1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/vmmeter.h> 85 #include <sys/sx.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_radix.h> 99 #include <vm/vm_reserv.h> 100 #include <vm/uma.h> 101 102 static int old_msync; 103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 104 "Use old (insecure) msync behavior"); 105 106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 107 int pagerflags, int flags, boolean_t *clearobjflags, 108 boolean_t *eio); 109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 110 boolean_t *clearobjflags); 111 static void vm_object_qcollapse(vm_object_t object); 112 static void vm_object_vndeallocate(vm_object_t object); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 147 "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(object->ref_count == 0, 171 ("object %p ref_count = %d", object, object->ref_count)); 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages in its memq", object)); 174 KASSERT(vm_radix_is_empty(&object->rtree), 175 ("object %p has resident pages in its trie", object)); 176 #if VM_NRESERVLEVEL > 0 177 KASSERT(LIST_EMPTY(&object->rvq), 178 ("object %p has reservations", 179 object)); 180 #endif 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 KASSERT(object->type == OBJT_DEAD, 191 ("object %p has non-dead type %d", 192 object, object->type)); 193 } 194 #endif 195 196 static int 197 vm_object_zinit(void *mem, int size, int flags) 198 { 199 vm_object_t object; 200 201 object = (vm_object_t)mem; 202 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 203 204 /* These are true for any object that has been freed */ 205 object->type = OBJT_DEAD; 206 object->ref_count = 0; 207 object->rtree.rt_root = 0; 208 object->paging_in_progress = 0; 209 object->resident_page_count = 0; 210 object->shadow_count = 0; 211 212 mtx_lock(&vm_object_list_mtx); 213 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 214 mtx_unlock(&vm_object_list_mtx); 215 return (0); 216 } 217 218 static void 219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 220 { 221 222 TAILQ_INIT(&object->memq); 223 LIST_INIT(&object->shadow_head); 224 225 object->type = type; 226 switch (type) { 227 case OBJT_DEAD: 228 panic("_vm_object_allocate: can't create OBJT_DEAD"); 229 case OBJT_DEFAULT: 230 case OBJT_SWAP: 231 object->flags = OBJ_ONEMAPPING; 232 break; 233 case OBJT_DEVICE: 234 case OBJT_SG: 235 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 236 break; 237 case OBJT_MGTDEVICE: 238 object->flags = OBJ_FICTITIOUS; 239 break; 240 case OBJT_PHYS: 241 object->flags = OBJ_UNMANAGED; 242 break; 243 case OBJT_VNODE: 244 object->flags = 0; 245 break; 246 default: 247 panic("_vm_object_allocate: type %d is undefined", type); 248 } 249 object->size = size; 250 object->generation = 1; 251 object->ref_count = 1; 252 object->memattr = VM_MEMATTR_DEFAULT; 253 object->cred = NULL; 254 object->charge = 0; 255 object->handle = NULL; 256 object->backing_object = NULL; 257 object->backing_object_offset = (vm_ooffset_t) 0; 258 #if VM_NRESERVLEVEL > 0 259 LIST_INIT(&object->rvq); 260 #endif 261 umtx_shm_object_init(object); 262 } 263 264 /* 265 * vm_object_init: 266 * 267 * Initialize the VM objects module. 268 */ 269 void 270 vm_object_init(void) 271 { 272 TAILQ_INIT(&vm_object_list); 273 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 274 275 rw_init(&kernel_object->lock, "kernel vm object"); 276 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 277 kernel_object); 278 #if VM_NRESERVLEVEL > 0 279 kernel_object->flags |= OBJ_COLORED; 280 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 281 #endif 282 283 rw_init(&kmem_object->lock, "kmem vm object"); 284 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 285 kmem_object); 286 #if VM_NRESERVLEVEL > 0 287 kmem_object->flags |= OBJ_COLORED; 288 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 289 #endif 290 291 /* 292 * The lock portion of struct vm_object must be type stable due 293 * to vm_pageout_fallback_object_lock locking a vm object 294 * without holding any references to it. 295 */ 296 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 297 #ifdef INVARIANTS 298 vm_object_zdtor, 299 #else 300 NULL, 301 #endif 302 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 303 304 vm_radix_init(); 305 } 306 307 void 308 vm_object_clear_flag(vm_object_t object, u_short bits) 309 { 310 311 VM_OBJECT_ASSERT_WLOCKED(object); 312 object->flags &= ~bits; 313 } 314 315 /* 316 * Sets the default memory attribute for the specified object. Pages 317 * that are allocated to this object are by default assigned this memory 318 * attribute. 319 * 320 * Presently, this function must be called before any pages are allocated 321 * to the object. In the future, this requirement may be relaxed for 322 * "default" and "swap" objects. 323 */ 324 int 325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 326 { 327 328 VM_OBJECT_ASSERT_WLOCKED(object); 329 switch (object->type) { 330 case OBJT_DEFAULT: 331 case OBJT_DEVICE: 332 case OBJT_MGTDEVICE: 333 case OBJT_PHYS: 334 case OBJT_SG: 335 case OBJT_SWAP: 336 case OBJT_VNODE: 337 if (!TAILQ_EMPTY(&object->memq)) 338 return (KERN_FAILURE); 339 break; 340 case OBJT_DEAD: 341 return (KERN_INVALID_ARGUMENT); 342 default: 343 panic("vm_object_set_memattr: object %p is of undefined type", 344 object); 345 } 346 object->memattr = memattr; 347 return (KERN_SUCCESS); 348 } 349 350 void 351 vm_object_pip_add(vm_object_t object, short i) 352 { 353 354 VM_OBJECT_ASSERT_WLOCKED(object); 355 object->paging_in_progress += i; 356 } 357 358 void 359 vm_object_pip_subtract(vm_object_t object, short i) 360 { 361 362 VM_OBJECT_ASSERT_WLOCKED(object); 363 object->paging_in_progress -= i; 364 } 365 366 void 367 vm_object_pip_wakeup(vm_object_t object) 368 { 369 370 VM_OBJECT_ASSERT_WLOCKED(object); 371 object->paging_in_progress--; 372 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 373 vm_object_clear_flag(object, OBJ_PIPWNT); 374 wakeup(object); 375 } 376 } 377 378 void 379 vm_object_pip_wakeupn(vm_object_t object, short i) 380 { 381 382 VM_OBJECT_ASSERT_WLOCKED(object); 383 if (i) 384 object->paging_in_progress -= i; 385 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 386 vm_object_clear_flag(object, OBJ_PIPWNT); 387 wakeup(object); 388 } 389 } 390 391 void 392 vm_object_pip_wait(vm_object_t object, char *waitid) 393 { 394 395 VM_OBJECT_ASSERT_WLOCKED(object); 396 while (object->paging_in_progress) { 397 object->flags |= OBJ_PIPWNT; 398 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 399 } 400 } 401 402 /* 403 * vm_object_allocate: 404 * 405 * Returns a new object with the given size. 406 */ 407 vm_object_t 408 vm_object_allocate(objtype_t type, vm_pindex_t size) 409 { 410 vm_object_t object; 411 412 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 413 _vm_object_allocate(type, size, object); 414 return (object); 415 } 416 417 418 /* 419 * vm_object_reference: 420 * 421 * Gets another reference to the given object. Note: OBJ_DEAD 422 * objects can be referenced during final cleaning. 423 */ 424 void 425 vm_object_reference(vm_object_t object) 426 { 427 if (object == NULL) 428 return; 429 VM_OBJECT_WLOCK(object); 430 vm_object_reference_locked(object); 431 VM_OBJECT_WUNLOCK(object); 432 } 433 434 /* 435 * vm_object_reference_locked: 436 * 437 * Gets another reference to the given object. 438 * 439 * The object must be locked. 440 */ 441 void 442 vm_object_reference_locked(vm_object_t object) 443 { 444 struct vnode *vp; 445 446 VM_OBJECT_ASSERT_WLOCKED(object); 447 object->ref_count++; 448 if (object->type == OBJT_VNODE) { 449 vp = object->handle; 450 vref(vp); 451 } 452 } 453 454 /* 455 * Handle deallocating an object of type OBJT_VNODE. 456 */ 457 static void 458 vm_object_vndeallocate(vm_object_t object) 459 { 460 struct vnode *vp = (struct vnode *) object->handle; 461 462 VM_OBJECT_ASSERT_WLOCKED(object); 463 KASSERT(object->type == OBJT_VNODE, 464 ("vm_object_vndeallocate: not a vnode object")); 465 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 466 #ifdef INVARIANTS 467 if (object->ref_count == 0) { 468 vn_printf(vp, "vm_object_vndeallocate "); 469 panic("vm_object_vndeallocate: bad object reference count"); 470 } 471 #endif 472 473 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 474 umtx_shm_object_terminated(object); 475 476 /* 477 * The test for text of vp vnode does not need a bypass to 478 * reach right VV_TEXT there, since it is obtained from 479 * object->handle. 480 */ 481 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 482 object->ref_count--; 483 VM_OBJECT_WUNLOCK(object); 484 /* vrele may need the vnode lock. */ 485 vrele(vp); 486 } else { 487 vhold(vp); 488 VM_OBJECT_WUNLOCK(object); 489 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 490 vdrop(vp); 491 VM_OBJECT_WLOCK(object); 492 object->ref_count--; 493 if (object->type == OBJT_DEAD) { 494 VM_OBJECT_WUNLOCK(object); 495 VOP_UNLOCK(vp, 0); 496 } else { 497 if (object->ref_count == 0) 498 VOP_UNSET_TEXT(vp); 499 VM_OBJECT_WUNLOCK(object); 500 vput(vp); 501 } 502 } 503 } 504 505 /* 506 * vm_object_deallocate: 507 * 508 * Release a reference to the specified object, 509 * gained either through a vm_object_allocate 510 * or a vm_object_reference call. When all references 511 * are gone, storage associated with this object 512 * may be relinquished. 513 * 514 * No object may be locked. 515 */ 516 void 517 vm_object_deallocate(vm_object_t object) 518 { 519 vm_object_t temp; 520 struct vnode *vp; 521 522 while (object != NULL) { 523 VM_OBJECT_WLOCK(object); 524 if (object->type == OBJT_VNODE) { 525 vm_object_vndeallocate(object); 526 return; 527 } 528 529 KASSERT(object->ref_count != 0, 530 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 531 532 /* 533 * If the reference count goes to 0 we start calling 534 * vm_object_terminate() on the object chain. 535 * A ref count of 1 may be a special case depending on the 536 * shadow count being 0 or 1. 537 */ 538 object->ref_count--; 539 if (object->ref_count > 1) { 540 VM_OBJECT_WUNLOCK(object); 541 return; 542 } else if (object->ref_count == 1) { 543 if (object->type == OBJT_SWAP && 544 (object->flags & OBJ_TMPFS) != 0) { 545 vp = object->un_pager.swp.swp_tmpfs; 546 vhold(vp); 547 VM_OBJECT_WUNLOCK(object); 548 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 549 VM_OBJECT_WLOCK(object); 550 if (object->type == OBJT_DEAD || 551 object->ref_count != 1) { 552 VM_OBJECT_WUNLOCK(object); 553 VOP_UNLOCK(vp, 0); 554 vdrop(vp); 555 return; 556 } 557 if ((object->flags & OBJ_TMPFS) != 0) 558 VOP_UNSET_TEXT(vp); 559 VOP_UNLOCK(vp, 0); 560 vdrop(vp); 561 } 562 if (object->shadow_count == 0 && 563 object->handle == NULL && 564 (object->type == OBJT_DEFAULT || 565 (object->type == OBJT_SWAP && 566 (object->flags & OBJ_TMPFS_NODE) == 0))) { 567 vm_object_set_flag(object, OBJ_ONEMAPPING); 568 } else if ((object->shadow_count == 1) && 569 (object->handle == NULL) && 570 (object->type == OBJT_DEFAULT || 571 object->type == OBJT_SWAP)) { 572 vm_object_t robject; 573 574 robject = LIST_FIRST(&object->shadow_head); 575 KASSERT(robject != NULL, 576 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 577 object->ref_count, 578 object->shadow_count)); 579 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 580 ("shadowed tmpfs v_object %p", object)); 581 if (!VM_OBJECT_TRYWLOCK(robject)) { 582 /* 583 * Avoid a potential deadlock. 584 */ 585 object->ref_count++; 586 VM_OBJECT_WUNLOCK(object); 587 /* 588 * More likely than not the thread 589 * holding robject's lock has lower 590 * priority than the current thread. 591 * Let the lower priority thread run. 592 */ 593 pause("vmo_de", 1); 594 continue; 595 } 596 /* 597 * Collapse object into its shadow unless its 598 * shadow is dead. In that case, object will 599 * be deallocated by the thread that is 600 * deallocating its shadow. 601 */ 602 if ((robject->flags & OBJ_DEAD) == 0 && 603 (robject->handle == NULL) && 604 (robject->type == OBJT_DEFAULT || 605 robject->type == OBJT_SWAP)) { 606 607 robject->ref_count++; 608 retry: 609 if (robject->paging_in_progress) { 610 VM_OBJECT_WUNLOCK(object); 611 vm_object_pip_wait(robject, 612 "objde1"); 613 temp = robject->backing_object; 614 if (object == temp) { 615 VM_OBJECT_WLOCK(object); 616 goto retry; 617 } 618 } else if (object->paging_in_progress) { 619 VM_OBJECT_WUNLOCK(robject); 620 object->flags |= OBJ_PIPWNT; 621 VM_OBJECT_SLEEP(object, object, 622 PDROP | PVM, "objde2", 0); 623 VM_OBJECT_WLOCK(robject); 624 temp = robject->backing_object; 625 if (object == temp) { 626 VM_OBJECT_WLOCK(object); 627 goto retry; 628 } 629 } else 630 VM_OBJECT_WUNLOCK(object); 631 632 if (robject->ref_count == 1) { 633 robject->ref_count--; 634 object = robject; 635 goto doterm; 636 } 637 object = robject; 638 vm_object_collapse(object); 639 VM_OBJECT_WUNLOCK(object); 640 continue; 641 } 642 VM_OBJECT_WUNLOCK(robject); 643 } 644 VM_OBJECT_WUNLOCK(object); 645 return; 646 } 647 doterm: 648 umtx_shm_object_terminated(object); 649 temp = object->backing_object; 650 if (temp != NULL) { 651 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 652 ("shadowed tmpfs v_object 2 %p", object)); 653 VM_OBJECT_WLOCK(temp); 654 LIST_REMOVE(object, shadow_list); 655 temp->shadow_count--; 656 VM_OBJECT_WUNLOCK(temp); 657 object->backing_object = NULL; 658 } 659 /* 660 * Don't double-terminate, we could be in a termination 661 * recursion due to the terminate having to sync data 662 * to disk. 663 */ 664 if ((object->flags & OBJ_DEAD) == 0) 665 vm_object_terminate(object); 666 else 667 VM_OBJECT_WUNLOCK(object); 668 object = temp; 669 } 670 } 671 672 /* 673 * vm_object_destroy removes the object from the global object list 674 * and frees the space for the object. 675 */ 676 void 677 vm_object_destroy(vm_object_t object) 678 { 679 680 /* 681 * Release the allocation charge. 682 */ 683 if (object->cred != NULL) { 684 swap_release_by_cred(object->charge, object->cred); 685 object->charge = 0; 686 crfree(object->cred); 687 object->cred = NULL; 688 } 689 690 /* 691 * Free the space for the object. 692 */ 693 uma_zfree(obj_zone, object); 694 } 695 696 /* 697 * vm_object_terminate actually destroys the specified object, freeing 698 * up all previously used resources. 699 * 700 * The object must be locked. 701 * This routine may block. 702 */ 703 void 704 vm_object_terminate(vm_object_t object) 705 { 706 vm_page_t p, p_next; 707 708 VM_OBJECT_ASSERT_WLOCKED(object); 709 710 /* 711 * Make sure no one uses us. 712 */ 713 vm_object_set_flag(object, OBJ_DEAD); 714 715 /* 716 * wait for the pageout daemon to be done with the object 717 */ 718 vm_object_pip_wait(object, "objtrm"); 719 720 KASSERT(!object->paging_in_progress, 721 ("vm_object_terminate: pageout in progress")); 722 723 /* 724 * Clean and free the pages, as appropriate. All references to the 725 * object are gone, so we don't need to lock it. 726 */ 727 if (object->type == OBJT_VNODE) { 728 struct vnode *vp = (struct vnode *)object->handle; 729 730 /* 731 * Clean pages and flush buffers. 732 */ 733 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 734 VM_OBJECT_WUNLOCK(object); 735 736 vinvalbuf(vp, V_SAVE, 0, 0); 737 738 BO_LOCK(&vp->v_bufobj); 739 vp->v_bufobj.bo_flag |= BO_DEAD; 740 BO_UNLOCK(&vp->v_bufobj); 741 742 VM_OBJECT_WLOCK(object); 743 } 744 745 KASSERT(object->ref_count == 0, 746 ("vm_object_terminate: object with references, ref_count=%d", 747 object->ref_count)); 748 749 /* 750 * Free any remaining pageable pages. This also removes them from the 751 * paging queues. However, don't free wired pages, just remove them 752 * from the object. Rather than incrementally removing each page from 753 * the object, the page and object are reset to any empty state. 754 */ 755 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 756 vm_page_assert_unbusied(p); 757 vm_page_lock(p); 758 /* 759 * Optimize the page's removal from the object by resetting 760 * its "object" field. Specifically, if the page is not 761 * wired, then the effect of this assignment is that 762 * vm_page_free()'s call to vm_page_remove() will return 763 * immediately without modifying the page or the object. 764 */ 765 p->object = NULL; 766 if (p->wire_count == 0) { 767 vm_page_free(p); 768 PCPU_INC(cnt.v_pfree); 769 } 770 vm_page_unlock(p); 771 } 772 /* 773 * If the object contained any pages, then reset it to an empty state. 774 * None of the object's fields, including "resident_page_count", were 775 * modified by the preceding loop. 776 */ 777 if (object->resident_page_count != 0) { 778 vm_radix_reclaim_allnodes(&object->rtree); 779 TAILQ_INIT(&object->memq); 780 object->resident_page_count = 0; 781 if (object->type == OBJT_VNODE) 782 vdrop(object->handle); 783 } 784 785 #if VM_NRESERVLEVEL > 0 786 if (__predict_false(!LIST_EMPTY(&object->rvq))) 787 vm_reserv_break_all(object); 788 #endif 789 790 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 791 object->type == OBJT_SWAP, 792 ("%s: non-swap obj %p has cred", __func__, object)); 793 794 /* 795 * Let the pager know object is dead. 796 */ 797 vm_pager_deallocate(object); 798 VM_OBJECT_WUNLOCK(object); 799 800 vm_object_destroy(object); 801 } 802 803 /* 804 * Make the page read-only so that we can clear the object flags. However, if 805 * this is a nosync mmap then the object is likely to stay dirty so do not 806 * mess with the page and do not clear the object flags. Returns TRUE if the 807 * page should be flushed, and FALSE otherwise. 808 */ 809 static boolean_t 810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 811 { 812 813 /* 814 * If we have been asked to skip nosync pages and this is a 815 * nosync page, skip it. Note that the object flags were not 816 * cleared in this case so we do not have to set them. 817 */ 818 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 819 *clearobjflags = FALSE; 820 return (FALSE); 821 } else { 822 pmap_remove_write(p); 823 return (p->dirty != 0); 824 } 825 } 826 827 /* 828 * vm_object_page_clean 829 * 830 * Clean all dirty pages in the specified range of object. Leaves page 831 * on whatever queue it is currently on. If NOSYNC is set then do not 832 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 833 * leaving the object dirty. 834 * 835 * When stuffing pages asynchronously, allow clustering. XXX we need a 836 * synchronous clustering mode implementation. 837 * 838 * Odd semantics: if start == end, we clean everything. 839 * 840 * The object must be locked. 841 * 842 * Returns FALSE if some page from the range was not written, as 843 * reported by the pager, and TRUE otherwise. 844 */ 845 boolean_t 846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 847 int flags) 848 { 849 vm_page_t np, p; 850 vm_pindex_t pi, tend, tstart; 851 int curgeneration, n, pagerflags; 852 boolean_t clearobjflags, eio, res; 853 854 VM_OBJECT_ASSERT_WLOCKED(object); 855 856 /* 857 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 858 * objects. The check below prevents the function from 859 * operating on non-vnode objects. 860 */ 861 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 862 object->resident_page_count == 0) 863 return (TRUE); 864 865 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 866 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 867 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 868 869 tstart = OFF_TO_IDX(start); 870 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 871 clearobjflags = tstart == 0 && tend >= object->size; 872 res = TRUE; 873 874 rescan: 875 curgeneration = object->generation; 876 877 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 878 pi = p->pindex; 879 if (pi >= tend) 880 break; 881 np = TAILQ_NEXT(p, listq); 882 if (p->valid == 0) 883 continue; 884 if (vm_page_sleep_if_busy(p, "vpcwai")) { 885 if (object->generation != curgeneration) { 886 if ((flags & OBJPC_SYNC) != 0) 887 goto rescan; 888 else 889 clearobjflags = FALSE; 890 } 891 np = vm_page_find_least(object, pi); 892 continue; 893 } 894 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 895 continue; 896 897 n = vm_object_page_collect_flush(object, p, pagerflags, 898 flags, &clearobjflags, &eio); 899 if (eio) { 900 res = FALSE; 901 clearobjflags = FALSE; 902 } 903 if (object->generation != curgeneration) { 904 if ((flags & OBJPC_SYNC) != 0) 905 goto rescan; 906 else 907 clearobjflags = FALSE; 908 } 909 910 /* 911 * If the VOP_PUTPAGES() did a truncated write, so 912 * that even the first page of the run is not fully 913 * written, vm_pageout_flush() returns 0 as the run 914 * length. Since the condition that caused truncated 915 * write may be permanent, e.g. exhausted free space, 916 * accepting n == 0 would cause an infinite loop. 917 * 918 * Forwarding the iterator leaves the unwritten page 919 * behind, but there is not much we can do there if 920 * filesystem refuses to write it. 921 */ 922 if (n == 0) { 923 n = 1; 924 clearobjflags = FALSE; 925 } 926 np = vm_page_find_least(object, pi + n); 927 } 928 #if 0 929 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 930 #endif 931 932 if (clearobjflags) 933 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 934 return (res); 935 } 936 937 static int 938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 939 int flags, boolean_t *clearobjflags, boolean_t *eio) 940 { 941 vm_page_t ma[vm_pageout_page_count], p_first, tp; 942 int count, i, mreq, runlen; 943 944 vm_page_lock_assert(p, MA_NOTOWNED); 945 VM_OBJECT_ASSERT_WLOCKED(object); 946 947 count = 1; 948 mreq = 0; 949 950 for (tp = p; count < vm_pageout_page_count; count++) { 951 tp = vm_page_next(tp); 952 if (tp == NULL || vm_page_busied(tp)) 953 break; 954 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 955 break; 956 } 957 958 for (p_first = p; count < vm_pageout_page_count; count++) { 959 tp = vm_page_prev(p_first); 960 if (tp == NULL || vm_page_busied(tp)) 961 break; 962 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 963 break; 964 p_first = tp; 965 mreq++; 966 } 967 968 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 969 ma[i] = tp; 970 971 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 972 return (runlen); 973 } 974 975 /* 976 * Note that there is absolutely no sense in writing out 977 * anonymous objects, so we track down the vnode object 978 * to write out. 979 * We invalidate (remove) all pages from the address space 980 * for semantic correctness. 981 * 982 * If the backing object is a device object with unmanaged pages, then any 983 * mappings to the specified range of pages must be removed before this 984 * function is called. 985 * 986 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 987 * may start out with a NULL object. 988 */ 989 boolean_t 990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 991 boolean_t syncio, boolean_t invalidate) 992 { 993 vm_object_t backing_object; 994 struct vnode *vp; 995 struct mount *mp; 996 int error, flags, fsync_after; 997 boolean_t res; 998 999 if (object == NULL) 1000 return (TRUE); 1001 res = TRUE; 1002 error = 0; 1003 VM_OBJECT_WLOCK(object); 1004 while ((backing_object = object->backing_object) != NULL) { 1005 VM_OBJECT_WLOCK(backing_object); 1006 offset += object->backing_object_offset; 1007 VM_OBJECT_WUNLOCK(object); 1008 object = backing_object; 1009 if (object->size < OFF_TO_IDX(offset + size)) 1010 size = IDX_TO_OFF(object->size) - offset; 1011 } 1012 /* 1013 * Flush pages if writing is allowed, invalidate them 1014 * if invalidation requested. Pages undergoing I/O 1015 * will be ignored by vm_object_page_remove(). 1016 * 1017 * We cannot lock the vnode and then wait for paging 1018 * to complete without deadlocking against vm_fault. 1019 * Instead we simply call vm_object_page_remove() and 1020 * allow it to block internally on a page-by-page 1021 * basis when it encounters pages undergoing async 1022 * I/O. 1023 */ 1024 if (object->type == OBJT_VNODE && 1025 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1026 vp = object->handle; 1027 VM_OBJECT_WUNLOCK(object); 1028 (void) vn_start_write(vp, &mp, V_WAIT); 1029 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1030 if (syncio && !invalidate && offset == 0 && 1031 OFF_TO_IDX(size) == object->size) { 1032 /* 1033 * If syncing the whole mapping of the file, 1034 * it is faster to schedule all the writes in 1035 * async mode, also allowing the clustering, 1036 * and then wait for i/o to complete. 1037 */ 1038 flags = 0; 1039 fsync_after = TRUE; 1040 } else { 1041 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1042 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1043 fsync_after = FALSE; 1044 } 1045 VM_OBJECT_WLOCK(object); 1046 res = vm_object_page_clean(object, offset, offset + size, 1047 flags); 1048 VM_OBJECT_WUNLOCK(object); 1049 if (fsync_after) 1050 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1051 VOP_UNLOCK(vp, 0); 1052 vn_finished_write(mp); 1053 if (error != 0) 1054 res = FALSE; 1055 VM_OBJECT_WLOCK(object); 1056 } 1057 if ((object->type == OBJT_VNODE || 1058 object->type == OBJT_DEVICE) && invalidate) { 1059 if (object->type == OBJT_DEVICE) 1060 /* 1061 * The option OBJPR_NOTMAPPED must be passed here 1062 * because vm_object_page_remove() cannot remove 1063 * unmanaged mappings. 1064 */ 1065 flags = OBJPR_NOTMAPPED; 1066 else if (old_msync) 1067 flags = 0; 1068 else 1069 flags = OBJPR_CLEANONLY; 1070 vm_object_page_remove(object, OFF_TO_IDX(offset), 1071 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1072 } 1073 VM_OBJECT_WUNLOCK(object); 1074 return (res); 1075 } 1076 1077 /* 1078 * vm_object_madvise: 1079 * 1080 * Implements the madvise function at the object/page level. 1081 * 1082 * MADV_WILLNEED (any object) 1083 * 1084 * Activate the specified pages if they are resident. 1085 * 1086 * MADV_DONTNEED (any object) 1087 * 1088 * Deactivate the specified pages if they are resident. 1089 * 1090 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1091 * OBJ_ONEMAPPING only) 1092 * 1093 * Deactivate and clean the specified pages if they are 1094 * resident. This permits the process to reuse the pages 1095 * without faulting or the kernel to reclaim the pages 1096 * without I/O. 1097 */ 1098 void 1099 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1100 int advise) 1101 { 1102 vm_pindex_t tpindex; 1103 vm_object_t backing_object, tobject; 1104 vm_page_t m; 1105 1106 if (object == NULL) 1107 return; 1108 VM_OBJECT_WLOCK(object); 1109 /* 1110 * Locate and adjust resident pages 1111 */ 1112 for (; pindex < end; pindex += 1) { 1113 relookup: 1114 tobject = object; 1115 tpindex = pindex; 1116 shadowlookup: 1117 /* 1118 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1119 * and those pages must be OBJ_ONEMAPPING. 1120 */ 1121 if (advise == MADV_FREE) { 1122 if ((tobject->type != OBJT_DEFAULT && 1123 tobject->type != OBJT_SWAP) || 1124 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1125 goto unlock_tobject; 1126 } 1127 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1128 goto unlock_tobject; 1129 m = vm_page_lookup(tobject, tpindex); 1130 if (m == NULL) { 1131 /* 1132 * There may be swap even if there is no backing page 1133 */ 1134 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1135 swap_pager_freespace(tobject, tpindex, 1); 1136 /* 1137 * next object 1138 */ 1139 backing_object = tobject->backing_object; 1140 if (backing_object == NULL) 1141 goto unlock_tobject; 1142 VM_OBJECT_WLOCK(backing_object); 1143 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1144 if (tobject != object) 1145 VM_OBJECT_WUNLOCK(tobject); 1146 tobject = backing_object; 1147 goto shadowlookup; 1148 } else if (m->valid != VM_PAGE_BITS_ALL) 1149 goto unlock_tobject; 1150 /* 1151 * If the page is not in a normal state, skip it. 1152 */ 1153 vm_page_lock(m); 1154 if (m->hold_count != 0 || m->wire_count != 0) { 1155 vm_page_unlock(m); 1156 goto unlock_tobject; 1157 } 1158 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1159 ("vm_object_madvise: page %p is fictitious", m)); 1160 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1161 ("vm_object_madvise: page %p is not managed", m)); 1162 if (vm_page_busied(m)) { 1163 if (advise == MADV_WILLNEED) { 1164 /* 1165 * Reference the page before unlocking and 1166 * sleeping so that the page daemon is less 1167 * likely to reclaim it. 1168 */ 1169 vm_page_aflag_set(m, PGA_REFERENCED); 1170 } 1171 if (object != tobject) 1172 VM_OBJECT_WUNLOCK(object); 1173 VM_OBJECT_WUNLOCK(tobject); 1174 vm_page_busy_sleep(m, "madvpo", false); 1175 VM_OBJECT_WLOCK(object); 1176 goto relookup; 1177 } 1178 if (advise == MADV_WILLNEED) { 1179 vm_page_activate(m); 1180 } else { 1181 vm_page_advise(m, advise); 1182 } 1183 vm_page_unlock(m); 1184 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1185 swap_pager_freespace(tobject, tpindex, 1); 1186 unlock_tobject: 1187 if (tobject != object) 1188 VM_OBJECT_WUNLOCK(tobject); 1189 } 1190 VM_OBJECT_WUNLOCK(object); 1191 } 1192 1193 /* 1194 * vm_object_shadow: 1195 * 1196 * Create a new object which is backed by the 1197 * specified existing object range. The source 1198 * object reference is deallocated. 1199 * 1200 * The new object and offset into that object 1201 * are returned in the source parameters. 1202 */ 1203 void 1204 vm_object_shadow( 1205 vm_object_t *object, /* IN/OUT */ 1206 vm_ooffset_t *offset, /* IN/OUT */ 1207 vm_size_t length) 1208 { 1209 vm_object_t source; 1210 vm_object_t result; 1211 1212 source = *object; 1213 1214 /* 1215 * Don't create the new object if the old object isn't shared. 1216 */ 1217 if (source != NULL) { 1218 VM_OBJECT_WLOCK(source); 1219 if (source->ref_count == 1 && 1220 source->handle == NULL && 1221 (source->type == OBJT_DEFAULT || 1222 source->type == OBJT_SWAP)) { 1223 VM_OBJECT_WUNLOCK(source); 1224 return; 1225 } 1226 VM_OBJECT_WUNLOCK(source); 1227 } 1228 1229 /* 1230 * Allocate a new object with the given length. 1231 */ 1232 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1233 1234 /* 1235 * The new object shadows the source object, adding a reference to it. 1236 * Our caller changes his reference to point to the new object, 1237 * removing a reference to the source object. Net result: no change 1238 * of reference count. 1239 * 1240 * Try to optimize the result object's page color when shadowing 1241 * in order to maintain page coloring consistency in the combined 1242 * shadowed object. 1243 */ 1244 result->backing_object = source; 1245 /* 1246 * Store the offset into the source object, and fix up the offset into 1247 * the new object. 1248 */ 1249 result->backing_object_offset = *offset; 1250 if (source != NULL) { 1251 VM_OBJECT_WLOCK(source); 1252 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1253 source->shadow_count++; 1254 #if VM_NRESERVLEVEL > 0 1255 result->flags |= source->flags & OBJ_COLORED; 1256 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1257 ((1 << (VM_NFREEORDER - 1)) - 1); 1258 #endif 1259 VM_OBJECT_WUNLOCK(source); 1260 } 1261 1262 1263 /* 1264 * Return the new things 1265 */ 1266 *offset = 0; 1267 *object = result; 1268 } 1269 1270 /* 1271 * vm_object_split: 1272 * 1273 * Split the pages in a map entry into a new object. This affords 1274 * easier removal of unused pages, and keeps object inheritance from 1275 * being a negative impact on memory usage. 1276 */ 1277 void 1278 vm_object_split(vm_map_entry_t entry) 1279 { 1280 vm_page_t m, m_next; 1281 vm_object_t orig_object, new_object, source; 1282 vm_pindex_t idx, offidxstart; 1283 vm_size_t size; 1284 1285 orig_object = entry->object.vm_object; 1286 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1287 return; 1288 if (orig_object->ref_count <= 1) 1289 return; 1290 VM_OBJECT_WUNLOCK(orig_object); 1291 1292 offidxstart = OFF_TO_IDX(entry->offset); 1293 size = atop(entry->end - entry->start); 1294 1295 /* 1296 * If swap_pager_copy() is later called, it will convert new_object 1297 * into a swap object. 1298 */ 1299 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1300 1301 /* 1302 * At this point, the new object is still private, so the order in 1303 * which the original and new objects are locked does not matter. 1304 */ 1305 VM_OBJECT_WLOCK(new_object); 1306 VM_OBJECT_WLOCK(orig_object); 1307 source = orig_object->backing_object; 1308 if (source != NULL) { 1309 VM_OBJECT_WLOCK(source); 1310 if ((source->flags & OBJ_DEAD) != 0) { 1311 VM_OBJECT_WUNLOCK(source); 1312 VM_OBJECT_WUNLOCK(orig_object); 1313 VM_OBJECT_WUNLOCK(new_object); 1314 vm_object_deallocate(new_object); 1315 VM_OBJECT_WLOCK(orig_object); 1316 return; 1317 } 1318 LIST_INSERT_HEAD(&source->shadow_head, 1319 new_object, shadow_list); 1320 source->shadow_count++; 1321 vm_object_reference_locked(source); /* for new_object */ 1322 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1323 VM_OBJECT_WUNLOCK(source); 1324 new_object->backing_object_offset = 1325 orig_object->backing_object_offset + entry->offset; 1326 new_object->backing_object = source; 1327 } 1328 if (orig_object->cred != NULL) { 1329 new_object->cred = orig_object->cred; 1330 crhold(orig_object->cred); 1331 new_object->charge = ptoa(size); 1332 KASSERT(orig_object->charge >= ptoa(size), 1333 ("orig_object->charge < 0")); 1334 orig_object->charge -= ptoa(size); 1335 } 1336 retry: 1337 m = vm_page_find_least(orig_object, offidxstart); 1338 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1339 m = m_next) { 1340 m_next = TAILQ_NEXT(m, listq); 1341 1342 /* 1343 * We must wait for pending I/O to complete before we can 1344 * rename the page. 1345 * 1346 * We do not have to VM_PROT_NONE the page as mappings should 1347 * not be changed by this operation. 1348 */ 1349 if (vm_page_busied(m)) { 1350 VM_OBJECT_WUNLOCK(new_object); 1351 vm_page_lock(m); 1352 VM_OBJECT_WUNLOCK(orig_object); 1353 vm_page_busy_sleep(m, "spltwt", false); 1354 VM_OBJECT_WLOCK(orig_object); 1355 VM_OBJECT_WLOCK(new_object); 1356 goto retry; 1357 } 1358 1359 /* vm_page_rename() will handle dirty and cache. */ 1360 if (vm_page_rename(m, new_object, idx)) { 1361 VM_OBJECT_WUNLOCK(new_object); 1362 VM_OBJECT_WUNLOCK(orig_object); 1363 VM_WAIT; 1364 VM_OBJECT_WLOCK(orig_object); 1365 VM_OBJECT_WLOCK(new_object); 1366 goto retry; 1367 } 1368 #if VM_NRESERVLEVEL > 0 1369 /* 1370 * If some of the reservation's allocated pages remain with 1371 * the original object, then transferring the reservation to 1372 * the new object is neither particularly beneficial nor 1373 * particularly harmful as compared to leaving the reservation 1374 * with the original object. If, however, all of the 1375 * reservation's allocated pages are transferred to the new 1376 * object, then transferring the reservation is typically 1377 * beneficial. Determining which of these two cases applies 1378 * would be more costly than unconditionally renaming the 1379 * reservation. 1380 */ 1381 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1382 #endif 1383 if (orig_object->type == OBJT_SWAP) 1384 vm_page_xbusy(m); 1385 } 1386 if (orig_object->type == OBJT_SWAP) { 1387 /* 1388 * swap_pager_copy() can sleep, in which case the orig_object's 1389 * and new_object's locks are released and reacquired. 1390 */ 1391 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1392 TAILQ_FOREACH(m, &new_object->memq, listq) 1393 vm_page_xunbusy(m); 1394 } 1395 VM_OBJECT_WUNLOCK(orig_object); 1396 VM_OBJECT_WUNLOCK(new_object); 1397 entry->object.vm_object = new_object; 1398 entry->offset = 0LL; 1399 vm_object_deallocate(orig_object); 1400 VM_OBJECT_WLOCK(new_object); 1401 } 1402 1403 #define OBSC_COLLAPSE_NOWAIT 0x0002 1404 #define OBSC_COLLAPSE_WAIT 0x0004 1405 1406 static vm_page_t 1407 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1408 int op) 1409 { 1410 vm_object_t backing_object; 1411 1412 VM_OBJECT_ASSERT_WLOCKED(object); 1413 backing_object = object->backing_object; 1414 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1415 1416 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1417 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1418 ("invalid ownership %p %p %p", p, object, backing_object)); 1419 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1420 return (next); 1421 if (p != NULL) 1422 vm_page_lock(p); 1423 VM_OBJECT_WUNLOCK(object); 1424 VM_OBJECT_WUNLOCK(backing_object); 1425 if (p == NULL) 1426 VM_WAIT; 1427 else 1428 vm_page_busy_sleep(p, "vmocol", false); 1429 VM_OBJECT_WLOCK(object); 1430 VM_OBJECT_WLOCK(backing_object); 1431 return (TAILQ_FIRST(&backing_object->memq)); 1432 } 1433 1434 static bool 1435 vm_object_scan_all_shadowed(vm_object_t object) 1436 { 1437 vm_object_t backing_object; 1438 vm_page_t p, pp; 1439 vm_pindex_t backing_offset_index, new_pindex; 1440 1441 VM_OBJECT_ASSERT_WLOCKED(object); 1442 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1443 1444 backing_object = object->backing_object; 1445 1446 /* 1447 * Initial conditions: 1448 * 1449 * We do not want to have to test for the existence of cache or swap 1450 * pages in the backing object. XXX but with the new swapper this 1451 * would be pretty easy to do. 1452 */ 1453 if (backing_object->type != OBJT_DEFAULT) 1454 return (false); 1455 1456 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1457 1458 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; 1459 p = TAILQ_NEXT(p, listq)) { 1460 new_pindex = p->pindex - backing_offset_index; 1461 1462 /* 1463 * Ignore pages outside the parent object's range and outside 1464 * the parent object's mapping of the backing object. 1465 */ 1466 if (p->pindex < backing_offset_index || 1467 new_pindex >= object->size) 1468 continue; 1469 1470 /* 1471 * See if the parent has the page or if the parent's object 1472 * pager has the page. If the parent has the page but the page 1473 * is not valid, the parent's object pager must have the page. 1474 * 1475 * If this fails, the parent does not completely shadow the 1476 * object and we might as well give up now. 1477 */ 1478 pp = vm_page_lookup(object, new_pindex); 1479 if ((pp == NULL || pp->valid == 0) && 1480 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1481 return (false); 1482 } 1483 return (true); 1484 } 1485 1486 static bool 1487 vm_object_collapse_scan(vm_object_t object, int op) 1488 { 1489 vm_object_t backing_object; 1490 vm_page_t next, p, pp; 1491 vm_pindex_t backing_offset_index, new_pindex; 1492 1493 VM_OBJECT_ASSERT_WLOCKED(object); 1494 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1495 1496 backing_object = object->backing_object; 1497 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1498 1499 /* 1500 * Initial conditions 1501 */ 1502 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1503 vm_object_set_flag(backing_object, OBJ_DEAD); 1504 1505 /* 1506 * Our scan 1507 */ 1508 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1509 next = TAILQ_NEXT(p, listq); 1510 new_pindex = p->pindex - backing_offset_index; 1511 1512 /* 1513 * Check for busy page 1514 */ 1515 if (vm_page_busied(p)) { 1516 next = vm_object_collapse_scan_wait(object, p, next, op); 1517 continue; 1518 } 1519 1520 KASSERT(p->object == backing_object, 1521 ("vm_object_collapse_scan: object mismatch")); 1522 1523 if (p->pindex < backing_offset_index || 1524 new_pindex >= object->size) { 1525 if (backing_object->type == OBJT_SWAP) 1526 swap_pager_freespace(backing_object, p->pindex, 1527 1); 1528 1529 /* 1530 * Page is out of the parent object's range, we can 1531 * simply destroy it. 1532 */ 1533 vm_page_lock(p); 1534 KASSERT(!pmap_page_is_mapped(p), 1535 ("freeing mapped page %p", p)); 1536 if (p->wire_count == 0) 1537 vm_page_free(p); 1538 else 1539 vm_page_remove(p); 1540 vm_page_unlock(p); 1541 continue; 1542 } 1543 1544 pp = vm_page_lookup(object, new_pindex); 1545 if (pp != NULL && vm_page_busied(pp)) { 1546 /* 1547 * The page in the parent is busy and possibly not 1548 * (yet) valid. Until its state is finalized by the 1549 * busy bit owner, we can't tell whether it shadows the 1550 * original page. Therefore, we must either skip it 1551 * and the original (backing_object) page or wait for 1552 * its state to be finalized. 1553 * 1554 * This is due to a race with vm_fault() where we must 1555 * unbusy the original (backing_obj) page before we can 1556 * (re)lock the parent. Hence we can get here. 1557 */ 1558 next = vm_object_collapse_scan_wait(object, pp, next, 1559 op); 1560 continue; 1561 } 1562 1563 KASSERT(pp == NULL || pp->valid != 0, 1564 ("unbusy invalid page %p", pp)); 1565 1566 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1567 NULL)) { 1568 /* 1569 * The page already exists in the parent OR swap exists 1570 * for this location in the parent. Leave the parent's 1571 * page alone. Destroy the original page from the 1572 * backing object. 1573 */ 1574 if (backing_object->type == OBJT_SWAP) 1575 swap_pager_freespace(backing_object, p->pindex, 1576 1); 1577 vm_page_lock(p); 1578 KASSERT(!pmap_page_is_mapped(p), 1579 ("freeing mapped page %p", p)); 1580 if (p->wire_count == 0) 1581 vm_page_free(p); 1582 else 1583 vm_page_remove(p); 1584 vm_page_unlock(p); 1585 continue; 1586 } 1587 1588 /* 1589 * Page does not exist in parent, rename the page from the 1590 * backing object to the main object. 1591 * 1592 * If the page was mapped to a process, it can remain mapped 1593 * through the rename. vm_page_rename() will handle dirty and 1594 * cache. 1595 */ 1596 if (vm_page_rename(p, object, new_pindex)) { 1597 next = vm_object_collapse_scan_wait(object, NULL, next, 1598 op); 1599 continue; 1600 } 1601 1602 /* Use the old pindex to free the right page. */ 1603 if (backing_object->type == OBJT_SWAP) 1604 swap_pager_freespace(backing_object, 1605 new_pindex + backing_offset_index, 1); 1606 1607 #if VM_NRESERVLEVEL > 0 1608 /* 1609 * Rename the reservation. 1610 */ 1611 vm_reserv_rename(p, object, backing_object, 1612 backing_offset_index); 1613 #endif 1614 } 1615 return (true); 1616 } 1617 1618 1619 /* 1620 * this version of collapse allows the operation to occur earlier and 1621 * when paging_in_progress is true for an object... This is not a complete 1622 * operation, but should plug 99.9% of the rest of the leaks. 1623 */ 1624 static void 1625 vm_object_qcollapse(vm_object_t object) 1626 { 1627 vm_object_t backing_object = object->backing_object; 1628 1629 VM_OBJECT_ASSERT_WLOCKED(object); 1630 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1631 1632 if (backing_object->ref_count != 1) 1633 return; 1634 1635 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1636 } 1637 1638 /* 1639 * vm_object_collapse: 1640 * 1641 * Collapse an object with the object backing it. 1642 * Pages in the backing object are moved into the 1643 * parent, and the backing object is deallocated. 1644 */ 1645 void 1646 vm_object_collapse(vm_object_t object) 1647 { 1648 vm_object_t backing_object, new_backing_object; 1649 1650 VM_OBJECT_ASSERT_WLOCKED(object); 1651 1652 while (TRUE) { 1653 /* 1654 * Verify that the conditions are right for collapse: 1655 * 1656 * The object exists and the backing object exists. 1657 */ 1658 if ((backing_object = object->backing_object) == NULL) 1659 break; 1660 1661 /* 1662 * we check the backing object first, because it is most likely 1663 * not collapsable. 1664 */ 1665 VM_OBJECT_WLOCK(backing_object); 1666 if (backing_object->handle != NULL || 1667 (backing_object->type != OBJT_DEFAULT && 1668 backing_object->type != OBJT_SWAP) || 1669 (backing_object->flags & OBJ_DEAD) || 1670 object->handle != NULL || 1671 (object->type != OBJT_DEFAULT && 1672 object->type != OBJT_SWAP) || 1673 (object->flags & OBJ_DEAD)) { 1674 VM_OBJECT_WUNLOCK(backing_object); 1675 break; 1676 } 1677 1678 if (object->paging_in_progress != 0 || 1679 backing_object->paging_in_progress != 0) { 1680 vm_object_qcollapse(object); 1681 VM_OBJECT_WUNLOCK(backing_object); 1682 break; 1683 } 1684 1685 /* 1686 * We know that we can either collapse the backing object (if 1687 * the parent is the only reference to it) or (perhaps) have 1688 * the parent bypass the object if the parent happens to shadow 1689 * all the resident pages in the entire backing object. 1690 * 1691 * This is ignoring pager-backed pages such as swap pages. 1692 * vm_object_collapse_scan fails the shadowing test in this 1693 * case. 1694 */ 1695 if (backing_object->ref_count == 1) { 1696 vm_object_pip_add(object, 1); 1697 vm_object_pip_add(backing_object, 1); 1698 1699 /* 1700 * If there is exactly one reference to the backing 1701 * object, we can collapse it into the parent. 1702 */ 1703 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1704 1705 #if VM_NRESERVLEVEL > 0 1706 /* 1707 * Break any reservations from backing_object. 1708 */ 1709 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1710 vm_reserv_break_all(backing_object); 1711 #endif 1712 1713 /* 1714 * Move the pager from backing_object to object. 1715 */ 1716 if (backing_object->type == OBJT_SWAP) { 1717 /* 1718 * swap_pager_copy() can sleep, in which case 1719 * the backing_object's and object's locks are 1720 * released and reacquired. 1721 * Since swap_pager_copy() is being asked to 1722 * destroy the source, it will change the 1723 * backing_object's type to OBJT_DEFAULT. 1724 */ 1725 swap_pager_copy( 1726 backing_object, 1727 object, 1728 OFF_TO_IDX(object->backing_object_offset), TRUE); 1729 } 1730 /* 1731 * Object now shadows whatever backing_object did. 1732 * Note that the reference to 1733 * backing_object->backing_object moves from within 1734 * backing_object to within object. 1735 */ 1736 LIST_REMOVE(object, shadow_list); 1737 backing_object->shadow_count--; 1738 if (backing_object->backing_object) { 1739 VM_OBJECT_WLOCK(backing_object->backing_object); 1740 LIST_REMOVE(backing_object, shadow_list); 1741 LIST_INSERT_HEAD( 1742 &backing_object->backing_object->shadow_head, 1743 object, shadow_list); 1744 /* 1745 * The shadow_count has not changed. 1746 */ 1747 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1748 } 1749 object->backing_object = backing_object->backing_object; 1750 object->backing_object_offset += 1751 backing_object->backing_object_offset; 1752 1753 /* 1754 * Discard backing_object. 1755 * 1756 * Since the backing object has no pages, no pager left, 1757 * and no object references within it, all that is 1758 * necessary is to dispose of it. 1759 */ 1760 KASSERT(backing_object->ref_count == 1, ( 1761 "backing_object %p was somehow re-referenced during collapse!", 1762 backing_object)); 1763 vm_object_pip_wakeup(backing_object); 1764 backing_object->type = OBJT_DEAD; 1765 backing_object->ref_count = 0; 1766 VM_OBJECT_WUNLOCK(backing_object); 1767 vm_object_destroy(backing_object); 1768 1769 vm_object_pip_wakeup(object); 1770 object_collapses++; 1771 } else { 1772 /* 1773 * If we do not entirely shadow the backing object, 1774 * there is nothing we can do so we give up. 1775 */ 1776 if (object->resident_page_count != object->size && 1777 !vm_object_scan_all_shadowed(object)) { 1778 VM_OBJECT_WUNLOCK(backing_object); 1779 break; 1780 } 1781 1782 /* 1783 * Make the parent shadow the next object in the 1784 * chain. Deallocating backing_object will not remove 1785 * it, since its reference count is at least 2. 1786 */ 1787 LIST_REMOVE(object, shadow_list); 1788 backing_object->shadow_count--; 1789 1790 new_backing_object = backing_object->backing_object; 1791 if ((object->backing_object = new_backing_object) != NULL) { 1792 VM_OBJECT_WLOCK(new_backing_object); 1793 LIST_INSERT_HEAD( 1794 &new_backing_object->shadow_head, 1795 object, 1796 shadow_list 1797 ); 1798 new_backing_object->shadow_count++; 1799 vm_object_reference_locked(new_backing_object); 1800 VM_OBJECT_WUNLOCK(new_backing_object); 1801 object->backing_object_offset += 1802 backing_object->backing_object_offset; 1803 } 1804 1805 /* 1806 * Drop the reference count on backing_object. Since 1807 * its ref_count was at least 2, it will not vanish. 1808 */ 1809 backing_object->ref_count--; 1810 VM_OBJECT_WUNLOCK(backing_object); 1811 object_bypasses++; 1812 } 1813 1814 /* 1815 * Try again with this object's new backing object. 1816 */ 1817 } 1818 } 1819 1820 /* 1821 * vm_object_page_remove: 1822 * 1823 * For the given object, either frees or invalidates each of the 1824 * specified pages. In general, a page is freed. However, if a page is 1825 * wired for any reason other than the existence of a managed, wired 1826 * mapping, then it may be invalidated but not removed from the object. 1827 * Pages are specified by the given range ["start", "end") and the option 1828 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1829 * extends from "start" to the end of the object. If the option 1830 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1831 * specified range are affected. If the option OBJPR_NOTMAPPED is 1832 * specified, then the pages within the specified range must have no 1833 * mappings. Otherwise, if this option is not specified, any mappings to 1834 * the specified pages are removed before the pages are freed or 1835 * invalidated. 1836 * 1837 * In general, this operation should only be performed on objects that 1838 * contain managed pages. There are, however, two exceptions. First, it 1839 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1840 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1841 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1842 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1843 * 1844 * The object must be locked. 1845 */ 1846 void 1847 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1848 int options) 1849 { 1850 vm_page_t p, next; 1851 1852 VM_OBJECT_ASSERT_WLOCKED(object); 1853 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1854 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1855 ("vm_object_page_remove: illegal options for object %p", object)); 1856 if (object->resident_page_count == 0) 1857 return; 1858 vm_object_pip_add(object, 1); 1859 again: 1860 p = vm_page_find_least(object, start); 1861 1862 /* 1863 * Here, the variable "p" is either (1) the page with the least pindex 1864 * greater than or equal to the parameter "start" or (2) NULL. 1865 */ 1866 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1867 next = TAILQ_NEXT(p, listq); 1868 1869 /* 1870 * If the page is wired for any reason besides the existence 1871 * of managed, wired mappings, then it cannot be freed. For 1872 * example, fictitious pages, which represent device memory, 1873 * are inherently wired and cannot be freed. They can, 1874 * however, be invalidated if the option OBJPR_CLEANONLY is 1875 * not specified. 1876 */ 1877 vm_page_lock(p); 1878 if (vm_page_xbusied(p)) { 1879 VM_OBJECT_WUNLOCK(object); 1880 vm_page_busy_sleep(p, "vmopax", true); 1881 VM_OBJECT_WLOCK(object); 1882 goto again; 1883 } 1884 if (p->wire_count != 0) { 1885 if ((options & OBJPR_NOTMAPPED) == 0) 1886 pmap_remove_all(p); 1887 if ((options & OBJPR_CLEANONLY) == 0) { 1888 p->valid = 0; 1889 vm_page_undirty(p); 1890 } 1891 goto next; 1892 } 1893 if (vm_page_busied(p)) { 1894 VM_OBJECT_WUNLOCK(object); 1895 vm_page_busy_sleep(p, "vmopar", false); 1896 VM_OBJECT_WLOCK(object); 1897 goto again; 1898 } 1899 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1900 ("vm_object_page_remove: page %p is fictitious", p)); 1901 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1902 if ((options & OBJPR_NOTMAPPED) == 0) 1903 pmap_remove_write(p); 1904 if (p->dirty) 1905 goto next; 1906 } 1907 if ((options & OBJPR_NOTMAPPED) == 0) 1908 pmap_remove_all(p); 1909 vm_page_free(p); 1910 next: 1911 vm_page_unlock(p); 1912 } 1913 vm_object_pip_wakeup(object); 1914 } 1915 1916 /* 1917 * vm_object_page_noreuse: 1918 * 1919 * For the given object, attempt to move the specified pages to 1920 * the head of the inactive queue. This bypasses regular LRU 1921 * operation and allows the pages to be reused quickly under memory 1922 * pressure. If a page is wired for any reason, then it will not 1923 * be queued. Pages are specified by the range ["start", "end"). 1924 * As a special case, if "end" is zero, then the range extends from 1925 * "start" to the end of the object. 1926 * 1927 * This operation should only be performed on objects that 1928 * contain non-fictitious, managed pages. 1929 * 1930 * The object must be locked. 1931 */ 1932 void 1933 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1934 { 1935 struct mtx *mtx, *new_mtx; 1936 vm_page_t p, next; 1937 1938 VM_OBJECT_ASSERT_WLOCKED(object); 1939 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1940 ("vm_object_page_noreuse: illegal object %p", object)); 1941 if (object->resident_page_count == 0) 1942 return; 1943 p = vm_page_find_least(object, start); 1944 1945 /* 1946 * Here, the variable "p" is either (1) the page with the least pindex 1947 * greater than or equal to the parameter "start" or (2) NULL. 1948 */ 1949 mtx = NULL; 1950 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1951 next = TAILQ_NEXT(p, listq); 1952 1953 /* 1954 * Avoid releasing and reacquiring the same page lock. 1955 */ 1956 new_mtx = vm_page_lockptr(p); 1957 if (mtx != new_mtx) { 1958 if (mtx != NULL) 1959 mtx_unlock(mtx); 1960 mtx = new_mtx; 1961 mtx_lock(mtx); 1962 } 1963 vm_page_deactivate_noreuse(p); 1964 } 1965 if (mtx != NULL) 1966 mtx_unlock(mtx); 1967 } 1968 1969 /* 1970 * Populate the specified range of the object with valid pages. Returns 1971 * TRUE if the range is successfully populated and FALSE otherwise. 1972 * 1973 * Note: This function should be optimized to pass a larger array of 1974 * pages to vm_pager_get_pages() before it is applied to a non- 1975 * OBJT_DEVICE object. 1976 * 1977 * The object must be locked. 1978 */ 1979 boolean_t 1980 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1981 { 1982 vm_page_t m; 1983 vm_pindex_t pindex; 1984 int rv; 1985 1986 VM_OBJECT_ASSERT_WLOCKED(object); 1987 for (pindex = start; pindex < end; pindex++) { 1988 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1989 if (m->valid != VM_PAGE_BITS_ALL) { 1990 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 1991 if (rv != VM_PAGER_OK) { 1992 vm_page_lock(m); 1993 vm_page_free(m); 1994 vm_page_unlock(m); 1995 break; 1996 } 1997 } 1998 /* 1999 * Keep "m" busy because a subsequent iteration may unlock 2000 * the object. 2001 */ 2002 } 2003 if (pindex > start) { 2004 m = vm_page_lookup(object, start); 2005 while (m != NULL && m->pindex < pindex) { 2006 vm_page_xunbusy(m); 2007 m = TAILQ_NEXT(m, listq); 2008 } 2009 } 2010 return (pindex == end); 2011 } 2012 2013 /* 2014 * Routine: vm_object_coalesce 2015 * Function: Coalesces two objects backing up adjoining 2016 * regions of memory into a single object. 2017 * 2018 * returns TRUE if objects were combined. 2019 * 2020 * NOTE: Only works at the moment if the second object is NULL - 2021 * if it's not, which object do we lock first? 2022 * 2023 * Parameters: 2024 * prev_object First object to coalesce 2025 * prev_offset Offset into prev_object 2026 * prev_size Size of reference to prev_object 2027 * next_size Size of reference to the second object 2028 * reserved Indicator that extension region has 2029 * swap accounted for 2030 * 2031 * Conditions: 2032 * The object must *not* be locked. 2033 */ 2034 boolean_t 2035 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2036 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2037 { 2038 vm_pindex_t next_pindex; 2039 2040 if (prev_object == NULL) 2041 return (TRUE); 2042 VM_OBJECT_WLOCK(prev_object); 2043 if ((prev_object->type != OBJT_DEFAULT && 2044 prev_object->type != OBJT_SWAP) || 2045 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2046 VM_OBJECT_WUNLOCK(prev_object); 2047 return (FALSE); 2048 } 2049 2050 /* 2051 * Try to collapse the object first 2052 */ 2053 vm_object_collapse(prev_object); 2054 2055 /* 2056 * Can't coalesce if: . more than one reference . paged out . shadows 2057 * another object . has a copy elsewhere (any of which mean that the 2058 * pages not mapped to prev_entry may be in use anyway) 2059 */ 2060 if (prev_object->backing_object != NULL) { 2061 VM_OBJECT_WUNLOCK(prev_object); 2062 return (FALSE); 2063 } 2064 2065 prev_size >>= PAGE_SHIFT; 2066 next_size >>= PAGE_SHIFT; 2067 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2068 2069 if ((prev_object->ref_count > 1) && 2070 (prev_object->size != next_pindex)) { 2071 VM_OBJECT_WUNLOCK(prev_object); 2072 return (FALSE); 2073 } 2074 2075 /* 2076 * Account for the charge. 2077 */ 2078 if (prev_object->cred != NULL) { 2079 2080 /* 2081 * If prev_object was charged, then this mapping, 2082 * although not charged now, may become writable 2083 * later. Non-NULL cred in the object would prevent 2084 * swap reservation during enabling of the write 2085 * access, so reserve swap now. Failed reservation 2086 * cause allocation of the separate object for the map 2087 * entry, and swap reservation for this entry is 2088 * managed in appropriate time. 2089 */ 2090 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2091 prev_object->cred)) { 2092 VM_OBJECT_WUNLOCK(prev_object); 2093 return (FALSE); 2094 } 2095 prev_object->charge += ptoa(next_size); 2096 } 2097 2098 /* 2099 * Remove any pages that may still be in the object from a previous 2100 * deallocation. 2101 */ 2102 if (next_pindex < prev_object->size) { 2103 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2104 next_size, 0); 2105 if (prev_object->type == OBJT_SWAP) 2106 swap_pager_freespace(prev_object, 2107 next_pindex, next_size); 2108 #if 0 2109 if (prev_object->cred != NULL) { 2110 KASSERT(prev_object->charge >= 2111 ptoa(prev_object->size - next_pindex), 2112 ("object %p overcharged 1 %jx %jx", prev_object, 2113 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2114 prev_object->charge -= ptoa(prev_object->size - 2115 next_pindex); 2116 } 2117 #endif 2118 } 2119 2120 /* 2121 * Extend the object if necessary. 2122 */ 2123 if (next_pindex + next_size > prev_object->size) 2124 prev_object->size = next_pindex + next_size; 2125 2126 VM_OBJECT_WUNLOCK(prev_object); 2127 return (TRUE); 2128 } 2129 2130 void 2131 vm_object_set_writeable_dirty(vm_object_t object) 2132 { 2133 2134 VM_OBJECT_ASSERT_WLOCKED(object); 2135 if (object->type != OBJT_VNODE) { 2136 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2137 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2138 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2139 } 2140 return; 2141 } 2142 object->generation++; 2143 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2144 return; 2145 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2146 } 2147 2148 /* 2149 * vm_object_unwire: 2150 * 2151 * For each page offset within the specified range of the given object, 2152 * find the highest-level page in the shadow chain and unwire it. A page 2153 * must exist at every page offset, and the highest-level page must be 2154 * wired. 2155 */ 2156 void 2157 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2158 uint8_t queue) 2159 { 2160 vm_object_t tobject; 2161 vm_page_t m, tm; 2162 vm_pindex_t end_pindex, pindex, tpindex; 2163 int depth, locked_depth; 2164 2165 KASSERT((offset & PAGE_MASK) == 0, 2166 ("vm_object_unwire: offset is not page aligned")); 2167 KASSERT((length & PAGE_MASK) == 0, 2168 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2169 /* The wired count of a fictitious page never changes. */ 2170 if ((object->flags & OBJ_FICTITIOUS) != 0) 2171 return; 2172 pindex = OFF_TO_IDX(offset); 2173 end_pindex = pindex + atop(length); 2174 locked_depth = 1; 2175 VM_OBJECT_RLOCK(object); 2176 m = vm_page_find_least(object, pindex); 2177 while (pindex < end_pindex) { 2178 if (m == NULL || pindex < m->pindex) { 2179 /* 2180 * The first object in the shadow chain doesn't 2181 * contain a page at the current index. Therefore, 2182 * the page must exist in a backing object. 2183 */ 2184 tobject = object; 2185 tpindex = pindex; 2186 depth = 0; 2187 do { 2188 tpindex += 2189 OFF_TO_IDX(tobject->backing_object_offset); 2190 tobject = tobject->backing_object; 2191 KASSERT(tobject != NULL, 2192 ("vm_object_unwire: missing page")); 2193 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2194 goto next_page; 2195 depth++; 2196 if (depth == locked_depth) { 2197 locked_depth++; 2198 VM_OBJECT_RLOCK(tobject); 2199 } 2200 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2201 NULL); 2202 } else { 2203 tm = m; 2204 m = TAILQ_NEXT(m, listq); 2205 } 2206 vm_page_lock(tm); 2207 vm_page_unwire(tm, queue); 2208 vm_page_unlock(tm); 2209 next_page: 2210 pindex++; 2211 } 2212 /* Release the accumulated object locks. */ 2213 for (depth = 0; depth < locked_depth; depth++) { 2214 tobject = object->backing_object; 2215 VM_OBJECT_RUNLOCK(object); 2216 object = tobject; 2217 } 2218 } 2219 2220 struct vnode * 2221 vm_object_vnode(vm_object_t object) 2222 { 2223 2224 VM_OBJECT_ASSERT_LOCKED(object); 2225 if (object->type == OBJT_VNODE) 2226 return (object->handle); 2227 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2228 return (object->un_pager.swp.swp_tmpfs); 2229 return (NULL); 2230 } 2231 2232 static int 2233 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2234 { 2235 struct kinfo_vmobject kvo; 2236 char *fullpath, *freepath; 2237 struct vnode *vp; 2238 struct vattr va; 2239 vm_object_t obj; 2240 vm_page_t m; 2241 int count, error; 2242 2243 if (req->oldptr == NULL) { 2244 /* 2245 * If an old buffer has not been provided, generate an 2246 * estimate of the space needed for a subsequent call. 2247 */ 2248 mtx_lock(&vm_object_list_mtx); 2249 count = 0; 2250 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2251 if (obj->type == OBJT_DEAD) 2252 continue; 2253 count++; 2254 } 2255 mtx_unlock(&vm_object_list_mtx); 2256 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2257 count * 11 / 10)); 2258 } 2259 2260 error = 0; 2261 2262 /* 2263 * VM objects are type stable and are never removed from the 2264 * list once added. This allows us to safely read obj->object_list 2265 * after reacquiring the VM object lock. 2266 */ 2267 mtx_lock(&vm_object_list_mtx); 2268 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2269 if (obj->type == OBJT_DEAD) 2270 continue; 2271 VM_OBJECT_RLOCK(obj); 2272 if (obj->type == OBJT_DEAD) { 2273 VM_OBJECT_RUNLOCK(obj); 2274 continue; 2275 } 2276 mtx_unlock(&vm_object_list_mtx); 2277 kvo.kvo_size = ptoa(obj->size); 2278 kvo.kvo_resident = obj->resident_page_count; 2279 kvo.kvo_ref_count = obj->ref_count; 2280 kvo.kvo_shadow_count = obj->shadow_count; 2281 kvo.kvo_memattr = obj->memattr; 2282 kvo.kvo_active = 0; 2283 kvo.kvo_inactive = 0; 2284 TAILQ_FOREACH(m, &obj->memq, listq) { 2285 /* 2286 * A page may belong to the object but be 2287 * dequeued and set to PQ_NONE while the 2288 * object lock is not held. This makes the 2289 * reads of m->queue below racy, and we do not 2290 * count pages set to PQ_NONE. However, this 2291 * sysctl is only meant to give an 2292 * approximation of the system anyway. 2293 */ 2294 if (vm_page_active(m)) 2295 kvo.kvo_active++; 2296 else if (vm_page_inactive(m)) 2297 kvo.kvo_inactive++; 2298 } 2299 2300 kvo.kvo_vn_fileid = 0; 2301 kvo.kvo_vn_fsid = 0; 2302 freepath = NULL; 2303 fullpath = ""; 2304 vp = NULL; 2305 switch (obj->type) { 2306 case OBJT_DEFAULT: 2307 kvo.kvo_type = KVME_TYPE_DEFAULT; 2308 break; 2309 case OBJT_VNODE: 2310 kvo.kvo_type = KVME_TYPE_VNODE; 2311 vp = obj->handle; 2312 vref(vp); 2313 break; 2314 case OBJT_SWAP: 2315 kvo.kvo_type = KVME_TYPE_SWAP; 2316 break; 2317 case OBJT_DEVICE: 2318 kvo.kvo_type = KVME_TYPE_DEVICE; 2319 break; 2320 case OBJT_PHYS: 2321 kvo.kvo_type = KVME_TYPE_PHYS; 2322 break; 2323 case OBJT_DEAD: 2324 kvo.kvo_type = KVME_TYPE_DEAD; 2325 break; 2326 case OBJT_SG: 2327 kvo.kvo_type = KVME_TYPE_SG; 2328 break; 2329 case OBJT_MGTDEVICE: 2330 kvo.kvo_type = KVME_TYPE_MGTDEVICE; 2331 break; 2332 default: 2333 kvo.kvo_type = KVME_TYPE_UNKNOWN; 2334 break; 2335 } 2336 VM_OBJECT_RUNLOCK(obj); 2337 if (vp != NULL) { 2338 vn_fullpath(curthread, vp, &fullpath, &freepath); 2339 vn_lock(vp, LK_SHARED | LK_RETRY); 2340 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2341 kvo.kvo_vn_fileid = va.va_fileid; 2342 kvo.kvo_vn_fsid = va.va_fsid; 2343 } 2344 vput(vp); 2345 } 2346 2347 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path)); 2348 if (freepath != NULL) 2349 free(freepath, M_TEMP); 2350 2351 /* Pack record size down */ 2352 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) + 2353 strlen(kvo.kvo_path) + 1; 2354 kvo.kvo_structsize = roundup(kvo.kvo_structsize, 2355 sizeof(uint64_t)); 2356 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize); 2357 mtx_lock(&vm_object_list_mtx); 2358 if (error) 2359 break; 2360 } 2361 mtx_unlock(&vm_object_list_mtx); 2362 return (error); 2363 } 2364 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2365 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2366 "List of VM objects"); 2367 2368 #include "opt_ddb.h" 2369 #ifdef DDB 2370 #include <sys/kernel.h> 2371 2372 #include <sys/cons.h> 2373 2374 #include <ddb/ddb.h> 2375 2376 static int 2377 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2378 { 2379 vm_map_t tmpm; 2380 vm_map_entry_t tmpe; 2381 vm_object_t obj; 2382 int entcount; 2383 2384 if (map == 0) 2385 return 0; 2386 2387 if (entry == 0) { 2388 tmpe = map->header.next; 2389 entcount = map->nentries; 2390 while (entcount-- && (tmpe != &map->header)) { 2391 if (_vm_object_in_map(map, object, tmpe)) { 2392 return 1; 2393 } 2394 tmpe = tmpe->next; 2395 } 2396 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2397 tmpm = entry->object.sub_map; 2398 tmpe = tmpm->header.next; 2399 entcount = tmpm->nentries; 2400 while (entcount-- && tmpe != &tmpm->header) { 2401 if (_vm_object_in_map(tmpm, object, tmpe)) { 2402 return 1; 2403 } 2404 tmpe = tmpe->next; 2405 } 2406 } else if ((obj = entry->object.vm_object) != NULL) { 2407 for (; obj; obj = obj->backing_object) 2408 if (obj == object) { 2409 return 1; 2410 } 2411 } 2412 return 0; 2413 } 2414 2415 static int 2416 vm_object_in_map(vm_object_t object) 2417 { 2418 struct proc *p; 2419 2420 /* sx_slock(&allproc_lock); */ 2421 FOREACH_PROC_IN_SYSTEM(p) { 2422 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2423 continue; 2424 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2425 /* sx_sunlock(&allproc_lock); */ 2426 return 1; 2427 } 2428 } 2429 /* sx_sunlock(&allproc_lock); */ 2430 if (_vm_object_in_map(kernel_map, object, 0)) 2431 return 1; 2432 return 0; 2433 } 2434 2435 DB_SHOW_COMMAND(vmochk, vm_object_check) 2436 { 2437 vm_object_t object; 2438 2439 /* 2440 * make sure that internal objs are in a map somewhere 2441 * and none have zero ref counts. 2442 */ 2443 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2444 if (object->handle == NULL && 2445 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2446 if (object->ref_count == 0) { 2447 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2448 (long)object->size); 2449 } 2450 if (!vm_object_in_map(object)) { 2451 db_printf( 2452 "vmochk: internal obj is not in a map: " 2453 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2454 object->ref_count, (u_long)object->size, 2455 (u_long)object->size, 2456 (void *)object->backing_object); 2457 } 2458 } 2459 } 2460 } 2461 2462 /* 2463 * vm_object_print: [ debug ] 2464 */ 2465 DB_SHOW_COMMAND(object, vm_object_print_static) 2466 { 2467 /* XXX convert args. */ 2468 vm_object_t object = (vm_object_t)addr; 2469 boolean_t full = have_addr; 2470 2471 vm_page_t p; 2472 2473 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2474 #define count was_count 2475 2476 int count; 2477 2478 if (object == NULL) 2479 return; 2480 2481 db_iprintf( 2482 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2483 object, (int)object->type, (uintmax_t)object->size, 2484 object->resident_page_count, object->ref_count, object->flags, 2485 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2486 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2487 object->shadow_count, 2488 object->backing_object ? object->backing_object->ref_count : 0, 2489 object->backing_object, (uintmax_t)object->backing_object_offset); 2490 2491 if (!full) 2492 return; 2493 2494 db_indent += 2; 2495 count = 0; 2496 TAILQ_FOREACH(p, &object->memq, listq) { 2497 if (count == 0) 2498 db_iprintf("memory:="); 2499 else if (count == 6) { 2500 db_printf("\n"); 2501 db_iprintf(" ..."); 2502 count = 0; 2503 } else 2504 db_printf(","); 2505 count++; 2506 2507 db_printf("(off=0x%jx,page=0x%jx)", 2508 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2509 } 2510 if (count != 0) 2511 db_printf("\n"); 2512 db_indent -= 2; 2513 } 2514 2515 /* XXX. */ 2516 #undef count 2517 2518 /* XXX need this non-static entry for calling from vm_map_print. */ 2519 void 2520 vm_object_print( 2521 /* db_expr_t */ long addr, 2522 boolean_t have_addr, 2523 /* db_expr_t */ long count, 2524 char *modif) 2525 { 2526 vm_object_print_static(addr, have_addr, count, modif); 2527 } 2528 2529 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2530 { 2531 vm_object_t object; 2532 vm_pindex_t fidx; 2533 vm_paddr_t pa; 2534 vm_page_t m, prev_m; 2535 int rcount, nl, c; 2536 2537 nl = 0; 2538 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2539 db_printf("new object: %p\n", (void *)object); 2540 if (nl > 18) { 2541 c = cngetc(); 2542 if (c != ' ') 2543 return; 2544 nl = 0; 2545 } 2546 nl++; 2547 rcount = 0; 2548 fidx = 0; 2549 pa = -1; 2550 TAILQ_FOREACH(m, &object->memq, listq) { 2551 if (m->pindex > 128) 2552 break; 2553 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2554 prev_m->pindex + 1 != m->pindex) { 2555 if (rcount) { 2556 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2557 (long)fidx, rcount, (long)pa); 2558 if (nl > 18) { 2559 c = cngetc(); 2560 if (c != ' ') 2561 return; 2562 nl = 0; 2563 } 2564 nl++; 2565 rcount = 0; 2566 } 2567 } 2568 if (rcount && 2569 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2570 ++rcount; 2571 continue; 2572 } 2573 if (rcount) { 2574 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2575 (long)fidx, rcount, (long)pa); 2576 if (nl > 18) { 2577 c = cngetc(); 2578 if (c != ' ') 2579 return; 2580 nl = 0; 2581 } 2582 nl++; 2583 } 2584 fidx = m->pindex; 2585 pa = VM_PAGE_TO_PHYS(m); 2586 rcount = 1; 2587 } 2588 if (rcount) { 2589 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2590 (long)fidx, rcount, (long)pa); 2591 if (nl > 18) { 2592 c = cngetc(); 2593 if (c != ' ') 2594 return; 2595 nl = 0; 2596 } 2597 nl++; 2598 } 2599 } 2600 } 2601 #endif /* DDB */ 2602