xref: /freebsd/sys/vm/vm_object.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100 
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104 
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106 		    int pagerflags, int flags, boolean_t *clearobjflags,
107 		    boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109 		    boolean_t *clearobjflags);
110 static void	vm_object_qcollapse(vm_object_t object);
111 static void	vm_object_vndeallocate(vm_object_t object);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144 
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147 
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151 
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155 
156 static uma_zone_t obj_zone;
157 
158 static int vm_object_zinit(void *mem, int size, int flags);
159 
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162 
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166 	vm_object_t object;
167 
168 	object = (vm_object_t)mem;
169 	KASSERT(TAILQ_EMPTY(&object->memq),
170 	    ("object %p has resident pages in its memq", object));
171 	KASSERT(vm_radix_is_empty(&object->rtree),
172 	    ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174 	KASSERT(LIST_EMPTY(&object->rvq),
175 	    ("object %p has reservations",
176 	    object));
177 #endif
178 	KASSERT(vm_object_cache_is_empty(object),
179 	    ("object %p has cached pages",
180 	    object));
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 }
191 #endif
192 
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196 	vm_object_t object;
197 
198 	object = (vm_object_t)mem;
199 	bzero(&object->lock, sizeof(object->lock));
200 	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201 
202 	/* These are true for any object that has been freed */
203 	object->rtree.rt_root = 0;
204 	object->paging_in_progress = 0;
205 	object->resident_page_count = 0;
206 	object->shadow_count = 0;
207 	object->cache.rt_root = 0;
208 	return (0);
209 }
210 
211 static void
212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213 {
214 
215 	TAILQ_INIT(&object->memq);
216 	LIST_INIT(&object->shadow_head);
217 
218 	object->type = type;
219 	switch (type) {
220 	case OBJT_DEAD:
221 		panic("_vm_object_allocate: can't create OBJT_DEAD");
222 	case OBJT_DEFAULT:
223 	case OBJT_SWAP:
224 		object->flags = OBJ_ONEMAPPING;
225 		break;
226 	case OBJT_DEVICE:
227 	case OBJT_SG:
228 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229 		break;
230 	case OBJT_MGTDEVICE:
231 		object->flags = OBJ_FICTITIOUS;
232 		break;
233 	case OBJT_PHYS:
234 		object->flags = OBJ_UNMANAGED;
235 		break;
236 	case OBJT_VNODE:
237 		object->flags = 0;
238 		break;
239 	default:
240 		panic("_vm_object_allocate: type %d is undefined", type);
241 	}
242 	object->size = size;
243 	object->generation = 1;
244 	object->ref_count = 1;
245 	object->memattr = VM_MEMATTR_DEFAULT;
246 	object->cred = NULL;
247 	object->charge = 0;
248 	object->handle = NULL;
249 	object->backing_object = NULL;
250 	object->backing_object_offset = (vm_ooffset_t) 0;
251 #if VM_NRESERVLEVEL > 0
252 	LIST_INIT(&object->rvq);
253 #endif
254 
255 	mtx_lock(&vm_object_list_mtx);
256 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257 	mtx_unlock(&vm_object_list_mtx);
258 }
259 
260 /*
261  *	vm_object_init:
262  *
263  *	Initialize the VM objects module.
264  */
265 void
266 vm_object_init(void)
267 {
268 	TAILQ_INIT(&vm_object_list);
269 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270 
271 	rw_init(&kernel_object->lock, "kernel vm object");
272 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273 	    kernel_object);
274 #if VM_NRESERVLEVEL > 0
275 	kernel_object->flags |= OBJ_COLORED;
276 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277 #endif
278 
279 	rw_init(&kmem_object->lock, "kmem vm object");
280 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281 	    kmem_object);
282 #if VM_NRESERVLEVEL > 0
283 	kmem_object->flags |= OBJ_COLORED;
284 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286 
287 	/*
288 	 * The lock portion of struct vm_object must be type stable due
289 	 * to vm_pageout_fallback_object_lock locking a vm object
290 	 * without holding any references to it.
291 	 */
292 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293 #ifdef INVARIANTS
294 	    vm_object_zdtor,
295 #else
296 	    NULL,
297 #endif
298 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
299 
300 	vm_radix_init();
301 }
302 
303 void
304 vm_object_clear_flag(vm_object_t object, u_short bits)
305 {
306 
307 	VM_OBJECT_ASSERT_WLOCKED(object);
308 	object->flags &= ~bits;
309 }
310 
311 /*
312  *	Sets the default memory attribute for the specified object.  Pages
313  *	that are allocated to this object are by default assigned this memory
314  *	attribute.
315  *
316  *	Presently, this function must be called before any pages are allocated
317  *	to the object.  In the future, this requirement may be relaxed for
318  *	"default" and "swap" objects.
319  */
320 int
321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322 {
323 
324 	VM_OBJECT_ASSERT_WLOCKED(object);
325 	switch (object->type) {
326 	case OBJT_DEFAULT:
327 	case OBJT_DEVICE:
328 	case OBJT_MGTDEVICE:
329 	case OBJT_PHYS:
330 	case OBJT_SG:
331 	case OBJT_SWAP:
332 	case OBJT_VNODE:
333 		if (!TAILQ_EMPTY(&object->memq))
334 			return (KERN_FAILURE);
335 		break;
336 	case OBJT_DEAD:
337 		return (KERN_INVALID_ARGUMENT);
338 	default:
339 		panic("vm_object_set_memattr: object %p is of undefined type",
340 		    object);
341 	}
342 	object->memattr = memattr;
343 	return (KERN_SUCCESS);
344 }
345 
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349 
350 	VM_OBJECT_ASSERT_WLOCKED(object);
351 	object->paging_in_progress += i;
352 }
353 
354 void
355 vm_object_pip_subtract(vm_object_t object, short i)
356 {
357 
358 	VM_OBJECT_ASSERT_WLOCKED(object);
359 	object->paging_in_progress -= i;
360 }
361 
362 void
363 vm_object_pip_wakeup(vm_object_t object)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress--;
368 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369 		vm_object_clear_flag(object, OBJ_PIPWNT);
370 		wakeup(object);
371 	}
372 }
373 
374 void
375 vm_object_pip_wakeupn(vm_object_t object, short i)
376 {
377 
378 	VM_OBJECT_ASSERT_WLOCKED(object);
379 	if (i)
380 		object->paging_in_progress -= i;
381 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382 		vm_object_clear_flag(object, OBJ_PIPWNT);
383 		wakeup(object);
384 	}
385 }
386 
387 void
388 vm_object_pip_wait(vm_object_t object, char *waitid)
389 {
390 
391 	VM_OBJECT_ASSERT_WLOCKED(object);
392 	while (object->paging_in_progress) {
393 		object->flags |= OBJ_PIPWNT;
394 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395 	}
396 }
397 
398 /*
399  *	vm_object_allocate:
400  *
401  *	Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406 	vm_object_t object;
407 
408 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409 	_vm_object_allocate(type, size, object);
410 	return (object);
411 }
412 
413 
414 /*
415  *	vm_object_reference:
416  *
417  *	Gets another reference to the given object.  Note: OBJ_DEAD
418  *	objects can be referenced during final cleaning.
419  */
420 void
421 vm_object_reference(vm_object_t object)
422 {
423 	if (object == NULL)
424 		return;
425 	VM_OBJECT_WLOCK(object);
426 	vm_object_reference_locked(object);
427 	VM_OBJECT_WUNLOCK(object);
428 }
429 
430 /*
431  *	vm_object_reference_locked:
432  *
433  *	Gets another reference to the given object.
434  *
435  *	The object must be locked.
436  */
437 void
438 vm_object_reference_locked(vm_object_t object)
439 {
440 	struct vnode *vp;
441 
442 	VM_OBJECT_ASSERT_WLOCKED(object);
443 	object->ref_count++;
444 	if (object->type == OBJT_VNODE) {
445 		vp = object->handle;
446 		vref(vp);
447 	}
448 }
449 
450 /*
451  * Handle deallocating an object of type OBJT_VNODE.
452  */
453 static void
454 vm_object_vndeallocate(vm_object_t object)
455 {
456 	struct vnode *vp = (struct vnode *) object->handle;
457 
458 	VM_OBJECT_ASSERT_WLOCKED(object);
459 	KASSERT(object->type == OBJT_VNODE,
460 	    ("vm_object_vndeallocate: not a vnode object"));
461 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462 #ifdef INVARIANTS
463 	if (object->ref_count == 0) {
464 		vprint("vm_object_vndeallocate", vp);
465 		panic("vm_object_vndeallocate: bad object reference count");
466 	}
467 #endif
468 
469 	if (object->ref_count > 1) {
470 		object->ref_count--;
471 		VM_OBJECT_WUNLOCK(object);
472 		/* vrele may need the vnode lock. */
473 		vrele(vp);
474 	} else {
475 		vhold(vp);
476 		VM_OBJECT_WUNLOCK(object);
477 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478 		vdrop(vp);
479 		VM_OBJECT_WLOCK(object);
480 		object->ref_count--;
481 		if (object->type == OBJT_DEAD) {
482 			VM_OBJECT_WUNLOCK(object);
483 			VOP_UNLOCK(vp, 0);
484 		} else {
485 			if (object->ref_count == 0)
486 				VOP_UNSET_TEXT(vp);
487 			VM_OBJECT_WUNLOCK(object);
488 			vput(vp);
489 		}
490 	}
491 }
492 
493 /*
494  *	vm_object_deallocate:
495  *
496  *	Release a reference to the specified object,
497  *	gained either through a vm_object_allocate
498  *	or a vm_object_reference call.  When all references
499  *	are gone, storage associated with this object
500  *	may be relinquished.
501  *
502  *	No object may be locked.
503  */
504 void
505 vm_object_deallocate(vm_object_t object)
506 {
507 	vm_object_t temp;
508 
509 	while (object != NULL) {
510 		VM_OBJECT_WLOCK(object);
511 		if (object->type == OBJT_VNODE) {
512 			vm_object_vndeallocate(object);
513 			return;
514 		}
515 
516 		KASSERT(object->ref_count != 0,
517 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
518 
519 		/*
520 		 * If the reference count goes to 0 we start calling
521 		 * vm_object_terminate() on the object chain.
522 		 * A ref count of 1 may be a special case depending on the
523 		 * shadow count being 0 or 1.
524 		 */
525 		object->ref_count--;
526 		if (object->ref_count > 1) {
527 			VM_OBJECT_WUNLOCK(object);
528 			return;
529 		} else if (object->ref_count == 1) {
530 			if (object->shadow_count == 0 &&
531 			    object->handle == NULL &&
532 			    (object->type == OBJT_DEFAULT ||
533 			     object->type == OBJT_SWAP)) {
534 				vm_object_set_flag(object, OBJ_ONEMAPPING);
535 			} else if ((object->shadow_count == 1) &&
536 			    (object->handle == NULL) &&
537 			    (object->type == OBJT_DEFAULT ||
538 			     object->type == OBJT_SWAP)) {
539 				vm_object_t robject;
540 
541 				robject = LIST_FIRST(&object->shadow_head);
542 				KASSERT(robject != NULL,
543 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
544 					 object->ref_count,
545 					 object->shadow_count));
546 				if (!VM_OBJECT_TRYWLOCK(robject)) {
547 					/*
548 					 * Avoid a potential deadlock.
549 					 */
550 					object->ref_count++;
551 					VM_OBJECT_WUNLOCK(object);
552 					/*
553 					 * More likely than not the thread
554 					 * holding robject's lock has lower
555 					 * priority than the current thread.
556 					 * Let the lower priority thread run.
557 					 */
558 					pause("vmo_de", 1);
559 					continue;
560 				}
561 				/*
562 				 * Collapse object into its shadow unless its
563 				 * shadow is dead.  In that case, object will
564 				 * be deallocated by the thread that is
565 				 * deallocating its shadow.
566 				 */
567 				if ((robject->flags & OBJ_DEAD) == 0 &&
568 				    (robject->handle == NULL) &&
569 				    (robject->type == OBJT_DEFAULT ||
570 				     robject->type == OBJT_SWAP)) {
571 
572 					robject->ref_count++;
573 retry:
574 					if (robject->paging_in_progress) {
575 						VM_OBJECT_WUNLOCK(object);
576 						vm_object_pip_wait(robject,
577 						    "objde1");
578 						temp = robject->backing_object;
579 						if (object == temp) {
580 							VM_OBJECT_WLOCK(object);
581 							goto retry;
582 						}
583 					} else if (object->paging_in_progress) {
584 						VM_OBJECT_WUNLOCK(robject);
585 						object->flags |= OBJ_PIPWNT;
586 						VM_OBJECT_SLEEP(object, object,
587 						    PDROP | PVM, "objde2", 0);
588 						VM_OBJECT_WLOCK(robject);
589 						temp = robject->backing_object;
590 						if (object == temp) {
591 							VM_OBJECT_WLOCK(object);
592 							goto retry;
593 						}
594 					} else
595 						VM_OBJECT_WUNLOCK(object);
596 
597 					if (robject->ref_count == 1) {
598 						robject->ref_count--;
599 						object = robject;
600 						goto doterm;
601 					}
602 					object = robject;
603 					vm_object_collapse(object);
604 					VM_OBJECT_WUNLOCK(object);
605 					continue;
606 				}
607 				VM_OBJECT_WUNLOCK(robject);
608 			}
609 			VM_OBJECT_WUNLOCK(object);
610 			return;
611 		}
612 doterm:
613 		temp = object->backing_object;
614 		if (temp != NULL) {
615 			VM_OBJECT_WLOCK(temp);
616 			LIST_REMOVE(object, shadow_list);
617 			temp->shadow_count--;
618 			VM_OBJECT_WUNLOCK(temp);
619 			object->backing_object = NULL;
620 		}
621 		/*
622 		 * Don't double-terminate, we could be in a termination
623 		 * recursion due to the terminate having to sync data
624 		 * to disk.
625 		 */
626 		if ((object->flags & OBJ_DEAD) == 0)
627 			vm_object_terminate(object);
628 		else
629 			VM_OBJECT_WUNLOCK(object);
630 		object = temp;
631 	}
632 }
633 
634 /*
635  *	vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641 
642 	/*
643 	 * Remove the object from the global object list.
644 	 */
645 	mtx_lock(&vm_object_list_mtx);
646 	TAILQ_REMOVE(&vm_object_list, object, object_list);
647 	mtx_unlock(&vm_object_list_mtx);
648 
649 	/*
650 	 * Release the allocation charge.
651 	 */
652 	if (object->cred != NULL) {
653 		KASSERT(object->type == OBJT_DEFAULT ||
654 		    object->type == OBJT_SWAP,
655 		    ("vm_object_terminate: non-swap obj %p has cred",
656 		     object));
657 		swap_release_by_cred(object->charge, object->cred);
658 		object->charge = 0;
659 		crfree(object->cred);
660 		object->cred = NULL;
661 	}
662 
663 	/*
664 	 * Free the space for the object.
665 	 */
666 	uma_zfree(obj_zone, object);
667 }
668 
669 /*
670  *	vm_object_terminate actually destroys the specified object, freeing
671  *	up all previously used resources.
672  *
673  *	The object must be locked.
674  *	This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679 	vm_page_t p, p_next;
680 
681 	VM_OBJECT_ASSERT_WLOCKED(object);
682 
683 	/*
684 	 * Make sure no one uses us.
685 	 */
686 	vm_object_set_flag(object, OBJ_DEAD);
687 
688 	/*
689 	 * wait for the pageout daemon to be done with the object
690 	 */
691 	vm_object_pip_wait(object, "objtrm");
692 
693 	KASSERT(!object->paging_in_progress,
694 		("vm_object_terminate: pageout in progress"));
695 
696 	/*
697 	 * Clean and free the pages, as appropriate. All references to the
698 	 * object are gone, so we don't need to lock it.
699 	 */
700 	if (object->type == OBJT_VNODE) {
701 		struct vnode *vp = (struct vnode *)object->handle;
702 
703 		/*
704 		 * Clean pages and flush buffers.
705 		 */
706 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707 		VM_OBJECT_WUNLOCK(object);
708 
709 		vinvalbuf(vp, V_SAVE, 0, 0);
710 
711 		VM_OBJECT_WLOCK(object);
712 	}
713 
714 	KASSERT(object->ref_count == 0,
715 		("vm_object_terminate: object with references, ref_count=%d",
716 		object->ref_count));
717 
718 	/*
719 	 * Free any remaining pageable pages.  This also removes them from the
720 	 * paging queues.  However, don't free wired pages, just remove them
721 	 * from the object.  Rather than incrementally removing each page from
722 	 * the object, the page and object are reset to any empty state.
723 	 */
724 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726 		    ("vm_object_terminate: freeing busy page %p", p));
727 		vm_page_lock(p);
728 		/*
729 		 * Optimize the page's removal from the object by resetting
730 		 * its "object" field.  Specifically, if the page is not
731 		 * wired, then the effect of this assignment is that
732 		 * vm_page_free()'s call to vm_page_remove() will return
733 		 * immediately without modifying the page or the object.
734 		 */
735 		p->object = NULL;
736 		if (p->wire_count == 0) {
737 			vm_page_free(p);
738 			PCPU_INC(cnt.v_pfree);
739 		}
740 		vm_page_unlock(p);
741 	}
742 	/*
743 	 * If the object contained any pages, then reset it to an empty state.
744 	 * None of the object's fields, including "resident_page_count", were
745 	 * modified by the preceding loop.
746 	 */
747 	if (object->resident_page_count != 0) {
748 		vm_radix_reclaim_allnodes(&object->rtree);
749 		TAILQ_INIT(&object->memq);
750 		object->resident_page_count = 0;
751 		if (object->type == OBJT_VNODE)
752 			vdrop(object->handle);
753 	}
754 
755 #if VM_NRESERVLEVEL > 0
756 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
757 		vm_reserv_break_all(object);
758 #endif
759 	if (__predict_false(!vm_object_cache_is_empty(object)))
760 		vm_page_cache_free(object, 0, 0);
761 
762 	/*
763 	 * Let the pager know object is dead.
764 	 */
765 	vm_pager_deallocate(object);
766 	VM_OBJECT_WUNLOCK(object);
767 
768 	vm_object_destroy(object);
769 }
770 
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
779 {
780 
781 	/*
782 	 * If we have been asked to skip nosync pages and this is a
783 	 * nosync page, skip it.  Note that the object flags were not
784 	 * cleared in this case so we do not have to set them.
785 	 */
786 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787 		*clearobjflags = FALSE;
788 		return (FALSE);
789 	} else {
790 		pmap_remove_write(p);
791 		return (p->dirty != 0);
792 	}
793 }
794 
795 /*
796  *	vm_object_page_clean
797  *
798  *	Clean all dirty pages in the specified range of object.  Leaves page
799  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
800  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *	leaving the object dirty.
802  *
803  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *	synchronous clustering mode implementation.
805  *
806  *	Odd semantics: if start == end, we clean everything.
807  *
808  *	The object must be locked.
809  *
810  *	Returns FALSE if some page from the range was not written, as
811  *	reported by the pager, and TRUE otherwise.
812  */
813 boolean_t
814 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
815     int flags)
816 {
817 	vm_page_t np, p;
818 	vm_pindex_t pi, tend, tstart;
819 	int curgeneration, n, pagerflags;
820 	boolean_t clearobjflags, eio, res;
821 
822 	VM_OBJECT_ASSERT_WLOCKED(object);
823 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
824 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
825 	    object->resident_page_count == 0)
826 		return (TRUE);
827 
828 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
829 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
830 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
831 
832 	tstart = OFF_TO_IDX(start);
833 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
834 	clearobjflags = tstart == 0 && tend >= object->size;
835 	res = TRUE;
836 
837 rescan:
838 	curgeneration = object->generation;
839 
840 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
841 		pi = p->pindex;
842 		if (pi >= tend)
843 			break;
844 		np = TAILQ_NEXT(p, listq);
845 		if (p->valid == 0)
846 			continue;
847 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
848 			if (object->generation != curgeneration) {
849 				if ((flags & OBJPC_SYNC) != 0)
850 					goto rescan;
851 				else
852 					clearobjflags = FALSE;
853 			}
854 			np = vm_page_find_least(object, pi);
855 			continue;
856 		}
857 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
858 			continue;
859 
860 		n = vm_object_page_collect_flush(object, p, pagerflags,
861 		    flags, &clearobjflags, &eio);
862 		if (eio) {
863 			res = FALSE;
864 			clearobjflags = FALSE;
865 		}
866 		if (object->generation != curgeneration) {
867 			if ((flags & OBJPC_SYNC) != 0)
868 				goto rescan;
869 			else
870 				clearobjflags = FALSE;
871 		}
872 
873 		/*
874 		 * If the VOP_PUTPAGES() did a truncated write, so
875 		 * that even the first page of the run is not fully
876 		 * written, vm_pageout_flush() returns 0 as the run
877 		 * length.  Since the condition that caused truncated
878 		 * write may be permanent, e.g. exhausted free space,
879 		 * accepting n == 0 would cause an infinite loop.
880 		 *
881 		 * Forwarding the iterator leaves the unwritten page
882 		 * behind, but there is not much we can do there if
883 		 * filesystem refuses to write it.
884 		 */
885 		if (n == 0) {
886 			n = 1;
887 			clearobjflags = FALSE;
888 		}
889 		np = vm_page_find_least(object, pi + n);
890 	}
891 #if 0
892 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
893 #endif
894 
895 	if (clearobjflags)
896 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
897 	return (res);
898 }
899 
900 static int
901 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
902     int flags, boolean_t *clearobjflags, boolean_t *eio)
903 {
904 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
905 	int count, i, mreq, runlen;
906 
907 	vm_page_lock_assert(p, MA_NOTOWNED);
908 	VM_OBJECT_ASSERT_WLOCKED(object);
909 
910 	count = 1;
911 	mreq = 0;
912 
913 	for (tp = p; count < vm_pageout_page_count; count++) {
914 		tp = vm_page_next(tp);
915 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
916 			break;
917 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
918 			break;
919 	}
920 
921 	for (p_first = p; count < vm_pageout_page_count; count++) {
922 		tp = vm_page_prev(p_first);
923 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
924 			break;
925 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
926 			break;
927 		p_first = tp;
928 		mreq++;
929 	}
930 
931 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
932 		ma[i] = tp;
933 
934 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
935 	return (runlen);
936 }
937 
938 /*
939  * Note that there is absolutely no sense in writing out
940  * anonymous objects, so we track down the vnode object
941  * to write out.
942  * We invalidate (remove) all pages from the address space
943  * for semantic correctness.
944  *
945  * If the backing object is a device object with unmanaged pages, then any
946  * mappings to the specified range of pages must be removed before this
947  * function is called.
948  *
949  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
950  * may start out with a NULL object.
951  */
952 boolean_t
953 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
954     boolean_t syncio, boolean_t invalidate)
955 {
956 	vm_object_t backing_object;
957 	struct vnode *vp;
958 	struct mount *mp;
959 	int error, flags, fsync_after;
960 	boolean_t res;
961 
962 	if (object == NULL)
963 		return (TRUE);
964 	res = TRUE;
965 	error = 0;
966 	VM_OBJECT_WLOCK(object);
967 	while ((backing_object = object->backing_object) != NULL) {
968 		VM_OBJECT_WLOCK(backing_object);
969 		offset += object->backing_object_offset;
970 		VM_OBJECT_WUNLOCK(object);
971 		object = backing_object;
972 		if (object->size < OFF_TO_IDX(offset + size))
973 			size = IDX_TO_OFF(object->size) - offset;
974 	}
975 	/*
976 	 * Flush pages if writing is allowed, invalidate them
977 	 * if invalidation requested.  Pages undergoing I/O
978 	 * will be ignored by vm_object_page_remove().
979 	 *
980 	 * We cannot lock the vnode and then wait for paging
981 	 * to complete without deadlocking against vm_fault.
982 	 * Instead we simply call vm_object_page_remove() and
983 	 * allow it to block internally on a page-by-page
984 	 * basis when it encounters pages undergoing async
985 	 * I/O.
986 	 */
987 	if (object->type == OBJT_VNODE &&
988 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
989 		vp = object->handle;
990 		VM_OBJECT_WUNLOCK(object);
991 		(void) vn_start_write(vp, &mp, V_WAIT);
992 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
993 		if (syncio && !invalidate && offset == 0 &&
994 		    OFF_TO_IDX(size) == object->size) {
995 			/*
996 			 * If syncing the whole mapping of the file,
997 			 * it is faster to schedule all the writes in
998 			 * async mode, also allowing the clustering,
999 			 * and then wait for i/o to complete.
1000 			 */
1001 			flags = 0;
1002 			fsync_after = TRUE;
1003 		} else {
1004 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1005 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1006 			fsync_after = FALSE;
1007 		}
1008 		VM_OBJECT_WLOCK(object);
1009 		res = vm_object_page_clean(object, offset, offset + size,
1010 		    flags);
1011 		VM_OBJECT_WUNLOCK(object);
1012 		if (fsync_after)
1013 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1014 		VOP_UNLOCK(vp, 0);
1015 		vn_finished_write(mp);
1016 		if (error != 0)
1017 			res = FALSE;
1018 		VM_OBJECT_WLOCK(object);
1019 	}
1020 	if ((object->type == OBJT_VNODE ||
1021 	     object->type == OBJT_DEVICE) && invalidate) {
1022 		if (object->type == OBJT_DEVICE)
1023 			/*
1024 			 * The option OBJPR_NOTMAPPED must be passed here
1025 			 * because vm_object_page_remove() cannot remove
1026 			 * unmanaged mappings.
1027 			 */
1028 			flags = OBJPR_NOTMAPPED;
1029 		else if (old_msync)
1030 			flags = 0;
1031 		else
1032 			flags = OBJPR_CLEANONLY;
1033 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1034 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1035 	}
1036 	VM_OBJECT_WUNLOCK(object);
1037 	return (res);
1038 }
1039 
1040 /*
1041  *	vm_object_madvise:
1042  *
1043  *	Implements the madvise function at the object/page level.
1044  *
1045  *	MADV_WILLNEED	(any object)
1046  *
1047  *	    Activate the specified pages if they are resident.
1048  *
1049  *	MADV_DONTNEED	(any object)
1050  *
1051  *	    Deactivate the specified pages if they are resident.
1052  *
1053  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1054  *			 OBJ_ONEMAPPING only)
1055  *
1056  *	    Deactivate and clean the specified pages if they are
1057  *	    resident.  This permits the process to reuse the pages
1058  *	    without faulting or the kernel to reclaim the pages
1059  *	    without I/O.
1060  */
1061 void
1062 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1063     int advise)
1064 {
1065 	vm_pindex_t tpindex;
1066 	vm_object_t backing_object, tobject;
1067 	vm_page_t m;
1068 
1069 	if (object == NULL)
1070 		return;
1071 	VM_OBJECT_WLOCK(object);
1072 	/*
1073 	 * Locate and adjust resident pages
1074 	 */
1075 	for (; pindex < end; pindex += 1) {
1076 relookup:
1077 		tobject = object;
1078 		tpindex = pindex;
1079 shadowlookup:
1080 		/*
1081 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1082 		 * and those pages must be OBJ_ONEMAPPING.
1083 		 */
1084 		if (advise == MADV_FREE) {
1085 			if ((tobject->type != OBJT_DEFAULT &&
1086 			     tobject->type != OBJT_SWAP) ||
1087 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1088 				goto unlock_tobject;
1089 			}
1090 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1091 			goto unlock_tobject;
1092 		m = vm_page_lookup(tobject, tpindex);
1093 		if (m == NULL && advise == MADV_WILLNEED) {
1094 			/*
1095 			 * If the page is cached, reactivate it.
1096 			 */
1097 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1098 			    VM_ALLOC_NOBUSY);
1099 		}
1100 		if (m == NULL) {
1101 			/*
1102 			 * There may be swap even if there is no backing page
1103 			 */
1104 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1105 				swap_pager_freespace(tobject, tpindex, 1);
1106 			/*
1107 			 * next object
1108 			 */
1109 			backing_object = tobject->backing_object;
1110 			if (backing_object == NULL)
1111 				goto unlock_tobject;
1112 			VM_OBJECT_WLOCK(backing_object);
1113 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1114 			if (tobject != object)
1115 				VM_OBJECT_WUNLOCK(tobject);
1116 			tobject = backing_object;
1117 			goto shadowlookup;
1118 		} else if (m->valid != VM_PAGE_BITS_ALL)
1119 			goto unlock_tobject;
1120 		/*
1121 		 * If the page is not in a normal state, skip it.
1122 		 */
1123 		vm_page_lock(m);
1124 		if (m->hold_count != 0 || m->wire_count != 0) {
1125 			vm_page_unlock(m);
1126 			goto unlock_tobject;
1127 		}
1128 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1129 		    ("vm_object_madvise: page %p is fictitious", m));
1130 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1131 		    ("vm_object_madvise: page %p is not managed", m));
1132 		if ((m->oflags & VPO_BUSY) || m->busy) {
1133 			if (advise == MADV_WILLNEED) {
1134 				/*
1135 				 * Reference the page before unlocking and
1136 				 * sleeping so that the page daemon is less
1137 				 * likely to reclaim it.
1138 				 */
1139 				vm_page_aflag_set(m, PGA_REFERENCED);
1140 			}
1141 			vm_page_unlock(m);
1142 			if (object != tobject)
1143 				VM_OBJECT_WUNLOCK(object);
1144 			m->oflags |= VPO_WANTED;
1145 			VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1146 			VM_OBJECT_WLOCK(object);
1147   			goto relookup;
1148 		}
1149 		if (advise == MADV_WILLNEED) {
1150 			vm_page_activate(m);
1151 		} else if (advise == MADV_DONTNEED) {
1152 			vm_page_dontneed(m);
1153 		} else if (advise == MADV_FREE) {
1154 			/*
1155 			 * Mark the page clean.  This will allow the page
1156 			 * to be freed up by the system.  However, such pages
1157 			 * are often reused quickly by malloc()/free()
1158 			 * so we do not do anything that would cause
1159 			 * a page fault if we can help it.
1160 			 *
1161 			 * Specifically, we do not try to actually free
1162 			 * the page now nor do we try to put it in the
1163 			 * cache (which would cause a page fault on reuse).
1164 			 *
1165 			 * But we do make the page is freeable as we
1166 			 * can without actually taking the step of unmapping
1167 			 * it.
1168 			 */
1169 			pmap_clear_modify(m);
1170 			m->dirty = 0;
1171 			m->act_count = 0;
1172 			vm_page_dontneed(m);
1173 		}
1174 		vm_page_unlock(m);
1175 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1176 			swap_pager_freespace(tobject, tpindex, 1);
1177 unlock_tobject:
1178 		if (tobject != object)
1179 			VM_OBJECT_WUNLOCK(tobject);
1180 	}
1181 	VM_OBJECT_WUNLOCK(object);
1182 }
1183 
1184 /*
1185  *	vm_object_shadow:
1186  *
1187  *	Create a new object which is backed by the
1188  *	specified existing object range.  The source
1189  *	object reference is deallocated.
1190  *
1191  *	The new object and offset into that object
1192  *	are returned in the source parameters.
1193  */
1194 void
1195 vm_object_shadow(
1196 	vm_object_t *object,	/* IN/OUT */
1197 	vm_ooffset_t *offset,	/* IN/OUT */
1198 	vm_size_t length)
1199 {
1200 	vm_object_t source;
1201 	vm_object_t result;
1202 
1203 	source = *object;
1204 
1205 	/*
1206 	 * Don't create the new object if the old object isn't shared.
1207 	 */
1208 	if (source != NULL) {
1209 		VM_OBJECT_WLOCK(source);
1210 		if (source->ref_count == 1 &&
1211 		    source->handle == NULL &&
1212 		    (source->type == OBJT_DEFAULT ||
1213 		     source->type == OBJT_SWAP)) {
1214 			VM_OBJECT_WUNLOCK(source);
1215 			return;
1216 		}
1217 		VM_OBJECT_WUNLOCK(source);
1218 	}
1219 
1220 	/*
1221 	 * Allocate a new object with the given length.
1222 	 */
1223 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1224 
1225 	/*
1226 	 * The new object shadows the source object, adding a reference to it.
1227 	 * Our caller changes his reference to point to the new object,
1228 	 * removing a reference to the source object.  Net result: no change
1229 	 * of reference count.
1230 	 *
1231 	 * Try to optimize the result object's page color when shadowing
1232 	 * in order to maintain page coloring consistency in the combined
1233 	 * shadowed object.
1234 	 */
1235 	result->backing_object = source;
1236 	/*
1237 	 * Store the offset into the source object, and fix up the offset into
1238 	 * the new object.
1239 	 */
1240 	result->backing_object_offset = *offset;
1241 	if (source != NULL) {
1242 		VM_OBJECT_WLOCK(source);
1243 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1244 		source->shadow_count++;
1245 #if VM_NRESERVLEVEL > 0
1246 		result->flags |= source->flags & OBJ_COLORED;
1247 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1248 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1249 #endif
1250 		VM_OBJECT_WUNLOCK(source);
1251 	}
1252 
1253 
1254 	/*
1255 	 * Return the new things
1256 	 */
1257 	*offset = 0;
1258 	*object = result;
1259 }
1260 
1261 /*
1262  *	vm_object_split:
1263  *
1264  * Split the pages in a map entry into a new object.  This affords
1265  * easier removal of unused pages, and keeps object inheritance from
1266  * being a negative impact on memory usage.
1267  */
1268 void
1269 vm_object_split(vm_map_entry_t entry)
1270 {
1271 	vm_page_t m, m_next;
1272 	vm_object_t orig_object, new_object, source;
1273 	vm_pindex_t idx, offidxstart;
1274 	vm_size_t size;
1275 
1276 	orig_object = entry->object.vm_object;
1277 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1278 		return;
1279 	if (orig_object->ref_count <= 1)
1280 		return;
1281 	VM_OBJECT_WUNLOCK(orig_object);
1282 
1283 	offidxstart = OFF_TO_IDX(entry->offset);
1284 	size = atop(entry->end - entry->start);
1285 
1286 	/*
1287 	 * If swap_pager_copy() is later called, it will convert new_object
1288 	 * into a swap object.
1289 	 */
1290 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1291 
1292 	/*
1293 	 * At this point, the new object is still private, so the order in
1294 	 * which the original and new objects are locked does not matter.
1295 	 */
1296 	VM_OBJECT_WLOCK(new_object);
1297 	VM_OBJECT_WLOCK(orig_object);
1298 	source = orig_object->backing_object;
1299 	if (source != NULL) {
1300 		VM_OBJECT_WLOCK(source);
1301 		if ((source->flags & OBJ_DEAD) != 0) {
1302 			VM_OBJECT_WUNLOCK(source);
1303 			VM_OBJECT_WUNLOCK(orig_object);
1304 			VM_OBJECT_WUNLOCK(new_object);
1305 			vm_object_deallocate(new_object);
1306 			VM_OBJECT_WLOCK(orig_object);
1307 			return;
1308 		}
1309 		LIST_INSERT_HEAD(&source->shadow_head,
1310 				  new_object, shadow_list);
1311 		source->shadow_count++;
1312 		vm_object_reference_locked(source);	/* for new_object */
1313 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1314 		VM_OBJECT_WUNLOCK(source);
1315 		new_object->backing_object_offset =
1316 			orig_object->backing_object_offset + entry->offset;
1317 		new_object->backing_object = source;
1318 	}
1319 	if (orig_object->cred != NULL) {
1320 		new_object->cred = orig_object->cred;
1321 		crhold(orig_object->cred);
1322 		new_object->charge = ptoa(size);
1323 		KASSERT(orig_object->charge >= ptoa(size),
1324 		    ("orig_object->charge < 0"));
1325 		orig_object->charge -= ptoa(size);
1326 	}
1327 retry:
1328 	m = vm_page_find_least(orig_object, offidxstart);
1329 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1330 	    m = m_next) {
1331 		m_next = TAILQ_NEXT(m, listq);
1332 
1333 		/*
1334 		 * We must wait for pending I/O to complete before we can
1335 		 * rename the page.
1336 		 *
1337 		 * We do not have to VM_PROT_NONE the page as mappings should
1338 		 * not be changed by this operation.
1339 		 */
1340 		if ((m->oflags & VPO_BUSY) || m->busy) {
1341 			VM_OBJECT_WUNLOCK(new_object);
1342 			m->oflags |= VPO_WANTED;
1343 			VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1344 			VM_OBJECT_WLOCK(new_object);
1345 			goto retry;
1346 		}
1347 #if VM_NRESERVLEVEL > 0
1348 		/*
1349 		 * If some of the reservation's allocated pages remain with
1350 		 * the original object, then transferring the reservation to
1351 		 * the new object is neither particularly beneficial nor
1352 		 * particularly harmful as compared to leaving the reservation
1353 		 * with the original object.  If, however, all of the
1354 		 * reservation's allocated pages are transferred to the new
1355 		 * object, then transferring the reservation is typically
1356 		 * beneficial.  Determining which of these two cases applies
1357 		 * would be more costly than unconditionally renaming the
1358 		 * reservation.
1359 		 */
1360 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1361 #endif
1362 		vm_page_lock(m);
1363 		vm_page_rename(m, new_object, idx);
1364 		vm_page_unlock(m);
1365 		/* page automatically made dirty by rename and cache handled */
1366 		vm_page_busy(m);
1367 	}
1368 	if (orig_object->type == OBJT_SWAP) {
1369 		/*
1370 		 * swap_pager_copy() can sleep, in which case the orig_object's
1371 		 * and new_object's locks are released and reacquired.
1372 		 */
1373 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1374 
1375 		/*
1376 		 * Transfer any cached pages from orig_object to new_object.
1377 		 * If swap_pager_copy() found swapped out pages within the
1378 		 * specified range of orig_object, then it changed
1379 		 * new_object's type to OBJT_SWAP when it transferred those
1380 		 * pages to new_object.  Otherwise, new_object's type
1381 		 * should still be OBJT_DEFAULT and orig_object should not
1382 		 * contain any cached pages within the specified range.
1383 		 */
1384 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1385 			vm_page_cache_transfer(orig_object, offidxstart,
1386 			    new_object);
1387 	}
1388 	VM_OBJECT_WUNLOCK(orig_object);
1389 	TAILQ_FOREACH(m, &new_object->memq, listq)
1390 		vm_page_wakeup(m);
1391 	VM_OBJECT_WUNLOCK(new_object);
1392 	entry->object.vm_object = new_object;
1393 	entry->offset = 0LL;
1394 	vm_object_deallocate(orig_object);
1395 	VM_OBJECT_WLOCK(new_object);
1396 }
1397 
1398 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1399 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1400 #define	OBSC_COLLAPSE_WAIT	0x0004
1401 
1402 static int
1403 vm_object_backing_scan(vm_object_t object, int op)
1404 {
1405 	int r = 1;
1406 	vm_page_t p;
1407 	vm_object_t backing_object;
1408 	vm_pindex_t backing_offset_index;
1409 
1410 	VM_OBJECT_ASSERT_WLOCKED(object);
1411 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1412 
1413 	backing_object = object->backing_object;
1414 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1415 
1416 	/*
1417 	 * Initial conditions
1418 	 */
1419 	if (op & OBSC_TEST_ALL_SHADOWED) {
1420 		/*
1421 		 * We do not want to have to test for the existence of cache
1422 		 * or swap pages in the backing object.  XXX but with the
1423 		 * new swapper this would be pretty easy to do.
1424 		 *
1425 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1426 		 * been ZFOD faulted yet?  If we do not test for this, the
1427 		 * shadow test may succeed! XXX
1428 		 */
1429 		if (backing_object->type != OBJT_DEFAULT) {
1430 			return (0);
1431 		}
1432 	}
1433 	if (op & OBSC_COLLAPSE_WAIT) {
1434 		vm_object_set_flag(backing_object, OBJ_DEAD);
1435 	}
1436 
1437 	/*
1438 	 * Our scan
1439 	 */
1440 	p = TAILQ_FIRST(&backing_object->memq);
1441 	while (p) {
1442 		vm_page_t next = TAILQ_NEXT(p, listq);
1443 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1444 
1445 		if (op & OBSC_TEST_ALL_SHADOWED) {
1446 			vm_page_t pp;
1447 
1448 			/*
1449 			 * Ignore pages outside the parent object's range
1450 			 * and outside the parent object's mapping of the
1451 			 * backing object.
1452 			 *
1453 			 * note that we do not busy the backing object's
1454 			 * page.
1455 			 */
1456 			if (
1457 			    p->pindex < backing_offset_index ||
1458 			    new_pindex >= object->size
1459 			) {
1460 				p = next;
1461 				continue;
1462 			}
1463 
1464 			/*
1465 			 * See if the parent has the page or if the parent's
1466 			 * object pager has the page.  If the parent has the
1467 			 * page but the page is not valid, the parent's
1468 			 * object pager must have the page.
1469 			 *
1470 			 * If this fails, the parent does not completely shadow
1471 			 * the object and we might as well give up now.
1472 			 */
1473 
1474 			pp = vm_page_lookup(object, new_pindex);
1475 			if (
1476 			    (pp == NULL || pp->valid == 0) &&
1477 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1478 			) {
1479 				r = 0;
1480 				break;
1481 			}
1482 		}
1483 
1484 		/*
1485 		 * Check for busy page
1486 		 */
1487 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1488 			vm_page_t pp;
1489 
1490 			if (op & OBSC_COLLAPSE_NOWAIT) {
1491 				if ((p->oflags & VPO_BUSY) ||
1492 				    !p->valid ||
1493 				    p->busy) {
1494 					p = next;
1495 					continue;
1496 				}
1497 			} else if (op & OBSC_COLLAPSE_WAIT) {
1498 				if ((p->oflags & VPO_BUSY) || p->busy) {
1499 					VM_OBJECT_WUNLOCK(object);
1500 					p->oflags |= VPO_WANTED;
1501 					VM_OBJECT_SLEEP(backing_object, p,
1502 					    PDROP | PVM, "vmocol", 0);
1503 					VM_OBJECT_WLOCK(object);
1504 					VM_OBJECT_WLOCK(backing_object);
1505 					/*
1506 					 * If we slept, anything could have
1507 					 * happened.  Since the object is
1508 					 * marked dead, the backing offset
1509 					 * should not have changed so we
1510 					 * just restart our scan.
1511 					 */
1512 					p = TAILQ_FIRST(&backing_object->memq);
1513 					continue;
1514 				}
1515 			}
1516 
1517 			KASSERT(
1518 			    p->object == backing_object,
1519 			    ("vm_object_backing_scan: object mismatch")
1520 			);
1521 
1522 			/*
1523 			 * Destroy any associated swap
1524 			 */
1525 			if (backing_object->type == OBJT_SWAP) {
1526 				swap_pager_freespace(
1527 				    backing_object,
1528 				    p->pindex,
1529 				    1
1530 				);
1531 			}
1532 
1533 			if (
1534 			    p->pindex < backing_offset_index ||
1535 			    new_pindex >= object->size
1536 			) {
1537 				/*
1538 				 * Page is out of the parent object's range, we
1539 				 * can simply destroy it.
1540 				 */
1541 				vm_page_lock(p);
1542 				KASSERT(!pmap_page_is_mapped(p),
1543 				    ("freeing mapped page %p", p));
1544 				if (p->wire_count == 0)
1545 					vm_page_free(p);
1546 				else
1547 					vm_page_remove(p);
1548 				vm_page_unlock(p);
1549 				p = next;
1550 				continue;
1551 			}
1552 
1553 			pp = vm_page_lookup(object, new_pindex);
1554 			if (
1555 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1556 			    (pp != NULL && pp->valid == 0)
1557 			) {
1558 				/*
1559 				 * The page in the parent is not (yet) valid.
1560 				 * We don't know anything about the state of
1561 				 * the original page.  It might be mapped,
1562 				 * so we must avoid the next if here.
1563 				 *
1564 				 * This is due to a race in vm_fault() where
1565 				 * we must unbusy the original (backing_obj)
1566 				 * page before we can (re)lock the parent.
1567 				 * Hence we can get here.
1568 				 */
1569 				p = next;
1570 				continue;
1571 			}
1572 			if (
1573 			    pp != NULL ||
1574 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1575 			) {
1576 				/*
1577 				 * page already exists in parent OR swap exists
1578 				 * for this location in the parent.  Destroy
1579 				 * the original page from the backing object.
1580 				 *
1581 				 * Leave the parent's page alone
1582 				 */
1583 				vm_page_lock(p);
1584 				KASSERT(!pmap_page_is_mapped(p),
1585 				    ("freeing mapped page %p", p));
1586 				if (p->wire_count == 0)
1587 					vm_page_free(p);
1588 				else
1589 					vm_page_remove(p);
1590 				vm_page_unlock(p);
1591 				p = next;
1592 				continue;
1593 			}
1594 
1595 #if VM_NRESERVLEVEL > 0
1596 			/*
1597 			 * Rename the reservation.
1598 			 */
1599 			vm_reserv_rename(p, object, backing_object,
1600 			    backing_offset_index);
1601 #endif
1602 
1603 			/*
1604 			 * Page does not exist in parent, rename the
1605 			 * page from the backing object to the main object.
1606 			 *
1607 			 * If the page was mapped to a process, it can remain
1608 			 * mapped through the rename.
1609 			 */
1610 			vm_page_lock(p);
1611 			vm_page_rename(p, object, new_pindex);
1612 			vm_page_unlock(p);
1613 			/* page automatically made dirty by rename */
1614 		}
1615 		p = next;
1616 	}
1617 	return (r);
1618 }
1619 
1620 
1621 /*
1622  * this version of collapse allows the operation to occur earlier and
1623  * when paging_in_progress is true for an object...  This is not a complete
1624  * operation, but should plug 99.9% of the rest of the leaks.
1625  */
1626 static void
1627 vm_object_qcollapse(vm_object_t object)
1628 {
1629 	vm_object_t backing_object = object->backing_object;
1630 
1631 	VM_OBJECT_ASSERT_WLOCKED(object);
1632 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1633 
1634 	if (backing_object->ref_count != 1)
1635 		return;
1636 
1637 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1638 }
1639 
1640 /*
1641  *	vm_object_collapse:
1642  *
1643  *	Collapse an object with the object backing it.
1644  *	Pages in the backing object are moved into the
1645  *	parent, and the backing object is deallocated.
1646  */
1647 void
1648 vm_object_collapse(vm_object_t object)
1649 {
1650 	VM_OBJECT_ASSERT_WLOCKED(object);
1651 
1652 	while (TRUE) {
1653 		vm_object_t backing_object;
1654 
1655 		/*
1656 		 * Verify that the conditions are right for collapse:
1657 		 *
1658 		 * The object exists and the backing object exists.
1659 		 */
1660 		if ((backing_object = object->backing_object) == NULL)
1661 			break;
1662 
1663 		/*
1664 		 * we check the backing object first, because it is most likely
1665 		 * not collapsable.
1666 		 */
1667 		VM_OBJECT_WLOCK(backing_object);
1668 		if (backing_object->handle != NULL ||
1669 		    (backing_object->type != OBJT_DEFAULT &&
1670 		     backing_object->type != OBJT_SWAP) ||
1671 		    (backing_object->flags & OBJ_DEAD) ||
1672 		    object->handle != NULL ||
1673 		    (object->type != OBJT_DEFAULT &&
1674 		     object->type != OBJT_SWAP) ||
1675 		    (object->flags & OBJ_DEAD)) {
1676 			VM_OBJECT_WUNLOCK(backing_object);
1677 			break;
1678 		}
1679 
1680 		if (
1681 		    object->paging_in_progress != 0 ||
1682 		    backing_object->paging_in_progress != 0
1683 		) {
1684 			vm_object_qcollapse(object);
1685 			VM_OBJECT_WUNLOCK(backing_object);
1686 			break;
1687 		}
1688 		/*
1689 		 * We know that we can either collapse the backing object (if
1690 		 * the parent is the only reference to it) or (perhaps) have
1691 		 * the parent bypass the object if the parent happens to shadow
1692 		 * all the resident pages in the entire backing object.
1693 		 *
1694 		 * This is ignoring pager-backed pages such as swap pages.
1695 		 * vm_object_backing_scan fails the shadowing test in this
1696 		 * case.
1697 		 */
1698 		if (backing_object->ref_count == 1) {
1699 			/*
1700 			 * If there is exactly one reference to the backing
1701 			 * object, we can collapse it into the parent.
1702 			 */
1703 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1704 
1705 #if VM_NRESERVLEVEL > 0
1706 			/*
1707 			 * Break any reservations from backing_object.
1708 			 */
1709 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1710 				vm_reserv_break_all(backing_object);
1711 #endif
1712 
1713 			/*
1714 			 * Move the pager from backing_object to object.
1715 			 */
1716 			if (backing_object->type == OBJT_SWAP) {
1717 				/*
1718 				 * swap_pager_copy() can sleep, in which case
1719 				 * the backing_object's and object's locks are
1720 				 * released and reacquired.
1721 				 * Since swap_pager_copy() is being asked to
1722 				 * destroy the source, it will change the
1723 				 * backing_object's type to OBJT_DEFAULT.
1724 				 */
1725 				swap_pager_copy(
1726 				    backing_object,
1727 				    object,
1728 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1729 
1730 				/*
1731 				 * Free any cached pages from backing_object.
1732 				 */
1733 				if (__predict_false(
1734 				    !vm_object_cache_is_empty(backing_object)))
1735 					vm_page_cache_free(backing_object, 0, 0);
1736 			}
1737 			/*
1738 			 * Object now shadows whatever backing_object did.
1739 			 * Note that the reference to
1740 			 * backing_object->backing_object moves from within
1741 			 * backing_object to within object.
1742 			 */
1743 			LIST_REMOVE(object, shadow_list);
1744 			backing_object->shadow_count--;
1745 			if (backing_object->backing_object) {
1746 				VM_OBJECT_WLOCK(backing_object->backing_object);
1747 				LIST_REMOVE(backing_object, shadow_list);
1748 				LIST_INSERT_HEAD(
1749 				    &backing_object->backing_object->shadow_head,
1750 				    object, shadow_list);
1751 				/*
1752 				 * The shadow_count has not changed.
1753 				 */
1754 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1755 			}
1756 			object->backing_object = backing_object->backing_object;
1757 			object->backing_object_offset +=
1758 			    backing_object->backing_object_offset;
1759 
1760 			/*
1761 			 * Discard backing_object.
1762 			 *
1763 			 * Since the backing object has no pages, no pager left,
1764 			 * and no object references within it, all that is
1765 			 * necessary is to dispose of it.
1766 			 */
1767 			KASSERT(backing_object->ref_count == 1, (
1768 "backing_object %p was somehow re-referenced during collapse!",
1769 			    backing_object));
1770 			VM_OBJECT_WUNLOCK(backing_object);
1771 			vm_object_destroy(backing_object);
1772 
1773 			object_collapses++;
1774 		} else {
1775 			vm_object_t new_backing_object;
1776 
1777 			/*
1778 			 * If we do not entirely shadow the backing object,
1779 			 * there is nothing we can do so we give up.
1780 			 */
1781 			if (object->resident_page_count != object->size &&
1782 			    vm_object_backing_scan(object,
1783 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1784 				VM_OBJECT_WUNLOCK(backing_object);
1785 				break;
1786 			}
1787 
1788 			/*
1789 			 * Make the parent shadow the next object in the
1790 			 * chain.  Deallocating backing_object will not remove
1791 			 * it, since its reference count is at least 2.
1792 			 */
1793 			LIST_REMOVE(object, shadow_list);
1794 			backing_object->shadow_count--;
1795 
1796 			new_backing_object = backing_object->backing_object;
1797 			if ((object->backing_object = new_backing_object) != NULL) {
1798 				VM_OBJECT_WLOCK(new_backing_object);
1799 				LIST_INSERT_HEAD(
1800 				    &new_backing_object->shadow_head,
1801 				    object,
1802 				    shadow_list
1803 				);
1804 				new_backing_object->shadow_count++;
1805 				vm_object_reference_locked(new_backing_object);
1806 				VM_OBJECT_WUNLOCK(new_backing_object);
1807 				object->backing_object_offset +=
1808 					backing_object->backing_object_offset;
1809 			}
1810 
1811 			/*
1812 			 * Drop the reference count on backing_object. Since
1813 			 * its ref_count was at least 2, it will not vanish.
1814 			 */
1815 			backing_object->ref_count--;
1816 			VM_OBJECT_WUNLOCK(backing_object);
1817 			object_bypasses++;
1818 		}
1819 
1820 		/*
1821 		 * Try again with this object's new backing object.
1822 		 */
1823 	}
1824 }
1825 
1826 /*
1827  *	vm_object_page_remove:
1828  *
1829  *	For the given object, either frees or invalidates each of the
1830  *	specified pages.  In general, a page is freed.  However, if a page is
1831  *	wired for any reason other than the existence of a managed, wired
1832  *	mapping, then it may be invalidated but not removed from the object.
1833  *	Pages are specified by the given range ["start", "end") and the option
1834  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1835  *	extends from "start" to the end of the object.  If the option
1836  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1837  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1838  *	specified, then the pages within the specified range must have no
1839  *	mappings.  Otherwise, if this option is not specified, any mappings to
1840  *	the specified pages are removed before the pages are freed or
1841  *	invalidated.
1842  *
1843  *	In general, this operation should only be performed on objects that
1844  *	contain managed pages.  There are, however, two exceptions.  First, it
1845  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1846  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1847  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1848  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1849  *
1850  *	The object must be locked.
1851  */
1852 void
1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1854     int options)
1855 {
1856 	vm_page_t p, next;
1857 	int wirings;
1858 
1859 	VM_OBJECT_ASSERT_WLOCKED(object);
1860 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1861 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1862 	    ("vm_object_page_remove: illegal options for object %p", object));
1863 	if (object->resident_page_count == 0)
1864 		goto skipmemq;
1865 	vm_object_pip_add(object, 1);
1866 again:
1867 	p = vm_page_find_least(object, start);
1868 
1869 	/*
1870 	 * Here, the variable "p" is either (1) the page with the least pindex
1871 	 * greater than or equal to the parameter "start" or (2) NULL.
1872 	 */
1873 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1874 		next = TAILQ_NEXT(p, listq);
1875 
1876 		/*
1877 		 * If the page is wired for any reason besides the existence
1878 		 * of managed, wired mappings, then it cannot be freed.  For
1879 		 * example, fictitious pages, which represent device memory,
1880 		 * are inherently wired and cannot be freed.  They can,
1881 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1882 		 * not specified.
1883 		 */
1884 		vm_page_lock(p);
1885 		if ((wirings = p->wire_count) != 0 &&
1886 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1887 			if ((options & OBJPR_NOTMAPPED) == 0) {
1888 				pmap_remove_all(p);
1889 				/* Account for removal of wired mappings. */
1890 				if (wirings != 0)
1891 					p->wire_count -= wirings;
1892 			}
1893 			if ((options & OBJPR_CLEANONLY) == 0) {
1894 				p->valid = 0;
1895 				vm_page_undirty(p);
1896 			}
1897 			vm_page_unlock(p);
1898 			continue;
1899 		}
1900 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1901 			goto again;
1902 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1903 		    ("vm_object_page_remove: page %p is fictitious", p));
1904 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1905 			if ((options & OBJPR_NOTMAPPED) == 0)
1906 				pmap_remove_write(p);
1907 			if (p->dirty) {
1908 				vm_page_unlock(p);
1909 				continue;
1910 			}
1911 		}
1912 		if ((options & OBJPR_NOTMAPPED) == 0) {
1913 			pmap_remove_all(p);
1914 			/* Account for removal of wired mappings. */
1915 			if (wirings != 0) {
1916 				KASSERT(p->wire_count == wirings,
1917 				    ("inconsistent wire count %d %d %p",
1918 				    p->wire_count, wirings, p));
1919 				p->wire_count = 0;
1920 				atomic_subtract_int(&cnt.v_wire_count, 1);
1921 			}
1922 		}
1923 		vm_page_free(p);
1924 		vm_page_unlock(p);
1925 	}
1926 	vm_object_pip_wakeup(object);
1927 skipmemq:
1928 	if (__predict_false(!vm_object_cache_is_empty(object)))
1929 		vm_page_cache_free(object, start, end);
1930 }
1931 
1932 /*
1933  *	vm_object_page_cache:
1934  *
1935  *	For the given object, attempt to move the specified clean
1936  *	pages to the cache queue.  If a page is wired for any reason,
1937  *	then it will not be changed.  Pages are specified by the given
1938  *	range ["start", "end").  As a special case, if "end" is zero,
1939  *	then the range extends from "start" to the end of the object.
1940  *	Any mappings to the specified pages are removed before the
1941  *	pages are moved to the cache queue.
1942  *
1943  *	This operation should only be performed on objects that
1944  *	contain non-fictitious, managed pages.
1945  *
1946  *	The object must be locked.
1947  */
1948 void
1949 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1950 {
1951 	struct mtx *mtx, *new_mtx;
1952 	vm_page_t p, next;
1953 
1954 	VM_OBJECT_ASSERT_WLOCKED(object);
1955 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1956 	    ("vm_object_page_cache: illegal object %p", object));
1957 	if (object->resident_page_count == 0)
1958 		return;
1959 	p = vm_page_find_least(object, start);
1960 
1961 	/*
1962 	 * Here, the variable "p" is either (1) the page with the least pindex
1963 	 * greater than or equal to the parameter "start" or (2) NULL.
1964 	 */
1965 	mtx = NULL;
1966 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1967 		next = TAILQ_NEXT(p, listq);
1968 
1969 		/*
1970 		 * Avoid releasing and reacquiring the same page lock.
1971 		 */
1972 		new_mtx = vm_page_lockptr(p);
1973 		if (mtx != new_mtx) {
1974 			if (mtx != NULL)
1975 				mtx_unlock(mtx);
1976 			mtx = new_mtx;
1977 			mtx_lock(mtx);
1978 		}
1979 		vm_page_try_to_cache(p);
1980 	}
1981 	if (mtx != NULL)
1982 		mtx_unlock(mtx);
1983 }
1984 
1985 /*
1986  *	Populate the specified range of the object with valid pages.  Returns
1987  *	TRUE if the range is successfully populated and FALSE otherwise.
1988  *
1989  *	Note: This function should be optimized to pass a larger array of
1990  *	pages to vm_pager_get_pages() before it is applied to a non-
1991  *	OBJT_DEVICE object.
1992  *
1993  *	The object must be locked.
1994  */
1995 boolean_t
1996 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1997 {
1998 	vm_page_t m, ma[1];
1999 	vm_pindex_t pindex;
2000 	int rv;
2001 
2002 	VM_OBJECT_ASSERT_WLOCKED(object);
2003 	for (pindex = start; pindex < end; pindex++) {
2004 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2005 		    VM_ALLOC_RETRY);
2006 		if (m->valid != VM_PAGE_BITS_ALL) {
2007 			ma[0] = m;
2008 			rv = vm_pager_get_pages(object, ma, 1, 0);
2009 			m = vm_page_lookup(object, pindex);
2010 			if (m == NULL)
2011 				break;
2012 			if (rv != VM_PAGER_OK) {
2013 				vm_page_lock(m);
2014 				vm_page_free(m);
2015 				vm_page_unlock(m);
2016 				break;
2017 			}
2018 		}
2019 		/*
2020 		 * Keep "m" busy because a subsequent iteration may unlock
2021 		 * the object.
2022 		 */
2023 	}
2024 	if (pindex > start) {
2025 		m = vm_page_lookup(object, start);
2026 		while (m != NULL && m->pindex < pindex) {
2027 			vm_page_wakeup(m);
2028 			m = TAILQ_NEXT(m, listq);
2029 		}
2030 	}
2031 	return (pindex == end);
2032 }
2033 
2034 /*
2035  *	Routine:	vm_object_coalesce
2036  *	Function:	Coalesces two objects backing up adjoining
2037  *			regions of memory into a single object.
2038  *
2039  *	returns TRUE if objects were combined.
2040  *
2041  *	NOTE:	Only works at the moment if the second object is NULL -
2042  *		if it's not, which object do we lock first?
2043  *
2044  *	Parameters:
2045  *		prev_object	First object to coalesce
2046  *		prev_offset	Offset into prev_object
2047  *		prev_size	Size of reference to prev_object
2048  *		next_size	Size of reference to the second object
2049  *		reserved	Indicator that extension region has
2050  *				swap accounted for
2051  *
2052  *	Conditions:
2053  *	The object must *not* be locked.
2054  */
2055 boolean_t
2056 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2057     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2058 {
2059 	vm_pindex_t next_pindex;
2060 
2061 	if (prev_object == NULL)
2062 		return (TRUE);
2063 	VM_OBJECT_WLOCK(prev_object);
2064 	if (prev_object->type != OBJT_DEFAULT &&
2065 	    prev_object->type != OBJT_SWAP) {
2066 		VM_OBJECT_WUNLOCK(prev_object);
2067 		return (FALSE);
2068 	}
2069 
2070 	/*
2071 	 * Try to collapse the object first
2072 	 */
2073 	vm_object_collapse(prev_object);
2074 
2075 	/*
2076 	 * Can't coalesce if: . more than one reference . paged out . shadows
2077 	 * another object . has a copy elsewhere (any of which mean that the
2078 	 * pages not mapped to prev_entry may be in use anyway)
2079 	 */
2080 	if (prev_object->backing_object != NULL) {
2081 		VM_OBJECT_WUNLOCK(prev_object);
2082 		return (FALSE);
2083 	}
2084 
2085 	prev_size >>= PAGE_SHIFT;
2086 	next_size >>= PAGE_SHIFT;
2087 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2088 
2089 	if ((prev_object->ref_count > 1) &&
2090 	    (prev_object->size != next_pindex)) {
2091 		VM_OBJECT_WUNLOCK(prev_object);
2092 		return (FALSE);
2093 	}
2094 
2095 	/*
2096 	 * Account for the charge.
2097 	 */
2098 	if (prev_object->cred != NULL) {
2099 
2100 		/*
2101 		 * If prev_object was charged, then this mapping,
2102 		 * althought not charged now, may become writable
2103 		 * later. Non-NULL cred in the object would prevent
2104 		 * swap reservation during enabling of the write
2105 		 * access, so reserve swap now. Failed reservation
2106 		 * cause allocation of the separate object for the map
2107 		 * entry, and swap reservation for this entry is
2108 		 * managed in appropriate time.
2109 		 */
2110 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2111 		    prev_object->cred)) {
2112 			return (FALSE);
2113 		}
2114 		prev_object->charge += ptoa(next_size);
2115 	}
2116 
2117 	/*
2118 	 * Remove any pages that may still be in the object from a previous
2119 	 * deallocation.
2120 	 */
2121 	if (next_pindex < prev_object->size) {
2122 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2123 		    next_size, 0);
2124 		if (prev_object->type == OBJT_SWAP)
2125 			swap_pager_freespace(prev_object,
2126 					     next_pindex, next_size);
2127 #if 0
2128 		if (prev_object->cred != NULL) {
2129 			KASSERT(prev_object->charge >=
2130 			    ptoa(prev_object->size - next_pindex),
2131 			    ("object %p overcharged 1 %jx %jx", prev_object,
2132 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2133 			prev_object->charge -= ptoa(prev_object->size -
2134 			    next_pindex);
2135 		}
2136 #endif
2137 	}
2138 
2139 	/*
2140 	 * Extend the object if necessary.
2141 	 */
2142 	if (next_pindex + next_size > prev_object->size)
2143 		prev_object->size = next_pindex + next_size;
2144 
2145 	VM_OBJECT_WUNLOCK(prev_object);
2146 	return (TRUE);
2147 }
2148 
2149 void
2150 vm_object_set_writeable_dirty(vm_object_t object)
2151 {
2152 
2153 	VM_OBJECT_ASSERT_WLOCKED(object);
2154 	if (object->type != OBJT_VNODE)
2155 		return;
2156 	object->generation++;
2157 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2158 		return;
2159 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2160 }
2161 
2162 #include "opt_ddb.h"
2163 #ifdef DDB
2164 #include <sys/kernel.h>
2165 
2166 #include <sys/cons.h>
2167 
2168 #include <ddb/ddb.h>
2169 
2170 static int
2171 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2172 {
2173 	vm_map_t tmpm;
2174 	vm_map_entry_t tmpe;
2175 	vm_object_t obj;
2176 	int entcount;
2177 
2178 	if (map == 0)
2179 		return 0;
2180 
2181 	if (entry == 0) {
2182 		tmpe = map->header.next;
2183 		entcount = map->nentries;
2184 		while (entcount-- && (tmpe != &map->header)) {
2185 			if (_vm_object_in_map(map, object, tmpe)) {
2186 				return 1;
2187 			}
2188 			tmpe = tmpe->next;
2189 		}
2190 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2191 		tmpm = entry->object.sub_map;
2192 		tmpe = tmpm->header.next;
2193 		entcount = tmpm->nentries;
2194 		while (entcount-- && tmpe != &tmpm->header) {
2195 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2196 				return 1;
2197 			}
2198 			tmpe = tmpe->next;
2199 		}
2200 	} else if ((obj = entry->object.vm_object) != NULL) {
2201 		for (; obj; obj = obj->backing_object)
2202 			if (obj == object) {
2203 				return 1;
2204 			}
2205 	}
2206 	return 0;
2207 }
2208 
2209 static int
2210 vm_object_in_map(vm_object_t object)
2211 {
2212 	struct proc *p;
2213 
2214 	/* sx_slock(&allproc_lock); */
2215 	FOREACH_PROC_IN_SYSTEM(p) {
2216 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2217 			continue;
2218 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2219 			/* sx_sunlock(&allproc_lock); */
2220 			return 1;
2221 		}
2222 	}
2223 	/* sx_sunlock(&allproc_lock); */
2224 	if (_vm_object_in_map(kernel_map, object, 0))
2225 		return 1;
2226 	if (_vm_object_in_map(kmem_map, object, 0))
2227 		return 1;
2228 	if (_vm_object_in_map(pager_map, object, 0))
2229 		return 1;
2230 	if (_vm_object_in_map(buffer_map, object, 0))
2231 		return 1;
2232 	return 0;
2233 }
2234 
2235 DB_SHOW_COMMAND(vmochk, vm_object_check)
2236 {
2237 	vm_object_t object;
2238 
2239 	/*
2240 	 * make sure that internal objs are in a map somewhere
2241 	 * and none have zero ref counts.
2242 	 */
2243 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2244 		if (object->handle == NULL &&
2245 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2246 			if (object->ref_count == 0) {
2247 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2248 					(long)object->size);
2249 			}
2250 			if (!vm_object_in_map(object)) {
2251 				db_printf(
2252 			"vmochk: internal obj is not in a map: "
2253 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2254 				    object->ref_count, (u_long)object->size,
2255 				    (u_long)object->size,
2256 				    (void *)object->backing_object);
2257 			}
2258 		}
2259 	}
2260 }
2261 
2262 /*
2263  *	vm_object_print:	[ debug ]
2264  */
2265 DB_SHOW_COMMAND(object, vm_object_print_static)
2266 {
2267 	/* XXX convert args. */
2268 	vm_object_t object = (vm_object_t)addr;
2269 	boolean_t full = have_addr;
2270 
2271 	vm_page_t p;
2272 
2273 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2274 #define	count	was_count
2275 
2276 	int count;
2277 
2278 	if (object == NULL)
2279 		return;
2280 
2281 	db_iprintf(
2282 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2283 	    object, (int)object->type, (uintmax_t)object->size,
2284 	    object->resident_page_count, object->ref_count, object->flags,
2285 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2286 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2287 	    object->shadow_count,
2288 	    object->backing_object ? object->backing_object->ref_count : 0,
2289 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2290 
2291 	if (!full)
2292 		return;
2293 
2294 	db_indent += 2;
2295 	count = 0;
2296 	TAILQ_FOREACH(p, &object->memq, listq) {
2297 		if (count == 0)
2298 			db_iprintf("memory:=");
2299 		else if (count == 6) {
2300 			db_printf("\n");
2301 			db_iprintf(" ...");
2302 			count = 0;
2303 		} else
2304 			db_printf(",");
2305 		count++;
2306 
2307 		db_printf("(off=0x%jx,page=0x%jx)",
2308 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2309 	}
2310 	if (count != 0)
2311 		db_printf("\n");
2312 	db_indent -= 2;
2313 }
2314 
2315 /* XXX. */
2316 #undef count
2317 
2318 /* XXX need this non-static entry for calling from vm_map_print. */
2319 void
2320 vm_object_print(
2321         /* db_expr_t */ long addr,
2322 	boolean_t have_addr,
2323 	/* db_expr_t */ long count,
2324 	char *modif)
2325 {
2326 	vm_object_print_static(addr, have_addr, count, modif);
2327 }
2328 
2329 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2330 {
2331 	vm_object_t object;
2332 	vm_pindex_t fidx;
2333 	vm_paddr_t pa;
2334 	vm_page_t m, prev_m;
2335 	int rcount, nl, c;
2336 
2337 	nl = 0;
2338 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2339 		db_printf("new object: %p\n", (void *)object);
2340 		if (nl > 18) {
2341 			c = cngetc();
2342 			if (c != ' ')
2343 				return;
2344 			nl = 0;
2345 		}
2346 		nl++;
2347 		rcount = 0;
2348 		fidx = 0;
2349 		pa = -1;
2350 		TAILQ_FOREACH(m, &object->memq, listq) {
2351 			if (m->pindex > 128)
2352 				break;
2353 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2354 			    prev_m->pindex + 1 != m->pindex) {
2355 				if (rcount) {
2356 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2357 						(long)fidx, rcount, (long)pa);
2358 					if (nl > 18) {
2359 						c = cngetc();
2360 						if (c != ' ')
2361 							return;
2362 						nl = 0;
2363 					}
2364 					nl++;
2365 					rcount = 0;
2366 				}
2367 			}
2368 			if (rcount &&
2369 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2370 				++rcount;
2371 				continue;
2372 			}
2373 			if (rcount) {
2374 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2375 					(long)fidx, rcount, (long)pa);
2376 				if (nl > 18) {
2377 					c = cngetc();
2378 					if (c != ' ')
2379 						return;
2380 					nl = 0;
2381 				}
2382 				nl++;
2383 			}
2384 			fidx = m->pindex;
2385 			pa = VM_PAGE_TO_PHYS(m);
2386 			rcount = 1;
2387 		}
2388 		if (rcount) {
2389 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2390 				(long)fidx, rcount, (long)pa);
2391 			if (nl > 18) {
2392 				c = cngetc();
2393 				if (c != ' ')
2394 					return;
2395 				nl = 0;
2396 			}
2397 			nl++;
2398 		}
2399 	}
2400 }
2401 #endif /* DDB */
2402