xref: /freebsd/sys/vm/vm_object.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Virtual memory object module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>		/* for curproc, pageproc */
81 #include <sys/socket.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 #define EASY_SCAN_FACTOR       8
100 
101 #define MSYNC_FLUSH_HARDSEQ	0x01
102 #define MSYNC_FLUSH_SOFTSEQ	0x02
103 
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109         CTLFLAG_RW, &msync_flush_flags, 0, "");
110 
111 static void	vm_object_qcollapse(vm_object_t object);
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static long object_collapses;
147 static long object_bypasses;
148 static int next_index;
149 static uma_zone_t obj_zone;
150 #define VM_OBJECTS_INIT 256
151 
152 static void vm_object_zinit(void *mem, int size);
153 
154 #ifdef INVARIANTS
155 static void vm_object_zdtor(void *mem, int size, void *arg);
156 
157 static void
158 vm_object_zdtor(void *mem, int size, void *arg)
159 {
160 	vm_object_t object;
161 
162 	object = (vm_object_t)mem;
163 	KASSERT(TAILQ_EMPTY(&object->memq),
164 	    ("object %p has resident pages",
165 	    object));
166 	KASSERT(object->paging_in_progress == 0,
167 	    ("object %p paging_in_progress = %d",
168 	    object, object->paging_in_progress));
169 	KASSERT(object->resident_page_count == 0,
170 	    ("object %p resident_page_count = %d",
171 	    object, object->resident_page_count));
172 	KASSERT(object->shadow_count == 0,
173 	    ("object %p shadow_count = %d",
174 	    object, object->shadow_count));
175 }
176 #endif
177 
178 static void
179 vm_object_zinit(void *mem, int size)
180 {
181 	vm_object_t object;
182 
183 	object = (vm_object_t)mem;
184 	bzero(&object->mtx, sizeof(object->mtx));
185 	VM_OBJECT_LOCK_INIT(object);
186 
187 	/* These are true for any object that has been freed */
188 	object->paging_in_progress = 0;
189 	object->resident_page_count = 0;
190 	object->shadow_count = 0;
191 }
192 
193 void
194 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
195 {
196 	int incr;
197 
198 	TAILQ_INIT(&object->memq);
199 	LIST_INIT(&object->shadow_head);
200 
201 	object->root = NULL;
202 	object->type = type;
203 	object->size = size;
204 	object->generation = 1;
205 	object->ref_count = 1;
206 	object->flags = 0;
207 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
208 		object->flags = OBJ_ONEMAPPING;
209 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
210 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
211 	else
212 		incr = size;
213 	do
214 		object->pg_color = next_index;
215 	while (!atomic_cmpset_int(&next_index, object->pg_color,
216 				  (object->pg_color + incr) & PQ_L2_MASK));
217 	object->handle = NULL;
218 	object->backing_object = NULL;
219 	object->backing_object_offset = (vm_ooffset_t) 0;
220 
221 	mtx_lock(&vm_object_list_mtx);
222 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
223 	mtx_unlock(&vm_object_list_mtx);
224 }
225 
226 /*
227  *	vm_object_init:
228  *
229  *	Initialize the VM objects module.
230  */
231 void
232 vm_object_init(void)
233 {
234 	TAILQ_INIT(&vm_object_list);
235 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
236 
237 	VM_OBJECT_LOCK_INIT(&kernel_object_store);
238 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
239 	    kernel_object);
240 
241 	/*
242 	 * The kmem object's mutex is given a unique name, instead of
243 	 * "vm object", to avoid false reports of lock-order reversal
244 	 * with a system map mutex.
245 	 */
246 	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
247 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
248 	    kmem_object);
249 
250 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
251 #ifdef INVARIANTS
252 	    vm_object_zdtor,
253 #else
254 	    NULL,
255 #endif
256 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
257 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
258 }
259 
260 void
261 vm_object_clear_flag(vm_object_t object, u_short bits)
262 {
263 
264 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
265 	object->flags &= ~bits;
266 }
267 
268 void
269 vm_object_pip_add(vm_object_t object, short i)
270 {
271 
272 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
273 	object->paging_in_progress += i;
274 }
275 
276 void
277 vm_object_pip_subtract(vm_object_t object, short i)
278 {
279 
280 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281 	object->paging_in_progress -= i;
282 }
283 
284 void
285 vm_object_pip_wakeup(vm_object_t object)
286 {
287 
288 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
289 	object->paging_in_progress--;
290 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
291 		vm_object_clear_flag(object, OBJ_PIPWNT);
292 		wakeup(object);
293 	}
294 }
295 
296 void
297 vm_object_pip_wakeupn(vm_object_t object, short i)
298 {
299 
300 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301 	if (i)
302 		object->paging_in_progress -= i;
303 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
304 		vm_object_clear_flag(object, OBJ_PIPWNT);
305 		wakeup(object);
306 	}
307 }
308 
309 void
310 vm_object_pip_wait(vm_object_t object, char *waitid)
311 {
312 
313 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
314 	while (object->paging_in_progress) {
315 		object->flags |= OBJ_PIPWNT;
316 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
317 	}
318 }
319 
320 /*
321  *	vm_object_allocate_wait
322  *
323  *	Return a new object with the given size, and give the user the
324  *	option of waiting for it to complete or failing if the needed
325  *	memory isn't available.
326  */
327 vm_object_t
328 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
329 {
330 	vm_object_t result;
331 
332 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
333 
334 	if (result != NULL)
335 		_vm_object_allocate(type, size, result);
336 
337 	return (result);
338 }
339 
340 /*
341  *	vm_object_allocate:
342  *
343  *	Returns a new object with the given size.
344  */
345 vm_object_t
346 vm_object_allocate(objtype_t type, vm_pindex_t size)
347 {
348 	return(vm_object_allocate_wait(type, size, M_WAITOK));
349 }
350 
351 
352 /*
353  *	vm_object_reference:
354  *
355  *	Gets another reference to the given object.  Note: OBJ_DEAD
356  *	objects can be referenced during final cleaning.
357  */
358 void
359 vm_object_reference(vm_object_t object)
360 {
361 	struct vnode *vp;
362 	int flags;
363 
364 	if (object == NULL)
365 		return;
366 	VM_OBJECT_LOCK(object);
367 	object->ref_count++;
368 	if (object->type == OBJT_VNODE) {
369 		vp = object->handle;
370 		VI_LOCK(vp);
371 		VM_OBJECT_UNLOCK(object);
372 		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
373 		     flags = 0)
374 			printf("vm_object_reference: delay in vget\n");
375 	} else
376 		VM_OBJECT_UNLOCK(object);
377 }
378 
379 /*
380  *	vm_object_reference_locked:
381  *
382  *	Gets another reference to the given object.
383  *
384  *	The object must be locked.
385  */
386 void
387 vm_object_reference_locked(vm_object_t object)
388 {
389 	struct vnode *vp;
390 
391 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
392 	KASSERT((object->flags & OBJ_DEAD) == 0,
393 	    ("vm_object_reference_locked: dead object referenced"));
394 	object->ref_count++;
395 	if (object->type == OBJT_VNODE) {
396 		vp = object->handle;
397 		vref(vp);
398 	}
399 }
400 
401 /*
402  * Handle deallocating an object of type OBJT_VNODE.
403  */
404 void
405 vm_object_vndeallocate(vm_object_t object)
406 {
407 	struct vnode *vp = (struct vnode *) object->handle;
408 
409 	GIANT_REQUIRED;
410 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
411 	KASSERT(object->type == OBJT_VNODE,
412 	    ("vm_object_vndeallocate: not a vnode object"));
413 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
414 #ifdef INVARIANTS
415 	if (object->ref_count == 0) {
416 		vprint("vm_object_vndeallocate", vp);
417 		panic("vm_object_vndeallocate: bad object reference count");
418 	}
419 #endif
420 
421 	object->ref_count--;
422 	if (object->ref_count == 0) {
423 		mp_fixme("Unlocked vflag access.");
424 		vp->v_vflag &= ~VV_TEXT;
425 	}
426 	VM_OBJECT_UNLOCK(object);
427 	/*
428 	 * vrele may need a vop lock
429 	 */
430 	vrele(vp);
431 }
432 
433 /*
434  *	vm_object_deallocate:
435  *
436  *	Release a reference to the specified object,
437  *	gained either through a vm_object_allocate
438  *	or a vm_object_reference call.  When all references
439  *	are gone, storage associated with this object
440  *	may be relinquished.
441  *
442  *	No object may be locked.
443  */
444 void
445 vm_object_deallocate(vm_object_t object)
446 {
447 	vm_object_t temp;
448 
449 	if (object != kmem_object)
450 		mtx_lock(&Giant);
451 	while (object != NULL) {
452 		VM_OBJECT_LOCK(object);
453 		if (object->type == OBJT_VNODE) {
454 			vm_object_vndeallocate(object);
455 			goto done;
456 		}
457 
458 		KASSERT(object->ref_count != 0,
459 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
460 
461 		/*
462 		 * If the reference count goes to 0 we start calling
463 		 * vm_object_terminate() on the object chain.
464 		 * A ref count of 1 may be a special case depending on the
465 		 * shadow count being 0 or 1.
466 		 */
467 		object->ref_count--;
468 		if (object->ref_count > 1) {
469 			VM_OBJECT_UNLOCK(object);
470 			goto done;
471 		} else if (object->ref_count == 1) {
472 			if (object->shadow_count == 0) {
473 				vm_object_set_flag(object, OBJ_ONEMAPPING);
474 			} else if ((object->shadow_count == 1) &&
475 			    (object->handle == NULL) &&
476 			    (object->type == OBJT_DEFAULT ||
477 			     object->type == OBJT_SWAP)) {
478 				vm_object_t robject;
479 
480 				robject = LIST_FIRST(&object->shadow_head);
481 				KASSERT(robject != NULL,
482 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
483 					 object->ref_count,
484 					 object->shadow_count));
485 				if (!VM_OBJECT_TRYLOCK(robject)) {
486 					/*
487 					 * Avoid a potential deadlock.
488 					 */
489 					object->ref_count++;
490 					VM_OBJECT_UNLOCK(object);
491 					continue;
492 				}
493 				if ((robject->handle == NULL) &&
494 				    (robject->type == OBJT_DEFAULT ||
495 				     robject->type == OBJT_SWAP)) {
496 
497 					robject->ref_count++;
498 retry:
499 					if (robject->paging_in_progress) {
500 						VM_OBJECT_UNLOCK(object);
501 						vm_object_pip_wait(robject,
502 						    "objde1");
503 						VM_OBJECT_LOCK(object);
504 						goto retry;
505 					} else if (object->paging_in_progress) {
506 						VM_OBJECT_UNLOCK(robject);
507 						object->flags |= OBJ_PIPWNT;
508 						msleep(object,
509 						    VM_OBJECT_MTX(object),
510 						    PDROP | PVM, "objde2", 0);
511 						VM_OBJECT_LOCK(robject);
512 						VM_OBJECT_LOCK(object);
513 						goto retry;
514 					}
515 					VM_OBJECT_UNLOCK(object);
516 					if (robject->ref_count == 1) {
517 						robject->ref_count--;
518 						object = robject;
519 						goto doterm;
520 					}
521 					object = robject;
522 					vm_object_collapse(object);
523 					VM_OBJECT_UNLOCK(object);
524 					continue;
525 				}
526 				VM_OBJECT_UNLOCK(robject);
527 			}
528 			VM_OBJECT_UNLOCK(object);
529 			goto done;
530 		}
531 doterm:
532 		temp = object->backing_object;
533 		if (temp != NULL) {
534 			VM_OBJECT_LOCK(temp);
535 			LIST_REMOVE(object, shadow_list);
536 			temp->shadow_count--;
537 			temp->generation++;
538 			VM_OBJECT_UNLOCK(temp);
539 			object->backing_object = NULL;
540 		}
541 		/*
542 		 * Don't double-terminate, we could be in a termination
543 		 * recursion due to the terminate having to sync data
544 		 * to disk.
545 		 */
546 		if ((object->flags & OBJ_DEAD) == 0)
547 			vm_object_terminate(object);
548 		else
549 			VM_OBJECT_UNLOCK(object);
550 		object = temp;
551 	}
552 done:
553 	if (object != kmem_object)
554 		mtx_unlock(&Giant);
555 }
556 
557 /*
558  *	vm_object_terminate actually destroys the specified object, freeing
559  *	up all previously used resources.
560  *
561  *	The object must be locked.
562  *	This routine may block.
563  */
564 void
565 vm_object_terminate(vm_object_t object)
566 {
567 	vm_page_t p;
568 	int s;
569 
570 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
571 
572 	/*
573 	 * Make sure no one uses us.
574 	 */
575 	vm_object_set_flag(object, OBJ_DEAD);
576 
577 	/*
578 	 * wait for the pageout daemon to be done with the object
579 	 */
580 	vm_object_pip_wait(object, "objtrm");
581 
582 	KASSERT(!object->paging_in_progress,
583 		("vm_object_terminate: pageout in progress"));
584 
585 	/*
586 	 * Clean and free the pages, as appropriate. All references to the
587 	 * object are gone, so we don't need to lock it.
588 	 */
589 	if (object->type == OBJT_VNODE) {
590 		struct vnode *vp = (struct vnode *)object->handle;
591 
592 		/*
593 		 * Clean pages and flush buffers.
594 		 */
595 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
596 		VM_OBJECT_UNLOCK(object);
597 
598 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
599 
600 		VM_OBJECT_LOCK(object);
601 	}
602 
603 	KASSERT(object->ref_count == 0,
604 		("vm_object_terminate: object with references, ref_count=%d",
605 		object->ref_count));
606 
607 	/*
608 	 * Now free any remaining pages. For internal objects, this also
609 	 * removes them from paging queues. Don't free wired pages, just
610 	 * remove them from the object.
611 	 */
612 	s = splvm();
613 	vm_page_lock_queues();
614 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
615 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
616 			("vm_object_terminate: freeing busy page %p "
617 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
618 		if (p->wire_count == 0) {
619 			vm_page_busy(p);
620 			vm_page_free(p);
621 			cnt.v_pfree++;
622 		} else {
623 			vm_page_busy(p);
624 			vm_page_remove(p);
625 		}
626 	}
627 	vm_page_unlock_queues();
628 	splx(s);
629 
630 	/*
631 	 * Let the pager know object is dead.
632 	 */
633 	vm_pager_deallocate(object);
634 	VM_OBJECT_UNLOCK(object);
635 
636 	/*
637 	 * Remove the object from the global object list.
638 	 */
639 	mtx_lock(&vm_object_list_mtx);
640 	TAILQ_REMOVE(&vm_object_list, object, object_list);
641 	mtx_unlock(&vm_object_list_mtx);
642 
643 	wakeup(object);
644 
645 	/*
646 	 * Free the space for the object.
647 	 */
648 	uma_zfree(obj_zone, object);
649 }
650 
651 /*
652  *	vm_object_page_clean
653  *
654  *	Clean all dirty pages in the specified range of object.  Leaves page
655  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
656  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
657  *	leaving the object dirty.
658  *
659  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
660  *	synchronous clustering mode implementation.
661  *
662  *	Odd semantics: if start == end, we clean everything.
663  *
664  *	The object must be locked.
665  */
666 void
667 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
668 {
669 	vm_page_t p, np;
670 	vm_pindex_t tstart, tend;
671 	vm_pindex_t pi;
672 	int clearobjflags;
673 	int pagerflags;
674 	int curgeneration;
675 
676 	GIANT_REQUIRED;
677 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678 	if (object->type != OBJT_VNODE ||
679 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
680 		return;
681 
682 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
683 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
684 
685 	vm_object_set_flag(object, OBJ_CLEANING);
686 
687 	tstart = start;
688 	if (end == 0) {
689 		tend = object->size;
690 	} else {
691 		tend = end;
692 	}
693 
694 	vm_page_lock_queues();
695 	/*
696 	 * If the caller is smart and only msync()s a range he knows is
697 	 * dirty, we may be able to avoid an object scan.  This results in
698 	 * a phenominal improvement in performance.  We cannot do this
699 	 * as a matter of course because the object may be huge - e.g.
700 	 * the size might be in the gigabytes or terrabytes.
701 	 */
702 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
703 		vm_pindex_t tscan;
704 		int scanlimit;
705 		int scanreset;
706 
707 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
708 		if (scanreset < 16)
709 			scanreset = 16;
710 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
711 
712 		scanlimit = scanreset;
713 		tscan = tstart;
714 		while (tscan < tend) {
715 			curgeneration = object->generation;
716 			p = vm_page_lookup(object, tscan);
717 			if (p == NULL || p->valid == 0 ||
718 			    (p->queue - p->pc) == PQ_CACHE) {
719 				if (--scanlimit == 0)
720 					break;
721 				++tscan;
722 				continue;
723 			}
724 			vm_page_test_dirty(p);
725 			if ((p->dirty & p->valid) == 0) {
726 				if (--scanlimit == 0)
727 					break;
728 				++tscan;
729 				continue;
730 			}
731 			/*
732 			 * If we have been asked to skip nosync pages and
733 			 * this is a nosync page, we can't continue.
734 			 */
735 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
736 				if (--scanlimit == 0)
737 					break;
738 				++tscan;
739 				continue;
740 			}
741 			scanlimit = scanreset;
742 
743 			/*
744 			 * This returns 0 if it was unable to busy the first
745 			 * page (i.e. had to sleep).
746 			 */
747 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
748 		}
749 
750 		/*
751 		 * If everything was dirty and we flushed it successfully,
752 		 * and the requested range is not the entire object, we
753 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
754 		 * return immediately.
755 		 */
756 		if (tscan >= tend && (tstart || tend < object->size)) {
757 			vm_page_unlock_queues();
758 			vm_object_clear_flag(object, OBJ_CLEANING);
759 			return;
760 		}
761 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
762 	}
763 
764 	/*
765 	 * Generally set CLEANCHK interlock and make the page read-only so
766 	 * we can then clear the object flags.
767 	 *
768 	 * However, if this is a nosync mmap then the object is likely to
769 	 * stay dirty so do not mess with the page and do not clear the
770 	 * object flags.
771 	 */
772 	clearobjflags = 1;
773 	TAILQ_FOREACH(p, &object->memq, listq) {
774 		vm_page_flag_set(p, PG_CLEANCHK);
775 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
776 			clearobjflags = 0;
777 		else
778 			pmap_page_protect(p, VM_PROT_READ);
779 	}
780 
781 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
782 		struct vnode *vp;
783 
784 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
785 		if (object->type == OBJT_VNODE &&
786 		    (vp = (struct vnode *)object->handle) != NULL) {
787 			VI_LOCK(vp);
788 			if (vp->v_iflag & VI_OBJDIRTY)
789 				vp->v_iflag &= ~VI_OBJDIRTY;
790 			VI_UNLOCK(vp);
791 		}
792 	}
793 
794 rescan:
795 	curgeneration = object->generation;
796 
797 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
798 		int n;
799 
800 		np = TAILQ_NEXT(p, listq);
801 
802 again:
803 		pi = p->pindex;
804 		if (((p->flags & PG_CLEANCHK) == 0) ||
805 			(pi < tstart) || (pi >= tend) ||
806 			(p->valid == 0) ||
807 			((p->queue - p->pc) == PQ_CACHE)) {
808 			vm_page_flag_clear(p, PG_CLEANCHK);
809 			continue;
810 		}
811 
812 		vm_page_test_dirty(p);
813 		if ((p->dirty & p->valid) == 0) {
814 			vm_page_flag_clear(p, PG_CLEANCHK);
815 			continue;
816 		}
817 
818 		/*
819 		 * If we have been asked to skip nosync pages and this is a
820 		 * nosync page, skip it.  Note that the object flags were
821 		 * not cleared in this case so we do not have to set them.
822 		 */
823 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
824 			vm_page_flag_clear(p, PG_CLEANCHK);
825 			continue;
826 		}
827 
828 		n = vm_object_page_collect_flush(object, p,
829 			curgeneration, pagerflags);
830 		if (n == 0)
831 			goto rescan;
832 
833 		if (object->generation != curgeneration)
834 			goto rescan;
835 
836 		/*
837 		 * Try to optimize the next page.  If we can't we pick up
838 		 * our (random) scan where we left off.
839 		 */
840 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
841 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
842 				goto again;
843 		}
844 	}
845 	vm_page_unlock_queues();
846 #if 0
847 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
848 #endif
849 
850 	vm_object_clear_flag(object, OBJ_CLEANING);
851 	return;
852 }
853 
854 static int
855 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
856 {
857 	int runlen;
858 	int s;
859 	int maxf;
860 	int chkb;
861 	int maxb;
862 	int i;
863 	vm_pindex_t pi;
864 	vm_page_t maf[vm_pageout_page_count];
865 	vm_page_t mab[vm_pageout_page_count];
866 	vm_page_t ma[vm_pageout_page_count];
867 
868 	s = splvm();
869 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
870 	pi = p->pindex;
871 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
872 		vm_page_lock_queues();
873 		if (object->generation != curgeneration) {
874 			splx(s);
875 			return(0);
876 		}
877 	}
878 	maxf = 0;
879 	for(i = 1; i < vm_pageout_page_count; i++) {
880 		vm_page_t tp;
881 
882 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
883 			if ((tp->flags & PG_BUSY) ||
884 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
885 				 (tp->flags & PG_CLEANCHK) == 0) ||
886 				(tp->busy != 0))
887 				break;
888 			if((tp->queue - tp->pc) == PQ_CACHE) {
889 				vm_page_flag_clear(tp, PG_CLEANCHK);
890 				break;
891 			}
892 			vm_page_test_dirty(tp);
893 			if ((tp->dirty & tp->valid) == 0) {
894 				vm_page_flag_clear(tp, PG_CLEANCHK);
895 				break;
896 			}
897 			maf[ i - 1 ] = tp;
898 			maxf++;
899 			continue;
900 		}
901 		break;
902 	}
903 
904 	maxb = 0;
905 	chkb = vm_pageout_page_count -  maxf;
906 	if (chkb) {
907 		for(i = 1; i < chkb;i++) {
908 			vm_page_t tp;
909 
910 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
911 				if ((tp->flags & PG_BUSY) ||
912 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
913 					 (tp->flags & PG_CLEANCHK) == 0) ||
914 					(tp->busy != 0))
915 					break;
916 				if ((tp->queue - tp->pc) == PQ_CACHE) {
917 					vm_page_flag_clear(tp, PG_CLEANCHK);
918 					break;
919 				}
920 				vm_page_test_dirty(tp);
921 				if ((tp->dirty & tp->valid) == 0) {
922 					vm_page_flag_clear(tp, PG_CLEANCHK);
923 					break;
924 				}
925 				mab[ i - 1 ] = tp;
926 				maxb++;
927 				continue;
928 			}
929 			break;
930 		}
931 	}
932 
933 	for(i = 0; i < maxb; i++) {
934 		int index = (maxb - i) - 1;
935 		ma[index] = mab[i];
936 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
937 	}
938 	vm_page_flag_clear(p, PG_CLEANCHK);
939 	ma[maxb] = p;
940 	for(i = 0; i < maxf; i++) {
941 		int index = (maxb + i) + 1;
942 		ma[index] = maf[i];
943 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
944 	}
945 	runlen = maxb + maxf + 1;
946 
947 	splx(s);
948 	vm_pageout_flush(ma, runlen, pagerflags);
949 	for (i = 0; i < runlen; i++) {
950 		if (ma[i]->valid & ma[i]->dirty) {
951 			pmap_page_protect(ma[i], VM_PROT_READ);
952 			vm_page_flag_set(ma[i], PG_CLEANCHK);
953 
954 			/*
955 			 * maxf will end up being the actual number of pages
956 			 * we wrote out contiguously, non-inclusive of the
957 			 * first page.  We do not count look-behind pages.
958 			 */
959 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
960 				maxf = i - maxb - 1;
961 		}
962 	}
963 	return(maxf + 1);
964 }
965 
966 /*
967  *	vm_object_madvise:
968  *
969  *	Implements the madvise function at the object/page level.
970  *
971  *	MADV_WILLNEED	(any object)
972  *
973  *	    Activate the specified pages if they are resident.
974  *
975  *	MADV_DONTNEED	(any object)
976  *
977  *	    Deactivate the specified pages if they are resident.
978  *
979  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
980  *			 OBJ_ONEMAPPING only)
981  *
982  *	    Deactivate and clean the specified pages if they are
983  *	    resident.  This permits the process to reuse the pages
984  *	    without faulting or the kernel to reclaim the pages
985  *	    without I/O.
986  */
987 void
988 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
989 {
990 	vm_pindex_t end, tpindex;
991 	vm_object_t backing_object, tobject;
992 	vm_page_t m;
993 
994 	if (object == NULL)
995 		return;
996 	end = pindex + count;
997 	/*
998 	 * Locate and adjust resident pages
999 	 */
1000 	for (; pindex < end; pindex += 1) {
1001 relookup:
1002 		tobject = object;
1003 		tpindex = pindex;
1004 		VM_OBJECT_LOCK(tobject);
1005 shadowlookup:
1006 		/*
1007 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1008 		 * and those pages must be OBJ_ONEMAPPING.
1009 		 */
1010 		if (advise == MADV_FREE) {
1011 			if ((tobject->type != OBJT_DEFAULT &&
1012 			     tobject->type != OBJT_SWAP) ||
1013 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1014 				goto unlock_tobject;
1015 			}
1016 		}
1017 		m = vm_page_lookup(tobject, tpindex);
1018 		if (m == NULL) {
1019 			/*
1020 			 * There may be swap even if there is no backing page
1021 			 */
1022 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1023 				swap_pager_freespace(tobject, tpindex, 1);
1024 			/*
1025 			 * next object
1026 			 */
1027 			backing_object = tobject->backing_object;
1028 			if (backing_object == NULL)
1029 				goto unlock_tobject;
1030 			VM_OBJECT_LOCK(backing_object);
1031 			VM_OBJECT_UNLOCK(tobject);
1032 			tobject = backing_object;
1033 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1034 			goto shadowlookup;
1035 		}
1036 		/*
1037 		 * If the page is busy or not in a normal active state,
1038 		 * we skip it.  If the page is not managed there are no
1039 		 * page queues to mess with.  Things can break if we mess
1040 		 * with pages in any of the below states.
1041 		 */
1042 		vm_page_lock_queues();
1043 		if (m->hold_count ||
1044 		    m->wire_count ||
1045 		    (m->flags & PG_UNMANAGED) ||
1046 		    m->valid != VM_PAGE_BITS_ALL) {
1047 			vm_page_unlock_queues();
1048 			goto unlock_tobject;
1049 		}
1050  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1051 			VM_OBJECT_UNLOCK(tobject);
1052   			goto relookup;
1053 		}
1054 		if (advise == MADV_WILLNEED) {
1055 			vm_page_activate(m);
1056 		} else if (advise == MADV_DONTNEED) {
1057 			vm_page_dontneed(m);
1058 		} else if (advise == MADV_FREE) {
1059 			/*
1060 			 * Mark the page clean.  This will allow the page
1061 			 * to be freed up by the system.  However, such pages
1062 			 * are often reused quickly by malloc()/free()
1063 			 * so we do not do anything that would cause
1064 			 * a page fault if we can help it.
1065 			 *
1066 			 * Specifically, we do not try to actually free
1067 			 * the page now nor do we try to put it in the
1068 			 * cache (which would cause a page fault on reuse).
1069 			 *
1070 			 * But we do make the page is freeable as we
1071 			 * can without actually taking the step of unmapping
1072 			 * it.
1073 			 */
1074 			pmap_clear_modify(m);
1075 			m->dirty = 0;
1076 			m->act_count = 0;
1077 			vm_page_dontneed(m);
1078 		}
1079 		vm_page_unlock_queues();
1080 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1081 			swap_pager_freespace(tobject, tpindex, 1);
1082 unlock_tobject:
1083 		VM_OBJECT_UNLOCK(tobject);
1084 	}
1085 }
1086 
1087 /*
1088  *	vm_object_shadow:
1089  *
1090  *	Create a new object which is backed by the
1091  *	specified existing object range.  The source
1092  *	object reference is deallocated.
1093  *
1094  *	The new object and offset into that object
1095  *	are returned in the source parameters.
1096  */
1097 void
1098 vm_object_shadow(
1099 	vm_object_t *object,	/* IN/OUT */
1100 	vm_ooffset_t *offset,	/* IN/OUT */
1101 	vm_size_t length)
1102 {
1103 	vm_object_t source;
1104 	vm_object_t result;
1105 
1106 	source = *object;
1107 
1108 	/*
1109 	 * Don't create the new object if the old object isn't shared.
1110 	 */
1111 	if (source != NULL) {
1112 		VM_OBJECT_LOCK(source);
1113 		if (source->ref_count == 1 &&
1114 		    source->handle == NULL &&
1115 		    (source->type == OBJT_DEFAULT ||
1116 		     source->type == OBJT_SWAP)) {
1117 			VM_OBJECT_UNLOCK(source);
1118 			return;
1119 		}
1120 		VM_OBJECT_UNLOCK(source);
1121 	}
1122 
1123 	/*
1124 	 * Allocate a new object with the given length.
1125 	 */
1126 	result = vm_object_allocate(OBJT_DEFAULT, length);
1127 
1128 	/*
1129 	 * The new object shadows the source object, adding a reference to it.
1130 	 * Our caller changes his reference to point to the new object,
1131 	 * removing a reference to the source object.  Net result: no change
1132 	 * of reference count.
1133 	 *
1134 	 * Try to optimize the result object's page color when shadowing
1135 	 * in order to maintain page coloring consistency in the combined
1136 	 * shadowed object.
1137 	 */
1138 	result->backing_object = source;
1139 	if (source != NULL) {
1140 		VM_OBJECT_LOCK(source);
1141 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1142 		source->shadow_count++;
1143 		source->generation++;
1144 		if (length < source->size)
1145 			length = source->size;
1146 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1147 		    source->generation > 1)
1148 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1149 		result->pg_color = (source->pg_color +
1150 		    length * source->generation) & PQ_L2_MASK;
1151 		VM_OBJECT_UNLOCK(source);
1152 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1153 		    PQ_L2_MASK;
1154 	}
1155 
1156 	/*
1157 	 * Store the offset into the source object, and fix up the offset into
1158 	 * the new object.
1159 	 */
1160 	result->backing_object_offset = *offset;
1161 
1162 	/*
1163 	 * Return the new things
1164 	 */
1165 	*offset = 0;
1166 	*object = result;
1167 }
1168 
1169 /*
1170  *	vm_object_split:
1171  *
1172  * Split the pages in a map entry into a new object.  This affords
1173  * easier removal of unused pages, and keeps object inheritance from
1174  * being a negative impact on memory usage.
1175  */
1176 void
1177 vm_object_split(vm_map_entry_t entry)
1178 {
1179 	vm_page_t m;
1180 	vm_object_t orig_object, new_object, source;
1181 	vm_offset_t s, e;
1182 	vm_pindex_t offidxstart, offidxend;
1183 	vm_size_t idx, size;
1184 	vm_ooffset_t offset;
1185 
1186 	GIANT_REQUIRED;
1187 
1188 	orig_object = entry->object.vm_object;
1189 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1190 		return;
1191 	if (orig_object->ref_count <= 1)
1192 		return;
1193 
1194 	offset = entry->offset;
1195 	s = entry->start;
1196 	e = entry->end;
1197 
1198 	offidxstart = OFF_TO_IDX(offset);
1199 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1200 	size = offidxend - offidxstart;
1201 
1202 	new_object = vm_pager_allocate(orig_object->type,
1203 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1204 	if (new_object == NULL)
1205 		return;
1206 
1207 	VM_OBJECT_LOCK(new_object);
1208 	VM_OBJECT_LOCK(orig_object);
1209 	source = orig_object->backing_object;
1210 	if (source != NULL) {
1211 		VM_OBJECT_LOCK(source);
1212 		LIST_INSERT_HEAD(&source->shadow_head,
1213 				  new_object, shadow_list);
1214 		source->shadow_count++;
1215 		source->generation++;
1216 		vm_object_reference_locked(source);	/* for new_object */
1217 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1218 		VM_OBJECT_UNLOCK(source);
1219 		new_object->backing_object_offset =
1220 			orig_object->backing_object_offset + offset;
1221 		new_object->backing_object = source;
1222 	}
1223 	for (idx = 0; idx < size; idx++) {
1224 	retry:
1225 		m = vm_page_lookup(orig_object, offidxstart + idx);
1226 		if (m == NULL)
1227 			continue;
1228 
1229 		/*
1230 		 * We must wait for pending I/O to complete before we can
1231 		 * rename the page.
1232 		 *
1233 		 * We do not have to VM_PROT_NONE the page as mappings should
1234 		 * not be changed by this operation.
1235 		 */
1236 		vm_page_lock_queues();
1237 		if ((m->flags & PG_BUSY) || m->busy) {
1238 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1239 			VM_OBJECT_UNLOCK(orig_object);
1240 			VM_OBJECT_UNLOCK(new_object);
1241 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1242 			VM_OBJECT_LOCK(new_object);
1243 			VM_OBJECT_LOCK(orig_object);
1244 			goto retry;
1245 		}
1246 		vm_page_busy(m);
1247 		vm_page_rename(m, new_object, idx);
1248 		/* page automatically made dirty by rename and cache handled */
1249 		vm_page_busy(m);
1250 		vm_page_unlock_queues();
1251 	}
1252 	if (orig_object->type == OBJT_SWAP) {
1253 		/*
1254 		 * swap_pager_copy() can sleep, in which case the orig_object's
1255 		 * and new_object's locks are released and reacquired.
1256 		 */
1257 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1258 	}
1259 	VM_OBJECT_UNLOCK(orig_object);
1260 	vm_page_lock_queues();
1261 	TAILQ_FOREACH(m, &new_object->memq, listq)
1262 		vm_page_wakeup(m);
1263 	vm_page_unlock_queues();
1264 	VM_OBJECT_UNLOCK(new_object);
1265 	entry->object.vm_object = new_object;
1266 	entry->offset = 0LL;
1267 	vm_object_deallocate(orig_object);
1268 }
1269 
1270 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1271 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1272 #define	OBSC_COLLAPSE_WAIT	0x0004
1273 
1274 static int
1275 vm_object_backing_scan(vm_object_t object, int op)
1276 {
1277 	int s;
1278 	int r = 1;
1279 	vm_page_t p;
1280 	vm_object_t backing_object;
1281 	vm_pindex_t backing_offset_index;
1282 
1283 	s = splvm();
1284 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1285 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1286 
1287 	backing_object = object->backing_object;
1288 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1289 
1290 	/*
1291 	 * Initial conditions
1292 	 */
1293 	if (op & OBSC_TEST_ALL_SHADOWED) {
1294 		/*
1295 		 * We do not want to have to test for the existence of
1296 		 * swap pages in the backing object.  XXX but with the
1297 		 * new swapper this would be pretty easy to do.
1298 		 *
1299 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1300 		 * been ZFOD faulted yet?  If we do not test for this, the
1301 		 * shadow test may succeed! XXX
1302 		 */
1303 		if (backing_object->type != OBJT_DEFAULT) {
1304 			splx(s);
1305 			return (0);
1306 		}
1307 	}
1308 	if (op & OBSC_COLLAPSE_WAIT) {
1309 		vm_object_set_flag(backing_object, OBJ_DEAD);
1310 	}
1311 
1312 	/*
1313 	 * Our scan
1314 	 */
1315 	p = TAILQ_FIRST(&backing_object->memq);
1316 	while (p) {
1317 		vm_page_t next = TAILQ_NEXT(p, listq);
1318 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1319 
1320 		if (op & OBSC_TEST_ALL_SHADOWED) {
1321 			vm_page_t pp;
1322 
1323 			/*
1324 			 * Ignore pages outside the parent object's range
1325 			 * and outside the parent object's mapping of the
1326 			 * backing object.
1327 			 *
1328 			 * note that we do not busy the backing object's
1329 			 * page.
1330 			 */
1331 			if (
1332 			    p->pindex < backing_offset_index ||
1333 			    new_pindex >= object->size
1334 			) {
1335 				p = next;
1336 				continue;
1337 			}
1338 
1339 			/*
1340 			 * See if the parent has the page or if the parent's
1341 			 * object pager has the page.  If the parent has the
1342 			 * page but the page is not valid, the parent's
1343 			 * object pager must have the page.
1344 			 *
1345 			 * If this fails, the parent does not completely shadow
1346 			 * the object and we might as well give up now.
1347 			 */
1348 
1349 			pp = vm_page_lookup(object, new_pindex);
1350 			if (
1351 			    (pp == NULL || pp->valid == 0) &&
1352 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1353 			) {
1354 				r = 0;
1355 				break;
1356 			}
1357 		}
1358 
1359 		/*
1360 		 * Check for busy page
1361 		 */
1362 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1363 			vm_page_t pp;
1364 
1365 			vm_page_lock_queues();
1366 			if (op & OBSC_COLLAPSE_NOWAIT) {
1367 				if ((p->flags & PG_BUSY) ||
1368 				    !p->valid ||
1369 				    p->hold_count ||
1370 				    p->wire_count ||
1371 				    p->busy) {
1372 					vm_page_unlock_queues();
1373 					p = next;
1374 					continue;
1375 				}
1376 			} else if (op & OBSC_COLLAPSE_WAIT) {
1377 				if ((p->flags & PG_BUSY) || p->busy) {
1378 					vm_page_flag_set(p,
1379 					    PG_WANTED | PG_REFERENCED);
1380 					VM_OBJECT_UNLOCK(backing_object);
1381 					VM_OBJECT_UNLOCK(object);
1382 					msleep(p, &vm_page_queue_mtx,
1383 					    PDROP | PVM, "vmocol", 0);
1384 					VM_OBJECT_LOCK(object);
1385 					VM_OBJECT_LOCK(backing_object);
1386 					/*
1387 					 * If we slept, anything could have
1388 					 * happened.  Since the object is
1389 					 * marked dead, the backing offset
1390 					 * should not have changed so we
1391 					 * just restart our scan.
1392 					 */
1393 					p = TAILQ_FIRST(&backing_object->memq);
1394 					continue;
1395 				}
1396 			}
1397 
1398 			/*
1399 			 * Busy the page
1400 			 */
1401 			vm_page_busy(p);
1402 			vm_page_unlock_queues();
1403 
1404 			KASSERT(
1405 			    p->object == backing_object,
1406 			    ("vm_object_qcollapse(): object mismatch")
1407 			);
1408 
1409 			/*
1410 			 * Destroy any associated swap
1411 			 */
1412 			if (backing_object->type == OBJT_SWAP) {
1413 				swap_pager_freespace(
1414 				    backing_object,
1415 				    p->pindex,
1416 				    1
1417 				);
1418 			}
1419 
1420 			if (
1421 			    p->pindex < backing_offset_index ||
1422 			    new_pindex >= object->size
1423 			) {
1424 				/*
1425 				 * Page is out of the parent object's range, we
1426 				 * can simply destroy it.
1427 				 */
1428 				vm_page_lock_queues();
1429 				pmap_remove_all(p);
1430 				vm_page_free(p);
1431 				vm_page_unlock_queues();
1432 				p = next;
1433 				continue;
1434 			}
1435 
1436 			pp = vm_page_lookup(object, new_pindex);
1437 			if (
1438 			    pp != NULL ||
1439 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1440 			) {
1441 				/*
1442 				 * page already exists in parent OR swap exists
1443 				 * for this location in the parent.  Destroy
1444 				 * the original page from the backing object.
1445 				 *
1446 				 * Leave the parent's page alone
1447 				 */
1448 				vm_page_lock_queues();
1449 				pmap_remove_all(p);
1450 				vm_page_free(p);
1451 				vm_page_unlock_queues();
1452 				p = next;
1453 				continue;
1454 			}
1455 
1456 			/*
1457 			 * Page does not exist in parent, rename the
1458 			 * page from the backing object to the main object.
1459 			 *
1460 			 * If the page was mapped to a process, it can remain
1461 			 * mapped through the rename.
1462 			 */
1463 			vm_page_lock_queues();
1464 			vm_page_rename(p, object, new_pindex);
1465 			vm_page_unlock_queues();
1466 			/* page automatically made dirty by rename */
1467 		}
1468 		p = next;
1469 	}
1470 	splx(s);
1471 	return (r);
1472 }
1473 
1474 
1475 /*
1476  * this version of collapse allows the operation to occur earlier and
1477  * when paging_in_progress is true for an object...  This is not a complete
1478  * operation, but should plug 99.9% of the rest of the leaks.
1479  */
1480 static void
1481 vm_object_qcollapse(vm_object_t object)
1482 {
1483 	vm_object_t backing_object = object->backing_object;
1484 
1485 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1486 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1487 
1488 	if (backing_object->ref_count != 1)
1489 		return;
1490 
1491 	backing_object->ref_count += 2;
1492 
1493 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1494 
1495 	backing_object->ref_count -= 2;
1496 }
1497 
1498 /*
1499  *	vm_object_collapse:
1500  *
1501  *	Collapse an object with the object backing it.
1502  *	Pages in the backing object are moved into the
1503  *	parent, and the backing object is deallocated.
1504  */
1505 void
1506 vm_object_collapse(vm_object_t object)
1507 {
1508 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1509 
1510 	while (TRUE) {
1511 		vm_object_t backing_object;
1512 
1513 		/*
1514 		 * Verify that the conditions are right for collapse:
1515 		 *
1516 		 * The object exists and the backing object exists.
1517 		 */
1518 		if ((backing_object = object->backing_object) == NULL)
1519 			break;
1520 
1521 		/*
1522 		 * we check the backing object first, because it is most likely
1523 		 * not collapsable.
1524 		 */
1525 		VM_OBJECT_LOCK(backing_object);
1526 		if (backing_object->handle != NULL ||
1527 		    (backing_object->type != OBJT_DEFAULT &&
1528 		     backing_object->type != OBJT_SWAP) ||
1529 		    (backing_object->flags & OBJ_DEAD) ||
1530 		    object->handle != NULL ||
1531 		    (object->type != OBJT_DEFAULT &&
1532 		     object->type != OBJT_SWAP) ||
1533 		    (object->flags & OBJ_DEAD)) {
1534 			VM_OBJECT_UNLOCK(backing_object);
1535 			break;
1536 		}
1537 
1538 		if (
1539 		    object->paging_in_progress != 0 ||
1540 		    backing_object->paging_in_progress != 0
1541 		) {
1542 			vm_object_qcollapse(object);
1543 			VM_OBJECT_UNLOCK(backing_object);
1544 			break;
1545 		}
1546 		/*
1547 		 * We know that we can either collapse the backing object (if
1548 		 * the parent is the only reference to it) or (perhaps) have
1549 		 * the parent bypass the object if the parent happens to shadow
1550 		 * all the resident pages in the entire backing object.
1551 		 *
1552 		 * This is ignoring pager-backed pages such as swap pages.
1553 		 * vm_object_backing_scan fails the shadowing test in this
1554 		 * case.
1555 		 */
1556 		if (backing_object->ref_count == 1) {
1557 			/*
1558 			 * If there is exactly one reference to the backing
1559 			 * object, we can collapse it into the parent.
1560 			 */
1561 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1562 
1563 			/*
1564 			 * Move the pager from backing_object to object.
1565 			 */
1566 			if (backing_object->type == OBJT_SWAP) {
1567 				/*
1568 				 * swap_pager_copy() can sleep, in which case
1569 				 * the backing_object's and object's locks are
1570 				 * released and reacquired.
1571 				 */
1572 				swap_pager_copy(
1573 				    backing_object,
1574 				    object,
1575 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1576 			}
1577 			/*
1578 			 * Object now shadows whatever backing_object did.
1579 			 * Note that the reference to
1580 			 * backing_object->backing_object moves from within
1581 			 * backing_object to within object.
1582 			 */
1583 			LIST_REMOVE(object, shadow_list);
1584 			backing_object->shadow_count--;
1585 			backing_object->generation++;
1586 			if (backing_object->backing_object) {
1587 				VM_OBJECT_LOCK(backing_object->backing_object);
1588 				LIST_REMOVE(backing_object, shadow_list);
1589 				LIST_INSERT_HEAD(
1590 				    &backing_object->backing_object->shadow_head,
1591 				    object, shadow_list);
1592 				/*
1593 				 * The shadow_count has not changed.
1594 				 */
1595 				backing_object->backing_object->generation++;
1596 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1597 			}
1598 			object->backing_object = backing_object->backing_object;
1599 			object->backing_object_offset +=
1600 			    backing_object->backing_object_offset;
1601 /* XXX */		VM_OBJECT_UNLOCK(object);
1602 
1603 			/*
1604 			 * Discard backing_object.
1605 			 *
1606 			 * Since the backing object has no pages, no pager left,
1607 			 * and no object references within it, all that is
1608 			 * necessary is to dispose of it.
1609 			 */
1610 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1611 			VM_OBJECT_UNLOCK(backing_object);
1612 
1613 			mtx_lock(&vm_object_list_mtx);
1614 			TAILQ_REMOVE(
1615 			    &vm_object_list,
1616 			    backing_object,
1617 			    object_list
1618 			);
1619 			mtx_unlock(&vm_object_list_mtx);
1620 
1621 /* XXX */		VM_OBJECT_LOCK(object);
1622 			uma_zfree(obj_zone, backing_object);
1623 
1624 			object_collapses++;
1625 		} else {
1626 			vm_object_t new_backing_object;
1627 
1628 			/*
1629 			 * If we do not entirely shadow the backing object,
1630 			 * there is nothing we can do so we give up.
1631 			 */
1632 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1633 				VM_OBJECT_UNLOCK(backing_object);
1634 				break;
1635 			}
1636 
1637 			/*
1638 			 * Make the parent shadow the next object in the
1639 			 * chain.  Deallocating backing_object will not remove
1640 			 * it, since its reference count is at least 2.
1641 			 */
1642 			LIST_REMOVE(object, shadow_list);
1643 			backing_object->shadow_count--;
1644 			backing_object->generation++;
1645 
1646 			new_backing_object = backing_object->backing_object;
1647 			if ((object->backing_object = new_backing_object) != NULL) {
1648 				VM_OBJECT_LOCK(new_backing_object);
1649 				LIST_INSERT_HEAD(
1650 				    &new_backing_object->shadow_head,
1651 				    object,
1652 				    shadow_list
1653 				);
1654 				new_backing_object->shadow_count++;
1655 				new_backing_object->generation++;
1656 				vm_object_reference_locked(new_backing_object);
1657 				VM_OBJECT_UNLOCK(new_backing_object);
1658 				object->backing_object_offset +=
1659 					backing_object->backing_object_offset;
1660 			}
1661 
1662 			/*
1663 			 * Drop the reference count on backing_object. Since
1664 			 * its ref_count was at least 2, it will not vanish.
1665 			 */
1666 			backing_object->ref_count--;
1667 			VM_OBJECT_UNLOCK(backing_object);
1668 			object_bypasses++;
1669 		}
1670 
1671 		/*
1672 		 * Try again with this object's new backing object.
1673 		 */
1674 	}
1675 }
1676 
1677 /*
1678  *	vm_object_page_remove:
1679  *
1680  *	Removes all physical pages in the given range from the
1681  *	object's list of pages.  If the range's end is zero, all
1682  *	physical pages from the range's start to the end of the object
1683  *	are deleted.
1684  *
1685  *	The object must be locked.
1686  */
1687 void
1688 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1689     boolean_t clean_only)
1690 {
1691 	vm_page_t p, next;
1692 
1693 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1694 	if (object->resident_page_count == 0)
1695 		return;
1696 
1697 	/*
1698 	 * Since physically-backed objects do not use managed pages, we can't
1699 	 * remove pages from the object (we must instead remove the page
1700 	 * references, and then destroy the object).
1701 	 */
1702 	KASSERT(object->type != OBJT_PHYS,
1703 	    ("attempt to remove pages from a physical object"));
1704 
1705 	vm_object_pip_add(object, 1);
1706 again:
1707 	vm_page_lock_queues();
1708 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1709 		if (p->pindex < start) {
1710 			p = vm_page_splay(start, object->root);
1711 			if ((object->root = p)->pindex < start)
1712 				p = TAILQ_NEXT(p, listq);
1713 		}
1714 	}
1715 	/*
1716 	 * Assert: the variable p is either (1) the page with the
1717 	 * least pindex greater than or equal to the parameter pindex
1718 	 * or (2) NULL.
1719 	 */
1720 	for (;
1721 	     p != NULL && (p->pindex < end || end == 0);
1722 	     p = next) {
1723 		next = TAILQ_NEXT(p, listq);
1724 
1725 		if (p->wire_count != 0) {
1726 			pmap_remove_all(p);
1727 			if (!clean_only)
1728 				p->valid = 0;
1729 			continue;
1730 		}
1731 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1732 			goto again;
1733 		if (clean_only && p->valid) {
1734 			vm_page_test_dirty(p);
1735 			if (p->valid & p->dirty)
1736 				continue;
1737 		}
1738 		vm_page_busy(p);
1739 		pmap_remove_all(p);
1740 		vm_page_free(p);
1741 	}
1742 	vm_page_unlock_queues();
1743 	vm_object_pip_wakeup(object);
1744 }
1745 
1746 /*
1747  *	Routine:	vm_object_coalesce
1748  *	Function:	Coalesces two objects backing up adjoining
1749  *			regions of memory into a single object.
1750  *
1751  *	returns TRUE if objects were combined.
1752  *
1753  *	NOTE:	Only works at the moment if the second object is NULL -
1754  *		if it's not, which object do we lock first?
1755  *
1756  *	Parameters:
1757  *		prev_object	First object to coalesce
1758  *		prev_offset	Offset into prev_object
1759  *		next_object	Second object into coalesce
1760  *		next_offset	Offset into next_object
1761  *
1762  *		prev_size	Size of reference to prev_object
1763  *		next_size	Size of reference to next_object
1764  *
1765  *	Conditions:
1766  *	The object must *not* be locked.
1767  */
1768 boolean_t
1769 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1770 	vm_size_t prev_size, vm_size_t next_size)
1771 {
1772 	vm_pindex_t next_pindex;
1773 
1774 	if (prev_object == NULL)
1775 		return (TRUE);
1776 	VM_OBJECT_LOCK(prev_object);
1777 	if (prev_object->type != OBJT_DEFAULT &&
1778 	    prev_object->type != OBJT_SWAP) {
1779 		VM_OBJECT_UNLOCK(prev_object);
1780 		return (FALSE);
1781 	}
1782 
1783 	/*
1784 	 * Try to collapse the object first
1785 	 */
1786 	vm_object_collapse(prev_object);
1787 
1788 	/*
1789 	 * Can't coalesce if: . more than one reference . paged out . shadows
1790 	 * another object . has a copy elsewhere (any of which mean that the
1791 	 * pages not mapped to prev_entry may be in use anyway)
1792 	 */
1793 	if (prev_object->backing_object != NULL) {
1794 		VM_OBJECT_UNLOCK(prev_object);
1795 		return (FALSE);
1796 	}
1797 
1798 	prev_size >>= PAGE_SHIFT;
1799 	next_size >>= PAGE_SHIFT;
1800 	next_pindex = prev_pindex + prev_size;
1801 
1802 	if ((prev_object->ref_count > 1) &&
1803 	    (prev_object->size != next_pindex)) {
1804 		VM_OBJECT_UNLOCK(prev_object);
1805 		return (FALSE);
1806 	}
1807 
1808 	/*
1809 	 * Remove any pages that may still be in the object from a previous
1810 	 * deallocation.
1811 	 */
1812 	if (next_pindex < prev_object->size) {
1813 		vm_object_page_remove(prev_object,
1814 				      next_pindex,
1815 				      next_pindex + next_size, FALSE);
1816 		if (prev_object->type == OBJT_SWAP)
1817 			swap_pager_freespace(prev_object,
1818 					     next_pindex, next_size);
1819 	}
1820 
1821 	/*
1822 	 * Extend the object if necessary.
1823 	 */
1824 	if (next_pindex + next_size > prev_object->size)
1825 		prev_object->size = next_pindex + next_size;
1826 
1827 	VM_OBJECT_UNLOCK(prev_object);
1828 	return (TRUE);
1829 }
1830 
1831 void
1832 vm_object_set_writeable_dirty(vm_object_t object)
1833 {
1834 	struct vnode *vp;
1835 
1836 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1837 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1838 	if (object->type == OBJT_VNODE &&
1839 	    (vp = (struct vnode *)object->handle) != NULL) {
1840 		VI_LOCK(vp);
1841 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1842 			vp->v_iflag |= VI_OBJDIRTY;
1843 		VI_UNLOCK(vp);
1844 	}
1845 }
1846 
1847 #include "opt_ddb.h"
1848 #ifdef DDB
1849 #include <sys/kernel.h>
1850 
1851 #include <sys/cons.h>
1852 
1853 #include <ddb/ddb.h>
1854 
1855 static int
1856 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1857 {
1858 	vm_map_t tmpm;
1859 	vm_map_entry_t tmpe;
1860 	vm_object_t obj;
1861 	int entcount;
1862 
1863 	if (map == 0)
1864 		return 0;
1865 
1866 	if (entry == 0) {
1867 		tmpe = map->header.next;
1868 		entcount = map->nentries;
1869 		while (entcount-- && (tmpe != &map->header)) {
1870 			if (_vm_object_in_map(map, object, tmpe)) {
1871 				return 1;
1872 			}
1873 			tmpe = tmpe->next;
1874 		}
1875 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1876 		tmpm = entry->object.sub_map;
1877 		tmpe = tmpm->header.next;
1878 		entcount = tmpm->nentries;
1879 		while (entcount-- && tmpe != &tmpm->header) {
1880 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1881 				return 1;
1882 			}
1883 			tmpe = tmpe->next;
1884 		}
1885 	} else if ((obj = entry->object.vm_object) != NULL) {
1886 		for (; obj; obj = obj->backing_object)
1887 			if (obj == object) {
1888 				return 1;
1889 			}
1890 	}
1891 	return 0;
1892 }
1893 
1894 static int
1895 vm_object_in_map(vm_object_t object)
1896 {
1897 	struct proc *p;
1898 
1899 	/* sx_slock(&allproc_lock); */
1900 	LIST_FOREACH(p, &allproc, p_list) {
1901 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1902 			continue;
1903 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1904 			/* sx_sunlock(&allproc_lock); */
1905 			return 1;
1906 		}
1907 	}
1908 	/* sx_sunlock(&allproc_lock); */
1909 	if (_vm_object_in_map(kernel_map, object, 0))
1910 		return 1;
1911 	if (_vm_object_in_map(kmem_map, object, 0))
1912 		return 1;
1913 	if (_vm_object_in_map(pager_map, object, 0))
1914 		return 1;
1915 	if (_vm_object_in_map(buffer_map, object, 0))
1916 		return 1;
1917 	return 0;
1918 }
1919 
1920 DB_SHOW_COMMAND(vmochk, vm_object_check)
1921 {
1922 	vm_object_t object;
1923 
1924 	/*
1925 	 * make sure that internal objs are in a map somewhere
1926 	 * and none have zero ref counts.
1927 	 */
1928 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1929 		if (object->handle == NULL &&
1930 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1931 			if (object->ref_count == 0) {
1932 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1933 					(long)object->size);
1934 			}
1935 			if (!vm_object_in_map(object)) {
1936 				db_printf(
1937 			"vmochk: internal obj is not in a map: "
1938 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1939 				    object->ref_count, (u_long)object->size,
1940 				    (u_long)object->size,
1941 				    (void *)object->backing_object);
1942 			}
1943 		}
1944 	}
1945 }
1946 
1947 /*
1948  *	vm_object_print:	[ debug ]
1949  */
1950 DB_SHOW_COMMAND(object, vm_object_print_static)
1951 {
1952 	/* XXX convert args. */
1953 	vm_object_t object = (vm_object_t)addr;
1954 	boolean_t full = have_addr;
1955 
1956 	vm_page_t p;
1957 
1958 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1959 #define	count	was_count
1960 
1961 	int count;
1962 
1963 	if (object == NULL)
1964 		return;
1965 
1966 	db_iprintf(
1967 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1968 	    object, (int)object->type, (uintmax_t)object->size,
1969 	    object->resident_page_count, object->ref_count, object->flags);
1970 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1971 	    object->shadow_count,
1972 	    object->backing_object ? object->backing_object->ref_count : 0,
1973 	    object->backing_object, (uintmax_t)object->backing_object_offset);
1974 
1975 	if (!full)
1976 		return;
1977 
1978 	db_indent += 2;
1979 	count = 0;
1980 	TAILQ_FOREACH(p, &object->memq, listq) {
1981 		if (count == 0)
1982 			db_iprintf("memory:=");
1983 		else if (count == 6) {
1984 			db_printf("\n");
1985 			db_iprintf(" ...");
1986 			count = 0;
1987 		} else
1988 			db_printf(",");
1989 		count++;
1990 
1991 		db_printf("(off=0x%jx,page=0x%jx)",
1992 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
1993 	}
1994 	if (count != 0)
1995 		db_printf("\n");
1996 	db_indent -= 2;
1997 }
1998 
1999 /* XXX. */
2000 #undef count
2001 
2002 /* XXX need this non-static entry for calling from vm_map_print. */
2003 void
2004 vm_object_print(
2005         /* db_expr_t */ long addr,
2006 	boolean_t have_addr,
2007 	/* db_expr_t */ long count,
2008 	char *modif)
2009 {
2010 	vm_object_print_static(addr, have_addr, count, modif);
2011 }
2012 
2013 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2014 {
2015 	vm_object_t object;
2016 	int nl = 0;
2017 	int c;
2018 
2019 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2020 		vm_pindex_t idx, fidx;
2021 		vm_pindex_t osize;
2022 		vm_paddr_t pa = -1, padiff;
2023 		int rcount;
2024 		vm_page_t m;
2025 
2026 		db_printf("new object: %p\n", (void *)object);
2027 		if (nl > 18) {
2028 			c = cngetc();
2029 			if (c != ' ')
2030 				return;
2031 			nl = 0;
2032 		}
2033 		nl++;
2034 		rcount = 0;
2035 		fidx = 0;
2036 		osize = object->size;
2037 		if (osize > 128)
2038 			osize = 128;
2039 		for (idx = 0; idx < osize; idx++) {
2040 			m = vm_page_lookup(object, idx);
2041 			if (m == NULL) {
2042 				if (rcount) {
2043 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2044 						(long)fidx, rcount, (long)pa);
2045 					if (nl > 18) {
2046 						c = cngetc();
2047 						if (c != ' ')
2048 							return;
2049 						nl = 0;
2050 					}
2051 					nl++;
2052 					rcount = 0;
2053 				}
2054 				continue;
2055 			}
2056 
2057 
2058 			if (rcount &&
2059 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2060 				++rcount;
2061 				continue;
2062 			}
2063 			if (rcount) {
2064 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2065 				padiff >>= PAGE_SHIFT;
2066 				padiff &= PQ_L2_MASK;
2067 				if (padiff == 0) {
2068 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2069 					++rcount;
2070 					continue;
2071 				}
2072 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2073 					(long)fidx, rcount, (long)pa);
2074 				db_printf("pd(%ld)\n", (long)padiff);
2075 				if (nl > 18) {
2076 					c = cngetc();
2077 					if (c != ' ')
2078 						return;
2079 					nl = 0;
2080 				}
2081 				nl++;
2082 			}
2083 			fidx = idx;
2084 			pa = VM_PAGE_TO_PHYS(m);
2085 			rcount = 1;
2086 		}
2087 		if (rcount) {
2088 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2089 				(long)fidx, rcount, (long)pa);
2090 			if (nl > 18) {
2091 				c = cngetc();
2092 				if (c != ' ')
2093 					return;
2094 				nl = 0;
2095 			}
2096 			nl++;
2097 		}
2098 	}
2099 }
2100 #endif /* DDB */
2101