1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, boolean_t *clearobjflags, 105 boolean_t *eio); 106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 107 boolean_t *clearobjflags); 108 static void vm_object_qcollapse(vm_object_t object); 109 static void vm_object_vndeallocate(vm_object_t object); 110 111 /* 112 * Virtual memory objects maintain the actual data 113 * associated with allocated virtual memory. A given 114 * page of memory exists within exactly one object. 115 * 116 * An object is only deallocated when all "references" 117 * are given up. Only one "reference" to a given 118 * region of an object should be writeable. 119 * 120 * Associated with each object is a list of all resident 121 * memory pages belonging to that object; this list is 122 * maintained by the "vm_page" module, and locked by the object's 123 * lock. 124 * 125 * Each object also records a "pager" routine which is 126 * used to retrieve (and store) pages to the proper backing 127 * storage. In addition, objects may be backed by other 128 * objects from which they were virtual-copied. 129 * 130 * The only items within the object structure which are 131 * modified after time of creation are: 132 * reference count locked by object's lock 133 * pager routine locked by object's lock 134 * 135 */ 136 137 struct object_q vm_object_list; 138 struct mtx vm_object_list_mtx; /* lock for object list and count */ 139 140 struct vm_object kernel_object_store; 141 struct vm_object kmem_object_store; 142 143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 144 "VM object stats"); 145 146 static long object_collapses; 147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 148 &object_collapses, 0, "VM object collapses"); 149 150 static long object_bypasses; 151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 152 &object_bypasses, 0, "VM object bypasses"); 153 154 static uma_zone_t obj_zone; 155 156 static int vm_object_zinit(void *mem, int size, int flags); 157 158 #ifdef INVARIANTS 159 static void vm_object_zdtor(void *mem, int size, void *arg); 160 161 static void 162 vm_object_zdtor(void *mem, int size, void *arg) 163 { 164 vm_object_t object; 165 166 object = (vm_object_t)mem; 167 KASSERT(TAILQ_EMPTY(&object->memq), 168 ("object %p has resident pages", 169 object)); 170 #if VM_NRESERVLEVEL > 0 171 KASSERT(LIST_EMPTY(&object->rvq), 172 ("object %p has reservations", 173 object)); 174 #endif 175 KASSERT(object->cache == NULL, 176 ("object %p has cached pages", 177 object)); 178 KASSERT(object->paging_in_progress == 0, 179 ("object %p paging_in_progress = %d", 180 object, object->paging_in_progress)); 181 KASSERT(object->resident_page_count == 0, 182 ("object %p resident_page_count = %d", 183 object, object->resident_page_count)); 184 KASSERT(object->shadow_count == 0, 185 ("object %p shadow_count = %d", 186 object, object->shadow_count)); 187 } 188 #endif 189 190 static int 191 vm_object_zinit(void *mem, int size, int flags) 192 { 193 vm_object_t object; 194 195 object = (vm_object_t)mem; 196 bzero(&object->mtx, sizeof(object->mtx)); 197 VM_OBJECT_LOCK_INIT(object, "standard object"); 198 199 /* These are true for any object that has been freed */ 200 object->paging_in_progress = 0; 201 object->resident_page_count = 0; 202 object->shadow_count = 0; 203 return (0); 204 } 205 206 void 207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 208 { 209 210 TAILQ_INIT(&object->memq); 211 LIST_INIT(&object->shadow_head); 212 213 object->root = NULL; 214 object->type = type; 215 object->size = size; 216 object->generation = 1; 217 object->ref_count = 1; 218 object->memattr = VM_MEMATTR_DEFAULT; 219 object->flags = 0; 220 object->cred = NULL; 221 object->charge = 0; 222 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 223 object->flags = OBJ_ONEMAPPING; 224 object->pg_color = 0; 225 object->handle = NULL; 226 object->backing_object = NULL; 227 object->backing_object_offset = (vm_ooffset_t) 0; 228 #if VM_NRESERVLEVEL > 0 229 LIST_INIT(&object->rvq); 230 #endif 231 object->cache = NULL; 232 233 mtx_lock(&vm_object_list_mtx); 234 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 235 mtx_unlock(&vm_object_list_mtx); 236 } 237 238 /* 239 * vm_object_init: 240 * 241 * Initialize the VM objects module. 242 */ 243 void 244 vm_object_init(void) 245 { 246 TAILQ_INIT(&vm_object_list); 247 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 248 249 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 250 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 251 kernel_object); 252 #if VM_NRESERVLEVEL > 0 253 kernel_object->flags |= OBJ_COLORED; 254 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 255 #endif 256 257 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 258 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 259 kmem_object); 260 #if VM_NRESERVLEVEL > 0 261 kmem_object->flags |= OBJ_COLORED; 262 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 263 #endif 264 265 /* 266 * The lock portion of struct vm_object must be type stable due 267 * to vm_pageout_fallback_object_lock locking a vm object 268 * without holding any references to it. 269 */ 270 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 271 #ifdef INVARIANTS 272 vm_object_zdtor, 273 #else 274 NULL, 275 #endif 276 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 277 } 278 279 void 280 vm_object_clear_flag(vm_object_t object, u_short bits) 281 { 282 283 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 284 object->flags &= ~bits; 285 } 286 287 /* 288 * Sets the default memory attribute for the specified object. Pages 289 * that are allocated to this object are by default assigned this memory 290 * attribute. 291 * 292 * Presently, this function must be called before any pages are allocated 293 * to the object. In the future, this requirement may be relaxed for 294 * "default" and "swap" objects. 295 */ 296 int 297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 298 { 299 300 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 301 switch (object->type) { 302 case OBJT_DEFAULT: 303 case OBJT_DEVICE: 304 case OBJT_PHYS: 305 case OBJT_SG: 306 case OBJT_SWAP: 307 case OBJT_VNODE: 308 if (!TAILQ_EMPTY(&object->memq)) 309 return (KERN_FAILURE); 310 break; 311 case OBJT_DEAD: 312 return (KERN_INVALID_ARGUMENT); 313 } 314 object->memattr = memattr; 315 return (KERN_SUCCESS); 316 } 317 318 void 319 vm_object_pip_add(vm_object_t object, short i) 320 { 321 322 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 323 object->paging_in_progress += i; 324 } 325 326 void 327 vm_object_pip_subtract(vm_object_t object, short i) 328 { 329 330 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 331 object->paging_in_progress -= i; 332 } 333 334 void 335 vm_object_pip_wakeup(vm_object_t object) 336 { 337 338 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 339 object->paging_in_progress--; 340 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 341 vm_object_clear_flag(object, OBJ_PIPWNT); 342 wakeup(object); 343 } 344 } 345 346 void 347 vm_object_pip_wakeupn(vm_object_t object, short i) 348 { 349 350 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 351 if (i) 352 object->paging_in_progress -= i; 353 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 354 vm_object_clear_flag(object, OBJ_PIPWNT); 355 wakeup(object); 356 } 357 } 358 359 void 360 vm_object_pip_wait(vm_object_t object, char *waitid) 361 { 362 363 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 364 while (object->paging_in_progress) { 365 object->flags |= OBJ_PIPWNT; 366 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 367 } 368 } 369 370 /* 371 * vm_object_allocate: 372 * 373 * Returns a new object with the given size. 374 */ 375 vm_object_t 376 vm_object_allocate(objtype_t type, vm_pindex_t size) 377 { 378 vm_object_t object; 379 380 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 381 _vm_object_allocate(type, size, object); 382 return (object); 383 } 384 385 386 /* 387 * vm_object_reference: 388 * 389 * Gets another reference to the given object. Note: OBJ_DEAD 390 * objects can be referenced during final cleaning. 391 */ 392 void 393 vm_object_reference(vm_object_t object) 394 { 395 if (object == NULL) 396 return; 397 VM_OBJECT_LOCK(object); 398 vm_object_reference_locked(object); 399 VM_OBJECT_UNLOCK(object); 400 } 401 402 /* 403 * vm_object_reference_locked: 404 * 405 * Gets another reference to the given object. 406 * 407 * The object must be locked. 408 */ 409 void 410 vm_object_reference_locked(vm_object_t object) 411 { 412 struct vnode *vp; 413 414 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 415 object->ref_count++; 416 if (object->type == OBJT_VNODE) { 417 vp = object->handle; 418 vref(vp); 419 } 420 } 421 422 /* 423 * Handle deallocating an object of type OBJT_VNODE. 424 */ 425 static void 426 vm_object_vndeallocate(vm_object_t object) 427 { 428 struct vnode *vp = (struct vnode *) object->handle; 429 430 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 431 KASSERT(object->type == OBJT_VNODE, 432 ("vm_object_vndeallocate: not a vnode object")); 433 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 434 #ifdef INVARIANTS 435 if (object->ref_count == 0) { 436 vprint("vm_object_vndeallocate", vp); 437 panic("vm_object_vndeallocate: bad object reference count"); 438 } 439 #endif 440 441 if (object->ref_count > 1) { 442 object->ref_count--; 443 VM_OBJECT_UNLOCK(object); 444 /* vrele may need the vnode lock. */ 445 vrele(vp); 446 } else { 447 vhold(vp); 448 VM_OBJECT_UNLOCK(object); 449 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 450 vdrop(vp); 451 VM_OBJECT_LOCK(object); 452 object->ref_count--; 453 if (object->type == OBJT_DEAD) { 454 VM_OBJECT_UNLOCK(object); 455 VOP_UNLOCK(vp, 0); 456 } else { 457 if (object->ref_count == 0) 458 VOP_UNSET_TEXT(vp); 459 VM_OBJECT_UNLOCK(object); 460 vput(vp); 461 } 462 } 463 } 464 465 /* 466 * vm_object_deallocate: 467 * 468 * Release a reference to the specified object, 469 * gained either through a vm_object_allocate 470 * or a vm_object_reference call. When all references 471 * are gone, storage associated with this object 472 * may be relinquished. 473 * 474 * No object may be locked. 475 */ 476 void 477 vm_object_deallocate(vm_object_t object) 478 { 479 vm_object_t temp; 480 481 while (object != NULL) { 482 VM_OBJECT_LOCK(object); 483 if (object->type == OBJT_VNODE) { 484 vm_object_vndeallocate(object); 485 return; 486 } 487 488 KASSERT(object->ref_count != 0, 489 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 490 491 /* 492 * If the reference count goes to 0 we start calling 493 * vm_object_terminate() on the object chain. 494 * A ref count of 1 may be a special case depending on the 495 * shadow count being 0 or 1. 496 */ 497 object->ref_count--; 498 if (object->ref_count > 1) { 499 VM_OBJECT_UNLOCK(object); 500 return; 501 } else if (object->ref_count == 1) { 502 if (object->shadow_count == 0 && 503 object->handle == NULL && 504 (object->type == OBJT_DEFAULT || 505 object->type == OBJT_SWAP)) { 506 vm_object_set_flag(object, OBJ_ONEMAPPING); 507 } else if ((object->shadow_count == 1) && 508 (object->handle == NULL) && 509 (object->type == OBJT_DEFAULT || 510 object->type == OBJT_SWAP)) { 511 vm_object_t robject; 512 513 robject = LIST_FIRST(&object->shadow_head); 514 KASSERT(robject != NULL, 515 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 516 object->ref_count, 517 object->shadow_count)); 518 if (!VM_OBJECT_TRYLOCK(robject)) { 519 /* 520 * Avoid a potential deadlock. 521 */ 522 object->ref_count++; 523 VM_OBJECT_UNLOCK(object); 524 /* 525 * More likely than not the thread 526 * holding robject's lock has lower 527 * priority than the current thread. 528 * Let the lower priority thread run. 529 */ 530 pause("vmo_de", 1); 531 continue; 532 } 533 /* 534 * Collapse object into its shadow unless its 535 * shadow is dead. In that case, object will 536 * be deallocated by the thread that is 537 * deallocating its shadow. 538 */ 539 if ((robject->flags & OBJ_DEAD) == 0 && 540 (robject->handle == NULL) && 541 (robject->type == OBJT_DEFAULT || 542 robject->type == OBJT_SWAP)) { 543 544 robject->ref_count++; 545 retry: 546 if (robject->paging_in_progress) { 547 VM_OBJECT_UNLOCK(object); 548 vm_object_pip_wait(robject, 549 "objde1"); 550 temp = robject->backing_object; 551 if (object == temp) { 552 VM_OBJECT_LOCK(object); 553 goto retry; 554 } 555 } else if (object->paging_in_progress) { 556 VM_OBJECT_UNLOCK(robject); 557 object->flags |= OBJ_PIPWNT; 558 msleep(object, 559 VM_OBJECT_MTX(object), 560 PDROP | PVM, "objde2", 0); 561 VM_OBJECT_LOCK(robject); 562 temp = robject->backing_object; 563 if (object == temp) { 564 VM_OBJECT_LOCK(object); 565 goto retry; 566 } 567 } else 568 VM_OBJECT_UNLOCK(object); 569 570 if (robject->ref_count == 1) { 571 robject->ref_count--; 572 object = robject; 573 goto doterm; 574 } 575 object = robject; 576 vm_object_collapse(object); 577 VM_OBJECT_UNLOCK(object); 578 continue; 579 } 580 VM_OBJECT_UNLOCK(robject); 581 } 582 VM_OBJECT_UNLOCK(object); 583 return; 584 } 585 doterm: 586 temp = object->backing_object; 587 if (temp != NULL) { 588 VM_OBJECT_LOCK(temp); 589 LIST_REMOVE(object, shadow_list); 590 temp->shadow_count--; 591 VM_OBJECT_UNLOCK(temp); 592 object->backing_object = NULL; 593 } 594 /* 595 * Don't double-terminate, we could be in a termination 596 * recursion due to the terminate having to sync data 597 * to disk. 598 */ 599 if ((object->flags & OBJ_DEAD) == 0) 600 vm_object_terminate(object); 601 else 602 VM_OBJECT_UNLOCK(object); 603 object = temp; 604 } 605 } 606 607 /* 608 * vm_object_destroy removes the object from the global object list 609 * and frees the space for the object. 610 */ 611 void 612 vm_object_destroy(vm_object_t object) 613 { 614 615 /* 616 * Remove the object from the global object list. 617 */ 618 mtx_lock(&vm_object_list_mtx); 619 TAILQ_REMOVE(&vm_object_list, object, object_list); 620 mtx_unlock(&vm_object_list_mtx); 621 622 /* 623 * Release the allocation charge. 624 */ 625 if (object->cred != NULL) { 626 KASSERT(object->type == OBJT_DEFAULT || 627 object->type == OBJT_SWAP, 628 ("vm_object_terminate: non-swap obj %p has cred", 629 object)); 630 swap_release_by_cred(object->charge, object->cred); 631 object->charge = 0; 632 crfree(object->cred); 633 object->cred = NULL; 634 } 635 636 /* 637 * Free the space for the object. 638 */ 639 uma_zfree(obj_zone, object); 640 } 641 642 /* 643 * vm_object_terminate actually destroys the specified object, freeing 644 * up all previously used resources. 645 * 646 * The object must be locked. 647 * This routine may block. 648 */ 649 void 650 vm_object_terminate(vm_object_t object) 651 { 652 vm_page_t p, p_next; 653 654 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 655 656 /* 657 * Make sure no one uses us. 658 */ 659 vm_object_set_flag(object, OBJ_DEAD); 660 661 /* 662 * wait for the pageout daemon to be done with the object 663 */ 664 vm_object_pip_wait(object, "objtrm"); 665 666 KASSERT(!object->paging_in_progress, 667 ("vm_object_terminate: pageout in progress")); 668 669 /* 670 * Clean and free the pages, as appropriate. All references to the 671 * object are gone, so we don't need to lock it. 672 */ 673 if (object->type == OBJT_VNODE) { 674 struct vnode *vp = (struct vnode *)object->handle; 675 676 /* 677 * Clean pages and flush buffers. 678 */ 679 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 680 VM_OBJECT_UNLOCK(object); 681 682 vinvalbuf(vp, V_SAVE, 0, 0); 683 684 VM_OBJECT_LOCK(object); 685 } 686 687 KASSERT(object->ref_count == 0, 688 ("vm_object_terminate: object with references, ref_count=%d", 689 object->ref_count)); 690 691 /* 692 * Free any remaining pageable pages. This also removes them from the 693 * paging queues. However, don't free wired pages, just remove them 694 * from the object. Rather than incrementally removing each page from 695 * the object, the page and object are reset to any empty state. 696 */ 697 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 698 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 699 ("vm_object_terminate: freeing busy page %p", p)); 700 vm_page_lock(p); 701 /* 702 * Optimize the page's removal from the object by resetting 703 * its "object" field. Specifically, if the page is not 704 * wired, then the effect of this assignment is that 705 * vm_page_free()'s call to vm_page_remove() will return 706 * immediately without modifying the page or the object. 707 */ 708 p->object = NULL; 709 if (p->wire_count == 0) { 710 vm_page_free(p); 711 PCPU_INC(cnt.v_pfree); 712 } 713 vm_page_unlock(p); 714 } 715 /* 716 * If the object contained any pages, then reset it to an empty state. 717 * None of the object's fields, including "resident_page_count", were 718 * modified by the preceding loop. 719 */ 720 if (object->resident_page_count != 0) { 721 object->root = NULL; 722 TAILQ_INIT(&object->memq); 723 object->resident_page_count = 0; 724 if (object->type == OBJT_VNODE) 725 vdrop(object->handle); 726 } 727 728 #if VM_NRESERVLEVEL > 0 729 if (__predict_false(!LIST_EMPTY(&object->rvq))) 730 vm_reserv_break_all(object); 731 #endif 732 if (__predict_false(object->cache != NULL)) 733 vm_page_cache_free(object, 0, 0); 734 735 /* 736 * Let the pager know object is dead. 737 */ 738 vm_pager_deallocate(object); 739 VM_OBJECT_UNLOCK(object); 740 741 vm_object_destroy(object); 742 } 743 744 /* 745 * Make the page read-only so that we can clear the object flags. However, if 746 * this is a nosync mmap then the object is likely to stay dirty so do not 747 * mess with the page and do not clear the object flags. Returns TRUE if the 748 * page should be flushed, and FALSE otherwise. 749 */ 750 static boolean_t 751 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 752 { 753 754 /* 755 * If we have been asked to skip nosync pages and this is a 756 * nosync page, skip it. Note that the object flags were not 757 * cleared in this case so we do not have to set them. 758 */ 759 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 760 *clearobjflags = FALSE; 761 return (FALSE); 762 } else { 763 pmap_remove_write(p); 764 return (p->dirty != 0); 765 } 766 } 767 768 /* 769 * vm_object_page_clean 770 * 771 * Clean all dirty pages in the specified range of object. Leaves page 772 * on whatever queue it is currently on. If NOSYNC is set then do not 773 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 774 * leaving the object dirty. 775 * 776 * When stuffing pages asynchronously, allow clustering. XXX we need a 777 * synchronous clustering mode implementation. 778 * 779 * Odd semantics: if start == end, we clean everything. 780 * 781 * The object must be locked. 782 * 783 * Returns FALSE if some page from the range was not written, as 784 * reported by the pager, and TRUE otherwise. 785 */ 786 boolean_t 787 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 788 int flags) 789 { 790 vm_page_t np, p; 791 vm_pindex_t pi, tend, tstart; 792 int curgeneration, n, pagerflags; 793 boolean_t clearobjflags, eio, res; 794 795 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 796 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 797 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 798 object->resident_page_count == 0) 799 return (TRUE); 800 801 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 802 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 803 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 804 805 tstart = OFF_TO_IDX(start); 806 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 807 clearobjflags = tstart == 0 && tend >= object->size; 808 res = TRUE; 809 810 rescan: 811 curgeneration = object->generation; 812 813 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 814 pi = p->pindex; 815 if (pi >= tend) 816 break; 817 np = TAILQ_NEXT(p, listq); 818 if (p->valid == 0) 819 continue; 820 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 821 if (object->generation != curgeneration) { 822 if ((flags & OBJPC_SYNC) != 0) 823 goto rescan; 824 else 825 clearobjflags = FALSE; 826 } 827 np = vm_page_find_least(object, pi); 828 continue; 829 } 830 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 831 continue; 832 833 n = vm_object_page_collect_flush(object, p, pagerflags, 834 flags, &clearobjflags, &eio); 835 if (eio) { 836 res = FALSE; 837 clearobjflags = FALSE; 838 } 839 if (object->generation != curgeneration) { 840 if ((flags & OBJPC_SYNC) != 0) 841 goto rescan; 842 else 843 clearobjflags = FALSE; 844 } 845 846 /* 847 * If the VOP_PUTPAGES() did a truncated write, so 848 * that even the first page of the run is not fully 849 * written, vm_pageout_flush() returns 0 as the run 850 * length. Since the condition that caused truncated 851 * write may be permanent, e.g. exhausted free space, 852 * accepting n == 0 would cause an infinite loop. 853 * 854 * Forwarding the iterator leaves the unwritten page 855 * behind, but there is not much we can do there if 856 * filesystem refuses to write it. 857 */ 858 if (n == 0) { 859 n = 1; 860 clearobjflags = FALSE; 861 } 862 np = vm_page_find_least(object, pi + n); 863 } 864 #if 0 865 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 866 #endif 867 868 if (clearobjflags) 869 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 870 return (res); 871 } 872 873 static int 874 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 875 int flags, boolean_t *clearobjflags, boolean_t *eio) 876 { 877 vm_page_t ma[vm_pageout_page_count], p_first, tp; 878 int count, i, mreq, runlen; 879 880 vm_page_lock_assert(p, MA_NOTOWNED); 881 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 882 883 count = 1; 884 mreq = 0; 885 886 for (tp = p; count < vm_pageout_page_count; count++) { 887 tp = vm_page_next(tp); 888 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 889 break; 890 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 891 break; 892 } 893 894 for (p_first = p; count < vm_pageout_page_count; count++) { 895 tp = vm_page_prev(p_first); 896 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 897 break; 898 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 899 break; 900 p_first = tp; 901 mreq++; 902 } 903 904 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 905 ma[i] = tp; 906 907 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 908 return (runlen); 909 } 910 911 /* 912 * Note that there is absolutely no sense in writing out 913 * anonymous objects, so we track down the vnode object 914 * to write out. 915 * We invalidate (remove) all pages from the address space 916 * for semantic correctness. 917 * 918 * If the backing object is a device object with unmanaged pages, then any 919 * mappings to the specified range of pages must be removed before this 920 * function is called. 921 * 922 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 923 * may start out with a NULL object. 924 */ 925 boolean_t 926 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 927 boolean_t syncio, boolean_t invalidate) 928 { 929 vm_object_t backing_object; 930 struct vnode *vp; 931 struct mount *mp; 932 int error, flags, fsync_after; 933 boolean_t res; 934 935 if (object == NULL) 936 return (TRUE); 937 res = TRUE; 938 error = 0; 939 VM_OBJECT_LOCK(object); 940 while ((backing_object = object->backing_object) != NULL) { 941 VM_OBJECT_LOCK(backing_object); 942 offset += object->backing_object_offset; 943 VM_OBJECT_UNLOCK(object); 944 object = backing_object; 945 if (object->size < OFF_TO_IDX(offset + size)) 946 size = IDX_TO_OFF(object->size) - offset; 947 } 948 /* 949 * Flush pages if writing is allowed, invalidate them 950 * if invalidation requested. Pages undergoing I/O 951 * will be ignored by vm_object_page_remove(). 952 * 953 * We cannot lock the vnode and then wait for paging 954 * to complete without deadlocking against vm_fault. 955 * Instead we simply call vm_object_page_remove() and 956 * allow it to block internally on a page-by-page 957 * basis when it encounters pages undergoing async 958 * I/O. 959 */ 960 if (object->type == OBJT_VNODE && 961 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 962 vp = object->handle; 963 VM_OBJECT_UNLOCK(object); 964 (void) vn_start_write(vp, &mp, V_WAIT); 965 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 966 if (syncio && !invalidate && offset == 0 && 967 OFF_TO_IDX(size) == object->size) { 968 /* 969 * If syncing the whole mapping of the file, 970 * it is faster to schedule all the writes in 971 * async mode, also allowing the clustering, 972 * and then wait for i/o to complete. 973 */ 974 flags = 0; 975 fsync_after = TRUE; 976 } else { 977 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 978 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 979 fsync_after = FALSE; 980 } 981 VM_OBJECT_LOCK(object); 982 res = vm_object_page_clean(object, offset, offset + size, 983 flags); 984 VM_OBJECT_UNLOCK(object); 985 if (fsync_after) 986 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 987 VOP_UNLOCK(vp, 0); 988 vn_finished_write(mp); 989 if (error != 0) 990 res = FALSE; 991 VM_OBJECT_LOCK(object); 992 } 993 if ((object->type == OBJT_VNODE || 994 object->type == OBJT_DEVICE) && invalidate) { 995 if (object->type == OBJT_DEVICE) 996 /* 997 * The option OBJPR_NOTMAPPED must be passed here 998 * because vm_object_page_remove() cannot remove 999 * unmanaged mappings. 1000 */ 1001 flags = OBJPR_NOTMAPPED; 1002 else if (old_msync) 1003 flags = 0; 1004 else 1005 flags = OBJPR_CLEANONLY; 1006 vm_object_page_remove(object, OFF_TO_IDX(offset), 1007 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1008 } 1009 VM_OBJECT_UNLOCK(object); 1010 return (res); 1011 } 1012 1013 /* 1014 * vm_object_madvise: 1015 * 1016 * Implements the madvise function at the object/page level. 1017 * 1018 * MADV_WILLNEED (any object) 1019 * 1020 * Activate the specified pages if they are resident. 1021 * 1022 * MADV_DONTNEED (any object) 1023 * 1024 * Deactivate the specified pages if they are resident. 1025 * 1026 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1027 * OBJ_ONEMAPPING only) 1028 * 1029 * Deactivate and clean the specified pages if they are 1030 * resident. This permits the process to reuse the pages 1031 * without faulting or the kernel to reclaim the pages 1032 * without I/O. 1033 */ 1034 void 1035 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1036 int advise) 1037 { 1038 vm_pindex_t tpindex; 1039 vm_object_t backing_object, tobject; 1040 vm_page_t m; 1041 1042 if (object == NULL) 1043 return; 1044 VM_OBJECT_LOCK(object); 1045 /* 1046 * Locate and adjust resident pages 1047 */ 1048 for (; pindex < end; pindex += 1) { 1049 relookup: 1050 tobject = object; 1051 tpindex = pindex; 1052 shadowlookup: 1053 /* 1054 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1055 * and those pages must be OBJ_ONEMAPPING. 1056 */ 1057 if (advise == MADV_FREE) { 1058 if ((tobject->type != OBJT_DEFAULT && 1059 tobject->type != OBJT_SWAP) || 1060 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1061 goto unlock_tobject; 1062 } 1063 } else if (tobject->type == OBJT_PHYS) 1064 goto unlock_tobject; 1065 m = vm_page_lookup(tobject, tpindex); 1066 if (m == NULL && advise == MADV_WILLNEED) { 1067 /* 1068 * If the page is cached, reactivate it. 1069 */ 1070 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1071 VM_ALLOC_NOBUSY); 1072 } 1073 if (m == NULL) { 1074 /* 1075 * There may be swap even if there is no backing page 1076 */ 1077 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1078 swap_pager_freespace(tobject, tpindex, 1); 1079 /* 1080 * next object 1081 */ 1082 backing_object = tobject->backing_object; 1083 if (backing_object == NULL) 1084 goto unlock_tobject; 1085 VM_OBJECT_LOCK(backing_object); 1086 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1087 if (tobject != object) 1088 VM_OBJECT_UNLOCK(tobject); 1089 tobject = backing_object; 1090 goto shadowlookup; 1091 } else if (m->valid != VM_PAGE_BITS_ALL) 1092 goto unlock_tobject; 1093 /* 1094 * If the page is not in a normal state, skip it. 1095 */ 1096 vm_page_lock(m); 1097 if (m->hold_count != 0 || m->wire_count != 0) { 1098 vm_page_unlock(m); 1099 goto unlock_tobject; 1100 } 1101 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1102 ("vm_object_madvise: page %p is fictitious", m)); 1103 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1104 ("vm_object_madvise: page %p is not managed", m)); 1105 if ((m->oflags & VPO_BUSY) || m->busy) { 1106 if (advise == MADV_WILLNEED) { 1107 /* 1108 * Reference the page before unlocking and 1109 * sleeping so that the page daemon is less 1110 * likely to reclaim it. 1111 */ 1112 vm_page_aflag_set(m, PGA_REFERENCED); 1113 } 1114 vm_page_unlock(m); 1115 if (object != tobject) 1116 VM_OBJECT_UNLOCK(object); 1117 m->oflags |= VPO_WANTED; 1118 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1119 0); 1120 VM_OBJECT_LOCK(object); 1121 goto relookup; 1122 } 1123 if (advise == MADV_WILLNEED) { 1124 vm_page_activate(m); 1125 } else if (advise == MADV_DONTNEED) { 1126 vm_page_dontneed(m); 1127 } else if (advise == MADV_FREE) { 1128 /* 1129 * Mark the page clean. This will allow the page 1130 * to be freed up by the system. However, such pages 1131 * are often reused quickly by malloc()/free() 1132 * so we do not do anything that would cause 1133 * a page fault if we can help it. 1134 * 1135 * Specifically, we do not try to actually free 1136 * the page now nor do we try to put it in the 1137 * cache (which would cause a page fault on reuse). 1138 * 1139 * But we do make the page is freeable as we 1140 * can without actually taking the step of unmapping 1141 * it. 1142 */ 1143 pmap_clear_modify(m); 1144 m->dirty = 0; 1145 m->act_count = 0; 1146 vm_page_dontneed(m); 1147 } 1148 vm_page_unlock(m); 1149 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1150 swap_pager_freespace(tobject, tpindex, 1); 1151 unlock_tobject: 1152 if (tobject != object) 1153 VM_OBJECT_UNLOCK(tobject); 1154 } 1155 VM_OBJECT_UNLOCK(object); 1156 } 1157 1158 /* 1159 * vm_object_shadow: 1160 * 1161 * Create a new object which is backed by the 1162 * specified existing object range. The source 1163 * object reference is deallocated. 1164 * 1165 * The new object and offset into that object 1166 * are returned in the source parameters. 1167 */ 1168 void 1169 vm_object_shadow( 1170 vm_object_t *object, /* IN/OUT */ 1171 vm_ooffset_t *offset, /* IN/OUT */ 1172 vm_size_t length) 1173 { 1174 vm_object_t source; 1175 vm_object_t result; 1176 1177 source = *object; 1178 1179 /* 1180 * Don't create the new object if the old object isn't shared. 1181 */ 1182 if (source != NULL) { 1183 VM_OBJECT_LOCK(source); 1184 if (source->ref_count == 1 && 1185 source->handle == NULL && 1186 (source->type == OBJT_DEFAULT || 1187 source->type == OBJT_SWAP)) { 1188 VM_OBJECT_UNLOCK(source); 1189 return; 1190 } 1191 VM_OBJECT_UNLOCK(source); 1192 } 1193 1194 /* 1195 * Allocate a new object with the given length. 1196 */ 1197 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1198 1199 /* 1200 * The new object shadows the source object, adding a reference to it. 1201 * Our caller changes his reference to point to the new object, 1202 * removing a reference to the source object. Net result: no change 1203 * of reference count. 1204 * 1205 * Try to optimize the result object's page color when shadowing 1206 * in order to maintain page coloring consistency in the combined 1207 * shadowed object. 1208 */ 1209 result->backing_object = source; 1210 /* 1211 * Store the offset into the source object, and fix up the offset into 1212 * the new object. 1213 */ 1214 result->backing_object_offset = *offset; 1215 if (source != NULL) { 1216 VM_OBJECT_LOCK(source); 1217 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1218 source->shadow_count++; 1219 #if VM_NRESERVLEVEL > 0 1220 result->flags |= source->flags & OBJ_COLORED; 1221 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1222 ((1 << (VM_NFREEORDER - 1)) - 1); 1223 #endif 1224 VM_OBJECT_UNLOCK(source); 1225 } 1226 1227 1228 /* 1229 * Return the new things 1230 */ 1231 *offset = 0; 1232 *object = result; 1233 } 1234 1235 /* 1236 * vm_object_split: 1237 * 1238 * Split the pages in a map entry into a new object. This affords 1239 * easier removal of unused pages, and keeps object inheritance from 1240 * being a negative impact on memory usage. 1241 */ 1242 void 1243 vm_object_split(vm_map_entry_t entry) 1244 { 1245 vm_page_t m, m_next; 1246 vm_object_t orig_object, new_object, source; 1247 vm_pindex_t idx, offidxstart; 1248 vm_size_t size; 1249 1250 orig_object = entry->object.vm_object; 1251 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1252 return; 1253 if (orig_object->ref_count <= 1) 1254 return; 1255 VM_OBJECT_UNLOCK(orig_object); 1256 1257 offidxstart = OFF_TO_IDX(entry->offset); 1258 size = atop(entry->end - entry->start); 1259 1260 /* 1261 * If swap_pager_copy() is later called, it will convert new_object 1262 * into a swap object. 1263 */ 1264 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1265 1266 /* 1267 * At this point, the new object is still private, so the order in 1268 * which the original and new objects are locked does not matter. 1269 */ 1270 VM_OBJECT_LOCK(new_object); 1271 VM_OBJECT_LOCK(orig_object); 1272 source = orig_object->backing_object; 1273 if (source != NULL) { 1274 VM_OBJECT_LOCK(source); 1275 if ((source->flags & OBJ_DEAD) != 0) { 1276 VM_OBJECT_UNLOCK(source); 1277 VM_OBJECT_UNLOCK(orig_object); 1278 VM_OBJECT_UNLOCK(new_object); 1279 vm_object_deallocate(new_object); 1280 VM_OBJECT_LOCK(orig_object); 1281 return; 1282 } 1283 LIST_INSERT_HEAD(&source->shadow_head, 1284 new_object, shadow_list); 1285 source->shadow_count++; 1286 vm_object_reference_locked(source); /* for new_object */ 1287 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1288 VM_OBJECT_UNLOCK(source); 1289 new_object->backing_object_offset = 1290 orig_object->backing_object_offset + entry->offset; 1291 new_object->backing_object = source; 1292 } 1293 if (orig_object->cred != NULL) { 1294 new_object->cred = orig_object->cred; 1295 crhold(orig_object->cred); 1296 new_object->charge = ptoa(size); 1297 KASSERT(orig_object->charge >= ptoa(size), 1298 ("orig_object->charge < 0")); 1299 orig_object->charge -= ptoa(size); 1300 } 1301 retry: 1302 m = vm_page_find_least(orig_object, offidxstart); 1303 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1304 m = m_next) { 1305 m_next = TAILQ_NEXT(m, listq); 1306 1307 /* 1308 * We must wait for pending I/O to complete before we can 1309 * rename the page. 1310 * 1311 * We do not have to VM_PROT_NONE the page as mappings should 1312 * not be changed by this operation. 1313 */ 1314 if ((m->oflags & VPO_BUSY) || m->busy) { 1315 VM_OBJECT_UNLOCK(new_object); 1316 m->oflags |= VPO_WANTED; 1317 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1318 VM_OBJECT_LOCK(new_object); 1319 goto retry; 1320 } 1321 #if VM_NRESERVLEVEL > 0 1322 /* 1323 * If some of the reservation's allocated pages remain with 1324 * the original object, then transferring the reservation to 1325 * the new object is neither particularly beneficial nor 1326 * particularly harmful as compared to leaving the reservation 1327 * with the original object. If, however, all of the 1328 * reservation's allocated pages are transferred to the new 1329 * object, then transferring the reservation is typically 1330 * beneficial. Determining which of these two cases applies 1331 * would be more costly than unconditionally renaming the 1332 * reservation. 1333 */ 1334 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1335 #endif 1336 vm_page_lock(m); 1337 vm_page_rename(m, new_object, idx); 1338 vm_page_unlock(m); 1339 /* page automatically made dirty by rename and cache handled */ 1340 vm_page_busy(m); 1341 } 1342 if (orig_object->type == OBJT_SWAP) { 1343 /* 1344 * swap_pager_copy() can sleep, in which case the orig_object's 1345 * and new_object's locks are released and reacquired. 1346 */ 1347 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1348 1349 /* 1350 * Transfer any cached pages from orig_object to new_object. 1351 * If swap_pager_copy() found swapped out pages within the 1352 * specified range of orig_object, then it changed 1353 * new_object's type to OBJT_SWAP when it transferred those 1354 * pages to new_object. Otherwise, new_object's type 1355 * should still be OBJT_DEFAULT and orig_object should not 1356 * contain any cached pages within the specified range. 1357 */ 1358 if (__predict_false(orig_object->cache != NULL)) 1359 vm_page_cache_transfer(orig_object, offidxstart, 1360 new_object); 1361 } 1362 VM_OBJECT_UNLOCK(orig_object); 1363 TAILQ_FOREACH(m, &new_object->memq, listq) 1364 vm_page_wakeup(m); 1365 VM_OBJECT_UNLOCK(new_object); 1366 entry->object.vm_object = new_object; 1367 entry->offset = 0LL; 1368 vm_object_deallocate(orig_object); 1369 VM_OBJECT_LOCK(new_object); 1370 } 1371 1372 #define OBSC_TEST_ALL_SHADOWED 0x0001 1373 #define OBSC_COLLAPSE_NOWAIT 0x0002 1374 #define OBSC_COLLAPSE_WAIT 0x0004 1375 1376 static int 1377 vm_object_backing_scan(vm_object_t object, int op) 1378 { 1379 int r = 1; 1380 vm_page_t p; 1381 vm_object_t backing_object; 1382 vm_pindex_t backing_offset_index; 1383 1384 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1385 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1386 1387 backing_object = object->backing_object; 1388 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1389 1390 /* 1391 * Initial conditions 1392 */ 1393 if (op & OBSC_TEST_ALL_SHADOWED) { 1394 /* 1395 * We do not want to have to test for the existence of cache 1396 * or swap pages in the backing object. XXX but with the 1397 * new swapper this would be pretty easy to do. 1398 * 1399 * XXX what about anonymous MAP_SHARED memory that hasn't 1400 * been ZFOD faulted yet? If we do not test for this, the 1401 * shadow test may succeed! XXX 1402 */ 1403 if (backing_object->type != OBJT_DEFAULT) { 1404 return (0); 1405 } 1406 } 1407 if (op & OBSC_COLLAPSE_WAIT) { 1408 vm_object_set_flag(backing_object, OBJ_DEAD); 1409 } 1410 1411 /* 1412 * Our scan 1413 */ 1414 p = TAILQ_FIRST(&backing_object->memq); 1415 while (p) { 1416 vm_page_t next = TAILQ_NEXT(p, listq); 1417 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1418 1419 if (op & OBSC_TEST_ALL_SHADOWED) { 1420 vm_page_t pp; 1421 1422 /* 1423 * Ignore pages outside the parent object's range 1424 * and outside the parent object's mapping of the 1425 * backing object. 1426 * 1427 * note that we do not busy the backing object's 1428 * page. 1429 */ 1430 if ( 1431 p->pindex < backing_offset_index || 1432 new_pindex >= object->size 1433 ) { 1434 p = next; 1435 continue; 1436 } 1437 1438 /* 1439 * See if the parent has the page or if the parent's 1440 * object pager has the page. If the parent has the 1441 * page but the page is not valid, the parent's 1442 * object pager must have the page. 1443 * 1444 * If this fails, the parent does not completely shadow 1445 * the object and we might as well give up now. 1446 */ 1447 1448 pp = vm_page_lookup(object, new_pindex); 1449 if ( 1450 (pp == NULL || pp->valid == 0) && 1451 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1452 ) { 1453 r = 0; 1454 break; 1455 } 1456 } 1457 1458 /* 1459 * Check for busy page 1460 */ 1461 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1462 vm_page_t pp; 1463 1464 if (op & OBSC_COLLAPSE_NOWAIT) { 1465 if ((p->oflags & VPO_BUSY) || 1466 !p->valid || 1467 p->busy) { 1468 p = next; 1469 continue; 1470 } 1471 } else if (op & OBSC_COLLAPSE_WAIT) { 1472 if ((p->oflags & VPO_BUSY) || p->busy) { 1473 VM_OBJECT_UNLOCK(object); 1474 p->oflags |= VPO_WANTED; 1475 msleep(p, VM_OBJECT_MTX(backing_object), 1476 PDROP | PVM, "vmocol", 0); 1477 VM_OBJECT_LOCK(object); 1478 VM_OBJECT_LOCK(backing_object); 1479 /* 1480 * If we slept, anything could have 1481 * happened. Since the object is 1482 * marked dead, the backing offset 1483 * should not have changed so we 1484 * just restart our scan. 1485 */ 1486 p = TAILQ_FIRST(&backing_object->memq); 1487 continue; 1488 } 1489 } 1490 1491 KASSERT( 1492 p->object == backing_object, 1493 ("vm_object_backing_scan: object mismatch") 1494 ); 1495 1496 /* 1497 * Destroy any associated swap 1498 */ 1499 if (backing_object->type == OBJT_SWAP) { 1500 swap_pager_freespace( 1501 backing_object, 1502 p->pindex, 1503 1 1504 ); 1505 } 1506 1507 if ( 1508 p->pindex < backing_offset_index || 1509 new_pindex >= object->size 1510 ) { 1511 /* 1512 * Page is out of the parent object's range, we 1513 * can simply destroy it. 1514 */ 1515 vm_page_lock(p); 1516 KASSERT(!pmap_page_is_mapped(p), 1517 ("freeing mapped page %p", p)); 1518 if (p->wire_count == 0) 1519 vm_page_free(p); 1520 else 1521 vm_page_remove(p); 1522 vm_page_unlock(p); 1523 p = next; 1524 continue; 1525 } 1526 1527 pp = vm_page_lookup(object, new_pindex); 1528 if ( 1529 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1530 (pp != NULL && pp->valid == 0) 1531 ) { 1532 /* 1533 * The page in the parent is not (yet) valid. 1534 * We don't know anything about the state of 1535 * the original page. It might be mapped, 1536 * so we must avoid the next if here. 1537 * 1538 * This is due to a race in vm_fault() where 1539 * we must unbusy the original (backing_obj) 1540 * page before we can (re)lock the parent. 1541 * Hence we can get here. 1542 */ 1543 p = next; 1544 continue; 1545 } 1546 if ( 1547 pp != NULL || 1548 vm_pager_has_page(object, new_pindex, NULL, NULL) 1549 ) { 1550 /* 1551 * page already exists in parent OR swap exists 1552 * for this location in the parent. Destroy 1553 * the original page from the backing object. 1554 * 1555 * Leave the parent's page alone 1556 */ 1557 vm_page_lock(p); 1558 KASSERT(!pmap_page_is_mapped(p), 1559 ("freeing mapped page %p", p)); 1560 if (p->wire_count == 0) 1561 vm_page_free(p); 1562 else 1563 vm_page_remove(p); 1564 vm_page_unlock(p); 1565 p = next; 1566 continue; 1567 } 1568 1569 #if VM_NRESERVLEVEL > 0 1570 /* 1571 * Rename the reservation. 1572 */ 1573 vm_reserv_rename(p, object, backing_object, 1574 backing_offset_index); 1575 #endif 1576 1577 /* 1578 * Page does not exist in parent, rename the 1579 * page from the backing object to the main object. 1580 * 1581 * If the page was mapped to a process, it can remain 1582 * mapped through the rename. 1583 */ 1584 vm_page_lock(p); 1585 vm_page_rename(p, object, new_pindex); 1586 vm_page_unlock(p); 1587 /* page automatically made dirty by rename */ 1588 } 1589 p = next; 1590 } 1591 return (r); 1592 } 1593 1594 1595 /* 1596 * this version of collapse allows the operation to occur earlier and 1597 * when paging_in_progress is true for an object... This is not a complete 1598 * operation, but should plug 99.9% of the rest of the leaks. 1599 */ 1600 static void 1601 vm_object_qcollapse(vm_object_t object) 1602 { 1603 vm_object_t backing_object = object->backing_object; 1604 1605 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1606 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1607 1608 if (backing_object->ref_count != 1) 1609 return; 1610 1611 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1612 } 1613 1614 /* 1615 * vm_object_collapse: 1616 * 1617 * Collapse an object with the object backing it. 1618 * Pages in the backing object are moved into the 1619 * parent, and the backing object is deallocated. 1620 */ 1621 void 1622 vm_object_collapse(vm_object_t object) 1623 { 1624 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1625 1626 while (TRUE) { 1627 vm_object_t backing_object; 1628 1629 /* 1630 * Verify that the conditions are right for collapse: 1631 * 1632 * The object exists and the backing object exists. 1633 */ 1634 if ((backing_object = object->backing_object) == NULL) 1635 break; 1636 1637 /* 1638 * we check the backing object first, because it is most likely 1639 * not collapsable. 1640 */ 1641 VM_OBJECT_LOCK(backing_object); 1642 if (backing_object->handle != NULL || 1643 (backing_object->type != OBJT_DEFAULT && 1644 backing_object->type != OBJT_SWAP) || 1645 (backing_object->flags & OBJ_DEAD) || 1646 object->handle != NULL || 1647 (object->type != OBJT_DEFAULT && 1648 object->type != OBJT_SWAP) || 1649 (object->flags & OBJ_DEAD)) { 1650 VM_OBJECT_UNLOCK(backing_object); 1651 break; 1652 } 1653 1654 if ( 1655 object->paging_in_progress != 0 || 1656 backing_object->paging_in_progress != 0 1657 ) { 1658 vm_object_qcollapse(object); 1659 VM_OBJECT_UNLOCK(backing_object); 1660 break; 1661 } 1662 /* 1663 * We know that we can either collapse the backing object (if 1664 * the parent is the only reference to it) or (perhaps) have 1665 * the parent bypass the object if the parent happens to shadow 1666 * all the resident pages in the entire backing object. 1667 * 1668 * This is ignoring pager-backed pages such as swap pages. 1669 * vm_object_backing_scan fails the shadowing test in this 1670 * case. 1671 */ 1672 if (backing_object->ref_count == 1) { 1673 /* 1674 * If there is exactly one reference to the backing 1675 * object, we can collapse it into the parent. 1676 */ 1677 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1678 1679 #if VM_NRESERVLEVEL > 0 1680 /* 1681 * Break any reservations from backing_object. 1682 */ 1683 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1684 vm_reserv_break_all(backing_object); 1685 #endif 1686 1687 /* 1688 * Move the pager from backing_object to object. 1689 */ 1690 if (backing_object->type == OBJT_SWAP) { 1691 /* 1692 * swap_pager_copy() can sleep, in which case 1693 * the backing_object's and object's locks are 1694 * released and reacquired. 1695 * Since swap_pager_copy() is being asked to 1696 * destroy the source, it will change the 1697 * backing_object's type to OBJT_DEFAULT. 1698 */ 1699 swap_pager_copy( 1700 backing_object, 1701 object, 1702 OFF_TO_IDX(object->backing_object_offset), TRUE); 1703 1704 /* 1705 * Free any cached pages from backing_object. 1706 */ 1707 if (__predict_false(backing_object->cache != NULL)) 1708 vm_page_cache_free(backing_object, 0, 0); 1709 } 1710 /* 1711 * Object now shadows whatever backing_object did. 1712 * Note that the reference to 1713 * backing_object->backing_object moves from within 1714 * backing_object to within object. 1715 */ 1716 LIST_REMOVE(object, shadow_list); 1717 backing_object->shadow_count--; 1718 if (backing_object->backing_object) { 1719 VM_OBJECT_LOCK(backing_object->backing_object); 1720 LIST_REMOVE(backing_object, shadow_list); 1721 LIST_INSERT_HEAD( 1722 &backing_object->backing_object->shadow_head, 1723 object, shadow_list); 1724 /* 1725 * The shadow_count has not changed. 1726 */ 1727 VM_OBJECT_UNLOCK(backing_object->backing_object); 1728 } 1729 object->backing_object = backing_object->backing_object; 1730 object->backing_object_offset += 1731 backing_object->backing_object_offset; 1732 1733 /* 1734 * Discard backing_object. 1735 * 1736 * Since the backing object has no pages, no pager left, 1737 * and no object references within it, all that is 1738 * necessary is to dispose of it. 1739 */ 1740 KASSERT(backing_object->ref_count == 1, ( 1741 "backing_object %p was somehow re-referenced during collapse!", 1742 backing_object)); 1743 VM_OBJECT_UNLOCK(backing_object); 1744 vm_object_destroy(backing_object); 1745 1746 object_collapses++; 1747 } else { 1748 vm_object_t new_backing_object; 1749 1750 /* 1751 * If we do not entirely shadow the backing object, 1752 * there is nothing we can do so we give up. 1753 */ 1754 if (object->resident_page_count != object->size && 1755 vm_object_backing_scan(object, 1756 OBSC_TEST_ALL_SHADOWED) == 0) { 1757 VM_OBJECT_UNLOCK(backing_object); 1758 break; 1759 } 1760 1761 /* 1762 * Make the parent shadow the next object in the 1763 * chain. Deallocating backing_object will not remove 1764 * it, since its reference count is at least 2. 1765 */ 1766 LIST_REMOVE(object, shadow_list); 1767 backing_object->shadow_count--; 1768 1769 new_backing_object = backing_object->backing_object; 1770 if ((object->backing_object = new_backing_object) != NULL) { 1771 VM_OBJECT_LOCK(new_backing_object); 1772 LIST_INSERT_HEAD( 1773 &new_backing_object->shadow_head, 1774 object, 1775 shadow_list 1776 ); 1777 new_backing_object->shadow_count++; 1778 vm_object_reference_locked(new_backing_object); 1779 VM_OBJECT_UNLOCK(new_backing_object); 1780 object->backing_object_offset += 1781 backing_object->backing_object_offset; 1782 } 1783 1784 /* 1785 * Drop the reference count on backing_object. Since 1786 * its ref_count was at least 2, it will not vanish. 1787 */ 1788 backing_object->ref_count--; 1789 VM_OBJECT_UNLOCK(backing_object); 1790 object_bypasses++; 1791 } 1792 1793 /* 1794 * Try again with this object's new backing object. 1795 */ 1796 } 1797 } 1798 1799 /* 1800 * vm_object_page_remove: 1801 * 1802 * For the given object, either frees or invalidates each of the 1803 * specified pages. In general, a page is freed. However, if a page is 1804 * wired for any reason other than the existence of a managed, wired 1805 * mapping, then it may be invalidated but not removed from the object. 1806 * Pages are specified by the given range ["start", "end") and the option 1807 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1808 * extends from "start" to the end of the object. If the option 1809 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1810 * specified range are affected. If the option OBJPR_NOTMAPPED is 1811 * specified, then the pages within the specified range must have no 1812 * mappings. Otherwise, if this option is not specified, any mappings to 1813 * the specified pages are removed before the pages are freed or 1814 * invalidated. 1815 * 1816 * In general, this operation should only be performed on objects that 1817 * contain managed pages. There are, however, two exceptions. First, it 1818 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1819 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1820 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1821 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1822 * 1823 * The object must be locked. 1824 */ 1825 void 1826 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1827 int options) 1828 { 1829 vm_page_t p, next; 1830 int wirings; 1831 1832 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1833 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) || 1834 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1835 ("vm_object_page_remove: illegal options for object %p", object)); 1836 if (object->resident_page_count == 0) 1837 goto skipmemq; 1838 vm_object_pip_add(object, 1); 1839 again: 1840 p = vm_page_find_least(object, start); 1841 1842 /* 1843 * Here, the variable "p" is either (1) the page with the least pindex 1844 * greater than or equal to the parameter "start" or (2) NULL. 1845 */ 1846 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1847 next = TAILQ_NEXT(p, listq); 1848 1849 /* 1850 * If the page is wired for any reason besides the existence 1851 * of managed, wired mappings, then it cannot be freed. For 1852 * example, fictitious pages, which represent device memory, 1853 * are inherently wired and cannot be freed. They can, 1854 * however, be invalidated if the option OBJPR_CLEANONLY is 1855 * not specified. 1856 */ 1857 vm_page_lock(p); 1858 if ((wirings = p->wire_count) != 0 && 1859 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1860 if ((options & OBJPR_NOTMAPPED) == 0) { 1861 pmap_remove_all(p); 1862 /* Account for removal of wired mappings. */ 1863 if (wirings != 0) 1864 p->wire_count -= wirings; 1865 } 1866 if ((options & OBJPR_CLEANONLY) == 0) { 1867 p->valid = 0; 1868 vm_page_undirty(p); 1869 } 1870 vm_page_unlock(p); 1871 continue; 1872 } 1873 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1874 goto again; 1875 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1876 ("vm_object_page_remove: page %p is fictitious", p)); 1877 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1878 if ((options & OBJPR_NOTMAPPED) == 0) 1879 pmap_remove_write(p); 1880 if (p->dirty) { 1881 vm_page_unlock(p); 1882 continue; 1883 } 1884 } 1885 if ((options & OBJPR_NOTMAPPED) == 0) { 1886 pmap_remove_all(p); 1887 /* Account for removal of wired mappings. */ 1888 if (wirings != 0) { 1889 KASSERT(p->wire_count == wirings, 1890 ("inconsistent wire count %d %d %p", 1891 p->wire_count, wirings, p)); 1892 p->wire_count = 0; 1893 atomic_subtract_int(&cnt.v_wire_count, 1); 1894 } 1895 } 1896 vm_page_free(p); 1897 vm_page_unlock(p); 1898 } 1899 vm_object_pip_wakeup(object); 1900 skipmemq: 1901 if (__predict_false(object->cache != NULL)) 1902 vm_page_cache_free(object, start, end); 1903 } 1904 1905 /* 1906 * vm_object_page_cache: 1907 * 1908 * For the given object, attempt to move the specified clean 1909 * pages to the cache queue. If a page is wired for any reason, 1910 * then it will not be changed. Pages are specified by the given 1911 * range ["start", "end"). As a special case, if "end" is zero, 1912 * then the range extends from "start" to the end of the object. 1913 * Any mappings to the specified pages are removed before the 1914 * pages are moved to the cache queue. 1915 * 1916 * This operation should only be performed on objects that 1917 * contain managed pages. 1918 * 1919 * The object must be locked. 1920 */ 1921 void 1922 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1923 { 1924 struct mtx *mtx, *new_mtx; 1925 vm_page_t p, next; 1926 1927 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1928 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG && 1929 object->type != OBJT_PHYS), 1930 ("vm_object_page_cache: illegal object %p", object)); 1931 if (object->resident_page_count == 0) 1932 return; 1933 p = vm_page_find_least(object, start); 1934 1935 /* 1936 * Here, the variable "p" is either (1) the page with the least pindex 1937 * greater than or equal to the parameter "start" or (2) NULL. 1938 */ 1939 mtx = NULL; 1940 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1941 next = TAILQ_NEXT(p, listq); 1942 1943 /* 1944 * Avoid releasing and reacquiring the same page lock. 1945 */ 1946 new_mtx = vm_page_lockptr(p); 1947 if (mtx != new_mtx) { 1948 if (mtx != NULL) 1949 mtx_unlock(mtx); 1950 mtx = new_mtx; 1951 mtx_lock(mtx); 1952 } 1953 vm_page_try_to_cache(p); 1954 } 1955 if (mtx != NULL) 1956 mtx_unlock(mtx); 1957 } 1958 1959 /* 1960 * Populate the specified range of the object with valid pages. Returns 1961 * TRUE if the range is successfully populated and FALSE otherwise. 1962 * 1963 * Note: This function should be optimized to pass a larger array of 1964 * pages to vm_pager_get_pages() before it is applied to a non- 1965 * OBJT_DEVICE object. 1966 * 1967 * The object must be locked. 1968 */ 1969 boolean_t 1970 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1971 { 1972 vm_page_t m, ma[1]; 1973 vm_pindex_t pindex; 1974 int rv; 1975 1976 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1977 for (pindex = start; pindex < end; pindex++) { 1978 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1979 VM_ALLOC_RETRY); 1980 if (m->valid != VM_PAGE_BITS_ALL) { 1981 ma[0] = m; 1982 rv = vm_pager_get_pages(object, ma, 1, 0); 1983 m = vm_page_lookup(object, pindex); 1984 if (m == NULL) 1985 break; 1986 if (rv != VM_PAGER_OK) { 1987 vm_page_lock(m); 1988 vm_page_free(m); 1989 vm_page_unlock(m); 1990 break; 1991 } 1992 } 1993 /* 1994 * Keep "m" busy because a subsequent iteration may unlock 1995 * the object. 1996 */ 1997 } 1998 if (pindex > start) { 1999 m = vm_page_lookup(object, start); 2000 while (m != NULL && m->pindex < pindex) { 2001 vm_page_wakeup(m); 2002 m = TAILQ_NEXT(m, listq); 2003 } 2004 } 2005 return (pindex == end); 2006 } 2007 2008 /* 2009 * Routine: vm_object_coalesce 2010 * Function: Coalesces two objects backing up adjoining 2011 * regions of memory into a single object. 2012 * 2013 * returns TRUE if objects were combined. 2014 * 2015 * NOTE: Only works at the moment if the second object is NULL - 2016 * if it's not, which object do we lock first? 2017 * 2018 * Parameters: 2019 * prev_object First object to coalesce 2020 * prev_offset Offset into prev_object 2021 * prev_size Size of reference to prev_object 2022 * next_size Size of reference to the second object 2023 * reserved Indicator that extension region has 2024 * swap accounted for 2025 * 2026 * Conditions: 2027 * The object must *not* be locked. 2028 */ 2029 boolean_t 2030 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2031 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2032 { 2033 vm_pindex_t next_pindex; 2034 2035 if (prev_object == NULL) 2036 return (TRUE); 2037 VM_OBJECT_LOCK(prev_object); 2038 if (prev_object->type != OBJT_DEFAULT && 2039 prev_object->type != OBJT_SWAP) { 2040 VM_OBJECT_UNLOCK(prev_object); 2041 return (FALSE); 2042 } 2043 2044 /* 2045 * Try to collapse the object first 2046 */ 2047 vm_object_collapse(prev_object); 2048 2049 /* 2050 * Can't coalesce if: . more than one reference . paged out . shadows 2051 * another object . has a copy elsewhere (any of which mean that the 2052 * pages not mapped to prev_entry may be in use anyway) 2053 */ 2054 if (prev_object->backing_object != NULL) { 2055 VM_OBJECT_UNLOCK(prev_object); 2056 return (FALSE); 2057 } 2058 2059 prev_size >>= PAGE_SHIFT; 2060 next_size >>= PAGE_SHIFT; 2061 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2062 2063 if ((prev_object->ref_count > 1) && 2064 (prev_object->size != next_pindex)) { 2065 VM_OBJECT_UNLOCK(prev_object); 2066 return (FALSE); 2067 } 2068 2069 /* 2070 * Account for the charge. 2071 */ 2072 if (prev_object->cred != NULL) { 2073 2074 /* 2075 * If prev_object was charged, then this mapping, 2076 * althought not charged now, may become writable 2077 * later. Non-NULL cred in the object would prevent 2078 * swap reservation during enabling of the write 2079 * access, so reserve swap now. Failed reservation 2080 * cause allocation of the separate object for the map 2081 * entry, and swap reservation for this entry is 2082 * managed in appropriate time. 2083 */ 2084 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2085 prev_object->cred)) { 2086 return (FALSE); 2087 } 2088 prev_object->charge += ptoa(next_size); 2089 } 2090 2091 /* 2092 * Remove any pages that may still be in the object from a previous 2093 * deallocation. 2094 */ 2095 if (next_pindex < prev_object->size) { 2096 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2097 next_size, 0); 2098 if (prev_object->type == OBJT_SWAP) 2099 swap_pager_freespace(prev_object, 2100 next_pindex, next_size); 2101 #if 0 2102 if (prev_object->cred != NULL) { 2103 KASSERT(prev_object->charge >= 2104 ptoa(prev_object->size - next_pindex), 2105 ("object %p overcharged 1 %jx %jx", prev_object, 2106 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2107 prev_object->charge -= ptoa(prev_object->size - 2108 next_pindex); 2109 } 2110 #endif 2111 } 2112 2113 /* 2114 * Extend the object if necessary. 2115 */ 2116 if (next_pindex + next_size > prev_object->size) 2117 prev_object->size = next_pindex + next_size; 2118 2119 VM_OBJECT_UNLOCK(prev_object); 2120 return (TRUE); 2121 } 2122 2123 void 2124 vm_object_set_writeable_dirty(vm_object_t object) 2125 { 2126 2127 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2128 if (object->type != OBJT_VNODE) 2129 return; 2130 object->generation++; 2131 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2132 return; 2133 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2134 } 2135 2136 #include "opt_ddb.h" 2137 #ifdef DDB 2138 #include <sys/kernel.h> 2139 2140 #include <sys/cons.h> 2141 2142 #include <ddb/ddb.h> 2143 2144 static int 2145 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2146 { 2147 vm_map_t tmpm; 2148 vm_map_entry_t tmpe; 2149 vm_object_t obj; 2150 int entcount; 2151 2152 if (map == 0) 2153 return 0; 2154 2155 if (entry == 0) { 2156 tmpe = map->header.next; 2157 entcount = map->nentries; 2158 while (entcount-- && (tmpe != &map->header)) { 2159 if (_vm_object_in_map(map, object, tmpe)) { 2160 return 1; 2161 } 2162 tmpe = tmpe->next; 2163 } 2164 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2165 tmpm = entry->object.sub_map; 2166 tmpe = tmpm->header.next; 2167 entcount = tmpm->nentries; 2168 while (entcount-- && tmpe != &tmpm->header) { 2169 if (_vm_object_in_map(tmpm, object, tmpe)) { 2170 return 1; 2171 } 2172 tmpe = tmpe->next; 2173 } 2174 } else if ((obj = entry->object.vm_object) != NULL) { 2175 for (; obj; obj = obj->backing_object) 2176 if (obj == object) { 2177 return 1; 2178 } 2179 } 2180 return 0; 2181 } 2182 2183 static int 2184 vm_object_in_map(vm_object_t object) 2185 { 2186 struct proc *p; 2187 2188 /* sx_slock(&allproc_lock); */ 2189 FOREACH_PROC_IN_SYSTEM(p) { 2190 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2191 continue; 2192 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2193 /* sx_sunlock(&allproc_lock); */ 2194 return 1; 2195 } 2196 } 2197 /* sx_sunlock(&allproc_lock); */ 2198 if (_vm_object_in_map(kernel_map, object, 0)) 2199 return 1; 2200 if (_vm_object_in_map(kmem_map, object, 0)) 2201 return 1; 2202 if (_vm_object_in_map(pager_map, object, 0)) 2203 return 1; 2204 if (_vm_object_in_map(buffer_map, object, 0)) 2205 return 1; 2206 return 0; 2207 } 2208 2209 DB_SHOW_COMMAND(vmochk, vm_object_check) 2210 { 2211 vm_object_t object; 2212 2213 /* 2214 * make sure that internal objs are in a map somewhere 2215 * and none have zero ref counts. 2216 */ 2217 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2218 if (object->handle == NULL && 2219 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2220 if (object->ref_count == 0) { 2221 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2222 (long)object->size); 2223 } 2224 if (!vm_object_in_map(object)) { 2225 db_printf( 2226 "vmochk: internal obj is not in a map: " 2227 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2228 object->ref_count, (u_long)object->size, 2229 (u_long)object->size, 2230 (void *)object->backing_object); 2231 } 2232 } 2233 } 2234 } 2235 2236 /* 2237 * vm_object_print: [ debug ] 2238 */ 2239 DB_SHOW_COMMAND(object, vm_object_print_static) 2240 { 2241 /* XXX convert args. */ 2242 vm_object_t object = (vm_object_t)addr; 2243 boolean_t full = have_addr; 2244 2245 vm_page_t p; 2246 2247 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2248 #define count was_count 2249 2250 int count; 2251 2252 if (object == NULL) 2253 return; 2254 2255 db_iprintf( 2256 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2257 object, (int)object->type, (uintmax_t)object->size, 2258 object->resident_page_count, object->ref_count, object->flags, 2259 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2260 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2261 object->shadow_count, 2262 object->backing_object ? object->backing_object->ref_count : 0, 2263 object->backing_object, (uintmax_t)object->backing_object_offset); 2264 2265 if (!full) 2266 return; 2267 2268 db_indent += 2; 2269 count = 0; 2270 TAILQ_FOREACH(p, &object->memq, listq) { 2271 if (count == 0) 2272 db_iprintf("memory:="); 2273 else if (count == 6) { 2274 db_printf("\n"); 2275 db_iprintf(" ..."); 2276 count = 0; 2277 } else 2278 db_printf(","); 2279 count++; 2280 2281 db_printf("(off=0x%jx,page=0x%jx)", 2282 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2283 } 2284 if (count != 0) 2285 db_printf("\n"); 2286 db_indent -= 2; 2287 } 2288 2289 /* XXX. */ 2290 #undef count 2291 2292 /* XXX need this non-static entry for calling from vm_map_print. */ 2293 void 2294 vm_object_print( 2295 /* db_expr_t */ long addr, 2296 boolean_t have_addr, 2297 /* db_expr_t */ long count, 2298 char *modif) 2299 { 2300 vm_object_print_static(addr, have_addr, count, modif); 2301 } 2302 2303 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2304 { 2305 vm_object_t object; 2306 vm_pindex_t fidx; 2307 vm_paddr_t pa; 2308 vm_page_t m, prev_m; 2309 int rcount, nl, c; 2310 2311 nl = 0; 2312 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2313 db_printf("new object: %p\n", (void *)object); 2314 if (nl > 18) { 2315 c = cngetc(); 2316 if (c != ' ') 2317 return; 2318 nl = 0; 2319 } 2320 nl++; 2321 rcount = 0; 2322 fidx = 0; 2323 pa = -1; 2324 TAILQ_FOREACH(m, &object->memq, listq) { 2325 if (m->pindex > 128) 2326 break; 2327 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2328 prev_m->pindex + 1 != m->pindex) { 2329 if (rcount) { 2330 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2331 (long)fidx, rcount, (long)pa); 2332 if (nl > 18) { 2333 c = cngetc(); 2334 if (c != ' ') 2335 return; 2336 nl = 0; 2337 } 2338 nl++; 2339 rcount = 0; 2340 } 2341 } 2342 if (rcount && 2343 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2344 ++rcount; 2345 continue; 2346 } 2347 if (rcount) { 2348 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2349 (long)fidx, rcount, (long)pa); 2350 if (nl > 18) { 2351 c = cngetc(); 2352 if (c != ' ') 2353 return; 2354 nl = 0; 2355 } 2356 nl++; 2357 } 2358 fidx = m->pindex; 2359 pa = VM_PAGE_TO_PHYS(m); 2360 rcount = 1; 2361 } 2362 if (rcount) { 2363 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2364 (long)fidx, rcount, (long)pa); 2365 if (nl > 18) { 2366 c = cngetc(); 2367 if (c != ' ') 2368 return; 2369 nl = 0; 2370 } 2371 nl++; 2372 } 2373 } 2374 } 2375 #endif /* DDB */ 2376