xref: /freebsd/sys/vm/vm_object.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/pctrie.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/user.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sx.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_radix.h>
100 #include <vm/vm_reserv.h>
101 #include <vm/uma.h>
102 
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106 
107 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108 		    int pagerflags, int flags, boolean_t *clearobjflags,
109 		    boolean_t *eio);
110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
111 		    boolean_t *clearobjflags);
112 static void	vm_object_qcollapse(vm_object_t object);
113 static void	vm_object_vndeallocate(vm_object_t object);
114 
115 /*
116  *	Virtual memory objects maintain the actual data
117  *	associated with allocated virtual memory.  A given
118  *	page of memory exists within exactly one object.
119  *
120  *	An object is only deallocated when all "references"
121  *	are given up.  Only one "reference" to a given
122  *	region of an object should be writeable.
123  *
124  *	Associated with each object is a list of all resident
125  *	memory pages belonging to that object; this list is
126  *	maintained by the "vm_page" module, and locked by the object's
127  *	lock.
128  *
129  *	Each object also records a "pager" routine which is
130  *	used to retrieve (and store) pages to the proper backing
131  *	storage.  In addition, objects may be backed by other
132  *	objects from which they were virtual-copied.
133  *
134  *	The only items within the object structure which are
135  *	modified after time of creation are:
136  *		reference count		locked by object's lock
137  *		pager routine		locked by object's lock
138  *
139  */
140 
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx;	/* lock for object list and count */
143 
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146 
147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
148     "VM object stats");
149 
150 static long object_collapses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
152     &object_collapses, 0, "VM object collapses");
153 
154 static long object_bypasses;
155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
156     &object_bypasses, 0, "VM object bypasses");
157 
158 static uma_zone_t obj_zone;
159 
160 static int vm_object_zinit(void *mem, int size, int flags);
161 
162 #ifdef INVARIANTS
163 static void vm_object_zdtor(void *mem, int size, void *arg);
164 
165 static void
166 vm_object_zdtor(void *mem, int size, void *arg)
167 {
168 	vm_object_t object;
169 
170 	object = (vm_object_t)mem;
171 	KASSERT(object->ref_count == 0,
172 	    ("object %p ref_count = %d", object, object->ref_count));
173 	KASSERT(TAILQ_EMPTY(&object->memq),
174 	    ("object %p has resident pages in its memq", object));
175 	KASSERT(vm_radix_is_empty(&object->rtree),
176 	    ("object %p has resident pages in its trie", object));
177 #if VM_NRESERVLEVEL > 0
178 	KASSERT(LIST_EMPTY(&object->rvq),
179 	    ("object %p has reservations",
180 	    object));
181 #endif
182 	KASSERT(object->paging_in_progress == 0,
183 	    ("object %p paging_in_progress = %d",
184 	    object, object->paging_in_progress));
185 	KASSERT(object->resident_page_count == 0,
186 	    ("object %p resident_page_count = %d",
187 	    object, object->resident_page_count));
188 	KASSERT(object->shadow_count == 0,
189 	    ("object %p shadow_count = %d",
190 	    object, object->shadow_count));
191 	KASSERT(object->type == OBJT_DEAD,
192 	    ("object %p has non-dead type %d",
193 	    object, object->type));
194 }
195 #endif
196 
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200 	vm_object_t object;
201 
202 	object = (vm_object_t)mem;
203 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
204 
205 	/* These are true for any object that has been freed */
206 	object->type = OBJT_DEAD;
207 	object->ref_count = 0;
208 	vm_radix_init(&object->rtree);
209 	object->paging_in_progress = 0;
210 	object->resident_page_count = 0;
211 	object->shadow_count = 0;
212 	object->flags = OBJ_DEAD;
213 
214 	mtx_lock(&vm_object_list_mtx);
215 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
216 	mtx_unlock(&vm_object_list_mtx);
217 	return (0);
218 }
219 
220 static void
221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
222 {
223 
224 	TAILQ_INIT(&object->memq);
225 	LIST_INIT(&object->shadow_head);
226 
227 	object->type = type;
228 	if (type == OBJT_SWAP)
229 		pctrie_init(&object->un_pager.swp.swp_blks);
230 
231 	/*
232 	 * Ensure that swap_pager_swapoff() iteration over object_list
233 	 * sees up to date type and pctrie head if it observed
234 	 * non-dead object.
235 	 */
236 	atomic_thread_fence_rel();
237 
238 	switch (type) {
239 	case OBJT_DEAD:
240 		panic("_vm_object_allocate: can't create OBJT_DEAD");
241 	case OBJT_DEFAULT:
242 	case OBJT_SWAP:
243 		object->flags = OBJ_ONEMAPPING;
244 		break;
245 	case OBJT_DEVICE:
246 	case OBJT_SG:
247 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
248 		break;
249 	case OBJT_MGTDEVICE:
250 		object->flags = OBJ_FICTITIOUS;
251 		break;
252 	case OBJT_PHYS:
253 		object->flags = OBJ_UNMANAGED;
254 		break;
255 	case OBJT_VNODE:
256 		object->flags = 0;
257 		break;
258 	default:
259 		panic("_vm_object_allocate: type %d is undefined", type);
260 	}
261 	object->size = size;
262 	object->generation = 1;
263 	object->ref_count = 1;
264 	object->memattr = VM_MEMATTR_DEFAULT;
265 	object->cred = NULL;
266 	object->charge = 0;
267 	object->handle = NULL;
268 	object->backing_object = NULL;
269 	object->backing_object_offset = (vm_ooffset_t) 0;
270 #if VM_NRESERVLEVEL > 0
271 	LIST_INIT(&object->rvq);
272 #endif
273 	umtx_shm_object_init(object);
274 }
275 
276 /*
277  *	vm_object_init:
278  *
279  *	Initialize the VM objects module.
280  */
281 void
282 vm_object_init(void)
283 {
284 	TAILQ_INIT(&vm_object_list);
285 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
286 
287 	rw_init(&kernel_object->lock, "kernel vm object");
288 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
290 #if VM_NRESERVLEVEL > 0
291 	kernel_object->flags |= OBJ_COLORED;
292 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294 
295 	rw_init(&kmem_object->lock, "kmem vm object");
296 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297 	    VM_MIN_KERNEL_ADDRESS), kmem_object);
298 #if VM_NRESERVLEVEL > 0
299 	kmem_object->flags |= OBJ_COLORED;
300 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302 
303 	/*
304 	 * The lock portion of struct vm_object must be type stable due
305 	 * to vm_pageout_fallback_object_lock locking a vm object
306 	 * without holding any references to it.
307 	 */
308 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310 	    vm_object_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 
316 	vm_radix_zinit();
317 }
318 
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322 
323 	VM_OBJECT_ASSERT_WLOCKED(object);
324 	object->flags &= ~bits;
325 }
326 
327 /*
328  *	Sets the default memory attribute for the specified object.  Pages
329  *	that are allocated to this object are by default assigned this memory
330  *	attribute.
331  *
332  *	Presently, this function must be called before any pages are allocated
333  *	to the object.  In the future, this requirement may be relaxed for
334  *	"default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339 
340 	VM_OBJECT_ASSERT_WLOCKED(object);
341 	switch (object->type) {
342 	case OBJT_DEFAULT:
343 	case OBJT_DEVICE:
344 	case OBJT_MGTDEVICE:
345 	case OBJT_PHYS:
346 	case OBJT_SG:
347 	case OBJT_SWAP:
348 	case OBJT_VNODE:
349 		if (!TAILQ_EMPTY(&object->memq))
350 			return (KERN_FAILURE);
351 		break;
352 	case OBJT_DEAD:
353 		return (KERN_INVALID_ARGUMENT);
354 	default:
355 		panic("vm_object_set_memattr: object %p is of undefined type",
356 		    object);
357 	}
358 	object->memattr = memattr;
359 	return (KERN_SUCCESS);
360 }
361 
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress += i;
368 }
369 
370 void
371 vm_object_pip_subtract(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress -= i;
376 }
377 
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress--;
384 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
385 		vm_object_clear_flag(object, OBJ_PIPWNT);
386 		wakeup(object);
387 	}
388 }
389 
390 void
391 vm_object_pip_wakeupn(vm_object_t object, short i)
392 {
393 
394 	VM_OBJECT_ASSERT_WLOCKED(object);
395 	if (i)
396 		object->paging_in_progress -= i;
397 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
398 		vm_object_clear_flag(object, OBJ_PIPWNT);
399 		wakeup(object);
400 	}
401 }
402 
403 void
404 vm_object_pip_wait(vm_object_t object, char *waitid)
405 {
406 
407 	VM_OBJECT_ASSERT_WLOCKED(object);
408 	while (object->paging_in_progress) {
409 		object->flags |= OBJ_PIPWNT;
410 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
411 	}
412 }
413 
414 /*
415  *	vm_object_allocate:
416  *
417  *	Returns a new object with the given size.
418  */
419 vm_object_t
420 vm_object_allocate(objtype_t type, vm_pindex_t size)
421 {
422 	vm_object_t object;
423 
424 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
425 	_vm_object_allocate(type, size, object);
426 	return (object);
427 }
428 
429 
430 /*
431  *	vm_object_reference:
432  *
433  *	Gets another reference to the given object.  Note: OBJ_DEAD
434  *	objects can be referenced during final cleaning.
435  */
436 void
437 vm_object_reference(vm_object_t object)
438 {
439 	if (object == NULL)
440 		return;
441 	VM_OBJECT_WLOCK(object);
442 	vm_object_reference_locked(object);
443 	VM_OBJECT_WUNLOCK(object);
444 }
445 
446 /*
447  *	vm_object_reference_locked:
448  *
449  *	Gets another reference to the given object.
450  *
451  *	The object must be locked.
452  */
453 void
454 vm_object_reference_locked(vm_object_t object)
455 {
456 	struct vnode *vp;
457 
458 	VM_OBJECT_ASSERT_WLOCKED(object);
459 	object->ref_count++;
460 	if (object->type == OBJT_VNODE) {
461 		vp = object->handle;
462 		vref(vp);
463 	}
464 }
465 
466 /*
467  * Handle deallocating an object of type OBJT_VNODE.
468  */
469 static void
470 vm_object_vndeallocate(vm_object_t object)
471 {
472 	struct vnode *vp = (struct vnode *) object->handle;
473 
474 	VM_OBJECT_ASSERT_WLOCKED(object);
475 	KASSERT(object->type == OBJT_VNODE,
476 	    ("vm_object_vndeallocate: not a vnode object"));
477 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
478 #ifdef INVARIANTS
479 	if (object->ref_count == 0) {
480 		vn_printf(vp, "vm_object_vndeallocate ");
481 		panic("vm_object_vndeallocate: bad object reference count");
482 	}
483 #endif
484 
485 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
486 		umtx_shm_object_terminated(object);
487 
488 	/*
489 	 * The test for text of vp vnode does not need a bypass to
490 	 * reach right VV_TEXT there, since it is obtained from
491 	 * object->handle.
492 	 */
493 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
494 		object->ref_count--;
495 		VM_OBJECT_WUNLOCK(object);
496 		/* vrele may need the vnode lock. */
497 		vrele(vp);
498 	} else {
499 		vhold(vp);
500 		VM_OBJECT_WUNLOCK(object);
501 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502 		vdrop(vp);
503 		VM_OBJECT_WLOCK(object);
504 		object->ref_count--;
505 		if (object->type == OBJT_DEAD) {
506 			VM_OBJECT_WUNLOCK(object);
507 			VOP_UNLOCK(vp, 0);
508 		} else {
509 			if (object->ref_count == 0)
510 				VOP_UNSET_TEXT(vp);
511 			VM_OBJECT_WUNLOCK(object);
512 			vput(vp);
513 		}
514 	}
515 }
516 
517 /*
518  *	vm_object_deallocate:
519  *
520  *	Release a reference to the specified object,
521  *	gained either through a vm_object_allocate
522  *	or a vm_object_reference call.  When all references
523  *	are gone, storage associated with this object
524  *	may be relinquished.
525  *
526  *	No object may be locked.
527  */
528 void
529 vm_object_deallocate(vm_object_t object)
530 {
531 	vm_object_t temp;
532 	struct vnode *vp;
533 
534 	while (object != NULL) {
535 		VM_OBJECT_WLOCK(object);
536 		if (object->type == OBJT_VNODE) {
537 			vm_object_vndeallocate(object);
538 			return;
539 		}
540 
541 		KASSERT(object->ref_count != 0,
542 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
543 
544 		/*
545 		 * If the reference count goes to 0 we start calling
546 		 * vm_object_terminate() on the object chain.
547 		 * A ref count of 1 may be a special case depending on the
548 		 * shadow count being 0 or 1.
549 		 */
550 		object->ref_count--;
551 		if (object->ref_count > 1) {
552 			VM_OBJECT_WUNLOCK(object);
553 			return;
554 		} else if (object->ref_count == 1) {
555 			if (object->type == OBJT_SWAP &&
556 			    (object->flags & OBJ_TMPFS) != 0) {
557 				vp = object->un_pager.swp.swp_tmpfs;
558 				vhold(vp);
559 				VM_OBJECT_WUNLOCK(object);
560 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
561 				VM_OBJECT_WLOCK(object);
562 				if (object->type == OBJT_DEAD ||
563 				    object->ref_count != 1) {
564 					VM_OBJECT_WUNLOCK(object);
565 					VOP_UNLOCK(vp, 0);
566 					vdrop(vp);
567 					return;
568 				}
569 				if ((object->flags & OBJ_TMPFS) != 0)
570 					VOP_UNSET_TEXT(vp);
571 				VOP_UNLOCK(vp, 0);
572 				vdrop(vp);
573 			}
574 			if (object->shadow_count == 0 &&
575 			    object->handle == NULL &&
576 			    (object->type == OBJT_DEFAULT ||
577 			    (object->type == OBJT_SWAP &&
578 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
579 				vm_object_set_flag(object, OBJ_ONEMAPPING);
580 			} else if ((object->shadow_count == 1) &&
581 			    (object->handle == NULL) &&
582 			    (object->type == OBJT_DEFAULT ||
583 			     object->type == OBJT_SWAP)) {
584 				vm_object_t robject;
585 
586 				robject = LIST_FIRST(&object->shadow_head);
587 				KASSERT(robject != NULL,
588 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
589 					 object->ref_count,
590 					 object->shadow_count));
591 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
592 				    ("shadowed tmpfs v_object %p", object));
593 				if (!VM_OBJECT_TRYWLOCK(robject)) {
594 					/*
595 					 * Avoid a potential deadlock.
596 					 */
597 					object->ref_count++;
598 					VM_OBJECT_WUNLOCK(object);
599 					/*
600 					 * More likely than not the thread
601 					 * holding robject's lock has lower
602 					 * priority than the current thread.
603 					 * Let the lower priority thread run.
604 					 */
605 					pause("vmo_de", 1);
606 					continue;
607 				}
608 				/*
609 				 * Collapse object into its shadow unless its
610 				 * shadow is dead.  In that case, object will
611 				 * be deallocated by the thread that is
612 				 * deallocating its shadow.
613 				 */
614 				if ((robject->flags & OBJ_DEAD) == 0 &&
615 				    (robject->handle == NULL) &&
616 				    (robject->type == OBJT_DEFAULT ||
617 				     robject->type == OBJT_SWAP)) {
618 
619 					robject->ref_count++;
620 retry:
621 					if (robject->paging_in_progress) {
622 						VM_OBJECT_WUNLOCK(object);
623 						vm_object_pip_wait(robject,
624 						    "objde1");
625 						temp = robject->backing_object;
626 						if (object == temp) {
627 							VM_OBJECT_WLOCK(object);
628 							goto retry;
629 						}
630 					} else if (object->paging_in_progress) {
631 						VM_OBJECT_WUNLOCK(robject);
632 						object->flags |= OBJ_PIPWNT;
633 						VM_OBJECT_SLEEP(object, object,
634 						    PDROP | PVM, "objde2", 0);
635 						VM_OBJECT_WLOCK(robject);
636 						temp = robject->backing_object;
637 						if (object == temp) {
638 							VM_OBJECT_WLOCK(object);
639 							goto retry;
640 						}
641 					} else
642 						VM_OBJECT_WUNLOCK(object);
643 
644 					if (robject->ref_count == 1) {
645 						robject->ref_count--;
646 						object = robject;
647 						goto doterm;
648 					}
649 					object = robject;
650 					vm_object_collapse(object);
651 					VM_OBJECT_WUNLOCK(object);
652 					continue;
653 				}
654 				VM_OBJECT_WUNLOCK(robject);
655 			}
656 			VM_OBJECT_WUNLOCK(object);
657 			return;
658 		}
659 doterm:
660 		umtx_shm_object_terminated(object);
661 		temp = object->backing_object;
662 		if (temp != NULL) {
663 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
664 			    ("shadowed tmpfs v_object 2 %p", object));
665 			VM_OBJECT_WLOCK(temp);
666 			LIST_REMOVE(object, shadow_list);
667 			temp->shadow_count--;
668 			VM_OBJECT_WUNLOCK(temp);
669 			object->backing_object = NULL;
670 		}
671 		/*
672 		 * Don't double-terminate, we could be in a termination
673 		 * recursion due to the terminate having to sync data
674 		 * to disk.
675 		 */
676 		if ((object->flags & OBJ_DEAD) == 0)
677 			vm_object_terminate(object);
678 		else
679 			VM_OBJECT_WUNLOCK(object);
680 		object = temp;
681 	}
682 }
683 
684 /*
685  *	vm_object_destroy removes the object from the global object list
686  *      and frees the space for the object.
687  */
688 void
689 vm_object_destroy(vm_object_t object)
690 {
691 
692 	/*
693 	 * Release the allocation charge.
694 	 */
695 	if (object->cred != NULL) {
696 		swap_release_by_cred(object->charge, object->cred);
697 		object->charge = 0;
698 		crfree(object->cred);
699 		object->cred = NULL;
700 	}
701 
702 	/*
703 	 * Free the space for the object.
704 	 */
705 	uma_zfree(obj_zone, object);
706 }
707 
708 /*
709  *	vm_object_terminate_pages removes any remaining pageable pages
710  *	from the object and resets the object to an empty state.
711  */
712 static void
713 vm_object_terminate_pages(vm_object_t object)
714 {
715 	vm_page_t p, p_next;
716 
717 	VM_OBJECT_ASSERT_WLOCKED(object);
718 
719 	/*
720 	 * Free any remaining pageable pages.  This also removes them from the
721 	 * paging queues.  However, don't free wired pages, just remove them
722 	 * from the object.  Rather than incrementally removing each page from
723 	 * the object, the page and object are reset to any empty state.
724 	 */
725 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
726 		vm_page_assert_unbusied(p);
727 		vm_page_lock(p);
728 		/*
729 		 * Optimize the page's removal from the object by resetting
730 		 * its "object" field.  Specifically, if the page is not
731 		 * wired, then the effect of this assignment is that
732 		 * vm_page_free()'s call to vm_page_remove() will return
733 		 * immediately without modifying the page or the object.
734 		 */
735 		p->object = NULL;
736 		if (p->wire_count == 0) {
737 			vm_page_free(p);
738 			VM_CNT_INC(v_pfree);
739 		}
740 		vm_page_unlock(p);
741 	}
742 	/*
743 	 * If the object contained any pages, then reset it to an empty state.
744 	 * None of the object's fields, including "resident_page_count", were
745 	 * modified by the preceding loop.
746 	 */
747 	if (object->resident_page_count != 0) {
748 		vm_radix_reclaim_allnodes(&object->rtree);
749 		TAILQ_INIT(&object->memq);
750 		object->resident_page_count = 0;
751 		if (object->type == OBJT_VNODE)
752 			vdrop(object->handle);
753 	}
754 }
755 
756 /*
757  *	vm_object_terminate actually destroys the specified object, freeing
758  *	up all previously used resources.
759  *
760  *	The object must be locked.
761  *	This routine may block.
762  */
763 void
764 vm_object_terminate(vm_object_t object)
765 {
766 
767 	VM_OBJECT_ASSERT_WLOCKED(object);
768 
769 	/*
770 	 * Make sure no one uses us.
771 	 */
772 	vm_object_set_flag(object, OBJ_DEAD);
773 
774 	/*
775 	 * wait for the pageout daemon to be done with the object
776 	 */
777 	vm_object_pip_wait(object, "objtrm");
778 
779 	KASSERT(!object->paging_in_progress,
780 		("vm_object_terminate: pageout in progress"));
781 
782 	/*
783 	 * Clean and free the pages, as appropriate. All references to the
784 	 * object are gone, so we don't need to lock it.
785 	 */
786 	if (object->type == OBJT_VNODE) {
787 		struct vnode *vp = (struct vnode *)object->handle;
788 
789 		/*
790 		 * Clean pages and flush buffers.
791 		 */
792 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
793 		VM_OBJECT_WUNLOCK(object);
794 
795 		vinvalbuf(vp, V_SAVE, 0, 0);
796 
797 		BO_LOCK(&vp->v_bufobj);
798 		vp->v_bufobj.bo_flag |= BO_DEAD;
799 		BO_UNLOCK(&vp->v_bufobj);
800 
801 		VM_OBJECT_WLOCK(object);
802 	}
803 
804 	KASSERT(object->ref_count == 0,
805 		("vm_object_terminate: object with references, ref_count=%d",
806 		object->ref_count));
807 
808 	if ((object->flags & OBJ_PG_DTOR) == 0)
809 		vm_object_terminate_pages(object);
810 
811 #if VM_NRESERVLEVEL > 0
812 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
813 		vm_reserv_break_all(object);
814 #endif
815 
816 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
817 	    object->type == OBJT_SWAP,
818 	    ("%s: non-swap obj %p has cred", __func__, object));
819 
820 	/*
821 	 * Let the pager know object is dead.
822 	 */
823 	vm_pager_deallocate(object);
824 	VM_OBJECT_WUNLOCK(object);
825 
826 	vm_object_destroy(object);
827 }
828 
829 /*
830  * Make the page read-only so that we can clear the object flags.  However, if
831  * this is a nosync mmap then the object is likely to stay dirty so do not
832  * mess with the page and do not clear the object flags.  Returns TRUE if the
833  * page should be flushed, and FALSE otherwise.
834  */
835 static boolean_t
836 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
837 {
838 
839 	/*
840 	 * If we have been asked to skip nosync pages and this is a
841 	 * nosync page, skip it.  Note that the object flags were not
842 	 * cleared in this case so we do not have to set them.
843 	 */
844 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
845 		*clearobjflags = FALSE;
846 		return (FALSE);
847 	} else {
848 		pmap_remove_write(p);
849 		return (p->dirty != 0);
850 	}
851 }
852 
853 /*
854  *	vm_object_page_clean
855  *
856  *	Clean all dirty pages in the specified range of object.  Leaves page
857  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
858  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
859  *	leaving the object dirty.
860  *
861  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
862  *	synchronous clustering mode implementation.
863  *
864  *	Odd semantics: if start == end, we clean everything.
865  *
866  *	The object must be locked.
867  *
868  *	Returns FALSE if some page from the range was not written, as
869  *	reported by the pager, and TRUE otherwise.
870  */
871 boolean_t
872 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
873     int flags)
874 {
875 	vm_page_t np, p;
876 	vm_pindex_t pi, tend, tstart;
877 	int curgeneration, n, pagerflags;
878 	boolean_t clearobjflags, eio, res;
879 
880 	VM_OBJECT_ASSERT_WLOCKED(object);
881 
882 	/*
883 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
884 	 * objects.  The check below prevents the function from
885 	 * operating on non-vnode objects.
886 	 */
887 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
888 	    object->resident_page_count == 0)
889 		return (TRUE);
890 
891 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
892 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
893 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
894 
895 	tstart = OFF_TO_IDX(start);
896 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
897 	clearobjflags = tstart == 0 && tend >= object->size;
898 	res = TRUE;
899 
900 rescan:
901 	curgeneration = object->generation;
902 
903 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
904 		pi = p->pindex;
905 		if (pi >= tend)
906 			break;
907 		np = TAILQ_NEXT(p, listq);
908 		if (p->valid == 0)
909 			continue;
910 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
911 			if (object->generation != curgeneration) {
912 				if ((flags & OBJPC_SYNC) != 0)
913 					goto rescan;
914 				else
915 					clearobjflags = FALSE;
916 			}
917 			np = vm_page_find_least(object, pi);
918 			continue;
919 		}
920 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
921 			continue;
922 
923 		n = vm_object_page_collect_flush(object, p, pagerflags,
924 		    flags, &clearobjflags, &eio);
925 		if (eio) {
926 			res = FALSE;
927 			clearobjflags = FALSE;
928 		}
929 		if (object->generation != curgeneration) {
930 			if ((flags & OBJPC_SYNC) != 0)
931 				goto rescan;
932 			else
933 				clearobjflags = FALSE;
934 		}
935 
936 		/*
937 		 * If the VOP_PUTPAGES() did a truncated write, so
938 		 * that even the first page of the run is not fully
939 		 * written, vm_pageout_flush() returns 0 as the run
940 		 * length.  Since the condition that caused truncated
941 		 * write may be permanent, e.g. exhausted free space,
942 		 * accepting n == 0 would cause an infinite loop.
943 		 *
944 		 * Forwarding the iterator leaves the unwritten page
945 		 * behind, but there is not much we can do there if
946 		 * filesystem refuses to write it.
947 		 */
948 		if (n == 0) {
949 			n = 1;
950 			clearobjflags = FALSE;
951 		}
952 		np = vm_page_find_least(object, pi + n);
953 	}
954 #if 0
955 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
956 #endif
957 
958 	if (clearobjflags)
959 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
960 	return (res);
961 }
962 
963 static int
964 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
965     int flags, boolean_t *clearobjflags, boolean_t *eio)
966 {
967 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
968 	int count, i, mreq, runlen;
969 
970 	vm_page_lock_assert(p, MA_NOTOWNED);
971 	VM_OBJECT_ASSERT_WLOCKED(object);
972 
973 	count = 1;
974 	mreq = 0;
975 
976 	for (tp = p; count < vm_pageout_page_count; count++) {
977 		tp = vm_page_next(tp);
978 		if (tp == NULL || vm_page_busied(tp))
979 			break;
980 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
981 			break;
982 	}
983 
984 	for (p_first = p; count < vm_pageout_page_count; count++) {
985 		tp = vm_page_prev(p_first);
986 		if (tp == NULL || vm_page_busied(tp))
987 			break;
988 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
989 			break;
990 		p_first = tp;
991 		mreq++;
992 	}
993 
994 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
995 		ma[i] = tp;
996 
997 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
998 	return (runlen);
999 }
1000 
1001 /*
1002  * Note that there is absolutely no sense in writing out
1003  * anonymous objects, so we track down the vnode object
1004  * to write out.
1005  * We invalidate (remove) all pages from the address space
1006  * for semantic correctness.
1007  *
1008  * If the backing object is a device object with unmanaged pages, then any
1009  * mappings to the specified range of pages must be removed before this
1010  * function is called.
1011  *
1012  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1013  * may start out with a NULL object.
1014  */
1015 boolean_t
1016 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1017     boolean_t syncio, boolean_t invalidate)
1018 {
1019 	vm_object_t backing_object;
1020 	struct vnode *vp;
1021 	struct mount *mp;
1022 	int error, flags, fsync_after;
1023 	boolean_t res;
1024 
1025 	if (object == NULL)
1026 		return (TRUE);
1027 	res = TRUE;
1028 	error = 0;
1029 	VM_OBJECT_WLOCK(object);
1030 	while ((backing_object = object->backing_object) != NULL) {
1031 		VM_OBJECT_WLOCK(backing_object);
1032 		offset += object->backing_object_offset;
1033 		VM_OBJECT_WUNLOCK(object);
1034 		object = backing_object;
1035 		if (object->size < OFF_TO_IDX(offset + size))
1036 			size = IDX_TO_OFF(object->size) - offset;
1037 	}
1038 	/*
1039 	 * Flush pages if writing is allowed, invalidate them
1040 	 * if invalidation requested.  Pages undergoing I/O
1041 	 * will be ignored by vm_object_page_remove().
1042 	 *
1043 	 * We cannot lock the vnode and then wait for paging
1044 	 * to complete without deadlocking against vm_fault.
1045 	 * Instead we simply call vm_object_page_remove() and
1046 	 * allow it to block internally on a page-by-page
1047 	 * basis when it encounters pages undergoing async
1048 	 * I/O.
1049 	 */
1050 	if (object->type == OBJT_VNODE &&
1051 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1052 		vp = object->handle;
1053 		VM_OBJECT_WUNLOCK(object);
1054 		(void) vn_start_write(vp, &mp, V_WAIT);
1055 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1056 		if (syncio && !invalidate && offset == 0 &&
1057 		    atop(size) == object->size) {
1058 			/*
1059 			 * If syncing the whole mapping of the file,
1060 			 * it is faster to schedule all the writes in
1061 			 * async mode, also allowing the clustering,
1062 			 * and then wait for i/o to complete.
1063 			 */
1064 			flags = 0;
1065 			fsync_after = TRUE;
1066 		} else {
1067 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1068 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1069 			fsync_after = FALSE;
1070 		}
1071 		VM_OBJECT_WLOCK(object);
1072 		res = vm_object_page_clean(object, offset, offset + size,
1073 		    flags);
1074 		VM_OBJECT_WUNLOCK(object);
1075 		if (fsync_after)
1076 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1077 		VOP_UNLOCK(vp, 0);
1078 		vn_finished_write(mp);
1079 		if (error != 0)
1080 			res = FALSE;
1081 		VM_OBJECT_WLOCK(object);
1082 	}
1083 	if ((object->type == OBJT_VNODE ||
1084 	     object->type == OBJT_DEVICE) && invalidate) {
1085 		if (object->type == OBJT_DEVICE)
1086 			/*
1087 			 * The option OBJPR_NOTMAPPED must be passed here
1088 			 * because vm_object_page_remove() cannot remove
1089 			 * unmanaged mappings.
1090 			 */
1091 			flags = OBJPR_NOTMAPPED;
1092 		else if (old_msync)
1093 			flags = 0;
1094 		else
1095 			flags = OBJPR_CLEANONLY;
1096 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1097 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1098 	}
1099 	VM_OBJECT_WUNLOCK(object);
1100 	return (res);
1101 }
1102 
1103 /*
1104  * Determine whether the given advice can be applied to the object.  Advice is
1105  * not applied to unmanaged pages since they never belong to page queues, and
1106  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1107  * have been mapped at most once.
1108  */
1109 static bool
1110 vm_object_advice_applies(vm_object_t object, int advice)
1111 {
1112 
1113 	if ((object->flags & OBJ_UNMANAGED) != 0)
1114 		return (false);
1115 	if (advice != MADV_FREE)
1116 		return (true);
1117 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1118 	    (object->flags & OBJ_ONEMAPPING) != 0);
1119 }
1120 
1121 static void
1122 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1123     vm_size_t size)
1124 {
1125 
1126 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1127 		swap_pager_freespace(object, pindex, size);
1128 }
1129 
1130 /*
1131  *	vm_object_madvise:
1132  *
1133  *	Implements the madvise function at the object/page level.
1134  *
1135  *	MADV_WILLNEED	(any object)
1136  *
1137  *	    Activate the specified pages if they are resident.
1138  *
1139  *	MADV_DONTNEED	(any object)
1140  *
1141  *	    Deactivate the specified pages if they are resident.
1142  *
1143  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1144  *			 OBJ_ONEMAPPING only)
1145  *
1146  *	    Deactivate and clean the specified pages if they are
1147  *	    resident.  This permits the process to reuse the pages
1148  *	    without faulting or the kernel to reclaim the pages
1149  *	    without I/O.
1150  */
1151 void
1152 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1153     int advice)
1154 {
1155 	vm_pindex_t tpindex;
1156 	vm_object_t backing_object, tobject;
1157 	vm_page_t m, tm;
1158 
1159 	if (object == NULL)
1160 		return;
1161 
1162 relookup:
1163 	VM_OBJECT_WLOCK(object);
1164 	if (!vm_object_advice_applies(object, advice)) {
1165 		VM_OBJECT_WUNLOCK(object);
1166 		return;
1167 	}
1168 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1169 		tobject = object;
1170 
1171 		/*
1172 		 * If the next page isn't resident in the top-level object, we
1173 		 * need to search the shadow chain.  When applying MADV_FREE, we
1174 		 * take care to release any swap space used to store
1175 		 * non-resident pages.
1176 		 */
1177 		if (m == NULL || pindex < m->pindex) {
1178 			/*
1179 			 * Optimize a common case: if the top-level object has
1180 			 * no backing object, we can skip over the non-resident
1181 			 * range in constant time.
1182 			 */
1183 			if (object->backing_object == NULL) {
1184 				tpindex = (m != NULL && m->pindex < end) ?
1185 				    m->pindex : end;
1186 				vm_object_madvise_freespace(object, advice,
1187 				    pindex, tpindex - pindex);
1188 				if ((pindex = tpindex) == end)
1189 					break;
1190 				goto next_page;
1191 			}
1192 
1193 			tpindex = pindex;
1194 			do {
1195 				vm_object_madvise_freespace(tobject, advice,
1196 				    tpindex, 1);
1197 				/*
1198 				 * Prepare to search the next object in the
1199 				 * chain.
1200 				 */
1201 				backing_object = tobject->backing_object;
1202 				if (backing_object == NULL)
1203 					goto next_pindex;
1204 				VM_OBJECT_WLOCK(backing_object);
1205 				tpindex +=
1206 				    OFF_TO_IDX(tobject->backing_object_offset);
1207 				if (tobject != object)
1208 					VM_OBJECT_WUNLOCK(tobject);
1209 				tobject = backing_object;
1210 				if (!vm_object_advice_applies(tobject, advice))
1211 					goto next_pindex;
1212 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1213 			    NULL);
1214 		} else {
1215 next_page:
1216 			tm = m;
1217 			m = TAILQ_NEXT(m, listq);
1218 		}
1219 
1220 		/*
1221 		 * If the page is not in a normal state, skip it.
1222 		 */
1223 		if (tm->valid != VM_PAGE_BITS_ALL)
1224 			goto next_pindex;
1225 		vm_page_lock(tm);
1226 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1227 			vm_page_unlock(tm);
1228 			goto next_pindex;
1229 		}
1230 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1231 		    ("vm_object_madvise: page %p is fictitious", tm));
1232 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1233 		    ("vm_object_madvise: page %p is not managed", tm));
1234 		if (vm_page_busied(tm)) {
1235 			if (object != tobject)
1236 				VM_OBJECT_WUNLOCK(tobject);
1237 			VM_OBJECT_WUNLOCK(object);
1238 			if (advice == MADV_WILLNEED) {
1239 				/*
1240 				 * Reference the page before unlocking and
1241 				 * sleeping so that the page daemon is less
1242 				 * likely to reclaim it.
1243 				 */
1244 				vm_page_aflag_set(tm, PGA_REFERENCED);
1245 			}
1246 			vm_page_busy_sleep(tm, "madvpo", false);
1247   			goto relookup;
1248 		}
1249 		vm_page_advise(tm, advice);
1250 		vm_page_unlock(tm);
1251 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1252 next_pindex:
1253 		if (tobject != object)
1254 			VM_OBJECT_WUNLOCK(tobject);
1255 	}
1256 	VM_OBJECT_WUNLOCK(object);
1257 }
1258 
1259 /*
1260  *	vm_object_shadow:
1261  *
1262  *	Create a new object which is backed by the
1263  *	specified existing object range.  The source
1264  *	object reference is deallocated.
1265  *
1266  *	The new object and offset into that object
1267  *	are returned in the source parameters.
1268  */
1269 void
1270 vm_object_shadow(
1271 	vm_object_t *object,	/* IN/OUT */
1272 	vm_ooffset_t *offset,	/* IN/OUT */
1273 	vm_size_t length)
1274 {
1275 	vm_object_t source;
1276 	vm_object_t result;
1277 
1278 	source = *object;
1279 
1280 	/*
1281 	 * Don't create the new object if the old object isn't shared.
1282 	 */
1283 	if (source != NULL) {
1284 		VM_OBJECT_WLOCK(source);
1285 		if (source->ref_count == 1 &&
1286 		    source->handle == NULL &&
1287 		    (source->type == OBJT_DEFAULT ||
1288 		     source->type == OBJT_SWAP)) {
1289 			VM_OBJECT_WUNLOCK(source);
1290 			return;
1291 		}
1292 		VM_OBJECT_WUNLOCK(source);
1293 	}
1294 
1295 	/*
1296 	 * Allocate a new object with the given length.
1297 	 */
1298 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1299 
1300 	/*
1301 	 * The new object shadows the source object, adding a reference to it.
1302 	 * Our caller changes his reference to point to the new object,
1303 	 * removing a reference to the source object.  Net result: no change
1304 	 * of reference count.
1305 	 *
1306 	 * Try to optimize the result object's page color when shadowing
1307 	 * in order to maintain page coloring consistency in the combined
1308 	 * shadowed object.
1309 	 */
1310 	result->backing_object = source;
1311 	/*
1312 	 * Store the offset into the source object, and fix up the offset into
1313 	 * the new object.
1314 	 */
1315 	result->backing_object_offset = *offset;
1316 	if (source != NULL) {
1317 		VM_OBJECT_WLOCK(source);
1318 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1319 		source->shadow_count++;
1320 #if VM_NRESERVLEVEL > 0
1321 		result->flags |= source->flags & OBJ_COLORED;
1322 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1323 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1324 #endif
1325 		VM_OBJECT_WUNLOCK(source);
1326 	}
1327 
1328 
1329 	/*
1330 	 * Return the new things
1331 	 */
1332 	*offset = 0;
1333 	*object = result;
1334 }
1335 
1336 /*
1337  *	vm_object_split:
1338  *
1339  * Split the pages in a map entry into a new object.  This affords
1340  * easier removal of unused pages, and keeps object inheritance from
1341  * being a negative impact on memory usage.
1342  */
1343 void
1344 vm_object_split(vm_map_entry_t entry)
1345 {
1346 	vm_page_t m, m_next;
1347 	vm_object_t orig_object, new_object, source;
1348 	vm_pindex_t idx, offidxstart;
1349 	vm_size_t size;
1350 
1351 	orig_object = entry->object.vm_object;
1352 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1353 		return;
1354 	if (orig_object->ref_count <= 1)
1355 		return;
1356 	VM_OBJECT_WUNLOCK(orig_object);
1357 
1358 	offidxstart = OFF_TO_IDX(entry->offset);
1359 	size = atop(entry->end - entry->start);
1360 
1361 	/*
1362 	 * If swap_pager_copy() is later called, it will convert new_object
1363 	 * into a swap object.
1364 	 */
1365 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1366 
1367 	/*
1368 	 * At this point, the new object is still private, so the order in
1369 	 * which the original and new objects are locked does not matter.
1370 	 */
1371 	VM_OBJECT_WLOCK(new_object);
1372 	VM_OBJECT_WLOCK(orig_object);
1373 	source = orig_object->backing_object;
1374 	if (source != NULL) {
1375 		VM_OBJECT_WLOCK(source);
1376 		if ((source->flags & OBJ_DEAD) != 0) {
1377 			VM_OBJECT_WUNLOCK(source);
1378 			VM_OBJECT_WUNLOCK(orig_object);
1379 			VM_OBJECT_WUNLOCK(new_object);
1380 			vm_object_deallocate(new_object);
1381 			VM_OBJECT_WLOCK(orig_object);
1382 			return;
1383 		}
1384 		LIST_INSERT_HEAD(&source->shadow_head,
1385 				  new_object, shadow_list);
1386 		source->shadow_count++;
1387 		vm_object_reference_locked(source);	/* for new_object */
1388 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1389 		VM_OBJECT_WUNLOCK(source);
1390 		new_object->backing_object_offset =
1391 			orig_object->backing_object_offset + entry->offset;
1392 		new_object->backing_object = source;
1393 	}
1394 	if (orig_object->cred != NULL) {
1395 		new_object->cred = orig_object->cred;
1396 		crhold(orig_object->cred);
1397 		new_object->charge = ptoa(size);
1398 		KASSERT(orig_object->charge >= ptoa(size),
1399 		    ("orig_object->charge < 0"));
1400 		orig_object->charge -= ptoa(size);
1401 	}
1402 retry:
1403 	m = vm_page_find_least(orig_object, offidxstart);
1404 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1405 	    m = m_next) {
1406 		m_next = TAILQ_NEXT(m, listq);
1407 
1408 		/*
1409 		 * We must wait for pending I/O to complete before we can
1410 		 * rename the page.
1411 		 *
1412 		 * We do not have to VM_PROT_NONE the page as mappings should
1413 		 * not be changed by this operation.
1414 		 */
1415 		if (vm_page_busied(m)) {
1416 			VM_OBJECT_WUNLOCK(new_object);
1417 			vm_page_lock(m);
1418 			VM_OBJECT_WUNLOCK(orig_object);
1419 			vm_page_busy_sleep(m, "spltwt", false);
1420 			VM_OBJECT_WLOCK(orig_object);
1421 			VM_OBJECT_WLOCK(new_object);
1422 			goto retry;
1423 		}
1424 
1425 		/* vm_page_rename() will dirty the page. */
1426 		if (vm_page_rename(m, new_object, idx)) {
1427 			VM_OBJECT_WUNLOCK(new_object);
1428 			VM_OBJECT_WUNLOCK(orig_object);
1429 			VM_WAIT;
1430 			VM_OBJECT_WLOCK(orig_object);
1431 			VM_OBJECT_WLOCK(new_object);
1432 			goto retry;
1433 		}
1434 #if VM_NRESERVLEVEL > 0
1435 		/*
1436 		 * If some of the reservation's allocated pages remain with
1437 		 * the original object, then transferring the reservation to
1438 		 * the new object is neither particularly beneficial nor
1439 		 * particularly harmful as compared to leaving the reservation
1440 		 * with the original object.  If, however, all of the
1441 		 * reservation's allocated pages are transferred to the new
1442 		 * object, then transferring the reservation is typically
1443 		 * beneficial.  Determining which of these two cases applies
1444 		 * would be more costly than unconditionally renaming the
1445 		 * reservation.
1446 		 */
1447 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1448 #endif
1449 		if (orig_object->type == OBJT_SWAP)
1450 			vm_page_xbusy(m);
1451 	}
1452 	if (orig_object->type == OBJT_SWAP) {
1453 		/*
1454 		 * swap_pager_copy() can sleep, in which case the orig_object's
1455 		 * and new_object's locks are released and reacquired.
1456 		 */
1457 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1458 		TAILQ_FOREACH(m, &new_object->memq, listq)
1459 			vm_page_xunbusy(m);
1460 	}
1461 	VM_OBJECT_WUNLOCK(orig_object);
1462 	VM_OBJECT_WUNLOCK(new_object);
1463 	entry->object.vm_object = new_object;
1464 	entry->offset = 0LL;
1465 	vm_object_deallocate(orig_object);
1466 	VM_OBJECT_WLOCK(new_object);
1467 }
1468 
1469 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1470 #define	OBSC_COLLAPSE_WAIT	0x0004
1471 
1472 static vm_page_t
1473 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1474     int op)
1475 {
1476 	vm_object_t backing_object;
1477 
1478 	VM_OBJECT_ASSERT_WLOCKED(object);
1479 	backing_object = object->backing_object;
1480 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1481 
1482 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1483 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1484 	    ("invalid ownership %p %p %p", p, object, backing_object));
1485 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1486 		return (next);
1487 	if (p != NULL)
1488 		vm_page_lock(p);
1489 	VM_OBJECT_WUNLOCK(object);
1490 	VM_OBJECT_WUNLOCK(backing_object);
1491 	if (p == NULL)
1492 		VM_WAIT;
1493 	else
1494 		vm_page_busy_sleep(p, "vmocol", false);
1495 	VM_OBJECT_WLOCK(object);
1496 	VM_OBJECT_WLOCK(backing_object);
1497 	return (TAILQ_FIRST(&backing_object->memq));
1498 }
1499 
1500 static bool
1501 vm_object_scan_all_shadowed(vm_object_t object)
1502 {
1503 	vm_object_t backing_object;
1504 	vm_page_t p, pp;
1505 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1506 
1507 	VM_OBJECT_ASSERT_WLOCKED(object);
1508 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1509 
1510 	backing_object = object->backing_object;
1511 
1512 	if (backing_object->type != OBJT_DEFAULT &&
1513 	    backing_object->type != OBJT_SWAP)
1514 		return (false);
1515 
1516 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1517 	p = vm_page_find_least(backing_object, pi);
1518 	ps = swap_pager_find_least(backing_object, pi);
1519 
1520 	/*
1521 	 * Only check pages inside the parent object's range and
1522 	 * inside the parent object's mapping of the backing object.
1523 	 */
1524 	for (;; pi++) {
1525 		if (p != NULL && p->pindex < pi)
1526 			p = TAILQ_NEXT(p, listq);
1527 		if (ps < pi)
1528 			ps = swap_pager_find_least(backing_object, pi);
1529 		if (p == NULL && ps >= backing_object->size)
1530 			break;
1531 		else if (p == NULL)
1532 			pi = ps;
1533 		else
1534 			pi = MIN(p->pindex, ps);
1535 
1536 		new_pindex = pi - backing_offset_index;
1537 		if (new_pindex >= object->size)
1538 			break;
1539 
1540 		/*
1541 		 * See if the parent has the page or if the parent's object
1542 		 * pager has the page.  If the parent has the page but the page
1543 		 * is not valid, the parent's object pager must have the page.
1544 		 *
1545 		 * If this fails, the parent does not completely shadow the
1546 		 * object and we might as well give up now.
1547 		 */
1548 		pp = vm_page_lookup(object, new_pindex);
1549 		if ((pp == NULL || pp->valid == 0) &&
1550 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1551 			return (false);
1552 	}
1553 	return (true);
1554 }
1555 
1556 static bool
1557 vm_object_collapse_scan(vm_object_t object, int op)
1558 {
1559 	vm_object_t backing_object;
1560 	vm_page_t next, p, pp;
1561 	vm_pindex_t backing_offset_index, new_pindex;
1562 
1563 	VM_OBJECT_ASSERT_WLOCKED(object);
1564 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1565 
1566 	backing_object = object->backing_object;
1567 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1568 
1569 	/*
1570 	 * Initial conditions
1571 	 */
1572 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1573 		vm_object_set_flag(backing_object, OBJ_DEAD);
1574 
1575 	/*
1576 	 * Our scan
1577 	 */
1578 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1579 		next = TAILQ_NEXT(p, listq);
1580 		new_pindex = p->pindex - backing_offset_index;
1581 
1582 		/*
1583 		 * Check for busy page
1584 		 */
1585 		if (vm_page_busied(p)) {
1586 			next = vm_object_collapse_scan_wait(object, p, next, op);
1587 			continue;
1588 		}
1589 
1590 		KASSERT(p->object == backing_object,
1591 		    ("vm_object_collapse_scan: object mismatch"));
1592 
1593 		if (p->pindex < backing_offset_index ||
1594 		    new_pindex >= object->size) {
1595 			if (backing_object->type == OBJT_SWAP)
1596 				swap_pager_freespace(backing_object, p->pindex,
1597 				    1);
1598 
1599 			/*
1600 			 * Page is out of the parent object's range, we can
1601 			 * simply destroy it.
1602 			 */
1603 			vm_page_lock(p);
1604 			KASSERT(!pmap_page_is_mapped(p),
1605 			    ("freeing mapped page %p", p));
1606 			if (p->wire_count == 0)
1607 				vm_page_free(p);
1608 			else
1609 				vm_page_remove(p);
1610 			vm_page_unlock(p);
1611 			continue;
1612 		}
1613 
1614 		pp = vm_page_lookup(object, new_pindex);
1615 		if (pp != NULL && vm_page_busied(pp)) {
1616 			/*
1617 			 * The page in the parent is busy and possibly not
1618 			 * (yet) valid.  Until its state is finalized by the
1619 			 * busy bit owner, we can't tell whether it shadows the
1620 			 * original page.  Therefore, we must either skip it
1621 			 * and the original (backing_object) page or wait for
1622 			 * its state to be finalized.
1623 			 *
1624 			 * This is due to a race with vm_fault() where we must
1625 			 * unbusy the original (backing_obj) page before we can
1626 			 * (re)lock the parent.  Hence we can get here.
1627 			 */
1628 			next = vm_object_collapse_scan_wait(object, pp, next,
1629 			    op);
1630 			continue;
1631 		}
1632 
1633 		KASSERT(pp == NULL || pp->valid != 0,
1634 		    ("unbusy invalid page %p", pp));
1635 
1636 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1637 			NULL)) {
1638 			/*
1639 			 * The page already exists in the parent OR swap exists
1640 			 * for this location in the parent.  Leave the parent's
1641 			 * page alone.  Destroy the original page from the
1642 			 * backing object.
1643 			 */
1644 			if (backing_object->type == OBJT_SWAP)
1645 				swap_pager_freespace(backing_object, p->pindex,
1646 				    1);
1647 			vm_page_lock(p);
1648 			KASSERT(!pmap_page_is_mapped(p),
1649 			    ("freeing mapped page %p", p));
1650 			if (p->wire_count == 0)
1651 				vm_page_free(p);
1652 			else
1653 				vm_page_remove(p);
1654 			vm_page_unlock(p);
1655 			continue;
1656 		}
1657 
1658 		/*
1659 		 * Page does not exist in parent, rename the page from the
1660 		 * backing object to the main object.
1661 		 *
1662 		 * If the page was mapped to a process, it can remain mapped
1663 		 * through the rename.  vm_page_rename() will dirty the page.
1664 		 */
1665 		if (vm_page_rename(p, object, new_pindex)) {
1666 			next = vm_object_collapse_scan_wait(object, NULL, next,
1667 			    op);
1668 			continue;
1669 		}
1670 
1671 		/* Use the old pindex to free the right page. */
1672 		if (backing_object->type == OBJT_SWAP)
1673 			swap_pager_freespace(backing_object,
1674 			    new_pindex + backing_offset_index, 1);
1675 
1676 #if VM_NRESERVLEVEL > 0
1677 		/*
1678 		 * Rename the reservation.
1679 		 */
1680 		vm_reserv_rename(p, object, backing_object,
1681 		    backing_offset_index);
1682 #endif
1683 	}
1684 	return (true);
1685 }
1686 
1687 
1688 /*
1689  * this version of collapse allows the operation to occur earlier and
1690  * when paging_in_progress is true for an object...  This is not a complete
1691  * operation, but should plug 99.9% of the rest of the leaks.
1692  */
1693 static void
1694 vm_object_qcollapse(vm_object_t object)
1695 {
1696 	vm_object_t backing_object = object->backing_object;
1697 
1698 	VM_OBJECT_ASSERT_WLOCKED(object);
1699 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1700 
1701 	if (backing_object->ref_count != 1)
1702 		return;
1703 
1704 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1705 }
1706 
1707 /*
1708  *	vm_object_collapse:
1709  *
1710  *	Collapse an object with the object backing it.
1711  *	Pages in the backing object are moved into the
1712  *	parent, and the backing object is deallocated.
1713  */
1714 void
1715 vm_object_collapse(vm_object_t object)
1716 {
1717 	vm_object_t backing_object, new_backing_object;
1718 
1719 	VM_OBJECT_ASSERT_WLOCKED(object);
1720 
1721 	while (TRUE) {
1722 		/*
1723 		 * Verify that the conditions are right for collapse:
1724 		 *
1725 		 * The object exists and the backing object exists.
1726 		 */
1727 		if ((backing_object = object->backing_object) == NULL)
1728 			break;
1729 
1730 		/*
1731 		 * we check the backing object first, because it is most likely
1732 		 * not collapsable.
1733 		 */
1734 		VM_OBJECT_WLOCK(backing_object);
1735 		if (backing_object->handle != NULL ||
1736 		    (backing_object->type != OBJT_DEFAULT &&
1737 		     backing_object->type != OBJT_SWAP) ||
1738 		    (backing_object->flags & OBJ_DEAD) ||
1739 		    object->handle != NULL ||
1740 		    (object->type != OBJT_DEFAULT &&
1741 		     object->type != OBJT_SWAP) ||
1742 		    (object->flags & OBJ_DEAD)) {
1743 			VM_OBJECT_WUNLOCK(backing_object);
1744 			break;
1745 		}
1746 
1747 		if (object->paging_in_progress != 0 ||
1748 		    backing_object->paging_in_progress != 0) {
1749 			vm_object_qcollapse(object);
1750 			VM_OBJECT_WUNLOCK(backing_object);
1751 			break;
1752 		}
1753 
1754 		/*
1755 		 * We know that we can either collapse the backing object (if
1756 		 * the parent is the only reference to it) or (perhaps) have
1757 		 * the parent bypass the object if the parent happens to shadow
1758 		 * all the resident pages in the entire backing object.
1759 		 *
1760 		 * This is ignoring pager-backed pages such as swap pages.
1761 		 * vm_object_collapse_scan fails the shadowing test in this
1762 		 * case.
1763 		 */
1764 		if (backing_object->ref_count == 1) {
1765 			vm_object_pip_add(object, 1);
1766 			vm_object_pip_add(backing_object, 1);
1767 
1768 			/*
1769 			 * If there is exactly one reference to the backing
1770 			 * object, we can collapse it into the parent.
1771 			 */
1772 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1773 
1774 #if VM_NRESERVLEVEL > 0
1775 			/*
1776 			 * Break any reservations from backing_object.
1777 			 */
1778 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1779 				vm_reserv_break_all(backing_object);
1780 #endif
1781 
1782 			/*
1783 			 * Move the pager from backing_object to object.
1784 			 */
1785 			if (backing_object->type == OBJT_SWAP) {
1786 				/*
1787 				 * swap_pager_copy() can sleep, in which case
1788 				 * the backing_object's and object's locks are
1789 				 * released and reacquired.
1790 				 * Since swap_pager_copy() is being asked to
1791 				 * destroy the source, it will change the
1792 				 * backing_object's type to OBJT_DEFAULT.
1793 				 */
1794 				swap_pager_copy(
1795 				    backing_object,
1796 				    object,
1797 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1798 			}
1799 			/*
1800 			 * Object now shadows whatever backing_object did.
1801 			 * Note that the reference to
1802 			 * backing_object->backing_object moves from within
1803 			 * backing_object to within object.
1804 			 */
1805 			LIST_REMOVE(object, shadow_list);
1806 			backing_object->shadow_count--;
1807 			if (backing_object->backing_object) {
1808 				VM_OBJECT_WLOCK(backing_object->backing_object);
1809 				LIST_REMOVE(backing_object, shadow_list);
1810 				LIST_INSERT_HEAD(
1811 				    &backing_object->backing_object->shadow_head,
1812 				    object, shadow_list);
1813 				/*
1814 				 * The shadow_count has not changed.
1815 				 */
1816 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1817 			}
1818 			object->backing_object = backing_object->backing_object;
1819 			object->backing_object_offset +=
1820 			    backing_object->backing_object_offset;
1821 
1822 			/*
1823 			 * Discard backing_object.
1824 			 *
1825 			 * Since the backing object has no pages, no pager left,
1826 			 * and no object references within it, all that is
1827 			 * necessary is to dispose of it.
1828 			 */
1829 			KASSERT(backing_object->ref_count == 1, (
1830 "backing_object %p was somehow re-referenced during collapse!",
1831 			    backing_object));
1832 			vm_object_pip_wakeup(backing_object);
1833 			backing_object->type = OBJT_DEAD;
1834 			backing_object->ref_count = 0;
1835 			VM_OBJECT_WUNLOCK(backing_object);
1836 			vm_object_destroy(backing_object);
1837 
1838 			vm_object_pip_wakeup(object);
1839 			object_collapses++;
1840 		} else {
1841 			/*
1842 			 * If we do not entirely shadow the backing object,
1843 			 * there is nothing we can do so we give up.
1844 			 */
1845 			if (object->resident_page_count != object->size &&
1846 			    !vm_object_scan_all_shadowed(object)) {
1847 				VM_OBJECT_WUNLOCK(backing_object);
1848 				break;
1849 			}
1850 
1851 			/*
1852 			 * Make the parent shadow the next object in the
1853 			 * chain.  Deallocating backing_object will not remove
1854 			 * it, since its reference count is at least 2.
1855 			 */
1856 			LIST_REMOVE(object, shadow_list);
1857 			backing_object->shadow_count--;
1858 
1859 			new_backing_object = backing_object->backing_object;
1860 			if ((object->backing_object = new_backing_object) != NULL) {
1861 				VM_OBJECT_WLOCK(new_backing_object);
1862 				LIST_INSERT_HEAD(
1863 				    &new_backing_object->shadow_head,
1864 				    object,
1865 				    shadow_list
1866 				);
1867 				new_backing_object->shadow_count++;
1868 				vm_object_reference_locked(new_backing_object);
1869 				VM_OBJECT_WUNLOCK(new_backing_object);
1870 				object->backing_object_offset +=
1871 					backing_object->backing_object_offset;
1872 			}
1873 
1874 			/*
1875 			 * Drop the reference count on backing_object. Since
1876 			 * its ref_count was at least 2, it will not vanish.
1877 			 */
1878 			backing_object->ref_count--;
1879 			VM_OBJECT_WUNLOCK(backing_object);
1880 			object_bypasses++;
1881 		}
1882 
1883 		/*
1884 		 * Try again with this object's new backing object.
1885 		 */
1886 	}
1887 }
1888 
1889 /*
1890  *	vm_object_page_remove:
1891  *
1892  *	For the given object, either frees or invalidates each of the
1893  *	specified pages.  In general, a page is freed.  However, if a page is
1894  *	wired for any reason other than the existence of a managed, wired
1895  *	mapping, then it may be invalidated but not removed from the object.
1896  *	Pages are specified by the given range ["start", "end") and the option
1897  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1898  *	extends from "start" to the end of the object.  If the option
1899  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1900  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1901  *	specified, then the pages within the specified range must have no
1902  *	mappings.  Otherwise, if this option is not specified, any mappings to
1903  *	the specified pages are removed before the pages are freed or
1904  *	invalidated.
1905  *
1906  *	In general, this operation should only be performed on objects that
1907  *	contain managed pages.  There are, however, two exceptions.  First, it
1908  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1909  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1910  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1911  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1912  *
1913  *	The object must be locked.
1914  */
1915 void
1916 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1917     int options)
1918 {
1919 	vm_page_t p, next;
1920 
1921 	VM_OBJECT_ASSERT_WLOCKED(object);
1922 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1923 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1924 	    ("vm_object_page_remove: illegal options for object %p", object));
1925 	if (object->resident_page_count == 0)
1926 		return;
1927 	vm_object_pip_add(object, 1);
1928 again:
1929 	p = vm_page_find_least(object, start);
1930 
1931 	/*
1932 	 * Here, the variable "p" is either (1) the page with the least pindex
1933 	 * greater than or equal to the parameter "start" or (2) NULL.
1934 	 */
1935 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1936 		next = TAILQ_NEXT(p, listq);
1937 
1938 		/*
1939 		 * If the page is wired for any reason besides the existence
1940 		 * of managed, wired mappings, then it cannot be freed.  For
1941 		 * example, fictitious pages, which represent device memory,
1942 		 * are inherently wired and cannot be freed.  They can,
1943 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1944 		 * not specified.
1945 		 */
1946 		vm_page_lock(p);
1947 		if (vm_page_xbusied(p)) {
1948 			VM_OBJECT_WUNLOCK(object);
1949 			vm_page_busy_sleep(p, "vmopax", true);
1950 			VM_OBJECT_WLOCK(object);
1951 			goto again;
1952 		}
1953 		if (p->wire_count != 0) {
1954 			if ((options & OBJPR_NOTMAPPED) == 0)
1955 				pmap_remove_all(p);
1956 			if ((options & OBJPR_CLEANONLY) == 0) {
1957 				p->valid = 0;
1958 				vm_page_undirty(p);
1959 			}
1960 			goto next;
1961 		}
1962 		if (vm_page_busied(p)) {
1963 			VM_OBJECT_WUNLOCK(object);
1964 			vm_page_busy_sleep(p, "vmopar", false);
1965 			VM_OBJECT_WLOCK(object);
1966 			goto again;
1967 		}
1968 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1969 		    ("vm_object_page_remove: page %p is fictitious", p));
1970 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1971 			if ((options & OBJPR_NOTMAPPED) == 0)
1972 				pmap_remove_write(p);
1973 			if (p->dirty)
1974 				goto next;
1975 		}
1976 		if ((options & OBJPR_NOTMAPPED) == 0)
1977 			pmap_remove_all(p);
1978 		vm_page_free(p);
1979 next:
1980 		vm_page_unlock(p);
1981 	}
1982 	vm_object_pip_wakeup(object);
1983 }
1984 
1985 /*
1986  *	vm_object_page_noreuse:
1987  *
1988  *	For the given object, attempt to move the specified pages to
1989  *	the head of the inactive queue.  This bypasses regular LRU
1990  *	operation and allows the pages to be reused quickly under memory
1991  *	pressure.  If a page is wired for any reason, then it will not
1992  *	be queued.  Pages are specified by the range ["start", "end").
1993  *	As a special case, if "end" is zero, then the range extends from
1994  *	"start" to the end of the object.
1995  *
1996  *	This operation should only be performed on objects that
1997  *	contain non-fictitious, managed pages.
1998  *
1999  *	The object must be locked.
2000  */
2001 void
2002 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2003 {
2004 	struct mtx *mtx, *new_mtx;
2005 	vm_page_t p, next;
2006 
2007 	VM_OBJECT_ASSERT_LOCKED(object);
2008 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2009 	    ("vm_object_page_noreuse: illegal object %p", object));
2010 	if (object->resident_page_count == 0)
2011 		return;
2012 	p = vm_page_find_least(object, start);
2013 
2014 	/*
2015 	 * Here, the variable "p" is either (1) the page with the least pindex
2016 	 * greater than or equal to the parameter "start" or (2) NULL.
2017 	 */
2018 	mtx = NULL;
2019 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2020 		next = TAILQ_NEXT(p, listq);
2021 
2022 		/*
2023 		 * Avoid releasing and reacquiring the same page lock.
2024 		 */
2025 		new_mtx = vm_page_lockptr(p);
2026 		if (mtx != new_mtx) {
2027 			if (mtx != NULL)
2028 				mtx_unlock(mtx);
2029 			mtx = new_mtx;
2030 			mtx_lock(mtx);
2031 		}
2032 		vm_page_deactivate_noreuse(p);
2033 	}
2034 	if (mtx != NULL)
2035 		mtx_unlock(mtx);
2036 }
2037 
2038 /*
2039  *	Populate the specified range of the object with valid pages.  Returns
2040  *	TRUE if the range is successfully populated and FALSE otherwise.
2041  *
2042  *	Note: This function should be optimized to pass a larger array of
2043  *	pages to vm_pager_get_pages() before it is applied to a non-
2044  *	OBJT_DEVICE object.
2045  *
2046  *	The object must be locked.
2047  */
2048 boolean_t
2049 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2050 {
2051 	vm_page_t m;
2052 	vm_pindex_t pindex;
2053 	int rv;
2054 
2055 	VM_OBJECT_ASSERT_WLOCKED(object);
2056 	for (pindex = start; pindex < end; pindex++) {
2057 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2058 		if (m->valid != VM_PAGE_BITS_ALL) {
2059 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2060 			if (rv != VM_PAGER_OK) {
2061 				vm_page_lock(m);
2062 				vm_page_free(m);
2063 				vm_page_unlock(m);
2064 				break;
2065 			}
2066 		}
2067 		/*
2068 		 * Keep "m" busy because a subsequent iteration may unlock
2069 		 * the object.
2070 		 */
2071 	}
2072 	if (pindex > start) {
2073 		m = vm_page_lookup(object, start);
2074 		while (m != NULL && m->pindex < pindex) {
2075 			vm_page_xunbusy(m);
2076 			m = TAILQ_NEXT(m, listq);
2077 		}
2078 	}
2079 	return (pindex == end);
2080 }
2081 
2082 /*
2083  *	Routine:	vm_object_coalesce
2084  *	Function:	Coalesces two objects backing up adjoining
2085  *			regions of memory into a single object.
2086  *
2087  *	returns TRUE if objects were combined.
2088  *
2089  *	NOTE:	Only works at the moment if the second object is NULL -
2090  *		if it's not, which object do we lock first?
2091  *
2092  *	Parameters:
2093  *		prev_object	First object to coalesce
2094  *		prev_offset	Offset into prev_object
2095  *		prev_size	Size of reference to prev_object
2096  *		next_size	Size of reference to the second object
2097  *		reserved	Indicator that extension region has
2098  *				swap accounted for
2099  *
2100  *	Conditions:
2101  *	The object must *not* be locked.
2102  */
2103 boolean_t
2104 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2105     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2106 {
2107 	vm_pindex_t next_pindex;
2108 
2109 	if (prev_object == NULL)
2110 		return (TRUE);
2111 	VM_OBJECT_WLOCK(prev_object);
2112 	if ((prev_object->type != OBJT_DEFAULT &&
2113 	    prev_object->type != OBJT_SWAP) ||
2114 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2115 		VM_OBJECT_WUNLOCK(prev_object);
2116 		return (FALSE);
2117 	}
2118 
2119 	/*
2120 	 * Try to collapse the object first
2121 	 */
2122 	vm_object_collapse(prev_object);
2123 
2124 	/*
2125 	 * Can't coalesce if: . more than one reference . paged out . shadows
2126 	 * another object . has a copy elsewhere (any of which mean that the
2127 	 * pages not mapped to prev_entry may be in use anyway)
2128 	 */
2129 	if (prev_object->backing_object != NULL) {
2130 		VM_OBJECT_WUNLOCK(prev_object);
2131 		return (FALSE);
2132 	}
2133 
2134 	prev_size >>= PAGE_SHIFT;
2135 	next_size >>= PAGE_SHIFT;
2136 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2137 
2138 	if ((prev_object->ref_count > 1) &&
2139 	    (prev_object->size != next_pindex)) {
2140 		VM_OBJECT_WUNLOCK(prev_object);
2141 		return (FALSE);
2142 	}
2143 
2144 	/*
2145 	 * Account for the charge.
2146 	 */
2147 	if (prev_object->cred != NULL) {
2148 
2149 		/*
2150 		 * If prev_object was charged, then this mapping,
2151 		 * although not charged now, may become writable
2152 		 * later. Non-NULL cred in the object would prevent
2153 		 * swap reservation during enabling of the write
2154 		 * access, so reserve swap now. Failed reservation
2155 		 * cause allocation of the separate object for the map
2156 		 * entry, and swap reservation for this entry is
2157 		 * managed in appropriate time.
2158 		 */
2159 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2160 		    prev_object->cred)) {
2161 			VM_OBJECT_WUNLOCK(prev_object);
2162 			return (FALSE);
2163 		}
2164 		prev_object->charge += ptoa(next_size);
2165 	}
2166 
2167 	/*
2168 	 * Remove any pages that may still be in the object from a previous
2169 	 * deallocation.
2170 	 */
2171 	if (next_pindex < prev_object->size) {
2172 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2173 		    next_size, 0);
2174 		if (prev_object->type == OBJT_SWAP)
2175 			swap_pager_freespace(prev_object,
2176 					     next_pindex, next_size);
2177 #if 0
2178 		if (prev_object->cred != NULL) {
2179 			KASSERT(prev_object->charge >=
2180 			    ptoa(prev_object->size - next_pindex),
2181 			    ("object %p overcharged 1 %jx %jx", prev_object,
2182 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2183 			prev_object->charge -= ptoa(prev_object->size -
2184 			    next_pindex);
2185 		}
2186 #endif
2187 	}
2188 
2189 	/*
2190 	 * Extend the object if necessary.
2191 	 */
2192 	if (next_pindex + next_size > prev_object->size)
2193 		prev_object->size = next_pindex + next_size;
2194 
2195 	VM_OBJECT_WUNLOCK(prev_object);
2196 	return (TRUE);
2197 }
2198 
2199 void
2200 vm_object_set_writeable_dirty(vm_object_t object)
2201 {
2202 
2203 	VM_OBJECT_ASSERT_WLOCKED(object);
2204 	if (object->type != OBJT_VNODE) {
2205 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2206 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2207 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2208 		}
2209 		return;
2210 	}
2211 	object->generation++;
2212 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2213 		return;
2214 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2215 }
2216 
2217 /*
2218  *	vm_object_unwire:
2219  *
2220  *	For each page offset within the specified range of the given object,
2221  *	find the highest-level page in the shadow chain and unwire it.  A page
2222  *	must exist at every page offset, and the highest-level page must be
2223  *	wired.
2224  */
2225 void
2226 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2227     uint8_t queue)
2228 {
2229 	vm_object_t tobject;
2230 	vm_page_t m, tm;
2231 	vm_pindex_t end_pindex, pindex, tpindex;
2232 	int depth, locked_depth;
2233 
2234 	KASSERT((offset & PAGE_MASK) == 0,
2235 	    ("vm_object_unwire: offset is not page aligned"));
2236 	KASSERT((length & PAGE_MASK) == 0,
2237 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2238 	/* The wired count of a fictitious page never changes. */
2239 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2240 		return;
2241 	pindex = OFF_TO_IDX(offset);
2242 	end_pindex = pindex + atop(length);
2243 	locked_depth = 1;
2244 	VM_OBJECT_RLOCK(object);
2245 	m = vm_page_find_least(object, pindex);
2246 	while (pindex < end_pindex) {
2247 		if (m == NULL || pindex < m->pindex) {
2248 			/*
2249 			 * The first object in the shadow chain doesn't
2250 			 * contain a page at the current index.  Therefore,
2251 			 * the page must exist in a backing object.
2252 			 */
2253 			tobject = object;
2254 			tpindex = pindex;
2255 			depth = 0;
2256 			do {
2257 				tpindex +=
2258 				    OFF_TO_IDX(tobject->backing_object_offset);
2259 				tobject = tobject->backing_object;
2260 				KASSERT(tobject != NULL,
2261 				    ("vm_object_unwire: missing page"));
2262 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2263 					goto next_page;
2264 				depth++;
2265 				if (depth == locked_depth) {
2266 					locked_depth++;
2267 					VM_OBJECT_RLOCK(tobject);
2268 				}
2269 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2270 			    NULL);
2271 		} else {
2272 			tm = m;
2273 			m = TAILQ_NEXT(m, listq);
2274 		}
2275 		vm_page_lock(tm);
2276 		vm_page_unwire(tm, queue);
2277 		vm_page_unlock(tm);
2278 next_page:
2279 		pindex++;
2280 	}
2281 	/* Release the accumulated object locks. */
2282 	for (depth = 0; depth < locked_depth; depth++) {
2283 		tobject = object->backing_object;
2284 		VM_OBJECT_RUNLOCK(object);
2285 		object = tobject;
2286 	}
2287 }
2288 
2289 struct vnode *
2290 vm_object_vnode(vm_object_t object)
2291 {
2292 
2293 	VM_OBJECT_ASSERT_LOCKED(object);
2294 	if (object->type == OBJT_VNODE)
2295 		return (object->handle);
2296 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2297 		return (object->un_pager.swp.swp_tmpfs);
2298 	return (NULL);
2299 }
2300 
2301 static int
2302 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2303 {
2304 	struct kinfo_vmobject *kvo;
2305 	char *fullpath, *freepath;
2306 	struct vnode *vp;
2307 	struct vattr va;
2308 	vm_object_t obj;
2309 	vm_page_t m;
2310 	int count, error;
2311 
2312 	if (req->oldptr == NULL) {
2313 		/*
2314 		 * If an old buffer has not been provided, generate an
2315 		 * estimate of the space needed for a subsequent call.
2316 		 */
2317 		mtx_lock(&vm_object_list_mtx);
2318 		count = 0;
2319 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2320 			if (obj->type == OBJT_DEAD)
2321 				continue;
2322 			count++;
2323 		}
2324 		mtx_unlock(&vm_object_list_mtx);
2325 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2326 		    count * 11 / 10));
2327 	}
2328 
2329 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2330 	error = 0;
2331 
2332 	/*
2333 	 * VM objects are type stable and are never removed from the
2334 	 * list once added.  This allows us to safely read obj->object_list
2335 	 * after reacquiring the VM object lock.
2336 	 */
2337 	mtx_lock(&vm_object_list_mtx);
2338 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2339 		if (obj->type == OBJT_DEAD)
2340 			continue;
2341 		VM_OBJECT_RLOCK(obj);
2342 		if (obj->type == OBJT_DEAD) {
2343 			VM_OBJECT_RUNLOCK(obj);
2344 			continue;
2345 		}
2346 		mtx_unlock(&vm_object_list_mtx);
2347 		kvo->kvo_size = ptoa(obj->size);
2348 		kvo->kvo_resident = obj->resident_page_count;
2349 		kvo->kvo_ref_count = obj->ref_count;
2350 		kvo->kvo_shadow_count = obj->shadow_count;
2351 		kvo->kvo_memattr = obj->memattr;
2352 		kvo->kvo_active = 0;
2353 		kvo->kvo_inactive = 0;
2354 		TAILQ_FOREACH(m, &obj->memq, listq) {
2355 			/*
2356 			 * A page may belong to the object but be
2357 			 * dequeued and set to PQ_NONE while the
2358 			 * object lock is not held.  This makes the
2359 			 * reads of m->queue below racy, and we do not
2360 			 * count pages set to PQ_NONE.  However, this
2361 			 * sysctl is only meant to give an
2362 			 * approximation of the system anyway.
2363 			 */
2364 			if (vm_page_active(m))
2365 				kvo->kvo_active++;
2366 			else if (vm_page_inactive(m))
2367 				kvo->kvo_inactive++;
2368 		}
2369 
2370 		kvo->kvo_vn_fileid = 0;
2371 		kvo->kvo_vn_fsid = 0;
2372 		kvo->kvo_vn_fsid_freebsd11 = 0;
2373 		freepath = NULL;
2374 		fullpath = "";
2375 		vp = NULL;
2376 		switch (obj->type) {
2377 		case OBJT_DEFAULT:
2378 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2379 			break;
2380 		case OBJT_VNODE:
2381 			kvo->kvo_type = KVME_TYPE_VNODE;
2382 			vp = obj->handle;
2383 			vref(vp);
2384 			break;
2385 		case OBJT_SWAP:
2386 			kvo->kvo_type = KVME_TYPE_SWAP;
2387 			break;
2388 		case OBJT_DEVICE:
2389 			kvo->kvo_type = KVME_TYPE_DEVICE;
2390 			break;
2391 		case OBJT_PHYS:
2392 			kvo->kvo_type = KVME_TYPE_PHYS;
2393 			break;
2394 		case OBJT_DEAD:
2395 			kvo->kvo_type = KVME_TYPE_DEAD;
2396 			break;
2397 		case OBJT_SG:
2398 			kvo->kvo_type = KVME_TYPE_SG;
2399 			break;
2400 		case OBJT_MGTDEVICE:
2401 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2402 			break;
2403 		default:
2404 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2405 			break;
2406 		}
2407 		VM_OBJECT_RUNLOCK(obj);
2408 		if (vp != NULL) {
2409 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2410 			vn_lock(vp, LK_SHARED | LK_RETRY);
2411 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2412 				kvo->kvo_vn_fileid = va.va_fileid;
2413 				kvo->kvo_vn_fsid = va.va_fsid;
2414 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2415 								/* truncate */
2416 			}
2417 			vput(vp);
2418 		}
2419 
2420 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2421 		if (freepath != NULL)
2422 			free(freepath, M_TEMP);
2423 
2424 		/* Pack record size down */
2425 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2426 		    + strlen(kvo->kvo_path) + 1;
2427 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2428 		    sizeof(uint64_t));
2429 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2430 		mtx_lock(&vm_object_list_mtx);
2431 		if (error)
2432 			break;
2433 	}
2434 	mtx_unlock(&vm_object_list_mtx);
2435 	free(kvo, M_TEMP);
2436 	return (error);
2437 }
2438 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2439     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2440     "List of VM objects");
2441 
2442 #include "opt_ddb.h"
2443 #ifdef DDB
2444 #include <sys/kernel.h>
2445 
2446 #include <sys/cons.h>
2447 
2448 #include <ddb/ddb.h>
2449 
2450 static int
2451 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2452 {
2453 	vm_map_t tmpm;
2454 	vm_map_entry_t tmpe;
2455 	vm_object_t obj;
2456 	int entcount;
2457 
2458 	if (map == 0)
2459 		return 0;
2460 
2461 	if (entry == 0) {
2462 		tmpe = map->header.next;
2463 		entcount = map->nentries;
2464 		while (entcount-- && (tmpe != &map->header)) {
2465 			if (_vm_object_in_map(map, object, tmpe)) {
2466 				return 1;
2467 			}
2468 			tmpe = tmpe->next;
2469 		}
2470 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2471 		tmpm = entry->object.sub_map;
2472 		tmpe = tmpm->header.next;
2473 		entcount = tmpm->nentries;
2474 		while (entcount-- && tmpe != &tmpm->header) {
2475 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2476 				return 1;
2477 			}
2478 			tmpe = tmpe->next;
2479 		}
2480 	} else if ((obj = entry->object.vm_object) != NULL) {
2481 		for (; obj; obj = obj->backing_object)
2482 			if (obj == object) {
2483 				return 1;
2484 			}
2485 	}
2486 	return 0;
2487 }
2488 
2489 static int
2490 vm_object_in_map(vm_object_t object)
2491 {
2492 	struct proc *p;
2493 
2494 	/* sx_slock(&allproc_lock); */
2495 	FOREACH_PROC_IN_SYSTEM(p) {
2496 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2497 			continue;
2498 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2499 			/* sx_sunlock(&allproc_lock); */
2500 			return 1;
2501 		}
2502 	}
2503 	/* sx_sunlock(&allproc_lock); */
2504 	if (_vm_object_in_map(kernel_map, object, 0))
2505 		return 1;
2506 	return 0;
2507 }
2508 
2509 DB_SHOW_COMMAND(vmochk, vm_object_check)
2510 {
2511 	vm_object_t object;
2512 
2513 	/*
2514 	 * make sure that internal objs are in a map somewhere
2515 	 * and none have zero ref counts.
2516 	 */
2517 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2518 		if (object->handle == NULL &&
2519 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2520 			if (object->ref_count == 0) {
2521 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2522 					(long)object->size);
2523 			}
2524 			if (!vm_object_in_map(object)) {
2525 				db_printf(
2526 			"vmochk: internal obj is not in a map: "
2527 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2528 				    object->ref_count, (u_long)object->size,
2529 				    (u_long)object->size,
2530 				    (void *)object->backing_object);
2531 			}
2532 		}
2533 	}
2534 }
2535 
2536 /*
2537  *	vm_object_print:	[ debug ]
2538  */
2539 DB_SHOW_COMMAND(object, vm_object_print_static)
2540 {
2541 	/* XXX convert args. */
2542 	vm_object_t object = (vm_object_t)addr;
2543 	boolean_t full = have_addr;
2544 
2545 	vm_page_t p;
2546 
2547 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2548 #define	count	was_count
2549 
2550 	int count;
2551 
2552 	if (object == NULL)
2553 		return;
2554 
2555 	db_iprintf(
2556 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2557 	    object, (int)object->type, (uintmax_t)object->size,
2558 	    object->resident_page_count, object->ref_count, object->flags,
2559 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2560 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2561 	    object->shadow_count,
2562 	    object->backing_object ? object->backing_object->ref_count : 0,
2563 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2564 
2565 	if (!full)
2566 		return;
2567 
2568 	db_indent += 2;
2569 	count = 0;
2570 	TAILQ_FOREACH(p, &object->memq, listq) {
2571 		if (count == 0)
2572 			db_iprintf("memory:=");
2573 		else if (count == 6) {
2574 			db_printf("\n");
2575 			db_iprintf(" ...");
2576 			count = 0;
2577 		} else
2578 			db_printf(",");
2579 		count++;
2580 
2581 		db_printf("(off=0x%jx,page=0x%jx)",
2582 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2583 	}
2584 	if (count != 0)
2585 		db_printf("\n");
2586 	db_indent -= 2;
2587 }
2588 
2589 /* XXX. */
2590 #undef count
2591 
2592 /* XXX need this non-static entry for calling from vm_map_print. */
2593 void
2594 vm_object_print(
2595         /* db_expr_t */ long addr,
2596 	boolean_t have_addr,
2597 	/* db_expr_t */ long count,
2598 	char *modif)
2599 {
2600 	vm_object_print_static(addr, have_addr, count, modif);
2601 }
2602 
2603 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2604 {
2605 	vm_object_t object;
2606 	vm_pindex_t fidx;
2607 	vm_paddr_t pa;
2608 	vm_page_t m, prev_m;
2609 	int rcount, nl, c;
2610 
2611 	nl = 0;
2612 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2613 		db_printf("new object: %p\n", (void *)object);
2614 		if (nl > 18) {
2615 			c = cngetc();
2616 			if (c != ' ')
2617 				return;
2618 			nl = 0;
2619 		}
2620 		nl++;
2621 		rcount = 0;
2622 		fidx = 0;
2623 		pa = -1;
2624 		TAILQ_FOREACH(m, &object->memq, listq) {
2625 			if (m->pindex > 128)
2626 				break;
2627 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2628 			    prev_m->pindex + 1 != m->pindex) {
2629 				if (rcount) {
2630 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2631 						(long)fidx, rcount, (long)pa);
2632 					if (nl > 18) {
2633 						c = cngetc();
2634 						if (c != ' ')
2635 							return;
2636 						nl = 0;
2637 					}
2638 					nl++;
2639 					rcount = 0;
2640 				}
2641 			}
2642 			if (rcount &&
2643 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2644 				++rcount;
2645 				continue;
2646 			}
2647 			if (rcount) {
2648 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2649 					(long)fidx, rcount, (long)pa);
2650 				if (nl > 18) {
2651 					c = cngetc();
2652 					if (c != ' ')
2653 						return;
2654 					nl = 0;
2655 				}
2656 				nl++;
2657 			}
2658 			fidx = m->pindex;
2659 			pa = VM_PAGE_TO_PHYS(m);
2660 			rcount = 1;
2661 		}
2662 		if (rcount) {
2663 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2664 				(long)fidx, rcount, (long)pa);
2665 			if (nl > 18) {
2666 				c = cngetc();
2667 				if (c != ' ')
2668 					return;
2669 				nl = 0;
2670 			}
2671 			nl++;
2672 		}
2673 	}
2674 }
2675 #endif /* DDB */
2676