xref: /freebsd/sys/vm/vm_object.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Virtual memory object module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>		/* for curproc, pageproc */
81 #include <sys/socket.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 #define EASY_SCAN_FACTOR       8
100 
101 #define MSYNC_FLUSH_HARDSEQ	0x01
102 #define MSYNC_FLUSH_SOFTSEQ	0x02
103 
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109         CTLFLAG_RW, &msync_flush_flags, 0, "");
110 
111 static void	vm_object_qcollapse(vm_object_t object);
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static long object_collapses;
147 static long object_bypasses;
148 static int next_index;
149 static uma_zone_t obj_zone;
150 #define VM_OBJECTS_INIT 256
151 
152 static void vm_object_zinit(void *mem, int size);
153 
154 #ifdef INVARIANTS
155 static void vm_object_zdtor(void *mem, int size, void *arg);
156 
157 static void
158 vm_object_zdtor(void *mem, int size, void *arg)
159 {
160 	vm_object_t object;
161 
162 	object = (vm_object_t)mem;
163 	KASSERT(object->paging_in_progress == 0,
164 	    ("object %p paging_in_progress = %d",
165 	    object, object->paging_in_progress));
166 	KASSERT(object->resident_page_count == 0,
167 	    ("object %p resident_page_count = %d",
168 	    object, object->resident_page_count));
169 	KASSERT(object->shadow_count == 0,
170 	    ("object %p shadow_count = %d",
171 	    object, object->shadow_count));
172 }
173 #endif
174 
175 static void
176 vm_object_zinit(void *mem, int size)
177 {
178 	vm_object_t object;
179 
180 	object = (vm_object_t)mem;
181 	bzero(&object->mtx, sizeof(object->mtx));
182 	VM_OBJECT_LOCK_INIT(object);
183 
184 	/* These are true for any object that has been freed */
185 	object->paging_in_progress = 0;
186 	object->resident_page_count = 0;
187 	object->shadow_count = 0;
188 }
189 
190 void
191 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192 {
193 	int incr;
194 
195 	TAILQ_INIT(&object->memq);
196 	LIST_INIT(&object->shadow_head);
197 
198 	object->root = NULL;
199 	object->type = type;
200 	object->size = size;
201 	object->generation = 1;
202 	object->ref_count = 1;
203 	object->flags = 0;
204 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205 		object->flags = OBJ_ONEMAPPING;
206 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
207 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
208 	else
209 		incr = size;
210 	do
211 		object->pg_color = next_index;
212 	while (!atomic_cmpset_int(&next_index, object->pg_color,
213 				  (object->pg_color + incr) & PQ_L2_MASK));
214 	object->handle = NULL;
215 	object->backing_object = NULL;
216 	object->backing_object_offset = (vm_ooffset_t) 0;
217 
218 	mtx_lock(&vm_object_list_mtx);
219 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220 	mtx_unlock(&vm_object_list_mtx);
221 }
222 
223 /*
224  *	vm_object_init:
225  *
226  *	Initialize the VM objects module.
227  */
228 void
229 vm_object_init(void)
230 {
231 	TAILQ_INIT(&vm_object_list);
232 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
233 
234 	VM_OBJECT_LOCK_INIT(&kernel_object_store);
235 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
236 	    kernel_object);
237 
238 	/*
239 	 * The kmem object's mutex is given a unique name, instead of
240 	 * "vm object", to avoid false reports of lock-order reversal
241 	 * with a system map mutex.
242 	 */
243 	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
244 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
245 	    kmem_object);
246 
247 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
248 #ifdef INVARIANTS
249 	    vm_object_zdtor,
250 #else
251 	    NULL,
252 #endif
253 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
254 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
255 }
256 
257 void
258 vm_object_set_flag(vm_object_t object, u_short bits)
259 {
260 	object->flags |= bits;
261 }
262 
263 void
264 vm_object_clear_flag(vm_object_t object, u_short bits)
265 {
266 
267 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268 	object->flags &= ~bits;
269 }
270 
271 void
272 vm_object_pip_add(vm_object_t object, short i)
273 {
274 
275 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276 	object->paging_in_progress += i;
277 }
278 
279 void
280 vm_object_pip_subtract(vm_object_t object, short i)
281 {
282 
283 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284 	object->paging_in_progress -= i;
285 }
286 
287 void
288 vm_object_pip_wakeup(vm_object_t object)
289 {
290 
291 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292 	object->paging_in_progress--;
293 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294 		vm_object_clear_flag(object, OBJ_PIPWNT);
295 		wakeup(object);
296 	}
297 }
298 
299 void
300 vm_object_pip_wakeupn(vm_object_t object, short i)
301 {
302 
303 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304 	if (i)
305 		object->paging_in_progress -= i;
306 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307 		vm_object_clear_flag(object, OBJ_PIPWNT);
308 		wakeup(object);
309 	}
310 }
311 
312 void
313 vm_object_pip_wait(vm_object_t object, char *waitid)
314 {
315 
316 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317 	while (object->paging_in_progress) {
318 		object->flags |= OBJ_PIPWNT;
319 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320 	}
321 }
322 
323 /*
324  *	vm_object_allocate_wait
325  *
326  *	Return a new object with the given size, and give the user the
327  *	option of waiting for it to complete or failing if the needed
328  *	memory isn't available.
329  */
330 vm_object_t
331 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
332 {
333 	vm_object_t result;
334 
335 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
336 
337 	if (result != NULL)
338 		_vm_object_allocate(type, size, result);
339 
340 	return (result);
341 }
342 
343 /*
344  *	vm_object_allocate:
345  *
346  *	Returns a new object with the given size.
347  */
348 vm_object_t
349 vm_object_allocate(objtype_t type, vm_pindex_t size)
350 {
351 	return(vm_object_allocate_wait(type, size, M_WAITOK));
352 }
353 
354 
355 /*
356  *	vm_object_reference:
357  *
358  *	Gets another reference to the given object.  Note: OBJ_DEAD
359  *	objects can be referenced during final cleaning.
360  */
361 void
362 vm_object_reference(vm_object_t object)
363 {
364 	struct vnode *vp;
365 	int flags;
366 
367 	if (object == NULL)
368 		return;
369 	VM_OBJECT_LOCK(object);
370 	object->ref_count++;
371 	if (object->type == OBJT_VNODE) {
372 		vp = object->handle;
373 		VI_LOCK(vp);
374 		VM_OBJECT_UNLOCK(object);
375 		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
376 		     flags = 0)
377 			printf("vm_object_reference: delay in vget\n");
378 	} else
379 		VM_OBJECT_UNLOCK(object);
380 }
381 
382 /*
383  * Handle deallocating an object of type OBJT_VNODE.
384  */
385 void
386 vm_object_vndeallocate(vm_object_t object)
387 {
388 	struct vnode *vp = (struct vnode *) object->handle;
389 
390 	GIANT_REQUIRED;
391 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
392 	KASSERT(object->type == OBJT_VNODE,
393 	    ("vm_object_vndeallocate: not a vnode object"));
394 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
395 #ifdef INVARIANTS
396 	if (object->ref_count == 0) {
397 		vprint("vm_object_vndeallocate", vp);
398 		panic("vm_object_vndeallocate: bad object reference count");
399 	}
400 #endif
401 
402 	object->ref_count--;
403 	if (object->ref_count == 0) {
404 		mp_fixme("Unlocked vflag access.");
405 		vp->v_vflag &= ~VV_TEXT;
406 	}
407 	VM_OBJECT_UNLOCK(object);
408 	/*
409 	 * vrele may need a vop lock
410 	 */
411 	vrele(vp);
412 }
413 
414 /*
415  *	vm_object_deallocate:
416  *
417  *	Release a reference to the specified object,
418  *	gained either through a vm_object_allocate
419  *	or a vm_object_reference call.  When all references
420  *	are gone, storage associated with this object
421  *	may be relinquished.
422  *
423  *	No object may be locked.
424  */
425 void
426 vm_object_deallocate(vm_object_t object)
427 {
428 	vm_object_t temp;
429 
430 	if (object != kmem_object)
431 		mtx_lock(&Giant);
432 	while (object != NULL) {
433 		VM_OBJECT_LOCK(object);
434 		if (object->type == OBJT_VNODE) {
435 			vm_object_vndeallocate(object);
436 			goto done;
437 		}
438 
439 		KASSERT(object->ref_count != 0,
440 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
441 
442 		/*
443 		 * If the reference count goes to 0 we start calling
444 		 * vm_object_terminate() on the object chain.
445 		 * A ref count of 1 may be a special case depending on the
446 		 * shadow count being 0 or 1.
447 		 */
448 		object->ref_count--;
449 		if (object->ref_count > 1) {
450 			VM_OBJECT_UNLOCK(object);
451 			goto done;
452 		} else if (object->ref_count == 1) {
453 			if (object->shadow_count == 0) {
454 				vm_object_set_flag(object, OBJ_ONEMAPPING);
455 			} else if ((object->shadow_count == 1) &&
456 			    (object->handle == NULL) &&
457 			    (object->type == OBJT_DEFAULT ||
458 			     object->type == OBJT_SWAP)) {
459 				vm_object_t robject;
460 
461 				robject = LIST_FIRST(&object->shadow_head);
462 				KASSERT(robject != NULL,
463 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
464 					 object->ref_count,
465 					 object->shadow_count));
466 				if (!VM_OBJECT_TRYLOCK(robject)) {
467 					/*
468 					 * Avoid a potential deadlock.
469 					 */
470 					object->ref_count++;
471 					VM_OBJECT_UNLOCK(object);
472 					continue;
473 				}
474 				if ((robject->handle == NULL) &&
475 				    (robject->type == OBJT_DEFAULT ||
476 				     robject->type == OBJT_SWAP)) {
477 
478 					robject->ref_count++;
479 retry:
480 					if (robject->paging_in_progress) {
481 						VM_OBJECT_UNLOCK(object);
482 						vm_object_pip_wait(robject,
483 						    "objde1");
484 						VM_OBJECT_LOCK(object);
485 						goto retry;
486 					} else if (object->paging_in_progress) {
487 						VM_OBJECT_UNLOCK(robject);
488 						object->flags |= OBJ_PIPWNT;
489 						msleep(object,
490 						    VM_OBJECT_MTX(object),
491 						    PDROP | PVM, "objde2", 0);
492 						VM_OBJECT_LOCK(robject);
493 						VM_OBJECT_LOCK(object);
494 						goto retry;
495 					}
496 					VM_OBJECT_UNLOCK(object);
497 					if (robject->ref_count == 1) {
498 						robject->ref_count--;
499 						object = robject;
500 						goto doterm;
501 					}
502 					object = robject;
503 					vm_object_collapse(object);
504 					VM_OBJECT_UNLOCK(object);
505 					continue;
506 				}
507 				VM_OBJECT_UNLOCK(robject);
508 			}
509 			VM_OBJECT_UNLOCK(object);
510 			goto done;
511 		}
512 doterm:
513 		temp = object->backing_object;
514 		if (temp != NULL) {
515 			VM_OBJECT_LOCK(temp);
516 			LIST_REMOVE(object, shadow_list);
517 			temp->shadow_count--;
518 			temp->generation++;
519 			VM_OBJECT_UNLOCK(temp);
520 			object->backing_object = NULL;
521 		}
522 		/*
523 		 * Don't double-terminate, we could be in a termination
524 		 * recursion due to the terminate having to sync data
525 		 * to disk.
526 		 */
527 		if ((object->flags & OBJ_DEAD) == 0)
528 			vm_object_terminate(object);
529 		else
530 			VM_OBJECT_UNLOCK(object);
531 		object = temp;
532 	}
533 done:
534 	if (object != kmem_object)
535 		mtx_unlock(&Giant);
536 }
537 
538 /*
539  *	vm_object_terminate actually destroys the specified object, freeing
540  *	up all previously used resources.
541  *
542  *	The object must be locked.
543  *	This routine may block.
544  */
545 void
546 vm_object_terminate(vm_object_t object)
547 {
548 	vm_page_t p;
549 	int s;
550 
551 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
552 
553 	/*
554 	 * Make sure no one uses us.
555 	 */
556 	vm_object_set_flag(object, OBJ_DEAD);
557 
558 	/*
559 	 * wait for the pageout daemon to be done with the object
560 	 */
561 	vm_object_pip_wait(object, "objtrm");
562 
563 	KASSERT(!object->paging_in_progress,
564 		("vm_object_terminate: pageout in progress"));
565 
566 	/*
567 	 * Clean and free the pages, as appropriate. All references to the
568 	 * object are gone, so we don't need to lock it.
569 	 */
570 	if (object->type == OBJT_VNODE) {
571 		struct vnode *vp = (struct vnode *)object->handle;
572 
573 		/*
574 		 * Clean pages and flush buffers.
575 		 */
576 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
577 		VM_OBJECT_UNLOCK(object);
578 
579 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
580 
581 		VM_OBJECT_LOCK(object);
582 	}
583 
584 	KASSERT(object->ref_count == 0,
585 		("vm_object_terminate: object with references, ref_count=%d",
586 		object->ref_count));
587 
588 	/*
589 	 * Now free any remaining pages. For internal objects, this also
590 	 * removes them from paging queues. Don't free wired pages, just
591 	 * remove them from the object.
592 	 */
593 	s = splvm();
594 	vm_page_lock_queues();
595 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
596 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
597 			("vm_object_terminate: freeing busy page %p "
598 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
599 		if (p->wire_count == 0) {
600 			vm_page_busy(p);
601 			vm_page_free(p);
602 			cnt.v_pfree++;
603 		} else {
604 			vm_page_busy(p);
605 			vm_page_remove(p);
606 		}
607 	}
608 	vm_page_unlock_queues();
609 	splx(s);
610 
611 	/*
612 	 * Let the pager know object is dead.
613 	 */
614 	vm_pager_deallocate(object);
615 	VM_OBJECT_UNLOCK(object);
616 
617 	/*
618 	 * Remove the object from the global object list.
619 	 */
620 	mtx_lock(&vm_object_list_mtx);
621 	TAILQ_REMOVE(&vm_object_list, object, object_list);
622 	mtx_unlock(&vm_object_list_mtx);
623 
624 	wakeup(object);
625 
626 	/*
627 	 * Free the space for the object.
628 	 */
629 	uma_zfree(obj_zone, object);
630 }
631 
632 /*
633  *	vm_object_page_clean
634  *
635  *	Clean all dirty pages in the specified range of object.  Leaves page
636  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
637  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
638  *	leaving the object dirty.
639  *
640  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
641  *	synchronous clustering mode implementation.
642  *
643  *	Odd semantics: if start == end, we clean everything.
644  *
645  *	The object must be locked.
646  */
647 void
648 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
649 {
650 	vm_page_t p, np;
651 	vm_pindex_t tstart, tend;
652 	vm_pindex_t pi;
653 	int clearobjflags;
654 	int pagerflags;
655 	int curgeneration;
656 
657 	GIANT_REQUIRED;
658 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
659 	if (object->type != OBJT_VNODE ||
660 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
661 		return;
662 
663 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
664 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
665 
666 	vm_object_set_flag(object, OBJ_CLEANING);
667 
668 	tstart = start;
669 	if (end == 0) {
670 		tend = object->size;
671 	} else {
672 		tend = end;
673 	}
674 
675 	vm_page_lock_queues();
676 	/*
677 	 * If the caller is smart and only msync()s a range he knows is
678 	 * dirty, we may be able to avoid an object scan.  This results in
679 	 * a phenominal improvement in performance.  We cannot do this
680 	 * as a matter of course because the object may be huge - e.g.
681 	 * the size might be in the gigabytes or terrabytes.
682 	 */
683 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
684 		vm_pindex_t tscan;
685 		int scanlimit;
686 		int scanreset;
687 
688 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
689 		if (scanreset < 16)
690 			scanreset = 16;
691 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
692 
693 		scanlimit = scanreset;
694 		tscan = tstart;
695 		while (tscan < tend) {
696 			curgeneration = object->generation;
697 			p = vm_page_lookup(object, tscan);
698 			if (p == NULL || p->valid == 0 ||
699 			    (p->queue - p->pc) == PQ_CACHE) {
700 				if (--scanlimit == 0)
701 					break;
702 				++tscan;
703 				continue;
704 			}
705 			vm_page_test_dirty(p);
706 			if ((p->dirty & p->valid) == 0) {
707 				if (--scanlimit == 0)
708 					break;
709 				++tscan;
710 				continue;
711 			}
712 			/*
713 			 * If we have been asked to skip nosync pages and
714 			 * this is a nosync page, we can't continue.
715 			 */
716 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
717 				if (--scanlimit == 0)
718 					break;
719 				++tscan;
720 				continue;
721 			}
722 			scanlimit = scanreset;
723 
724 			/*
725 			 * This returns 0 if it was unable to busy the first
726 			 * page (i.e. had to sleep).
727 			 */
728 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
729 		}
730 
731 		/*
732 		 * If everything was dirty and we flushed it successfully,
733 		 * and the requested range is not the entire object, we
734 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
735 		 * return immediately.
736 		 */
737 		if (tscan >= tend && (tstart || tend < object->size)) {
738 			vm_page_unlock_queues();
739 			vm_object_clear_flag(object, OBJ_CLEANING);
740 			return;
741 		}
742 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
743 	}
744 
745 	/*
746 	 * Generally set CLEANCHK interlock and make the page read-only so
747 	 * we can then clear the object flags.
748 	 *
749 	 * However, if this is a nosync mmap then the object is likely to
750 	 * stay dirty so do not mess with the page and do not clear the
751 	 * object flags.
752 	 */
753 	clearobjflags = 1;
754 	TAILQ_FOREACH(p, &object->memq, listq) {
755 		vm_page_flag_set(p, PG_CLEANCHK);
756 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
757 			clearobjflags = 0;
758 		else
759 			pmap_page_protect(p, VM_PROT_READ);
760 	}
761 
762 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
763 		struct vnode *vp;
764 
765 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
766 		if (object->type == OBJT_VNODE &&
767 		    (vp = (struct vnode *)object->handle) != NULL) {
768 			VI_LOCK(vp);
769 			if (vp->v_iflag & VI_OBJDIRTY)
770 				vp->v_iflag &= ~VI_OBJDIRTY;
771 			VI_UNLOCK(vp);
772 		}
773 	}
774 
775 rescan:
776 	curgeneration = object->generation;
777 
778 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
779 		int n;
780 
781 		np = TAILQ_NEXT(p, listq);
782 
783 again:
784 		pi = p->pindex;
785 		if (((p->flags & PG_CLEANCHK) == 0) ||
786 			(pi < tstart) || (pi >= tend) ||
787 			(p->valid == 0) ||
788 			((p->queue - p->pc) == PQ_CACHE)) {
789 			vm_page_flag_clear(p, PG_CLEANCHK);
790 			continue;
791 		}
792 
793 		vm_page_test_dirty(p);
794 		if ((p->dirty & p->valid) == 0) {
795 			vm_page_flag_clear(p, PG_CLEANCHK);
796 			continue;
797 		}
798 
799 		/*
800 		 * If we have been asked to skip nosync pages and this is a
801 		 * nosync page, skip it.  Note that the object flags were
802 		 * not cleared in this case so we do not have to set them.
803 		 */
804 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
805 			vm_page_flag_clear(p, PG_CLEANCHK);
806 			continue;
807 		}
808 
809 		n = vm_object_page_collect_flush(object, p,
810 			curgeneration, pagerflags);
811 		if (n == 0)
812 			goto rescan;
813 
814 		if (object->generation != curgeneration)
815 			goto rescan;
816 
817 		/*
818 		 * Try to optimize the next page.  If we can't we pick up
819 		 * our (random) scan where we left off.
820 		 */
821 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
822 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
823 				goto again;
824 		}
825 	}
826 	vm_page_unlock_queues();
827 #if 0
828 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
829 #endif
830 
831 	vm_object_clear_flag(object, OBJ_CLEANING);
832 	return;
833 }
834 
835 static int
836 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
837 {
838 	int runlen;
839 	int s;
840 	int maxf;
841 	int chkb;
842 	int maxb;
843 	int i;
844 	vm_pindex_t pi;
845 	vm_page_t maf[vm_pageout_page_count];
846 	vm_page_t mab[vm_pageout_page_count];
847 	vm_page_t ma[vm_pageout_page_count];
848 
849 	s = splvm();
850 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
851 	pi = p->pindex;
852 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
853 		vm_page_lock_queues();
854 		if (object->generation != curgeneration) {
855 			splx(s);
856 			return(0);
857 		}
858 	}
859 	maxf = 0;
860 	for(i = 1; i < vm_pageout_page_count; i++) {
861 		vm_page_t tp;
862 
863 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
864 			if ((tp->flags & PG_BUSY) ||
865 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
866 				 (tp->flags & PG_CLEANCHK) == 0) ||
867 				(tp->busy != 0))
868 				break;
869 			if((tp->queue - tp->pc) == PQ_CACHE) {
870 				vm_page_flag_clear(tp, PG_CLEANCHK);
871 				break;
872 			}
873 			vm_page_test_dirty(tp);
874 			if ((tp->dirty & tp->valid) == 0) {
875 				vm_page_flag_clear(tp, PG_CLEANCHK);
876 				break;
877 			}
878 			maf[ i - 1 ] = tp;
879 			maxf++;
880 			continue;
881 		}
882 		break;
883 	}
884 
885 	maxb = 0;
886 	chkb = vm_pageout_page_count -  maxf;
887 	if (chkb) {
888 		for(i = 1; i < chkb;i++) {
889 			vm_page_t tp;
890 
891 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
892 				if ((tp->flags & PG_BUSY) ||
893 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
894 					 (tp->flags & PG_CLEANCHK) == 0) ||
895 					(tp->busy != 0))
896 					break;
897 				if ((tp->queue - tp->pc) == PQ_CACHE) {
898 					vm_page_flag_clear(tp, PG_CLEANCHK);
899 					break;
900 				}
901 				vm_page_test_dirty(tp);
902 				if ((tp->dirty & tp->valid) == 0) {
903 					vm_page_flag_clear(tp, PG_CLEANCHK);
904 					break;
905 				}
906 				mab[ i - 1 ] = tp;
907 				maxb++;
908 				continue;
909 			}
910 			break;
911 		}
912 	}
913 
914 	for(i = 0; i < maxb; i++) {
915 		int index = (maxb - i) - 1;
916 		ma[index] = mab[i];
917 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
918 	}
919 	vm_page_flag_clear(p, PG_CLEANCHK);
920 	ma[maxb] = p;
921 	for(i = 0; i < maxf; i++) {
922 		int index = (maxb + i) + 1;
923 		ma[index] = maf[i];
924 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
925 	}
926 	runlen = maxb + maxf + 1;
927 
928 	splx(s);
929 	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
930 	for (i = 0; i < runlen; i++) {
931 		if (ma[i]->valid & ma[i]->dirty) {
932 			pmap_page_protect(ma[i], VM_PROT_READ);
933 			vm_page_flag_set(ma[i], PG_CLEANCHK);
934 
935 			/*
936 			 * maxf will end up being the actual number of pages
937 			 * we wrote out contiguously, non-inclusive of the
938 			 * first page.  We do not count look-behind pages.
939 			 */
940 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
941 				maxf = i - maxb - 1;
942 		}
943 	}
944 	return(maxf + 1);
945 }
946 
947 /*
948  *	vm_object_madvise:
949  *
950  *	Implements the madvise function at the object/page level.
951  *
952  *	MADV_WILLNEED	(any object)
953  *
954  *	    Activate the specified pages if they are resident.
955  *
956  *	MADV_DONTNEED	(any object)
957  *
958  *	    Deactivate the specified pages if they are resident.
959  *
960  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
961  *			 OBJ_ONEMAPPING only)
962  *
963  *	    Deactivate and clean the specified pages if they are
964  *	    resident.  This permits the process to reuse the pages
965  *	    without faulting or the kernel to reclaim the pages
966  *	    without I/O.
967  */
968 void
969 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
970 {
971 	vm_pindex_t end, tpindex;
972 	vm_object_t backing_object, tobject;
973 	vm_page_t m;
974 
975 	if (object == NULL)
976 		return;
977 
978 	mtx_lock(&Giant);
979 
980 	end = pindex + count;
981 
982 	/*
983 	 * Locate and adjust resident pages
984 	 */
985 	for (; pindex < end; pindex += 1) {
986 relookup:
987 		tobject = object;
988 		tpindex = pindex;
989 		VM_OBJECT_LOCK(tobject);
990 shadowlookup:
991 		/*
992 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
993 		 * and those pages must be OBJ_ONEMAPPING.
994 		 */
995 		if (advise == MADV_FREE) {
996 			if ((tobject->type != OBJT_DEFAULT &&
997 			     tobject->type != OBJT_SWAP) ||
998 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
999 				goto unlock_tobject;
1000 			}
1001 		}
1002 
1003 		m = vm_page_lookup(tobject, tpindex);
1004 
1005 		if (m == NULL) {
1006 			/*
1007 			 * There may be swap even if there is no backing page
1008 			 */
1009 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1010 				swap_pager_freespace(tobject, tpindex, 1);
1011 
1012 			/*
1013 			 * next object
1014 			 */
1015 			backing_object = tobject->backing_object;
1016 			if (backing_object == NULL)
1017 				goto unlock_tobject;
1018 			VM_OBJECT_LOCK(backing_object);
1019 			VM_OBJECT_UNLOCK(tobject);
1020 			tobject = backing_object;
1021 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1022 			goto shadowlookup;
1023 		}
1024 
1025 		/*
1026 		 * If the page is busy or not in a normal active state,
1027 		 * we skip it.  If the page is not managed there are no
1028 		 * page queues to mess with.  Things can break if we mess
1029 		 * with pages in any of the below states.
1030 		 */
1031 		vm_page_lock_queues();
1032 		if (m->hold_count ||
1033 		    m->wire_count ||
1034 		    (m->flags & PG_UNMANAGED) ||
1035 		    m->valid != VM_PAGE_BITS_ALL) {
1036 			vm_page_unlock_queues();
1037 			goto unlock_tobject;
1038 		}
1039  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1040 			VM_OBJECT_UNLOCK(tobject);
1041   			goto relookup;
1042 		}
1043 		if (advise == MADV_WILLNEED) {
1044 			vm_page_activate(m);
1045 		} else if (advise == MADV_DONTNEED) {
1046 			vm_page_dontneed(m);
1047 		} else if (advise == MADV_FREE) {
1048 			/*
1049 			 * Mark the page clean.  This will allow the page
1050 			 * to be freed up by the system.  However, such pages
1051 			 * are often reused quickly by malloc()/free()
1052 			 * so we do not do anything that would cause
1053 			 * a page fault if we can help it.
1054 			 *
1055 			 * Specifically, we do not try to actually free
1056 			 * the page now nor do we try to put it in the
1057 			 * cache (which would cause a page fault on reuse).
1058 			 *
1059 			 * But we do make the page is freeable as we
1060 			 * can without actually taking the step of unmapping
1061 			 * it.
1062 			 */
1063 			pmap_clear_modify(m);
1064 			m->dirty = 0;
1065 			m->act_count = 0;
1066 			vm_page_dontneed(m);
1067 		}
1068 		vm_page_unlock_queues();
1069 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1070 			swap_pager_freespace(tobject, tpindex, 1);
1071 unlock_tobject:
1072 		VM_OBJECT_UNLOCK(tobject);
1073 	}
1074 	mtx_unlock(&Giant);
1075 }
1076 
1077 /*
1078  *	vm_object_shadow:
1079  *
1080  *	Create a new object which is backed by the
1081  *	specified existing object range.  The source
1082  *	object reference is deallocated.
1083  *
1084  *	The new object and offset into that object
1085  *	are returned in the source parameters.
1086  */
1087 void
1088 vm_object_shadow(
1089 	vm_object_t *object,	/* IN/OUT */
1090 	vm_ooffset_t *offset,	/* IN/OUT */
1091 	vm_size_t length)
1092 {
1093 	vm_object_t source;
1094 	vm_object_t result;
1095 
1096 	source = *object;
1097 
1098 	/*
1099 	 * Don't create the new object if the old object isn't shared.
1100 	 */
1101 	if (source != NULL) {
1102 		VM_OBJECT_LOCK(source);
1103 		if (source->ref_count == 1 &&
1104 		    source->handle == NULL &&
1105 		    (source->type == OBJT_DEFAULT ||
1106 		     source->type == OBJT_SWAP)) {
1107 			VM_OBJECT_UNLOCK(source);
1108 			return;
1109 		}
1110 		VM_OBJECT_UNLOCK(source);
1111 	}
1112 
1113 	/*
1114 	 * Allocate a new object with the given length.
1115 	 */
1116 	result = vm_object_allocate(OBJT_DEFAULT, length);
1117 
1118 	/*
1119 	 * The new object shadows the source object, adding a reference to it.
1120 	 * Our caller changes his reference to point to the new object,
1121 	 * removing a reference to the source object.  Net result: no change
1122 	 * of reference count.
1123 	 *
1124 	 * Try to optimize the result object's page color when shadowing
1125 	 * in order to maintain page coloring consistency in the combined
1126 	 * shadowed object.
1127 	 */
1128 	result->backing_object = source;
1129 	if (source != NULL) {
1130 		VM_OBJECT_LOCK(source);
1131 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1132 		source->shadow_count++;
1133 		source->generation++;
1134 		if (length < source->size)
1135 			length = source->size;
1136 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1137 		    source->generation > 1)
1138 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1139 		result->pg_color = (source->pg_color +
1140 		    length * source->generation) & PQ_L2_MASK;
1141 		VM_OBJECT_UNLOCK(source);
1142 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1143 		    PQ_L2_MASK;
1144 	}
1145 
1146 	/*
1147 	 * Store the offset into the source object, and fix up the offset into
1148 	 * the new object.
1149 	 */
1150 	result->backing_object_offset = *offset;
1151 
1152 	/*
1153 	 * Return the new things
1154 	 */
1155 	*offset = 0;
1156 	*object = result;
1157 }
1158 
1159 /*
1160  *	vm_object_split:
1161  *
1162  * Split the pages in a map entry into a new object.  This affords
1163  * easier removal of unused pages, and keeps object inheritance from
1164  * being a negative impact on memory usage.
1165  */
1166 void
1167 vm_object_split(vm_map_entry_t entry)
1168 {
1169 	vm_page_t m;
1170 	vm_object_t orig_object, new_object, source;
1171 	vm_offset_t s, e;
1172 	vm_pindex_t offidxstart, offidxend;
1173 	vm_size_t idx, size;
1174 	vm_ooffset_t offset;
1175 
1176 	GIANT_REQUIRED;
1177 
1178 	orig_object = entry->object.vm_object;
1179 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1180 		return;
1181 	if (orig_object->ref_count <= 1)
1182 		return;
1183 
1184 	offset = entry->offset;
1185 	s = entry->start;
1186 	e = entry->end;
1187 
1188 	offidxstart = OFF_TO_IDX(offset);
1189 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1190 	size = offidxend - offidxstart;
1191 
1192 	new_object = vm_pager_allocate(orig_object->type,
1193 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1194 	if (new_object == NULL)
1195 		return;
1196 
1197 	source = orig_object->backing_object;
1198 	if (source != NULL) {
1199 		vm_object_reference(source);	/* Referenced by new_object */
1200 		VM_OBJECT_LOCK(source);
1201 		LIST_INSERT_HEAD(&source->shadow_head,
1202 				  new_object, shadow_list);
1203 		source->shadow_count++;
1204 		source->generation++;
1205 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1206 		VM_OBJECT_UNLOCK(source);
1207 		new_object->backing_object_offset =
1208 			orig_object->backing_object_offset + offset;
1209 		new_object->backing_object = source;
1210 	}
1211 	VM_OBJECT_LOCK(orig_object);
1212 	for (idx = 0; idx < size; idx++) {
1213 	retry:
1214 		m = vm_page_lookup(orig_object, offidxstart + idx);
1215 		if (m == NULL)
1216 			continue;
1217 
1218 		/*
1219 		 * We must wait for pending I/O to complete before we can
1220 		 * rename the page.
1221 		 *
1222 		 * We do not have to VM_PROT_NONE the page as mappings should
1223 		 * not be changed by this operation.
1224 		 */
1225 		vm_page_lock_queues();
1226 		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1227 			goto retry;
1228 
1229 		vm_page_busy(m);
1230 		vm_page_rename(m, new_object, idx);
1231 		/* page automatically made dirty by rename and cache handled */
1232 		vm_page_busy(m);
1233 		vm_page_unlock_queues();
1234 	}
1235 	if (orig_object->type == OBJT_SWAP) {
1236 		vm_object_pip_add(orig_object, 1);
1237 		VM_OBJECT_UNLOCK(orig_object);
1238 		/*
1239 		 * copy orig_object pages into new_object
1240 		 * and destroy unneeded pages in
1241 		 * shadow object.
1242 		 */
1243 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1244 		VM_OBJECT_LOCK(orig_object);
1245 		vm_object_pip_wakeup(orig_object);
1246 	}
1247 	VM_OBJECT_UNLOCK(orig_object);
1248 	vm_page_lock_queues();
1249 	TAILQ_FOREACH(m, &new_object->memq, listq)
1250 		vm_page_wakeup(m);
1251 	vm_page_unlock_queues();
1252 	entry->object.vm_object = new_object;
1253 	entry->offset = 0LL;
1254 	vm_object_deallocate(orig_object);
1255 }
1256 
1257 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1258 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1259 #define	OBSC_COLLAPSE_WAIT	0x0004
1260 
1261 static int
1262 vm_object_backing_scan(vm_object_t object, int op)
1263 {
1264 	int s;
1265 	int r = 1;
1266 	vm_page_t p;
1267 	vm_object_t backing_object;
1268 	vm_pindex_t backing_offset_index;
1269 
1270 	s = splvm();
1271 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1272 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1273 
1274 	backing_object = object->backing_object;
1275 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1276 
1277 	/*
1278 	 * Initial conditions
1279 	 */
1280 	if (op & OBSC_TEST_ALL_SHADOWED) {
1281 		/*
1282 		 * We do not want to have to test for the existence of
1283 		 * swap pages in the backing object.  XXX but with the
1284 		 * new swapper this would be pretty easy to do.
1285 		 *
1286 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1287 		 * been ZFOD faulted yet?  If we do not test for this, the
1288 		 * shadow test may succeed! XXX
1289 		 */
1290 		if (backing_object->type != OBJT_DEFAULT) {
1291 			splx(s);
1292 			return (0);
1293 		}
1294 	}
1295 	if (op & OBSC_COLLAPSE_WAIT) {
1296 		vm_object_set_flag(backing_object, OBJ_DEAD);
1297 	}
1298 
1299 	/*
1300 	 * Our scan
1301 	 */
1302 	p = TAILQ_FIRST(&backing_object->memq);
1303 	while (p) {
1304 		vm_page_t next = TAILQ_NEXT(p, listq);
1305 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1306 
1307 		if (op & OBSC_TEST_ALL_SHADOWED) {
1308 			vm_page_t pp;
1309 
1310 			/*
1311 			 * Ignore pages outside the parent object's range
1312 			 * and outside the parent object's mapping of the
1313 			 * backing object.
1314 			 *
1315 			 * note that we do not busy the backing object's
1316 			 * page.
1317 			 */
1318 			if (
1319 			    p->pindex < backing_offset_index ||
1320 			    new_pindex >= object->size
1321 			) {
1322 				p = next;
1323 				continue;
1324 			}
1325 
1326 			/*
1327 			 * See if the parent has the page or if the parent's
1328 			 * object pager has the page.  If the parent has the
1329 			 * page but the page is not valid, the parent's
1330 			 * object pager must have the page.
1331 			 *
1332 			 * If this fails, the parent does not completely shadow
1333 			 * the object and we might as well give up now.
1334 			 */
1335 
1336 			pp = vm_page_lookup(object, new_pindex);
1337 			if (
1338 			    (pp == NULL || pp->valid == 0) &&
1339 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1340 			) {
1341 				r = 0;
1342 				break;
1343 			}
1344 		}
1345 
1346 		/*
1347 		 * Check for busy page
1348 		 */
1349 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1350 			vm_page_t pp;
1351 
1352 			vm_page_lock_queues();
1353 			if (op & OBSC_COLLAPSE_NOWAIT) {
1354 				if ((p->flags & PG_BUSY) ||
1355 				    !p->valid ||
1356 				    p->hold_count ||
1357 				    p->wire_count ||
1358 				    p->busy) {
1359 					vm_page_unlock_queues();
1360 					p = next;
1361 					continue;
1362 				}
1363 			} else if (op & OBSC_COLLAPSE_WAIT) {
1364 				if ((p->flags & PG_BUSY) || p->busy) {
1365 					vm_page_flag_set(p,
1366 					    PG_WANTED | PG_REFERENCED);
1367 					VM_OBJECT_UNLOCK(backing_object);
1368 					VM_OBJECT_UNLOCK(object);
1369 					msleep(p, &vm_page_queue_mtx,
1370 					    PDROP | PVM, "vmocol", 0);
1371 					VM_OBJECT_LOCK(object);
1372 					VM_OBJECT_LOCK(backing_object);
1373 					/*
1374 					 * If we slept, anything could have
1375 					 * happened.  Since the object is
1376 					 * marked dead, the backing offset
1377 					 * should not have changed so we
1378 					 * just restart our scan.
1379 					 */
1380 					p = TAILQ_FIRST(&backing_object->memq);
1381 					continue;
1382 				}
1383 			}
1384 
1385 			/*
1386 			 * Busy the page
1387 			 */
1388 			vm_page_busy(p);
1389 			vm_page_unlock_queues();
1390 
1391 			KASSERT(
1392 			    p->object == backing_object,
1393 			    ("vm_object_qcollapse(): object mismatch")
1394 			);
1395 
1396 			/*
1397 			 * Destroy any associated swap
1398 			 */
1399 			if (backing_object->type == OBJT_SWAP) {
1400 				swap_pager_freespace(
1401 				    backing_object,
1402 				    p->pindex,
1403 				    1
1404 				);
1405 			}
1406 
1407 			if (
1408 			    p->pindex < backing_offset_index ||
1409 			    new_pindex >= object->size
1410 			) {
1411 				/*
1412 				 * Page is out of the parent object's range, we
1413 				 * can simply destroy it.
1414 				 */
1415 				vm_page_lock_queues();
1416 				pmap_remove_all(p);
1417 				vm_page_free(p);
1418 				vm_page_unlock_queues();
1419 				p = next;
1420 				continue;
1421 			}
1422 
1423 			pp = vm_page_lookup(object, new_pindex);
1424 			if (
1425 			    pp != NULL ||
1426 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1427 			) {
1428 				/*
1429 				 * page already exists in parent OR swap exists
1430 				 * for this location in the parent.  Destroy
1431 				 * the original page from the backing object.
1432 				 *
1433 				 * Leave the parent's page alone
1434 				 */
1435 				vm_page_lock_queues();
1436 				pmap_remove_all(p);
1437 				vm_page_free(p);
1438 				vm_page_unlock_queues();
1439 				p = next;
1440 				continue;
1441 			}
1442 
1443 			/*
1444 			 * Page does not exist in parent, rename the
1445 			 * page from the backing object to the main object.
1446 			 *
1447 			 * If the page was mapped to a process, it can remain
1448 			 * mapped through the rename.
1449 			 */
1450 			vm_page_lock_queues();
1451 			vm_page_rename(p, object, new_pindex);
1452 			vm_page_unlock_queues();
1453 			/* page automatically made dirty by rename */
1454 		}
1455 		p = next;
1456 	}
1457 	splx(s);
1458 	return (r);
1459 }
1460 
1461 
1462 /*
1463  * this version of collapse allows the operation to occur earlier and
1464  * when paging_in_progress is true for an object...  This is not a complete
1465  * operation, but should plug 99.9% of the rest of the leaks.
1466  */
1467 static void
1468 vm_object_qcollapse(vm_object_t object)
1469 {
1470 	vm_object_t backing_object = object->backing_object;
1471 
1472 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1473 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1474 
1475 	if (backing_object->ref_count != 1)
1476 		return;
1477 
1478 	backing_object->ref_count += 2;
1479 
1480 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1481 
1482 	backing_object->ref_count -= 2;
1483 }
1484 
1485 /*
1486  *	vm_object_collapse:
1487  *
1488  *	Collapse an object with the object backing it.
1489  *	Pages in the backing object are moved into the
1490  *	parent, and the backing object is deallocated.
1491  */
1492 void
1493 vm_object_collapse(vm_object_t object)
1494 {
1495 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1496 
1497 	while (TRUE) {
1498 		vm_object_t backing_object;
1499 
1500 		/*
1501 		 * Verify that the conditions are right for collapse:
1502 		 *
1503 		 * The object exists and the backing object exists.
1504 		 */
1505 		if ((backing_object = object->backing_object) == NULL)
1506 			break;
1507 
1508 		/*
1509 		 * we check the backing object first, because it is most likely
1510 		 * not collapsable.
1511 		 */
1512 		VM_OBJECT_LOCK(backing_object);
1513 		if (backing_object->handle != NULL ||
1514 		    (backing_object->type != OBJT_DEFAULT &&
1515 		     backing_object->type != OBJT_SWAP) ||
1516 		    (backing_object->flags & OBJ_DEAD) ||
1517 		    object->handle != NULL ||
1518 		    (object->type != OBJT_DEFAULT &&
1519 		     object->type != OBJT_SWAP) ||
1520 		    (object->flags & OBJ_DEAD)) {
1521 			VM_OBJECT_UNLOCK(backing_object);
1522 			break;
1523 		}
1524 
1525 		if (
1526 		    object->paging_in_progress != 0 ||
1527 		    backing_object->paging_in_progress != 0
1528 		) {
1529 			vm_object_qcollapse(object);
1530 			VM_OBJECT_UNLOCK(backing_object);
1531 			break;
1532 		}
1533 		/*
1534 		 * We know that we can either collapse the backing object (if
1535 		 * the parent is the only reference to it) or (perhaps) have
1536 		 * the parent bypass the object if the parent happens to shadow
1537 		 * all the resident pages in the entire backing object.
1538 		 *
1539 		 * This is ignoring pager-backed pages such as swap pages.
1540 		 * vm_object_backing_scan fails the shadowing test in this
1541 		 * case.
1542 		 */
1543 		if (backing_object->ref_count == 1) {
1544 			/*
1545 			 * If there is exactly one reference to the backing
1546 			 * object, we can collapse it into the parent.
1547 			 */
1548 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1549 
1550 			/*
1551 			 * Move the pager from backing_object to object.
1552 			 */
1553 			if (backing_object->type == OBJT_SWAP) {
1554 				vm_object_pip_add(backing_object, 1);
1555 				VM_OBJECT_UNLOCK(backing_object);
1556 				/*
1557 				 * scrap the paging_offset junk and do a
1558 				 * discrete copy.  This also removes major
1559 				 * assumptions about how the swap-pager
1560 				 * works from where it doesn't belong.  The
1561 				 * new swapper is able to optimize the
1562 				 * destroy-source case.
1563 				 */
1564 				vm_object_pip_add(object, 1);
1565 				VM_OBJECT_UNLOCK(object);
1566 				swap_pager_copy(
1567 				    backing_object,
1568 				    object,
1569 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1570 				VM_OBJECT_LOCK(object);
1571 				vm_object_pip_wakeup(object);
1572 
1573 				VM_OBJECT_LOCK(backing_object);
1574 				vm_object_pip_wakeup(backing_object);
1575 			}
1576 			/*
1577 			 * Object now shadows whatever backing_object did.
1578 			 * Note that the reference to
1579 			 * backing_object->backing_object moves from within
1580 			 * backing_object to within object.
1581 			 */
1582 			LIST_REMOVE(object, shadow_list);
1583 			backing_object->shadow_count--;
1584 			backing_object->generation++;
1585 			if (backing_object->backing_object) {
1586 				VM_OBJECT_LOCK(backing_object->backing_object);
1587 				LIST_REMOVE(backing_object, shadow_list);
1588 				backing_object->backing_object->shadow_count--;
1589 				backing_object->backing_object->generation++;
1590 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1591 			}
1592 			object->backing_object = backing_object->backing_object;
1593 			if (object->backing_object) {
1594 				VM_OBJECT_LOCK(object->backing_object);
1595 				LIST_INSERT_HEAD(
1596 				    &object->backing_object->shadow_head,
1597 				    object,
1598 				    shadow_list
1599 				);
1600 				object->backing_object->shadow_count++;
1601 				object->backing_object->generation++;
1602 				VM_OBJECT_UNLOCK(object->backing_object);
1603 			}
1604 
1605 			object->backing_object_offset +=
1606 			    backing_object->backing_object_offset;
1607 /* XXX */		VM_OBJECT_UNLOCK(object);
1608 
1609 			/*
1610 			 * Discard backing_object.
1611 			 *
1612 			 * Since the backing object has no pages, no pager left,
1613 			 * and no object references within it, all that is
1614 			 * necessary is to dispose of it.
1615 			 */
1616 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1617 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1618 			VM_OBJECT_UNLOCK(backing_object);
1619 
1620 			mtx_lock(&vm_object_list_mtx);
1621 			TAILQ_REMOVE(
1622 			    &vm_object_list,
1623 			    backing_object,
1624 			    object_list
1625 			);
1626 			mtx_unlock(&vm_object_list_mtx);
1627 
1628 			uma_zfree(obj_zone, backing_object);
1629 
1630 			object_collapses++;
1631 		} else {
1632 			vm_object_t new_backing_object;
1633 
1634 			/*
1635 			 * If we do not entirely shadow the backing object,
1636 			 * there is nothing we can do so we give up.
1637 			 */
1638 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1639 				VM_OBJECT_UNLOCK(backing_object);
1640 				break;
1641 			}
1642 
1643 			/*
1644 			 * Make the parent shadow the next object in the
1645 			 * chain.  Deallocating backing_object will not remove
1646 			 * it, since its reference count is at least 2.
1647 			 */
1648 			LIST_REMOVE(object, shadow_list);
1649 			backing_object->shadow_count--;
1650 			backing_object->generation++;
1651 			VM_OBJECT_UNLOCK(backing_object);
1652 /* XXX */		VM_OBJECT_UNLOCK(object);
1653 
1654 			new_backing_object = backing_object->backing_object;
1655 			if ((object->backing_object = new_backing_object) != NULL) {
1656 				vm_object_reference(new_backing_object);
1657 				VM_OBJECT_LOCK(new_backing_object);
1658 				LIST_INSERT_HEAD(
1659 				    &new_backing_object->shadow_head,
1660 				    object,
1661 				    shadow_list
1662 				);
1663 				new_backing_object->shadow_count++;
1664 				new_backing_object->generation++;
1665 				VM_OBJECT_UNLOCK(new_backing_object);
1666 				object->backing_object_offset +=
1667 					backing_object->backing_object_offset;
1668 			}
1669 
1670 			/*
1671 			 * Drop the reference count on backing_object. Since
1672 			 * its ref_count was at least 2, it will not vanish;
1673 			 * so we don't need to call vm_object_deallocate, but
1674 			 * we do anyway.
1675 			 */
1676 			vm_object_deallocate(backing_object);
1677 			object_bypasses++;
1678 		}
1679 
1680 		/*
1681 		 * Try again with this object's new backing object.
1682 		 */
1683 /* XXX */	VM_OBJECT_LOCK(object);
1684 	}
1685 }
1686 
1687 /*
1688  *	vm_object_page_remove:
1689  *
1690  *	Removes all physical pages in the given range from the
1691  *	object's list of pages.  If the range's end is zero, all
1692  *	physical pages from the range's start to the end of the object
1693  *	are deleted.
1694  *
1695  *	The object must be locked.
1696  */
1697 void
1698 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1699     boolean_t clean_only)
1700 {
1701 	vm_page_t p, next;
1702 
1703 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1704 	if (object->resident_page_count == 0)
1705 		return;
1706 
1707 	/*
1708 	 * Since physically-backed objects do not use managed pages, we can't
1709 	 * remove pages from the object (we must instead remove the page
1710 	 * references, and then destroy the object).
1711 	 */
1712 	KASSERT(object->type != OBJT_PHYS,
1713 	    ("attempt to remove pages from a physical object"));
1714 
1715 	vm_object_pip_add(object, 1);
1716 again:
1717 	vm_page_lock_queues();
1718 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1719 		if (p->pindex < start) {
1720 			p = vm_page_splay(start, object->root);
1721 			if ((object->root = p)->pindex < start)
1722 				p = TAILQ_NEXT(p, listq);
1723 		}
1724 	}
1725 	/*
1726 	 * Assert: the variable p is either (1) the page with the
1727 	 * least pindex greater than or equal to the parameter pindex
1728 	 * or (2) NULL.
1729 	 */
1730 	for (;
1731 	     p != NULL && (p->pindex < end || end == 0);
1732 	     p = next) {
1733 		next = TAILQ_NEXT(p, listq);
1734 
1735 		if (p->wire_count != 0) {
1736 			pmap_remove_all(p);
1737 			if (!clean_only)
1738 				p->valid = 0;
1739 			continue;
1740 		}
1741 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1742 			goto again;
1743 		if (clean_only && p->valid) {
1744 			vm_page_test_dirty(p);
1745 			if (p->valid & p->dirty)
1746 				continue;
1747 		}
1748 		vm_page_busy(p);
1749 		pmap_remove_all(p);
1750 		vm_page_free(p);
1751 	}
1752 	vm_page_unlock_queues();
1753 	vm_object_pip_wakeup(object);
1754 }
1755 
1756 /*
1757  *	Routine:	vm_object_coalesce
1758  *	Function:	Coalesces two objects backing up adjoining
1759  *			regions of memory into a single object.
1760  *
1761  *	returns TRUE if objects were combined.
1762  *
1763  *	NOTE:	Only works at the moment if the second object is NULL -
1764  *		if it's not, which object do we lock first?
1765  *
1766  *	Parameters:
1767  *		prev_object	First object to coalesce
1768  *		prev_offset	Offset into prev_object
1769  *		next_object	Second object into coalesce
1770  *		next_offset	Offset into next_object
1771  *
1772  *		prev_size	Size of reference to prev_object
1773  *		next_size	Size of reference to next_object
1774  *
1775  *	Conditions:
1776  *	The object must *not* be locked.
1777  */
1778 boolean_t
1779 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1780 	vm_size_t prev_size, vm_size_t next_size)
1781 {
1782 	vm_pindex_t next_pindex;
1783 
1784 	if (prev_object == NULL)
1785 		return (TRUE);
1786 	mtx_lock(&Giant);
1787 	VM_OBJECT_LOCK(prev_object);
1788 	if (prev_object->type != OBJT_DEFAULT &&
1789 	    prev_object->type != OBJT_SWAP) {
1790 		VM_OBJECT_UNLOCK(prev_object);
1791 		mtx_unlock(&Giant);
1792 		return (FALSE);
1793 	}
1794 
1795 	/*
1796 	 * Try to collapse the object first
1797 	 */
1798 	vm_object_collapse(prev_object);
1799 
1800 	/*
1801 	 * Can't coalesce if: . more than one reference . paged out . shadows
1802 	 * another object . has a copy elsewhere (any of which mean that the
1803 	 * pages not mapped to prev_entry may be in use anyway)
1804 	 */
1805 	if (prev_object->backing_object != NULL) {
1806 		VM_OBJECT_UNLOCK(prev_object);
1807 		mtx_unlock(&Giant);
1808 		return (FALSE);
1809 	}
1810 
1811 	prev_size >>= PAGE_SHIFT;
1812 	next_size >>= PAGE_SHIFT;
1813 	next_pindex = prev_pindex + prev_size;
1814 
1815 	if ((prev_object->ref_count > 1) &&
1816 	    (prev_object->size != next_pindex)) {
1817 		VM_OBJECT_UNLOCK(prev_object);
1818 		mtx_unlock(&Giant);
1819 		return (FALSE);
1820 	}
1821 
1822 	/*
1823 	 * Remove any pages that may still be in the object from a previous
1824 	 * deallocation.
1825 	 */
1826 	if (next_pindex < prev_object->size) {
1827 		vm_object_page_remove(prev_object,
1828 				      next_pindex,
1829 				      next_pindex + next_size, FALSE);
1830 		if (prev_object->type == OBJT_SWAP)
1831 			swap_pager_freespace(prev_object,
1832 					     next_pindex, next_size);
1833 	}
1834 
1835 	/*
1836 	 * Extend the object if necessary.
1837 	 */
1838 	if (next_pindex + next_size > prev_object->size)
1839 		prev_object->size = next_pindex + next_size;
1840 
1841 	VM_OBJECT_UNLOCK(prev_object);
1842 	mtx_unlock(&Giant);
1843 	return (TRUE);
1844 }
1845 
1846 void
1847 vm_object_set_writeable_dirty(vm_object_t object)
1848 {
1849 	struct vnode *vp;
1850 
1851 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1852 	if (object->type == OBJT_VNODE &&
1853 	    (vp = (struct vnode *)object->handle) != NULL) {
1854 		VI_LOCK(vp);
1855 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1856 			vp->v_iflag |= VI_OBJDIRTY;
1857 		VI_UNLOCK(vp);
1858 	}
1859 }
1860 
1861 #include "opt_ddb.h"
1862 #ifdef DDB
1863 #include <sys/kernel.h>
1864 
1865 #include <sys/cons.h>
1866 
1867 #include <ddb/ddb.h>
1868 
1869 static int
1870 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1871 {
1872 	vm_map_t tmpm;
1873 	vm_map_entry_t tmpe;
1874 	vm_object_t obj;
1875 	int entcount;
1876 
1877 	if (map == 0)
1878 		return 0;
1879 
1880 	if (entry == 0) {
1881 		tmpe = map->header.next;
1882 		entcount = map->nentries;
1883 		while (entcount-- && (tmpe != &map->header)) {
1884 			if (_vm_object_in_map(map, object, tmpe)) {
1885 				return 1;
1886 			}
1887 			tmpe = tmpe->next;
1888 		}
1889 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1890 		tmpm = entry->object.sub_map;
1891 		tmpe = tmpm->header.next;
1892 		entcount = tmpm->nentries;
1893 		while (entcount-- && tmpe != &tmpm->header) {
1894 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1895 				return 1;
1896 			}
1897 			tmpe = tmpe->next;
1898 		}
1899 	} else if ((obj = entry->object.vm_object) != NULL) {
1900 		for (; obj; obj = obj->backing_object)
1901 			if (obj == object) {
1902 				return 1;
1903 			}
1904 	}
1905 	return 0;
1906 }
1907 
1908 static int
1909 vm_object_in_map(vm_object_t object)
1910 {
1911 	struct proc *p;
1912 
1913 	/* sx_slock(&allproc_lock); */
1914 	LIST_FOREACH(p, &allproc, p_list) {
1915 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1916 			continue;
1917 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1918 			/* sx_sunlock(&allproc_lock); */
1919 			return 1;
1920 		}
1921 	}
1922 	/* sx_sunlock(&allproc_lock); */
1923 	if (_vm_object_in_map(kernel_map, object, 0))
1924 		return 1;
1925 	if (_vm_object_in_map(kmem_map, object, 0))
1926 		return 1;
1927 	if (_vm_object_in_map(pager_map, object, 0))
1928 		return 1;
1929 	if (_vm_object_in_map(buffer_map, object, 0))
1930 		return 1;
1931 	return 0;
1932 }
1933 
1934 DB_SHOW_COMMAND(vmochk, vm_object_check)
1935 {
1936 	vm_object_t object;
1937 
1938 	/*
1939 	 * make sure that internal objs are in a map somewhere
1940 	 * and none have zero ref counts.
1941 	 */
1942 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1943 		if (object->handle == NULL &&
1944 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1945 			if (object->ref_count == 0) {
1946 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1947 					(long)object->size);
1948 			}
1949 			if (!vm_object_in_map(object)) {
1950 				db_printf(
1951 			"vmochk: internal obj is not in a map: "
1952 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1953 				    object->ref_count, (u_long)object->size,
1954 				    (u_long)object->size,
1955 				    (void *)object->backing_object);
1956 			}
1957 		}
1958 	}
1959 }
1960 
1961 /*
1962  *	vm_object_print:	[ debug ]
1963  */
1964 DB_SHOW_COMMAND(object, vm_object_print_static)
1965 {
1966 	/* XXX convert args. */
1967 	vm_object_t object = (vm_object_t)addr;
1968 	boolean_t full = have_addr;
1969 
1970 	vm_page_t p;
1971 
1972 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1973 #define	count	was_count
1974 
1975 	int count;
1976 
1977 	if (object == NULL)
1978 		return;
1979 
1980 	db_iprintf(
1981 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1982 	    object, (int)object->type, (uintmax_t)object->size,
1983 	    object->resident_page_count, object->ref_count, object->flags);
1984 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1985 	    object->shadow_count,
1986 	    object->backing_object ? object->backing_object->ref_count : 0,
1987 	    object->backing_object, (uintmax_t)object->backing_object_offset);
1988 
1989 	if (!full)
1990 		return;
1991 
1992 	db_indent += 2;
1993 	count = 0;
1994 	TAILQ_FOREACH(p, &object->memq, listq) {
1995 		if (count == 0)
1996 			db_iprintf("memory:=");
1997 		else if (count == 6) {
1998 			db_printf("\n");
1999 			db_iprintf(" ...");
2000 			count = 0;
2001 		} else
2002 			db_printf(",");
2003 		count++;
2004 
2005 		db_printf("(off=0x%jx,page=0x%jx)",
2006 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2007 	}
2008 	if (count != 0)
2009 		db_printf("\n");
2010 	db_indent -= 2;
2011 }
2012 
2013 /* XXX. */
2014 #undef count
2015 
2016 /* XXX need this non-static entry for calling from vm_map_print. */
2017 void
2018 vm_object_print(
2019         /* db_expr_t */ long addr,
2020 	boolean_t have_addr,
2021 	/* db_expr_t */ long count,
2022 	char *modif)
2023 {
2024 	vm_object_print_static(addr, have_addr, count, modif);
2025 }
2026 
2027 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2028 {
2029 	vm_object_t object;
2030 	int nl = 0;
2031 	int c;
2032 
2033 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2034 		vm_pindex_t idx, fidx;
2035 		vm_pindex_t osize;
2036 		vm_paddr_t pa = -1, padiff;
2037 		int rcount;
2038 		vm_page_t m;
2039 
2040 		db_printf("new object: %p\n", (void *)object);
2041 		if (nl > 18) {
2042 			c = cngetc();
2043 			if (c != ' ')
2044 				return;
2045 			nl = 0;
2046 		}
2047 		nl++;
2048 		rcount = 0;
2049 		fidx = 0;
2050 		osize = object->size;
2051 		if (osize > 128)
2052 			osize = 128;
2053 		for (idx = 0; idx < osize; idx++) {
2054 			m = vm_page_lookup(object, idx);
2055 			if (m == NULL) {
2056 				if (rcount) {
2057 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2058 						(long)fidx, rcount, (long)pa);
2059 					if (nl > 18) {
2060 						c = cngetc();
2061 						if (c != ' ')
2062 							return;
2063 						nl = 0;
2064 					}
2065 					nl++;
2066 					rcount = 0;
2067 				}
2068 				continue;
2069 			}
2070 
2071 
2072 			if (rcount &&
2073 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2074 				++rcount;
2075 				continue;
2076 			}
2077 			if (rcount) {
2078 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2079 				padiff >>= PAGE_SHIFT;
2080 				padiff &= PQ_L2_MASK;
2081 				if (padiff == 0) {
2082 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2083 					++rcount;
2084 					continue;
2085 				}
2086 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2087 					(long)fidx, rcount, (long)pa);
2088 				db_printf("pd(%ld)\n", (long)padiff);
2089 				if (nl > 18) {
2090 					c = cngetc();
2091 					if (c != ' ')
2092 						return;
2093 					nl = 0;
2094 				}
2095 				nl++;
2096 			}
2097 			fidx = idx;
2098 			pa = VM_PAGE_TO_PHYS(m);
2099 			rcount = 1;
2100 		}
2101 		if (rcount) {
2102 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2103 				(long)fidx, rcount, (long)pa);
2104 			if (nl > 18) {
2105 				c = cngetc();
2106 				if (c != ' ')
2107 					return;
2108 				nl = 0;
2109 			}
2110 			nl++;
2111 		}
2112 	}
2113 }
2114 #endif /* DDB */
2115