdef INVARIANTS 259 vm_object_zdtor, 260 #else 261 NULL, 262 #endif 263 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 264 } 265 266 void 267 vm_object_clear_flag(vm_object_t object, u_short bits) 268 { 269 270 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 271 object->flags &= ~bits; 272 } 273 274 void 275 vm_object_pip_add(vm_object_t object, short i) 276 { 277 278 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 279 object->paging_in_progress += i; 280 } 281 282 void 283 vm_object_pip_subtract(vm_object_t object, short i) 284 { 285 286 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 287 object->paging_in_progress -= i; 288 } 289 290 void 291 vm_object_pip_wakeup(vm_object_t object) 292 { 293 294 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 295 object->paging_in_progress--; 296 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 297 vm_object_clear_flag(object, OBJ_PIPWNT); 298 wakeup(object); 299 } 300 } 301 302 void 303 vm_object_pip_wakeupn(vm_object_t object, short i) 304 { 305 306 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 307 if (i) 308 object->paging_in_progress -= i; 309 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 310 vm_object_clear_flag(object, OBJ_PIPWNT); 311 wakeup(object); 312 } 313 } 314 315 void 316 vm_object_pip_wait(vm_object_t object, char *waitid) 317 { 318 319 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 320 while (object->paging_in_progress) { 321 object->flags |= OBJ_PIPWNT; 322 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 323 } 324 } 325 326 /* 327 * vm_object_allocate: 328 * 329 * Returns a new object with the given size. 330 */ 331 vm_object_t 332 vm_object_allocate(objtype_t type, vm_pindex_t size) 333 { 334 vm_object_t object; 335 336 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 337 _vm_object_allocate(type, size, object); 338 return (object); 339 } 340 341 342 /* 343 * vm_object_reference: 344 * 345 * Gets another reference to the given object. Note: OBJ_DEAD 346 * objects can be referenced during final cleaning. 347 */ 348 void 349 vm_object_reference(vm_object_t object) 350 { 351 struct vnode *vp; 352 353 if (object == NULL) 354 return; 355 VM_OBJECT_LOCK(object); 356 object->ref_count++; 357 if (object->type == OBJT_VNODE) { 358 int vfslocked; 359 360 vp = object->handle; 361 VM_OBJECT_UNLOCK(object); 362 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 363 vget(vp, LK_RETRY, curthread); 364 VFS_UNLOCK_GIANT(vfslocked); 365 } else 366 VM_OBJECT_UNLOCK(object); 367 } 368 369 /* 370 * vm_object_reference_locked: 371 * 372 * Gets another reference to the given object. 373 * 374 * The object must be locked. 375 */ 376 void 377 vm_object_reference_locked(vm_object_t object) 378 { 379 struct vnode *vp; 380 381 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 382 KASSERT((object->flags & OBJ_DEAD) == 0, 383 ("vm_object_reference_locked: dead object referenced")); 384 object->ref_count++; 385 if (object->type == OBJT_VNODE) { 386 vp = object->handle; 387 vref(vp); 388 } 389 } 390 391 /* 392 * Handle deallocating an object of type OBJT_VNODE. 393 */ 394 static void 395 vm_object_vndeallocate(vm_object_t object) 396 { 397 struct vnode *vp = (struct vnode *) object->handle; 398 399 VFS_ASSERT_GIANT(vp->v_mount); 400 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 401 KASSERT(object->type == OBJT_VNODE, 402 ("vm_object_vndeallocate: not a vnode object")); 403 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 404 #ifdef INVARIANTS 405 if (object->ref_count == 0) { 406 vprint("vm_object_vndeallocate", vp); 407 panic("vm_object_vndeallocate: bad object reference count"); 408 } 409 #endif 410 411 object->ref_count--; 412 if (object->ref_count == 0) { 413 mp_fixme("Unlocked vflag access."); 414 vp->v_vflag &= ~VV_TEXT; 415 } 416 VM_OBJECT_UNLOCK(object); 417 /* 418 * vrele may need a vop lock 419 */ 420 vrele(vp); 421 } 422 423 /* 424 * vm_object_deallocate: 425 * 426 * Release a reference to the specified object, 427 * gained either through a vm_object_allocate 428 * or a vm_object_reference call. When all references 429 * are gone, storage associated with this object 430 * may be relinquished. 431 * 432 * No object may be locked. 433 */ 434 void 435 vm_object_deallocate(vm_object_t object) 436 { 437 vm_object_t temp; 438 439 while (object != NULL) { 440 int vfslocked; 441 442 vfslocked = 0; 443 restart: 444 VM_OBJECT_LOCK(object); 445 if (object->type == OBJT_VNODE) { 446 struct vnode *vp = (struct vnode *) object->handle; 447 448 /* 449 * Conditionally acquire Giant for a vnode-backed 450 * object. We have to be careful since the type of 451 * a vnode object can change while the object is 452 * unlocked. 453 */ 454 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 455 vfslocked = 1; 456 if (!mtx_trylock(&Giant)) { 457 VM_OBJECT_UNLOCK(object); 458 mtx_lock(&Giant); 459 goto restart; 460 } 461 } 462 vm_object_vndeallocate(object); 463 VFS_UNLOCK_GIANT(vfslocked); 464 return; 465 } else 466 /* 467 * This is to handle the case that the object 468 * changed type while we dropped its lock to 469 * obtain Giant. 470 */ 471 VFS_UNLOCK_GIANT(vfslocked); 472 473 KASSERT(object->ref_count != 0, 474 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 475 476 /* 477 * If the reference count goes to 0 we start calling 478 * vm_object_terminate() on the object chain. 479 * A ref count of 1 may be a special case depending on the 480 * shadow count being 0 or 1. 481 */ 482 object->ref_count--; 483 if (object->ref_count > 1) { 484 VM_OBJECT_UNLOCK(object); 485 return; 486 } else if (object->ref_count == 1) { 487 if (object->shadow_count == 0) { 488 vm_object_set_flag(object, OBJ_ONEMAPPING); 489 } else if ((object->shadow_count == 1) && 490 (object->handle == NULL) && 491 (object->type == OBJT_DEFAULT || 492 object->type == OBJT_SWAP)) { 493 vm_object_t robject; 494 495 robject = LIST_FIRST(&object->shadow_head); 496 KASSERT(robject != NULL, 497 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 498 object->ref_count, 499 object->shadow_count)); 500 if (!VM_OBJECT_TRYLOCK(robject)) { 501 /* 502 * Avoid a potential deadlock. 503 */ 504 object->ref_count++; 505 VM_OBJECT_UNLOCK(object); 506 /* 507 * More likely than not the thread 508 * holding robject's lock has lower 509 * priority than the current thread. 510 * Let the lower priority thread run. 511 */ 512 tsleep(&proc0, PVM, "vmo_de", 1); 513 continue; 514 } 515 /* 516 * Collapse object into its shadow unless its 517 * shadow is dead. In that case, object will 518 * be deallocated by the thread that is 519 * deallocating its shadow. 520 */ 521 if ((robject->flags & OBJ_DEAD) == 0 && 522 (robject->handle == NULL) && 523 (robject->type == OBJT_DEFAULT || 524 robject->type == OBJT_SWAP)) { 525 526 robject->ref_count++; 527 retry: 528 if (robject->paging_in_progress) { 529 VM_OBJECT_UNLOCK(object); 530 vm_object_pip_wait(robject, 531 "objde1"); 532 VM_OBJECT_LOCK(object); 533 goto retry; 534 } else if (object->paging_in_progress) { 535 VM_OBJECT_UNLOCK(robject); 536 object->flags |= OBJ_PIPWNT; 537 msleep(object, 538 VM_OBJECT_MTX(object), 539 PDROP | PVM, "objde2", 0); 540 VM_OBJECT_LOCK(robject); 541 VM_OBJECT_LOCK(object); 542 goto retry; 543 } 544 VM_OBJECT_UNLOCK(object); 545 if (robject->ref_count == 1) { 546 robject->ref_count--; 547 object = robject; 548 goto doterm; 549 } 550 object = robject; 551 vm_object_collapse(object); 552 VM_OBJECT_UNLOCK(object); 553 continue; 554 } 555 VM_OBJECT_UNLOCK(robject); 556 } 557 VM_OBJECT_UNLOCK(object); 558 return; 559 } 560 doterm: 561 temp = object->backing_object; 562 if (temp != NULL) { 563 VM_OBJECT_LOCK(temp); 564 LIST_REMOVE(object, shadow_list); 565 temp->shadow_count--; 566 temp->generation++; 567 VM_OBJECT_UNLOCK(temp); 568 object->backing_object = NULL; 569 } 570 /* 571 * Don't double-terminate, we could be in a termination 572 * recursion due to the terminate having to sync data 573 * to disk. 574 */ 575 if ((object->flags & OBJ_DEAD) == 0) 576 vm_object_terminate(object); 577 else 578 VM_OBJECT_UNLOCK(object); 579 object = temp; 580 } 581 } 582 583 /* 584 * vm_object_terminate actually destroys the specified object, freeing 585 * up all previously used resources. 586 * 587 * The object must be locked. 588 * This routine may block. 589 */ 590 void 591 vm_object_terminate(vm_object_t object) 592 { 593 vm_page_t p; 594 595 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 596 597 /* 598 * Make sure no one uses us. 599 */ 600 vm_object_set_flag(object, OBJ_DEAD); 601 602 /* 603 * wait for the pageout daemon to be done with the object 604 */ 605 vm_object_pip_wait(object, "objtrm"); 606 607 KASSERT(!object->paging_in_progress, 608 ("vm_object_terminate: pageout in progress")); 609 610 /* 611 * Clean and free the pages, as appropriate. All references to the 612 * object are gone, so we don't need to lock it. 613 */ 614 if (object->type == OBJT_VNODE) { 615 struct vnode *vp = (struct vnode *)object->handle; 616 617 /* 618 * Clean pages and flush buffers. 619 */ 620 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 621 VM_OBJECT_UNLOCK(object); 622 623 vinvalbuf(vp, V_SAVE, NULL, 0, 0); 624 625 VM_OBJECT_LOCK(object); 626 } 627 628 KASSERT(object->ref_count == 0, 629 ("vm_object_terminate: object with references, ref_count=%d", 630 object->ref_count)); 631 632 /* 633 * Now free any remaining pages. For internal objects, this also 634 * removes them from paging queues. Don't free wired pages, just 635 * remove them from the object. 636 */ 637 vm_page_lock_queues(); 638 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 639 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0, 640 ("vm_object_terminate: freeing busy page %p " 641 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags)); 642 if (p->wire_count == 0) { 643 vm_page_free(p); 644 cnt.v_pfree++; 645 } else { 646 vm_page_remove(p); 647 } 648 } 649 vm_page_unlock_queues(); 650 651 /* 652 * Let the pager know object is dead. 653 */ 654 vm_pager_deallocate(object); 655 VM_OBJECT_UNLOCK(object); 656 657 /* 658 * Remove the object from the global object list. 659 */ 660 mtx_lock(&vm_object_list_mtx); 661 TAILQ_REMOVE(&vm_object_list, object, object_list); 662 mtx_unlock(&vm_object_list_mtx); 663 664 /* 665 * Free the space for the object. 666 */ 667 uma_zfree(obj_zone, object); 668 } 669 670 /* 671 * vm_object_page_clean 672 * 673 * Clean all dirty pages in the specified range of object. Leaves page 674 * on whatever queue it is currently on. If NOSYNC is set then do not 675 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 676 * leaving the object dirty. 677 * 678 * When stuffing pages asynchronously, allow clustering. XXX we need a 679 * synchronous clustering mode implementation. 680 * 681 * Odd semantics: if start == end, we clean everything. 682 * 683 * The object must be locked. 684 */ 685 void 686 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags) 687 { 688 vm_page_t p, np; 689 vm_pindex_t tstart, tend; 690 vm_pindex_t pi; 691 int clearobjflags; 692 int pagerflags; 693 int curgeneration; 694 695 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 696 if (object->type != OBJT_VNODE || 697 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 698 return; 699 700 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 701 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 702 703 vm_object_set_flag(object, OBJ_CLEANING); 704 705 tstart = start; 706 if (end == 0) { 707 tend = object->size; 708 } else { 709 tend = end; 710 } 711 712 vm_page_lock_queues(); 713 /* 714 * If the caller is smart and only msync()s a range he knows is 715 * dirty, we may be able to avoid an object scan. This results in 716 * a phenominal improvement in performance. We cannot do this 717 * as a matter of course because the object may be huge - e.g. 718 * the size might be in the gigabytes or terrabytes. 719 */ 720 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) { 721 vm_pindex_t tscan; 722 int scanlimit; 723 int scanreset; 724 725 scanreset = object->resident_page_count / EASY_SCAN_FACTOR; 726 if (scanreset < 16) 727 scanreset = 16; 728 pagerflags |= VM_PAGER_IGNORE_CLEANCHK; 729 730 scanlimit = scanreset; 731 tscan = tstart; 732 while (tscan < tend) { 733 curgeneration = object->generation; 734 p = vm_page_lookup(object, tscan); 735 if (p == NULL || p->valid == 0 || 736 VM_PAGE_INQUEUE1(p, PQ_CACHE)) { 737 if (--scanlimit == 0) 738 break; 739 ++tscan; 740 continue; 741 } 742 vm_page_test_dirty(p); 743 if ((p->dirty & p->valid) == 0) { 744 if (--scanlimit == 0) 745 break; 746 ++tscan; 747 continue; 748 } 749 /* 750 * If we have been asked to skip nosync pages and 751 * this is a nosync page, we can't continue. 752 */ 753 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 754 if (--scanlimit == 0) 755 break; 756 ++tscan; 757 continue; 758 } 759 scanlimit = scanreset; 760 761 /* 762 * This returns 0 if it was unable to busy the first 763 * page (i.e. had to sleep). 764 */ 765 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags); 766 } 767 768 /* 769 * If everything was dirty and we flushed it successfully, 770 * and the requested range is not the entire object, we 771 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can 772 * return immediately. 773 */ 774 if (tscan >= tend && (tstart || tend < object->size)) { 775 vm_page_unlock_queues(); 776 vm_object_clear_flag(object, OBJ_CLEANING); 777 return; 778 } 779 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK; 780 } 781 782 /* 783 * Generally set CLEANCHK interlock and make the page read-only so 784 * we can then clear the object flags. 785 * 786 * However, if this is a nosync mmap then the object is likely to 787 * stay dirty so do not mess with the page and do not clear the 788 * object flags. 789 */ 790 clearobjflags = 1; 791 TAILQ_FOREACH(p, &object->memq, listq) { 792 vm_page_flag_set(p, PG_CLEANCHK); 793 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) 794 clearobjflags = 0; 795 else 796 pmap_page_protect(p, VM_PROT_READ); 797 } 798 799 if (clearobjflags && (tstart == 0) && (tend == object->size)) { 800 struct vnode *vp; 801 802 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 803 if (object->type == OBJT_VNODE && 804 (vp = (struct vnode *)object->handle) != NULL) { 805 VI_LOCK(vp); 806 if (vp->v_iflag & VI_OBJDIRTY) 807 vp->v_iflag &= ~VI_OBJDIRTY; 808 VI_UNLOCK(vp); 809 } 810 } 811 812 rescan: 813 curgeneration = object->generation; 814 815 for (p = TAILQ_FIRST(&object->memq); p; p = np) { 816 int n; 817 818 np = TAILQ_NEXT(p, listq); 819 820 again: 821 pi = p->pindex; 822 if (((p->flags & PG_CLEANCHK) == 0) || 823 (pi < tstart) || (pi >= tend) || 824 (p->valid == 0) || 825 VM_PAGE_INQUEUE1(p, PQ_CACHE)) { 826 vm_page_flag_clear(p, PG_CLEANCHK); 827 continue; 828 } 829 830 vm_page_test_dirty(p); 831 if ((p->dirty & p->valid) == 0) { 832 vm_page_flag_clear(p, PG_CLEANCHK); 833 continue; 834 } 835 836 /* 837 * If we have been asked to skip nosync pages and this is a 838 * nosync page, skip it. Note that the object flags were 839 * not cleared in this case so we do not have to set them. 840 */ 841 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 842 vm_page_flag_clear(p, PG_CLEANCHK); 843 continue; 844 } 845 846 n = vm_object_page_collect_flush(object, p, 847 curgeneration, pagerflags); 848 if (n == 0) 849 goto rescan; 850 851 if (object->generation != curgeneration) 852 goto rescan; 853 854 /* 855 * Try to optimize the next page. If we can't we pick up 856 * our (random) scan where we left off. 857 */ 858 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) { 859 if ((p = vm_page_lookup(object, pi + n)) != NULL) 860 goto again; 861 } 862 } 863 vm_page_unlock_queues(); 864 #if 0 865 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 866 #endif 867 868 vm_object_clear_flag(object, OBJ_CLEANING); 869 return; 870 } 871 872 static int 873 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags) 874 { 875 int runlen; 876 int maxf; 877 int chkb; 878 int maxb; 879 int i; 880 vm_pindex_t pi; 881 vm_page_t maf[vm_pageout_page_count]; 882 vm_page_t mab[vm_pageout_page_count]; 883 vm_page_t ma[vm_pageout_page_count]; 884 885 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 886 pi = p->pindex; 887 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 888 vm_page_lock_queues(); 889 if (object->generation != curgeneration) { 890 return(0); 891 } 892 } 893 maxf = 0; 894 for(i = 1; i < vm_pageout_page_count; i++) { 895 vm_page_t tp; 896 897 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 898 if ((tp->flags & PG_BUSY) || 899 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 900 (tp->flags & PG_CLEANCHK) == 0) || 901 (tp->busy != 0)) 902 break; 903 if (VM_PAGE_INQUEUE1(tp, PQ_CACHE)) { 904 vm_page_flag_clear(tp, PG_CLEANCHK); 905 break; 906 } 907 vm_page_test_dirty(tp); 908 if ((tp->dirty & tp->valid) == 0) { 909 vm_page_flag_clear(tp, PG_CLEANCHK); 910 break; 911 } 912 maf[ i - 1 ] = tp; 913 maxf++; 914 continue; 915 } 916 break; 917 } 918 919 maxb = 0; 920 chkb = vm_pageout_page_count - maxf; 921 if (chkb) { 922 for(i = 1; i < chkb;i++) { 923 vm_page_t tp; 924 925 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 926 if ((tp->flags & PG_BUSY) || 927 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 928 (tp->flags & PG_CLEANCHK) == 0) || 929 (tp->busy != 0)) 930 break; 931 if (VM_PAGE_INQUEUE1(tp, PQ_CACHE)) { 932 vm_page_flag_clear(tp, PG_CLEANCHK); 933 break; 934 } 935 vm_page_test_dirty(tp); 936 if ((tp->dirty & tp->valid) == 0) { 937 vm_page_flag_clear(tp, PG_CLEANCHK); 938 break; 939 } 940 mab[ i - 1 ] = tp; 941 maxb++; 942 continue; 943 } 944 break; 945 } 946 } 947 948 for(i = 0; i < maxb; i++) { 949 int index = (maxb - i) - 1; 950 ma[index] = mab[i]; 951 vm_page_flag_clear(ma[index], PG_CLEANCHK); 952 } 953 vm_page_flag_clear(p, PG_CLEANCHK); 954 ma[maxb] = p; 955 for(i = 0; i < maxf; i++) { 956 int index = (maxb + i) + 1; 957 ma[index] = maf[i]; 958 vm_page_flag_clear(ma[index], PG_CLEANCHK); 959 } 960 runlen = maxb + maxf + 1; 961 962 vm_pageout_flush(ma, runlen, pagerflags); 963 for (i = 0; i < runlen; i++) { 964 if (ma[i]->valid & ma[i]->dirty) { 965 pmap_page_protect(ma[i], VM_PROT_READ); 966 vm_page_flag_set(ma[i], PG_CLEANCHK); 967 968 /* 969 * maxf will end up being the actual number of pages 970 * we wrote out contiguously, non-inclusive of the 971 * first page. We do not count look-behind pages. 972 */ 973 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 974 maxf = i - maxb - 1; 975 } 976 } 977 return(maxf + 1); 978 } 979 980 /* 981 * Note that there is absolutely no sense in writing out 982 * anonymous objects, so we track down the vnode object 983 * to write out. 984 * We invalidate (remove) all pages from the address space 985 * for semantic correctness. 986 * 987 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 988 * may start out with a NULL object. 989 */ 990 void 991 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 992 boolean_t syncio, boolean_t invalidate) 993 { 994 vm_object_t backing_object; 995 struct vnode *vp; 996 struct mount *mp; 997 int flags; 998 999 if (object == NULL) 1000 return; 1001 VM_OBJECT_LOCK(object); 1002 while ((backing_object = object->backing_object) != NULL) { 1003 VM_OBJECT_LOCK(backing_object); 1004 offset += object->backing_object_offset; 1005 VM_OBJECT_UNLOCK(object); 1006 object = backing_object; 1007 if (object->size < OFF_TO_IDX(offset + size)) 1008 size = IDX_TO_OFF(object->size) - offset; 1009 } 1010 /* 1011 * Flush pages if writing is allowed, invalidate them 1012 * if invalidation requested. Pages undergoing I/O 1013 * will be ignored by vm_object_page_remove(). 1014 * 1015 * We cannot lock the vnode and then wait for paging 1016 * to complete without deadlocking against vm_fault. 1017 * Instead we simply call vm_object_page_remove() and 1018 * allow it to block internally on a page-by-page 1019 * basis when it encounters pages undergoing async 1020 * I/O. 1021 */ 1022 if (object->type == OBJT_VNODE && 1023 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1024 int vfslocked; 1025 vp = object->handle; 1026 VM_OBJECT_UNLOCK(object); 1027 (void) vn_start_write(vp, &mp, V_WAIT); 1028 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1029 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread); 1030 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1031 flags |= invalidate ? OBJPC_INVAL : 0; 1032 VM_OBJECT_LOCK(object); 1033 vm_object_page_clean(object, 1034 OFF_TO_IDX(offset), 1035 OFF_TO_IDX(offset + size + PAGE_MASK), 1036 flags); 1037 VM_OBJECT_UNLOCK(object); 1038 VOP_UNLOCK(vp, 0, curthread); 1039 VFS_UNLOCK_GIANT(vfslocked); 1040 vn_finished_write(mp); 1041 VM_OBJECT_LOCK(object); 1042 } 1043 if ((object->type == OBJT_VNODE || 1044 object->type == OBJT_DEVICE) && invalidate) { 1045 boolean_t purge; 1046 purge = old_msync || (object->type == OBJT_DEVICE); 1047 vm_object_page_remove(object, 1048 OFF_TO_IDX(offset), 1049 OFF_TO_IDX(offset + size + PAGE_MASK), 1050 purge ? FALSE : TRUE); 1051 } 1052 VM_OBJECT_UNLOCK(object); 1053 } 1054 1055 /* 1056 * vm_object_madvise: 1057 * 1058 * Implements the madvise function at the object/page level. 1059 * 1060 * MADV_WILLNEED (any object) 1061 * 1062 * Activate the specified pages if they are resident. 1063 * 1064 * MADV_DONTNEED (any object) 1065 * 1066 * Deactivate the specified pages if they are resident. 1067 * 1068 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1069 * OBJ_ONEMAPPING only) 1070 * 1071 * Deactivate and clean the specified pages if they are 1072 * resident. This permits the process to reuse the pages 1073 * without faulting or the kernel to reclaim the pages 1074 * without I/O. 1075 */ 1076 void 1077 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1078 { 1079 vm_pindex_t end, tpindex; 1080 vm_object_t backing_object, tobject; 1081 vm_page_t m; 1082 1083 if (object == NULL) 1084 return; 1085 VM_OBJECT_LOCK(object); 1086 end = pindex + count; 1087 /* 1088 * Locate and adjust resident pages 1089 */ 1090 for (; pindex < end; pindex += 1) { 1091 relookup: 1092 tobject = object; 1093 tpindex = pindex; 1094 shadowlookup: 1095 /* 1096 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1097 * and those pages must be OBJ_ONEMAPPING. 1098 */ 1099 if (advise == MADV_FREE) { 1100 if ((tobject->type != OBJT_DEFAULT && 1101 tobject->type != OBJT_SWAP) || 1102 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1103 goto unlock_tobject; 1104 } 1105 } 1106 m = vm_page_lookup(tobject, tpindex); 1107 if (m == NULL) { 1108 /* 1109 * There may be swap even if there is no backing page 1110 */ 1111 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1112 swap_pager_freespace(tobject, tpindex, 1); 1113 /* 1114 * next object 1115 */ 1116 backing_object = tobject->backing_object; 1117 if (backing_object == NULL) 1118 goto unlock_tobject; 1119 VM_OBJECT_LOCK(backing_object); 1120 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1121 if (tobject != object) 1122 VM_OBJECT_UNLOCK(tobject); 1123 tobject = backing_object; 1124 goto shadowlookup; 1125 } 1126 /* 1127 * If the page is busy or not in a normal active state, 1128 * we skip it. If the page is not managed there are no 1129 * page queues to mess with. Things can break if we mess 1130 * with pages in any of the below states. 1131 */ 1132 vm_page_lock_queues(); 1133 if (m->hold_count || 1134 m->wire_count || 1135 (m->flags & PG_UNMANAGED) || 1136 m->valid != VM_PAGE_BITS_ALL) { 1137 vm_page_unlock_queues(); 1138 goto unlock_tobject; 1139 } 1140 if ((m->flags & PG_BUSY) || m->busy) { 1141 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1142 if (object != tobject) 1143 VM_OBJECT_UNLOCK(object); 1144 VM_OBJECT_UNLOCK(tobject); 1145 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0); 1146 VM_OBJECT_LOCK(object); 1147 goto relookup; 1148 } 1149 if (advise == MADV_WILLNEED) { 1150 vm_page_activate(m); 1151 } else if (advise == MADV_DONTNEED) { 1152 vm_page_dontneed(m); 1153 } else if (advise == MADV_FREE) { 1154 /* 1155 * Mark the page clean. This will allow the page 1156 * to be freed up by the system. However, such pages 1157 * are often reused quickly by malloc()/free() 1158 * so we do not do anything that would cause 1159 * a page fault if we can help it. 1160 * 1161 * Specifically, we do not try to actually free 1162 * the page now nor do we try to put it in the 1163 * cache (which would cause a page fault on reuse). 1164 * 1165 * But we do make the page is freeable as we 1166 * can without actually taking the step of unmapping 1167 * it. 1168 */ 1169 pmap_clear_modify(m); 1170 m->dirty = 0; 1171 m->act_count = 0; 1172 vm_page_dontneed(m); 1173 } 1174 vm_page_unlock_queues(); 1175 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1176 swap_pager_freespace(tobject, tpindex, 1); 1177 unlock_tobject: 1178 if (tobject != object) 1179 VM_OBJECT_UNLOCK(tobject); 1180 } 1181 VM_OBJECT_UNLOCK(object); 1182 } 1183 1184 /* 1185 * vm_object_shadow: 1186 * 1187 * Create a new object which is backed by the 1188 * specified existing object range. The source 1189 * object reference is deallocated. 1190 * 1191 * The new object and offset into that object 1192 * are returned in the source parameters. 1193 */ 1194 void 1195 vm_object_shadow( 1196 vm_object_t *object, /* IN/OUT */ 1197 vm_ooffset_t *offset, /* IN/OUT */ 1198 vm_size_t length) 1199 { 1200 vm_object_t source; 1201 vm_object_t result; 1202 1203 source = *object; 1204 1205 /* 1206 * Don't create the new object if the old object isn't shared. 1207 */ 1208 if (source != NULL) { 1209 VM_OBJECT_LOCK(source); 1210 if (source->ref_count == 1 && 1211 source->handle == NULL && 1212 (source->type == OBJT_DEFAULT || 1213 source->type == OBJT_SWAP)) { 1214 VM_OBJECT_UNLOCK(source); 1215 return; 1216 } 1217 VM_OBJECT_UNLOCK(source); 1218 } 1219 1220 /* 1221 * Allocate a new object with the given length. 1222 */ 1223 result = vm_object_allocate(OBJT_DEFAULT, length); 1224 1225 /* 1226 * The new object shadows the source object, adding a reference to it. 1227 * Our caller changes his reference to point to the new object, 1228 * removing a reference to the source object. Net result: no change 1229 * of reference count. 1230 * 1231 * Try to optimize the result object's page color when shadowing 1232 * in order to maintain page coloring consistency in the combined 1233 * shadowed object. 1234 */ 1235 result->backing_object = source; 1236 /* 1237 * Store the offset into the source object, and fix up the offset into 1238 * the new object. 1239 */ 1240 result->backing_object_offset = *offset; 1241 if (source != NULL) { 1242 VM_OBJECT_LOCK(source); 1243 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1244 source->shadow_count++; 1245 source->generation++; 1246 if (length < source->size) 1247 length = source->size; 1248 if (length > PQ_MAXLENGTH || source->generation > 1) 1249 length = PQ_MAXLENGTH; 1250 result->pg_color = (source->pg_color + 1251 length * source->generation) & PQ_COLORMASK; 1252 result->flags |= source->flags & OBJ_NEEDGIANT; 1253 VM_OBJECT_UNLOCK(source); 1254 next_index = (result->pg_color + PQ_MAXLENGTH) & PQ_COLORMASK; 1255 } 1256 1257 1258 /* 1259 * Return the new things 1260 */ 1261 *offset = 0; 1262 *object = result; 1263 } 1264 1265 /* 1266 * vm_object_split: 1267 * 1268 * Split the pages in a map entry into a new object. This affords 1269 * easier removal of unused pages, and keeps object inheritance from 1270 * being a negative impact on memory usage. 1271 */ 1272 void 1273 vm_object_split(vm_map_entry_t entry) 1274 { 1275 vm_page_t m; 1276 vm_object_t orig_object, new_object, source; 1277 vm_pindex_t offidxstart, offidxend; 1278 vm_size_t idx, size; 1279 1280 orig_object = entry->object.vm_object; 1281 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1282 return; 1283 if (orig_object->ref_count <= 1) 1284 return; 1285 VM_OBJECT_UNLOCK(orig_object); 1286 1287 offidxstart = OFF_TO_IDX(entry->offset); 1288 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start); 1289 size = offidxend - offidxstart; 1290 1291 /* 1292 * If swap_pager_copy() is later called, it will convert new_object 1293 * into a swap object. 1294 */ 1295 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1296 1297 VM_OBJECT_LOCK(new_object); 1298 VM_OBJECT_LOCK(orig_object); 1299 source = orig_object->backing_object; 1300 if (source != NULL) { 1301 VM_OBJECT_LOCK(source); 1302 LIST_INSERT_HEAD(&source->shadow_head, 1303 new_object, shadow_list); 1304 source->shadow_count++; 1305 source->generation++; 1306 vm_object_reference_locked(source); /* for new_object */ 1307 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1308 VM_OBJECT_UNLOCK(source); 1309 new_object->backing_object_offset = 1310 orig_object->backing_object_offset + entry->offset; 1311 new_object->backing_object = source; 1312 } 1313 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT; 1314 vm_page_lock_queues(); 1315 for (idx = 0; idx < size; idx++) { 1316 retry: 1317 m = vm_page_lookup(orig_object, offidxstart + idx); 1318 if (m == NULL) 1319 continue; 1320 1321 /* 1322 * We must wait for pending I/O to complete before we can 1323 * rename the page. 1324 * 1325 * We do not have to VM_PROT_NONE the page as mappings should 1326 * not be changed by this operation. 1327 */ 1328 if ((m->flags & PG_BUSY) || m->busy) { 1329 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1330 VM_OBJECT_UNLOCK(orig_object); 1331 VM_OBJECT_UNLOCK(new_object); 1332 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0); 1333 VM_OBJECT_LOCK(new_object); 1334 VM_OBJECT_LOCK(orig_object); 1335 vm_page_lock_queues(); 1336 goto retry; 1337 } 1338 vm_page_rename(m, new_object, idx); 1339 /* page automatically made dirty by rename and cache handled */ 1340 vm_page_busy(m); 1341 } 1342 vm_page_unlock_queues(); 1343 if (orig_object->type == OBJT_SWAP) { 1344 /* 1345 * swap_pager_copy() can sleep, in which case the orig_object's 1346 * and new_object's locks are released and reacquired. 1347 */ 1348 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1349 } 1350 VM_OBJECT_UNLOCK(orig_object); 1351 vm_page_lock_queues(); 1352 TAILQ_FOREACH(m, &new_object->memq, listq) 1353 vm_page_wakeup(m); 1354 vm_page_unlock_queues(); 1355 VM_OBJECT_UNLOCK(new_object); 1356 entry->object.vm_object = new_object; 1357 entry->offset = 0LL; 1358 vm_object_deallocate(orig_object); 1359 VM_OBJECT_LOCK(new_object); 1360 } 1361 1362 #define OBSC_TEST_ALL_SHADOWED 0x0001 1363 #define OBSC_COLLAPSE_NOWAIT 0x0002 1364 #define OBSC_COLLAPSE_WAIT 0x0004 1365 1366 static int 1367 vm_object_backing_scan(vm_object_t object, int op) 1368 { 1369 int r = 1; 1370 vm_page_t p; 1371 vm_object_t backing_object; 1372 vm_pindex_t backing_offset_index; 1373 1374 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1375 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1376 1377 backing_object = object->backing_object; 1378 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1379 1380 /* 1381 * Initial conditions 1382 */ 1383 if (op & OBSC_TEST_ALL_SHADOWED) { 1384 /* 1385 * We do not want to have to test for the existence of 1386 * swap pages in the backing object. XXX but with the 1387 * new swapper this would be pretty easy to do. 1388 * 1389 * XXX what about anonymous MAP_SHARED memory that hasn't 1390 * been ZFOD faulted yet? If we do not test for this, the 1391 * shadow test may succeed! XXX 1392 */ 1393 if (backing_object->type != OBJT_DEFAULT) { 1394 return (0); 1395 } 1396 } 1397 if (op & OBSC_COLLAPSE_WAIT) { 1398 vm_object_set_flag(backing_object, OBJ_DEAD); 1399 } 1400 1401 /* 1402 * Our scan 1403 */ 1404 p = TAILQ_FIRST(&backing_object->memq); 1405 while (p) { 1406 vm_page_t next = TAILQ_NEXT(p, listq); 1407 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1408 1409 if (op & OBSC_TEST_ALL_SHADOWED) { 1410 vm_page_t pp; 1411 1412 /* 1413 * Ignore pages outside the parent object's range 1414 * and outside the parent object's mapping of the 1415 * backing object. 1416 * 1417 * note that we do not busy the backing object's 1418 * page. 1419 */ 1420 if ( 1421 p->pindex < backing_offset_index || 1422 new_pindex >= object->size 1423 ) { 1424 p = next; 1425 continue; 1426 } 1427 1428 /* 1429 * See if the parent has the page or if the parent's 1430 * object pager has the page. If the parent has the 1431 * page but the page is not valid, the parent's 1432 * object pager must have the page. 1433 * 1434 * If this fails, the parent does not completely shadow 1435 * the object and we might as well give up now. 1436 */ 1437 1438 pp = vm_page_lookup(object, new_pindex); 1439 if ( 1440 (pp == NULL || pp->valid == 0) && 1441 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1442 ) { 1443 r = 0; 1444 break; 1445 } 1446 } 1447 1448 /* 1449 * Check for busy page 1450 */ 1451 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1452 vm_page_t pp; 1453 1454 if (op & OBSC_COLLAPSE_NOWAIT) { 1455 if ((p->flags & PG_BUSY) || 1456 !p->valid || 1457 p->busy) { 1458 p = next; 1459 continue; 1460 } 1461 } else if (op & OBSC_COLLAPSE_WAIT) { 1462 if ((p->flags & PG_BUSY) || p->busy) { 1463 vm_page_lock_queues(); 1464 vm_page_flag_set(p, 1465 PG_WANTED | PG_REFERENCED); 1466 VM_OBJECT_UNLOCK(backing_object); 1467 VM_OBJECT_UNLOCK(object); 1468 msleep(p, &vm_page_queue_mtx, 1469 PDROP | PVM, "vmocol", 0); 1470 VM_OBJECT_LOCK(object); 1471 VM_OBJECT_LOCK(backing_object); 1472 /* 1473 * If we slept, anything could have 1474 * happened. Since the object is 1475 * marked dead, the backing offset 1476 * should not have changed so we 1477 * just restart our scan. 1478 */ 1479 p = TAILQ_FIRST(&backing_object->memq); 1480 continue; 1481 } 1482 } 1483 1484 KASSERT( 1485 p->object == backing_object, 1486 ("vm_object_backing_scan: object mismatch") 1487 ); 1488 1489 /* 1490 * Destroy any associated swap 1491 */ 1492 if (backing_object->type == OBJT_SWAP) { 1493 swap_pager_freespace( 1494 backing_object, 1495 p->pindex, 1496 1 1497 ); 1498 } 1499 1500 if ( 1501 p->pindex < backing_offset_index || 1502 new_pindex >= object->size 1503 ) { 1504 /* 1505 * Page is out of the parent object's range, we 1506 * can simply destroy it. 1507 */ 1508 vm_page_lock_queues(); 1509 KASSERT(!pmap_page_is_mapped(p), 1510 ("freeing mapped page %p", p)); 1511 if (p->wire_count == 0) 1512 vm_page_free(p); 1513 else 1514 vm_page_remove(p); 1515 vm_page_unlock_queues(); 1516 p = next; 1517 continue; 1518 } 1519 1520 pp = vm_page_lookup(object, new_pindex); 1521 if ( 1522 pp != NULL || 1523 vm_pager_has_page(object, new_pindex, NULL, NULL) 1524 ) { 1525 /* 1526 * page already exists in parent OR swap exists 1527 * for this location in the parent. Destroy 1528 * the original page from the backing object. 1529 * 1530 * Leave the parent's page alone 1531 */ 1532 vm_page_lock_queues(); 1533 KASSERT(!pmap_page_is_mapped(p), 1534 ("freeing mapped page %p", p)); 1535 if (p->wire_count == 0) 1536 vm_page_free(p); 1537 else 1538 vm_page_remove(p); 1539 vm_page_unlock_queues(); 1540 p = next; 1541 continue; 1542 } 1543 1544 /* 1545 * Page does not exist in parent, rename the 1546 * page from the backing object to the main object. 1547 * 1548 * If the page was mapped to a process, it can remain 1549 * mapped through the rename. 1550 */ 1551 vm_page_lock_queues(); 1552 vm_page_rename(p, object, new_pindex); 1553 vm_page_unlock_queues(); 1554 /* page automatically made dirty by rename */ 1555 } 1556 p = next; 1557 } 1558 return (r); 1559 } 1560 1561 1562 /* 1563 * this version of collapse allows the operation to occur earlier and 1564 * when paging_in_progress is true for an object... This is not a complete 1565 * operation, but should plug 99.9% of the rest of the leaks. 1566 */ 1567 static void 1568 vm_object_qcollapse(vm_object_t object) 1569 { 1570 vm_object_t backing_object = object->backing_object; 1571 1572 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1573 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1574 1575 if (backing_object->ref_count != 1) 1576 return; 1577 1578 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1579 } 1580 1581 /* 1582 * vm_object_collapse: 1583 * 1584 * Collapse an object with the object backing it. 1585 * Pages in the backing object are moved into the 1586 * parent, and the backing object is deallocated. 1587 */ 1588 void 1589 vm_object_collapse(vm_object_t object) 1590 { 1591 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1592 1593 while (TRUE) { 1594 vm_object_t backing_object; 1595 1596 /* 1597 * Verify that the conditions are right for collapse: 1598 * 1599 * The object exists and the backing object exists. 1600 */ 1601 if ((backing_object = object->backing_object) == NULL) 1602 break; 1603 1604 /* 1605 * we check the backing object first, because it is most likely 1606 * not collapsable. 1607 */ 1608 VM_OBJECT_LOCK(backing_object); 1609 if (backing_object->handle != NULL || 1610 (backing_object->type != OBJT_DEFAULT && 1611 backing_object->type != OBJT_SWAP) || 1612 (backing_object->flags & OBJ_DEAD) || 1613 object->handle != NULL || 1614 (object->type != OBJT_DEFAULT && 1615 object->type != OBJT_SWAP) || 1616 (object->flags & OBJ_DEAD)) { 1617 VM_OBJECT_UNLOCK(backing_object); 1618 break; 1619 } 1620 1621 if ( 1622 object->paging_in_progress != 0 || 1623 backing_object->paging_in_progress != 0 1624 ) { 1625 vm_object_qcollapse(object); 1626 VM_OBJECT_UNLOCK(backing_object); 1627 break; 1628 } 1629 /* 1630 * We know that we can either collapse the backing object (if 1631 * the parent is the only reference to it) or (perhaps) have 1632 * the parent bypass the object if the parent happens to shadow 1633 * all the resident pages in the entire backing object. 1634 * 1635 * This is ignoring pager-backed pages such as swap pages. 1636 * vm_object_backing_scan fails the shadowing test in this 1637 * case. 1638 */ 1639 if (backing_object->ref_count == 1) { 1640 /* 1641 * If there is exactly one reference to the backing 1642 * object, we can collapse it into the parent. 1643 */ 1644 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1645 1646 /* 1647 * Move the pager from backing_object to object. 1648 */ 1649 if (backing_object->type == OBJT_SWAP) { 1650 /* 1651 * swap_pager_copy() can sleep, in which case 1652 * the backing_object's and object's locks are 1653 * released and reacquired. 1654 */ 1655 swap_pager_copy( 1656 backing_object, 1657 object, 1658 OFF_TO_IDX(object->backing_object_offset), TRUE); 1659 } 1660 /* 1661 * Object now shadows whatever backing_object did. 1662 * Note that the reference to 1663 * backing_object->backing_object moves from within 1664 * backing_object to within object. 1665 */ 1666 LIST_REMOVE(object, shadow_list); 1667 backing_object->shadow_count--; 1668 backing_object->generation++; 1669 if (backing_object->backing_object) { 1670 VM_OBJECT_LOCK(backing_object->backing_object); 1671 LIST_REMOVE(backing_object, shadow_list); 1672 LIST_INSERT_HEAD( 1673 &backing_object->backing_object->shadow_head, 1674 object, shadow_list); 1675 /* 1676 * The shadow_count has not changed. 1677 */ 1678 backing_object->backing_object->generation++; 1679 VM_OBJECT_UNLOCK(backing_object->backing_object); 1680 } 1681 object->backing_object = backing_object->backing_object; 1682 object->backing_object_offset += 1683 backing_object->backing_object_offset; 1684 1685 /* 1686 * Discard backing_object. 1687 * 1688 * Since the backing object has no pages, no pager left, 1689 * and no object references within it, all that is 1690 * necessary is to dispose of it. 1691 */ 1692 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object)); 1693 VM_OBJECT_UNLOCK(backing_object); 1694 1695 mtx_lock(&vm_object_list_mtx); 1696 TAILQ_REMOVE( 1697 &vm_object_list, 1698 backing_object, 1699 object_list 1700 ); 1701 mtx_unlock(&vm_object_list_mtx); 1702 1703 uma_zfree(obj_zone, backing_object); 1704 1705 object_collapses++; 1706 } else { 1707 vm_object_t new_backing_object; 1708 1709 /* 1710 * If we do not entirely shadow the backing object, 1711 * there is nothing we can do so we give up. 1712 */ 1713 if (object->resident_page_count != object->size && 1714 vm_object_backing_scan(object, 1715 OBSC_TEST_ALL_SHADOWED) == 0) { 1716 VM_OBJECT_UNLOCK(backing_object); 1717 break; 1718 } 1719 1720 /* 1721 * Make the parent shadow the next object in the 1722 * chain. Deallocating backing_object will not remove 1723 * it, since its reference count is at least 2. 1724 */ 1725 LIST_REMOVE(object, shadow_list); 1726 backing_object->shadow_count--; 1727 backing_object->generation++; 1728 1729 new_backing_object = backing_object->backing_object; 1730 if ((object->backing_object = new_backing_object) != NULL) { 1731 VM_OBJECT_LOCK(new_backing_object); 1732 LIST_INSERT_HEAD( 1733 &new_backing_object->shadow_head, 1734 object, 1735 shadow_list 1736 ); 1737 new_backing_object->shadow_count++; 1738 new_backing_object->generation++; 1739 vm_object_reference_locked(new_backing_object); 1740 VM_OBJECT_UNLOCK(new_backing_object); 1741 object->backing_object_offset += 1742 backing_object->backing_object_offset; 1743 } 1744 1745 /* 1746 * Drop the reference count on backing_object. Since 1747 * its ref_count was at least 2, it will not vanish. 1748 */ 1749 backing_object->ref_count--; 1750 VM_OBJECT_UNLOCK(backing_object); 1751 object_bypasses++; 1752 } 1753 1754 /* 1755 * Try again with this object's new backing object. 1756 */ 1757 } 1758 } 1759 1760 /* 1761 * vm_object_page_remove: 1762 * 1763 * Removes all physical pages in the given range from the 1764 * object's list of pages. If the range's end is zero, all 1765 * physical pages from the range's start to the end of the object 1766 * are deleted. 1767 * 1768 * The object must be locked. 1769 */ 1770 void 1771 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1772 boolean_t clean_only) 1773 { 1774 vm_page_t p, next; 1775 1776 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1777 if (object->resident_page_count == 0) 1778 return; 1779 1780 /* 1781 * Since physically-backed objects do not use managed pages, we can't 1782 * remove pages from the object (we must instead remove the page 1783 * references, and then destroy the object). 1784 */ 1785 KASSERT(object->type != OBJT_PHYS, 1786 ("attempt to remove pages from a physical object")); 1787 1788 vm_object_pip_add(object, 1); 1789 again: 1790 vm_page_lock_queues(); 1791 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1792 if (p->pindex < start) { 1793 p = vm_page_splay(start, object->root); 1794 if ((object->root = p)->pindex < start) 1795 p = TAILQ_NEXT(p, listq); 1796 } 1797 } 1798 /* 1799 * Assert: the variable p is either (1) the page with the 1800 * least pindex greater than or equal to the parameter pindex 1801 * or (2) NULL. 1802 */ 1803 for (; 1804 p != NULL && (p->pindex < end || end == 0); 1805 p = next) { 1806 next = TAILQ_NEXT(p, listq); 1807 1808 if (p->wire_count != 0) { 1809 pmap_remove_all(p); 1810 if (!clean_only) 1811 p->valid = 0; 1812 continue; 1813 } 1814 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1815 goto again; 1816 if (clean_only && p->valid) { 1817 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE); 1818 if (p->valid & p->dirty) 1819 continue; 1820 } 1821 pmap_remove_all(p); 1822 vm_page_free(p); 1823 } 1824 vm_page_unlock_queues(); 1825 vm_object_pip_wakeup(object); 1826 } 1827 1828 /* 1829 * Routine: vm_object_coalesce 1830 * Function: Coalesces two objects backing up adjoining 1831 * regions of memory into a single object. 1832 * 1833 * returns TRUE if objects were combined. 1834 * 1835 * NOTE: Only works at the moment if the second object is NULL - 1836 * if it's not, which object do we lock first? 1837 * 1838 * Parameters: 1839 * prev_object First object to coalesce 1840 * prev_offset Offset into prev_object 1841 * prev_size Size of reference to prev_object 1842 * next_size Size of reference to the second object 1843 * 1844 * Conditions: 1845 * The object must *not* be locked. 1846 */ 1847 boolean_t 1848 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1849 vm_size_t prev_size, vm_size_t next_size) 1850 { 1851 vm_pindex_t next_pindex; 1852 1853 if (prev_object == NULL) 1854 return (TRUE); 1855 VM_OBJECT_LOCK(prev_object); 1856 if (prev_object->type != OBJT_DEFAULT && 1857 prev_object->type != OBJT_SWAP) { 1858 VM_OBJECT_UNLOCK(prev_object); 1859 return (FALSE); 1860 } 1861 1862 /* 1863 * Try to collapse the object first 1864 */ 1865 vm_object_collapse(prev_object); 1866 1867 /* 1868 * Can't coalesce if: . more than one reference . paged out . shadows 1869 * another object . has a copy elsewhere (any of which mean that the 1870 * pages not mapped to prev_entry may be in use anyway) 1871 */ 1872 if (prev_object->backing_object != NULL) { 1873 VM_OBJECT_UNLOCK(prev_object); 1874 return (FALSE); 1875 } 1876 1877 prev_size >>= PAGE_SHIFT; 1878 next_size >>= PAGE_SHIFT; 1879 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1880 1881 if ((prev_object->ref_count > 1) && 1882 (prev_object->size != next_pindex)) { 1883 VM_OBJECT_UNLOCK(prev_object); 1884 return (FALSE); 1885 } 1886 1887 /* 1888 * Remove any pages that may still be in the object from a previous 1889 * deallocation. 1890 */ 1891 if (next_pindex < prev_object->size) { 1892 vm_object_page_remove(prev_object, 1893 next_pindex, 1894 next_pindex + next_size, FALSE); 1895 if (prev_object->type == OBJT_SWAP) 1896 swap_pager_freespace(prev_object, 1897 next_pindex, next_size); 1898 } 1899 1900 /* 1901 * Extend the object if necessary. 1902 */ 1903 if (next_pindex + next_size > prev_object->size) 1904 prev_object->size = next_pindex + next_size; 1905 1906 VM_OBJECT_UNLOCK(prev_object); 1907 return (TRUE); 1908 } 1909 1910 void 1911 vm_object_set_writeable_dirty(vm_object_t object) 1912 { 1913 struct vnode *vp; 1914 1915 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1916 if ((object->flags & (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) == 1917 (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) 1918 return; 1919 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1920 if (object->type == OBJT_VNODE && 1921 (vp = (struct vnode *)object->handle) != NULL) { 1922 VI_LOCK(vp); 1923 vp->v_iflag |= VI_OBJDIRTY; 1924 VI_UNLOCK(vp); 1925 } 1926 } 1927 1928 #include "opt_ddb.h" 1929 #ifdef DDB 1930 #include <sys/kernel.h> 1931 1932 #include <sys/cons.h> 1933 1934 #include <ddb/ddb.h> 1935 1936 static int 1937 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 1938 { 1939 vm_map_t tmpm; 1940 vm_map_entry_t tmpe; 1941 vm_object_t obj; 1942 int entcount; 1943 1944 if (map == 0) 1945 return 0; 1946 1947 if (entry == 0) { 1948 tmpe = map->header.next; 1949 entcount = map->nentries; 1950 while (entcount-- && (tmpe != &map->header)) { 1951 if (_vm_object_in_map(map, object, tmpe)) { 1952 return 1; 1953 } 1954 tmpe = tmpe->next; 1955 } 1956 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1957 tmpm = entry->object.sub_map; 1958 tmpe = tmpm->header.next; 1959 entcount = tmpm->nentries; 1960 while (entcount-- && tmpe != &tmpm->header) { 1961 if (_vm_object_in_map(tmpm, object, tmpe)) { 1962 return 1; 1963 } 1964 tmpe = tmpe->next; 1965 } 1966 } else if ((obj = entry->object.vm_object) != NULL) { 1967 for (; obj; obj = obj->backing_object) 1968 if (obj == object) { 1969 return 1; 1970 } 1971 } 1972 return 0; 1973 } 1974 1975 static int 1976 vm_object_in_map(vm_object_t object) 1977 { 1978 struct proc *p; 1979 1980 /* sx_slock(&allproc_lock); */ 1981 LIST_FOREACH(p, &allproc, p_list) { 1982 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1983 continue; 1984 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 1985 /* sx_sunlock(&allproc_lock); */ 1986 return 1; 1987 } 1988 } 1989 /* sx_sunlock(&allproc_lock); */ 1990 if (_vm_object_in_map(kernel_map, object, 0)) 1991 return 1; 1992 if (_vm_object_in_map(kmem_map, object, 0)) 1993 return 1; 1994 if (_vm_object_in_map(pager_map, object, 0)) 1995 return 1; 1996 if (_vm_object_in_map(buffer_map, object, 0)) 1997 return 1; 1998 return 0; 1999 } 2000 2001 DB_SHOW_COMMAND(vmochk, vm_object_check) 2002 { 2003 vm_object_t object; 2004 2005 /* 2006 * make sure that internal objs are in a map somewhere 2007 * and none have zero ref counts. 2008 */ 2009 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2010 if (object->handle == NULL && 2011 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2012 if (object->ref_count == 0) { 2013 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2014 (long)object->size); 2015 } 2016 if (!vm_object_in_map(object)) { 2017 db_printf( 2018 "vmochk: internal obj is not in a map: " 2019 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2020 object->ref_count, (u_long)object->size, 2021 (u_long)object->size, 2022 (void *)object->backing_object); 2023 } 2024 } 2025 } 2026 } 2027 2028 /* 2029 * vm_object_print: [ debug ] 2030 */ 2031 DB_SHOW_COMMAND(object, vm_object_print_static) 2032 { 2033 /* XXX convert args. */ 2034 vm_object_t object = (vm_object_t)addr; 2035 boolean_t full = have_addr; 2036 2037 vm_page_t p; 2038 2039 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2040 #define count was_count 2041 2042 int count; 2043 2044 if (object == NULL) 2045 return; 2046 2047 db_iprintf( 2048 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n", 2049 object, (int)object->type, (uintmax_t)object->size, 2050 object->resident_page_count, object->ref_count, object->flags); 2051 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2052 object->shadow_count, 2053 object->backing_object ? object->backing_object->ref_count : 0, 2054 object->backing_object, (uintmax_t)object->backing_object_offset); 2055 2056 if (!full) 2057 return; 2058 2059 db_indent += 2; 2060 count = 0; 2061 TAILQ_FOREACH(p, &object->memq, listq) { 2062 if (count == 0) 2063 db_iprintf("memory:="); 2064 else if (count == 6) { 2065 db_printf("\n"); 2066 db_iprintf(" ..."); 2067 count = 0; 2068 } else 2069 db_printf(","); 2070 count++; 2071 2072 db_printf("(off=0x%jx,page=0x%jx)", 2073 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2074 } 2075 if (count != 0) 2076 db_printf("\n"); 2077 db_indent -= 2; 2078 } 2079 2080 /* XXX. */ 2081 #undef count 2082 2083 /* XXX need this non-static entry for calling from vm_map_print. */ 2084 void 2085 vm_object_print( 2086 /* db_expr_t */ long addr, 2087 boolean_t have_addr, 2088 /* db_expr_t */ long count, 2089 char *modif) 2090 { 2091 vm_object_print_static(addr, have_addr, count, modif); 2092 } 2093 2094 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2095 { 2096 vm_object_t object; 2097 int nl = 0; 2098 int c; 2099 2100 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2101 vm_pindex_t idx, fidx; 2102 vm_pindex_t osize; 2103 vm_paddr_t pa = -1, padiff; 2104 int rcount; 2105 vm_page_t m; 2106 2107 db_printf("new object: %p\n", (void *)object); 2108 if (nl > 18) { 2109 c = cngetc(); 2110 if (c != ' ') 2111 return; 2112 nl = 0; 2113 } 2114 nl++; 2115 rcount = 0; 2116 fidx = 0; 2117 osize = object->size; 2118 if (osize > 128) 2119 osize = 128; 2120 for (idx = 0; idx < osize; idx++) { 2121 m = vm_page_lookup(object, idx); 2122 if (m == NULL) { 2123 if (rcount) { 2124 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2125 (long)fidx, rcount, (long)pa); 2126 if (nl > 18) { 2127 c = cngetc(); 2128 if (c != ' ') 2129 return; 2130 nl = 0; 2131 } 2132 nl++; 2133 rcount = 0; 2134 } 2135 continue; 2136 } 2137 2138 2139 if (rcount && 2140 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2141 ++rcount; 2142 continue; 2143 } 2144 if (rcount) { 2145 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2146 padiff >>= PAGE_SHIFT; 2147 padiff &= PQ_COLORMASK; 2148 if (padiff == 0) { 2149 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2150 ++rcount; 2151 continue; 2152 } 2153 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2154 (long)fidx, rcount, (long)pa); 2155 db_printf("pd(%ld)\n", (long)padiff); 2156 if (nl > 18) { 2157 c = cngetc(); 2158 if (c != ' ') 2159 return; 2160 nl = 0; 2161 } 2162 nl++; 2163 } 2164 fidx = idx; 2165 pa = VM_PAGE_TO_PHYS(m); 2166 rcount = 1; 2167 } 2168 if (rcount) { 2169 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2170 (long)fidx, rcount, (long)pa); 2171 if (nl > 18) { 2172 c = cngetc(); 2173 if (c != ' ') 2174 return; 2175 nl = 0; 2176 } 2177 nl++; 2178 } 2179 } 2180 } 2181 #endif /* DDB */ 2182