1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/vnode.h> 83 #include <sys/vmmeter.h> 84 #include <sys/sx.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_reserv.h> 99 #include <vm/uma.h> 100 101 static int old_msync; 102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 103 "Use old (insecure) msync behavior"); 104 105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 106 int pagerflags, int flags, boolean_t *clearobjflags, 107 boolean_t *eio); 108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 109 boolean_t *clearobjflags); 110 static void vm_object_qcollapse(vm_object_t object); 111 static void vm_object_vndeallocate(vm_object_t object); 112 113 /* 114 * Virtual memory objects maintain the actual data 115 * associated with allocated virtual memory. A given 116 * page of memory exists within exactly one object. 117 * 118 * An object is only deallocated when all "references" 119 * are given up. Only one "reference" to a given 120 * region of an object should be writeable. 121 * 122 * Associated with each object is a list of all resident 123 * memory pages belonging to that object; this list is 124 * maintained by the "vm_page" module, and locked by the object's 125 * lock. 126 * 127 * Each object also records a "pager" routine which is 128 * used to retrieve (and store) pages to the proper backing 129 * storage. In addition, objects may be backed by other 130 * objects from which they were virtual-copied. 131 * 132 * The only items within the object structure which are 133 * modified after time of creation are: 134 * reference count locked by object's lock 135 * pager routine locked by object's lock 136 * 137 */ 138 139 struct object_q vm_object_list; 140 struct mtx vm_object_list_mtx; /* lock for object list and count */ 141 142 struct vm_object kernel_object_store; 143 struct vm_object kmem_object_store; 144 145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 146 "VM object stats"); 147 148 static long object_collapses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 150 &object_collapses, 0, "VM object collapses"); 151 152 static long object_bypasses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 154 &object_bypasses, 0, "VM object bypasses"); 155 156 static uma_zone_t obj_zone; 157 158 static int vm_object_zinit(void *mem, int size, int flags); 159 160 #ifdef INVARIANTS 161 static void vm_object_zdtor(void *mem, int size, void *arg); 162 163 static void 164 vm_object_zdtor(void *mem, int size, void *arg) 165 { 166 vm_object_t object; 167 168 object = (vm_object_t)mem; 169 KASSERT(TAILQ_EMPTY(&object->memq), 170 ("object %p has resident pages in its memq", object)); 171 KASSERT(vm_radix_is_empty(&object->rtree), 172 ("object %p has resident pages in its trie", object)); 173 #if VM_NRESERVLEVEL > 0 174 KASSERT(LIST_EMPTY(&object->rvq), 175 ("object %p has reservations", 176 object)); 177 #endif 178 KASSERT(vm_object_cache_is_empty(object), 179 ("object %p has cached pages", 180 object)); 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 } 191 #endif 192 193 static int 194 vm_object_zinit(void *mem, int size, int flags) 195 { 196 vm_object_t object; 197 198 object = (vm_object_t)mem; 199 bzero(&object->lock, sizeof(object->lock)); 200 rw_init_flags(&object->lock, "vm object", RW_DUPOK); 201 202 /* These are true for any object that has been freed */ 203 object->rtree.rt_root = 0; 204 object->paging_in_progress = 0; 205 object->resident_page_count = 0; 206 object->shadow_count = 0; 207 object->cache.rt_root = 0; 208 return (0); 209 } 210 211 static void 212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 213 { 214 215 TAILQ_INIT(&object->memq); 216 LIST_INIT(&object->shadow_head); 217 218 object->type = type; 219 switch (type) { 220 case OBJT_DEAD: 221 panic("_vm_object_allocate: can't create OBJT_DEAD"); 222 case OBJT_DEFAULT: 223 case OBJT_SWAP: 224 object->flags = OBJ_ONEMAPPING; 225 break; 226 case OBJT_DEVICE: 227 case OBJT_SG: 228 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 229 break; 230 case OBJT_MGTDEVICE: 231 object->flags = OBJ_FICTITIOUS; 232 break; 233 case OBJT_PHYS: 234 object->flags = OBJ_UNMANAGED; 235 break; 236 case OBJT_VNODE: 237 object->flags = 0; 238 break; 239 default: 240 panic("_vm_object_allocate: type %d is undefined", type); 241 } 242 object->size = size; 243 object->generation = 1; 244 object->ref_count = 1; 245 object->memattr = VM_MEMATTR_DEFAULT; 246 object->cred = NULL; 247 object->charge = 0; 248 object->handle = NULL; 249 object->backing_object = NULL; 250 object->backing_object_offset = (vm_ooffset_t) 0; 251 #if VM_NRESERVLEVEL > 0 252 LIST_INIT(&object->rvq); 253 #endif 254 255 mtx_lock(&vm_object_list_mtx); 256 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 257 mtx_unlock(&vm_object_list_mtx); 258 } 259 260 /* 261 * vm_object_init: 262 * 263 * Initialize the VM objects module. 264 */ 265 void 266 vm_object_init(void) 267 { 268 TAILQ_INIT(&vm_object_list); 269 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 270 271 rw_init(&kernel_object->lock, "kernel vm object"); 272 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 273 kernel_object); 274 #if VM_NRESERVLEVEL > 0 275 kernel_object->flags |= OBJ_COLORED; 276 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 277 #endif 278 279 rw_init(&kmem_object->lock, "kmem vm object"); 280 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 281 kmem_object); 282 #if VM_NRESERVLEVEL > 0 283 kmem_object->flags |= OBJ_COLORED; 284 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 285 #endif 286 287 /* 288 * The lock portion of struct vm_object must be type stable due 289 * to vm_pageout_fallback_object_lock locking a vm object 290 * without holding any references to it. 291 */ 292 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 293 #ifdef INVARIANTS 294 vm_object_zdtor, 295 #else 296 NULL, 297 #endif 298 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 299 300 vm_radix_init(); 301 } 302 303 void 304 vm_object_clear_flag(vm_object_t object, u_short bits) 305 { 306 307 VM_OBJECT_ASSERT_WLOCKED(object); 308 object->flags &= ~bits; 309 } 310 311 /* 312 * Sets the default memory attribute for the specified object. Pages 313 * that are allocated to this object are by default assigned this memory 314 * attribute. 315 * 316 * Presently, this function must be called before any pages are allocated 317 * to the object. In the future, this requirement may be relaxed for 318 * "default" and "swap" objects. 319 */ 320 int 321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 322 { 323 324 VM_OBJECT_ASSERT_WLOCKED(object); 325 switch (object->type) { 326 case OBJT_DEFAULT: 327 case OBJT_DEVICE: 328 case OBJT_MGTDEVICE: 329 case OBJT_PHYS: 330 case OBJT_SG: 331 case OBJT_SWAP: 332 case OBJT_VNODE: 333 if (!TAILQ_EMPTY(&object->memq)) 334 return (KERN_FAILURE); 335 break; 336 case OBJT_DEAD: 337 return (KERN_INVALID_ARGUMENT); 338 default: 339 panic("vm_object_set_memattr: object %p is of undefined type", 340 object); 341 } 342 object->memattr = memattr; 343 return (KERN_SUCCESS); 344 } 345 346 void 347 vm_object_pip_add(vm_object_t object, short i) 348 { 349 350 VM_OBJECT_ASSERT_WLOCKED(object); 351 object->paging_in_progress += i; 352 } 353 354 void 355 vm_object_pip_subtract(vm_object_t object, short i) 356 { 357 358 VM_OBJECT_ASSERT_WLOCKED(object); 359 object->paging_in_progress -= i; 360 } 361 362 void 363 vm_object_pip_wakeup(vm_object_t object) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress--; 368 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 369 vm_object_clear_flag(object, OBJ_PIPWNT); 370 wakeup(object); 371 } 372 } 373 374 void 375 vm_object_pip_wakeupn(vm_object_t object, short i) 376 { 377 378 VM_OBJECT_ASSERT_WLOCKED(object); 379 if (i) 380 object->paging_in_progress -= i; 381 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 382 vm_object_clear_flag(object, OBJ_PIPWNT); 383 wakeup(object); 384 } 385 } 386 387 void 388 vm_object_pip_wait(vm_object_t object, char *waitid) 389 { 390 391 VM_OBJECT_ASSERT_WLOCKED(object); 392 while (object->paging_in_progress) { 393 object->flags |= OBJ_PIPWNT; 394 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 395 } 396 } 397 398 /* 399 * vm_object_allocate: 400 * 401 * Returns a new object with the given size. 402 */ 403 vm_object_t 404 vm_object_allocate(objtype_t type, vm_pindex_t size) 405 { 406 vm_object_t object; 407 408 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 409 _vm_object_allocate(type, size, object); 410 return (object); 411 } 412 413 414 /* 415 * vm_object_reference: 416 * 417 * Gets another reference to the given object. Note: OBJ_DEAD 418 * objects can be referenced during final cleaning. 419 */ 420 void 421 vm_object_reference(vm_object_t object) 422 { 423 if (object == NULL) 424 return; 425 VM_OBJECT_WLOCK(object); 426 vm_object_reference_locked(object); 427 VM_OBJECT_WUNLOCK(object); 428 } 429 430 /* 431 * vm_object_reference_locked: 432 * 433 * Gets another reference to the given object. 434 * 435 * The object must be locked. 436 */ 437 void 438 vm_object_reference_locked(vm_object_t object) 439 { 440 struct vnode *vp; 441 442 VM_OBJECT_ASSERT_WLOCKED(object); 443 object->ref_count++; 444 if (object->type == OBJT_VNODE) { 445 vp = object->handle; 446 vref(vp); 447 } 448 } 449 450 /* 451 * Handle deallocating an object of type OBJT_VNODE. 452 */ 453 static void 454 vm_object_vndeallocate(vm_object_t object) 455 { 456 struct vnode *vp = (struct vnode *) object->handle; 457 458 VM_OBJECT_ASSERT_WLOCKED(object); 459 KASSERT(object->type == OBJT_VNODE, 460 ("vm_object_vndeallocate: not a vnode object")); 461 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 462 #ifdef INVARIANTS 463 if (object->ref_count == 0) { 464 vprint("vm_object_vndeallocate", vp); 465 panic("vm_object_vndeallocate: bad object reference count"); 466 } 467 #endif 468 469 if (object->ref_count > 1) { 470 object->ref_count--; 471 VM_OBJECT_WUNLOCK(object); 472 /* vrele may need the vnode lock. */ 473 vrele(vp); 474 } else { 475 vhold(vp); 476 VM_OBJECT_WUNLOCK(object); 477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 478 vdrop(vp); 479 VM_OBJECT_WLOCK(object); 480 object->ref_count--; 481 if (object->type == OBJT_DEAD) { 482 VM_OBJECT_WUNLOCK(object); 483 VOP_UNLOCK(vp, 0); 484 } else { 485 if (object->ref_count == 0) 486 VOP_UNSET_TEXT(vp); 487 VM_OBJECT_WUNLOCK(object); 488 vput(vp); 489 } 490 } 491 } 492 493 /* 494 * vm_object_deallocate: 495 * 496 * Release a reference to the specified object, 497 * gained either through a vm_object_allocate 498 * or a vm_object_reference call. When all references 499 * are gone, storage associated with this object 500 * may be relinquished. 501 * 502 * No object may be locked. 503 */ 504 void 505 vm_object_deallocate(vm_object_t object) 506 { 507 vm_object_t temp; 508 509 while (object != NULL) { 510 VM_OBJECT_WLOCK(object); 511 if (object->type == OBJT_VNODE) { 512 vm_object_vndeallocate(object); 513 return; 514 } 515 516 KASSERT(object->ref_count != 0, 517 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 518 519 /* 520 * If the reference count goes to 0 we start calling 521 * vm_object_terminate() on the object chain. 522 * A ref count of 1 may be a special case depending on the 523 * shadow count being 0 or 1. 524 */ 525 object->ref_count--; 526 if (object->ref_count > 1) { 527 VM_OBJECT_WUNLOCK(object); 528 return; 529 } else if (object->ref_count == 1) { 530 if (object->shadow_count == 0 && 531 object->handle == NULL && 532 (object->type == OBJT_DEFAULT || 533 object->type == OBJT_SWAP)) { 534 vm_object_set_flag(object, OBJ_ONEMAPPING); 535 } else if ((object->shadow_count == 1) && 536 (object->handle == NULL) && 537 (object->type == OBJT_DEFAULT || 538 object->type == OBJT_SWAP)) { 539 vm_object_t robject; 540 541 robject = LIST_FIRST(&object->shadow_head); 542 KASSERT(robject != NULL, 543 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 544 object->ref_count, 545 object->shadow_count)); 546 if (!VM_OBJECT_TRYWLOCK(robject)) { 547 /* 548 * Avoid a potential deadlock. 549 */ 550 object->ref_count++; 551 VM_OBJECT_WUNLOCK(object); 552 /* 553 * More likely than not the thread 554 * holding robject's lock has lower 555 * priority than the current thread. 556 * Let the lower priority thread run. 557 */ 558 pause("vmo_de", 1); 559 continue; 560 } 561 /* 562 * Collapse object into its shadow unless its 563 * shadow is dead. In that case, object will 564 * be deallocated by the thread that is 565 * deallocating its shadow. 566 */ 567 if ((robject->flags & OBJ_DEAD) == 0 && 568 (robject->handle == NULL) && 569 (robject->type == OBJT_DEFAULT || 570 robject->type == OBJT_SWAP)) { 571 572 robject->ref_count++; 573 retry: 574 if (robject->paging_in_progress) { 575 VM_OBJECT_WUNLOCK(object); 576 vm_object_pip_wait(robject, 577 "objde1"); 578 temp = robject->backing_object; 579 if (object == temp) { 580 VM_OBJECT_WLOCK(object); 581 goto retry; 582 } 583 } else if (object->paging_in_progress) { 584 VM_OBJECT_WUNLOCK(robject); 585 object->flags |= OBJ_PIPWNT; 586 VM_OBJECT_SLEEP(object, object, 587 PDROP | PVM, "objde2", 0); 588 VM_OBJECT_WLOCK(robject); 589 temp = robject->backing_object; 590 if (object == temp) { 591 VM_OBJECT_WLOCK(object); 592 goto retry; 593 } 594 } else 595 VM_OBJECT_WUNLOCK(object); 596 597 if (robject->ref_count == 1) { 598 robject->ref_count--; 599 object = robject; 600 goto doterm; 601 } 602 object = robject; 603 vm_object_collapse(object); 604 VM_OBJECT_WUNLOCK(object); 605 continue; 606 } 607 VM_OBJECT_WUNLOCK(robject); 608 } 609 VM_OBJECT_WUNLOCK(object); 610 return; 611 } 612 doterm: 613 temp = object->backing_object; 614 if (temp != NULL) { 615 VM_OBJECT_WLOCK(temp); 616 LIST_REMOVE(object, shadow_list); 617 temp->shadow_count--; 618 VM_OBJECT_WUNLOCK(temp); 619 object->backing_object = NULL; 620 } 621 /* 622 * Don't double-terminate, we could be in a termination 623 * recursion due to the terminate having to sync data 624 * to disk. 625 */ 626 if ((object->flags & OBJ_DEAD) == 0) 627 vm_object_terminate(object); 628 else 629 VM_OBJECT_WUNLOCK(object); 630 object = temp; 631 } 632 } 633 634 /* 635 * vm_object_destroy removes the object from the global object list 636 * and frees the space for the object. 637 */ 638 void 639 vm_object_destroy(vm_object_t object) 640 { 641 642 /* 643 * Remove the object from the global object list. 644 */ 645 mtx_lock(&vm_object_list_mtx); 646 TAILQ_REMOVE(&vm_object_list, object, object_list); 647 mtx_unlock(&vm_object_list_mtx); 648 649 /* 650 * Release the allocation charge. 651 */ 652 if (object->cred != NULL) { 653 KASSERT(object->type == OBJT_DEFAULT || 654 object->type == OBJT_SWAP, 655 ("vm_object_terminate: non-swap obj %p has cred", 656 object)); 657 swap_release_by_cred(object->charge, object->cred); 658 object->charge = 0; 659 crfree(object->cred); 660 object->cred = NULL; 661 } 662 663 /* 664 * Free the space for the object. 665 */ 666 uma_zfree(obj_zone, object); 667 } 668 669 /* 670 * vm_object_terminate actually destroys the specified object, freeing 671 * up all previously used resources. 672 * 673 * The object must be locked. 674 * This routine may block. 675 */ 676 void 677 vm_object_terminate(vm_object_t object) 678 { 679 vm_page_t p, p_next; 680 681 VM_OBJECT_ASSERT_WLOCKED(object); 682 683 /* 684 * Make sure no one uses us. 685 */ 686 vm_object_set_flag(object, OBJ_DEAD); 687 688 /* 689 * wait for the pageout daemon to be done with the object 690 */ 691 vm_object_pip_wait(object, "objtrm"); 692 693 KASSERT(!object->paging_in_progress, 694 ("vm_object_terminate: pageout in progress")); 695 696 /* 697 * Clean and free the pages, as appropriate. All references to the 698 * object are gone, so we don't need to lock it. 699 */ 700 if (object->type == OBJT_VNODE) { 701 struct vnode *vp = (struct vnode *)object->handle; 702 703 /* 704 * Clean pages and flush buffers. 705 */ 706 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 707 VM_OBJECT_WUNLOCK(object); 708 709 vinvalbuf(vp, V_SAVE, 0, 0); 710 711 VM_OBJECT_WLOCK(object); 712 } 713 714 KASSERT(object->ref_count == 0, 715 ("vm_object_terminate: object with references, ref_count=%d", 716 object->ref_count)); 717 718 /* 719 * Free any remaining pageable pages. This also removes them from the 720 * paging queues. However, don't free wired pages, just remove them 721 * from the object. Rather than incrementally removing each page from 722 * the object, the page and object are reset to any empty state. 723 */ 724 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 725 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 726 ("vm_object_terminate: freeing busy page %p", p)); 727 vm_page_lock(p); 728 /* 729 * Optimize the page's removal from the object by resetting 730 * its "object" field. Specifically, if the page is not 731 * wired, then the effect of this assignment is that 732 * vm_page_free()'s call to vm_page_remove() will return 733 * immediately without modifying the page or the object. 734 */ 735 p->object = NULL; 736 if (p->wire_count == 0) { 737 vm_page_free(p); 738 PCPU_INC(cnt.v_pfree); 739 } 740 vm_page_unlock(p); 741 } 742 /* 743 * If the object contained any pages, then reset it to an empty state. 744 * None of the object's fields, including "resident_page_count", were 745 * modified by the preceding loop. 746 */ 747 if (object->resident_page_count != 0) { 748 vm_radix_reclaim_allnodes(&object->rtree); 749 TAILQ_INIT(&object->memq); 750 object->resident_page_count = 0; 751 if (object->type == OBJT_VNODE) 752 vdrop(object->handle); 753 } 754 755 #if VM_NRESERVLEVEL > 0 756 if (__predict_false(!LIST_EMPTY(&object->rvq))) 757 vm_reserv_break_all(object); 758 #endif 759 if (__predict_false(!vm_object_cache_is_empty(object))) 760 vm_page_cache_free(object, 0, 0); 761 762 /* 763 * Let the pager know object is dead. 764 */ 765 vm_pager_deallocate(object); 766 VM_OBJECT_WUNLOCK(object); 767 768 vm_object_destroy(object); 769 } 770 771 /* 772 * Make the page read-only so that we can clear the object flags. However, if 773 * this is a nosync mmap then the object is likely to stay dirty so do not 774 * mess with the page and do not clear the object flags. Returns TRUE if the 775 * page should be flushed, and FALSE otherwise. 776 */ 777 static boolean_t 778 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 779 { 780 781 /* 782 * If we have been asked to skip nosync pages and this is a 783 * nosync page, skip it. Note that the object flags were not 784 * cleared in this case so we do not have to set them. 785 */ 786 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 787 *clearobjflags = FALSE; 788 return (FALSE); 789 } else { 790 pmap_remove_write(p); 791 return (p->dirty != 0); 792 } 793 } 794 795 /* 796 * vm_object_page_clean 797 * 798 * Clean all dirty pages in the specified range of object. Leaves page 799 * on whatever queue it is currently on. If NOSYNC is set then do not 800 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 801 * leaving the object dirty. 802 * 803 * When stuffing pages asynchronously, allow clustering. XXX we need a 804 * synchronous clustering mode implementation. 805 * 806 * Odd semantics: if start == end, we clean everything. 807 * 808 * The object must be locked. 809 * 810 * Returns FALSE if some page from the range was not written, as 811 * reported by the pager, and TRUE otherwise. 812 */ 813 boolean_t 814 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 815 int flags) 816 { 817 vm_page_t np, p; 818 vm_pindex_t pi, tend, tstart; 819 int curgeneration, n, pagerflags; 820 boolean_t clearobjflags, eio, res; 821 822 VM_OBJECT_ASSERT_WLOCKED(object); 823 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 824 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 825 object->resident_page_count == 0) 826 return (TRUE); 827 828 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 829 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 830 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 831 832 tstart = OFF_TO_IDX(start); 833 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 834 clearobjflags = tstart == 0 && tend >= object->size; 835 res = TRUE; 836 837 rescan: 838 curgeneration = object->generation; 839 840 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 841 pi = p->pindex; 842 if (pi >= tend) 843 break; 844 np = TAILQ_NEXT(p, listq); 845 if (p->valid == 0) 846 continue; 847 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 848 if (object->generation != curgeneration) { 849 if ((flags & OBJPC_SYNC) != 0) 850 goto rescan; 851 else 852 clearobjflags = FALSE; 853 } 854 np = vm_page_find_least(object, pi); 855 continue; 856 } 857 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 858 continue; 859 860 n = vm_object_page_collect_flush(object, p, pagerflags, 861 flags, &clearobjflags, &eio); 862 if (eio) { 863 res = FALSE; 864 clearobjflags = FALSE; 865 } 866 if (object->generation != curgeneration) { 867 if ((flags & OBJPC_SYNC) != 0) 868 goto rescan; 869 else 870 clearobjflags = FALSE; 871 } 872 873 /* 874 * If the VOP_PUTPAGES() did a truncated write, so 875 * that even the first page of the run is not fully 876 * written, vm_pageout_flush() returns 0 as the run 877 * length. Since the condition that caused truncated 878 * write may be permanent, e.g. exhausted free space, 879 * accepting n == 0 would cause an infinite loop. 880 * 881 * Forwarding the iterator leaves the unwritten page 882 * behind, but there is not much we can do there if 883 * filesystem refuses to write it. 884 */ 885 if (n == 0) { 886 n = 1; 887 clearobjflags = FALSE; 888 } 889 np = vm_page_find_least(object, pi + n); 890 } 891 #if 0 892 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 893 #endif 894 895 if (clearobjflags) 896 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 897 return (res); 898 } 899 900 static int 901 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 902 int flags, boolean_t *clearobjflags, boolean_t *eio) 903 { 904 vm_page_t ma[vm_pageout_page_count], p_first, tp; 905 int count, i, mreq, runlen; 906 907 vm_page_lock_assert(p, MA_NOTOWNED); 908 VM_OBJECT_ASSERT_WLOCKED(object); 909 910 count = 1; 911 mreq = 0; 912 913 for (tp = p; count < vm_pageout_page_count; count++) { 914 tp = vm_page_next(tp); 915 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 916 break; 917 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 918 break; 919 } 920 921 for (p_first = p; count < vm_pageout_page_count; count++) { 922 tp = vm_page_prev(p_first); 923 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 924 break; 925 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 926 break; 927 p_first = tp; 928 mreq++; 929 } 930 931 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 932 ma[i] = tp; 933 934 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 935 return (runlen); 936 } 937 938 /* 939 * Note that there is absolutely no sense in writing out 940 * anonymous objects, so we track down the vnode object 941 * to write out. 942 * We invalidate (remove) all pages from the address space 943 * for semantic correctness. 944 * 945 * If the backing object is a device object with unmanaged pages, then any 946 * mappings to the specified range of pages must be removed before this 947 * function is called. 948 * 949 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 950 * may start out with a NULL object. 951 */ 952 boolean_t 953 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 954 boolean_t syncio, boolean_t invalidate) 955 { 956 vm_object_t backing_object; 957 struct vnode *vp; 958 struct mount *mp; 959 int error, flags, fsync_after; 960 boolean_t res; 961 962 if (object == NULL) 963 return (TRUE); 964 res = TRUE; 965 error = 0; 966 VM_OBJECT_WLOCK(object); 967 while ((backing_object = object->backing_object) != NULL) { 968 VM_OBJECT_WLOCK(backing_object); 969 offset += object->backing_object_offset; 970 VM_OBJECT_WUNLOCK(object); 971 object = backing_object; 972 if (object->size < OFF_TO_IDX(offset + size)) 973 size = IDX_TO_OFF(object->size) - offset; 974 } 975 /* 976 * Flush pages if writing is allowed, invalidate them 977 * if invalidation requested. Pages undergoing I/O 978 * will be ignored by vm_object_page_remove(). 979 * 980 * We cannot lock the vnode and then wait for paging 981 * to complete without deadlocking against vm_fault. 982 * Instead we simply call vm_object_page_remove() and 983 * allow it to block internally on a page-by-page 984 * basis when it encounters pages undergoing async 985 * I/O. 986 */ 987 if (object->type == OBJT_VNODE && 988 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 989 vp = object->handle; 990 VM_OBJECT_WUNLOCK(object); 991 (void) vn_start_write(vp, &mp, V_WAIT); 992 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 993 if (syncio && !invalidate && offset == 0 && 994 OFF_TO_IDX(size) == object->size) { 995 /* 996 * If syncing the whole mapping of the file, 997 * it is faster to schedule all the writes in 998 * async mode, also allowing the clustering, 999 * and then wait for i/o to complete. 1000 */ 1001 flags = 0; 1002 fsync_after = TRUE; 1003 } else { 1004 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1005 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1006 fsync_after = FALSE; 1007 } 1008 VM_OBJECT_WLOCK(object); 1009 res = vm_object_page_clean(object, offset, offset + size, 1010 flags); 1011 VM_OBJECT_WUNLOCK(object); 1012 if (fsync_after) 1013 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1014 VOP_UNLOCK(vp, 0); 1015 vn_finished_write(mp); 1016 if (error != 0) 1017 res = FALSE; 1018 VM_OBJECT_WLOCK(object); 1019 } 1020 if ((object->type == OBJT_VNODE || 1021 object->type == OBJT_DEVICE) && invalidate) { 1022 if (object->type == OBJT_DEVICE) 1023 /* 1024 * The option OBJPR_NOTMAPPED must be passed here 1025 * because vm_object_page_remove() cannot remove 1026 * unmanaged mappings. 1027 */ 1028 flags = OBJPR_NOTMAPPED; 1029 else if (old_msync) 1030 flags = 0; 1031 else 1032 flags = OBJPR_CLEANONLY; 1033 vm_object_page_remove(object, OFF_TO_IDX(offset), 1034 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1035 } 1036 VM_OBJECT_WUNLOCK(object); 1037 return (res); 1038 } 1039 1040 /* 1041 * vm_object_madvise: 1042 * 1043 * Implements the madvise function at the object/page level. 1044 * 1045 * MADV_WILLNEED (any object) 1046 * 1047 * Activate the specified pages if they are resident. 1048 * 1049 * MADV_DONTNEED (any object) 1050 * 1051 * Deactivate the specified pages if they are resident. 1052 * 1053 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1054 * OBJ_ONEMAPPING only) 1055 * 1056 * Deactivate and clean the specified pages if they are 1057 * resident. This permits the process to reuse the pages 1058 * without faulting or the kernel to reclaim the pages 1059 * without I/O. 1060 */ 1061 void 1062 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1063 int advise) 1064 { 1065 vm_pindex_t tpindex; 1066 vm_object_t backing_object, tobject; 1067 vm_page_t m; 1068 1069 if (object == NULL) 1070 return; 1071 VM_OBJECT_WLOCK(object); 1072 /* 1073 * Locate and adjust resident pages 1074 */ 1075 for (; pindex < end; pindex += 1) { 1076 relookup: 1077 tobject = object; 1078 tpindex = pindex; 1079 shadowlookup: 1080 /* 1081 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1082 * and those pages must be OBJ_ONEMAPPING. 1083 */ 1084 if (advise == MADV_FREE) { 1085 if ((tobject->type != OBJT_DEFAULT && 1086 tobject->type != OBJT_SWAP) || 1087 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1088 goto unlock_tobject; 1089 } 1090 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1091 goto unlock_tobject; 1092 m = vm_page_lookup(tobject, tpindex); 1093 if (m == NULL && advise == MADV_WILLNEED) { 1094 /* 1095 * If the page is cached, reactivate it. 1096 */ 1097 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1098 VM_ALLOC_NOBUSY); 1099 } 1100 if (m == NULL) { 1101 /* 1102 * There may be swap even if there is no backing page 1103 */ 1104 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1105 swap_pager_freespace(tobject, tpindex, 1); 1106 /* 1107 * next object 1108 */ 1109 backing_object = tobject->backing_object; 1110 if (backing_object == NULL) 1111 goto unlock_tobject; 1112 VM_OBJECT_WLOCK(backing_object); 1113 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1114 if (tobject != object) 1115 VM_OBJECT_WUNLOCK(tobject); 1116 tobject = backing_object; 1117 goto shadowlookup; 1118 } else if (m->valid != VM_PAGE_BITS_ALL) 1119 goto unlock_tobject; 1120 /* 1121 * If the page is not in a normal state, skip it. 1122 */ 1123 vm_page_lock(m); 1124 if (m->hold_count != 0 || m->wire_count != 0) { 1125 vm_page_unlock(m); 1126 goto unlock_tobject; 1127 } 1128 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1129 ("vm_object_madvise: page %p is fictitious", m)); 1130 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1131 ("vm_object_madvise: page %p is not managed", m)); 1132 if ((m->oflags & VPO_BUSY) || m->busy) { 1133 if (advise == MADV_WILLNEED) { 1134 /* 1135 * Reference the page before unlocking and 1136 * sleeping so that the page daemon is less 1137 * likely to reclaim it. 1138 */ 1139 vm_page_aflag_set(m, PGA_REFERENCED); 1140 } 1141 vm_page_unlock(m); 1142 if (object != tobject) 1143 VM_OBJECT_WUNLOCK(object); 1144 m->oflags |= VPO_WANTED; 1145 VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0); 1146 VM_OBJECT_WLOCK(object); 1147 goto relookup; 1148 } 1149 if (advise == MADV_WILLNEED) { 1150 vm_page_activate(m); 1151 } else if (advise == MADV_DONTNEED) { 1152 vm_page_dontneed(m); 1153 } else if (advise == MADV_FREE) { 1154 /* 1155 * Mark the page clean. This will allow the page 1156 * to be freed up by the system. However, such pages 1157 * are often reused quickly by malloc()/free() 1158 * so we do not do anything that would cause 1159 * a page fault if we can help it. 1160 * 1161 * Specifically, we do not try to actually free 1162 * the page now nor do we try to put it in the 1163 * cache (which would cause a page fault on reuse). 1164 * 1165 * But we do make the page is freeable as we 1166 * can without actually taking the step of unmapping 1167 * it. 1168 */ 1169 pmap_clear_modify(m); 1170 m->dirty = 0; 1171 m->act_count = 0; 1172 vm_page_dontneed(m); 1173 } 1174 vm_page_unlock(m); 1175 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1176 swap_pager_freespace(tobject, tpindex, 1); 1177 unlock_tobject: 1178 if (tobject != object) 1179 VM_OBJECT_WUNLOCK(tobject); 1180 } 1181 VM_OBJECT_WUNLOCK(object); 1182 } 1183 1184 /* 1185 * vm_object_shadow: 1186 * 1187 * Create a new object which is backed by the 1188 * specified existing object range. The source 1189 * object reference is deallocated. 1190 * 1191 * The new object and offset into that object 1192 * are returned in the source parameters. 1193 */ 1194 void 1195 vm_object_shadow( 1196 vm_object_t *object, /* IN/OUT */ 1197 vm_ooffset_t *offset, /* IN/OUT */ 1198 vm_size_t length) 1199 { 1200 vm_object_t source; 1201 vm_object_t result; 1202 1203 source = *object; 1204 1205 /* 1206 * Don't create the new object if the old object isn't shared. 1207 */ 1208 if (source != NULL) { 1209 VM_OBJECT_WLOCK(source); 1210 if (source->ref_count == 1 && 1211 source->handle == NULL && 1212 (source->type == OBJT_DEFAULT || 1213 source->type == OBJT_SWAP)) { 1214 VM_OBJECT_WUNLOCK(source); 1215 return; 1216 } 1217 VM_OBJECT_WUNLOCK(source); 1218 } 1219 1220 /* 1221 * Allocate a new object with the given length. 1222 */ 1223 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1224 1225 /* 1226 * The new object shadows the source object, adding a reference to it. 1227 * Our caller changes his reference to point to the new object, 1228 * removing a reference to the source object. Net result: no change 1229 * of reference count. 1230 * 1231 * Try to optimize the result object's page color when shadowing 1232 * in order to maintain page coloring consistency in the combined 1233 * shadowed object. 1234 */ 1235 result->backing_object = source; 1236 /* 1237 * Store the offset into the source object, and fix up the offset into 1238 * the new object. 1239 */ 1240 result->backing_object_offset = *offset; 1241 if (source != NULL) { 1242 VM_OBJECT_WLOCK(source); 1243 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1244 source->shadow_count++; 1245 #if VM_NRESERVLEVEL > 0 1246 result->flags |= source->flags & OBJ_COLORED; 1247 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1248 ((1 << (VM_NFREEORDER - 1)) - 1); 1249 #endif 1250 VM_OBJECT_WUNLOCK(source); 1251 } 1252 1253 1254 /* 1255 * Return the new things 1256 */ 1257 *offset = 0; 1258 *object = result; 1259 } 1260 1261 /* 1262 * vm_object_split: 1263 * 1264 * Split the pages in a map entry into a new object. This affords 1265 * easier removal of unused pages, and keeps object inheritance from 1266 * being a negative impact on memory usage. 1267 */ 1268 void 1269 vm_object_split(vm_map_entry_t entry) 1270 { 1271 vm_page_t m, m_next; 1272 vm_object_t orig_object, new_object, source; 1273 vm_pindex_t idx, offidxstart; 1274 vm_size_t size; 1275 1276 orig_object = entry->object.vm_object; 1277 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1278 return; 1279 if (orig_object->ref_count <= 1) 1280 return; 1281 VM_OBJECT_WUNLOCK(orig_object); 1282 1283 offidxstart = OFF_TO_IDX(entry->offset); 1284 size = atop(entry->end - entry->start); 1285 1286 /* 1287 * If swap_pager_copy() is later called, it will convert new_object 1288 * into a swap object. 1289 */ 1290 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1291 1292 /* 1293 * At this point, the new object is still private, so the order in 1294 * which the original and new objects are locked does not matter. 1295 */ 1296 VM_OBJECT_WLOCK(new_object); 1297 VM_OBJECT_WLOCK(orig_object); 1298 source = orig_object->backing_object; 1299 if (source != NULL) { 1300 VM_OBJECT_WLOCK(source); 1301 if ((source->flags & OBJ_DEAD) != 0) { 1302 VM_OBJECT_WUNLOCK(source); 1303 VM_OBJECT_WUNLOCK(orig_object); 1304 VM_OBJECT_WUNLOCK(new_object); 1305 vm_object_deallocate(new_object); 1306 VM_OBJECT_WLOCK(orig_object); 1307 return; 1308 } 1309 LIST_INSERT_HEAD(&source->shadow_head, 1310 new_object, shadow_list); 1311 source->shadow_count++; 1312 vm_object_reference_locked(source); /* for new_object */ 1313 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1314 VM_OBJECT_WUNLOCK(source); 1315 new_object->backing_object_offset = 1316 orig_object->backing_object_offset + entry->offset; 1317 new_object->backing_object = source; 1318 } 1319 if (orig_object->cred != NULL) { 1320 new_object->cred = orig_object->cred; 1321 crhold(orig_object->cred); 1322 new_object->charge = ptoa(size); 1323 KASSERT(orig_object->charge >= ptoa(size), 1324 ("orig_object->charge < 0")); 1325 orig_object->charge -= ptoa(size); 1326 } 1327 retry: 1328 m = vm_page_find_least(orig_object, offidxstart); 1329 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1330 m = m_next) { 1331 m_next = TAILQ_NEXT(m, listq); 1332 1333 /* 1334 * We must wait for pending I/O to complete before we can 1335 * rename the page. 1336 * 1337 * We do not have to VM_PROT_NONE the page as mappings should 1338 * not be changed by this operation. 1339 */ 1340 if ((m->oflags & VPO_BUSY) || m->busy) { 1341 VM_OBJECT_WUNLOCK(new_object); 1342 m->oflags |= VPO_WANTED; 1343 VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0); 1344 VM_OBJECT_WLOCK(new_object); 1345 goto retry; 1346 } 1347 #if VM_NRESERVLEVEL > 0 1348 /* 1349 * If some of the reservation's allocated pages remain with 1350 * the original object, then transferring the reservation to 1351 * the new object is neither particularly beneficial nor 1352 * particularly harmful as compared to leaving the reservation 1353 * with the original object. If, however, all of the 1354 * reservation's allocated pages are transferred to the new 1355 * object, then transferring the reservation is typically 1356 * beneficial. Determining which of these two cases applies 1357 * would be more costly than unconditionally renaming the 1358 * reservation. 1359 */ 1360 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1361 #endif 1362 vm_page_lock(m); 1363 vm_page_rename(m, new_object, idx); 1364 vm_page_unlock(m); 1365 /* page automatically made dirty by rename and cache handled */ 1366 vm_page_busy(m); 1367 } 1368 if (orig_object->type == OBJT_SWAP) { 1369 /* 1370 * swap_pager_copy() can sleep, in which case the orig_object's 1371 * and new_object's locks are released and reacquired. 1372 */ 1373 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1374 1375 /* 1376 * Transfer any cached pages from orig_object to new_object. 1377 * If swap_pager_copy() found swapped out pages within the 1378 * specified range of orig_object, then it changed 1379 * new_object's type to OBJT_SWAP when it transferred those 1380 * pages to new_object. Otherwise, new_object's type 1381 * should still be OBJT_DEFAULT and orig_object should not 1382 * contain any cached pages within the specified range. 1383 */ 1384 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1385 vm_page_cache_transfer(orig_object, offidxstart, 1386 new_object); 1387 } 1388 VM_OBJECT_WUNLOCK(orig_object); 1389 TAILQ_FOREACH(m, &new_object->memq, listq) 1390 vm_page_wakeup(m); 1391 VM_OBJECT_WUNLOCK(new_object); 1392 entry->object.vm_object = new_object; 1393 entry->offset = 0LL; 1394 vm_object_deallocate(orig_object); 1395 VM_OBJECT_WLOCK(new_object); 1396 } 1397 1398 #define OBSC_TEST_ALL_SHADOWED 0x0001 1399 #define OBSC_COLLAPSE_NOWAIT 0x0002 1400 #define OBSC_COLLAPSE_WAIT 0x0004 1401 1402 static int 1403 vm_object_backing_scan(vm_object_t object, int op) 1404 { 1405 int r = 1; 1406 vm_page_t p; 1407 vm_object_t backing_object; 1408 vm_pindex_t backing_offset_index; 1409 1410 VM_OBJECT_ASSERT_WLOCKED(object); 1411 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1412 1413 backing_object = object->backing_object; 1414 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1415 1416 /* 1417 * Initial conditions 1418 */ 1419 if (op & OBSC_TEST_ALL_SHADOWED) { 1420 /* 1421 * We do not want to have to test for the existence of cache 1422 * or swap pages in the backing object. XXX but with the 1423 * new swapper this would be pretty easy to do. 1424 * 1425 * XXX what about anonymous MAP_SHARED memory that hasn't 1426 * been ZFOD faulted yet? If we do not test for this, the 1427 * shadow test may succeed! XXX 1428 */ 1429 if (backing_object->type != OBJT_DEFAULT) { 1430 return (0); 1431 } 1432 } 1433 if (op & OBSC_COLLAPSE_WAIT) { 1434 vm_object_set_flag(backing_object, OBJ_DEAD); 1435 } 1436 1437 /* 1438 * Our scan 1439 */ 1440 p = TAILQ_FIRST(&backing_object->memq); 1441 while (p) { 1442 vm_page_t next = TAILQ_NEXT(p, listq); 1443 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1444 1445 if (op & OBSC_TEST_ALL_SHADOWED) { 1446 vm_page_t pp; 1447 1448 /* 1449 * Ignore pages outside the parent object's range 1450 * and outside the parent object's mapping of the 1451 * backing object. 1452 * 1453 * note that we do not busy the backing object's 1454 * page. 1455 */ 1456 if ( 1457 p->pindex < backing_offset_index || 1458 new_pindex >= object->size 1459 ) { 1460 p = next; 1461 continue; 1462 } 1463 1464 /* 1465 * See if the parent has the page or if the parent's 1466 * object pager has the page. If the parent has the 1467 * page but the page is not valid, the parent's 1468 * object pager must have the page. 1469 * 1470 * If this fails, the parent does not completely shadow 1471 * the object and we might as well give up now. 1472 */ 1473 1474 pp = vm_page_lookup(object, new_pindex); 1475 if ( 1476 (pp == NULL || pp->valid == 0) && 1477 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1478 ) { 1479 r = 0; 1480 break; 1481 } 1482 } 1483 1484 /* 1485 * Check for busy page 1486 */ 1487 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1488 vm_page_t pp; 1489 1490 if (op & OBSC_COLLAPSE_NOWAIT) { 1491 if ((p->oflags & VPO_BUSY) || 1492 !p->valid || 1493 p->busy) { 1494 p = next; 1495 continue; 1496 } 1497 } else if (op & OBSC_COLLAPSE_WAIT) { 1498 if ((p->oflags & VPO_BUSY) || p->busy) { 1499 VM_OBJECT_WUNLOCK(object); 1500 p->oflags |= VPO_WANTED; 1501 VM_OBJECT_SLEEP(backing_object, p, 1502 PDROP | PVM, "vmocol", 0); 1503 VM_OBJECT_WLOCK(object); 1504 VM_OBJECT_WLOCK(backing_object); 1505 /* 1506 * If we slept, anything could have 1507 * happened. Since the object is 1508 * marked dead, the backing offset 1509 * should not have changed so we 1510 * just restart our scan. 1511 */ 1512 p = TAILQ_FIRST(&backing_object->memq); 1513 continue; 1514 } 1515 } 1516 1517 KASSERT( 1518 p->object == backing_object, 1519 ("vm_object_backing_scan: object mismatch") 1520 ); 1521 1522 /* 1523 * Destroy any associated swap 1524 */ 1525 if (backing_object->type == OBJT_SWAP) { 1526 swap_pager_freespace( 1527 backing_object, 1528 p->pindex, 1529 1 1530 ); 1531 } 1532 1533 if ( 1534 p->pindex < backing_offset_index || 1535 new_pindex >= object->size 1536 ) { 1537 /* 1538 * Page is out of the parent object's range, we 1539 * can simply destroy it. 1540 */ 1541 vm_page_lock(p); 1542 KASSERT(!pmap_page_is_mapped(p), 1543 ("freeing mapped page %p", p)); 1544 if (p->wire_count == 0) 1545 vm_page_free(p); 1546 else 1547 vm_page_remove(p); 1548 vm_page_unlock(p); 1549 p = next; 1550 continue; 1551 } 1552 1553 pp = vm_page_lookup(object, new_pindex); 1554 if ( 1555 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1556 (pp != NULL && pp->valid == 0) 1557 ) { 1558 /* 1559 * The page in the parent is not (yet) valid. 1560 * We don't know anything about the state of 1561 * the original page. It might be mapped, 1562 * so we must avoid the next if here. 1563 * 1564 * This is due to a race in vm_fault() where 1565 * we must unbusy the original (backing_obj) 1566 * page before we can (re)lock the parent. 1567 * Hence we can get here. 1568 */ 1569 p = next; 1570 continue; 1571 } 1572 if ( 1573 pp != NULL || 1574 vm_pager_has_page(object, new_pindex, NULL, NULL) 1575 ) { 1576 /* 1577 * page already exists in parent OR swap exists 1578 * for this location in the parent. Destroy 1579 * the original page from the backing object. 1580 * 1581 * Leave the parent's page alone 1582 */ 1583 vm_page_lock(p); 1584 KASSERT(!pmap_page_is_mapped(p), 1585 ("freeing mapped page %p", p)); 1586 if (p->wire_count == 0) 1587 vm_page_free(p); 1588 else 1589 vm_page_remove(p); 1590 vm_page_unlock(p); 1591 p = next; 1592 continue; 1593 } 1594 1595 #if VM_NRESERVLEVEL > 0 1596 /* 1597 * Rename the reservation. 1598 */ 1599 vm_reserv_rename(p, object, backing_object, 1600 backing_offset_index); 1601 #endif 1602 1603 /* 1604 * Page does not exist in parent, rename the 1605 * page from the backing object to the main object. 1606 * 1607 * If the page was mapped to a process, it can remain 1608 * mapped through the rename. 1609 */ 1610 vm_page_lock(p); 1611 vm_page_rename(p, object, new_pindex); 1612 vm_page_unlock(p); 1613 /* page automatically made dirty by rename */ 1614 } 1615 p = next; 1616 } 1617 return (r); 1618 } 1619 1620 1621 /* 1622 * this version of collapse allows the operation to occur earlier and 1623 * when paging_in_progress is true for an object... This is not a complete 1624 * operation, but should plug 99.9% of the rest of the leaks. 1625 */ 1626 static void 1627 vm_object_qcollapse(vm_object_t object) 1628 { 1629 vm_object_t backing_object = object->backing_object; 1630 1631 VM_OBJECT_ASSERT_WLOCKED(object); 1632 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1633 1634 if (backing_object->ref_count != 1) 1635 return; 1636 1637 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1638 } 1639 1640 /* 1641 * vm_object_collapse: 1642 * 1643 * Collapse an object with the object backing it. 1644 * Pages in the backing object are moved into the 1645 * parent, and the backing object is deallocated. 1646 */ 1647 void 1648 vm_object_collapse(vm_object_t object) 1649 { 1650 VM_OBJECT_ASSERT_WLOCKED(object); 1651 1652 while (TRUE) { 1653 vm_object_t backing_object; 1654 1655 /* 1656 * Verify that the conditions are right for collapse: 1657 * 1658 * The object exists and the backing object exists. 1659 */ 1660 if ((backing_object = object->backing_object) == NULL) 1661 break; 1662 1663 /* 1664 * we check the backing object first, because it is most likely 1665 * not collapsable. 1666 */ 1667 VM_OBJECT_WLOCK(backing_object); 1668 if (backing_object->handle != NULL || 1669 (backing_object->type != OBJT_DEFAULT && 1670 backing_object->type != OBJT_SWAP) || 1671 (backing_object->flags & OBJ_DEAD) || 1672 object->handle != NULL || 1673 (object->type != OBJT_DEFAULT && 1674 object->type != OBJT_SWAP) || 1675 (object->flags & OBJ_DEAD)) { 1676 VM_OBJECT_WUNLOCK(backing_object); 1677 break; 1678 } 1679 1680 if ( 1681 object->paging_in_progress != 0 || 1682 backing_object->paging_in_progress != 0 1683 ) { 1684 vm_object_qcollapse(object); 1685 VM_OBJECT_WUNLOCK(backing_object); 1686 break; 1687 } 1688 /* 1689 * We know that we can either collapse the backing object (if 1690 * the parent is the only reference to it) or (perhaps) have 1691 * the parent bypass the object if the parent happens to shadow 1692 * all the resident pages in the entire backing object. 1693 * 1694 * This is ignoring pager-backed pages such as swap pages. 1695 * vm_object_backing_scan fails the shadowing test in this 1696 * case. 1697 */ 1698 if (backing_object->ref_count == 1) { 1699 /* 1700 * If there is exactly one reference to the backing 1701 * object, we can collapse it into the parent. 1702 */ 1703 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1704 1705 #if VM_NRESERVLEVEL > 0 1706 /* 1707 * Break any reservations from backing_object. 1708 */ 1709 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1710 vm_reserv_break_all(backing_object); 1711 #endif 1712 1713 /* 1714 * Move the pager from backing_object to object. 1715 */ 1716 if (backing_object->type == OBJT_SWAP) { 1717 /* 1718 * swap_pager_copy() can sleep, in which case 1719 * the backing_object's and object's locks are 1720 * released and reacquired. 1721 * Since swap_pager_copy() is being asked to 1722 * destroy the source, it will change the 1723 * backing_object's type to OBJT_DEFAULT. 1724 */ 1725 swap_pager_copy( 1726 backing_object, 1727 object, 1728 OFF_TO_IDX(object->backing_object_offset), TRUE); 1729 1730 /* 1731 * Free any cached pages from backing_object. 1732 */ 1733 if (__predict_false( 1734 !vm_object_cache_is_empty(backing_object))) 1735 vm_page_cache_free(backing_object, 0, 0); 1736 } 1737 /* 1738 * Object now shadows whatever backing_object did. 1739 * Note that the reference to 1740 * backing_object->backing_object moves from within 1741 * backing_object to within object. 1742 */ 1743 LIST_REMOVE(object, shadow_list); 1744 backing_object->shadow_count--; 1745 if (backing_object->backing_object) { 1746 VM_OBJECT_WLOCK(backing_object->backing_object); 1747 LIST_REMOVE(backing_object, shadow_list); 1748 LIST_INSERT_HEAD( 1749 &backing_object->backing_object->shadow_head, 1750 object, shadow_list); 1751 /* 1752 * The shadow_count has not changed. 1753 */ 1754 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1755 } 1756 object->backing_object = backing_object->backing_object; 1757 object->backing_object_offset += 1758 backing_object->backing_object_offset; 1759 1760 /* 1761 * Discard backing_object. 1762 * 1763 * Since the backing object has no pages, no pager left, 1764 * and no object references within it, all that is 1765 * necessary is to dispose of it. 1766 */ 1767 KASSERT(backing_object->ref_count == 1, ( 1768 "backing_object %p was somehow re-referenced during collapse!", 1769 backing_object)); 1770 VM_OBJECT_WUNLOCK(backing_object); 1771 vm_object_destroy(backing_object); 1772 1773 object_collapses++; 1774 } else { 1775 vm_object_t new_backing_object; 1776 1777 /* 1778 * If we do not entirely shadow the backing object, 1779 * there is nothing we can do so we give up. 1780 */ 1781 if (object->resident_page_count != object->size && 1782 vm_object_backing_scan(object, 1783 OBSC_TEST_ALL_SHADOWED) == 0) { 1784 VM_OBJECT_WUNLOCK(backing_object); 1785 break; 1786 } 1787 1788 /* 1789 * Make the parent shadow the next object in the 1790 * chain. Deallocating backing_object will not remove 1791 * it, since its reference count is at least 2. 1792 */ 1793 LIST_REMOVE(object, shadow_list); 1794 backing_object->shadow_count--; 1795 1796 new_backing_object = backing_object->backing_object; 1797 if ((object->backing_object = new_backing_object) != NULL) { 1798 VM_OBJECT_WLOCK(new_backing_object); 1799 LIST_INSERT_HEAD( 1800 &new_backing_object->shadow_head, 1801 object, 1802 shadow_list 1803 ); 1804 new_backing_object->shadow_count++; 1805 vm_object_reference_locked(new_backing_object); 1806 VM_OBJECT_WUNLOCK(new_backing_object); 1807 object->backing_object_offset += 1808 backing_object->backing_object_offset; 1809 } 1810 1811 /* 1812 * Drop the reference count on backing_object. Since 1813 * its ref_count was at least 2, it will not vanish. 1814 */ 1815 backing_object->ref_count--; 1816 VM_OBJECT_WUNLOCK(backing_object); 1817 object_bypasses++; 1818 } 1819 1820 /* 1821 * Try again with this object's new backing object. 1822 */ 1823 } 1824 } 1825 1826 /* 1827 * vm_object_page_remove: 1828 * 1829 * For the given object, either frees or invalidates each of the 1830 * specified pages. In general, a page is freed. However, if a page is 1831 * wired for any reason other than the existence of a managed, wired 1832 * mapping, then it may be invalidated but not removed from the object. 1833 * Pages are specified by the given range ["start", "end") and the option 1834 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1835 * extends from "start" to the end of the object. If the option 1836 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1837 * specified range are affected. If the option OBJPR_NOTMAPPED is 1838 * specified, then the pages within the specified range must have no 1839 * mappings. Otherwise, if this option is not specified, any mappings to 1840 * the specified pages are removed before the pages are freed or 1841 * invalidated. 1842 * 1843 * In general, this operation should only be performed on objects that 1844 * contain managed pages. There are, however, two exceptions. First, it 1845 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1846 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1847 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1848 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1849 * 1850 * The object must be locked. 1851 */ 1852 void 1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1854 int options) 1855 { 1856 vm_page_t p, next; 1857 int wirings; 1858 1859 VM_OBJECT_ASSERT_WLOCKED(object); 1860 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1861 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1862 ("vm_object_page_remove: illegal options for object %p", object)); 1863 if (object->resident_page_count == 0) 1864 goto skipmemq; 1865 vm_object_pip_add(object, 1); 1866 again: 1867 p = vm_page_find_least(object, start); 1868 1869 /* 1870 * Here, the variable "p" is either (1) the page with the least pindex 1871 * greater than or equal to the parameter "start" or (2) NULL. 1872 */ 1873 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1874 next = TAILQ_NEXT(p, listq); 1875 1876 /* 1877 * If the page is wired for any reason besides the existence 1878 * of managed, wired mappings, then it cannot be freed. For 1879 * example, fictitious pages, which represent device memory, 1880 * are inherently wired and cannot be freed. They can, 1881 * however, be invalidated if the option OBJPR_CLEANONLY is 1882 * not specified. 1883 */ 1884 vm_page_lock(p); 1885 if ((wirings = p->wire_count) != 0 && 1886 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1887 if ((options & OBJPR_NOTMAPPED) == 0) { 1888 pmap_remove_all(p); 1889 /* Account for removal of wired mappings. */ 1890 if (wirings != 0) 1891 p->wire_count -= wirings; 1892 } 1893 if ((options & OBJPR_CLEANONLY) == 0) { 1894 p->valid = 0; 1895 vm_page_undirty(p); 1896 } 1897 vm_page_unlock(p); 1898 continue; 1899 } 1900 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1901 goto again; 1902 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1903 ("vm_object_page_remove: page %p is fictitious", p)); 1904 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1905 if ((options & OBJPR_NOTMAPPED) == 0) 1906 pmap_remove_write(p); 1907 if (p->dirty) { 1908 vm_page_unlock(p); 1909 continue; 1910 } 1911 } 1912 if ((options & OBJPR_NOTMAPPED) == 0) { 1913 pmap_remove_all(p); 1914 /* Account for removal of wired mappings. */ 1915 if (wirings != 0) { 1916 KASSERT(p->wire_count == wirings, 1917 ("inconsistent wire count %d %d %p", 1918 p->wire_count, wirings, p)); 1919 p->wire_count = 0; 1920 atomic_subtract_int(&cnt.v_wire_count, 1); 1921 } 1922 } 1923 vm_page_free(p); 1924 vm_page_unlock(p); 1925 } 1926 vm_object_pip_wakeup(object); 1927 skipmemq: 1928 if (__predict_false(!vm_object_cache_is_empty(object))) 1929 vm_page_cache_free(object, start, end); 1930 } 1931 1932 /* 1933 * vm_object_page_cache: 1934 * 1935 * For the given object, attempt to move the specified clean 1936 * pages to the cache queue. If a page is wired for any reason, 1937 * then it will not be changed. Pages are specified by the given 1938 * range ["start", "end"). As a special case, if "end" is zero, 1939 * then the range extends from "start" to the end of the object. 1940 * Any mappings to the specified pages are removed before the 1941 * pages are moved to the cache queue. 1942 * 1943 * This operation should only be performed on objects that 1944 * contain non-fictitious, managed pages. 1945 * 1946 * The object must be locked. 1947 */ 1948 void 1949 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1950 { 1951 struct mtx *mtx, *new_mtx; 1952 vm_page_t p, next; 1953 1954 VM_OBJECT_ASSERT_WLOCKED(object); 1955 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1956 ("vm_object_page_cache: illegal object %p", object)); 1957 if (object->resident_page_count == 0) 1958 return; 1959 p = vm_page_find_least(object, start); 1960 1961 /* 1962 * Here, the variable "p" is either (1) the page with the least pindex 1963 * greater than or equal to the parameter "start" or (2) NULL. 1964 */ 1965 mtx = NULL; 1966 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1967 next = TAILQ_NEXT(p, listq); 1968 1969 /* 1970 * Avoid releasing and reacquiring the same page lock. 1971 */ 1972 new_mtx = vm_page_lockptr(p); 1973 if (mtx != new_mtx) { 1974 if (mtx != NULL) 1975 mtx_unlock(mtx); 1976 mtx = new_mtx; 1977 mtx_lock(mtx); 1978 } 1979 vm_page_try_to_cache(p); 1980 } 1981 if (mtx != NULL) 1982 mtx_unlock(mtx); 1983 } 1984 1985 /* 1986 * Populate the specified range of the object with valid pages. Returns 1987 * TRUE if the range is successfully populated and FALSE otherwise. 1988 * 1989 * Note: This function should be optimized to pass a larger array of 1990 * pages to vm_pager_get_pages() before it is applied to a non- 1991 * OBJT_DEVICE object. 1992 * 1993 * The object must be locked. 1994 */ 1995 boolean_t 1996 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1997 { 1998 vm_page_t m, ma[1]; 1999 vm_pindex_t pindex; 2000 int rv; 2001 2002 VM_OBJECT_ASSERT_WLOCKED(object); 2003 for (pindex = start; pindex < end; pindex++) { 2004 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 2005 VM_ALLOC_RETRY); 2006 if (m->valid != VM_PAGE_BITS_ALL) { 2007 ma[0] = m; 2008 rv = vm_pager_get_pages(object, ma, 1, 0); 2009 m = vm_page_lookup(object, pindex); 2010 if (m == NULL) 2011 break; 2012 if (rv != VM_PAGER_OK) { 2013 vm_page_lock(m); 2014 vm_page_free(m); 2015 vm_page_unlock(m); 2016 break; 2017 } 2018 } 2019 /* 2020 * Keep "m" busy because a subsequent iteration may unlock 2021 * the object. 2022 */ 2023 } 2024 if (pindex > start) { 2025 m = vm_page_lookup(object, start); 2026 while (m != NULL && m->pindex < pindex) { 2027 vm_page_wakeup(m); 2028 m = TAILQ_NEXT(m, listq); 2029 } 2030 } 2031 return (pindex == end); 2032 } 2033 2034 /* 2035 * Routine: vm_object_coalesce 2036 * Function: Coalesces two objects backing up adjoining 2037 * regions of memory into a single object. 2038 * 2039 * returns TRUE if objects were combined. 2040 * 2041 * NOTE: Only works at the moment if the second object is NULL - 2042 * if it's not, which object do we lock first? 2043 * 2044 * Parameters: 2045 * prev_object First object to coalesce 2046 * prev_offset Offset into prev_object 2047 * prev_size Size of reference to prev_object 2048 * next_size Size of reference to the second object 2049 * reserved Indicator that extension region has 2050 * swap accounted for 2051 * 2052 * Conditions: 2053 * The object must *not* be locked. 2054 */ 2055 boolean_t 2056 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2057 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2058 { 2059 vm_pindex_t next_pindex; 2060 2061 if (prev_object == NULL) 2062 return (TRUE); 2063 VM_OBJECT_WLOCK(prev_object); 2064 if (prev_object->type != OBJT_DEFAULT && 2065 prev_object->type != OBJT_SWAP) { 2066 VM_OBJECT_WUNLOCK(prev_object); 2067 return (FALSE); 2068 } 2069 2070 /* 2071 * Try to collapse the object first 2072 */ 2073 vm_object_collapse(prev_object); 2074 2075 /* 2076 * Can't coalesce if: . more than one reference . paged out . shadows 2077 * another object . has a copy elsewhere (any of which mean that the 2078 * pages not mapped to prev_entry may be in use anyway) 2079 */ 2080 if (prev_object->backing_object != NULL) { 2081 VM_OBJECT_WUNLOCK(prev_object); 2082 return (FALSE); 2083 } 2084 2085 prev_size >>= PAGE_SHIFT; 2086 next_size >>= PAGE_SHIFT; 2087 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2088 2089 if ((prev_object->ref_count > 1) && 2090 (prev_object->size != next_pindex)) { 2091 VM_OBJECT_WUNLOCK(prev_object); 2092 return (FALSE); 2093 } 2094 2095 /* 2096 * Account for the charge. 2097 */ 2098 if (prev_object->cred != NULL) { 2099 2100 /* 2101 * If prev_object was charged, then this mapping, 2102 * althought not charged now, may become writable 2103 * later. Non-NULL cred in the object would prevent 2104 * swap reservation during enabling of the write 2105 * access, so reserve swap now. Failed reservation 2106 * cause allocation of the separate object for the map 2107 * entry, and swap reservation for this entry is 2108 * managed in appropriate time. 2109 */ 2110 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2111 prev_object->cred)) { 2112 return (FALSE); 2113 } 2114 prev_object->charge += ptoa(next_size); 2115 } 2116 2117 /* 2118 * Remove any pages that may still be in the object from a previous 2119 * deallocation. 2120 */ 2121 if (next_pindex < prev_object->size) { 2122 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2123 next_size, 0); 2124 if (prev_object->type == OBJT_SWAP) 2125 swap_pager_freespace(prev_object, 2126 next_pindex, next_size); 2127 #if 0 2128 if (prev_object->cred != NULL) { 2129 KASSERT(prev_object->charge >= 2130 ptoa(prev_object->size - next_pindex), 2131 ("object %p overcharged 1 %jx %jx", prev_object, 2132 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2133 prev_object->charge -= ptoa(prev_object->size - 2134 next_pindex); 2135 } 2136 #endif 2137 } 2138 2139 /* 2140 * Extend the object if necessary. 2141 */ 2142 if (next_pindex + next_size > prev_object->size) 2143 prev_object->size = next_pindex + next_size; 2144 2145 VM_OBJECT_WUNLOCK(prev_object); 2146 return (TRUE); 2147 } 2148 2149 void 2150 vm_object_set_writeable_dirty(vm_object_t object) 2151 { 2152 2153 VM_OBJECT_ASSERT_WLOCKED(object); 2154 if (object->type != OBJT_VNODE) 2155 return; 2156 object->generation++; 2157 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2158 return; 2159 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2160 } 2161 2162 #include "opt_ddb.h" 2163 #ifdef DDB 2164 #include <sys/kernel.h> 2165 2166 #include <sys/cons.h> 2167 2168 #include <ddb/ddb.h> 2169 2170 static int 2171 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2172 { 2173 vm_map_t tmpm; 2174 vm_map_entry_t tmpe; 2175 vm_object_t obj; 2176 int entcount; 2177 2178 if (map == 0) 2179 return 0; 2180 2181 if (entry == 0) { 2182 tmpe = map->header.next; 2183 entcount = map->nentries; 2184 while (entcount-- && (tmpe != &map->header)) { 2185 if (_vm_object_in_map(map, object, tmpe)) { 2186 return 1; 2187 } 2188 tmpe = tmpe->next; 2189 } 2190 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2191 tmpm = entry->object.sub_map; 2192 tmpe = tmpm->header.next; 2193 entcount = tmpm->nentries; 2194 while (entcount-- && tmpe != &tmpm->header) { 2195 if (_vm_object_in_map(tmpm, object, tmpe)) { 2196 return 1; 2197 } 2198 tmpe = tmpe->next; 2199 } 2200 } else if ((obj = entry->object.vm_object) != NULL) { 2201 for (; obj; obj = obj->backing_object) 2202 if (obj == object) { 2203 return 1; 2204 } 2205 } 2206 return 0; 2207 } 2208 2209 static int 2210 vm_object_in_map(vm_object_t object) 2211 { 2212 struct proc *p; 2213 2214 /* sx_slock(&allproc_lock); */ 2215 FOREACH_PROC_IN_SYSTEM(p) { 2216 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2217 continue; 2218 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2219 /* sx_sunlock(&allproc_lock); */ 2220 return 1; 2221 } 2222 } 2223 /* sx_sunlock(&allproc_lock); */ 2224 if (_vm_object_in_map(kernel_map, object, 0)) 2225 return 1; 2226 if (_vm_object_in_map(kmem_map, object, 0)) 2227 return 1; 2228 if (_vm_object_in_map(pager_map, object, 0)) 2229 return 1; 2230 if (_vm_object_in_map(buffer_map, object, 0)) 2231 return 1; 2232 return 0; 2233 } 2234 2235 DB_SHOW_COMMAND(vmochk, vm_object_check) 2236 { 2237 vm_object_t object; 2238 2239 /* 2240 * make sure that internal objs are in a map somewhere 2241 * and none have zero ref counts. 2242 */ 2243 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2244 if (object->handle == NULL && 2245 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2246 if (object->ref_count == 0) { 2247 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2248 (long)object->size); 2249 } 2250 if (!vm_object_in_map(object)) { 2251 db_printf( 2252 "vmochk: internal obj is not in a map: " 2253 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2254 object->ref_count, (u_long)object->size, 2255 (u_long)object->size, 2256 (void *)object->backing_object); 2257 } 2258 } 2259 } 2260 } 2261 2262 /* 2263 * vm_object_print: [ debug ] 2264 */ 2265 DB_SHOW_COMMAND(object, vm_object_print_static) 2266 { 2267 /* XXX convert args. */ 2268 vm_object_t object = (vm_object_t)addr; 2269 boolean_t full = have_addr; 2270 2271 vm_page_t p; 2272 2273 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2274 #define count was_count 2275 2276 int count; 2277 2278 if (object == NULL) 2279 return; 2280 2281 db_iprintf( 2282 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2283 object, (int)object->type, (uintmax_t)object->size, 2284 object->resident_page_count, object->ref_count, object->flags, 2285 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2286 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2287 object->shadow_count, 2288 object->backing_object ? object->backing_object->ref_count : 0, 2289 object->backing_object, (uintmax_t)object->backing_object_offset); 2290 2291 if (!full) 2292 return; 2293 2294 db_indent += 2; 2295 count = 0; 2296 TAILQ_FOREACH(p, &object->memq, listq) { 2297 if (count == 0) 2298 db_iprintf("memory:="); 2299 else if (count == 6) { 2300 db_printf("\n"); 2301 db_iprintf(" ..."); 2302 count = 0; 2303 } else 2304 db_printf(","); 2305 count++; 2306 2307 db_printf("(off=0x%jx,page=0x%jx)", 2308 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2309 } 2310 if (count != 0) 2311 db_printf("\n"); 2312 db_indent -= 2; 2313 } 2314 2315 /* XXX. */ 2316 #undef count 2317 2318 /* XXX need this non-static entry for calling from vm_map_print. */ 2319 void 2320 vm_object_print( 2321 /* db_expr_t */ long addr, 2322 boolean_t have_addr, 2323 /* db_expr_t */ long count, 2324 char *modif) 2325 { 2326 vm_object_print_static(addr, have_addr, count, modif); 2327 } 2328 2329 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2330 { 2331 vm_object_t object; 2332 vm_pindex_t fidx; 2333 vm_paddr_t pa; 2334 vm_page_t m, prev_m; 2335 int rcount, nl, c; 2336 2337 nl = 0; 2338 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2339 db_printf("new object: %p\n", (void *)object); 2340 if (nl > 18) { 2341 c = cngetc(); 2342 if (c != ' ') 2343 return; 2344 nl = 0; 2345 } 2346 nl++; 2347 rcount = 0; 2348 fidx = 0; 2349 pa = -1; 2350 TAILQ_FOREACH(m, &object->memq, listq) { 2351 if (m->pindex > 128) 2352 break; 2353 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2354 prev_m->pindex + 1 != m->pindex) { 2355 if (rcount) { 2356 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2357 (long)fidx, rcount, (long)pa); 2358 if (nl > 18) { 2359 c = cngetc(); 2360 if (c != ' ') 2361 return; 2362 nl = 0; 2363 } 2364 nl++; 2365 rcount = 0; 2366 } 2367 } 2368 if (rcount && 2369 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2370 ++rcount; 2371 continue; 2372 } 2373 if (rcount) { 2374 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2375 (long)fidx, rcount, (long)pa); 2376 if (nl > 18) { 2377 c = cngetc(); 2378 if (c != ' ') 2379 return; 2380 nl = 0; 2381 } 2382 nl++; 2383 } 2384 fidx = m->pindex; 2385 pa = VM_PAGE_TO_PHYS(m); 2386 rcount = 1; 2387 } 2388 if (rcount) { 2389 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2390 (long)fidx, rcount, (long)pa); 2391 if (nl > 18) { 2392 c = cngetc(); 2393 if (c != ' ') 2394 return; 2395 nl = 0; 2396 } 2397 nl++; 2398 } 2399 } 2400 } 2401 #endif /* DDB */ 2402