xref: /freebsd/sys/vm/vm_object.c (revision 718cf2ccb9956613756ab15d7a0e28f2c8e91cab)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/pctrie.h>
79 #include <sys/sysctl.h>
80 #include <sys/mutex.h>
81 #include <sys/proc.h>		/* for curproc, pageproc */
82 #include <sys/socket.h>
83 #include <sys/resourcevar.h>
84 #include <sys/rwlock.h>
85 #include <sys/user.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sx.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_extern.h>
101 #include <vm/vm_radix.h>
102 #include <vm/vm_reserv.h>
103 #include <vm/uma.h>
104 
105 static int old_msync;
106 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
107     "Use old (insecure) msync behavior");
108 
109 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
110 		    int pagerflags, int flags, boolean_t *clearobjflags,
111 		    boolean_t *eio);
112 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
113 		    boolean_t *clearobjflags);
114 static void	vm_object_qcollapse(vm_object_t object);
115 static void	vm_object_vndeallocate(vm_object_t object);
116 
117 /*
118  *	Virtual memory objects maintain the actual data
119  *	associated with allocated virtual memory.  A given
120  *	page of memory exists within exactly one object.
121  *
122  *	An object is only deallocated when all "references"
123  *	are given up.  Only one "reference" to a given
124  *	region of an object should be writeable.
125  *
126  *	Associated with each object is a list of all resident
127  *	memory pages belonging to that object; this list is
128  *	maintained by the "vm_page" module, and locked by the object's
129  *	lock.
130  *
131  *	Each object also records a "pager" routine which is
132  *	used to retrieve (and store) pages to the proper backing
133  *	storage.  In addition, objects may be backed by other
134  *	objects from which they were virtual-copied.
135  *
136  *	The only items within the object structure which are
137  *	modified after time of creation are:
138  *		reference count		locked by object's lock
139  *		pager routine		locked by object's lock
140  *
141  */
142 
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx;	/* lock for object list and count */
145 
146 struct vm_object kernel_object_store;
147 struct vm_object kmem_object_store;
148 
149 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
150     "VM object stats");
151 
152 static long object_collapses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses, 0, "VM object collapses");
155 
156 static long object_bypasses;
157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses, 0, "VM object bypasses");
159 
160 static uma_zone_t obj_zone;
161 
162 static int vm_object_zinit(void *mem, int size, int flags);
163 
164 #ifdef INVARIANTS
165 static void vm_object_zdtor(void *mem, int size, void *arg);
166 
167 static void
168 vm_object_zdtor(void *mem, int size, void *arg)
169 {
170 	vm_object_t object;
171 
172 	object = (vm_object_t)mem;
173 	KASSERT(object->ref_count == 0,
174 	    ("object %p ref_count = %d", object, object->ref_count));
175 	KASSERT(TAILQ_EMPTY(&object->memq),
176 	    ("object %p has resident pages in its memq", object));
177 	KASSERT(vm_radix_is_empty(&object->rtree),
178 	    ("object %p has resident pages in its trie", object));
179 #if VM_NRESERVLEVEL > 0
180 	KASSERT(LIST_EMPTY(&object->rvq),
181 	    ("object %p has reservations",
182 	    object));
183 #endif
184 	KASSERT(object->paging_in_progress == 0,
185 	    ("object %p paging_in_progress = %d",
186 	    object, object->paging_in_progress));
187 	KASSERT(object->resident_page_count == 0,
188 	    ("object %p resident_page_count = %d",
189 	    object, object->resident_page_count));
190 	KASSERT(object->shadow_count == 0,
191 	    ("object %p shadow_count = %d",
192 	    object, object->shadow_count));
193 	KASSERT(object->type == OBJT_DEAD,
194 	    ("object %p has non-dead type %d",
195 	    object, object->type));
196 }
197 #endif
198 
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202 	vm_object_t object;
203 
204 	object = (vm_object_t)mem;
205 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206 
207 	/* These are true for any object that has been freed */
208 	object->type = OBJT_DEAD;
209 	object->ref_count = 0;
210 	vm_radix_init(&object->rtree);
211 	object->paging_in_progress = 0;
212 	object->resident_page_count = 0;
213 	object->shadow_count = 0;
214 	object->flags = OBJ_DEAD;
215 
216 	mtx_lock(&vm_object_list_mtx);
217 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
218 	mtx_unlock(&vm_object_list_mtx);
219 	return (0);
220 }
221 
222 static void
223 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
224 {
225 
226 	TAILQ_INIT(&object->memq);
227 	LIST_INIT(&object->shadow_head);
228 
229 	object->type = type;
230 	if (type == OBJT_SWAP)
231 		pctrie_init(&object->un_pager.swp.swp_blks);
232 
233 	/*
234 	 * Ensure that swap_pager_swapoff() iteration over object_list
235 	 * sees up to date type and pctrie head if it observed
236 	 * non-dead object.
237 	 */
238 	atomic_thread_fence_rel();
239 
240 	switch (type) {
241 	case OBJT_DEAD:
242 		panic("_vm_object_allocate: can't create OBJT_DEAD");
243 	case OBJT_DEFAULT:
244 	case OBJT_SWAP:
245 		object->flags = OBJ_ONEMAPPING;
246 		break;
247 	case OBJT_DEVICE:
248 	case OBJT_SG:
249 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
250 		break;
251 	case OBJT_MGTDEVICE:
252 		object->flags = OBJ_FICTITIOUS;
253 		break;
254 	case OBJT_PHYS:
255 		object->flags = OBJ_UNMANAGED;
256 		break;
257 	case OBJT_VNODE:
258 		object->flags = 0;
259 		break;
260 	default:
261 		panic("_vm_object_allocate: type %d is undefined", type);
262 	}
263 	object->size = size;
264 	object->generation = 1;
265 	object->ref_count = 1;
266 	object->memattr = VM_MEMATTR_DEFAULT;
267 	object->cred = NULL;
268 	object->charge = 0;
269 	object->handle = NULL;
270 	object->backing_object = NULL;
271 	object->backing_object_offset = (vm_ooffset_t) 0;
272 #if VM_NRESERVLEVEL > 0
273 	LIST_INIT(&object->rvq);
274 #endif
275 	umtx_shm_object_init(object);
276 }
277 
278 /*
279  *	vm_object_init:
280  *
281  *	Initialize the VM objects module.
282  */
283 void
284 vm_object_init(void)
285 {
286 	TAILQ_INIT(&vm_object_list);
287 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
288 
289 	rw_init(&kernel_object->lock, "kernel vm object");
290 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
291 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
292 #if VM_NRESERVLEVEL > 0
293 	kernel_object->flags |= OBJ_COLORED;
294 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296 
297 	rw_init(&kmem_object->lock, "kmem vm object");
298 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
299 	    VM_MIN_KERNEL_ADDRESS), kmem_object);
300 #if VM_NRESERVLEVEL > 0
301 	kmem_object->flags |= OBJ_COLORED;
302 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
303 #endif
304 
305 	/*
306 	 * The lock portion of struct vm_object must be type stable due
307 	 * to vm_pageout_fallback_object_lock locking a vm object
308 	 * without holding any references to it.
309 	 */
310 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
311 #ifdef INVARIANTS
312 	    vm_object_zdtor,
313 #else
314 	    NULL,
315 #endif
316 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
317 
318 	vm_radix_zinit();
319 }
320 
321 void
322 vm_object_clear_flag(vm_object_t object, u_short bits)
323 {
324 
325 	VM_OBJECT_ASSERT_WLOCKED(object);
326 	object->flags &= ~bits;
327 }
328 
329 /*
330  *	Sets the default memory attribute for the specified object.  Pages
331  *	that are allocated to this object are by default assigned this memory
332  *	attribute.
333  *
334  *	Presently, this function must be called before any pages are allocated
335  *	to the object.  In the future, this requirement may be relaxed for
336  *	"default" and "swap" objects.
337  */
338 int
339 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
340 {
341 
342 	VM_OBJECT_ASSERT_WLOCKED(object);
343 	switch (object->type) {
344 	case OBJT_DEFAULT:
345 	case OBJT_DEVICE:
346 	case OBJT_MGTDEVICE:
347 	case OBJT_PHYS:
348 	case OBJT_SG:
349 	case OBJT_SWAP:
350 	case OBJT_VNODE:
351 		if (!TAILQ_EMPTY(&object->memq))
352 			return (KERN_FAILURE);
353 		break;
354 	case OBJT_DEAD:
355 		return (KERN_INVALID_ARGUMENT);
356 	default:
357 		panic("vm_object_set_memattr: object %p is of undefined type",
358 		    object);
359 	}
360 	object->memattr = memattr;
361 	return (KERN_SUCCESS);
362 }
363 
364 void
365 vm_object_pip_add(vm_object_t object, short i)
366 {
367 
368 	VM_OBJECT_ASSERT_WLOCKED(object);
369 	object->paging_in_progress += i;
370 }
371 
372 void
373 vm_object_pip_subtract(vm_object_t object, short i)
374 {
375 
376 	VM_OBJECT_ASSERT_WLOCKED(object);
377 	object->paging_in_progress -= i;
378 }
379 
380 void
381 vm_object_pip_wakeup(vm_object_t object)
382 {
383 
384 	VM_OBJECT_ASSERT_WLOCKED(object);
385 	object->paging_in_progress--;
386 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
387 		vm_object_clear_flag(object, OBJ_PIPWNT);
388 		wakeup(object);
389 	}
390 }
391 
392 void
393 vm_object_pip_wakeupn(vm_object_t object, short i)
394 {
395 
396 	VM_OBJECT_ASSERT_WLOCKED(object);
397 	if (i)
398 		object->paging_in_progress -= i;
399 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
400 		vm_object_clear_flag(object, OBJ_PIPWNT);
401 		wakeup(object);
402 	}
403 }
404 
405 void
406 vm_object_pip_wait(vm_object_t object, char *waitid)
407 {
408 
409 	VM_OBJECT_ASSERT_WLOCKED(object);
410 	while (object->paging_in_progress) {
411 		object->flags |= OBJ_PIPWNT;
412 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
413 	}
414 }
415 
416 /*
417  *	vm_object_allocate:
418  *
419  *	Returns a new object with the given size.
420  */
421 vm_object_t
422 vm_object_allocate(objtype_t type, vm_pindex_t size)
423 {
424 	vm_object_t object;
425 
426 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
427 	_vm_object_allocate(type, size, object);
428 	return (object);
429 }
430 
431 
432 /*
433  *	vm_object_reference:
434  *
435  *	Gets another reference to the given object.  Note: OBJ_DEAD
436  *	objects can be referenced during final cleaning.
437  */
438 void
439 vm_object_reference(vm_object_t object)
440 {
441 	if (object == NULL)
442 		return;
443 	VM_OBJECT_WLOCK(object);
444 	vm_object_reference_locked(object);
445 	VM_OBJECT_WUNLOCK(object);
446 }
447 
448 /*
449  *	vm_object_reference_locked:
450  *
451  *	Gets another reference to the given object.
452  *
453  *	The object must be locked.
454  */
455 void
456 vm_object_reference_locked(vm_object_t object)
457 {
458 	struct vnode *vp;
459 
460 	VM_OBJECT_ASSERT_WLOCKED(object);
461 	object->ref_count++;
462 	if (object->type == OBJT_VNODE) {
463 		vp = object->handle;
464 		vref(vp);
465 	}
466 }
467 
468 /*
469  * Handle deallocating an object of type OBJT_VNODE.
470  */
471 static void
472 vm_object_vndeallocate(vm_object_t object)
473 {
474 	struct vnode *vp = (struct vnode *) object->handle;
475 
476 	VM_OBJECT_ASSERT_WLOCKED(object);
477 	KASSERT(object->type == OBJT_VNODE,
478 	    ("vm_object_vndeallocate: not a vnode object"));
479 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
480 #ifdef INVARIANTS
481 	if (object->ref_count == 0) {
482 		vn_printf(vp, "vm_object_vndeallocate ");
483 		panic("vm_object_vndeallocate: bad object reference count");
484 	}
485 #endif
486 
487 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
488 		umtx_shm_object_terminated(object);
489 
490 	/*
491 	 * The test for text of vp vnode does not need a bypass to
492 	 * reach right VV_TEXT there, since it is obtained from
493 	 * object->handle.
494 	 */
495 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
496 		object->ref_count--;
497 		VM_OBJECT_WUNLOCK(object);
498 		/* vrele may need the vnode lock. */
499 		vrele(vp);
500 	} else {
501 		vhold(vp);
502 		VM_OBJECT_WUNLOCK(object);
503 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
504 		vdrop(vp);
505 		VM_OBJECT_WLOCK(object);
506 		object->ref_count--;
507 		if (object->type == OBJT_DEAD) {
508 			VM_OBJECT_WUNLOCK(object);
509 			VOP_UNLOCK(vp, 0);
510 		} else {
511 			if (object->ref_count == 0)
512 				VOP_UNSET_TEXT(vp);
513 			VM_OBJECT_WUNLOCK(object);
514 			vput(vp);
515 		}
516 	}
517 }
518 
519 /*
520  *	vm_object_deallocate:
521  *
522  *	Release a reference to the specified object,
523  *	gained either through a vm_object_allocate
524  *	or a vm_object_reference call.  When all references
525  *	are gone, storage associated with this object
526  *	may be relinquished.
527  *
528  *	No object may be locked.
529  */
530 void
531 vm_object_deallocate(vm_object_t object)
532 {
533 	vm_object_t temp;
534 	struct vnode *vp;
535 
536 	while (object != NULL) {
537 		VM_OBJECT_WLOCK(object);
538 		if (object->type == OBJT_VNODE) {
539 			vm_object_vndeallocate(object);
540 			return;
541 		}
542 
543 		KASSERT(object->ref_count != 0,
544 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
545 
546 		/*
547 		 * If the reference count goes to 0 we start calling
548 		 * vm_object_terminate() on the object chain.
549 		 * A ref count of 1 may be a special case depending on the
550 		 * shadow count being 0 or 1.
551 		 */
552 		object->ref_count--;
553 		if (object->ref_count > 1) {
554 			VM_OBJECT_WUNLOCK(object);
555 			return;
556 		} else if (object->ref_count == 1) {
557 			if (object->type == OBJT_SWAP &&
558 			    (object->flags & OBJ_TMPFS) != 0) {
559 				vp = object->un_pager.swp.swp_tmpfs;
560 				vhold(vp);
561 				VM_OBJECT_WUNLOCK(object);
562 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
563 				VM_OBJECT_WLOCK(object);
564 				if (object->type == OBJT_DEAD ||
565 				    object->ref_count != 1) {
566 					VM_OBJECT_WUNLOCK(object);
567 					VOP_UNLOCK(vp, 0);
568 					vdrop(vp);
569 					return;
570 				}
571 				if ((object->flags & OBJ_TMPFS) != 0)
572 					VOP_UNSET_TEXT(vp);
573 				VOP_UNLOCK(vp, 0);
574 				vdrop(vp);
575 			}
576 			if (object->shadow_count == 0 &&
577 			    object->handle == NULL &&
578 			    (object->type == OBJT_DEFAULT ||
579 			    (object->type == OBJT_SWAP &&
580 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
581 				vm_object_set_flag(object, OBJ_ONEMAPPING);
582 			} else if ((object->shadow_count == 1) &&
583 			    (object->handle == NULL) &&
584 			    (object->type == OBJT_DEFAULT ||
585 			     object->type == OBJT_SWAP)) {
586 				vm_object_t robject;
587 
588 				robject = LIST_FIRST(&object->shadow_head);
589 				KASSERT(robject != NULL,
590 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
591 					 object->ref_count,
592 					 object->shadow_count));
593 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
594 				    ("shadowed tmpfs v_object %p", object));
595 				if (!VM_OBJECT_TRYWLOCK(robject)) {
596 					/*
597 					 * Avoid a potential deadlock.
598 					 */
599 					object->ref_count++;
600 					VM_OBJECT_WUNLOCK(object);
601 					/*
602 					 * More likely than not the thread
603 					 * holding robject's lock has lower
604 					 * priority than the current thread.
605 					 * Let the lower priority thread run.
606 					 */
607 					pause("vmo_de", 1);
608 					continue;
609 				}
610 				/*
611 				 * Collapse object into its shadow unless its
612 				 * shadow is dead.  In that case, object will
613 				 * be deallocated by the thread that is
614 				 * deallocating its shadow.
615 				 */
616 				if ((robject->flags & OBJ_DEAD) == 0 &&
617 				    (robject->handle == NULL) &&
618 				    (robject->type == OBJT_DEFAULT ||
619 				     robject->type == OBJT_SWAP)) {
620 
621 					robject->ref_count++;
622 retry:
623 					if (robject->paging_in_progress) {
624 						VM_OBJECT_WUNLOCK(object);
625 						vm_object_pip_wait(robject,
626 						    "objde1");
627 						temp = robject->backing_object;
628 						if (object == temp) {
629 							VM_OBJECT_WLOCK(object);
630 							goto retry;
631 						}
632 					} else if (object->paging_in_progress) {
633 						VM_OBJECT_WUNLOCK(robject);
634 						object->flags |= OBJ_PIPWNT;
635 						VM_OBJECT_SLEEP(object, object,
636 						    PDROP | PVM, "objde2", 0);
637 						VM_OBJECT_WLOCK(robject);
638 						temp = robject->backing_object;
639 						if (object == temp) {
640 							VM_OBJECT_WLOCK(object);
641 							goto retry;
642 						}
643 					} else
644 						VM_OBJECT_WUNLOCK(object);
645 
646 					if (robject->ref_count == 1) {
647 						robject->ref_count--;
648 						object = robject;
649 						goto doterm;
650 					}
651 					object = robject;
652 					vm_object_collapse(object);
653 					VM_OBJECT_WUNLOCK(object);
654 					continue;
655 				}
656 				VM_OBJECT_WUNLOCK(robject);
657 			}
658 			VM_OBJECT_WUNLOCK(object);
659 			return;
660 		}
661 doterm:
662 		umtx_shm_object_terminated(object);
663 		temp = object->backing_object;
664 		if (temp != NULL) {
665 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
666 			    ("shadowed tmpfs v_object 2 %p", object));
667 			VM_OBJECT_WLOCK(temp);
668 			LIST_REMOVE(object, shadow_list);
669 			temp->shadow_count--;
670 			VM_OBJECT_WUNLOCK(temp);
671 			object->backing_object = NULL;
672 		}
673 		/*
674 		 * Don't double-terminate, we could be in a termination
675 		 * recursion due to the terminate having to sync data
676 		 * to disk.
677 		 */
678 		if ((object->flags & OBJ_DEAD) == 0)
679 			vm_object_terminate(object);
680 		else
681 			VM_OBJECT_WUNLOCK(object);
682 		object = temp;
683 	}
684 }
685 
686 /*
687  *	vm_object_destroy removes the object from the global object list
688  *      and frees the space for the object.
689  */
690 void
691 vm_object_destroy(vm_object_t object)
692 {
693 
694 	/*
695 	 * Release the allocation charge.
696 	 */
697 	if (object->cred != NULL) {
698 		swap_release_by_cred(object->charge, object->cred);
699 		object->charge = 0;
700 		crfree(object->cred);
701 		object->cred = NULL;
702 	}
703 
704 	/*
705 	 * Free the space for the object.
706 	 */
707 	uma_zfree(obj_zone, object);
708 }
709 
710 /*
711  *	vm_object_terminate_pages removes any remaining pageable pages
712  *	from the object and resets the object to an empty state.
713  */
714 static void
715 vm_object_terminate_pages(vm_object_t object)
716 {
717 	vm_page_t p, p_next;
718 	struct mtx *mtx, *mtx1;
719 	struct vm_pagequeue *pq, *pq1;
720 	int dequeued;
721 
722 	VM_OBJECT_ASSERT_WLOCKED(object);
723 
724 	mtx = NULL;
725 	pq = NULL;
726 
727 	/*
728 	 * Free any remaining pageable pages.  This also removes them from the
729 	 * paging queues.  However, don't free wired pages, just remove them
730 	 * from the object.  Rather than incrementally removing each page from
731 	 * the object, the page and object are reset to any empty state.
732 	 */
733 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
734 		vm_page_assert_unbusied(p);
735 		if ((object->flags & OBJ_UNMANAGED) == 0) {
736 			/*
737 			 * vm_page_free_prep() only needs the page
738 			 * lock for managed pages.
739 			 */
740 			mtx1 = vm_page_lockptr(p);
741 			if (mtx1 != mtx) {
742 				if (mtx != NULL)
743 					mtx_unlock(mtx);
744 				if (pq != NULL) {
745 					vm_pagequeue_cnt_add(pq, dequeued);
746 					vm_pagequeue_unlock(pq);
747 					pq = NULL;
748 				}
749 				mtx = mtx1;
750 				mtx_lock(mtx);
751 			}
752 		}
753 		p->object = NULL;
754 		if (p->wire_count != 0)
755 			goto unlist;
756 		VM_CNT_INC(v_pfree);
757 		p->flags &= ~PG_ZERO;
758 		if (p->queue != PQ_NONE) {
759 			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
760 			    "page %p is not queued", p));
761 			pq1 = vm_page_pagequeue(p);
762 			if (pq != pq1) {
763 				if (pq != NULL) {
764 					vm_pagequeue_cnt_add(pq, dequeued);
765 					vm_pagequeue_unlock(pq);
766 				}
767 				pq = pq1;
768 				vm_pagequeue_lock(pq);
769 				dequeued = 0;
770 			}
771 			p->queue = PQ_NONE;
772 			TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
773 			dequeued--;
774 		}
775 		if (vm_page_free_prep(p, true))
776 			continue;
777 unlist:
778 		TAILQ_REMOVE(&object->memq, p, listq);
779 	}
780 	if (pq != NULL) {
781 		vm_pagequeue_cnt_add(pq, dequeued);
782 		vm_pagequeue_unlock(pq);
783 	}
784 	if (mtx != NULL)
785 		mtx_unlock(mtx);
786 
787 	vm_page_free_phys_pglist(&object->memq);
788 
789 	/*
790 	 * If the object contained any pages, then reset it to an empty state.
791 	 * None of the object's fields, including "resident_page_count", were
792 	 * modified by the preceding loop.
793 	 */
794 	if (object->resident_page_count != 0) {
795 		vm_radix_reclaim_allnodes(&object->rtree);
796 		TAILQ_INIT(&object->memq);
797 		object->resident_page_count = 0;
798 		if (object->type == OBJT_VNODE)
799 			vdrop(object->handle);
800 	}
801 }
802 
803 /*
804  *	vm_object_terminate actually destroys the specified object, freeing
805  *	up all previously used resources.
806  *
807  *	The object must be locked.
808  *	This routine may block.
809  */
810 void
811 vm_object_terminate(vm_object_t object)
812 {
813 
814 	VM_OBJECT_ASSERT_WLOCKED(object);
815 
816 	/*
817 	 * Make sure no one uses us.
818 	 */
819 	vm_object_set_flag(object, OBJ_DEAD);
820 
821 	/*
822 	 * wait for the pageout daemon to be done with the object
823 	 */
824 	vm_object_pip_wait(object, "objtrm");
825 
826 	KASSERT(!object->paging_in_progress,
827 		("vm_object_terminate: pageout in progress"));
828 
829 	/*
830 	 * Clean and free the pages, as appropriate. All references to the
831 	 * object are gone, so we don't need to lock it.
832 	 */
833 	if (object->type == OBJT_VNODE) {
834 		struct vnode *vp = (struct vnode *)object->handle;
835 
836 		/*
837 		 * Clean pages and flush buffers.
838 		 */
839 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
840 		VM_OBJECT_WUNLOCK(object);
841 
842 		vinvalbuf(vp, V_SAVE, 0, 0);
843 
844 		BO_LOCK(&vp->v_bufobj);
845 		vp->v_bufobj.bo_flag |= BO_DEAD;
846 		BO_UNLOCK(&vp->v_bufobj);
847 
848 		VM_OBJECT_WLOCK(object);
849 	}
850 
851 	KASSERT(object->ref_count == 0,
852 		("vm_object_terminate: object with references, ref_count=%d",
853 		object->ref_count));
854 
855 	if ((object->flags & OBJ_PG_DTOR) == 0)
856 		vm_object_terminate_pages(object);
857 
858 #if VM_NRESERVLEVEL > 0
859 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
860 		vm_reserv_break_all(object);
861 #endif
862 
863 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
864 	    object->type == OBJT_SWAP,
865 	    ("%s: non-swap obj %p has cred", __func__, object));
866 
867 	/*
868 	 * Let the pager know object is dead.
869 	 */
870 	vm_pager_deallocate(object);
871 	VM_OBJECT_WUNLOCK(object);
872 
873 	vm_object_destroy(object);
874 }
875 
876 /*
877  * Make the page read-only so that we can clear the object flags.  However, if
878  * this is a nosync mmap then the object is likely to stay dirty so do not
879  * mess with the page and do not clear the object flags.  Returns TRUE if the
880  * page should be flushed, and FALSE otherwise.
881  */
882 static boolean_t
883 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
884 {
885 
886 	/*
887 	 * If we have been asked to skip nosync pages and this is a
888 	 * nosync page, skip it.  Note that the object flags were not
889 	 * cleared in this case so we do not have to set them.
890 	 */
891 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
892 		*clearobjflags = FALSE;
893 		return (FALSE);
894 	} else {
895 		pmap_remove_write(p);
896 		return (p->dirty != 0);
897 	}
898 }
899 
900 /*
901  *	vm_object_page_clean
902  *
903  *	Clean all dirty pages in the specified range of object.  Leaves page
904  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
905  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
906  *	leaving the object dirty.
907  *
908  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
909  *	synchronous clustering mode implementation.
910  *
911  *	Odd semantics: if start == end, we clean everything.
912  *
913  *	The object must be locked.
914  *
915  *	Returns FALSE if some page from the range was not written, as
916  *	reported by the pager, and TRUE otherwise.
917  */
918 boolean_t
919 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
920     int flags)
921 {
922 	vm_page_t np, p;
923 	vm_pindex_t pi, tend, tstart;
924 	int curgeneration, n, pagerflags;
925 	boolean_t clearobjflags, eio, res;
926 
927 	VM_OBJECT_ASSERT_WLOCKED(object);
928 
929 	/*
930 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
931 	 * objects.  The check below prevents the function from
932 	 * operating on non-vnode objects.
933 	 */
934 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
935 	    object->resident_page_count == 0)
936 		return (TRUE);
937 
938 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
939 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
940 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
941 
942 	tstart = OFF_TO_IDX(start);
943 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
944 	clearobjflags = tstart == 0 && tend >= object->size;
945 	res = TRUE;
946 
947 rescan:
948 	curgeneration = object->generation;
949 
950 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
951 		pi = p->pindex;
952 		if (pi >= tend)
953 			break;
954 		np = TAILQ_NEXT(p, listq);
955 		if (p->valid == 0)
956 			continue;
957 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
958 			if (object->generation != curgeneration) {
959 				if ((flags & OBJPC_SYNC) != 0)
960 					goto rescan;
961 				else
962 					clearobjflags = FALSE;
963 			}
964 			np = vm_page_find_least(object, pi);
965 			continue;
966 		}
967 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
968 			continue;
969 
970 		n = vm_object_page_collect_flush(object, p, pagerflags,
971 		    flags, &clearobjflags, &eio);
972 		if (eio) {
973 			res = FALSE;
974 			clearobjflags = FALSE;
975 		}
976 		if (object->generation != curgeneration) {
977 			if ((flags & OBJPC_SYNC) != 0)
978 				goto rescan;
979 			else
980 				clearobjflags = FALSE;
981 		}
982 
983 		/*
984 		 * If the VOP_PUTPAGES() did a truncated write, so
985 		 * that even the first page of the run is not fully
986 		 * written, vm_pageout_flush() returns 0 as the run
987 		 * length.  Since the condition that caused truncated
988 		 * write may be permanent, e.g. exhausted free space,
989 		 * accepting n == 0 would cause an infinite loop.
990 		 *
991 		 * Forwarding the iterator leaves the unwritten page
992 		 * behind, but there is not much we can do there if
993 		 * filesystem refuses to write it.
994 		 */
995 		if (n == 0) {
996 			n = 1;
997 			clearobjflags = FALSE;
998 		}
999 		np = vm_page_find_least(object, pi + n);
1000 	}
1001 #if 0
1002 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1003 #endif
1004 
1005 	if (clearobjflags)
1006 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
1007 	return (res);
1008 }
1009 
1010 static int
1011 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1012     int flags, boolean_t *clearobjflags, boolean_t *eio)
1013 {
1014 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1015 	int count, i, mreq, runlen;
1016 
1017 	vm_page_lock_assert(p, MA_NOTOWNED);
1018 	VM_OBJECT_ASSERT_WLOCKED(object);
1019 
1020 	count = 1;
1021 	mreq = 0;
1022 
1023 	for (tp = p; count < vm_pageout_page_count; count++) {
1024 		tp = vm_page_next(tp);
1025 		if (tp == NULL || vm_page_busied(tp))
1026 			break;
1027 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1028 			break;
1029 	}
1030 
1031 	for (p_first = p; count < vm_pageout_page_count; count++) {
1032 		tp = vm_page_prev(p_first);
1033 		if (tp == NULL || vm_page_busied(tp))
1034 			break;
1035 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1036 			break;
1037 		p_first = tp;
1038 		mreq++;
1039 	}
1040 
1041 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1042 		ma[i] = tp;
1043 
1044 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1045 	return (runlen);
1046 }
1047 
1048 /*
1049  * Note that there is absolutely no sense in writing out
1050  * anonymous objects, so we track down the vnode object
1051  * to write out.
1052  * We invalidate (remove) all pages from the address space
1053  * for semantic correctness.
1054  *
1055  * If the backing object is a device object with unmanaged pages, then any
1056  * mappings to the specified range of pages must be removed before this
1057  * function is called.
1058  *
1059  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1060  * may start out with a NULL object.
1061  */
1062 boolean_t
1063 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1064     boolean_t syncio, boolean_t invalidate)
1065 {
1066 	vm_object_t backing_object;
1067 	struct vnode *vp;
1068 	struct mount *mp;
1069 	int error, flags, fsync_after;
1070 	boolean_t res;
1071 
1072 	if (object == NULL)
1073 		return (TRUE);
1074 	res = TRUE;
1075 	error = 0;
1076 	VM_OBJECT_WLOCK(object);
1077 	while ((backing_object = object->backing_object) != NULL) {
1078 		VM_OBJECT_WLOCK(backing_object);
1079 		offset += object->backing_object_offset;
1080 		VM_OBJECT_WUNLOCK(object);
1081 		object = backing_object;
1082 		if (object->size < OFF_TO_IDX(offset + size))
1083 			size = IDX_TO_OFF(object->size) - offset;
1084 	}
1085 	/*
1086 	 * Flush pages if writing is allowed, invalidate them
1087 	 * if invalidation requested.  Pages undergoing I/O
1088 	 * will be ignored by vm_object_page_remove().
1089 	 *
1090 	 * We cannot lock the vnode and then wait for paging
1091 	 * to complete without deadlocking against vm_fault.
1092 	 * Instead we simply call vm_object_page_remove() and
1093 	 * allow it to block internally on a page-by-page
1094 	 * basis when it encounters pages undergoing async
1095 	 * I/O.
1096 	 */
1097 	if (object->type == OBJT_VNODE &&
1098 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1099 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1100 		VM_OBJECT_WUNLOCK(object);
1101 		(void) vn_start_write(vp, &mp, V_WAIT);
1102 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1103 		if (syncio && !invalidate && offset == 0 &&
1104 		    atop(size) == object->size) {
1105 			/*
1106 			 * If syncing the whole mapping of the file,
1107 			 * it is faster to schedule all the writes in
1108 			 * async mode, also allowing the clustering,
1109 			 * and then wait for i/o to complete.
1110 			 */
1111 			flags = 0;
1112 			fsync_after = TRUE;
1113 		} else {
1114 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1115 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1116 			fsync_after = FALSE;
1117 		}
1118 		VM_OBJECT_WLOCK(object);
1119 		res = vm_object_page_clean(object, offset, offset + size,
1120 		    flags);
1121 		VM_OBJECT_WUNLOCK(object);
1122 		if (fsync_after)
1123 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1124 		VOP_UNLOCK(vp, 0);
1125 		vn_finished_write(mp);
1126 		if (error != 0)
1127 			res = FALSE;
1128 		VM_OBJECT_WLOCK(object);
1129 	}
1130 	if ((object->type == OBJT_VNODE ||
1131 	     object->type == OBJT_DEVICE) && invalidate) {
1132 		if (object->type == OBJT_DEVICE)
1133 			/*
1134 			 * The option OBJPR_NOTMAPPED must be passed here
1135 			 * because vm_object_page_remove() cannot remove
1136 			 * unmanaged mappings.
1137 			 */
1138 			flags = OBJPR_NOTMAPPED;
1139 		else if (old_msync)
1140 			flags = 0;
1141 		else
1142 			flags = OBJPR_CLEANONLY;
1143 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1144 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1145 	}
1146 	VM_OBJECT_WUNLOCK(object);
1147 	return (res);
1148 }
1149 
1150 /*
1151  * Determine whether the given advice can be applied to the object.  Advice is
1152  * not applied to unmanaged pages since they never belong to page queues, and
1153  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1154  * have been mapped at most once.
1155  */
1156 static bool
1157 vm_object_advice_applies(vm_object_t object, int advice)
1158 {
1159 
1160 	if ((object->flags & OBJ_UNMANAGED) != 0)
1161 		return (false);
1162 	if (advice != MADV_FREE)
1163 		return (true);
1164 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1165 	    (object->flags & OBJ_ONEMAPPING) != 0);
1166 }
1167 
1168 static void
1169 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1170     vm_size_t size)
1171 {
1172 
1173 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1174 		swap_pager_freespace(object, pindex, size);
1175 }
1176 
1177 /*
1178  *	vm_object_madvise:
1179  *
1180  *	Implements the madvise function at the object/page level.
1181  *
1182  *	MADV_WILLNEED	(any object)
1183  *
1184  *	    Activate the specified pages if they are resident.
1185  *
1186  *	MADV_DONTNEED	(any object)
1187  *
1188  *	    Deactivate the specified pages if they are resident.
1189  *
1190  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1191  *			 OBJ_ONEMAPPING only)
1192  *
1193  *	    Deactivate and clean the specified pages if they are
1194  *	    resident.  This permits the process to reuse the pages
1195  *	    without faulting or the kernel to reclaim the pages
1196  *	    without I/O.
1197  */
1198 void
1199 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1200     int advice)
1201 {
1202 	vm_pindex_t tpindex;
1203 	vm_object_t backing_object, tobject;
1204 	vm_page_t m, tm;
1205 
1206 	if (object == NULL)
1207 		return;
1208 
1209 relookup:
1210 	VM_OBJECT_WLOCK(object);
1211 	if (!vm_object_advice_applies(object, advice)) {
1212 		VM_OBJECT_WUNLOCK(object);
1213 		return;
1214 	}
1215 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1216 		tobject = object;
1217 
1218 		/*
1219 		 * If the next page isn't resident in the top-level object, we
1220 		 * need to search the shadow chain.  When applying MADV_FREE, we
1221 		 * take care to release any swap space used to store
1222 		 * non-resident pages.
1223 		 */
1224 		if (m == NULL || pindex < m->pindex) {
1225 			/*
1226 			 * Optimize a common case: if the top-level object has
1227 			 * no backing object, we can skip over the non-resident
1228 			 * range in constant time.
1229 			 */
1230 			if (object->backing_object == NULL) {
1231 				tpindex = (m != NULL && m->pindex < end) ?
1232 				    m->pindex : end;
1233 				vm_object_madvise_freespace(object, advice,
1234 				    pindex, tpindex - pindex);
1235 				if ((pindex = tpindex) == end)
1236 					break;
1237 				goto next_page;
1238 			}
1239 
1240 			tpindex = pindex;
1241 			do {
1242 				vm_object_madvise_freespace(tobject, advice,
1243 				    tpindex, 1);
1244 				/*
1245 				 * Prepare to search the next object in the
1246 				 * chain.
1247 				 */
1248 				backing_object = tobject->backing_object;
1249 				if (backing_object == NULL)
1250 					goto next_pindex;
1251 				VM_OBJECT_WLOCK(backing_object);
1252 				tpindex +=
1253 				    OFF_TO_IDX(tobject->backing_object_offset);
1254 				if (tobject != object)
1255 					VM_OBJECT_WUNLOCK(tobject);
1256 				tobject = backing_object;
1257 				if (!vm_object_advice_applies(tobject, advice))
1258 					goto next_pindex;
1259 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1260 			    NULL);
1261 		} else {
1262 next_page:
1263 			tm = m;
1264 			m = TAILQ_NEXT(m, listq);
1265 		}
1266 
1267 		/*
1268 		 * If the page is not in a normal state, skip it.
1269 		 */
1270 		if (tm->valid != VM_PAGE_BITS_ALL)
1271 			goto next_pindex;
1272 		vm_page_lock(tm);
1273 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1274 			vm_page_unlock(tm);
1275 			goto next_pindex;
1276 		}
1277 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1278 		    ("vm_object_madvise: page %p is fictitious", tm));
1279 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1280 		    ("vm_object_madvise: page %p is not managed", tm));
1281 		if (vm_page_busied(tm)) {
1282 			if (object != tobject)
1283 				VM_OBJECT_WUNLOCK(tobject);
1284 			VM_OBJECT_WUNLOCK(object);
1285 			if (advice == MADV_WILLNEED) {
1286 				/*
1287 				 * Reference the page before unlocking and
1288 				 * sleeping so that the page daemon is less
1289 				 * likely to reclaim it.
1290 				 */
1291 				vm_page_aflag_set(tm, PGA_REFERENCED);
1292 			}
1293 			vm_page_busy_sleep(tm, "madvpo", false);
1294   			goto relookup;
1295 		}
1296 		vm_page_advise(tm, advice);
1297 		vm_page_unlock(tm);
1298 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1299 next_pindex:
1300 		if (tobject != object)
1301 			VM_OBJECT_WUNLOCK(tobject);
1302 	}
1303 	VM_OBJECT_WUNLOCK(object);
1304 }
1305 
1306 /*
1307  *	vm_object_shadow:
1308  *
1309  *	Create a new object which is backed by the
1310  *	specified existing object range.  The source
1311  *	object reference is deallocated.
1312  *
1313  *	The new object and offset into that object
1314  *	are returned in the source parameters.
1315  */
1316 void
1317 vm_object_shadow(
1318 	vm_object_t *object,	/* IN/OUT */
1319 	vm_ooffset_t *offset,	/* IN/OUT */
1320 	vm_size_t length)
1321 {
1322 	vm_object_t source;
1323 	vm_object_t result;
1324 
1325 	source = *object;
1326 
1327 	/*
1328 	 * Don't create the new object if the old object isn't shared.
1329 	 */
1330 	if (source != NULL) {
1331 		VM_OBJECT_WLOCK(source);
1332 		if (source->ref_count == 1 &&
1333 		    source->handle == NULL &&
1334 		    (source->type == OBJT_DEFAULT ||
1335 		     source->type == OBJT_SWAP)) {
1336 			VM_OBJECT_WUNLOCK(source);
1337 			return;
1338 		}
1339 		VM_OBJECT_WUNLOCK(source);
1340 	}
1341 
1342 	/*
1343 	 * Allocate a new object with the given length.
1344 	 */
1345 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1346 
1347 	/*
1348 	 * The new object shadows the source object, adding a reference to it.
1349 	 * Our caller changes his reference to point to the new object,
1350 	 * removing a reference to the source object.  Net result: no change
1351 	 * of reference count.
1352 	 *
1353 	 * Try to optimize the result object's page color when shadowing
1354 	 * in order to maintain page coloring consistency in the combined
1355 	 * shadowed object.
1356 	 */
1357 	result->backing_object = source;
1358 	/*
1359 	 * Store the offset into the source object, and fix up the offset into
1360 	 * the new object.
1361 	 */
1362 	result->backing_object_offset = *offset;
1363 	if (source != NULL) {
1364 		VM_OBJECT_WLOCK(source);
1365 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1366 		source->shadow_count++;
1367 #if VM_NRESERVLEVEL > 0
1368 		result->flags |= source->flags & OBJ_COLORED;
1369 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1370 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1371 #endif
1372 		VM_OBJECT_WUNLOCK(source);
1373 	}
1374 
1375 
1376 	/*
1377 	 * Return the new things
1378 	 */
1379 	*offset = 0;
1380 	*object = result;
1381 }
1382 
1383 /*
1384  *	vm_object_split:
1385  *
1386  * Split the pages in a map entry into a new object.  This affords
1387  * easier removal of unused pages, and keeps object inheritance from
1388  * being a negative impact on memory usage.
1389  */
1390 void
1391 vm_object_split(vm_map_entry_t entry)
1392 {
1393 	vm_page_t m, m_next;
1394 	vm_object_t orig_object, new_object, source;
1395 	vm_pindex_t idx, offidxstart;
1396 	vm_size_t size;
1397 
1398 	orig_object = entry->object.vm_object;
1399 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1400 		return;
1401 	if (orig_object->ref_count <= 1)
1402 		return;
1403 	VM_OBJECT_WUNLOCK(orig_object);
1404 
1405 	offidxstart = OFF_TO_IDX(entry->offset);
1406 	size = atop(entry->end - entry->start);
1407 
1408 	/*
1409 	 * If swap_pager_copy() is later called, it will convert new_object
1410 	 * into a swap object.
1411 	 */
1412 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1413 
1414 	/*
1415 	 * At this point, the new object is still private, so the order in
1416 	 * which the original and new objects are locked does not matter.
1417 	 */
1418 	VM_OBJECT_WLOCK(new_object);
1419 	VM_OBJECT_WLOCK(orig_object);
1420 	source = orig_object->backing_object;
1421 	if (source != NULL) {
1422 		VM_OBJECT_WLOCK(source);
1423 		if ((source->flags & OBJ_DEAD) != 0) {
1424 			VM_OBJECT_WUNLOCK(source);
1425 			VM_OBJECT_WUNLOCK(orig_object);
1426 			VM_OBJECT_WUNLOCK(new_object);
1427 			vm_object_deallocate(new_object);
1428 			VM_OBJECT_WLOCK(orig_object);
1429 			return;
1430 		}
1431 		LIST_INSERT_HEAD(&source->shadow_head,
1432 				  new_object, shadow_list);
1433 		source->shadow_count++;
1434 		vm_object_reference_locked(source);	/* for new_object */
1435 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1436 		VM_OBJECT_WUNLOCK(source);
1437 		new_object->backing_object_offset =
1438 			orig_object->backing_object_offset + entry->offset;
1439 		new_object->backing_object = source;
1440 	}
1441 	if (orig_object->cred != NULL) {
1442 		new_object->cred = orig_object->cred;
1443 		crhold(orig_object->cred);
1444 		new_object->charge = ptoa(size);
1445 		KASSERT(orig_object->charge >= ptoa(size),
1446 		    ("orig_object->charge < 0"));
1447 		orig_object->charge -= ptoa(size);
1448 	}
1449 retry:
1450 	m = vm_page_find_least(orig_object, offidxstart);
1451 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1452 	    m = m_next) {
1453 		m_next = TAILQ_NEXT(m, listq);
1454 
1455 		/*
1456 		 * We must wait for pending I/O to complete before we can
1457 		 * rename the page.
1458 		 *
1459 		 * We do not have to VM_PROT_NONE the page as mappings should
1460 		 * not be changed by this operation.
1461 		 */
1462 		if (vm_page_busied(m)) {
1463 			VM_OBJECT_WUNLOCK(new_object);
1464 			vm_page_lock(m);
1465 			VM_OBJECT_WUNLOCK(orig_object);
1466 			vm_page_busy_sleep(m, "spltwt", false);
1467 			VM_OBJECT_WLOCK(orig_object);
1468 			VM_OBJECT_WLOCK(new_object);
1469 			goto retry;
1470 		}
1471 
1472 		/* vm_page_rename() will dirty the page. */
1473 		if (vm_page_rename(m, new_object, idx)) {
1474 			VM_OBJECT_WUNLOCK(new_object);
1475 			VM_OBJECT_WUNLOCK(orig_object);
1476 			vm_radix_wait();
1477 			VM_OBJECT_WLOCK(orig_object);
1478 			VM_OBJECT_WLOCK(new_object);
1479 			goto retry;
1480 		}
1481 #if VM_NRESERVLEVEL > 0
1482 		/*
1483 		 * If some of the reservation's allocated pages remain with
1484 		 * the original object, then transferring the reservation to
1485 		 * the new object is neither particularly beneficial nor
1486 		 * particularly harmful as compared to leaving the reservation
1487 		 * with the original object.  If, however, all of the
1488 		 * reservation's allocated pages are transferred to the new
1489 		 * object, then transferring the reservation is typically
1490 		 * beneficial.  Determining which of these two cases applies
1491 		 * would be more costly than unconditionally renaming the
1492 		 * reservation.
1493 		 */
1494 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1495 #endif
1496 		if (orig_object->type == OBJT_SWAP)
1497 			vm_page_xbusy(m);
1498 	}
1499 	if (orig_object->type == OBJT_SWAP) {
1500 		/*
1501 		 * swap_pager_copy() can sleep, in which case the orig_object's
1502 		 * and new_object's locks are released and reacquired.
1503 		 */
1504 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1505 		TAILQ_FOREACH(m, &new_object->memq, listq)
1506 			vm_page_xunbusy(m);
1507 	}
1508 	VM_OBJECT_WUNLOCK(orig_object);
1509 	VM_OBJECT_WUNLOCK(new_object);
1510 	entry->object.vm_object = new_object;
1511 	entry->offset = 0LL;
1512 	vm_object_deallocate(orig_object);
1513 	VM_OBJECT_WLOCK(new_object);
1514 }
1515 
1516 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1517 #define	OBSC_COLLAPSE_WAIT	0x0004
1518 
1519 static vm_page_t
1520 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1521     int op)
1522 {
1523 	vm_object_t backing_object;
1524 
1525 	VM_OBJECT_ASSERT_WLOCKED(object);
1526 	backing_object = object->backing_object;
1527 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1528 
1529 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1530 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1531 	    ("invalid ownership %p %p %p", p, object, backing_object));
1532 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1533 		return (next);
1534 	if (p != NULL)
1535 		vm_page_lock(p);
1536 	VM_OBJECT_WUNLOCK(object);
1537 	VM_OBJECT_WUNLOCK(backing_object);
1538 	/* The page is only NULL when rename fails. */
1539 	if (p == NULL)
1540 		vm_radix_wait();
1541 	else
1542 		vm_page_busy_sleep(p, "vmocol", false);
1543 	VM_OBJECT_WLOCK(object);
1544 	VM_OBJECT_WLOCK(backing_object);
1545 	return (TAILQ_FIRST(&backing_object->memq));
1546 }
1547 
1548 static bool
1549 vm_object_scan_all_shadowed(vm_object_t object)
1550 {
1551 	vm_object_t backing_object;
1552 	vm_page_t p, pp;
1553 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1554 
1555 	VM_OBJECT_ASSERT_WLOCKED(object);
1556 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1557 
1558 	backing_object = object->backing_object;
1559 
1560 	if (backing_object->type != OBJT_DEFAULT &&
1561 	    backing_object->type != OBJT_SWAP)
1562 		return (false);
1563 
1564 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1565 	p = vm_page_find_least(backing_object, pi);
1566 	ps = swap_pager_find_least(backing_object, pi);
1567 
1568 	/*
1569 	 * Only check pages inside the parent object's range and
1570 	 * inside the parent object's mapping of the backing object.
1571 	 */
1572 	for (;; pi++) {
1573 		if (p != NULL && p->pindex < pi)
1574 			p = TAILQ_NEXT(p, listq);
1575 		if (ps < pi)
1576 			ps = swap_pager_find_least(backing_object, pi);
1577 		if (p == NULL && ps >= backing_object->size)
1578 			break;
1579 		else if (p == NULL)
1580 			pi = ps;
1581 		else
1582 			pi = MIN(p->pindex, ps);
1583 
1584 		new_pindex = pi - backing_offset_index;
1585 		if (new_pindex >= object->size)
1586 			break;
1587 
1588 		/*
1589 		 * See if the parent has the page or if the parent's object
1590 		 * pager has the page.  If the parent has the page but the page
1591 		 * is not valid, the parent's object pager must have the page.
1592 		 *
1593 		 * If this fails, the parent does not completely shadow the
1594 		 * object and we might as well give up now.
1595 		 */
1596 		pp = vm_page_lookup(object, new_pindex);
1597 		if ((pp == NULL || pp->valid == 0) &&
1598 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1599 			return (false);
1600 	}
1601 	return (true);
1602 }
1603 
1604 static bool
1605 vm_object_collapse_scan(vm_object_t object, int op)
1606 {
1607 	vm_object_t backing_object;
1608 	vm_page_t next, p, pp;
1609 	vm_pindex_t backing_offset_index, new_pindex;
1610 
1611 	VM_OBJECT_ASSERT_WLOCKED(object);
1612 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1613 
1614 	backing_object = object->backing_object;
1615 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1616 
1617 	/*
1618 	 * Initial conditions
1619 	 */
1620 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1621 		vm_object_set_flag(backing_object, OBJ_DEAD);
1622 
1623 	/*
1624 	 * Our scan
1625 	 */
1626 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1627 		next = TAILQ_NEXT(p, listq);
1628 		new_pindex = p->pindex - backing_offset_index;
1629 
1630 		/*
1631 		 * Check for busy page
1632 		 */
1633 		if (vm_page_busied(p)) {
1634 			next = vm_object_collapse_scan_wait(object, p, next, op);
1635 			continue;
1636 		}
1637 
1638 		KASSERT(p->object == backing_object,
1639 		    ("vm_object_collapse_scan: object mismatch"));
1640 
1641 		if (p->pindex < backing_offset_index ||
1642 		    new_pindex >= object->size) {
1643 			if (backing_object->type == OBJT_SWAP)
1644 				swap_pager_freespace(backing_object, p->pindex,
1645 				    1);
1646 
1647 			/*
1648 			 * Page is out of the parent object's range, we can
1649 			 * simply destroy it.
1650 			 */
1651 			vm_page_lock(p);
1652 			KASSERT(!pmap_page_is_mapped(p),
1653 			    ("freeing mapped page %p", p));
1654 			if (p->wire_count == 0)
1655 				vm_page_free(p);
1656 			else
1657 				vm_page_remove(p);
1658 			vm_page_unlock(p);
1659 			continue;
1660 		}
1661 
1662 		pp = vm_page_lookup(object, new_pindex);
1663 		if (pp != NULL && vm_page_busied(pp)) {
1664 			/*
1665 			 * The page in the parent is busy and possibly not
1666 			 * (yet) valid.  Until its state is finalized by the
1667 			 * busy bit owner, we can't tell whether it shadows the
1668 			 * original page.  Therefore, we must either skip it
1669 			 * and the original (backing_object) page or wait for
1670 			 * its state to be finalized.
1671 			 *
1672 			 * This is due to a race with vm_fault() where we must
1673 			 * unbusy the original (backing_obj) page before we can
1674 			 * (re)lock the parent.  Hence we can get here.
1675 			 */
1676 			next = vm_object_collapse_scan_wait(object, pp, next,
1677 			    op);
1678 			continue;
1679 		}
1680 
1681 		KASSERT(pp == NULL || pp->valid != 0,
1682 		    ("unbusy invalid page %p", pp));
1683 
1684 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1685 			NULL)) {
1686 			/*
1687 			 * The page already exists in the parent OR swap exists
1688 			 * for this location in the parent.  Leave the parent's
1689 			 * page alone.  Destroy the original page from the
1690 			 * backing object.
1691 			 */
1692 			if (backing_object->type == OBJT_SWAP)
1693 				swap_pager_freespace(backing_object, p->pindex,
1694 				    1);
1695 			vm_page_lock(p);
1696 			KASSERT(!pmap_page_is_mapped(p),
1697 			    ("freeing mapped page %p", p));
1698 			if (p->wire_count == 0)
1699 				vm_page_free(p);
1700 			else
1701 				vm_page_remove(p);
1702 			vm_page_unlock(p);
1703 			continue;
1704 		}
1705 
1706 		/*
1707 		 * Page does not exist in parent, rename the page from the
1708 		 * backing object to the main object.
1709 		 *
1710 		 * If the page was mapped to a process, it can remain mapped
1711 		 * through the rename.  vm_page_rename() will dirty the page.
1712 		 */
1713 		if (vm_page_rename(p, object, new_pindex)) {
1714 			next = vm_object_collapse_scan_wait(object, NULL, next,
1715 			    op);
1716 			continue;
1717 		}
1718 
1719 		/* Use the old pindex to free the right page. */
1720 		if (backing_object->type == OBJT_SWAP)
1721 			swap_pager_freespace(backing_object,
1722 			    new_pindex + backing_offset_index, 1);
1723 
1724 #if VM_NRESERVLEVEL > 0
1725 		/*
1726 		 * Rename the reservation.
1727 		 */
1728 		vm_reserv_rename(p, object, backing_object,
1729 		    backing_offset_index);
1730 #endif
1731 	}
1732 	return (true);
1733 }
1734 
1735 
1736 /*
1737  * this version of collapse allows the operation to occur earlier and
1738  * when paging_in_progress is true for an object...  This is not a complete
1739  * operation, but should plug 99.9% of the rest of the leaks.
1740  */
1741 static void
1742 vm_object_qcollapse(vm_object_t object)
1743 {
1744 	vm_object_t backing_object = object->backing_object;
1745 
1746 	VM_OBJECT_ASSERT_WLOCKED(object);
1747 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1748 
1749 	if (backing_object->ref_count != 1)
1750 		return;
1751 
1752 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1753 }
1754 
1755 /*
1756  *	vm_object_collapse:
1757  *
1758  *	Collapse an object with the object backing it.
1759  *	Pages in the backing object are moved into the
1760  *	parent, and the backing object is deallocated.
1761  */
1762 void
1763 vm_object_collapse(vm_object_t object)
1764 {
1765 	vm_object_t backing_object, new_backing_object;
1766 
1767 	VM_OBJECT_ASSERT_WLOCKED(object);
1768 
1769 	while (TRUE) {
1770 		/*
1771 		 * Verify that the conditions are right for collapse:
1772 		 *
1773 		 * The object exists and the backing object exists.
1774 		 */
1775 		if ((backing_object = object->backing_object) == NULL)
1776 			break;
1777 
1778 		/*
1779 		 * we check the backing object first, because it is most likely
1780 		 * not collapsable.
1781 		 */
1782 		VM_OBJECT_WLOCK(backing_object);
1783 		if (backing_object->handle != NULL ||
1784 		    (backing_object->type != OBJT_DEFAULT &&
1785 		     backing_object->type != OBJT_SWAP) ||
1786 		    (backing_object->flags & OBJ_DEAD) ||
1787 		    object->handle != NULL ||
1788 		    (object->type != OBJT_DEFAULT &&
1789 		     object->type != OBJT_SWAP) ||
1790 		    (object->flags & OBJ_DEAD)) {
1791 			VM_OBJECT_WUNLOCK(backing_object);
1792 			break;
1793 		}
1794 
1795 		if (object->paging_in_progress != 0 ||
1796 		    backing_object->paging_in_progress != 0) {
1797 			vm_object_qcollapse(object);
1798 			VM_OBJECT_WUNLOCK(backing_object);
1799 			break;
1800 		}
1801 
1802 		/*
1803 		 * We know that we can either collapse the backing object (if
1804 		 * the parent is the only reference to it) or (perhaps) have
1805 		 * the parent bypass the object if the parent happens to shadow
1806 		 * all the resident pages in the entire backing object.
1807 		 *
1808 		 * This is ignoring pager-backed pages such as swap pages.
1809 		 * vm_object_collapse_scan fails the shadowing test in this
1810 		 * case.
1811 		 */
1812 		if (backing_object->ref_count == 1) {
1813 			vm_object_pip_add(object, 1);
1814 			vm_object_pip_add(backing_object, 1);
1815 
1816 			/*
1817 			 * If there is exactly one reference to the backing
1818 			 * object, we can collapse it into the parent.
1819 			 */
1820 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1821 
1822 #if VM_NRESERVLEVEL > 0
1823 			/*
1824 			 * Break any reservations from backing_object.
1825 			 */
1826 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1827 				vm_reserv_break_all(backing_object);
1828 #endif
1829 
1830 			/*
1831 			 * Move the pager from backing_object to object.
1832 			 */
1833 			if (backing_object->type == OBJT_SWAP) {
1834 				/*
1835 				 * swap_pager_copy() can sleep, in which case
1836 				 * the backing_object's and object's locks are
1837 				 * released and reacquired.
1838 				 * Since swap_pager_copy() is being asked to
1839 				 * destroy the source, it will change the
1840 				 * backing_object's type to OBJT_DEFAULT.
1841 				 */
1842 				swap_pager_copy(
1843 				    backing_object,
1844 				    object,
1845 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1846 			}
1847 			/*
1848 			 * Object now shadows whatever backing_object did.
1849 			 * Note that the reference to
1850 			 * backing_object->backing_object moves from within
1851 			 * backing_object to within object.
1852 			 */
1853 			LIST_REMOVE(object, shadow_list);
1854 			backing_object->shadow_count--;
1855 			if (backing_object->backing_object) {
1856 				VM_OBJECT_WLOCK(backing_object->backing_object);
1857 				LIST_REMOVE(backing_object, shadow_list);
1858 				LIST_INSERT_HEAD(
1859 				    &backing_object->backing_object->shadow_head,
1860 				    object, shadow_list);
1861 				/*
1862 				 * The shadow_count has not changed.
1863 				 */
1864 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1865 			}
1866 			object->backing_object = backing_object->backing_object;
1867 			object->backing_object_offset +=
1868 			    backing_object->backing_object_offset;
1869 
1870 			/*
1871 			 * Discard backing_object.
1872 			 *
1873 			 * Since the backing object has no pages, no pager left,
1874 			 * and no object references within it, all that is
1875 			 * necessary is to dispose of it.
1876 			 */
1877 			KASSERT(backing_object->ref_count == 1, (
1878 "backing_object %p was somehow re-referenced during collapse!",
1879 			    backing_object));
1880 			vm_object_pip_wakeup(backing_object);
1881 			backing_object->type = OBJT_DEAD;
1882 			backing_object->ref_count = 0;
1883 			VM_OBJECT_WUNLOCK(backing_object);
1884 			vm_object_destroy(backing_object);
1885 
1886 			vm_object_pip_wakeup(object);
1887 			object_collapses++;
1888 		} else {
1889 			/*
1890 			 * If we do not entirely shadow the backing object,
1891 			 * there is nothing we can do so we give up.
1892 			 */
1893 			if (object->resident_page_count != object->size &&
1894 			    !vm_object_scan_all_shadowed(object)) {
1895 				VM_OBJECT_WUNLOCK(backing_object);
1896 				break;
1897 			}
1898 
1899 			/*
1900 			 * Make the parent shadow the next object in the
1901 			 * chain.  Deallocating backing_object will not remove
1902 			 * it, since its reference count is at least 2.
1903 			 */
1904 			LIST_REMOVE(object, shadow_list);
1905 			backing_object->shadow_count--;
1906 
1907 			new_backing_object = backing_object->backing_object;
1908 			if ((object->backing_object = new_backing_object) != NULL) {
1909 				VM_OBJECT_WLOCK(new_backing_object);
1910 				LIST_INSERT_HEAD(
1911 				    &new_backing_object->shadow_head,
1912 				    object,
1913 				    shadow_list
1914 				);
1915 				new_backing_object->shadow_count++;
1916 				vm_object_reference_locked(new_backing_object);
1917 				VM_OBJECT_WUNLOCK(new_backing_object);
1918 				object->backing_object_offset +=
1919 					backing_object->backing_object_offset;
1920 			}
1921 
1922 			/*
1923 			 * Drop the reference count on backing_object. Since
1924 			 * its ref_count was at least 2, it will not vanish.
1925 			 */
1926 			backing_object->ref_count--;
1927 			VM_OBJECT_WUNLOCK(backing_object);
1928 			object_bypasses++;
1929 		}
1930 
1931 		/*
1932 		 * Try again with this object's new backing object.
1933 		 */
1934 	}
1935 }
1936 
1937 /*
1938  *	vm_object_page_remove:
1939  *
1940  *	For the given object, either frees or invalidates each of the
1941  *	specified pages.  In general, a page is freed.  However, if a page is
1942  *	wired for any reason other than the existence of a managed, wired
1943  *	mapping, then it may be invalidated but not removed from the object.
1944  *	Pages are specified by the given range ["start", "end") and the option
1945  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1946  *	extends from "start" to the end of the object.  If the option
1947  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1948  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1949  *	specified, then the pages within the specified range must have no
1950  *	mappings.  Otherwise, if this option is not specified, any mappings to
1951  *	the specified pages are removed before the pages are freed or
1952  *	invalidated.
1953  *
1954  *	In general, this operation should only be performed on objects that
1955  *	contain managed pages.  There are, however, two exceptions.  First, it
1956  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1957  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1958  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1959  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1960  *
1961  *	The object must be locked.
1962  */
1963 void
1964 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1965     int options)
1966 {
1967 	vm_page_t p, next;
1968 	struct mtx *mtx;
1969 	struct pglist pgl;
1970 
1971 	VM_OBJECT_ASSERT_WLOCKED(object);
1972 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1973 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1974 	    ("vm_object_page_remove: illegal options for object %p", object));
1975 	if (object->resident_page_count == 0)
1976 		return;
1977 	vm_object_pip_add(object, 1);
1978 	TAILQ_INIT(&pgl);
1979 again:
1980 	p = vm_page_find_least(object, start);
1981 	mtx = NULL;
1982 
1983 	/*
1984 	 * Here, the variable "p" is either (1) the page with the least pindex
1985 	 * greater than or equal to the parameter "start" or (2) NULL.
1986 	 */
1987 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1988 		next = TAILQ_NEXT(p, listq);
1989 
1990 		/*
1991 		 * If the page is wired for any reason besides the existence
1992 		 * of managed, wired mappings, then it cannot be freed.  For
1993 		 * example, fictitious pages, which represent device memory,
1994 		 * are inherently wired and cannot be freed.  They can,
1995 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1996 		 * not specified.
1997 		 */
1998 		vm_page_change_lock(p, &mtx);
1999 		if (vm_page_xbusied(p)) {
2000 			VM_OBJECT_WUNLOCK(object);
2001 			vm_page_busy_sleep(p, "vmopax", true);
2002 			VM_OBJECT_WLOCK(object);
2003 			goto again;
2004 		}
2005 		if (p->wire_count != 0) {
2006 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2007 			    object->ref_count != 0)
2008 				pmap_remove_all(p);
2009 			if ((options & OBJPR_CLEANONLY) == 0) {
2010 				p->valid = 0;
2011 				vm_page_undirty(p);
2012 			}
2013 			continue;
2014 		}
2015 		if (vm_page_busied(p)) {
2016 			VM_OBJECT_WUNLOCK(object);
2017 			vm_page_busy_sleep(p, "vmopar", false);
2018 			VM_OBJECT_WLOCK(object);
2019 			goto again;
2020 		}
2021 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2022 		    ("vm_object_page_remove: page %p is fictitious", p));
2023 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2024 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2025 			    object->ref_count != 0)
2026 				pmap_remove_write(p);
2027 			if (p->dirty != 0)
2028 				continue;
2029 		}
2030 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2031 			pmap_remove_all(p);
2032 		p->flags &= ~PG_ZERO;
2033 		if (vm_page_free_prep(p, false))
2034 			TAILQ_INSERT_TAIL(&pgl, p, listq);
2035 	}
2036 	if (mtx != NULL)
2037 		mtx_unlock(mtx);
2038 	vm_page_free_phys_pglist(&pgl);
2039 	vm_object_pip_wakeup(object);
2040 }
2041 
2042 /*
2043  *	vm_object_page_noreuse:
2044  *
2045  *	For the given object, attempt to move the specified pages to
2046  *	the head of the inactive queue.  This bypasses regular LRU
2047  *	operation and allows the pages to be reused quickly under memory
2048  *	pressure.  If a page is wired for any reason, then it will not
2049  *	be queued.  Pages are specified by the range ["start", "end").
2050  *	As a special case, if "end" is zero, then the range extends from
2051  *	"start" to the end of the object.
2052  *
2053  *	This operation should only be performed on objects that
2054  *	contain non-fictitious, managed pages.
2055  *
2056  *	The object must be locked.
2057  */
2058 void
2059 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2060 {
2061 	struct mtx *mtx;
2062 	vm_page_t p, next;
2063 
2064 	VM_OBJECT_ASSERT_LOCKED(object);
2065 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2066 	    ("vm_object_page_noreuse: illegal object %p", object));
2067 	if (object->resident_page_count == 0)
2068 		return;
2069 	p = vm_page_find_least(object, start);
2070 
2071 	/*
2072 	 * Here, the variable "p" is either (1) the page with the least pindex
2073 	 * greater than or equal to the parameter "start" or (2) NULL.
2074 	 */
2075 	mtx = NULL;
2076 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2077 		next = TAILQ_NEXT(p, listq);
2078 		vm_page_change_lock(p, &mtx);
2079 		vm_page_deactivate_noreuse(p);
2080 	}
2081 	if (mtx != NULL)
2082 		mtx_unlock(mtx);
2083 }
2084 
2085 /*
2086  *	Populate the specified range of the object with valid pages.  Returns
2087  *	TRUE if the range is successfully populated and FALSE otherwise.
2088  *
2089  *	Note: This function should be optimized to pass a larger array of
2090  *	pages to vm_pager_get_pages() before it is applied to a non-
2091  *	OBJT_DEVICE object.
2092  *
2093  *	The object must be locked.
2094  */
2095 boolean_t
2096 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2097 {
2098 	vm_page_t m;
2099 	vm_pindex_t pindex;
2100 	int rv;
2101 
2102 	VM_OBJECT_ASSERT_WLOCKED(object);
2103 	for (pindex = start; pindex < end; pindex++) {
2104 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2105 		if (m->valid != VM_PAGE_BITS_ALL) {
2106 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2107 			if (rv != VM_PAGER_OK) {
2108 				vm_page_lock(m);
2109 				vm_page_free(m);
2110 				vm_page_unlock(m);
2111 				break;
2112 			}
2113 		}
2114 		/*
2115 		 * Keep "m" busy because a subsequent iteration may unlock
2116 		 * the object.
2117 		 */
2118 	}
2119 	if (pindex > start) {
2120 		m = vm_page_lookup(object, start);
2121 		while (m != NULL && m->pindex < pindex) {
2122 			vm_page_xunbusy(m);
2123 			m = TAILQ_NEXT(m, listq);
2124 		}
2125 	}
2126 	return (pindex == end);
2127 }
2128 
2129 /*
2130  *	Routine:	vm_object_coalesce
2131  *	Function:	Coalesces two objects backing up adjoining
2132  *			regions of memory into a single object.
2133  *
2134  *	returns TRUE if objects were combined.
2135  *
2136  *	NOTE:	Only works at the moment if the second object is NULL -
2137  *		if it's not, which object do we lock first?
2138  *
2139  *	Parameters:
2140  *		prev_object	First object to coalesce
2141  *		prev_offset	Offset into prev_object
2142  *		prev_size	Size of reference to prev_object
2143  *		next_size	Size of reference to the second object
2144  *		reserved	Indicator that extension region has
2145  *				swap accounted for
2146  *
2147  *	Conditions:
2148  *	The object must *not* be locked.
2149  */
2150 boolean_t
2151 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2152     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2153 {
2154 	vm_pindex_t next_pindex;
2155 
2156 	if (prev_object == NULL)
2157 		return (TRUE);
2158 	VM_OBJECT_WLOCK(prev_object);
2159 	if ((prev_object->type != OBJT_DEFAULT &&
2160 	    prev_object->type != OBJT_SWAP) ||
2161 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2162 		VM_OBJECT_WUNLOCK(prev_object);
2163 		return (FALSE);
2164 	}
2165 
2166 	/*
2167 	 * Try to collapse the object first
2168 	 */
2169 	vm_object_collapse(prev_object);
2170 
2171 	/*
2172 	 * Can't coalesce if: . more than one reference . paged out . shadows
2173 	 * another object . has a copy elsewhere (any of which mean that the
2174 	 * pages not mapped to prev_entry may be in use anyway)
2175 	 */
2176 	if (prev_object->backing_object != NULL) {
2177 		VM_OBJECT_WUNLOCK(prev_object);
2178 		return (FALSE);
2179 	}
2180 
2181 	prev_size >>= PAGE_SHIFT;
2182 	next_size >>= PAGE_SHIFT;
2183 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2184 
2185 	if ((prev_object->ref_count > 1) &&
2186 	    (prev_object->size != next_pindex)) {
2187 		VM_OBJECT_WUNLOCK(prev_object);
2188 		return (FALSE);
2189 	}
2190 
2191 	/*
2192 	 * Account for the charge.
2193 	 */
2194 	if (prev_object->cred != NULL) {
2195 
2196 		/*
2197 		 * If prev_object was charged, then this mapping,
2198 		 * although not charged now, may become writable
2199 		 * later. Non-NULL cred in the object would prevent
2200 		 * swap reservation during enabling of the write
2201 		 * access, so reserve swap now. Failed reservation
2202 		 * cause allocation of the separate object for the map
2203 		 * entry, and swap reservation for this entry is
2204 		 * managed in appropriate time.
2205 		 */
2206 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2207 		    prev_object->cred)) {
2208 			VM_OBJECT_WUNLOCK(prev_object);
2209 			return (FALSE);
2210 		}
2211 		prev_object->charge += ptoa(next_size);
2212 	}
2213 
2214 	/*
2215 	 * Remove any pages that may still be in the object from a previous
2216 	 * deallocation.
2217 	 */
2218 	if (next_pindex < prev_object->size) {
2219 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2220 		    next_size, 0);
2221 		if (prev_object->type == OBJT_SWAP)
2222 			swap_pager_freespace(prev_object,
2223 					     next_pindex, next_size);
2224 #if 0
2225 		if (prev_object->cred != NULL) {
2226 			KASSERT(prev_object->charge >=
2227 			    ptoa(prev_object->size - next_pindex),
2228 			    ("object %p overcharged 1 %jx %jx", prev_object,
2229 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2230 			prev_object->charge -= ptoa(prev_object->size -
2231 			    next_pindex);
2232 		}
2233 #endif
2234 	}
2235 
2236 	/*
2237 	 * Extend the object if necessary.
2238 	 */
2239 	if (next_pindex + next_size > prev_object->size)
2240 		prev_object->size = next_pindex + next_size;
2241 
2242 	VM_OBJECT_WUNLOCK(prev_object);
2243 	return (TRUE);
2244 }
2245 
2246 void
2247 vm_object_set_writeable_dirty(vm_object_t object)
2248 {
2249 
2250 	VM_OBJECT_ASSERT_WLOCKED(object);
2251 	if (object->type != OBJT_VNODE) {
2252 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2253 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2254 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2255 		}
2256 		return;
2257 	}
2258 	object->generation++;
2259 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2260 		return;
2261 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2262 }
2263 
2264 /*
2265  *	vm_object_unwire:
2266  *
2267  *	For each page offset within the specified range of the given object,
2268  *	find the highest-level page in the shadow chain and unwire it.  A page
2269  *	must exist at every page offset, and the highest-level page must be
2270  *	wired.
2271  */
2272 void
2273 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2274     uint8_t queue)
2275 {
2276 	vm_object_t tobject;
2277 	vm_page_t m, tm;
2278 	vm_pindex_t end_pindex, pindex, tpindex;
2279 	int depth, locked_depth;
2280 
2281 	KASSERT((offset & PAGE_MASK) == 0,
2282 	    ("vm_object_unwire: offset is not page aligned"));
2283 	KASSERT((length & PAGE_MASK) == 0,
2284 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2285 	/* The wired count of a fictitious page never changes. */
2286 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2287 		return;
2288 	pindex = OFF_TO_IDX(offset);
2289 	end_pindex = pindex + atop(length);
2290 	locked_depth = 1;
2291 	VM_OBJECT_RLOCK(object);
2292 	m = vm_page_find_least(object, pindex);
2293 	while (pindex < end_pindex) {
2294 		if (m == NULL || pindex < m->pindex) {
2295 			/*
2296 			 * The first object in the shadow chain doesn't
2297 			 * contain a page at the current index.  Therefore,
2298 			 * the page must exist in a backing object.
2299 			 */
2300 			tobject = object;
2301 			tpindex = pindex;
2302 			depth = 0;
2303 			do {
2304 				tpindex +=
2305 				    OFF_TO_IDX(tobject->backing_object_offset);
2306 				tobject = tobject->backing_object;
2307 				KASSERT(tobject != NULL,
2308 				    ("vm_object_unwire: missing page"));
2309 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2310 					goto next_page;
2311 				depth++;
2312 				if (depth == locked_depth) {
2313 					locked_depth++;
2314 					VM_OBJECT_RLOCK(tobject);
2315 				}
2316 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2317 			    NULL);
2318 		} else {
2319 			tm = m;
2320 			m = TAILQ_NEXT(m, listq);
2321 		}
2322 		vm_page_lock(tm);
2323 		vm_page_unwire(tm, queue);
2324 		vm_page_unlock(tm);
2325 next_page:
2326 		pindex++;
2327 	}
2328 	/* Release the accumulated object locks. */
2329 	for (depth = 0; depth < locked_depth; depth++) {
2330 		tobject = object->backing_object;
2331 		VM_OBJECT_RUNLOCK(object);
2332 		object = tobject;
2333 	}
2334 }
2335 
2336 struct vnode *
2337 vm_object_vnode(vm_object_t object)
2338 {
2339 
2340 	VM_OBJECT_ASSERT_LOCKED(object);
2341 	if (object->type == OBJT_VNODE)
2342 		return (object->handle);
2343 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2344 		return (object->un_pager.swp.swp_tmpfs);
2345 	return (NULL);
2346 }
2347 
2348 static int
2349 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2350 {
2351 	struct kinfo_vmobject *kvo;
2352 	char *fullpath, *freepath;
2353 	struct vnode *vp;
2354 	struct vattr va;
2355 	vm_object_t obj;
2356 	vm_page_t m;
2357 	int count, error;
2358 
2359 	if (req->oldptr == NULL) {
2360 		/*
2361 		 * If an old buffer has not been provided, generate an
2362 		 * estimate of the space needed for a subsequent call.
2363 		 */
2364 		mtx_lock(&vm_object_list_mtx);
2365 		count = 0;
2366 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2367 			if (obj->type == OBJT_DEAD)
2368 				continue;
2369 			count++;
2370 		}
2371 		mtx_unlock(&vm_object_list_mtx);
2372 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2373 		    count * 11 / 10));
2374 	}
2375 
2376 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2377 	error = 0;
2378 
2379 	/*
2380 	 * VM objects are type stable and are never removed from the
2381 	 * list once added.  This allows us to safely read obj->object_list
2382 	 * after reacquiring the VM object lock.
2383 	 */
2384 	mtx_lock(&vm_object_list_mtx);
2385 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2386 		if (obj->type == OBJT_DEAD)
2387 			continue;
2388 		VM_OBJECT_RLOCK(obj);
2389 		if (obj->type == OBJT_DEAD) {
2390 			VM_OBJECT_RUNLOCK(obj);
2391 			continue;
2392 		}
2393 		mtx_unlock(&vm_object_list_mtx);
2394 		kvo->kvo_size = ptoa(obj->size);
2395 		kvo->kvo_resident = obj->resident_page_count;
2396 		kvo->kvo_ref_count = obj->ref_count;
2397 		kvo->kvo_shadow_count = obj->shadow_count;
2398 		kvo->kvo_memattr = obj->memattr;
2399 		kvo->kvo_active = 0;
2400 		kvo->kvo_inactive = 0;
2401 		TAILQ_FOREACH(m, &obj->memq, listq) {
2402 			/*
2403 			 * A page may belong to the object but be
2404 			 * dequeued and set to PQ_NONE while the
2405 			 * object lock is not held.  This makes the
2406 			 * reads of m->queue below racy, and we do not
2407 			 * count pages set to PQ_NONE.  However, this
2408 			 * sysctl is only meant to give an
2409 			 * approximation of the system anyway.
2410 			 */
2411 			if (vm_page_active(m))
2412 				kvo->kvo_active++;
2413 			else if (vm_page_inactive(m))
2414 				kvo->kvo_inactive++;
2415 		}
2416 
2417 		kvo->kvo_vn_fileid = 0;
2418 		kvo->kvo_vn_fsid = 0;
2419 		kvo->kvo_vn_fsid_freebsd11 = 0;
2420 		freepath = NULL;
2421 		fullpath = "";
2422 		vp = NULL;
2423 		switch (obj->type) {
2424 		case OBJT_DEFAULT:
2425 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2426 			break;
2427 		case OBJT_VNODE:
2428 			kvo->kvo_type = KVME_TYPE_VNODE;
2429 			vp = obj->handle;
2430 			vref(vp);
2431 			break;
2432 		case OBJT_SWAP:
2433 			kvo->kvo_type = KVME_TYPE_SWAP;
2434 			break;
2435 		case OBJT_DEVICE:
2436 			kvo->kvo_type = KVME_TYPE_DEVICE;
2437 			break;
2438 		case OBJT_PHYS:
2439 			kvo->kvo_type = KVME_TYPE_PHYS;
2440 			break;
2441 		case OBJT_DEAD:
2442 			kvo->kvo_type = KVME_TYPE_DEAD;
2443 			break;
2444 		case OBJT_SG:
2445 			kvo->kvo_type = KVME_TYPE_SG;
2446 			break;
2447 		case OBJT_MGTDEVICE:
2448 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2449 			break;
2450 		default:
2451 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2452 			break;
2453 		}
2454 		VM_OBJECT_RUNLOCK(obj);
2455 		if (vp != NULL) {
2456 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2457 			vn_lock(vp, LK_SHARED | LK_RETRY);
2458 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2459 				kvo->kvo_vn_fileid = va.va_fileid;
2460 				kvo->kvo_vn_fsid = va.va_fsid;
2461 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2462 								/* truncate */
2463 			}
2464 			vput(vp);
2465 		}
2466 
2467 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2468 		if (freepath != NULL)
2469 			free(freepath, M_TEMP);
2470 
2471 		/* Pack record size down */
2472 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2473 		    + strlen(kvo->kvo_path) + 1;
2474 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2475 		    sizeof(uint64_t));
2476 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2477 		mtx_lock(&vm_object_list_mtx);
2478 		if (error)
2479 			break;
2480 	}
2481 	mtx_unlock(&vm_object_list_mtx);
2482 	free(kvo, M_TEMP);
2483 	return (error);
2484 }
2485 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2486     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2487     "List of VM objects");
2488 
2489 #include "opt_ddb.h"
2490 #ifdef DDB
2491 #include <sys/kernel.h>
2492 
2493 #include <sys/cons.h>
2494 
2495 #include <ddb/ddb.h>
2496 
2497 static int
2498 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2499 {
2500 	vm_map_t tmpm;
2501 	vm_map_entry_t tmpe;
2502 	vm_object_t obj;
2503 	int entcount;
2504 
2505 	if (map == 0)
2506 		return 0;
2507 
2508 	if (entry == 0) {
2509 		tmpe = map->header.next;
2510 		entcount = map->nentries;
2511 		while (entcount-- && (tmpe != &map->header)) {
2512 			if (_vm_object_in_map(map, object, tmpe)) {
2513 				return 1;
2514 			}
2515 			tmpe = tmpe->next;
2516 		}
2517 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2518 		tmpm = entry->object.sub_map;
2519 		tmpe = tmpm->header.next;
2520 		entcount = tmpm->nentries;
2521 		while (entcount-- && tmpe != &tmpm->header) {
2522 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2523 				return 1;
2524 			}
2525 			tmpe = tmpe->next;
2526 		}
2527 	} else if ((obj = entry->object.vm_object) != NULL) {
2528 		for (; obj; obj = obj->backing_object)
2529 			if (obj == object) {
2530 				return 1;
2531 			}
2532 	}
2533 	return 0;
2534 }
2535 
2536 static int
2537 vm_object_in_map(vm_object_t object)
2538 {
2539 	struct proc *p;
2540 
2541 	/* sx_slock(&allproc_lock); */
2542 	FOREACH_PROC_IN_SYSTEM(p) {
2543 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2544 			continue;
2545 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2546 			/* sx_sunlock(&allproc_lock); */
2547 			return 1;
2548 		}
2549 	}
2550 	/* sx_sunlock(&allproc_lock); */
2551 	if (_vm_object_in_map(kernel_map, object, 0))
2552 		return 1;
2553 	return 0;
2554 }
2555 
2556 DB_SHOW_COMMAND(vmochk, vm_object_check)
2557 {
2558 	vm_object_t object;
2559 
2560 	/*
2561 	 * make sure that internal objs are in a map somewhere
2562 	 * and none have zero ref counts.
2563 	 */
2564 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2565 		if (object->handle == NULL &&
2566 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2567 			if (object->ref_count == 0) {
2568 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2569 					(long)object->size);
2570 			}
2571 			if (!vm_object_in_map(object)) {
2572 				db_printf(
2573 			"vmochk: internal obj is not in a map: "
2574 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2575 				    object->ref_count, (u_long)object->size,
2576 				    (u_long)object->size,
2577 				    (void *)object->backing_object);
2578 			}
2579 		}
2580 	}
2581 }
2582 
2583 /*
2584  *	vm_object_print:	[ debug ]
2585  */
2586 DB_SHOW_COMMAND(object, vm_object_print_static)
2587 {
2588 	/* XXX convert args. */
2589 	vm_object_t object = (vm_object_t)addr;
2590 	boolean_t full = have_addr;
2591 
2592 	vm_page_t p;
2593 
2594 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2595 #define	count	was_count
2596 
2597 	int count;
2598 
2599 	if (object == NULL)
2600 		return;
2601 
2602 	db_iprintf(
2603 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2604 	    object, (int)object->type, (uintmax_t)object->size,
2605 	    object->resident_page_count, object->ref_count, object->flags,
2606 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2607 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2608 	    object->shadow_count,
2609 	    object->backing_object ? object->backing_object->ref_count : 0,
2610 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2611 
2612 	if (!full)
2613 		return;
2614 
2615 	db_indent += 2;
2616 	count = 0;
2617 	TAILQ_FOREACH(p, &object->memq, listq) {
2618 		if (count == 0)
2619 			db_iprintf("memory:=");
2620 		else if (count == 6) {
2621 			db_printf("\n");
2622 			db_iprintf(" ...");
2623 			count = 0;
2624 		} else
2625 			db_printf(",");
2626 		count++;
2627 
2628 		db_printf("(off=0x%jx,page=0x%jx)",
2629 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2630 	}
2631 	if (count != 0)
2632 		db_printf("\n");
2633 	db_indent -= 2;
2634 }
2635 
2636 /* XXX. */
2637 #undef count
2638 
2639 /* XXX need this non-static entry for calling from vm_map_print. */
2640 void
2641 vm_object_print(
2642         /* db_expr_t */ long addr,
2643 	boolean_t have_addr,
2644 	/* db_expr_t */ long count,
2645 	char *modif)
2646 {
2647 	vm_object_print_static(addr, have_addr, count, modif);
2648 }
2649 
2650 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2651 {
2652 	vm_object_t object;
2653 	vm_pindex_t fidx;
2654 	vm_paddr_t pa;
2655 	vm_page_t m, prev_m;
2656 	int rcount, nl, c;
2657 
2658 	nl = 0;
2659 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2660 		db_printf("new object: %p\n", (void *)object);
2661 		if (nl > 18) {
2662 			c = cngetc();
2663 			if (c != ' ')
2664 				return;
2665 			nl = 0;
2666 		}
2667 		nl++;
2668 		rcount = 0;
2669 		fidx = 0;
2670 		pa = -1;
2671 		TAILQ_FOREACH(m, &object->memq, listq) {
2672 			if (m->pindex > 128)
2673 				break;
2674 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2675 			    prev_m->pindex + 1 != m->pindex) {
2676 				if (rcount) {
2677 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2678 						(long)fidx, rcount, (long)pa);
2679 					if (nl > 18) {
2680 						c = cngetc();
2681 						if (c != ' ')
2682 							return;
2683 						nl = 0;
2684 					}
2685 					nl++;
2686 					rcount = 0;
2687 				}
2688 			}
2689 			if (rcount &&
2690 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2691 				++rcount;
2692 				continue;
2693 			}
2694 			if (rcount) {
2695 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2696 					(long)fidx, rcount, (long)pa);
2697 				if (nl > 18) {
2698 					c = cngetc();
2699 					if (c != ' ')
2700 						return;
2701 					nl = 0;
2702 				}
2703 				nl++;
2704 			}
2705 			fidx = m->pindex;
2706 			pa = VM_PAGE_TO_PHYS(m);
2707 			rcount = 1;
2708 		}
2709 		if (rcount) {
2710 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2711 				(long)fidx, rcount, (long)pa);
2712 			if (nl > 18) {
2713 				c = cngetc();
2714 				if (c != ' ')
2715 					return;
2716 				nl = 0;
2717 			}
2718 			nl++;
2719 		}
2720 	}
2721 }
2722 #endif /* DDB */
2723