1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_object.c,v 1.165 1999/08/15 21:55:20 alc Exp $ 65 */ 66 67 /* 68 * Virtual memory object module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> /* for curproc, pageproc */ 74 #include <sys/vnode.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/swap_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_zone.h> 92 93 static void vm_object_qcollapse __P((vm_object_t object)); 94 95 /* 96 * Virtual memory objects maintain the actual data 97 * associated with allocated virtual memory. A given 98 * page of memory exists within exactly one object. 99 * 100 * An object is only deallocated when all "references" 101 * are given up. Only one "reference" to a given 102 * region of an object should be writeable. 103 * 104 * Associated with each object is a list of all resident 105 * memory pages belonging to that object; this list is 106 * maintained by the "vm_page" module, and locked by the object's 107 * lock. 108 * 109 * Each object also records a "pager" routine which is 110 * used to retrieve (and store) pages to the proper backing 111 * storage. In addition, objects may be backed by other 112 * objects from which they were virtual-copied. 113 * 114 * The only items within the object structure which are 115 * modified after time of creation are: 116 * reference count locked by object's lock 117 * pager routine locked by object's lock 118 * 119 */ 120 121 struct object_q vm_object_list; 122 #ifndef NULL_SIMPLELOCKS 123 static struct simplelock vm_object_list_lock; 124 #endif 125 static long vm_object_count; /* count of all objects */ 126 vm_object_t kernel_object; 127 vm_object_t kmem_object; 128 static struct vm_object kernel_object_store; 129 static struct vm_object kmem_object_store; 130 extern int vm_pageout_page_count; 131 132 static long object_collapses; 133 static long object_bypasses; 134 static int next_index; 135 static vm_zone_t obj_zone; 136 static struct vm_zone obj_zone_store; 137 static int object_hash_rand; 138 #define VM_OBJECTS_INIT 256 139 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 140 141 void 142 _vm_object_allocate(type, size, object) 143 objtype_t type; 144 vm_size_t size; 145 vm_object_t object; 146 { 147 int incr; 148 TAILQ_INIT(&object->memq); 149 TAILQ_INIT(&object->shadow_head); 150 151 object->type = type; 152 object->size = size; 153 object->ref_count = 1; 154 object->flags = 0; 155 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 156 vm_object_set_flag(object, OBJ_ONEMAPPING); 157 object->paging_in_progress = 0; 158 object->resident_page_count = 0; 159 object->shadow_count = 0; 160 object->pg_color = next_index; 161 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 162 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 163 else 164 incr = size; 165 next_index = (next_index + incr) & PQ_L2_MASK; 166 object->handle = NULL; 167 object->backing_object = NULL; 168 object->backing_object_offset = (vm_ooffset_t) 0; 169 /* 170 * Try to generate a number that will spread objects out in the 171 * hash table. We 'wipe' new objects across the hash in 128 page 172 * increments plus 1 more to offset it a little more by the time 173 * it wraps around. 174 */ 175 object->hash_rand = object_hash_rand - 129; 176 177 object->generation++; 178 179 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 180 vm_object_count++; 181 object_hash_rand = object->hash_rand; 182 } 183 184 /* 185 * vm_object_init: 186 * 187 * Initialize the VM objects module. 188 */ 189 void 190 vm_object_init() 191 { 192 TAILQ_INIT(&vm_object_list); 193 simple_lock_init(&vm_object_list_lock); 194 vm_object_count = 0; 195 196 kernel_object = &kernel_object_store; 197 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 198 kernel_object); 199 200 kmem_object = &kmem_object_store; 201 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 202 kmem_object); 203 204 obj_zone = &obj_zone_store; 205 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 206 vm_objects_init, VM_OBJECTS_INIT); 207 } 208 209 void 210 vm_object_init2() { 211 zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1); 212 } 213 214 /* 215 * vm_object_allocate: 216 * 217 * Returns a new object with the given size. 218 */ 219 220 vm_object_t 221 vm_object_allocate(type, size) 222 objtype_t type; 223 vm_size_t size; 224 { 225 vm_object_t result; 226 227 result = (vm_object_t) zalloc(obj_zone); 228 229 _vm_object_allocate(type, size, result); 230 231 return (result); 232 } 233 234 235 /* 236 * vm_object_reference: 237 * 238 * Gets another reference to the given object. 239 */ 240 void 241 vm_object_reference(object) 242 vm_object_t object; 243 { 244 if (object == NULL) 245 return; 246 247 KASSERT(!(object->flags & OBJ_DEAD), 248 ("vm_object_reference: attempting to reference dead obj")); 249 250 object->ref_count++; 251 if (object->type == OBJT_VNODE) { 252 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) { 253 #if !defined(MAX_PERF) 254 printf("vm_object_reference: delay in getting object\n"); 255 #endif 256 } 257 } 258 } 259 260 void 261 vm_object_vndeallocate(object) 262 vm_object_t object; 263 { 264 struct vnode *vp = (struct vnode *) object->handle; 265 266 KASSERT(object->type == OBJT_VNODE, 267 ("vm_object_vndeallocate: not a vnode object")); 268 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 269 #ifdef INVARIANTS 270 if (object->ref_count == 0) { 271 vprint("vm_object_vndeallocate", vp); 272 panic("vm_object_vndeallocate: bad object reference count"); 273 } 274 #endif 275 276 object->ref_count--; 277 if (object->ref_count == 0) { 278 vp->v_flag &= ~VTEXT; 279 vm_object_clear_flag(object, OBJ_OPT); 280 } 281 vrele(vp); 282 } 283 284 /* 285 * vm_object_deallocate: 286 * 287 * Release a reference to the specified object, 288 * gained either through a vm_object_allocate 289 * or a vm_object_reference call. When all references 290 * are gone, storage associated with this object 291 * may be relinquished. 292 * 293 * No object may be locked. 294 */ 295 void 296 vm_object_deallocate(object) 297 vm_object_t object; 298 { 299 vm_object_t temp; 300 301 while (object != NULL) { 302 303 if (object->type == OBJT_VNODE) { 304 vm_object_vndeallocate(object); 305 return; 306 } 307 308 if (object->ref_count == 0) { 309 panic("vm_object_deallocate: object deallocated too many times: %d", object->type); 310 } else if (object->ref_count > 2) { 311 object->ref_count--; 312 return; 313 } 314 315 /* 316 * Here on ref_count of one or two, which are special cases for 317 * objects. 318 */ 319 if ((object->ref_count == 2) && (object->shadow_count == 0)) { 320 vm_object_set_flag(object, OBJ_ONEMAPPING); 321 object->ref_count--; 322 return; 323 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) { 324 object->ref_count--; 325 if ((object->handle == NULL) && 326 (object->type == OBJT_DEFAULT || 327 object->type == OBJT_SWAP)) { 328 vm_object_t robject; 329 330 robject = TAILQ_FIRST(&object->shadow_head); 331 KASSERT(robject != NULL, 332 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 333 object->ref_count, 334 object->shadow_count)); 335 if ((robject->handle == NULL) && 336 (robject->type == OBJT_DEFAULT || 337 robject->type == OBJT_SWAP)) { 338 339 robject->ref_count++; 340 341 while ( 342 robject->paging_in_progress || 343 object->paging_in_progress 344 ) { 345 vm_object_pip_sleep(robject, "objde1"); 346 vm_object_pip_sleep(object, "objde2"); 347 } 348 349 if (robject->ref_count == 1) { 350 robject->ref_count--; 351 object = robject; 352 goto doterm; 353 } 354 355 object = robject; 356 vm_object_collapse(object); 357 continue; 358 } 359 } 360 361 return; 362 363 } else { 364 object->ref_count--; 365 if (object->ref_count != 0) 366 return; 367 } 368 369 doterm: 370 371 temp = object->backing_object; 372 if (temp) { 373 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list); 374 temp->shadow_count--; 375 if (temp->ref_count == 0) 376 vm_object_clear_flag(temp, OBJ_OPT); 377 temp->generation++; 378 object->backing_object = NULL; 379 } 380 vm_object_terminate(object); 381 /* unlocks and deallocates object */ 382 object = temp; 383 } 384 } 385 386 /* 387 * vm_object_terminate actually destroys the specified object, freeing 388 * up all previously used resources. 389 * 390 * The object must be locked. 391 * This routine may block. 392 */ 393 void 394 vm_object_terminate(object) 395 vm_object_t object; 396 { 397 vm_page_t p; 398 int s; 399 400 /* 401 * Make sure no one uses us. 402 */ 403 vm_object_set_flag(object, OBJ_DEAD); 404 405 /* 406 * wait for the pageout daemon to be done with the object 407 */ 408 vm_object_pip_wait(object, "objtrm"); 409 410 KASSERT(!object->paging_in_progress, 411 ("vm_object_terminate: pageout in progress")); 412 413 /* 414 * Clean and free the pages, as appropriate. All references to the 415 * object are gone, so we don't need to lock it. 416 */ 417 if (object->type == OBJT_VNODE) { 418 struct vnode *vp; 419 420 /* 421 * Freeze optimized copies. 422 */ 423 vm_freeze_copyopts(object, 0, object->size); 424 425 /* 426 * Clean pages and flush buffers. 427 */ 428 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 429 430 vp = (struct vnode *) object->handle; 431 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0); 432 } 433 434 if (object->ref_count != 0) 435 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count); 436 437 /* 438 * Now free any remaining pages. For internal objects, this also 439 * removes them from paging queues. Don't free wired pages, just 440 * remove them from the object. 441 */ 442 s = splvm(); 443 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 444 #if !defined(MAX_PERF) 445 if (p->busy || (p->flags & PG_BUSY)) 446 panic("vm_object_terminate: freeing busy page %p\n", p); 447 #endif 448 if (p->wire_count == 0) { 449 vm_page_busy(p); 450 vm_page_free(p); 451 cnt.v_pfree++; 452 } else { 453 vm_page_busy(p); 454 vm_page_remove(p); 455 } 456 } 457 splx(s); 458 459 /* 460 * Let the pager know object is dead. 461 */ 462 vm_pager_deallocate(object); 463 464 /* 465 * Remove the object from the global object list. 466 */ 467 simple_lock(&vm_object_list_lock); 468 TAILQ_REMOVE(&vm_object_list, object, object_list); 469 simple_unlock(&vm_object_list_lock); 470 471 wakeup(object); 472 473 /* 474 * Free the space for the object. 475 */ 476 zfree(obj_zone, object); 477 } 478 479 /* 480 * vm_object_page_clean 481 * 482 * Clean all dirty pages in the specified range of object. 483 * Leaves page on whatever queue it is currently on. 484 * 485 * Odd semantics: if start == end, we clean everything. 486 * 487 * The object must be locked. 488 */ 489 490 void 491 vm_object_page_clean(object, start, end, flags) 492 vm_object_t object; 493 vm_pindex_t start; 494 vm_pindex_t end; 495 int flags; 496 { 497 vm_page_t p, np, tp; 498 vm_offset_t tstart, tend; 499 vm_pindex_t pi; 500 int s; 501 struct vnode *vp; 502 int runlen; 503 int maxf; 504 int chkb; 505 int maxb; 506 int i; 507 int pagerflags; 508 vm_page_t maf[vm_pageout_page_count]; 509 vm_page_t mab[vm_pageout_page_count]; 510 vm_page_t ma[vm_pageout_page_count]; 511 int curgeneration; 512 513 if (object->type != OBJT_VNODE || 514 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 515 return; 516 517 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0; 518 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 519 520 vp = object->handle; 521 522 vm_object_set_flag(object, OBJ_CLEANING); 523 524 tstart = start; 525 if (end == 0) { 526 tend = object->size; 527 } else { 528 tend = end; 529 } 530 531 for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) { 532 vm_page_flag_set(p, PG_CLEANCHK); 533 vm_page_protect(p, VM_PROT_READ); 534 } 535 536 if ((tstart == 0) && (tend == object->size)) { 537 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 538 } 539 540 rescan: 541 curgeneration = object->generation; 542 543 for(p = TAILQ_FIRST(&object->memq); p; p = np) { 544 np = TAILQ_NEXT(p, listq); 545 546 pi = p->pindex; 547 if (((p->flags & PG_CLEANCHK) == 0) || 548 (pi < tstart) || (pi >= tend) || 549 (p->valid == 0) || 550 ((p->queue - p->pc) == PQ_CACHE)) { 551 vm_page_flag_clear(p, PG_CLEANCHK); 552 continue; 553 } 554 555 vm_page_test_dirty(p); 556 if ((p->dirty & p->valid) == 0) { 557 vm_page_flag_clear(p, PG_CLEANCHK); 558 continue; 559 } 560 561 s = splvm(); 562 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) { 563 if (object->generation != curgeneration) { 564 splx(s); 565 goto rescan; 566 } 567 } 568 569 maxf = 0; 570 for(i=1;i<vm_pageout_page_count;i++) { 571 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 572 if ((tp->flags & PG_BUSY) || 573 (tp->flags & PG_CLEANCHK) == 0 || 574 (tp->busy != 0)) 575 break; 576 if((tp->queue - tp->pc) == PQ_CACHE) { 577 vm_page_flag_clear(tp, PG_CLEANCHK); 578 break; 579 } 580 vm_page_test_dirty(tp); 581 if ((tp->dirty & tp->valid) == 0) { 582 vm_page_flag_clear(tp, PG_CLEANCHK); 583 break; 584 } 585 maf[ i - 1 ] = tp; 586 maxf++; 587 continue; 588 } 589 break; 590 } 591 592 maxb = 0; 593 chkb = vm_pageout_page_count - maxf; 594 if (chkb) { 595 for(i = 1; i < chkb;i++) { 596 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 597 if ((tp->flags & PG_BUSY) || 598 (tp->flags & PG_CLEANCHK) == 0 || 599 (tp->busy != 0)) 600 break; 601 if((tp->queue - tp->pc) == PQ_CACHE) { 602 vm_page_flag_clear(tp, PG_CLEANCHK); 603 break; 604 } 605 vm_page_test_dirty(tp); 606 if ((tp->dirty & tp->valid) == 0) { 607 vm_page_flag_clear(tp, PG_CLEANCHK); 608 break; 609 } 610 mab[ i - 1 ] = tp; 611 maxb++; 612 continue; 613 } 614 break; 615 } 616 } 617 618 for(i=0;i<maxb;i++) { 619 int index = (maxb - i) - 1; 620 ma[index] = mab[i]; 621 vm_page_flag_clear(ma[index], PG_CLEANCHK); 622 } 623 vm_page_flag_clear(p, PG_CLEANCHK); 624 ma[maxb] = p; 625 for(i=0;i<maxf;i++) { 626 int index = (maxb + i) + 1; 627 ma[index] = maf[i]; 628 vm_page_flag_clear(ma[index], PG_CLEANCHK); 629 } 630 runlen = maxb + maxf + 1; 631 632 splx(s); 633 vm_pageout_flush(ma, runlen, pagerflags); 634 for (i = 0; i<runlen; i++) { 635 if (ma[i]->valid & ma[i]->dirty) { 636 vm_page_protect(ma[i], VM_PROT_READ); 637 vm_page_flag_set(ma[i], PG_CLEANCHK); 638 } 639 } 640 if (object->generation != curgeneration) 641 goto rescan; 642 } 643 644 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 645 646 vm_object_clear_flag(object, OBJ_CLEANING); 647 return; 648 } 649 650 #ifdef not_used 651 /* XXX I cannot tell if this should be an exported symbol */ 652 /* 653 * vm_object_deactivate_pages 654 * 655 * Deactivate all pages in the specified object. (Keep its pages 656 * in memory even though it is no longer referenced.) 657 * 658 * The object must be locked. 659 */ 660 static void 661 vm_object_deactivate_pages(object) 662 vm_object_t object; 663 { 664 vm_page_t p, next; 665 666 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 667 next = TAILQ_NEXT(p, listq); 668 vm_page_deactivate(p); 669 } 670 } 671 #endif 672 673 /* 674 * Same as vm_object_pmap_copy, except range checking really 675 * works, and is meant for small sections of an object. 676 * 677 * This code protects resident pages by making them read-only 678 * and is typically called on a fork or split when a page 679 * is converted to copy-on-write. 680 * 681 * NOTE: If the page is already at VM_PROT_NONE, calling 682 * vm_page_protect will have no effect. 683 */ 684 685 void 686 vm_object_pmap_copy_1(object, start, end) 687 vm_object_t object; 688 vm_pindex_t start; 689 vm_pindex_t end; 690 { 691 vm_pindex_t idx; 692 vm_page_t p; 693 694 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 695 return; 696 697 for (idx = start; idx < end; idx++) { 698 p = vm_page_lookup(object, idx); 699 if (p == NULL) 700 continue; 701 vm_page_protect(p, VM_PROT_READ); 702 } 703 } 704 705 /* 706 * vm_object_pmap_remove: 707 * 708 * Removes all physical pages in the specified 709 * object range from all physical maps. 710 * 711 * The object must *not* be locked. 712 */ 713 void 714 vm_object_pmap_remove(object, start, end) 715 vm_object_t object; 716 vm_pindex_t start; 717 vm_pindex_t end; 718 { 719 vm_page_t p; 720 721 if (object == NULL) 722 return; 723 for (p = TAILQ_FIRST(&object->memq); 724 p != NULL; 725 p = TAILQ_NEXT(p, listq)) { 726 if (p->pindex >= start && p->pindex < end) 727 vm_page_protect(p, VM_PROT_NONE); 728 } 729 if ((start == 0) && (object->size == end)) 730 vm_object_clear_flag(object, OBJ_WRITEABLE); 731 } 732 733 /* 734 * vm_object_madvise: 735 * 736 * Implements the madvise function at the object/page level. 737 * 738 * MADV_WILLNEED (any object) 739 * 740 * Activate the specified pages if they are resident. 741 * 742 * MADV_DONTNEED (any object) 743 * 744 * Deactivate the specified pages if they are resident. 745 * 746 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 747 * OBJ_ONEMAPPING only) 748 * 749 * Deactivate and clean the specified pages if they are 750 * resident. This permits the process to reuse the pages 751 * without faulting or the kernel to reclaim the pages 752 * without I/O. 753 */ 754 void 755 vm_object_madvise(object, pindex, count, advise) 756 vm_object_t object; 757 vm_pindex_t pindex; 758 int count; 759 int advise; 760 { 761 vm_pindex_t end, tpindex; 762 vm_object_t tobject; 763 vm_page_t m; 764 765 if (object == NULL) 766 return; 767 768 end = pindex + count; 769 770 /* 771 * Locate and adjust resident pages 772 */ 773 774 for (; pindex < end; pindex += 1) { 775 relookup: 776 tobject = object; 777 tpindex = pindex; 778 shadowlookup: 779 /* 780 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 781 * and those pages must be OBJ_ONEMAPPING. 782 */ 783 if (advise == MADV_FREE) { 784 if ((tobject->type != OBJT_DEFAULT && 785 tobject->type != OBJT_SWAP) || 786 (tobject->flags & OBJ_ONEMAPPING) == 0) { 787 continue; 788 } 789 } 790 791 m = vm_page_lookup(tobject, tpindex); 792 793 if (m == NULL) { 794 /* 795 * There may be swap even if there is no backing page 796 */ 797 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 798 swap_pager_freespace(tobject, tpindex, 1); 799 800 /* 801 * next object 802 */ 803 tobject = tobject->backing_object; 804 if (tobject == NULL) 805 continue; 806 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 807 goto shadowlookup; 808 } 809 810 /* 811 * If the page is busy or not in a normal active state, 812 * we skip it. Things can break if we mess with pages 813 * in any of the below states. 814 */ 815 if ( 816 m->hold_count || 817 m->wire_count || 818 m->valid != VM_PAGE_BITS_ALL 819 ) { 820 continue; 821 } 822 823 if (vm_page_sleep_busy(m, TRUE, "madvpo")) 824 goto relookup; 825 826 if (advise == MADV_WILLNEED) { 827 vm_page_activate(m); 828 } else if (advise == MADV_DONTNEED) { 829 vm_page_deactivate(m); 830 } else if (advise == MADV_FREE) { 831 /* 832 * Mark the page clean. This will allow the page 833 * to be freed up by the system. However, such pages 834 * are often reused quickly by malloc()/free() 835 * so we do not do anything that would cause 836 * a page fault if we can help it. 837 * 838 * Specifically, we do not try to actually free 839 * the page now nor do we try to put it in the 840 * cache (which would cause a page fault on reuse). 841 * 842 * But we do make the page is freeable as we 843 * can without actually taking the step of unmapping 844 * it. 845 */ 846 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 847 m->dirty = 0; 848 m->act_count = 0; 849 vm_page_deactivate(m); 850 if (tobject->type == OBJT_SWAP) 851 swap_pager_freespace(tobject, tpindex, 1); 852 } 853 } 854 } 855 856 /* 857 * vm_object_shadow: 858 * 859 * Create a new object which is backed by the 860 * specified existing object range. The source 861 * object reference is deallocated. 862 * 863 * The new object and offset into that object 864 * are returned in the source parameters. 865 */ 866 867 void 868 vm_object_shadow(object, offset, length) 869 vm_object_t *object; /* IN/OUT */ 870 vm_ooffset_t *offset; /* IN/OUT */ 871 vm_size_t length; 872 { 873 vm_object_t source; 874 vm_object_t result; 875 876 source = *object; 877 878 /* 879 * Don't create the new object if the old object isn't shared. 880 */ 881 882 if (source != NULL && 883 source->ref_count == 1 && 884 source->handle == NULL && 885 (source->type == OBJT_DEFAULT || 886 source->type == OBJT_SWAP)) 887 return; 888 889 KASSERT((source->flags & OBJ_ONEMAPPING) == 0, 890 ("vm_object_shadow: source object has OBJ_ONEMAPPING set.\n")); 891 892 /* 893 * Allocate a new object with the given length 894 */ 895 896 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 897 panic("vm_object_shadow: no object for shadowing"); 898 899 /* 900 * The new object shadows the source object, adding a reference to it. 901 * Our caller changes his reference to point to the new object, 902 * removing a reference to the source object. Net result: no change 903 * of reference count. 904 * 905 * Try to optimize the result object's page color when shadowing 906 * in order to maintain page coloring consistancy in the combined 907 * shadowed object. 908 */ 909 result->backing_object = source; 910 if (source) { 911 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list); 912 source->shadow_count++; 913 source->generation++; 914 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK; 915 } 916 917 /* 918 * Store the offset into the source object, and fix up the offset into 919 * the new object. 920 */ 921 922 result->backing_object_offset = *offset; 923 924 /* 925 * Return the new things 926 */ 927 928 *offset = 0; 929 *object = result; 930 } 931 932 #define OBSC_TEST_ALL_SHADOWED 0x0001 933 #define OBSC_COLLAPSE_NOWAIT 0x0002 934 #define OBSC_COLLAPSE_WAIT 0x0004 935 936 static __inline int 937 vm_object_backing_scan(vm_object_t object, int op) 938 { 939 int s; 940 int r = 1; 941 vm_page_t p; 942 vm_object_t backing_object; 943 vm_pindex_t backing_offset_index; 944 945 s = splvm(); 946 947 backing_object = object->backing_object; 948 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 949 950 /* 951 * Initial conditions 952 */ 953 954 if (op & OBSC_TEST_ALL_SHADOWED) { 955 /* 956 * We do not want to have to test for the existance of 957 * swap pages in the backing object. XXX but with the 958 * new swapper this would be pretty easy to do. 959 * 960 * XXX what about anonymous MAP_SHARED memory that hasn't 961 * been ZFOD faulted yet? If we do not test for this, the 962 * shadow test may succeed! XXX 963 */ 964 if (backing_object->type != OBJT_DEFAULT) { 965 splx(s); 966 return(0); 967 } 968 } 969 if (op & OBSC_COLLAPSE_WAIT) { 970 vm_object_set_flag(backing_object, OBJ_DEAD); 971 } 972 973 /* 974 * Our scan 975 */ 976 977 p = TAILQ_FIRST(&backing_object->memq); 978 while (p) { 979 vm_page_t next = TAILQ_NEXT(p, listq); 980 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 981 982 if (op & OBSC_TEST_ALL_SHADOWED) { 983 vm_page_t pp; 984 985 /* 986 * Ignore pages outside the parent object's range 987 * and outside the parent object's mapping of the 988 * backing object. 989 * 990 * note that we do not busy the backing object's 991 * page. 992 */ 993 994 if ( 995 p->pindex < backing_offset_index || 996 new_pindex >= object->size 997 ) { 998 p = next; 999 continue; 1000 } 1001 1002 /* 1003 * See if the parent has the page or if the parent's 1004 * object pager has the page. If the parent has the 1005 * page but the page is not valid, the parent's 1006 * object pager must have the page. 1007 * 1008 * If this fails, the parent does not completely shadow 1009 * the object and we might as well give up now. 1010 */ 1011 1012 pp = vm_page_lookup(object, new_pindex); 1013 if ( 1014 (pp == NULL || pp->valid == 0) && 1015 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1016 ) { 1017 r = 0; 1018 break; 1019 } 1020 } 1021 1022 /* 1023 * Check for busy page 1024 */ 1025 1026 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1027 vm_page_t pp; 1028 1029 if (op & OBSC_COLLAPSE_NOWAIT) { 1030 if ( 1031 (p->flags & PG_BUSY) || 1032 !p->valid || 1033 p->hold_count || 1034 p->wire_count || 1035 p->busy 1036 ) { 1037 p = next; 1038 continue; 1039 } 1040 } else if (op & OBSC_COLLAPSE_WAIT) { 1041 if (vm_page_sleep_busy(p, TRUE, "vmocol")) { 1042 /* 1043 * If we slept, anything could have 1044 * happened. Since the object is 1045 * marked dead, the backing offset 1046 * should not have changed so we 1047 * just restart our scan. 1048 */ 1049 p = TAILQ_FIRST(&backing_object->memq); 1050 continue; 1051 } 1052 } 1053 1054 /* 1055 * Busy the page 1056 */ 1057 vm_page_busy(p); 1058 1059 KASSERT( 1060 p->object == backing_object, 1061 ("vm_object_qcollapse(): object mismatch") 1062 ); 1063 1064 /* 1065 * Destroy any associated swap 1066 */ 1067 if (backing_object->type == OBJT_SWAP) { 1068 swap_pager_freespace( 1069 backing_object, 1070 p->pindex, 1071 1 1072 ); 1073 } 1074 1075 if ( 1076 p->pindex < backing_offset_index || 1077 new_pindex >= object->size 1078 ) { 1079 /* 1080 * Page is out of the parent object's range, we 1081 * can simply destroy it. 1082 */ 1083 vm_page_protect(p, VM_PROT_NONE); 1084 vm_page_free(p); 1085 p = next; 1086 continue; 1087 } 1088 1089 pp = vm_page_lookup(object, new_pindex); 1090 if ( 1091 pp != NULL || 1092 vm_pager_has_page(object, new_pindex, NULL, NULL) 1093 ) { 1094 /* 1095 * page already exists in parent OR swap exists 1096 * for this location in the parent. Destroy 1097 * the original page from the backing object. 1098 * 1099 * Leave the parent's page alone 1100 */ 1101 vm_page_protect(p, VM_PROT_NONE); 1102 vm_page_free(p); 1103 p = next; 1104 continue; 1105 } 1106 1107 /* 1108 * Page does not exist in parent, rename the 1109 * page from the backing object to the main object. 1110 * 1111 * If the page was mapped to a process, it can remain 1112 * mapped through the rename. 1113 */ 1114 if ((p->queue - p->pc) == PQ_CACHE) 1115 vm_page_deactivate(p); 1116 1117 vm_page_rename(p, object, new_pindex); 1118 /* page automatically made dirty by rename */ 1119 } 1120 p = next; 1121 } 1122 splx(s); 1123 return(r); 1124 } 1125 1126 1127 /* 1128 * this version of collapse allows the operation to occur earlier and 1129 * when paging_in_progress is true for an object... This is not a complete 1130 * operation, but should plug 99.9% of the rest of the leaks. 1131 */ 1132 static void 1133 vm_object_qcollapse(object) 1134 vm_object_t object; 1135 { 1136 vm_object_t backing_object = object->backing_object; 1137 1138 if (backing_object->ref_count != 1) 1139 return; 1140 1141 backing_object->ref_count += 2; 1142 1143 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1144 1145 backing_object->ref_count -= 2; 1146 } 1147 1148 /* 1149 * vm_object_collapse: 1150 * 1151 * Collapse an object with the object backing it. 1152 * Pages in the backing object are moved into the 1153 * parent, and the backing object is deallocated. 1154 */ 1155 void 1156 vm_object_collapse(object) 1157 vm_object_t object; 1158 { 1159 while (TRUE) { 1160 vm_object_t backing_object; 1161 1162 /* 1163 * Verify that the conditions are right for collapse: 1164 * 1165 * The object exists and the backing object exists. 1166 */ 1167 if (object == NULL) 1168 break; 1169 1170 if ((backing_object = object->backing_object) == NULL) 1171 break; 1172 1173 /* 1174 * we check the backing object first, because it is most likely 1175 * not collapsable. 1176 */ 1177 if (backing_object->handle != NULL || 1178 (backing_object->type != OBJT_DEFAULT && 1179 backing_object->type != OBJT_SWAP) || 1180 (backing_object->flags & OBJ_DEAD) || 1181 object->handle != NULL || 1182 (object->type != OBJT_DEFAULT && 1183 object->type != OBJT_SWAP) || 1184 (object->flags & OBJ_DEAD)) { 1185 break; 1186 } 1187 1188 if ( 1189 object->paging_in_progress != 0 || 1190 backing_object->paging_in_progress != 0 1191 ) { 1192 vm_object_qcollapse(object); 1193 break; 1194 } 1195 1196 /* 1197 * We know that we can either collapse the backing object (if 1198 * the parent is the only reference to it) or (perhaps) have 1199 * the parent bypass the object if the parent happens to shadow 1200 * all the resident pages in the entire backing object. 1201 * 1202 * This is ignoring pager-backed pages such as swap pages. 1203 * vm_object_backing_scan fails the shadowing test in this 1204 * case. 1205 */ 1206 1207 if (backing_object->ref_count == 1) { 1208 /* 1209 * If there is exactly one reference to the backing 1210 * object, we can collapse it into the parent. 1211 */ 1212 1213 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1214 1215 /* 1216 * Move the pager from backing_object to object. 1217 */ 1218 1219 if (backing_object->type == OBJT_SWAP) { 1220 vm_object_pip_add(backing_object, 1); 1221 1222 /* 1223 * scrap the paging_offset junk and do a 1224 * discrete copy. This also removes major 1225 * assumptions about how the swap-pager 1226 * works from where it doesn't belong. The 1227 * new swapper is able to optimize the 1228 * destroy-source case. 1229 */ 1230 1231 vm_object_pip_add(object, 1); 1232 swap_pager_copy( 1233 backing_object, 1234 object, 1235 OFF_TO_IDX(object->backing_object_offset), TRUE); 1236 vm_object_pip_wakeup(object); 1237 1238 vm_object_pip_wakeup(backing_object); 1239 } 1240 /* 1241 * Object now shadows whatever backing_object did. 1242 * Note that the reference to 1243 * backing_object->backing_object moves from within 1244 * backing_object to within object. 1245 */ 1246 1247 TAILQ_REMOVE( 1248 &object->backing_object->shadow_head, 1249 object, 1250 shadow_list 1251 ); 1252 object->backing_object->shadow_count--; 1253 object->backing_object->generation++; 1254 if (backing_object->backing_object) { 1255 TAILQ_REMOVE( 1256 &backing_object->backing_object->shadow_head, 1257 backing_object, 1258 shadow_list 1259 ); 1260 backing_object->backing_object->shadow_count--; 1261 backing_object->backing_object->generation++; 1262 } 1263 object->backing_object = backing_object->backing_object; 1264 if (object->backing_object) { 1265 TAILQ_INSERT_TAIL( 1266 &object->backing_object->shadow_head, 1267 object, 1268 shadow_list 1269 ); 1270 object->backing_object->shadow_count++; 1271 object->backing_object->generation++; 1272 } 1273 1274 object->backing_object_offset += 1275 backing_object->backing_object_offset; 1276 1277 /* 1278 * Discard backing_object. 1279 * 1280 * Since the backing object has no pages, no pager left, 1281 * and no object references within it, all that is 1282 * necessary is to dispose of it. 1283 */ 1284 1285 TAILQ_REMOVE( 1286 &vm_object_list, 1287 backing_object, 1288 object_list 1289 ); 1290 vm_object_count--; 1291 1292 zfree(obj_zone, backing_object); 1293 1294 object_collapses++; 1295 } else { 1296 vm_object_t new_backing_object; 1297 1298 /* 1299 * If we do not entirely shadow the backing object, 1300 * there is nothing we can do so we give up. 1301 */ 1302 1303 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1304 break; 1305 } 1306 1307 /* 1308 * Make the parent shadow the next object in the 1309 * chain. Deallocating backing_object will not remove 1310 * it, since its reference count is at least 2. 1311 */ 1312 1313 TAILQ_REMOVE( 1314 &backing_object->shadow_head, 1315 object, 1316 shadow_list 1317 ); 1318 backing_object->shadow_count--; 1319 backing_object->generation++; 1320 1321 new_backing_object = backing_object->backing_object; 1322 if ((object->backing_object = new_backing_object) != NULL) { 1323 vm_object_reference(new_backing_object); 1324 TAILQ_INSERT_TAIL( 1325 &new_backing_object->shadow_head, 1326 object, 1327 shadow_list 1328 ); 1329 new_backing_object->shadow_count++; 1330 new_backing_object->generation++; 1331 object->backing_object_offset += 1332 backing_object->backing_object_offset; 1333 } 1334 1335 /* 1336 * Drop the reference count on backing_object. Since 1337 * its ref_count was at least 2, it will not vanish; 1338 * so we don't need to call vm_object_deallocate, but 1339 * we do anyway. 1340 */ 1341 vm_object_deallocate(backing_object); 1342 object_bypasses++; 1343 } 1344 1345 /* 1346 * Try again with this object's new backing object. 1347 */ 1348 } 1349 } 1350 1351 /* 1352 * vm_object_page_remove: [internal] 1353 * 1354 * Removes all physical pages in the specified 1355 * object range from the object's list of pages. 1356 * 1357 * The object must be locked. 1358 */ 1359 void 1360 vm_object_page_remove(object, start, end, clean_only) 1361 vm_object_t object; 1362 vm_pindex_t start; 1363 vm_pindex_t end; 1364 boolean_t clean_only; 1365 { 1366 vm_page_t p, next; 1367 unsigned int size; 1368 int all; 1369 1370 if (object == NULL || 1371 object->resident_page_count == 0) 1372 return; 1373 1374 all = ((end == 0) && (start == 0)); 1375 1376 vm_object_pip_add(object, 1); 1377 again: 1378 size = end - start; 1379 if (all || size > object->resident_page_count / 4) { 1380 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 1381 next = TAILQ_NEXT(p, listq); 1382 if (all || ((start <= p->pindex) && (p->pindex < end))) { 1383 if (p->wire_count != 0) { 1384 vm_page_protect(p, VM_PROT_NONE); 1385 if (!clean_only) 1386 p->valid = 0; 1387 continue; 1388 } 1389 1390 /* 1391 * The busy flags are only cleared at 1392 * interrupt -- minimize the spl transitions 1393 */ 1394 1395 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1396 goto again; 1397 1398 if (clean_only && p->valid) { 1399 vm_page_test_dirty(p); 1400 if (p->valid & p->dirty) 1401 continue; 1402 } 1403 1404 vm_page_busy(p); 1405 vm_page_protect(p, VM_PROT_NONE); 1406 vm_page_free(p); 1407 } 1408 } 1409 } else { 1410 while (size > 0) { 1411 if ((p = vm_page_lookup(object, start)) != 0) { 1412 1413 if (p->wire_count != 0) { 1414 vm_page_protect(p, VM_PROT_NONE); 1415 if (!clean_only) 1416 p->valid = 0; 1417 start += 1; 1418 size -= 1; 1419 continue; 1420 } 1421 1422 /* 1423 * The busy flags are only cleared at 1424 * interrupt -- minimize the spl transitions 1425 */ 1426 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1427 goto again; 1428 1429 if (clean_only && p->valid) { 1430 vm_page_test_dirty(p); 1431 if (p->valid & p->dirty) { 1432 start += 1; 1433 size -= 1; 1434 continue; 1435 } 1436 } 1437 1438 vm_page_busy(p); 1439 vm_page_protect(p, VM_PROT_NONE); 1440 vm_page_free(p); 1441 } 1442 start += 1; 1443 size -= 1; 1444 } 1445 } 1446 vm_object_pip_wakeup(object); 1447 } 1448 1449 /* 1450 * Routine: vm_object_coalesce 1451 * Function: Coalesces two objects backing up adjoining 1452 * regions of memory into a single object. 1453 * 1454 * returns TRUE if objects were combined. 1455 * 1456 * NOTE: Only works at the moment if the second object is NULL - 1457 * if it's not, which object do we lock first? 1458 * 1459 * Parameters: 1460 * prev_object First object to coalesce 1461 * prev_offset Offset into prev_object 1462 * next_object Second object into coalesce 1463 * next_offset Offset into next_object 1464 * 1465 * prev_size Size of reference to prev_object 1466 * next_size Size of reference to next_object 1467 * 1468 * Conditions: 1469 * The object must *not* be locked. 1470 */ 1471 boolean_t 1472 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size) 1473 vm_object_t prev_object; 1474 vm_pindex_t prev_pindex; 1475 vm_size_t prev_size, next_size; 1476 { 1477 vm_pindex_t next_pindex; 1478 1479 if (prev_object == NULL) { 1480 return (TRUE); 1481 } 1482 1483 if (prev_object->type != OBJT_DEFAULT && 1484 prev_object->type != OBJT_SWAP) { 1485 return (FALSE); 1486 } 1487 1488 /* 1489 * Try to collapse the object first 1490 */ 1491 vm_object_collapse(prev_object); 1492 1493 /* 1494 * Can't coalesce if: . more than one reference . paged out . shadows 1495 * another object . has a copy elsewhere (any of which mean that the 1496 * pages not mapped to prev_entry may be in use anyway) 1497 */ 1498 1499 if (prev_object->backing_object != NULL) { 1500 return (FALSE); 1501 } 1502 1503 prev_size >>= PAGE_SHIFT; 1504 next_size >>= PAGE_SHIFT; 1505 next_pindex = prev_pindex + prev_size; 1506 1507 if ((prev_object->ref_count > 1) && 1508 (prev_object->size != next_pindex)) { 1509 return (FALSE); 1510 } 1511 1512 /* 1513 * Remove any pages that may still be in the object from a previous 1514 * deallocation. 1515 */ 1516 if (next_pindex < prev_object->size) { 1517 vm_object_page_remove(prev_object, 1518 next_pindex, 1519 next_pindex + next_size, FALSE); 1520 if (prev_object->type == OBJT_SWAP) 1521 swap_pager_freespace(prev_object, 1522 next_pindex, next_size); 1523 } 1524 1525 /* 1526 * Extend the object if necessary. 1527 */ 1528 if (next_pindex + next_size > prev_object->size) 1529 prev_object->size = next_pindex + next_size; 1530 1531 return (TRUE); 1532 } 1533 1534 #include "opt_ddb.h" 1535 #ifdef DDB 1536 #include <sys/kernel.h> 1537 1538 #include <sys/cons.h> 1539 1540 #include <ddb/ddb.h> 1541 1542 static int _vm_object_in_map __P((vm_map_t map, vm_object_t object, 1543 vm_map_entry_t entry)); 1544 static int vm_object_in_map __P((vm_object_t object)); 1545 1546 static int 1547 _vm_object_in_map(map, object, entry) 1548 vm_map_t map; 1549 vm_object_t object; 1550 vm_map_entry_t entry; 1551 { 1552 vm_map_t tmpm; 1553 vm_map_entry_t tmpe; 1554 vm_object_t obj; 1555 int entcount; 1556 1557 if (map == 0) 1558 return 0; 1559 1560 if (entry == 0) { 1561 tmpe = map->header.next; 1562 entcount = map->nentries; 1563 while (entcount-- && (tmpe != &map->header)) { 1564 if( _vm_object_in_map(map, object, tmpe)) { 1565 return 1; 1566 } 1567 tmpe = tmpe->next; 1568 } 1569 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1570 tmpm = entry->object.sub_map; 1571 tmpe = tmpm->header.next; 1572 entcount = tmpm->nentries; 1573 while (entcount-- && tmpe != &tmpm->header) { 1574 if( _vm_object_in_map(tmpm, object, tmpe)) { 1575 return 1; 1576 } 1577 tmpe = tmpe->next; 1578 } 1579 } else if ((obj = entry->object.vm_object) != NULL) { 1580 for(; obj; obj=obj->backing_object) 1581 if( obj == object) { 1582 return 1; 1583 } 1584 } 1585 return 0; 1586 } 1587 1588 static int 1589 vm_object_in_map( object) 1590 vm_object_t object; 1591 { 1592 struct proc *p; 1593 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 1594 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1595 continue; 1596 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) 1597 return 1; 1598 } 1599 if( _vm_object_in_map( kernel_map, object, 0)) 1600 return 1; 1601 if( _vm_object_in_map( kmem_map, object, 0)) 1602 return 1; 1603 if( _vm_object_in_map( pager_map, object, 0)) 1604 return 1; 1605 if( _vm_object_in_map( buffer_map, object, 0)) 1606 return 1; 1607 if( _vm_object_in_map( phys_map, object, 0)) 1608 return 1; 1609 if( _vm_object_in_map( mb_map, object, 0)) 1610 return 1; 1611 return 0; 1612 } 1613 1614 DB_SHOW_COMMAND(vmochk, vm_object_check) 1615 { 1616 vm_object_t object; 1617 1618 /* 1619 * make sure that internal objs are in a map somewhere 1620 * and none have zero ref counts. 1621 */ 1622 for (object = TAILQ_FIRST(&vm_object_list); 1623 object != NULL; 1624 object = TAILQ_NEXT(object, object_list)) { 1625 if (object->handle == NULL && 1626 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1627 if (object->ref_count == 0) { 1628 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1629 (long)object->size); 1630 } 1631 if (!vm_object_in_map(object)) { 1632 db_printf( 1633 "vmochk: internal obj is not in a map: " 1634 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1635 object->ref_count, (u_long)object->size, 1636 (u_long)object->size, 1637 (void *)object->backing_object); 1638 } 1639 } 1640 } 1641 } 1642 1643 /* 1644 * vm_object_print: [ debug ] 1645 */ 1646 DB_SHOW_COMMAND(object, vm_object_print_static) 1647 { 1648 /* XXX convert args. */ 1649 vm_object_t object = (vm_object_t)addr; 1650 boolean_t full = have_addr; 1651 1652 vm_page_t p; 1653 1654 /* XXX count is an (unused) arg. Avoid shadowing it. */ 1655 #define count was_count 1656 1657 int count; 1658 1659 if (object == NULL) 1660 return; 1661 1662 db_iprintf( 1663 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 1664 object, (int)object->type, (u_long)object->size, 1665 object->resident_page_count, object->ref_count, object->flags); 1666 /* 1667 * XXX no %qd in kernel. Truncate object->backing_object_offset. 1668 */ 1669 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 1670 object->shadow_count, 1671 object->backing_object ? object->backing_object->ref_count : 0, 1672 object->backing_object, (long)object->backing_object_offset); 1673 1674 if (!full) 1675 return; 1676 1677 db_indent += 2; 1678 count = 0; 1679 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) { 1680 if (count == 0) 1681 db_iprintf("memory:="); 1682 else if (count == 6) { 1683 db_printf("\n"); 1684 db_iprintf(" ..."); 1685 count = 0; 1686 } else 1687 db_printf(","); 1688 count++; 1689 1690 db_printf("(off=0x%lx,page=0x%lx)", 1691 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 1692 } 1693 if (count != 0) 1694 db_printf("\n"); 1695 db_indent -= 2; 1696 } 1697 1698 /* XXX. */ 1699 #undef count 1700 1701 /* XXX need this non-static entry for calling from vm_map_print. */ 1702 void 1703 vm_object_print(addr, have_addr, count, modif) 1704 /* db_expr_t */ long addr; 1705 boolean_t have_addr; 1706 /* db_expr_t */ long count; 1707 char *modif; 1708 { 1709 vm_object_print_static(addr, have_addr, count, modif); 1710 } 1711 1712 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 1713 { 1714 vm_object_t object; 1715 int nl = 0; 1716 int c; 1717 for (object = TAILQ_FIRST(&vm_object_list); 1718 object != NULL; 1719 object = TAILQ_NEXT(object, object_list)) { 1720 vm_pindex_t idx, fidx; 1721 vm_pindex_t osize; 1722 vm_offset_t pa = -1, padiff; 1723 int rcount; 1724 vm_page_t m; 1725 1726 db_printf("new object: %p\n", (void *)object); 1727 if ( nl > 18) { 1728 c = cngetc(); 1729 if (c != ' ') 1730 return; 1731 nl = 0; 1732 } 1733 nl++; 1734 rcount = 0; 1735 fidx = 0; 1736 osize = object->size; 1737 if (osize > 128) 1738 osize = 128; 1739 for(idx=0;idx<osize;idx++) { 1740 m = vm_page_lookup(object, idx); 1741 if (m == NULL) { 1742 if (rcount) { 1743 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1744 (long)fidx, rcount, (long)pa); 1745 if ( nl > 18) { 1746 c = cngetc(); 1747 if (c != ' ') 1748 return; 1749 nl = 0; 1750 } 1751 nl++; 1752 rcount = 0; 1753 } 1754 continue; 1755 } 1756 1757 1758 if (rcount && 1759 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 1760 ++rcount; 1761 continue; 1762 } 1763 if (rcount) { 1764 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 1765 padiff >>= PAGE_SHIFT; 1766 padiff &= PQ_L2_MASK; 1767 if (padiff == 0) { 1768 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 1769 ++rcount; 1770 continue; 1771 } 1772 db_printf(" index(%ld)run(%d)pa(0x%lx)", 1773 (long)fidx, rcount, (long)pa); 1774 db_printf("pd(%ld)\n", (long)padiff); 1775 if ( nl > 18) { 1776 c = cngetc(); 1777 if (c != ' ') 1778 return; 1779 nl = 0; 1780 } 1781 nl++; 1782 } 1783 fidx = idx; 1784 pa = VM_PAGE_TO_PHYS(m); 1785 rcount = 1; 1786 } 1787 if (rcount) { 1788 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1789 (long)fidx, rcount, (long)pa); 1790 if ( nl > 18) { 1791 c = cngetc(); 1792 if (c != ' ') 1793 return; 1794 nl = 0; 1795 } 1796 nl++; 1797 } 1798 } 1799 } 1800 #endif /* DDB */ 1801