xref: /freebsd/sys/vm/vm_object.c (revision 8522d140a568be6044aad4288042c72e8d3b72a7)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107 
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111 
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113 		    int pagerflags, int flags, boolean_t *clearobjflags,
114 		    boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116 		    boolean_t *clearobjflags);
117 static void	vm_object_qcollapse(vm_object_t object);
118 static void	vm_object_vndeallocate(vm_object_t object);
119 
120 /*
121  *	Virtual memory objects maintain the actual data
122  *	associated with allocated virtual memory.  A given
123  *	page of memory exists within exactly one object.
124  *
125  *	An object is only deallocated when all "references"
126  *	are given up.  Only one "reference" to a given
127  *	region of an object should be writeable.
128  *
129  *	Associated with each object is a list of all resident
130  *	memory pages belonging to that object; this list is
131  *	maintained by the "vm_page" module, and locked by the object's
132  *	lock.
133  *
134  *	Each object also records a "pager" routine which is
135  *	used to retrieve (and store) pages to the proper backing
136  *	storage.  In addition, objects may be backed by other
137  *	objects from which they were virtual-copied.
138  *
139  *	The only items within the object structure which are
140  *	modified after time of creation are:
141  *		reference count		locked by object's lock
142  *		pager routine		locked by object's lock
143  *
144  */
145 
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;	/* lock for object list and count */
148 
149 struct vm_object kernel_object_store;
150 
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153 
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158 
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163 
164 static void
165 counter_startup(void)
166 {
167 
168 	object_collapses = counter_u64_alloc(M_WAITOK);
169 	object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172 
173 static uma_zone_t obj_zone;
174 
175 static int vm_object_zinit(void *mem, int size, int flags);
176 
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179 
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183 	vm_object_t object;
184 
185 	object = (vm_object_t)mem;
186 	KASSERT(object->ref_count == 0,
187 	    ("object %p ref_count = %d", object, object->ref_count));
188 	KASSERT(TAILQ_EMPTY(&object->memq),
189 	    ("object %p has resident pages in its memq", object));
190 	KASSERT(vm_radix_is_empty(&object->rtree),
191 	    ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193 	KASSERT(LIST_EMPTY(&object->rvq),
194 	    ("object %p has reservations",
195 	    object));
196 #endif
197 	KASSERT(object->paging_in_progress == 0,
198 	    ("object %p paging_in_progress = %d",
199 	    object, object->paging_in_progress));
200 	KASSERT(object->resident_page_count == 0,
201 	    ("object %p resident_page_count = %d",
202 	    object, object->resident_page_count));
203 	KASSERT(object->shadow_count == 0,
204 	    ("object %p shadow_count = %d",
205 	    object, object->shadow_count));
206 	KASSERT(object->type == OBJT_DEAD,
207 	    ("object %p has non-dead type %d",
208 	    object, object->type));
209 }
210 #endif
211 
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215 	vm_object_t object;
216 
217 	object = (vm_object_t)mem;
218 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219 
220 	/* These are true for any object that has been freed */
221 	object->type = OBJT_DEAD;
222 	object->ref_count = 0;
223 	vm_radix_init(&object->rtree);
224 	object->paging_in_progress = 0;
225 	object->resident_page_count = 0;
226 	object->shadow_count = 0;
227 	object->flags = OBJ_DEAD;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 	return (0);
233 }
234 
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238 
239 	TAILQ_INIT(&object->memq);
240 	LIST_INIT(&object->shadow_head);
241 
242 	object->type = type;
243 	if (type == OBJT_SWAP)
244 		pctrie_init(&object->un_pager.swp.swp_blks);
245 
246 	/*
247 	 * Ensure that swap_pager_swapoff() iteration over object_list
248 	 * sees up to date type and pctrie head if it observed
249 	 * non-dead object.
250 	 */
251 	atomic_thread_fence_rel();
252 
253 	switch (type) {
254 	case OBJT_DEAD:
255 		panic("_vm_object_allocate: can't create OBJT_DEAD");
256 	case OBJT_DEFAULT:
257 	case OBJT_SWAP:
258 		object->flags = OBJ_ONEMAPPING;
259 		break;
260 	case OBJT_DEVICE:
261 	case OBJT_SG:
262 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263 		break;
264 	case OBJT_MGTDEVICE:
265 		object->flags = OBJ_FICTITIOUS;
266 		break;
267 	case OBJT_PHYS:
268 		object->flags = OBJ_UNMANAGED;
269 		break;
270 	case OBJT_VNODE:
271 		object->flags = 0;
272 		break;
273 	default:
274 		panic("_vm_object_allocate: type %d is undefined", type);
275 	}
276 	object->size = size;
277 	object->domain.dr_policy = NULL;
278 	object->generation = 1;
279 	object->ref_count = 1;
280 	object->memattr = VM_MEMATTR_DEFAULT;
281 	object->cred = NULL;
282 	object->charge = 0;
283 	object->handle = NULL;
284 	object->backing_object = NULL;
285 	object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287 	LIST_INIT(&object->rvq);
288 #endif
289 	umtx_shm_object_init(object);
290 }
291 
292 /*
293  *	vm_object_init:
294  *
295  *	Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300 	TAILQ_INIT(&vm_object_list);
301 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302 
303 	rw_init(&kernel_object->lock, "kernel vm object");
304 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307 	kernel_object->flags |= OBJ_COLORED;
308 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310 
311 	/*
312 	 * The lock portion of struct vm_object must be type stable due
313 	 * to vm_pageout_fallback_object_lock locking a vm object
314 	 * without holding any references to it.
315 	 */
316 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318 	    vm_object_zdtor,
319 #else
320 	    NULL,
321 #endif
322 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323 
324 	vm_radix_zinit();
325 }
326 
327 void
328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330 
331 	VM_OBJECT_ASSERT_WLOCKED(object);
332 	object->flags &= ~bits;
333 }
334 
335 /*
336  *	Sets the default memory attribute for the specified object.  Pages
337  *	that are allocated to this object are by default assigned this memory
338  *	attribute.
339  *
340  *	Presently, this function must be called before any pages are allocated
341  *	to the object.  In the future, this requirement may be relaxed for
342  *	"default" and "swap" objects.
343  */
344 int
345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347 
348 	VM_OBJECT_ASSERT_WLOCKED(object);
349 	switch (object->type) {
350 	case OBJT_DEFAULT:
351 	case OBJT_DEVICE:
352 	case OBJT_MGTDEVICE:
353 	case OBJT_PHYS:
354 	case OBJT_SG:
355 	case OBJT_SWAP:
356 	case OBJT_VNODE:
357 		if (!TAILQ_EMPTY(&object->memq))
358 			return (KERN_FAILURE);
359 		break;
360 	case OBJT_DEAD:
361 		return (KERN_INVALID_ARGUMENT);
362 	default:
363 		panic("vm_object_set_memattr: object %p is of undefined type",
364 		    object);
365 	}
366 	object->memattr = memattr;
367 	return (KERN_SUCCESS);
368 }
369 
370 void
371 vm_object_pip_add(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress += i;
376 }
377 
378 void
379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress -= i;
384 }
385 
386 void
387 vm_object_pip_wakeup(vm_object_t object)
388 {
389 
390 	VM_OBJECT_ASSERT_WLOCKED(object);
391 	object->paging_in_progress--;
392 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393 		vm_object_clear_flag(object, OBJ_PIPWNT);
394 		wakeup(object);
395 	}
396 }
397 
398 void
399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401 
402 	VM_OBJECT_ASSERT_WLOCKED(object);
403 	if (i)
404 		object->paging_in_progress -= i;
405 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406 		vm_object_clear_flag(object, OBJ_PIPWNT);
407 		wakeup(object);
408 	}
409 }
410 
411 void
412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414 
415 	VM_OBJECT_ASSERT_WLOCKED(object);
416 	while (object->paging_in_progress) {
417 		object->flags |= OBJ_PIPWNT;
418 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419 	}
420 }
421 
422 /*
423  *	vm_object_allocate:
424  *
425  *	Returns a new object with the given size.
426  */
427 vm_object_t
428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430 	vm_object_t object;
431 
432 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433 	_vm_object_allocate(type, size, object);
434 	return (object);
435 }
436 
437 
438 /*
439  *	vm_object_reference:
440  *
441  *	Gets another reference to the given object.  Note: OBJ_DEAD
442  *	objects can be referenced during final cleaning.
443  */
444 void
445 vm_object_reference(vm_object_t object)
446 {
447 	if (object == NULL)
448 		return;
449 	VM_OBJECT_WLOCK(object);
450 	vm_object_reference_locked(object);
451 	VM_OBJECT_WUNLOCK(object);
452 }
453 
454 /*
455  *	vm_object_reference_locked:
456  *
457  *	Gets another reference to the given object.
458  *
459  *	The object must be locked.
460  */
461 void
462 vm_object_reference_locked(vm_object_t object)
463 {
464 	struct vnode *vp;
465 
466 	VM_OBJECT_ASSERT_WLOCKED(object);
467 	object->ref_count++;
468 	if (object->type == OBJT_VNODE) {
469 		vp = object->handle;
470 		vref(vp);
471 	}
472 }
473 
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
478 vm_object_vndeallocate(vm_object_t object)
479 {
480 	struct vnode *vp = (struct vnode *) object->handle;
481 
482 	VM_OBJECT_ASSERT_WLOCKED(object);
483 	KASSERT(object->type == OBJT_VNODE,
484 	    ("vm_object_vndeallocate: not a vnode object"));
485 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487 	if (object->ref_count == 0) {
488 		vn_printf(vp, "vm_object_vndeallocate ");
489 		panic("vm_object_vndeallocate: bad object reference count");
490 	}
491 #endif
492 
493 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494 		umtx_shm_object_terminated(object);
495 
496 	/*
497 	 * The test for text of vp vnode does not need a bypass to
498 	 * reach right VV_TEXT there, since it is obtained from
499 	 * object->handle.
500 	 */
501 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
502 		object->ref_count--;
503 		VM_OBJECT_WUNLOCK(object);
504 		/* vrele may need the vnode lock. */
505 		vrele(vp);
506 	} else {
507 		vhold(vp);
508 		VM_OBJECT_WUNLOCK(object);
509 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
510 		vdrop(vp);
511 		VM_OBJECT_WLOCK(object);
512 		object->ref_count--;
513 		if (object->type == OBJT_DEAD) {
514 			VM_OBJECT_WUNLOCK(object);
515 			VOP_UNLOCK(vp, 0);
516 		} else {
517 			if (object->ref_count == 0)
518 				VOP_UNSET_TEXT(vp);
519 			VM_OBJECT_WUNLOCK(object);
520 			vput(vp);
521 		}
522 	}
523 }
524 
525 /*
526  *	vm_object_deallocate:
527  *
528  *	Release a reference to the specified object,
529  *	gained either through a vm_object_allocate
530  *	or a vm_object_reference call.  When all references
531  *	are gone, storage associated with this object
532  *	may be relinquished.
533  *
534  *	No object may be locked.
535  */
536 void
537 vm_object_deallocate(vm_object_t object)
538 {
539 	vm_object_t temp;
540 	struct vnode *vp;
541 
542 	while (object != NULL) {
543 		VM_OBJECT_WLOCK(object);
544 		if (object->type == OBJT_VNODE) {
545 			vm_object_vndeallocate(object);
546 			return;
547 		}
548 
549 		KASSERT(object->ref_count != 0,
550 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
551 
552 		/*
553 		 * If the reference count goes to 0 we start calling
554 		 * vm_object_terminate() on the object chain.
555 		 * A ref count of 1 may be a special case depending on the
556 		 * shadow count being 0 or 1.
557 		 */
558 		object->ref_count--;
559 		if (object->ref_count > 1) {
560 			VM_OBJECT_WUNLOCK(object);
561 			return;
562 		} else if (object->ref_count == 1) {
563 			if (object->type == OBJT_SWAP &&
564 			    (object->flags & OBJ_TMPFS) != 0) {
565 				vp = object->un_pager.swp.swp_tmpfs;
566 				vhold(vp);
567 				VM_OBJECT_WUNLOCK(object);
568 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
569 				VM_OBJECT_WLOCK(object);
570 				if (object->type == OBJT_DEAD ||
571 				    object->ref_count != 1) {
572 					VM_OBJECT_WUNLOCK(object);
573 					VOP_UNLOCK(vp, 0);
574 					vdrop(vp);
575 					return;
576 				}
577 				if ((object->flags & OBJ_TMPFS) != 0)
578 					VOP_UNSET_TEXT(vp);
579 				VOP_UNLOCK(vp, 0);
580 				vdrop(vp);
581 			}
582 			if (object->shadow_count == 0 &&
583 			    object->handle == NULL &&
584 			    (object->type == OBJT_DEFAULT ||
585 			    (object->type == OBJT_SWAP &&
586 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
587 				vm_object_set_flag(object, OBJ_ONEMAPPING);
588 			} else if ((object->shadow_count == 1) &&
589 			    (object->handle == NULL) &&
590 			    (object->type == OBJT_DEFAULT ||
591 			     object->type == OBJT_SWAP)) {
592 				vm_object_t robject;
593 
594 				robject = LIST_FIRST(&object->shadow_head);
595 				KASSERT(robject != NULL,
596 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
597 					 object->ref_count,
598 					 object->shadow_count));
599 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
600 				    ("shadowed tmpfs v_object %p", object));
601 				if (!VM_OBJECT_TRYWLOCK(robject)) {
602 					/*
603 					 * Avoid a potential deadlock.
604 					 */
605 					object->ref_count++;
606 					VM_OBJECT_WUNLOCK(object);
607 					/*
608 					 * More likely than not the thread
609 					 * holding robject's lock has lower
610 					 * priority than the current thread.
611 					 * Let the lower priority thread run.
612 					 */
613 					pause("vmo_de", 1);
614 					continue;
615 				}
616 				/*
617 				 * Collapse object into its shadow unless its
618 				 * shadow is dead.  In that case, object will
619 				 * be deallocated by the thread that is
620 				 * deallocating its shadow.
621 				 */
622 				if ((robject->flags & OBJ_DEAD) == 0 &&
623 				    (robject->handle == NULL) &&
624 				    (robject->type == OBJT_DEFAULT ||
625 				     robject->type == OBJT_SWAP)) {
626 
627 					robject->ref_count++;
628 retry:
629 					if (robject->paging_in_progress) {
630 						VM_OBJECT_WUNLOCK(object);
631 						vm_object_pip_wait(robject,
632 						    "objde1");
633 						temp = robject->backing_object;
634 						if (object == temp) {
635 							VM_OBJECT_WLOCK(object);
636 							goto retry;
637 						}
638 					} else if (object->paging_in_progress) {
639 						VM_OBJECT_WUNLOCK(robject);
640 						object->flags |= OBJ_PIPWNT;
641 						VM_OBJECT_SLEEP(object, object,
642 						    PDROP | PVM, "objde2", 0);
643 						VM_OBJECT_WLOCK(robject);
644 						temp = robject->backing_object;
645 						if (object == temp) {
646 							VM_OBJECT_WLOCK(object);
647 							goto retry;
648 						}
649 					} else
650 						VM_OBJECT_WUNLOCK(object);
651 
652 					if (robject->ref_count == 1) {
653 						robject->ref_count--;
654 						object = robject;
655 						goto doterm;
656 					}
657 					object = robject;
658 					vm_object_collapse(object);
659 					VM_OBJECT_WUNLOCK(object);
660 					continue;
661 				}
662 				VM_OBJECT_WUNLOCK(robject);
663 			}
664 			VM_OBJECT_WUNLOCK(object);
665 			return;
666 		}
667 doterm:
668 		umtx_shm_object_terminated(object);
669 		temp = object->backing_object;
670 		if (temp != NULL) {
671 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
672 			    ("shadowed tmpfs v_object 2 %p", object));
673 			VM_OBJECT_WLOCK(temp);
674 			LIST_REMOVE(object, shadow_list);
675 			temp->shadow_count--;
676 			VM_OBJECT_WUNLOCK(temp);
677 			object->backing_object = NULL;
678 		}
679 		/*
680 		 * Don't double-terminate, we could be in a termination
681 		 * recursion due to the terminate having to sync data
682 		 * to disk.
683 		 */
684 		if ((object->flags & OBJ_DEAD) == 0)
685 			vm_object_terminate(object);
686 		else
687 			VM_OBJECT_WUNLOCK(object);
688 		object = temp;
689 	}
690 }
691 
692 /*
693  *	vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699 
700 	/*
701 	 * Release the allocation charge.
702 	 */
703 	if (object->cred != NULL) {
704 		swap_release_by_cred(object->charge, object->cred);
705 		object->charge = 0;
706 		crfree(object->cred);
707 		object->cred = NULL;
708 	}
709 
710 	/*
711 	 * Free the space for the object.
712 	 */
713 	uma_zfree(obj_zone, object);
714 }
715 
716 /*
717  *	vm_object_terminate_pages removes any remaining pageable pages
718  *	from the object and resets the object to an empty state.
719  */
720 static void
721 vm_object_terminate_pages(vm_object_t object)
722 {
723 	vm_page_t p, p_next;
724 	struct mtx *mtx;
725 
726 	VM_OBJECT_ASSERT_WLOCKED(object);
727 
728 	mtx = NULL;
729 
730 	/*
731 	 * Free any remaining pageable pages.  This also removes them from the
732 	 * paging queues.  However, don't free wired pages, just remove them
733 	 * from the object.  Rather than incrementally removing each page from
734 	 * the object, the page and object are reset to any empty state.
735 	 */
736 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
737 		vm_page_assert_unbusied(p);
738 		if ((object->flags & OBJ_UNMANAGED) == 0)
739 			/*
740 			 * vm_page_free_prep() only needs the page
741 			 * lock for managed pages.
742 			 */
743 			vm_page_change_lock(p, &mtx);
744 		p->object = NULL;
745 		if (p->wire_count != 0)
746 			continue;
747 		VM_CNT_INC(v_pfree);
748 		vm_page_free(p);
749 	}
750 	if (mtx != NULL)
751 		mtx_unlock(mtx);
752 
753 	/*
754 	 * If the object contained any pages, then reset it to an empty state.
755 	 * None of the object's fields, including "resident_page_count", were
756 	 * modified by the preceding loop.
757 	 */
758 	if (object->resident_page_count != 0) {
759 		vm_radix_reclaim_allnodes(&object->rtree);
760 		TAILQ_INIT(&object->memq);
761 		object->resident_page_count = 0;
762 		if (object->type == OBJT_VNODE)
763 			vdrop(object->handle);
764 	}
765 }
766 
767 /*
768  *	vm_object_terminate actually destroys the specified object, freeing
769  *	up all previously used resources.
770  *
771  *	The object must be locked.
772  *	This routine may block.
773  */
774 void
775 vm_object_terminate(vm_object_t object)
776 {
777 
778 	VM_OBJECT_ASSERT_WLOCKED(object);
779 
780 	/*
781 	 * Make sure no one uses us.
782 	 */
783 	vm_object_set_flag(object, OBJ_DEAD);
784 
785 	/*
786 	 * wait for the pageout daemon to be done with the object
787 	 */
788 	vm_object_pip_wait(object, "objtrm");
789 
790 	KASSERT(!object->paging_in_progress,
791 		("vm_object_terminate: pageout in progress"));
792 
793 	/*
794 	 * Clean and free the pages, as appropriate. All references to the
795 	 * object are gone, so we don't need to lock it.
796 	 */
797 	if (object->type == OBJT_VNODE) {
798 		struct vnode *vp = (struct vnode *)object->handle;
799 
800 		/*
801 		 * Clean pages and flush buffers.
802 		 */
803 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
804 		VM_OBJECT_WUNLOCK(object);
805 
806 		vinvalbuf(vp, V_SAVE, 0, 0);
807 
808 		BO_LOCK(&vp->v_bufobj);
809 		vp->v_bufobj.bo_flag |= BO_DEAD;
810 		BO_UNLOCK(&vp->v_bufobj);
811 
812 		VM_OBJECT_WLOCK(object);
813 	}
814 
815 	KASSERT(object->ref_count == 0,
816 		("vm_object_terminate: object with references, ref_count=%d",
817 		object->ref_count));
818 
819 	if ((object->flags & OBJ_PG_DTOR) == 0)
820 		vm_object_terminate_pages(object);
821 
822 #if VM_NRESERVLEVEL > 0
823 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
824 		vm_reserv_break_all(object);
825 #endif
826 
827 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
828 	    object->type == OBJT_SWAP,
829 	    ("%s: non-swap obj %p has cred", __func__, object));
830 
831 	/*
832 	 * Let the pager know object is dead.
833 	 */
834 	vm_pager_deallocate(object);
835 	VM_OBJECT_WUNLOCK(object);
836 
837 	vm_object_destroy(object);
838 }
839 
840 /*
841  * Make the page read-only so that we can clear the object flags.  However, if
842  * this is a nosync mmap then the object is likely to stay dirty so do not
843  * mess with the page and do not clear the object flags.  Returns TRUE if the
844  * page should be flushed, and FALSE otherwise.
845  */
846 static boolean_t
847 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
848 {
849 
850 	/*
851 	 * If we have been asked to skip nosync pages and this is a
852 	 * nosync page, skip it.  Note that the object flags were not
853 	 * cleared in this case so we do not have to set them.
854 	 */
855 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
856 		*clearobjflags = FALSE;
857 		return (FALSE);
858 	} else {
859 		pmap_remove_write(p);
860 		return (p->dirty != 0);
861 	}
862 }
863 
864 /*
865  *	vm_object_page_clean
866  *
867  *	Clean all dirty pages in the specified range of object.  Leaves page
868  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
869  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
870  *	leaving the object dirty.
871  *
872  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
873  *	synchronous clustering mode implementation.
874  *
875  *	Odd semantics: if start == end, we clean everything.
876  *
877  *	The object must be locked.
878  *
879  *	Returns FALSE if some page from the range was not written, as
880  *	reported by the pager, and TRUE otherwise.
881  */
882 boolean_t
883 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
884     int flags)
885 {
886 	vm_page_t np, p;
887 	vm_pindex_t pi, tend, tstart;
888 	int curgeneration, n, pagerflags;
889 	boolean_t clearobjflags, eio, res;
890 
891 	VM_OBJECT_ASSERT_WLOCKED(object);
892 
893 	/*
894 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
895 	 * objects.  The check below prevents the function from
896 	 * operating on non-vnode objects.
897 	 */
898 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
899 	    object->resident_page_count == 0)
900 		return (TRUE);
901 
902 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
903 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
904 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
905 
906 	tstart = OFF_TO_IDX(start);
907 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
908 	clearobjflags = tstart == 0 && tend >= object->size;
909 	res = TRUE;
910 
911 rescan:
912 	curgeneration = object->generation;
913 
914 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
915 		pi = p->pindex;
916 		if (pi >= tend)
917 			break;
918 		np = TAILQ_NEXT(p, listq);
919 		if (p->valid == 0)
920 			continue;
921 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
922 			if (object->generation != curgeneration) {
923 				if ((flags & OBJPC_SYNC) != 0)
924 					goto rescan;
925 				else
926 					clearobjflags = FALSE;
927 			}
928 			np = vm_page_find_least(object, pi);
929 			continue;
930 		}
931 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
932 			continue;
933 
934 		n = vm_object_page_collect_flush(object, p, pagerflags,
935 		    flags, &clearobjflags, &eio);
936 		if (eio) {
937 			res = FALSE;
938 			clearobjflags = FALSE;
939 		}
940 		if (object->generation != curgeneration) {
941 			if ((flags & OBJPC_SYNC) != 0)
942 				goto rescan;
943 			else
944 				clearobjflags = FALSE;
945 		}
946 
947 		/*
948 		 * If the VOP_PUTPAGES() did a truncated write, so
949 		 * that even the first page of the run is not fully
950 		 * written, vm_pageout_flush() returns 0 as the run
951 		 * length.  Since the condition that caused truncated
952 		 * write may be permanent, e.g. exhausted free space,
953 		 * accepting n == 0 would cause an infinite loop.
954 		 *
955 		 * Forwarding the iterator leaves the unwritten page
956 		 * behind, but there is not much we can do there if
957 		 * filesystem refuses to write it.
958 		 */
959 		if (n == 0) {
960 			n = 1;
961 			clearobjflags = FALSE;
962 		}
963 		np = vm_page_find_least(object, pi + n);
964 	}
965 #if 0
966 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
967 #endif
968 
969 	if (clearobjflags)
970 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
971 	return (res);
972 }
973 
974 static int
975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
976     int flags, boolean_t *clearobjflags, boolean_t *eio)
977 {
978 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
979 	int count, i, mreq, runlen;
980 
981 	vm_page_lock_assert(p, MA_NOTOWNED);
982 	VM_OBJECT_ASSERT_WLOCKED(object);
983 
984 	count = 1;
985 	mreq = 0;
986 
987 	for (tp = p; count < vm_pageout_page_count; count++) {
988 		tp = vm_page_next(tp);
989 		if (tp == NULL || vm_page_busied(tp))
990 			break;
991 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
992 			break;
993 	}
994 
995 	for (p_first = p; count < vm_pageout_page_count; count++) {
996 		tp = vm_page_prev(p_first);
997 		if (tp == NULL || vm_page_busied(tp))
998 			break;
999 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1000 			break;
1001 		p_first = tp;
1002 		mreq++;
1003 	}
1004 
1005 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1006 		ma[i] = tp;
1007 
1008 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1009 	return (runlen);
1010 }
1011 
1012 /*
1013  * Note that there is absolutely no sense in writing out
1014  * anonymous objects, so we track down the vnode object
1015  * to write out.
1016  * We invalidate (remove) all pages from the address space
1017  * for semantic correctness.
1018  *
1019  * If the backing object is a device object with unmanaged pages, then any
1020  * mappings to the specified range of pages must be removed before this
1021  * function is called.
1022  *
1023  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1024  * may start out with a NULL object.
1025  */
1026 boolean_t
1027 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1028     boolean_t syncio, boolean_t invalidate)
1029 {
1030 	vm_object_t backing_object;
1031 	struct vnode *vp;
1032 	struct mount *mp;
1033 	int error, flags, fsync_after;
1034 	boolean_t res;
1035 
1036 	if (object == NULL)
1037 		return (TRUE);
1038 	res = TRUE;
1039 	error = 0;
1040 	VM_OBJECT_WLOCK(object);
1041 	while ((backing_object = object->backing_object) != NULL) {
1042 		VM_OBJECT_WLOCK(backing_object);
1043 		offset += object->backing_object_offset;
1044 		VM_OBJECT_WUNLOCK(object);
1045 		object = backing_object;
1046 		if (object->size < OFF_TO_IDX(offset + size))
1047 			size = IDX_TO_OFF(object->size) - offset;
1048 	}
1049 	/*
1050 	 * Flush pages if writing is allowed, invalidate them
1051 	 * if invalidation requested.  Pages undergoing I/O
1052 	 * will be ignored by vm_object_page_remove().
1053 	 *
1054 	 * We cannot lock the vnode and then wait for paging
1055 	 * to complete without deadlocking against vm_fault.
1056 	 * Instead we simply call vm_object_page_remove() and
1057 	 * allow it to block internally on a page-by-page
1058 	 * basis when it encounters pages undergoing async
1059 	 * I/O.
1060 	 */
1061 	if (object->type == OBJT_VNODE &&
1062 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1063 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1064 		VM_OBJECT_WUNLOCK(object);
1065 		(void) vn_start_write(vp, &mp, V_WAIT);
1066 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1067 		if (syncio && !invalidate && offset == 0 &&
1068 		    atop(size) == object->size) {
1069 			/*
1070 			 * If syncing the whole mapping of the file,
1071 			 * it is faster to schedule all the writes in
1072 			 * async mode, also allowing the clustering,
1073 			 * and then wait for i/o to complete.
1074 			 */
1075 			flags = 0;
1076 			fsync_after = TRUE;
1077 		} else {
1078 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1079 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1080 			fsync_after = FALSE;
1081 		}
1082 		VM_OBJECT_WLOCK(object);
1083 		res = vm_object_page_clean(object, offset, offset + size,
1084 		    flags);
1085 		VM_OBJECT_WUNLOCK(object);
1086 		if (fsync_after)
1087 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1088 		VOP_UNLOCK(vp, 0);
1089 		vn_finished_write(mp);
1090 		if (error != 0)
1091 			res = FALSE;
1092 		VM_OBJECT_WLOCK(object);
1093 	}
1094 	if ((object->type == OBJT_VNODE ||
1095 	     object->type == OBJT_DEVICE) && invalidate) {
1096 		if (object->type == OBJT_DEVICE)
1097 			/*
1098 			 * The option OBJPR_NOTMAPPED must be passed here
1099 			 * because vm_object_page_remove() cannot remove
1100 			 * unmanaged mappings.
1101 			 */
1102 			flags = OBJPR_NOTMAPPED;
1103 		else if (old_msync)
1104 			flags = 0;
1105 		else
1106 			flags = OBJPR_CLEANONLY;
1107 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1108 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1109 	}
1110 	VM_OBJECT_WUNLOCK(object);
1111 	return (res);
1112 }
1113 
1114 /*
1115  * Determine whether the given advice can be applied to the object.  Advice is
1116  * not applied to unmanaged pages since they never belong to page queues, and
1117  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1118  * have been mapped at most once.
1119  */
1120 static bool
1121 vm_object_advice_applies(vm_object_t object, int advice)
1122 {
1123 
1124 	if ((object->flags & OBJ_UNMANAGED) != 0)
1125 		return (false);
1126 	if (advice != MADV_FREE)
1127 		return (true);
1128 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1129 	    (object->flags & OBJ_ONEMAPPING) != 0);
1130 }
1131 
1132 static void
1133 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1134     vm_size_t size)
1135 {
1136 
1137 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1138 		swap_pager_freespace(object, pindex, size);
1139 }
1140 
1141 /*
1142  *	vm_object_madvise:
1143  *
1144  *	Implements the madvise function at the object/page level.
1145  *
1146  *	MADV_WILLNEED	(any object)
1147  *
1148  *	    Activate the specified pages if they are resident.
1149  *
1150  *	MADV_DONTNEED	(any object)
1151  *
1152  *	    Deactivate the specified pages if they are resident.
1153  *
1154  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1155  *			 OBJ_ONEMAPPING only)
1156  *
1157  *	    Deactivate and clean the specified pages if they are
1158  *	    resident.  This permits the process to reuse the pages
1159  *	    without faulting or the kernel to reclaim the pages
1160  *	    without I/O.
1161  */
1162 void
1163 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1164     int advice)
1165 {
1166 	vm_pindex_t tpindex;
1167 	vm_object_t backing_object, tobject;
1168 	vm_page_t m, tm;
1169 
1170 	if (object == NULL)
1171 		return;
1172 
1173 relookup:
1174 	VM_OBJECT_WLOCK(object);
1175 	if (!vm_object_advice_applies(object, advice)) {
1176 		VM_OBJECT_WUNLOCK(object);
1177 		return;
1178 	}
1179 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1180 		tobject = object;
1181 
1182 		/*
1183 		 * If the next page isn't resident in the top-level object, we
1184 		 * need to search the shadow chain.  When applying MADV_FREE, we
1185 		 * take care to release any swap space used to store
1186 		 * non-resident pages.
1187 		 */
1188 		if (m == NULL || pindex < m->pindex) {
1189 			/*
1190 			 * Optimize a common case: if the top-level object has
1191 			 * no backing object, we can skip over the non-resident
1192 			 * range in constant time.
1193 			 */
1194 			if (object->backing_object == NULL) {
1195 				tpindex = (m != NULL && m->pindex < end) ?
1196 				    m->pindex : end;
1197 				vm_object_madvise_freespace(object, advice,
1198 				    pindex, tpindex - pindex);
1199 				if ((pindex = tpindex) == end)
1200 					break;
1201 				goto next_page;
1202 			}
1203 
1204 			tpindex = pindex;
1205 			do {
1206 				vm_object_madvise_freespace(tobject, advice,
1207 				    tpindex, 1);
1208 				/*
1209 				 * Prepare to search the next object in the
1210 				 * chain.
1211 				 */
1212 				backing_object = tobject->backing_object;
1213 				if (backing_object == NULL)
1214 					goto next_pindex;
1215 				VM_OBJECT_WLOCK(backing_object);
1216 				tpindex +=
1217 				    OFF_TO_IDX(tobject->backing_object_offset);
1218 				if (tobject != object)
1219 					VM_OBJECT_WUNLOCK(tobject);
1220 				tobject = backing_object;
1221 				if (!vm_object_advice_applies(tobject, advice))
1222 					goto next_pindex;
1223 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1224 			    NULL);
1225 		} else {
1226 next_page:
1227 			tm = m;
1228 			m = TAILQ_NEXT(m, listq);
1229 		}
1230 
1231 		/*
1232 		 * If the page is not in a normal state, skip it.
1233 		 */
1234 		if (tm->valid != VM_PAGE_BITS_ALL)
1235 			goto next_pindex;
1236 		vm_page_lock(tm);
1237 		if (vm_page_held(tm)) {
1238 			vm_page_unlock(tm);
1239 			goto next_pindex;
1240 		}
1241 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1242 		    ("vm_object_madvise: page %p is fictitious", tm));
1243 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1244 		    ("vm_object_madvise: page %p is not managed", tm));
1245 		if (vm_page_busied(tm)) {
1246 			if (object != tobject)
1247 				VM_OBJECT_WUNLOCK(tobject);
1248 			VM_OBJECT_WUNLOCK(object);
1249 			if (advice == MADV_WILLNEED) {
1250 				/*
1251 				 * Reference the page before unlocking and
1252 				 * sleeping so that the page daemon is less
1253 				 * likely to reclaim it.
1254 				 */
1255 				vm_page_aflag_set(tm, PGA_REFERENCED);
1256 			}
1257 			vm_page_busy_sleep(tm, "madvpo", false);
1258   			goto relookup;
1259 		}
1260 		vm_page_advise(tm, advice);
1261 		vm_page_unlock(tm);
1262 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1263 next_pindex:
1264 		if (tobject != object)
1265 			VM_OBJECT_WUNLOCK(tobject);
1266 	}
1267 	VM_OBJECT_WUNLOCK(object);
1268 }
1269 
1270 /*
1271  *	vm_object_shadow:
1272  *
1273  *	Create a new object which is backed by the
1274  *	specified existing object range.  The source
1275  *	object reference is deallocated.
1276  *
1277  *	The new object and offset into that object
1278  *	are returned in the source parameters.
1279  */
1280 void
1281 vm_object_shadow(
1282 	vm_object_t *object,	/* IN/OUT */
1283 	vm_ooffset_t *offset,	/* IN/OUT */
1284 	vm_size_t length)
1285 {
1286 	vm_object_t source;
1287 	vm_object_t result;
1288 
1289 	source = *object;
1290 
1291 	/*
1292 	 * Don't create the new object if the old object isn't shared.
1293 	 */
1294 	if (source != NULL) {
1295 		VM_OBJECT_WLOCK(source);
1296 		if (source->ref_count == 1 &&
1297 		    source->handle == NULL &&
1298 		    (source->type == OBJT_DEFAULT ||
1299 		     source->type == OBJT_SWAP)) {
1300 			VM_OBJECT_WUNLOCK(source);
1301 			return;
1302 		}
1303 		VM_OBJECT_WUNLOCK(source);
1304 	}
1305 
1306 	/*
1307 	 * Allocate a new object with the given length.
1308 	 */
1309 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1310 
1311 	/*
1312 	 * The new object shadows the source object, adding a reference to it.
1313 	 * Our caller changes his reference to point to the new object,
1314 	 * removing a reference to the source object.  Net result: no change
1315 	 * of reference count.
1316 	 *
1317 	 * Try to optimize the result object's page color when shadowing
1318 	 * in order to maintain page coloring consistency in the combined
1319 	 * shadowed object.
1320 	 */
1321 	result->backing_object = source;
1322 	/*
1323 	 * Store the offset into the source object, and fix up the offset into
1324 	 * the new object.
1325 	 */
1326 	result->backing_object_offset = *offset;
1327 	if (source != NULL) {
1328 		VM_OBJECT_WLOCK(source);
1329 		result->domain = source->domain;
1330 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1331 		source->shadow_count++;
1332 #if VM_NRESERVLEVEL > 0
1333 		result->flags |= source->flags & OBJ_COLORED;
1334 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1335 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1336 #endif
1337 		VM_OBJECT_WUNLOCK(source);
1338 	}
1339 
1340 
1341 	/*
1342 	 * Return the new things
1343 	 */
1344 	*offset = 0;
1345 	*object = result;
1346 }
1347 
1348 /*
1349  *	vm_object_split:
1350  *
1351  * Split the pages in a map entry into a new object.  This affords
1352  * easier removal of unused pages, and keeps object inheritance from
1353  * being a negative impact on memory usage.
1354  */
1355 void
1356 vm_object_split(vm_map_entry_t entry)
1357 {
1358 	vm_page_t m, m_next;
1359 	vm_object_t orig_object, new_object, source;
1360 	vm_pindex_t idx, offidxstart;
1361 	vm_size_t size;
1362 
1363 	orig_object = entry->object.vm_object;
1364 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1365 		return;
1366 	if (orig_object->ref_count <= 1)
1367 		return;
1368 	VM_OBJECT_WUNLOCK(orig_object);
1369 
1370 	offidxstart = OFF_TO_IDX(entry->offset);
1371 	size = atop(entry->end - entry->start);
1372 
1373 	/*
1374 	 * If swap_pager_copy() is later called, it will convert new_object
1375 	 * into a swap object.
1376 	 */
1377 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1378 
1379 	/*
1380 	 * At this point, the new object is still private, so the order in
1381 	 * which the original and new objects are locked does not matter.
1382 	 */
1383 	VM_OBJECT_WLOCK(new_object);
1384 	VM_OBJECT_WLOCK(orig_object);
1385 	new_object->domain = orig_object->domain;
1386 	source = orig_object->backing_object;
1387 	if (source != NULL) {
1388 		VM_OBJECT_WLOCK(source);
1389 		if ((source->flags & OBJ_DEAD) != 0) {
1390 			VM_OBJECT_WUNLOCK(source);
1391 			VM_OBJECT_WUNLOCK(orig_object);
1392 			VM_OBJECT_WUNLOCK(new_object);
1393 			vm_object_deallocate(new_object);
1394 			VM_OBJECT_WLOCK(orig_object);
1395 			return;
1396 		}
1397 		LIST_INSERT_HEAD(&source->shadow_head,
1398 				  new_object, shadow_list);
1399 		source->shadow_count++;
1400 		vm_object_reference_locked(source);	/* for new_object */
1401 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1402 		VM_OBJECT_WUNLOCK(source);
1403 		new_object->backing_object_offset =
1404 			orig_object->backing_object_offset + entry->offset;
1405 		new_object->backing_object = source;
1406 	}
1407 	if (orig_object->cred != NULL) {
1408 		new_object->cred = orig_object->cred;
1409 		crhold(orig_object->cred);
1410 		new_object->charge = ptoa(size);
1411 		KASSERT(orig_object->charge >= ptoa(size),
1412 		    ("orig_object->charge < 0"));
1413 		orig_object->charge -= ptoa(size);
1414 	}
1415 retry:
1416 	m = vm_page_find_least(orig_object, offidxstart);
1417 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1418 	    m = m_next) {
1419 		m_next = TAILQ_NEXT(m, listq);
1420 
1421 		/*
1422 		 * We must wait for pending I/O to complete before we can
1423 		 * rename the page.
1424 		 *
1425 		 * We do not have to VM_PROT_NONE the page as mappings should
1426 		 * not be changed by this operation.
1427 		 */
1428 		if (vm_page_busied(m)) {
1429 			VM_OBJECT_WUNLOCK(new_object);
1430 			vm_page_lock(m);
1431 			VM_OBJECT_WUNLOCK(orig_object);
1432 			vm_page_busy_sleep(m, "spltwt", false);
1433 			VM_OBJECT_WLOCK(orig_object);
1434 			VM_OBJECT_WLOCK(new_object);
1435 			goto retry;
1436 		}
1437 
1438 		/* vm_page_rename() will dirty the page. */
1439 		if (vm_page_rename(m, new_object, idx)) {
1440 			VM_OBJECT_WUNLOCK(new_object);
1441 			VM_OBJECT_WUNLOCK(orig_object);
1442 			vm_radix_wait();
1443 			VM_OBJECT_WLOCK(orig_object);
1444 			VM_OBJECT_WLOCK(new_object);
1445 			goto retry;
1446 		}
1447 #if VM_NRESERVLEVEL > 0
1448 		/*
1449 		 * If some of the reservation's allocated pages remain with
1450 		 * the original object, then transferring the reservation to
1451 		 * the new object is neither particularly beneficial nor
1452 		 * particularly harmful as compared to leaving the reservation
1453 		 * with the original object.  If, however, all of the
1454 		 * reservation's allocated pages are transferred to the new
1455 		 * object, then transferring the reservation is typically
1456 		 * beneficial.  Determining which of these two cases applies
1457 		 * would be more costly than unconditionally renaming the
1458 		 * reservation.
1459 		 */
1460 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1461 #endif
1462 		if (orig_object->type == OBJT_SWAP)
1463 			vm_page_xbusy(m);
1464 	}
1465 	if (orig_object->type == OBJT_SWAP) {
1466 		/*
1467 		 * swap_pager_copy() can sleep, in which case the orig_object's
1468 		 * and new_object's locks are released and reacquired.
1469 		 */
1470 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1471 		TAILQ_FOREACH(m, &new_object->memq, listq)
1472 			vm_page_xunbusy(m);
1473 	}
1474 	VM_OBJECT_WUNLOCK(orig_object);
1475 	VM_OBJECT_WUNLOCK(new_object);
1476 	entry->object.vm_object = new_object;
1477 	entry->offset = 0LL;
1478 	vm_object_deallocate(orig_object);
1479 	VM_OBJECT_WLOCK(new_object);
1480 }
1481 
1482 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1483 #define	OBSC_COLLAPSE_WAIT	0x0004
1484 
1485 static vm_page_t
1486 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1487     int op)
1488 {
1489 	vm_object_t backing_object;
1490 
1491 	VM_OBJECT_ASSERT_WLOCKED(object);
1492 	backing_object = object->backing_object;
1493 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1494 
1495 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1496 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1497 	    ("invalid ownership %p %p %p", p, object, backing_object));
1498 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1499 		return (next);
1500 	if (p != NULL)
1501 		vm_page_lock(p);
1502 	VM_OBJECT_WUNLOCK(object);
1503 	VM_OBJECT_WUNLOCK(backing_object);
1504 	/* The page is only NULL when rename fails. */
1505 	if (p == NULL)
1506 		vm_radix_wait();
1507 	else
1508 		vm_page_busy_sleep(p, "vmocol", false);
1509 	VM_OBJECT_WLOCK(object);
1510 	VM_OBJECT_WLOCK(backing_object);
1511 	return (TAILQ_FIRST(&backing_object->memq));
1512 }
1513 
1514 static bool
1515 vm_object_scan_all_shadowed(vm_object_t object)
1516 {
1517 	vm_object_t backing_object;
1518 	vm_page_t p, pp;
1519 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1520 
1521 	VM_OBJECT_ASSERT_WLOCKED(object);
1522 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1523 
1524 	backing_object = object->backing_object;
1525 
1526 	if (backing_object->type != OBJT_DEFAULT &&
1527 	    backing_object->type != OBJT_SWAP)
1528 		return (false);
1529 
1530 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1531 	p = vm_page_find_least(backing_object, pi);
1532 	ps = swap_pager_find_least(backing_object, pi);
1533 
1534 	/*
1535 	 * Only check pages inside the parent object's range and
1536 	 * inside the parent object's mapping of the backing object.
1537 	 */
1538 	for (;; pi++) {
1539 		if (p != NULL && p->pindex < pi)
1540 			p = TAILQ_NEXT(p, listq);
1541 		if (ps < pi)
1542 			ps = swap_pager_find_least(backing_object, pi);
1543 		if (p == NULL && ps >= backing_object->size)
1544 			break;
1545 		else if (p == NULL)
1546 			pi = ps;
1547 		else
1548 			pi = MIN(p->pindex, ps);
1549 
1550 		new_pindex = pi - backing_offset_index;
1551 		if (new_pindex >= object->size)
1552 			break;
1553 
1554 		/*
1555 		 * See if the parent has the page or if the parent's object
1556 		 * pager has the page.  If the parent has the page but the page
1557 		 * is not valid, the parent's object pager must have the page.
1558 		 *
1559 		 * If this fails, the parent does not completely shadow the
1560 		 * object and we might as well give up now.
1561 		 */
1562 		pp = vm_page_lookup(object, new_pindex);
1563 		if ((pp == NULL || pp->valid == 0) &&
1564 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1565 			return (false);
1566 	}
1567 	return (true);
1568 }
1569 
1570 static bool
1571 vm_object_collapse_scan(vm_object_t object, int op)
1572 {
1573 	vm_object_t backing_object;
1574 	vm_page_t next, p, pp;
1575 	vm_pindex_t backing_offset_index, new_pindex;
1576 
1577 	VM_OBJECT_ASSERT_WLOCKED(object);
1578 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1579 
1580 	backing_object = object->backing_object;
1581 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1582 
1583 	/*
1584 	 * Initial conditions
1585 	 */
1586 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1587 		vm_object_set_flag(backing_object, OBJ_DEAD);
1588 
1589 	/*
1590 	 * Our scan
1591 	 */
1592 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1593 		next = TAILQ_NEXT(p, listq);
1594 		new_pindex = p->pindex - backing_offset_index;
1595 
1596 		/*
1597 		 * Check for busy page
1598 		 */
1599 		if (vm_page_busied(p)) {
1600 			next = vm_object_collapse_scan_wait(object, p, next, op);
1601 			continue;
1602 		}
1603 
1604 		KASSERT(p->object == backing_object,
1605 		    ("vm_object_collapse_scan: object mismatch"));
1606 
1607 		if (p->pindex < backing_offset_index ||
1608 		    new_pindex >= object->size) {
1609 			if (backing_object->type == OBJT_SWAP)
1610 				swap_pager_freespace(backing_object, p->pindex,
1611 				    1);
1612 
1613 			/*
1614 			 * Page is out of the parent object's range, we can
1615 			 * simply destroy it.
1616 			 */
1617 			vm_page_lock(p);
1618 			KASSERT(!pmap_page_is_mapped(p),
1619 			    ("freeing mapped page %p", p));
1620 			if (p->wire_count == 0)
1621 				vm_page_free(p);
1622 			else
1623 				vm_page_remove(p);
1624 			vm_page_unlock(p);
1625 			continue;
1626 		}
1627 
1628 		pp = vm_page_lookup(object, new_pindex);
1629 		if (pp != NULL && vm_page_busied(pp)) {
1630 			/*
1631 			 * The page in the parent is busy and possibly not
1632 			 * (yet) valid.  Until its state is finalized by the
1633 			 * busy bit owner, we can't tell whether it shadows the
1634 			 * original page.  Therefore, we must either skip it
1635 			 * and the original (backing_object) page or wait for
1636 			 * its state to be finalized.
1637 			 *
1638 			 * This is due to a race with vm_fault() where we must
1639 			 * unbusy the original (backing_obj) page before we can
1640 			 * (re)lock the parent.  Hence we can get here.
1641 			 */
1642 			next = vm_object_collapse_scan_wait(object, pp, next,
1643 			    op);
1644 			continue;
1645 		}
1646 
1647 		KASSERT(pp == NULL || pp->valid != 0,
1648 		    ("unbusy invalid page %p", pp));
1649 
1650 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1651 			NULL)) {
1652 			/*
1653 			 * The page already exists in the parent OR swap exists
1654 			 * for this location in the parent.  Leave the parent's
1655 			 * page alone.  Destroy the original page from the
1656 			 * backing object.
1657 			 */
1658 			if (backing_object->type == OBJT_SWAP)
1659 				swap_pager_freespace(backing_object, p->pindex,
1660 				    1);
1661 			vm_page_lock(p);
1662 			KASSERT(!pmap_page_is_mapped(p),
1663 			    ("freeing mapped page %p", p));
1664 			if (p->wire_count == 0)
1665 				vm_page_free(p);
1666 			else
1667 				vm_page_remove(p);
1668 			vm_page_unlock(p);
1669 			continue;
1670 		}
1671 
1672 		/*
1673 		 * Page does not exist in parent, rename the page from the
1674 		 * backing object to the main object.
1675 		 *
1676 		 * If the page was mapped to a process, it can remain mapped
1677 		 * through the rename.  vm_page_rename() will dirty the page.
1678 		 */
1679 		if (vm_page_rename(p, object, new_pindex)) {
1680 			next = vm_object_collapse_scan_wait(object, NULL, next,
1681 			    op);
1682 			continue;
1683 		}
1684 
1685 		/* Use the old pindex to free the right page. */
1686 		if (backing_object->type == OBJT_SWAP)
1687 			swap_pager_freespace(backing_object,
1688 			    new_pindex + backing_offset_index, 1);
1689 
1690 #if VM_NRESERVLEVEL > 0
1691 		/*
1692 		 * Rename the reservation.
1693 		 */
1694 		vm_reserv_rename(p, object, backing_object,
1695 		    backing_offset_index);
1696 #endif
1697 	}
1698 	return (true);
1699 }
1700 
1701 
1702 /*
1703  * this version of collapse allows the operation to occur earlier and
1704  * when paging_in_progress is true for an object...  This is not a complete
1705  * operation, but should plug 99.9% of the rest of the leaks.
1706  */
1707 static void
1708 vm_object_qcollapse(vm_object_t object)
1709 {
1710 	vm_object_t backing_object = object->backing_object;
1711 
1712 	VM_OBJECT_ASSERT_WLOCKED(object);
1713 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1714 
1715 	if (backing_object->ref_count != 1)
1716 		return;
1717 
1718 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1719 }
1720 
1721 /*
1722  *	vm_object_collapse:
1723  *
1724  *	Collapse an object with the object backing it.
1725  *	Pages in the backing object are moved into the
1726  *	parent, and the backing object is deallocated.
1727  */
1728 void
1729 vm_object_collapse(vm_object_t object)
1730 {
1731 	vm_object_t backing_object, new_backing_object;
1732 
1733 	VM_OBJECT_ASSERT_WLOCKED(object);
1734 
1735 	while (TRUE) {
1736 		/*
1737 		 * Verify that the conditions are right for collapse:
1738 		 *
1739 		 * The object exists and the backing object exists.
1740 		 */
1741 		if ((backing_object = object->backing_object) == NULL)
1742 			break;
1743 
1744 		/*
1745 		 * we check the backing object first, because it is most likely
1746 		 * not collapsable.
1747 		 */
1748 		VM_OBJECT_WLOCK(backing_object);
1749 		if (backing_object->handle != NULL ||
1750 		    (backing_object->type != OBJT_DEFAULT &&
1751 		     backing_object->type != OBJT_SWAP) ||
1752 		    (backing_object->flags & OBJ_DEAD) ||
1753 		    object->handle != NULL ||
1754 		    (object->type != OBJT_DEFAULT &&
1755 		     object->type != OBJT_SWAP) ||
1756 		    (object->flags & OBJ_DEAD)) {
1757 			VM_OBJECT_WUNLOCK(backing_object);
1758 			break;
1759 		}
1760 
1761 		if (object->paging_in_progress != 0 ||
1762 		    backing_object->paging_in_progress != 0) {
1763 			vm_object_qcollapse(object);
1764 			VM_OBJECT_WUNLOCK(backing_object);
1765 			break;
1766 		}
1767 
1768 		/*
1769 		 * We know that we can either collapse the backing object (if
1770 		 * the parent is the only reference to it) or (perhaps) have
1771 		 * the parent bypass the object if the parent happens to shadow
1772 		 * all the resident pages in the entire backing object.
1773 		 *
1774 		 * This is ignoring pager-backed pages such as swap pages.
1775 		 * vm_object_collapse_scan fails the shadowing test in this
1776 		 * case.
1777 		 */
1778 		if (backing_object->ref_count == 1) {
1779 			vm_object_pip_add(object, 1);
1780 			vm_object_pip_add(backing_object, 1);
1781 
1782 			/*
1783 			 * If there is exactly one reference to the backing
1784 			 * object, we can collapse it into the parent.
1785 			 */
1786 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1787 
1788 #if VM_NRESERVLEVEL > 0
1789 			/*
1790 			 * Break any reservations from backing_object.
1791 			 */
1792 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1793 				vm_reserv_break_all(backing_object);
1794 #endif
1795 
1796 			/*
1797 			 * Move the pager from backing_object to object.
1798 			 */
1799 			if (backing_object->type == OBJT_SWAP) {
1800 				/*
1801 				 * swap_pager_copy() can sleep, in which case
1802 				 * the backing_object's and object's locks are
1803 				 * released and reacquired.
1804 				 * Since swap_pager_copy() is being asked to
1805 				 * destroy the source, it will change the
1806 				 * backing_object's type to OBJT_DEFAULT.
1807 				 */
1808 				swap_pager_copy(
1809 				    backing_object,
1810 				    object,
1811 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1812 			}
1813 			/*
1814 			 * Object now shadows whatever backing_object did.
1815 			 * Note that the reference to
1816 			 * backing_object->backing_object moves from within
1817 			 * backing_object to within object.
1818 			 */
1819 			LIST_REMOVE(object, shadow_list);
1820 			backing_object->shadow_count--;
1821 			if (backing_object->backing_object) {
1822 				VM_OBJECT_WLOCK(backing_object->backing_object);
1823 				LIST_REMOVE(backing_object, shadow_list);
1824 				LIST_INSERT_HEAD(
1825 				    &backing_object->backing_object->shadow_head,
1826 				    object, shadow_list);
1827 				/*
1828 				 * The shadow_count has not changed.
1829 				 */
1830 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1831 			}
1832 			object->backing_object = backing_object->backing_object;
1833 			object->backing_object_offset +=
1834 			    backing_object->backing_object_offset;
1835 
1836 			/*
1837 			 * Discard backing_object.
1838 			 *
1839 			 * Since the backing object has no pages, no pager left,
1840 			 * and no object references within it, all that is
1841 			 * necessary is to dispose of it.
1842 			 */
1843 			KASSERT(backing_object->ref_count == 1, (
1844 "backing_object %p was somehow re-referenced during collapse!",
1845 			    backing_object));
1846 			vm_object_pip_wakeup(backing_object);
1847 			backing_object->type = OBJT_DEAD;
1848 			backing_object->ref_count = 0;
1849 			VM_OBJECT_WUNLOCK(backing_object);
1850 			vm_object_destroy(backing_object);
1851 
1852 			vm_object_pip_wakeup(object);
1853 			counter_u64_add(object_collapses, 1);
1854 		} else {
1855 			/*
1856 			 * If we do not entirely shadow the backing object,
1857 			 * there is nothing we can do so we give up.
1858 			 */
1859 			if (object->resident_page_count != object->size &&
1860 			    !vm_object_scan_all_shadowed(object)) {
1861 				VM_OBJECT_WUNLOCK(backing_object);
1862 				break;
1863 			}
1864 
1865 			/*
1866 			 * Make the parent shadow the next object in the
1867 			 * chain.  Deallocating backing_object will not remove
1868 			 * it, since its reference count is at least 2.
1869 			 */
1870 			LIST_REMOVE(object, shadow_list);
1871 			backing_object->shadow_count--;
1872 
1873 			new_backing_object = backing_object->backing_object;
1874 			if ((object->backing_object = new_backing_object) != NULL) {
1875 				VM_OBJECT_WLOCK(new_backing_object);
1876 				LIST_INSERT_HEAD(
1877 				    &new_backing_object->shadow_head,
1878 				    object,
1879 				    shadow_list
1880 				);
1881 				new_backing_object->shadow_count++;
1882 				vm_object_reference_locked(new_backing_object);
1883 				VM_OBJECT_WUNLOCK(new_backing_object);
1884 				object->backing_object_offset +=
1885 					backing_object->backing_object_offset;
1886 			}
1887 
1888 			/*
1889 			 * Drop the reference count on backing_object. Since
1890 			 * its ref_count was at least 2, it will not vanish.
1891 			 */
1892 			backing_object->ref_count--;
1893 			VM_OBJECT_WUNLOCK(backing_object);
1894 			counter_u64_add(object_bypasses, 1);
1895 		}
1896 
1897 		/*
1898 		 * Try again with this object's new backing object.
1899 		 */
1900 	}
1901 }
1902 
1903 /*
1904  *	vm_object_page_remove:
1905  *
1906  *	For the given object, either frees or invalidates each of the
1907  *	specified pages.  In general, a page is freed.  However, if a page is
1908  *	wired for any reason other than the existence of a managed, wired
1909  *	mapping, then it may be invalidated but not removed from the object.
1910  *	Pages are specified by the given range ["start", "end") and the option
1911  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1912  *	extends from "start" to the end of the object.  If the option
1913  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1914  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1915  *	specified, then the pages within the specified range must have no
1916  *	mappings.  Otherwise, if this option is not specified, any mappings to
1917  *	the specified pages are removed before the pages are freed or
1918  *	invalidated.
1919  *
1920  *	In general, this operation should only be performed on objects that
1921  *	contain managed pages.  There are, however, two exceptions.  First, it
1922  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1923  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1924  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1925  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1926  *
1927  *	The object must be locked.
1928  */
1929 void
1930 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1931     int options)
1932 {
1933 	vm_page_t p, next;
1934 	struct mtx *mtx;
1935 
1936 	VM_OBJECT_ASSERT_WLOCKED(object);
1937 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1938 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1939 	    ("vm_object_page_remove: illegal options for object %p", object));
1940 	if (object->resident_page_count == 0)
1941 		return;
1942 	vm_object_pip_add(object, 1);
1943 again:
1944 	p = vm_page_find_least(object, start);
1945 	mtx = NULL;
1946 
1947 	/*
1948 	 * Here, the variable "p" is either (1) the page with the least pindex
1949 	 * greater than or equal to the parameter "start" or (2) NULL.
1950 	 */
1951 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1952 		next = TAILQ_NEXT(p, listq);
1953 
1954 		/*
1955 		 * If the page is wired for any reason besides the existence
1956 		 * of managed, wired mappings, then it cannot be freed.  For
1957 		 * example, fictitious pages, which represent device memory,
1958 		 * are inherently wired and cannot be freed.  They can,
1959 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1960 		 * not specified.
1961 		 */
1962 		vm_page_change_lock(p, &mtx);
1963 		if (vm_page_xbusied(p)) {
1964 			VM_OBJECT_WUNLOCK(object);
1965 			vm_page_busy_sleep(p, "vmopax", true);
1966 			VM_OBJECT_WLOCK(object);
1967 			goto again;
1968 		}
1969 		if (p->wire_count != 0) {
1970 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1971 			    object->ref_count != 0)
1972 				pmap_remove_all(p);
1973 			if ((options & OBJPR_CLEANONLY) == 0) {
1974 				p->valid = 0;
1975 				vm_page_undirty(p);
1976 			}
1977 			continue;
1978 		}
1979 		if (vm_page_busied(p)) {
1980 			VM_OBJECT_WUNLOCK(object);
1981 			vm_page_busy_sleep(p, "vmopar", false);
1982 			VM_OBJECT_WLOCK(object);
1983 			goto again;
1984 		}
1985 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1986 		    ("vm_object_page_remove: page %p is fictitious", p));
1987 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1988 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1989 			    object->ref_count != 0)
1990 				pmap_remove_write(p);
1991 			if (p->dirty != 0)
1992 				continue;
1993 		}
1994 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1995 			pmap_remove_all(p);
1996 		vm_page_free(p);
1997 	}
1998 	if (mtx != NULL)
1999 		mtx_unlock(mtx);
2000 	vm_object_pip_wakeup(object);
2001 }
2002 
2003 /*
2004  *	vm_object_page_noreuse:
2005  *
2006  *	For the given object, attempt to move the specified pages to
2007  *	the head of the inactive queue.  This bypasses regular LRU
2008  *	operation and allows the pages to be reused quickly under memory
2009  *	pressure.  If a page is wired for any reason, then it will not
2010  *	be queued.  Pages are specified by the range ["start", "end").
2011  *	As a special case, if "end" is zero, then the range extends from
2012  *	"start" to the end of the object.
2013  *
2014  *	This operation should only be performed on objects that
2015  *	contain non-fictitious, managed pages.
2016  *
2017  *	The object must be locked.
2018  */
2019 void
2020 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2021 {
2022 	struct mtx *mtx;
2023 	vm_page_t p, next;
2024 
2025 	VM_OBJECT_ASSERT_LOCKED(object);
2026 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2027 	    ("vm_object_page_noreuse: illegal object %p", object));
2028 	if (object->resident_page_count == 0)
2029 		return;
2030 	p = vm_page_find_least(object, start);
2031 
2032 	/*
2033 	 * Here, the variable "p" is either (1) the page with the least pindex
2034 	 * greater than or equal to the parameter "start" or (2) NULL.
2035 	 */
2036 	mtx = NULL;
2037 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2038 		next = TAILQ_NEXT(p, listq);
2039 		vm_page_change_lock(p, &mtx);
2040 		vm_page_deactivate_noreuse(p);
2041 	}
2042 	if (mtx != NULL)
2043 		mtx_unlock(mtx);
2044 }
2045 
2046 /*
2047  *	Populate the specified range of the object with valid pages.  Returns
2048  *	TRUE if the range is successfully populated and FALSE otherwise.
2049  *
2050  *	Note: This function should be optimized to pass a larger array of
2051  *	pages to vm_pager_get_pages() before it is applied to a non-
2052  *	OBJT_DEVICE object.
2053  *
2054  *	The object must be locked.
2055  */
2056 boolean_t
2057 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2058 {
2059 	vm_page_t m;
2060 	vm_pindex_t pindex;
2061 	int rv;
2062 
2063 	VM_OBJECT_ASSERT_WLOCKED(object);
2064 	for (pindex = start; pindex < end; pindex++) {
2065 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2066 		if (m->valid != VM_PAGE_BITS_ALL) {
2067 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2068 			if (rv != VM_PAGER_OK) {
2069 				vm_page_lock(m);
2070 				vm_page_free(m);
2071 				vm_page_unlock(m);
2072 				break;
2073 			}
2074 		}
2075 		/*
2076 		 * Keep "m" busy because a subsequent iteration may unlock
2077 		 * the object.
2078 		 */
2079 	}
2080 	if (pindex > start) {
2081 		m = vm_page_lookup(object, start);
2082 		while (m != NULL && m->pindex < pindex) {
2083 			vm_page_xunbusy(m);
2084 			m = TAILQ_NEXT(m, listq);
2085 		}
2086 	}
2087 	return (pindex == end);
2088 }
2089 
2090 /*
2091  *	Routine:	vm_object_coalesce
2092  *	Function:	Coalesces two objects backing up adjoining
2093  *			regions of memory into a single object.
2094  *
2095  *	returns TRUE if objects were combined.
2096  *
2097  *	NOTE:	Only works at the moment if the second object is NULL -
2098  *		if it's not, which object do we lock first?
2099  *
2100  *	Parameters:
2101  *		prev_object	First object to coalesce
2102  *		prev_offset	Offset into prev_object
2103  *		prev_size	Size of reference to prev_object
2104  *		next_size	Size of reference to the second object
2105  *		reserved	Indicator that extension region has
2106  *				swap accounted for
2107  *
2108  *	Conditions:
2109  *	The object must *not* be locked.
2110  */
2111 boolean_t
2112 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2113     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2114 {
2115 	vm_pindex_t next_pindex;
2116 
2117 	if (prev_object == NULL)
2118 		return (TRUE);
2119 	VM_OBJECT_WLOCK(prev_object);
2120 	if ((prev_object->type != OBJT_DEFAULT &&
2121 	    prev_object->type != OBJT_SWAP) ||
2122 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2123 		VM_OBJECT_WUNLOCK(prev_object);
2124 		return (FALSE);
2125 	}
2126 
2127 	/*
2128 	 * Try to collapse the object first
2129 	 */
2130 	vm_object_collapse(prev_object);
2131 
2132 	/*
2133 	 * Can't coalesce if: . more than one reference . paged out . shadows
2134 	 * another object . has a copy elsewhere (any of which mean that the
2135 	 * pages not mapped to prev_entry may be in use anyway)
2136 	 */
2137 	if (prev_object->backing_object != NULL) {
2138 		VM_OBJECT_WUNLOCK(prev_object);
2139 		return (FALSE);
2140 	}
2141 
2142 	prev_size >>= PAGE_SHIFT;
2143 	next_size >>= PAGE_SHIFT;
2144 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2145 
2146 	if (prev_object->ref_count > 1 &&
2147 	    prev_object->size != next_pindex &&
2148 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2149 		VM_OBJECT_WUNLOCK(prev_object);
2150 		return (FALSE);
2151 	}
2152 
2153 	/*
2154 	 * Account for the charge.
2155 	 */
2156 	if (prev_object->cred != NULL) {
2157 
2158 		/*
2159 		 * If prev_object was charged, then this mapping,
2160 		 * although not charged now, may become writable
2161 		 * later. Non-NULL cred in the object would prevent
2162 		 * swap reservation during enabling of the write
2163 		 * access, so reserve swap now. Failed reservation
2164 		 * cause allocation of the separate object for the map
2165 		 * entry, and swap reservation for this entry is
2166 		 * managed in appropriate time.
2167 		 */
2168 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2169 		    prev_object->cred)) {
2170 			VM_OBJECT_WUNLOCK(prev_object);
2171 			return (FALSE);
2172 		}
2173 		prev_object->charge += ptoa(next_size);
2174 	}
2175 
2176 	/*
2177 	 * Remove any pages that may still be in the object from a previous
2178 	 * deallocation.
2179 	 */
2180 	if (next_pindex < prev_object->size) {
2181 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2182 		    next_size, 0);
2183 		if (prev_object->type == OBJT_SWAP)
2184 			swap_pager_freespace(prev_object,
2185 					     next_pindex, next_size);
2186 #if 0
2187 		if (prev_object->cred != NULL) {
2188 			KASSERT(prev_object->charge >=
2189 			    ptoa(prev_object->size - next_pindex),
2190 			    ("object %p overcharged 1 %jx %jx", prev_object,
2191 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2192 			prev_object->charge -= ptoa(prev_object->size -
2193 			    next_pindex);
2194 		}
2195 #endif
2196 	}
2197 
2198 	/*
2199 	 * Extend the object if necessary.
2200 	 */
2201 	if (next_pindex + next_size > prev_object->size)
2202 		prev_object->size = next_pindex + next_size;
2203 
2204 	VM_OBJECT_WUNLOCK(prev_object);
2205 	return (TRUE);
2206 }
2207 
2208 void
2209 vm_object_set_writeable_dirty(vm_object_t object)
2210 {
2211 
2212 	VM_OBJECT_ASSERT_WLOCKED(object);
2213 	if (object->type != OBJT_VNODE) {
2214 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2215 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2216 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2217 		}
2218 		return;
2219 	}
2220 	object->generation++;
2221 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2222 		return;
2223 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2224 }
2225 
2226 /*
2227  *	vm_object_unwire:
2228  *
2229  *	For each page offset within the specified range of the given object,
2230  *	find the highest-level page in the shadow chain and unwire it.  A page
2231  *	must exist at every page offset, and the highest-level page must be
2232  *	wired.
2233  */
2234 void
2235 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2236     uint8_t queue)
2237 {
2238 	vm_object_t tobject, t1object;
2239 	vm_page_t m, tm;
2240 	vm_pindex_t end_pindex, pindex, tpindex;
2241 	int depth, locked_depth;
2242 
2243 	KASSERT((offset & PAGE_MASK) == 0,
2244 	    ("vm_object_unwire: offset is not page aligned"));
2245 	KASSERT((length & PAGE_MASK) == 0,
2246 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2247 	/* The wired count of a fictitious page never changes. */
2248 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2249 		return;
2250 	pindex = OFF_TO_IDX(offset);
2251 	end_pindex = pindex + atop(length);
2252 again:
2253 	locked_depth = 1;
2254 	VM_OBJECT_RLOCK(object);
2255 	m = vm_page_find_least(object, pindex);
2256 	while (pindex < end_pindex) {
2257 		if (m == NULL || pindex < m->pindex) {
2258 			/*
2259 			 * The first object in the shadow chain doesn't
2260 			 * contain a page at the current index.  Therefore,
2261 			 * the page must exist in a backing object.
2262 			 */
2263 			tobject = object;
2264 			tpindex = pindex;
2265 			depth = 0;
2266 			do {
2267 				tpindex +=
2268 				    OFF_TO_IDX(tobject->backing_object_offset);
2269 				tobject = tobject->backing_object;
2270 				KASSERT(tobject != NULL,
2271 				    ("vm_object_unwire: missing page"));
2272 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2273 					goto next_page;
2274 				depth++;
2275 				if (depth == locked_depth) {
2276 					locked_depth++;
2277 					VM_OBJECT_RLOCK(tobject);
2278 				}
2279 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2280 			    NULL);
2281 		} else {
2282 			tm = m;
2283 			m = TAILQ_NEXT(m, listq);
2284 		}
2285 		vm_page_lock(tm);
2286 		if (vm_page_xbusied(tm)) {
2287 			for (tobject = object; locked_depth >= 1;
2288 			    locked_depth--) {
2289 				t1object = tobject->backing_object;
2290 				VM_OBJECT_RUNLOCK(tobject);
2291 				tobject = t1object;
2292 			}
2293 			vm_page_busy_sleep(tm, "unwbo", true);
2294 			goto again;
2295 		}
2296 		vm_page_unwire(tm, queue);
2297 		vm_page_unlock(tm);
2298 next_page:
2299 		pindex++;
2300 	}
2301 	/* Release the accumulated object locks. */
2302 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2303 		t1object = tobject->backing_object;
2304 		VM_OBJECT_RUNLOCK(tobject);
2305 		tobject = t1object;
2306 	}
2307 }
2308 
2309 struct vnode *
2310 vm_object_vnode(vm_object_t object)
2311 {
2312 
2313 	VM_OBJECT_ASSERT_LOCKED(object);
2314 	if (object->type == OBJT_VNODE)
2315 		return (object->handle);
2316 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2317 		return (object->un_pager.swp.swp_tmpfs);
2318 	return (NULL);
2319 }
2320 
2321 static int
2322 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2323 {
2324 	struct kinfo_vmobject *kvo;
2325 	char *fullpath, *freepath;
2326 	struct vnode *vp;
2327 	struct vattr va;
2328 	vm_object_t obj;
2329 	vm_page_t m;
2330 	int count, error;
2331 
2332 	if (req->oldptr == NULL) {
2333 		/*
2334 		 * If an old buffer has not been provided, generate an
2335 		 * estimate of the space needed for a subsequent call.
2336 		 */
2337 		mtx_lock(&vm_object_list_mtx);
2338 		count = 0;
2339 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2340 			if (obj->type == OBJT_DEAD)
2341 				continue;
2342 			count++;
2343 		}
2344 		mtx_unlock(&vm_object_list_mtx);
2345 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2346 		    count * 11 / 10));
2347 	}
2348 
2349 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2350 	error = 0;
2351 
2352 	/*
2353 	 * VM objects are type stable and are never removed from the
2354 	 * list once added.  This allows us to safely read obj->object_list
2355 	 * after reacquiring the VM object lock.
2356 	 */
2357 	mtx_lock(&vm_object_list_mtx);
2358 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2359 		if (obj->type == OBJT_DEAD)
2360 			continue;
2361 		VM_OBJECT_RLOCK(obj);
2362 		if (obj->type == OBJT_DEAD) {
2363 			VM_OBJECT_RUNLOCK(obj);
2364 			continue;
2365 		}
2366 		mtx_unlock(&vm_object_list_mtx);
2367 		kvo->kvo_size = ptoa(obj->size);
2368 		kvo->kvo_resident = obj->resident_page_count;
2369 		kvo->kvo_ref_count = obj->ref_count;
2370 		kvo->kvo_shadow_count = obj->shadow_count;
2371 		kvo->kvo_memattr = obj->memattr;
2372 		kvo->kvo_active = 0;
2373 		kvo->kvo_inactive = 0;
2374 		TAILQ_FOREACH(m, &obj->memq, listq) {
2375 			/*
2376 			 * A page may belong to the object but be
2377 			 * dequeued and set to PQ_NONE while the
2378 			 * object lock is not held.  This makes the
2379 			 * reads of m->queue below racy, and we do not
2380 			 * count pages set to PQ_NONE.  However, this
2381 			 * sysctl is only meant to give an
2382 			 * approximation of the system anyway.
2383 			 */
2384 			if (m->queue == PQ_ACTIVE)
2385 				kvo->kvo_active++;
2386 			else if (m->queue == PQ_INACTIVE)
2387 				kvo->kvo_inactive++;
2388 		}
2389 
2390 		kvo->kvo_vn_fileid = 0;
2391 		kvo->kvo_vn_fsid = 0;
2392 		kvo->kvo_vn_fsid_freebsd11 = 0;
2393 		freepath = NULL;
2394 		fullpath = "";
2395 		vp = NULL;
2396 		switch (obj->type) {
2397 		case OBJT_DEFAULT:
2398 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2399 			break;
2400 		case OBJT_VNODE:
2401 			kvo->kvo_type = KVME_TYPE_VNODE;
2402 			vp = obj->handle;
2403 			vref(vp);
2404 			break;
2405 		case OBJT_SWAP:
2406 			kvo->kvo_type = KVME_TYPE_SWAP;
2407 			break;
2408 		case OBJT_DEVICE:
2409 			kvo->kvo_type = KVME_TYPE_DEVICE;
2410 			break;
2411 		case OBJT_PHYS:
2412 			kvo->kvo_type = KVME_TYPE_PHYS;
2413 			break;
2414 		case OBJT_DEAD:
2415 			kvo->kvo_type = KVME_TYPE_DEAD;
2416 			break;
2417 		case OBJT_SG:
2418 			kvo->kvo_type = KVME_TYPE_SG;
2419 			break;
2420 		case OBJT_MGTDEVICE:
2421 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2422 			break;
2423 		default:
2424 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2425 			break;
2426 		}
2427 		VM_OBJECT_RUNLOCK(obj);
2428 		if (vp != NULL) {
2429 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2430 			vn_lock(vp, LK_SHARED | LK_RETRY);
2431 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2432 				kvo->kvo_vn_fileid = va.va_fileid;
2433 				kvo->kvo_vn_fsid = va.va_fsid;
2434 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2435 								/* truncate */
2436 			}
2437 			vput(vp);
2438 		}
2439 
2440 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2441 		if (freepath != NULL)
2442 			free(freepath, M_TEMP);
2443 
2444 		/* Pack record size down */
2445 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2446 		    + strlen(kvo->kvo_path) + 1;
2447 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2448 		    sizeof(uint64_t));
2449 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2450 		mtx_lock(&vm_object_list_mtx);
2451 		if (error)
2452 			break;
2453 	}
2454 	mtx_unlock(&vm_object_list_mtx);
2455 	free(kvo, M_TEMP);
2456 	return (error);
2457 }
2458 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2459     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2460     "List of VM objects");
2461 
2462 #include "opt_ddb.h"
2463 #ifdef DDB
2464 #include <sys/kernel.h>
2465 
2466 #include <sys/cons.h>
2467 
2468 #include <ddb/ddb.h>
2469 
2470 static int
2471 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2472 {
2473 	vm_map_t tmpm;
2474 	vm_map_entry_t tmpe;
2475 	vm_object_t obj;
2476 	int entcount;
2477 
2478 	if (map == 0)
2479 		return 0;
2480 
2481 	if (entry == 0) {
2482 		tmpe = map->header.next;
2483 		entcount = map->nentries;
2484 		while (entcount-- && (tmpe != &map->header)) {
2485 			if (_vm_object_in_map(map, object, tmpe)) {
2486 				return 1;
2487 			}
2488 			tmpe = tmpe->next;
2489 		}
2490 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2491 		tmpm = entry->object.sub_map;
2492 		tmpe = tmpm->header.next;
2493 		entcount = tmpm->nentries;
2494 		while (entcount-- && tmpe != &tmpm->header) {
2495 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2496 				return 1;
2497 			}
2498 			tmpe = tmpe->next;
2499 		}
2500 	} else if ((obj = entry->object.vm_object) != NULL) {
2501 		for (; obj; obj = obj->backing_object)
2502 			if (obj == object) {
2503 				return 1;
2504 			}
2505 	}
2506 	return 0;
2507 }
2508 
2509 static int
2510 vm_object_in_map(vm_object_t object)
2511 {
2512 	struct proc *p;
2513 
2514 	/* sx_slock(&allproc_lock); */
2515 	FOREACH_PROC_IN_SYSTEM(p) {
2516 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2517 			continue;
2518 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2519 			/* sx_sunlock(&allproc_lock); */
2520 			return 1;
2521 		}
2522 	}
2523 	/* sx_sunlock(&allproc_lock); */
2524 	if (_vm_object_in_map(kernel_map, object, 0))
2525 		return 1;
2526 	return 0;
2527 }
2528 
2529 DB_SHOW_COMMAND(vmochk, vm_object_check)
2530 {
2531 	vm_object_t object;
2532 
2533 	/*
2534 	 * make sure that internal objs are in a map somewhere
2535 	 * and none have zero ref counts.
2536 	 */
2537 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2538 		if (object->handle == NULL &&
2539 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2540 			if (object->ref_count == 0) {
2541 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2542 					(long)object->size);
2543 			}
2544 			if (!vm_object_in_map(object)) {
2545 				db_printf(
2546 			"vmochk: internal obj is not in a map: "
2547 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2548 				    object->ref_count, (u_long)object->size,
2549 				    (u_long)object->size,
2550 				    (void *)object->backing_object);
2551 			}
2552 		}
2553 	}
2554 }
2555 
2556 /*
2557  *	vm_object_print:	[ debug ]
2558  */
2559 DB_SHOW_COMMAND(object, vm_object_print_static)
2560 {
2561 	/* XXX convert args. */
2562 	vm_object_t object = (vm_object_t)addr;
2563 	boolean_t full = have_addr;
2564 
2565 	vm_page_t p;
2566 
2567 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2568 #define	count	was_count
2569 
2570 	int count;
2571 
2572 	if (object == NULL)
2573 		return;
2574 
2575 	db_iprintf(
2576 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2577 	    object, (int)object->type, (uintmax_t)object->size,
2578 	    object->resident_page_count, object->ref_count, object->flags,
2579 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2580 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2581 	    object->shadow_count,
2582 	    object->backing_object ? object->backing_object->ref_count : 0,
2583 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2584 
2585 	if (!full)
2586 		return;
2587 
2588 	db_indent += 2;
2589 	count = 0;
2590 	TAILQ_FOREACH(p, &object->memq, listq) {
2591 		if (count == 0)
2592 			db_iprintf("memory:=");
2593 		else if (count == 6) {
2594 			db_printf("\n");
2595 			db_iprintf(" ...");
2596 			count = 0;
2597 		} else
2598 			db_printf(",");
2599 		count++;
2600 
2601 		db_printf("(off=0x%jx,page=0x%jx)",
2602 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2603 	}
2604 	if (count != 0)
2605 		db_printf("\n");
2606 	db_indent -= 2;
2607 }
2608 
2609 /* XXX. */
2610 #undef count
2611 
2612 /* XXX need this non-static entry for calling from vm_map_print. */
2613 void
2614 vm_object_print(
2615         /* db_expr_t */ long addr,
2616 	boolean_t have_addr,
2617 	/* db_expr_t */ long count,
2618 	char *modif)
2619 {
2620 	vm_object_print_static(addr, have_addr, count, modif);
2621 }
2622 
2623 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2624 {
2625 	vm_object_t object;
2626 	vm_pindex_t fidx;
2627 	vm_paddr_t pa;
2628 	vm_page_t m, prev_m;
2629 	int rcount, nl, c;
2630 
2631 	nl = 0;
2632 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2633 		db_printf("new object: %p\n", (void *)object);
2634 		if (nl > 18) {
2635 			c = cngetc();
2636 			if (c != ' ')
2637 				return;
2638 			nl = 0;
2639 		}
2640 		nl++;
2641 		rcount = 0;
2642 		fidx = 0;
2643 		pa = -1;
2644 		TAILQ_FOREACH(m, &object->memq, listq) {
2645 			if (m->pindex > 128)
2646 				break;
2647 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2648 			    prev_m->pindex + 1 != m->pindex) {
2649 				if (rcount) {
2650 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2651 						(long)fidx, rcount, (long)pa);
2652 					if (nl > 18) {
2653 						c = cngetc();
2654 						if (c != ' ')
2655 							return;
2656 						nl = 0;
2657 					}
2658 					nl++;
2659 					rcount = 0;
2660 				}
2661 			}
2662 			if (rcount &&
2663 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2664 				++rcount;
2665 				continue;
2666 			}
2667 			if (rcount) {
2668 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2669 					(long)fidx, rcount, (long)pa);
2670 				if (nl > 18) {
2671 					c = cngetc();
2672 					if (c != ' ')
2673 						return;
2674 					nl = 0;
2675 				}
2676 				nl++;
2677 			}
2678 			fidx = m->pindex;
2679 			pa = VM_PAGE_TO_PHYS(m);
2680 			rcount = 1;
2681 		}
2682 		if (rcount) {
2683 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2684 				(long)fidx, rcount, (long)pa);
2685 			if (nl > 18) {
2686 				c = cngetc();
2687 				if (c != ' ')
2688 					return;
2689 				nl = 0;
2690 			}
2691 			nl++;
2692 		}
2693 	}
2694 }
2695 #endif /* DDB */
2696