1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/lock.h> 75 #include <sys/mman.h> 76 #include <sys/mount.h> 77 #include <sys/kernel.h> 78 #include <sys/pctrie.h> 79 #include <sys/sysctl.h> 80 #include <sys/mutex.h> 81 #include <sys/proc.h> /* for curproc, pageproc */ 82 #include <sys/socket.h> 83 #include <sys/resourcevar.h> 84 #include <sys/rwlock.h> 85 #include <sys/user.h> 86 #include <sys/vnode.h> 87 #include <sys/vmmeter.h> 88 #include <sys/sx.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/pmap.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_pageout.h> 97 #include <vm/vm_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_extern.h> 101 #include <vm/vm_radix.h> 102 #include <vm/vm_reserv.h> 103 #include <vm/uma.h> 104 105 static int old_msync; 106 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 107 "Use old (insecure) msync behavior"); 108 109 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 110 int pagerflags, int flags, boolean_t *clearobjflags, 111 boolean_t *eio); 112 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 113 boolean_t *clearobjflags); 114 static void vm_object_qcollapse(vm_object_t object); 115 static void vm_object_vndeallocate(vm_object_t object); 116 117 /* 118 * Virtual memory objects maintain the actual data 119 * associated with allocated virtual memory. A given 120 * page of memory exists within exactly one object. 121 * 122 * An object is only deallocated when all "references" 123 * are given up. Only one "reference" to a given 124 * region of an object should be writeable. 125 * 126 * Associated with each object is a list of all resident 127 * memory pages belonging to that object; this list is 128 * maintained by the "vm_page" module, and locked by the object's 129 * lock. 130 * 131 * Each object also records a "pager" routine which is 132 * used to retrieve (and store) pages to the proper backing 133 * storage. In addition, objects may be backed by other 134 * objects from which they were virtual-copied. 135 * 136 * The only items within the object structure which are 137 * modified after time of creation are: 138 * reference count locked by object's lock 139 * pager routine locked by object's lock 140 * 141 */ 142 143 struct object_q vm_object_list; 144 struct mtx vm_object_list_mtx; /* lock for object list and count */ 145 146 struct vm_object kernel_object_store; 147 struct vm_object kmem_object_store; 148 149 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 150 "VM object stats"); 151 152 static long object_collapses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 154 &object_collapses, 0, "VM object collapses"); 155 156 static long object_bypasses; 157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 158 &object_bypasses, 0, "VM object bypasses"); 159 160 static uma_zone_t obj_zone; 161 162 static int vm_object_zinit(void *mem, int size, int flags); 163 164 #ifdef INVARIANTS 165 static void vm_object_zdtor(void *mem, int size, void *arg); 166 167 static void 168 vm_object_zdtor(void *mem, int size, void *arg) 169 { 170 vm_object_t object; 171 172 object = (vm_object_t)mem; 173 KASSERT(object->ref_count == 0, 174 ("object %p ref_count = %d", object, object->ref_count)); 175 KASSERT(TAILQ_EMPTY(&object->memq), 176 ("object %p has resident pages in its memq", object)); 177 KASSERT(vm_radix_is_empty(&object->rtree), 178 ("object %p has resident pages in its trie", object)); 179 #if VM_NRESERVLEVEL > 0 180 KASSERT(LIST_EMPTY(&object->rvq), 181 ("object %p has reservations", 182 object)); 183 #endif 184 KASSERT(object->paging_in_progress == 0, 185 ("object %p paging_in_progress = %d", 186 object, object->paging_in_progress)); 187 KASSERT(object->resident_page_count == 0, 188 ("object %p resident_page_count = %d", 189 object, object->resident_page_count)); 190 KASSERT(object->shadow_count == 0, 191 ("object %p shadow_count = %d", 192 object, object->shadow_count)); 193 KASSERT(object->type == OBJT_DEAD, 194 ("object %p has non-dead type %d", 195 object, object->type)); 196 } 197 #endif 198 199 static int 200 vm_object_zinit(void *mem, int size, int flags) 201 { 202 vm_object_t object; 203 204 object = (vm_object_t)mem; 205 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 206 207 /* These are true for any object that has been freed */ 208 object->type = OBJT_DEAD; 209 object->ref_count = 0; 210 vm_radix_init(&object->rtree); 211 object->paging_in_progress = 0; 212 object->resident_page_count = 0; 213 object->shadow_count = 0; 214 object->flags = OBJ_DEAD; 215 216 mtx_lock(&vm_object_list_mtx); 217 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 218 mtx_unlock(&vm_object_list_mtx); 219 return (0); 220 } 221 222 static void 223 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 224 { 225 226 TAILQ_INIT(&object->memq); 227 LIST_INIT(&object->shadow_head); 228 229 object->type = type; 230 if (type == OBJT_SWAP) 231 pctrie_init(&object->un_pager.swp.swp_blks); 232 233 /* 234 * Ensure that swap_pager_swapoff() iteration over object_list 235 * sees up to date type and pctrie head if it observed 236 * non-dead object. 237 */ 238 atomic_thread_fence_rel(); 239 240 switch (type) { 241 case OBJT_DEAD: 242 panic("_vm_object_allocate: can't create OBJT_DEAD"); 243 case OBJT_DEFAULT: 244 case OBJT_SWAP: 245 object->flags = OBJ_ONEMAPPING; 246 break; 247 case OBJT_DEVICE: 248 case OBJT_SG: 249 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 250 break; 251 case OBJT_MGTDEVICE: 252 object->flags = OBJ_FICTITIOUS; 253 break; 254 case OBJT_PHYS: 255 object->flags = OBJ_UNMANAGED; 256 break; 257 case OBJT_VNODE: 258 object->flags = 0; 259 break; 260 default: 261 panic("_vm_object_allocate: type %d is undefined", type); 262 } 263 object->size = size; 264 object->generation = 1; 265 object->ref_count = 1; 266 object->memattr = VM_MEMATTR_DEFAULT; 267 object->cred = NULL; 268 object->charge = 0; 269 object->handle = NULL; 270 object->backing_object = NULL; 271 object->backing_object_offset = (vm_ooffset_t) 0; 272 #if VM_NRESERVLEVEL > 0 273 LIST_INIT(&object->rvq); 274 #endif 275 umtx_shm_object_init(object); 276 } 277 278 /* 279 * vm_object_init: 280 * 281 * Initialize the VM objects module. 282 */ 283 void 284 vm_object_init(void) 285 { 286 TAILQ_INIT(&vm_object_list); 287 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 288 289 rw_init(&kernel_object->lock, "kernel vm object"); 290 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 291 VM_MIN_KERNEL_ADDRESS), kernel_object); 292 #if VM_NRESERVLEVEL > 0 293 kernel_object->flags |= OBJ_COLORED; 294 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 295 #endif 296 297 rw_init(&kmem_object->lock, "kmem vm object"); 298 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 299 VM_MIN_KERNEL_ADDRESS), kmem_object); 300 #if VM_NRESERVLEVEL > 0 301 kmem_object->flags |= OBJ_COLORED; 302 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 303 #endif 304 305 /* 306 * The lock portion of struct vm_object must be type stable due 307 * to vm_pageout_fallback_object_lock locking a vm object 308 * without holding any references to it. 309 */ 310 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 311 #ifdef INVARIANTS 312 vm_object_zdtor, 313 #else 314 NULL, 315 #endif 316 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 317 318 vm_radix_zinit(); 319 } 320 321 void 322 vm_object_clear_flag(vm_object_t object, u_short bits) 323 { 324 325 VM_OBJECT_ASSERT_WLOCKED(object); 326 object->flags &= ~bits; 327 } 328 329 /* 330 * Sets the default memory attribute for the specified object. Pages 331 * that are allocated to this object are by default assigned this memory 332 * attribute. 333 * 334 * Presently, this function must be called before any pages are allocated 335 * to the object. In the future, this requirement may be relaxed for 336 * "default" and "swap" objects. 337 */ 338 int 339 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 340 { 341 342 VM_OBJECT_ASSERT_WLOCKED(object); 343 switch (object->type) { 344 case OBJT_DEFAULT: 345 case OBJT_DEVICE: 346 case OBJT_MGTDEVICE: 347 case OBJT_PHYS: 348 case OBJT_SG: 349 case OBJT_SWAP: 350 case OBJT_VNODE: 351 if (!TAILQ_EMPTY(&object->memq)) 352 return (KERN_FAILURE); 353 break; 354 case OBJT_DEAD: 355 return (KERN_INVALID_ARGUMENT); 356 default: 357 panic("vm_object_set_memattr: object %p is of undefined type", 358 object); 359 } 360 object->memattr = memattr; 361 return (KERN_SUCCESS); 362 } 363 364 void 365 vm_object_pip_add(vm_object_t object, short i) 366 { 367 368 VM_OBJECT_ASSERT_WLOCKED(object); 369 object->paging_in_progress += i; 370 } 371 372 void 373 vm_object_pip_subtract(vm_object_t object, short i) 374 { 375 376 VM_OBJECT_ASSERT_WLOCKED(object); 377 object->paging_in_progress -= i; 378 } 379 380 void 381 vm_object_pip_wakeup(vm_object_t object) 382 { 383 384 VM_OBJECT_ASSERT_WLOCKED(object); 385 object->paging_in_progress--; 386 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 387 vm_object_clear_flag(object, OBJ_PIPWNT); 388 wakeup(object); 389 } 390 } 391 392 void 393 vm_object_pip_wakeupn(vm_object_t object, short i) 394 { 395 396 VM_OBJECT_ASSERT_WLOCKED(object); 397 if (i) 398 object->paging_in_progress -= i; 399 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 400 vm_object_clear_flag(object, OBJ_PIPWNT); 401 wakeup(object); 402 } 403 } 404 405 void 406 vm_object_pip_wait(vm_object_t object, char *waitid) 407 { 408 409 VM_OBJECT_ASSERT_WLOCKED(object); 410 while (object->paging_in_progress) { 411 object->flags |= OBJ_PIPWNT; 412 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 413 } 414 } 415 416 /* 417 * vm_object_allocate: 418 * 419 * Returns a new object with the given size. 420 */ 421 vm_object_t 422 vm_object_allocate(objtype_t type, vm_pindex_t size) 423 { 424 vm_object_t object; 425 426 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 427 _vm_object_allocate(type, size, object); 428 return (object); 429 } 430 431 432 /* 433 * vm_object_reference: 434 * 435 * Gets another reference to the given object. Note: OBJ_DEAD 436 * objects can be referenced during final cleaning. 437 */ 438 void 439 vm_object_reference(vm_object_t object) 440 { 441 if (object == NULL) 442 return; 443 VM_OBJECT_WLOCK(object); 444 vm_object_reference_locked(object); 445 VM_OBJECT_WUNLOCK(object); 446 } 447 448 /* 449 * vm_object_reference_locked: 450 * 451 * Gets another reference to the given object. 452 * 453 * The object must be locked. 454 */ 455 void 456 vm_object_reference_locked(vm_object_t object) 457 { 458 struct vnode *vp; 459 460 VM_OBJECT_ASSERT_WLOCKED(object); 461 object->ref_count++; 462 if (object->type == OBJT_VNODE) { 463 vp = object->handle; 464 vref(vp); 465 } 466 } 467 468 /* 469 * Handle deallocating an object of type OBJT_VNODE. 470 */ 471 static void 472 vm_object_vndeallocate(vm_object_t object) 473 { 474 struct vnode *vp = (struct vnode *) object->handle; 475 476 VM_OBJECT_ASSERT_WLOCKED(object); 477 KASSERT(object->type == OBJT_VNODE, 478 ("vm_object_vndeallocate: not a vnode object")); 479 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 480 #ifdef INVARIANTS 481 if (object->ref_count == 0) { 482 vn_printf(vp, "vm_object_vndeallocate "); 483 panic("vm_object_vndeallocate: bad object reference count"); 484 } 485 #endif 486 487 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 488 umtx_shm_object_terminated(object); 489 490 /* 491 * The test for text of vp vnode does not need a bypass to 492 * reach right VV_TEXT there, since it is obtained from 493 * object->handle. 494 */ 495 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 496 object->ref_count--; 497 VM_OBJECT_WUNLOCK(object); 498 /* vrele may need the vnode lock. */ 499 vrele(vp); 500 } else { 501 vhold(vp); 502 VM_OBJECT_WUNLOCK(object); 503 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 504 vdrop(vp); 505 VM_OBJECT_WLOCK(object); 506 object->ref_count--; 507 if (object->type == OBJT_DEAD) { 508 VM_OBJECT_WUNLOCK(object); 509 VOP_UNLOCK(vp, 0); 510 } else { 511 if (object->ref_count == 0) 512 VOP_UNSET_TEXT(vp); 513 VM_OBJECT_WUNLOCK(object); 514 vput(vp); 515 } 516 } 517 } 518 519 /* 520 * vm_object_deallocate: 521 * 522 * Release a reference to the specified object, 523 * gained either through a vm_object_allocate 524 * or a vm_object_reference call. When all references 525 * are gone, storage associated with this object 526 * may be relinquished. 527 * 528 * No object may be locked. 529 */ 530 void 531 vm_object_deallocate(vm_object_t object) 532 { 533 vm_object_t temp; 534 struct vnode *vp; 535 536 while (object != NULL) { 537 VM_OBJECT_WLOCK(object); 538 if (object->type == OBJT_VNODE) { 539 vm_object_vndeallocate(object); 540 return; 541 } 542 543 KASSERT(object->ref_count != 0, 544 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 545 546 /* 547 * If the reference count goes to 0 we start calling 548 * vm_object_terminate() on the object chain. 549 * A ref count of 1 may be a special case depending on the 550 * shadow count being 0 or 1. 551 */ 552 object->ref_count--; 553 if (object->ref_count > 1) { 554 VM_OBJECT_WUNLOCK(object); 555 return; 556 } else if (object->ref_count == 1) { 557 if (object->type == OBJT_SWAP && 558 (object->flags & OBJ_TMPFS) != 0) { 559 vp = object->un_pager.swp.swp_tmpfs; 560 vhold(vp); 561 VM_OBJECT_WUNLOCK(object); 562 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 563 VM_OBJECT_WLOCK(object); 564 if (object->type == OBJT_DEAD || 565 object->ref_count != 1) { 566 VM_OBJECT_WUNLOCK(object); 567 VOP_UNLOCK(vp, 0); 568 vdrop(vp); 569 return; 570 } 571 if ((object->flags & OBJ_TMPFS) != 0) 572 VOP_UNSET_TEXT(vp); 573 VOP_UNLOCK(vp, 0); 574 vdrop(vp); 575 } 576 if (object->shadow_count == 0 && 577 object->handle == NULL && 578 (object->type == OBJT_DEFAULT || 579 (object->type == OBJT_SWAP && 580 (object->flags & OBJ_TMPFS_NODE) == 0))) { 581 vm_object_set_flag(object, OBJ_ONEMAPPING); 582 } else if ((object->shadow_count == 1) && 583 (object->handle == NULL) && 584 (object->type == OBJT_DEFAULT || 585 object->type == OBJT_SWAP)) { 586 vm_object_t robject; 587 588 robject = LIST_FIRST(&object->shadow_head); 589 KASSERT(robject != NULL, 590 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 591 object->ref_count, 592 object->shadow_count)); 593 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 594 ("shadowed tmpfs v_object %p", object)); 595 if (!VM_OBJECT_TRYWLOCK(robject)) { 596 /* 597 * Avoid a potential deadlock. 598 */ 599 object->ref_count++; 600 VM_OBJECT_WUNLOCK(object); 601 /* 602 * More likely than not the thread 603 * holding robject's lock has lower 604 * priority than the current thread. 605 * Let the lower priority thread run. 606 */ 607 pause("vmo_de", 1); 608 continue; 609 } 610 /* 611 * Collapse object into its shadow unless its 612 * shadow is dead. In that case, object will 613 * be deallocated by the thread that is 614 * deallocating its shadow. 615 */ 616 if ((robject->flags & OBJ_DEAD) == 0 && 617 (robject->handle == NULL) && 618 (robject->type == OBJT_DEFAULT || 619 robject->type == OBJT_SWAP)) { 620 621 robject->ref_count++; 622 retry: 623 if (robject->paging_in_progress) { 624 VM_OBJECT_WUNLOCK(object); 625 vm_object_pip_wait(robject, 626 "objde1"); 627 temp = robject->backing_object; 628 if (object == temp) { 629 VM_OBJECT_WLOCK(object); 630 goto retry; 631 } 632 } else if (object->paging_in_progress) { 633 VM_OBJECT_WUNLOCK(robject); 634 object->flags |= OBJ_PIPWNT; 635 VM_OBJECT_SLEEP(object, object, 636 PDROP | PVM, "objde2", 0); 637 VM_OBJECT_WLOCK(robject); 638 temp = robject->backing_object; 639 if (object == temp) { 640 VM_OBJECT_WLOCK(object); 641 goto retry; 642 } 643 } else 644 VM_OBJECT_WUNLOCK(object); 645 646 if (robject->ref_count == 1) { 647 robject->ref_count--; 648 object = robject; 649 goto doterm; 650 } 651 object = robject; 652 vm_object_collapse(object); 653 VM_OBJECT_WUNLOCK(object); 654 continue; 655 } 656 VM_OBJECT_WUNLOCK(robject); 657 } 658 VM_OBJECT_WUNLOCK(object); 659 return; 660 } 661 doterm: 662 umtx_shm_object_terminated(object); 663 temp = object->backing_object; 664 if (temp != NULL) { 665 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 666 ("shadowed tmpfs v_object 2 %p", object)); 667 VM_OBJECT_WLOCK(temp); 668 LIST_REMOVE(object, shadow_list); 669 temp->shadow_count--; 670 VM_OBJECT_WUNLOCK(temp); 671 object->backing_object = NULL; 672 } 673 /* 674 * Don't double-terminate, we could be in a termination 675 * recursion due to the terminate having to sync data 676 * to disk. 677 */ 678 if ((object->flags & OBJ_DEAD) == 0) 679 vm_object_terminate(object); 680 else 681 VM_OBJECT_WUNLOCK(object); 682 object = temp; 683 } 684 } 685 686 /* 687 * vm_object_destroy removes the object from the global object list 688 * and frees the space for the object. 689 */ 690 void 691 vm_object_destroy(vm_object_t object) 692 { 693 694 /* 695 * Release the allocation charge. 696 */ 697 if (object->cred != NULL) { 698 swap_release_by_cred(object->charge, object->cred); 699 object->charge = 0; 700 crfree(object->cred); 701 object->cred = NULL; 702 } 703 704 /* 705 * Free the space for the object. 706 */ 707 uma_zfree(obj_zone, object); 708 } 709 710 /* 711 * vm_object_terminate_pages removes any remaining pageable pages 712 * from the object and resets the object to an empty state. 713 */ 714 static void 715 vm_object_terminate_pages(vm_object_t object) 716 { 717 vm_page_t p, p_next; 718 struct mtx *mtx, *mtx1; 719 struct vm_pagequeue *pq, *pq1; 720 int dequeued; 721 722 VM_OBJECT_ASSERT_WLOCKED(object); 723 724 mtx = NULL; 725 pq = NULL; 726 727 /* 728 * Free any remaining pageable pages. This also removes them from the 729 * paging queues. However, don't free wired pages, just remove them 730 * from the object. Rather than incrementally removing each page from 731 * the object, the page and object are reset to any empty state. 732 */ 733 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 734 vm_page_assert_unbusied(p); 735 if ((object->flags & OBJ_UNMANAGED) == 0) { 736 /* 737 * vm_page_free_prep() only needs the page 738 * lock for managed pages. 739 */ 740 mtx1 = vm_page_lockptr(p); 741 if (mtx1 != mtx) { 742 if (mtx != NULL) 743 mtx_unlock(mtx); 744 if (pq != NULL) { 745 vm_pagequeue_cnt_add(pq, dequeued); 746 vm_pagequeue_unlock(pq); 747 pq = NULL; 748 } 749 mtx = mtx1; 750 mtx_lock(mtx); 751 } 752 } 753 p->object = NULL; 754 if (p->wire_count != 0) 755 goto unlist; 756 VM_CNT_INC(v_pfree); 757 p->flags &= ~PG_ZERO; 758 if (p->queue != PQ_NONE) { 759 KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: " 760 "page %p is not queued", p)); 761 pq1 = vm_page_pagequeue(p); 762 if (pq != pq1) { 763 if (pq != NULL) { 764 vm_pagequeue_cnt_add(pq, dequeued); 765 vm_pagequeue_unlock(pq); 766 } 767 pq = pq1; 768 vm_pagequeue_lock(pq); 769 dequeued = 0; 770 } 771 p->queue = PQ_NONE; 772 TAILQ_REMOVE(&pq->pq_pl, p, plinks.q); 773 dequeued--; 774 } 775 if (vm_page_free_prep(p, true)) 776 continue; 777 unlist: 778 TAILQ_REMOVE(&object->memq, p, listq); 779 } 780 if (pq != NULL) { 781 vm_pagequeue_cnt_add(pq, dequeued); 782 vm_pagequeue_unlock(pq); 783 } 784 if (mtx != NULL) 785 mtx_unlock(mtx); 786 787 vm_page_free_phys_pglist(&object->memq); 788 789 /* 790 * If the object contained any pages, then reset it to an empty state. 791 * None of the object's fields, including "resident_page_count", were 792 * modified by the preceding loop. 793 */ 794 if (object->resident_page_count != 0) { 795 vm_radix_reclaim_allnodes(&object->rtree); 796 TAILQ_INIT(&object->memq); 797 object->resident_page_count = 0; 798 if (object->type == OBJT_VNODE) 799 vdrop(object->handle); 800 } 801 } 802 803 /* 804 * vm_object_terminate actually destroys the specified object, freeing 805 * up all previously used resources. 806 * 807 * The object must be locked. 808 * This routine may block. 809 */ 810 void 811 vm_object_terminate(vm_object_t object) 812 { 813 814 VM_OBJECT_ASSERT_WLOCKED(object); 815 816 /* 817 * Make sure no one uses us. 818 */ 819 vm_object_set_flag(object, OBJ_DEAD); 820 821 /* 822 * wait for the pageout daemon to be done with the object 823 */ 824 vm_object_pip_wait(object, "objtrm"); 825 826 KASSERT(!object->paging_in_progress, 827 ("vm_object_terminate: pageout in progress")); 828 829 /* 830 * Clean and free the pages, as appropriate. All references to the 831 * object are gone, so we don't need to lock it. 832 */ 833 if (object->type == OBJT_VNODE) { 834 struct vnode *vp = (struct vnode *)object->handle; 835 836 /* 837 * Clean pages and flush buffers. 838 */ 839 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 840 VM_OBJECT_WUNLOCK(object); 841 842 vinvalbuf(vp, V_SAVE, 0, 0); 843 844 BO_LOCK(&vp->v_bufobj); 845 vp->v_bufobj.bo_flag |= BO_DEAD; 846 BO_UNLOCK(&vp->v_bufobj); 847 848 VM_OBJECT_WLOCK(object); 849 } 850 851 KASSERT(object->ref_count == 0, 852 ("vm_object_terminate: object with references, ref_count=%d", 853 object->ref_count)); 854 855 if ((object->flags & OBJ_PG_DTOR) == 0) 856 vm_object_terminate_pages(object); 857 858 #if VM_NRESERVLEVEL > 0 859 if (__predict_false(!LIST_EMPTY(&object->rvq))) 860 vm_reserv_break_all(object); 861 #endif 862 863 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 864 object->type == OBJT_SWAP, 865 ("%s: non-swap obj %p has cred", __func__, object)); 866 867 /* 868 * Let the pager know object is dead. 869 */ 870 vm_pager_deallocate(object); 871 VM_OBJECT_WUNLOCK(object); 872 873 vm_object_destroy(object); 874 } 875 876 /* 877 * Make the page read-only so that we can clear the object flags. However, if 878 * this is a nosync mmap then the object is likely to stay dirty so do not 879 * mess with the page and do not clear the object flags. Returns TRUE if the 880 * page should be flushed, and FALSE otherwise. 881 */ 882 static boolean_t 883 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 884 { 885 886 /* 887 * If we have been asked to skip nosync pages and this is a 888 * nosync page, skip it. Note that the object flags were not 889 * cleared in this case so we do not have to set them. 890 */ 891 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 892 *clearobjflags = FALSE; 893 return (FALSE); 894 } else { 895 pmap_remove_write(p); 896 return (p->dirty != 0); 897 } 898 } 899 900 /* 901 * vm_object_page_clean 902 * 903 * Clean all dirty pages in the specified range of object. Leaves page 904 * on whatever queue it is currently on. If NOSYNC is set then do not 905 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 906 * leaving the object dirty. 907 * 908 * When stuffing pages asynchronously, allow clustering. XXX we need a 909 * synchronous clustering mode implementation. 910 * 911 * Odd semantics: if start == end, we clean everything. 912 * 913 * The object must be locked. 914 * 915 * Returns FALSE if some page from the range was not written, as 916 * reported by the pager, and TRUE otherwise. 917 */ 918 boolean_t 919 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 920 int flags) 921 { 922 vm_page_t np, p; 923 vm_pindex_t pi, tend, tstart; 924 int curgeneration, n, pagerflags; 925 boolean_t clearobjflags, eio, res; 926 927 VM_OBJECT_ASSERT_WLOCKED(object); 928 929 /* 930 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 931 * objects. The check below prevents the function from 932 * operating on non-vnode objects. 933 */ 934 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 935 object->resident_page_count == 0) 936 return (TRUE); 937 938 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 939 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 940 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 941 942 tstart = OFF_TO_IDX(start); 943 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 944 clearobjflags = tstart == 0 && tend >= object->size; 945 res = TRUE; 946 947 rescan: 948 curgeneration = object->generation; 949 950 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 951 pi = p->pindex; 952 if (pi >= tend) 953 break; 954 np = TAILQ_NEXT(p, listq); 955 if (p->valid == 0) 956 continue; 957 if (vm_page_sleep_if_busy(p, "vpcwai")) { 958 if (object->generation != curgeneration) { 959 if ((flags & OBJPC_SYNC) != 0) 960 goto rescan; 961 else 962 clearobjflags = FALSE; 963 } 964 np = vm_page_find_least(object, pi); 965 continue; 966 } 967 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 968 continue; 969 970 n = vm_object_page_collect_flush(object, p, pagerflags, 971 flags, &clearobjflags, &eio); 972 if (eio) { 973 res = FALSE; 974 clearobjflags = FALSE; 975 } 976 if (object->generation != curgeneration) { 977 if ((flags & OBJPC_SYNC) != 0) 978 goto rescan; 979 else 980 clearobjflags = FALSE; 981 } 982 983 /* 984 * If the VOP_PUTPAGES() did a truncated write, so 985 * that even the first page of the run is not fully 986 * written, vm_pageout_flush() returns 0 as the run 987 * length. Since the condition that caused truncated 988 * write may be permanent, e.g. exhausted free space, 989 * accepting n == 0 would cause an infinite loop. 990 * 991 * Forwarding the iterator leaves the unwritten page 992 * behind, but there is not much we can do there if 993 * filesystem refuses to write it. 994 */ 995 if (n == 0) { 996 n = 1; 997 clearobjflags = FALSE; 998 } 999 np = vm_page_find_least(object, pi + n); 1000 } 1001 #if 0 1002 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1003 #endif 1004 1005 if (clearobjflags) 1006 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 1007 return (res); 1008 } 1009 1010 static int 1011 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1012 int flags, boolean_t *clearobjflags, boolean_t *eio) 1013 { 1014 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1015 int count, i, mreq, runlen; 1016 1017 vm_page_lock_assert(p, MA_NOTOWNED); 1018 VM_OBJECT_ASSERT_WLOCKED(object); 1019 1020 count = 1; 1021 mreq = 0; 1022 1023 for (tp = p; count < vm_pageout_page_count; count++) { 1024 tp = vm_page_next(tp); 1025 if (tp == NULL || vm_page_busied(tp)) 1026 break; 1027 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1028 break; 1029 } 1030 1031 for (p_first = p; count < vm_pageout_page_count; count++) { 1032 tp = vm_page_prev(p_first); 1033 if (tp == NULL || vm_page_busied(tp)) 1034 break; 1035 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1036 break; 1037 p_first = tp; 1038 mreq++; 1039 } 1040 1041 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1042 ma[i] = tp; 1043 1044 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1045 return (runlen); 1046 } 1047 1048 /* 1049 * Note that there is absolutely no sense in writing out 1050 * anonymous objects, so we track down the vnode object 1051 * to write out. 1052 * We invalidate (remove) all pages from the address space 1053 * for semantic correctness. 1054 * 1055 * If the backing object is a device object with unmanaged pages, then any 1056 * mappings to the specified range of pages must be removed before this 1057 * function is called. 1058 * 1059 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1060 * may start out with a NULL object. 1061 */ 1062 boolean_t 1063 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1064 boolean_t syncio, boolean_t invalidate) 1065 { 1066 vm_object_t backing_object; 1067 struct vnode *vp; 1068 struct mount *mp; 1069 int error, flags, fsync_after; 1070 boolean_t res; 1071 1072 if (object == NULL) 1073 return (TRUE); 1074 res = TRUE; 1075 error = 0; 1076 VM_OBJECT_WLOCK(object); 1077 while ((backing_object = object->backing_object) != NULL) { 1078 VM_OBJECT_WLOCK(backing_object); 1079 offset += object->backing_object_offset; 1080 VM_OBJECT_WUNLOCK(object); 1081 object = backing_object; 1082 if (object->size < OFF_TO_IDX(offset + size)) 1083 size = IDX_TO_OFF(object->size) - offset; 1084 } 1085 /* 1086 * Flush pages if writing is allowed, invalidate them 1087 * if invalidation requested. Pages undergoing I/O 1088 * will be ignored by vm_object_page_remove(). 1089 * 1090 * We cannot lock the vnode and then wait for paging 1091 * to complete without deadlocking against vm_fault. 1092 * Instead we simply call vm_object_page_remove() and 1093 * allow it to block internally on a page-by-page 1094 * basis when it encounters pages undergoing async 1095 * I/O. 1096 */ 1097 if (object->type == OBJT_VNODE && 1098 (object->flags & OBJ_MIGHTBEDIRTY) != 0 && 1099 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1100 VM_OBJECT_WUNLOCK(object); 1101 (void) vn_start_write(vp, &mp, V_WAIT); 1102 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1103 if (syncio && !invalidate && offset == 0 && 1104 atop(size) == object->size) { 1105 /* 1106 * If syncing the whole mapping of the file, 1107 * it is faster to schedule all the writes in 1108 * async mode, also allowing the clustering, 1109 * and then wait for i/o to complete. 1110 */ 1111 flags = 0; 1112 fsync_after = TRUE; 1113 } else { 1114 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1115 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1116 fsync_after = FALSE; 1117 } 1118 VM_OBJECT_WLOCK(object); 1119 res = vm_object_page_clean(object, offset, offset + size, 1120 flags); 1121 VM_OBJECT_WUNLOCK(object); 1122 if (fsync_after) 1123 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1124 VOP_UNLOCK(vp, 0); 1125 vn_finished_write(mp); 1126 if (error != 0) 1127 res = FALSE; 1128 VM_OBJECT_WLOCK(object); 1129 } 1130 if ((object->type == OBJT_VNODE || 1131 object->type == OBJT_DEVICE) && invalidate) { 1132 if (object->type == OBJT_DEVICE) 1133 /* 1134 * The option OBJPR_NOTMAPPED must be passed here 1135 * because vm_object_page_remove() cannot remove 1136 * unmanaged mappings. 1137 */ 1138 flags = OBJPR_NOTMAPPED; 1139 else if (old_msync) 1140 flags = 0; 1141 else 1142 flags = OBJPR_CLEANONLY; 1143 vm_object_page_remove(object, OFF_TO_IDX(offset), 1144 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1145 } 1146 VM_OBJECT_WUNLOCK(object); 1147 return (res); 1148 } 1149 1150 /* 1151 * Determine whether the given advice can be applied to the object. Advice is 1152 * not applied to unmanaged pages since they never belong to page queues, and 1153 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1154 * have been mapped at most once. 1155 */ 1156 static bool 1157 vm_object_advice_applies(vm_object_t object, int advice) 1158 { 1159 1160 if ((object->flags & OBJ_UNMANAGED) != 0) 1161 return (false); 1162 if (advice != MADV_FREE) 1163 return (true); 1164 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1165 (object->flags & OBJ_ONEMAPPING) != 0); 1166 } 1167 1168 static void 1169 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1170 vm_size_t size) 1171 { 1172 1173 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1174 swap_pager_freespace(object, pindex, size); 1175 } 1176 1177 /* 1178 * vm_object_madvise: 1179 * 1180 * Implements the madvise function at the object/page level. 1181 * 1182 * MADV_WILLNEED (any object) 1183 * 1184 * Activate the specified pages if they are resident. 1185 * 1186 * MADV_DONTNEED (any object) 1187 * 1188 * Deactivate the specified pages if they are resident. 1189 * 1190 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1191 * OBJ_ONEMAPPING only) 1192 * 1193 * Deactivate and clean the specified pages if they are 1194 * resident. This permits the process to reuse the pages 1195 * without faulting or the kernel to reclaim the pages 1196 * without I/O. 1197 */ 1198 void 1199 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1200 int advice) 1201 { 1202 vm_pindex_t tpindex; 1203 vm_object_t backing_object, tobject; 1204 vm_page_t m, tm; 1205 1206 if (object == NULL) 1207 return; 1208 1209 relookup: 1210 VM_OBJECT_WLOCK(object); 1211 if (!vm_object_advice_applies(object, advice)) { 1212 VM_OBJECT_WUNLOCK(object); 1213 return; 1214 } 1215 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1216 tobject = object; 1217 1218 /* 1219 * If the next page isn't resident in the top-level object, we 1220 * need to search the shadow chain. When applying MADV_FREE, we 1221 * take care to release any swap space used to store 1222 * non-resident pages. 1223 */ 1224 if (m == NULL || pindex < m->pindex) { 1225 /* 1226 * Optimize a common case: if the top-level object has 1227 * no backing object, we can skip over the non-resident 1228 * range in constant time. 1229 */ 1230 if (object->backing_object == NULL) { 1231 tpindex = (m != NULL && m->pindex < end) ? 1232 m->pindex : end; 1233 vm_object_madvise_freespace(object, advice, 1234 pindex, tpindex - pindex); 1235 if ((pindex = tpindex) == end) 1236 break; 1237 goto next_page; 1238 } 1239 1240 tpindex = pindex; 1241 do { 1242 vm_object_madvise_freespace(tobject, advice, 1243 tpindex, 1); 1244 /* 1245 * Prepare to search the next object in the 1246 * chain. 1247 */ 1248 backing_object = tobject->backing_object; 1249 if (backing_object == NULL) 1250 goto next_pindex; 1251 VM_OBJECT_WLOCK(backing_object); 1252 tpindex += 1253 OFF_TO_IDX(tobject->backing_object_offset); 1254 if (tobject != object) 1255 VM_OBJECT_WUNLOCK(tobject); 1256 tobject = backing_object; 1257 if (!vm_object_advice_applies(tobject, advice)) 1258 goto next_pindex; 1259 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1260 NULL); 1261 } else { 1262 next_page: 1263 tm = m; 1264 m = TAILQ_NEXT(m, listq); 1265 } 1266 1267 /* 1268 * If the page is not in a normal state, skip it. 1269 */ 1270 if (tm->valid != VM_PAGE_BITS_ALL) 1271 goto next_pindex; 1272 vm_page_lock(tm); 1273 if (tm->hold_count != 0 || tm->wire_count != 0) { 1274 vm_page_unlock(tm); 1275 goto next_pindex; 1276 } 1277 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1278 ("vm_object_madvise: page %p is fictitious", tm)); 1279 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1280 ("vm_object_madvise: page %p is not managed", tm)); 1281 if (vm_page_busied(tm)) { 1282 if (object != tobject) 1283 VM_OBJECT_WUNLOCK(tobject); 1284 VM_OBJECT_WUNLOCK(object); 1285 if (advice == MADV_WILLNEED) { 1286 /* 1287 * Reference the page before unlocking and 1288 * sleeping so that the page daemon is less 1289 * likely to reclaim it. 1290 */ 1291 vm_page_aflag_set(tm, PGA_REFERENCED); 1292 } 1293 vm_page_busy_sleep(tm, "madvpo", false); 1294 goto relookup; 1295 } 1296 vm_page_advise(tm, advice); 1297 vm_page_unlock(tm); 1298 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1299 next_pindex: 1300 if (tobject != object) 1301 VM_OBJECT_WUNLOCK(tobject); 1302 } 1303 VM_OBJECT_WUNLOCK(object); 1304 } 1305 1306 /* 1307 * vm_object_shadow: 1308 * 1309 * Create a new object which is backed by the 1310 * specified existing object range. The source 1311 * object reference is deallocated. 1312 * 1313 * The new object and offset into that object 1314 * are returned in the source parameters. 1315 */ 1316 void 1317 vm_object_shadow( 1318 vm_object_t *object, /* IN/OUT */ 1319 vm_ooffset_t *offset, /* IN/OUT */ 1320 vm_size_t length) 1321 { 1322 vm_object_t source; 1323 vm_object_t result; 1324 1325 source = *object; 1326 1327 /* 1328 * Don't create the new object if the old object isn't shared. 1329 */ 1330 if (source != NULL) { 1331 VM_OBJECT_WLOCK(source); 1332 if (source->ref_count == 1 && 1333 source->handle == NULL && 1334 (source->type == OBJT_DEFAULT || 1335 source->type == OBJT_SWAP)) { 1336 VM_OBJECT_WUNLOCK(source); 1337 return; 1338 } 1339 VM_OBJECT_WUNLOCK(source); 1340 } 1341 1342 /* 1343 * Allocate a new object with the given length. 1344 */ 1345 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1346 1347 /* 1348 * The new object shadows the source object, adding a reference to it. 1349 * Our caller changes his reference to point to the new object, 1350 * removing a reference to the source object. Net result: no change 1351 * of reference count. 1352 * 1353 * Try to optimize the result object's page color when shadowing 1354 * in order to maintain page coloring consistency in the combined 1355 * shadowed object. 1356 */ 1357 result->backing_object = source; 1358 /* 1359 * Store the offset into the source object, and fix up the offset into 1360 * the new object. 1361 */ 1362 result->backing_object_offset = *offset; 1363 if (source != NULL) { 1364 VM_OBJECT_WLOCK(source); 1365 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1366 source->shadow_count++; 1367 #if VM_NRESERVLEVEL > 0 1368 result->flags |= source->flags & OBJ_COLORED; 1369 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1370 ((1 << (VM_NFREEORDER - 1)) - 1); 1371 #endif 1372 VM_OBJECT_WUNLOCK(source); 1373 } 1374 1375 1376 /* 1377 * Return the new things 1378 */ 1379 *offset = 0; 1380 *object = result; 1381 } 1382 1383 /* 1384 * vm_object_split: 1385 * 1386 * Split the pages in a map entry into a new object. This affords 1387 * easier removal of unused pages, and keeps object inheritance from 1388 * being a negative impact on memory usage. 1389 */ 1390 void 1391 vm_object_split(vm_map_entry_t entry) 1392 { 1393 vm_page_t m, m_next; 1394 vm_object_t orig_object, new_object, source; 1395 vm_pindex_t idx, offidxstart; 1396 vm_size_t size; 1397 1398 orig_object = entry->object.vm_object; 1399 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1400 return; 1401 if (orig_object->ref_count <= 1) 1402 return; 1403 VM_OBJECT_WUNLOCK(orig_object); 1404 1405 offidxstart = OFF_TO_IDX(entry->offset); 1406 size = atop(entry->end - entry->start); 1407 1408 /* 1409 * If swap_pager_copy() is later called, it will convert new_object 1410 * into a swap object. 1411 */ 1412 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1413 1414 /* 1415 * At this point, the new object is still private, so the order in 1416 * which the original and new objects are locked does not matter. 1417 */ 1418 VM_OBJECT_WLOCK(new_object); 1419 VM_OBJECT_WLOCK(orig_object); 1420 source = orig_object->backing_object; 1421 if (source != NULL) { 1422 VM_OBJECT_WLOCK(source); 1423 if ((source->flags & OBJ_DEAD) != 0) { 1424 VM_OBJECT_WUNLOCK(source); 1425 VM_OBJECT_WUNLOCK(orig_object); 1426 VM_OBJECT_WUNLOCK(new_object); 1427 vm_object_deallocate(new_object); 1428 VM_OBJECT_WLOCK(orig_object); 1429 return; 1430 } 1431 LIST_INSERT_HEAD(&source->shadow_head, 1432 new_object, shadow_list); 1433 source->shadow_count++; 1434 vm_object_reference_locked(source); /* for new_object */ 1435 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1436 VM_OBJECT_WUNLOCK(source); 1437 new_object->backing_object_offset = 1438 orig_object->backing_object_offset + entry->offset; 1439 new_object->backing_object = source; 1440 } 1441 if (orig_object->cred != NULL) { 1442 new_object->cred = orig_object->cred; 1443 crhold(orig_object->cred); 1444 new_object->charge = ptoa(size); 1445 KASSERT(orig_object->charge >= ptoa(size), 1446 ("orig_object->charge < 0")); 1447 orig_object->charge -= ptoa(size); 1448 } 1449 retry: 1450 m = vm_page_find_least(orig_object, offidxstart); 1451 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1452 m = m_next) { 1453 m_next = TAILQ_NEXT(m, listq); 1454 1455 /* 1456 * We must wait for pending I/O to complete before we can 1457 * rename the page. 1458 * 1459 * We do not have to VM_PROT_NONE the page as mappings should 1460 * not be changed by this operation. 1461 */ 1462 if (vm_page_busied(m)) { 1463 VM_OBJECT_WUNLOCK(new_object); 1464 vm_page_lock(m); 1465 VM_OBJECT_WUNLOCK(orig_object); 1466 vm_page_busy_sleep(m, "spltwt", false); 1467 VM_OBJECT_WLOCK(orig_object); 1468 VM_OBJECT_WLOCK(new_object); 1469 goto retry; 1470 } 1471 1472 /* vm_page_rename() will dirty the page. */ 1473 if (vm_page_rename(m, new_object, idx)) { 1474 VM_OBJECT_WUNLOCK(new_object); 1475 VM_OBJECT_WUNLOCK(orig_object); 1476 vm_radix_wait(); 1477 VM_OBJECT_WLOCK(orig_object); 1478 VM_OBJECT_WLOCK(new_object); 1479 goto retry; 1480 } 1481 #if VM_NRESERVLEVEL > 0 1482 /* 1483 * If some of the reservation's allocated pages remain with 1484 * the original object, then transferring the reservation to 1485 * the new object is neither particularly beneficial nor 1486 * particularly harmful as compared to leaving the reservation 1487 * with the original object. If, however, all of the 1488 * reservation's allocated pages are transferred to the new 1489 * object, then transferring the reservation is typically 1490 * beneficial. Determining which of these two cases applies 1491 * would be more costly than unconditionally renaming the 1492 * reservation. 1493 */ 1494 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1495 #endif 1496 if (orig_object->type == OBJT_SWAP) 1497 vm_page_xbusy(m); 1498 } 1499 if (orig_object->type == OBJT_SWAP) { 1500 /* 1501 * swap_pager_copy() can sleep, in which case the orig_object's 1502 * and new_object's locks are released and reacquired. 1503 */ 1504 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1505 TAILQ_FOREACH(m, &new_object->memq, listq) 1506 vm_page_xunbusy(m); 1507 } 1508 VM_OBJECT_WUNLOCK(orig_object); 1509 VM_OBJECT_WUNLOCK(new_object); 1510 entry->object.vm_object = new_object; 1511 entry->offset = 0LL; 1512 vm_object_deallocate(orig_object); 1513 VM_OBJECT_WLOCK(new_object); 1514 } 1515 1516 #define OBSC_COLLAPSE_NOWAIT 0x0002 1517 #define OBSC_COLLAPSE_WAIT 0x0004 1518 1519 static vm_page_t 1520 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1521 int op) 1522 { 1523 vm_object_t backing_object; 1524 1525 VM_OBJECT_ASSERT_WLOCKED(object); 1526 backing_object = object->backing_object; 1527 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1528 1529 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1530 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1531 ("invalid ownership %p %p %p", p, object, backing_object)); 1532 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1533 return (next); 1534 if (p != NULL) 1535 vm_page_lock(p); 1536 VM_OBJECT_WUNLOCK(object); 1537 VM_OBJECT_WUNLOCK(backing_object); 1538 /* The page is only NULL when rename fails. */ 1539 if (p == NULL) 1540 vm_radix_wait(); 1541 else 1542 vm_page_busy_sleep(p, "vmocol", false); 1543 VM_OBJECT_WLOCK(object); 1544 VM_OBJECT_WLOCK(backing_object); 1545 return (TAILQ_FIRST(&backing_object->memq)); 1546 } 1547 1548 static bool 1549 vm_object_scan_all_shadowed(vm_object_t object) 1550 { 1551 vm_object_t backing_object; 1552 vm_page_t p, pp; 1553 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1554 1555 VM_OBJECT_ASSERT_WLOCKED(object); 1556 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1557 1558 backing_object = object->backing_object; 1559 1560 if (backing_object->type != OBJT_DEFAULT && 1561 backing_object->type != OBJT_SWAP) 1562 return (false); 1563 1564 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1565 p = vm_page_find_least(backing_object, pi); 1566 ps = swap_pager_find_least(backing_object, pi); 1567 1568 /* 1569 * Only check pages inside the parent object's range and 1570 * inside the parent object's mapping of the backing object. 1571 */ 1572 for (;; pi++) { 1573 if (p != NULL && p->pindex < pi) 1574 p = TAILQ_NEXT(p, listq); 1575 if (ps < pi) 1576 ps = swap_pager_find_least(backing_object, pi); 1577 if (p == NULL && ps >= backing_object->size) 1578 break; 1579 else if (p == NULL) 1580 pi = ps; 1581 else 1582 pi = MIN(p->pindex, ps); 1583 1584 new_pindex = pi - backing_offset_index; 1585 if (new_pindex >= object->size) 1586 break; 1587 1588 /* 1589 * See if the parent has the page or if the parent's object 1590 * pager has the page. If the parent has the page but the page 1591 * is not valid, the parent's object pager must have the page. 1592 * 1593 * If this fails, the parent does not completely shadow the 1594 * object and we might as well give up now. 1595 */ 1596 pp = vm_page_lookup(object, new_pindex); 1597 if ((pp == NULL || pp->valid == 0) && 1598 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1599 return (false); 1600 } 1601 return (true); 1602 } 1603 1604 static bool 1605 vm_object_collapse_scan(vm_object_t object, int op) 1606 { 1607 vm_object_t backing_object; 1608 vm_page_t next, p, pp; 1609 vm_pindex_t backing_offset_index, new_pindex; 1610 1611 VM_OBJECT_ASSERT_WLOCKED(object); 1612 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1613 1614 backing_object = object->backing_object; 1615 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1616 1617 /* 1618 * Initial conditions 1619 */ 1620 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1621 vm_object_set_flag(backing_object, OBJ_DEAD); 1622 1623 /* 1624 * Our scan 1625 */ 1626 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1627 next = TAILQ_NEXT(p, listq); 1628 new_pindex = p->pindex - backing_offset_index; 1629 1630 /* 1631 * Check for busy page 1632 */ 1633 if (vm_page_busied(p)) { 1634 next = vm_object_collapse_scan_wait(object, p, next, op); 1635 continue; 1636 } 1637 1638 KASSERT(p->object == backing_object, 1639 ("vm_object_collapse_scan: object mismatch")); 1640 1641 if (p->pindex < backing_offset_index || 1642 new_pindex >= object->size) { 1643 if (backing_object->type == OBJT_SWAP) 1644 swap_pager_freespace(backing_object, p->pindex, 1645 1); 1646 1647 /* 1648 * Page is out of the parent object's range, we can 1649 * simply destroy it. 1650 */ 1651 vm_page_lock(p); 1652 KASSERT(!pmap_page_is_mapped(p), 1653 ("freeing mapped page %p", p)); 1654 if (p->wire_count == 0) 1655 vm_page_free(p); 1656 else 1657 vm_page_remove(p); 1658 vm_page_unlock(p); 1659 continue; 1660 } 1661 1662 pp = vm_page_lookup(object, new_pindex); 1663 if (pp != NULL && vm_page_busied(pp)) { 1664 /* 1665 * The page in the parent is busy and possibly not 1666 * (yet) valid. Until its state is finalized by the 1667 * busy bit owner, we can't tell whether it shadows the 1668 * original page. Therefore, we must either skip it 1669 * and the original (backing_object) page or wait for 1670 * its state to be finalized. 1671 * 1672 * This is due to a race with vm_fault() where we must 1673 * unbusy the original (backing_obj) page before we can 1674 * (re)lock the parent. Hence we can get here. 1675 */ 1676 next = vm_object_collapse_scan_wait(object, pp, next, 1677 op); 1678 continue; 1679 } 1680 1681 KASSERT(pp == NULL || pp->valid != 0, 1682 ("unbusy invalid page %p", pp)); 1683 1684 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1685 NULL)) { 1686 /* 1687 * The page already exists in the parent OR swap exists 1688 * for this location in the parent. Leave the parent's 1689 * page alone. Destroy the original page from the 1690 * backing object. 1691 */ 1692 if (backing_object->type == OBJT_SWAP) 1693 swap_pager_freespace(backing_object, p->pindex, 1694 1); 1695 vm_page_lock(p); 1696 KASSERT(!pmap_page_is_mapped(p), 1697 ("freeing mapped page %p", p)); 1698 if (p->wire_count == 0) 1699 vm_page_free(p); 1700 else 1701 vm_page_remove(p); 1702 vm_page_unlock(p); 1703 continue; 1704 } 1705 1706 /* 1707 * Page does not exist in parent, rename the page from the 1708 * backing object to the main object. 1709 * 1710 * If the page was mapped to a process, it can remain mapped 1711 * through the rename. vm_page_rename() will dirty the page. 1712 */ 1713 if (vm_page_rename(p, object, new_pindex)) { 1714 next = vm_object_collapse_scan_wait(object, NULL, next, 1715 op); 1716 continue; 1717 } 1718 1719 /* Use the old pindex to free the right page. */ 1720 if (backing_object->type == OBJT_SWAP) 1721 swap_pager_freespace(backing_object, 1722 new_pindex + backing_offset_index, 1); 1723 1724 #if VM_NRESERVLEVEL > 0 1725 /* 1726 * Rename the reservation. 1727 */ 1728 vm_reserv_rename(p, object, backing_object, 1729 backing_offset_index); 1730 #endif 1731 } 1732 return (true); 1733 } 1734 1735 1736 /* 1737 * this version of collapse allows the operation to occur earlier and 1738 * when paging_in_progress is true for an object... This is not a complete 1739 * operation, but should plug 99.9% of the rest of the leaks. 1740 */ 1741 static void 1742 vm_object_qcollapse(vm_object_t object) 1743 { 1744 vm_object_t backing_object = object->backing_object; 1745 1746 VM_OBJECT_ASSERT_WLOCKED(object); 1747 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1748 1749 if (backing_object->ref_count != 1) 1750 return; 1751 1752 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1753 } 1754 1755 /* 1756 * vm_object_collapse: 1757 * 1758 * Collapse an object with the object backing it. 1759 * Pages in the backing object are moved into the 1760 * parent, and the backing object is deallocated. 1761 */ 1762 void 1763 vm_object_collapse(vm_object_t object) 1764 { 1765 vm_object_t backing_object, new_backing_object; 1766 1767 VM_OBJECT_ASSERT_WLOCKED(object); 1768 1769 while (TRUE) { 1770 /* 1771 * Verify that the conditions are right for collapse: 1772 * 1773 * The object exists and the backing object exists. 1774 */ 1775 if ((backing_object = object->backing_object) == NULL) 1776 break; 1777 1778 /* 1779 * we check the backing object first, because it is most likely 1780 * not collapsable. 1781 */ 1782 VM_OBJECT_WLOCK(backing_object); 1783 if (backing_object->handle != NULL || 1784 (backing_object->type != OBJT_DEFAULT && 1785 backing_object->type != OBJT_SWAP) || 1786 (backing_object->flags & OBJ_DEAD) || 1787 object->handle != NULL || 1788 (object->type != OBJT_DEFAULT && 1789 object->type != OBJT_SWAP) || 1790 (object->flags & OBJ_DEAD)) { 1791 VM_OBJECT_WUNLOCK(backing_object); 1792 break; 1793 } 1794 1795 if (object->paging_in_progress != 0 || 1796 backing_object->paging_in_progress != 0) { 1797 vm_object_qcollapse(object); 1798 VM_OBJECT_WUNLOCK(backing_object); 1799 break; 1800 } 1801 1802 /* 1803 * We know that we can either collapse the backing object (if 1804 * the parent is the only reference to it) or (perhaps) have 1805 * the parent bypass the object if the parent happens to shadow 1806 * all the resident pages in the entire backing object. 1807 * 1808 * This is ignoring pager-backed pages such as swap pages. 1809 * vm_object_collapse_scan fails the shadowing test in this 1810 * case. 1811 */ 1812 if (backing_object->ref_count == 1) { 1813 vm_object_pip_add(object, 1); 1814 vm_object_pip_add(backing_object, 1); 1815 1816 /* 1817 * If there is exactly one reference to the backing 1818 * object, we can collapse it into the parent. 1819 */ 1820 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1821 1822 #if VM_NRESERVLEVEL > 0 1823 /* 1824 * Break any reservations from backing_object. 1825 */ 1826 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1827 vm_reserv_break_all(backing_object); 1828 #endif 1829 1830 /* 1831 * Move the pager from backing_object to object. 1832 */ 1833 if (backing_object->type == OBJT_SWAP) { 1834 /* 1835 * swap_pager_copy() can sleep, in which case 1836 * the backing_object's and object's locks are 1837 * released and reacquired. 1838 * Since swap_pager_copy() is being asked to 1839 * destroy the source, it will change the 1840 * backing_object's type to OBJT_DEFAULT. 1841 */ 1842 swap_pager_copy( 1843 backing_object, 1844 object, 1845 OFF_TO_IDX(object->backing_object_offset), TRUE); 1846 } 1847 /* 1848 * Object now shadows whatever backing_object did. 1849 * Note that the reference to 1850 * backing_object->backing_object moves from within 1851 * backing_object to within object. 1852 */ 1853 LIST_REMOVE(object, shadow_list); 1854 backing_object->shadow_count--; 1855 if (backing_object->backing_object) { 1856 VM_OBJECT_WLOCK(backing_object->backing_object); 1857 LIST_REMOVE(backing_object, shadow_list); 1858 LIST_INSERT_HEAD( 1859 &backing_object->backing_object->shadow_head, 1860 object, shadow_list); 1861 /* 1862 * The shadow_count has not changed. 1863 */ 1864 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1865 } 1866 object->backing_object = backing_object->backing_object; 1867 object->backing_object_offset += 1868 backing_object->backing_object_offset; 1869 1870 /* 1871 * Discard backing_object. 1872 * 1873 * Since the backing object has no pages, no pager left, 1874 * and no object references within it, all that is 1875 * necessary is to dispose of it. 1876 */ 1877 KASSERT(backing_object->ref_count == 1, ( 1878 "backing_object %p was somehow re-referenced during collapse!", 1879 backing_object)); 1880 vm_object_pip_wakeup(backing_object); 1881 backing_object->type = OBJT_DEAD; 1882 backing_object->ref_count = 0; 1883 VM_OBJECT_WUNLOCK(backing_object); 1884 vm_object_destroy(backing_object); 1885 1886 vm_object_pip_wakeup(object); 1887 object_collapses++; 1888 } else { 1889 /* 1890 * If we do not entirely shadow the backing object, 1891 * there is nothing we can do so we give up. 1892 */ 1893 if (object->resident_page_count != object->size && 1894 !vm_object_scan_all_shadowed(object)) { 1895 VM_OBJECT_WUNLOCK(backing_object); 1896 break; 1897 } 1898 1899 /* 1900 * Make the parent shadow the next object in the 1901 * chain. Deallocating backing_object will not remove 1902 * it, since its reference count is at least 2. 1903 */ 1904 LIST_REMOVE(object, shadow_list); 1905 backing_object->shadow_count--; 1906 1907 new_backing_object = backing_object->backing_object; 1908 if ((object->backing_object = new_backing_object) != NULL) { 1909 VM_OBJECT_WLOCK(new_backing_object); 1910 LIST_INSERT_HEAD( 1911 &new_backing_object->shadow_head, 1912 object, 1913 shadow_list 1914 ); 1915 new_backing_object->shadow_count++; 1916 vm_object_reference_locked(new_backing_object); 1917 VM_OBJECT_WUNLOCK(new_backing_object); 1918 object->backing_object_offset += 1919 backing_object->backing_object_offset; 1920 } 1921 1922 /* 1923 * Drop the reference count on backing_object. Since 1924 * its ref_count was at least 2, it will not vanish. 1925 */ 1926 backing_object->ref_count--; 1927 VM_OBJECT_WUNLOCK(backing_object); 1928 object_bypasses++; 1929 } 1930 1931 /* 1932 * Try again with this object's new backing object. 1933 */ 1934 } 1935 } 1936 1937 /* 1938 * vm_object_page_remove: 1939 * 1940 * For the given object, either frees or invalidates each of the 1941 * specified pages. In general, a page is freed. However, if a page is 1942 * wired for any reason other than the existence of a managed, wired 1943 * mapping, then it may be invalidated but not removed from the object. 1944 * Pages are specified by the given range ["start", "end") and the option 1945 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1946 * extends from "start" to the end of the object. If the option 1947 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1948 * specified range are affected. If the option OBJPR_NOTMAPPED is 1949 * specified, then the pages within the specified range must have no 1950 * mappings. Otherwise, if this option is not specified, any mappings to 1951 * the specified pages are removed before the pages are freed or 1952 * invalidated. 1953 * 1954 * In general, this operation should only be performed on objects that 1955 * contain managed pages. There are, however, two exceptions. First, it 1956 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1957 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1958 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1959 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1960 * 1961 * The object must be locked. 1962 */ 1963 void 1964 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1965 int options) 1966 { 1967 vm_page_t p, next; 1968 struct mtx *mtx; 1969 struct pglist pgl; 1970 1971 VM_OBJECT_ASSERT_WLOCKED(object); 1972 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1973 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1974 ("vm_object_page_remove: illegal options for object %p", object)); 1975 if (object->resident_page_count == 0) 1976 return; 1977 vm_object_pip_add(object, 1); 1978 TAILQ_INIT(&pgl); 1979 again: 1980 p = vm_page_find_least(object, start); 1981 mtx = NULL; 1982 1983 /* 1984 * Here, the variable "p" is either (1) the page with the least pindex 1985 * greater than or equal to the parameter "start" or (2) NULL. 1986 */ 1987 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1988 next = TAILQ_NEXT(p, listq); 1989 1990 /* 1991 * If the page is wired for any reason besides the existence 1992 * of managed, wired mappings, then it cannot be freed. For 1993 * example, fictitious pages, which represent device memory, 1994 * are inherently wired and cannot be freed. They can, 1995 * however, be invalidated if the option OBJPR_CLEANONLY is 1996 * not specified. 1997 */ 1998 vm_page_change_lock(p, &mtx); 1999 if (vm_page_xbusied(p)) { 2000 VM_OBJECT_WUNLOCK(object); 2001 vm_page_busy_sleep(p, "vmopax", true); 2002 VM_OBJECT_WLOCK(object); 2003 goto again; 2004 } 2005 if (p->wire_count != 0) { 2006 if ((options & OBJPR_NOTMAPPED) == 0 && 2007 object->ref_count != 0) 2008 pmap_remove_all(p); 2009 if ((options & OBJPR_CLEANONLY) == 0) { 2010 p->valid = 0; 2011 vm_page_undirty(p); 2012 } 2013 continue; 2014 } 2015 if (vm_page_busied(p)) { 2016 VM_OBJECT_WUNLOCK(object); 2017 vm_page_busy_sleep(p, "vmopar", false); 2018 VM_OBJECT_WLOCK(object); 2019 goto again; 2020 } 2021 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2022 ("vm_object_page_remove: page %p is fictitious", p)); 2023 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 2024 if ((options & OBJPR_NOTMAPPED) == 0 && 2025 object->ref_count != 0) 2026 pmap_remove_write(p); 2027 if (p->dirty != 0) 2028 continue; 2029 } 2030 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0) 2031 pmap_remove_all(p); 2032 p->flags &= ~PG_ZERO; 2033 if (vm_page_free_prep(p, false)) 2034 TAILQ_INSERT_TAIL(&pgl, p, listq); 2035 } 2036 if (mtx != NULL) 2037 mtx_unlock(mtx); 2038 vm_page_free_phys_pglist(&pgl); 2039 vm_object_pip_wakeup(object); 2040 } 2041 2042 /* 2043 * vm_object_page_noreuse: 2044 * 2045 * For the given object, attempt to move the specified pages to 2046 * the head of the inactive queue. This bypasses regular LRU 2047 * operation and allows the pages to be reused quickly under memory 2048 * pressure. If a page is wired for any reason, then it will not 2049 * be queued. Pages are specified by the range ["start", "end"). 2050 * As a special case, if "end" is zero, then the range extends from 2051 * "start" to the end of the object. 2052 * 2053 * This operation should only be performed on objects that 2054 * contain non-fictitious, managed pages. 2055 * 2056 * The object must be locked. 2057 */ 2058 void 2059 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2060 { 2061 struct mtx *mtx; 2062 vm_page_t p, next; 2063 2064 VM_OBJECT_ASSERT_LOCKED(object); 2065 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2066 ("vm_object_page_noreuse: illegal object %p", object)); 2067 if (object->resident_page_count == 0) 2068 return; 2069 p = vm_page_find_least(object, start); 2070 2071 /* 2072 * Here, the variable "p" is either (1) the page with the least pindex 2073 * greater than or equal to the parameter "start" or (2) NULL. 2074 */ 2075 mtx = NULL; 2076 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2077 next = TAILQ_NEXT(p, listq); 2078 vm_page_change_lock(p, &mtx); 2079 vm_page_deactivate_noreuse(p); 2080 } 2081 if (mtx != NULL) 2082 mtx_unlock(mtx); 2083 } 2084 2085 /* 2086 * Populate the specified range of the object with valid pages. Returns 2087 * TRUE if the range is successfully populated and FALSE otherwise. 2088 * 2089 * Note: This function should be optimized to pass a larger array of 2090 * pages to vm_pager_get_pages() before it is applied to a non- 2091 * OBJT_DEVICE object. 2092 * 2093 * The object must be locked. 2094 */ 2095 boolean_t 2096 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2097 { 2098 vm_page_t m; 2099 vm_pindex_t pindex; 2100 int rv; 2101 2102 VM_OBJECT_ASSERT_WLOCKED(object); 2103 for (pindex = start; pindex < end; pindex++) { 2104 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2105 if (m->valid != VM_PAGE_BITS_ALL) { 2106 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2107 if (rv != VM_PAGER_OK) { 2108 vm_page_lock(m); 2109 vm_page_free(m); 2110 vm_page_unlock(m); 2111 break; 2112 } 2113 } 2114 /* 2115 * Keep "m" busy because a subsequent iteration may unlock 2116 * the object. 2117 */ 2118 } 2119 if (pindex > start) { 2120 m = vm_page_lookup(object, start); 2121 while (m != NULL && m->pindex < pindex) { 2122 vm_page_xunbusy(m); 2123 m = TAILQ_NEXT(m, listq); 2124 } 2125 } 2126 return (pindex == end); 2127 } 2128 2129 /* 2130 * Routine: vm_object_coalesce 2131 * Function: Coalesces two objects backing up adjoining 2132 * regions of memory into a single object. 2133 * 2134 * returns TRUE if objects were combined. 2135 * 2136 * NOTE: Only works at the moment if the second object is NULL - 2137 * if it's not, which object do we lock first? 2138 * 2139 * Parameters: 2140 * prev_object First object to coalesce 2141 * prev_offset Offset into prev_object 2142 * prev_size Size of reference to prev_object 2143 * next_size Size of reference to the second object 2144 * reserved Indicator that extension region has 2145 * swap accounted for 2146 * 2147 * Conditions: 2148 * The object must *not* be locked. 2149 */ 2150 boolean_t 2151 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2152 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2153 { 2154 vm_pindex_t next_pindex; 2155 2156 if (prev_object == NULL) 2157 return (TRUE); 2158 VM_OBJECT_WLOCK(prev_object); 2159 if ((prev_object->type != OBJT_DEFAULT && 2160 prev_object->type != OBJT_SWAP) || 2161 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2162 VM_OBJECT_WUNLOCK(prev_object); 2163 return (FALSE); 2164 } 2165 2166 /* 2167 * Try to collapse the object first 2168 */ 2169 vm_object_collapse(prev_object); 2170 2171 /* 2172 * Can't coalesce if: . more than one reference . paged out . shadows 2173 * another object . has a copy elsewhere (any of which mean that the 2174 * pages not mapped to prev_entry may be in use anyway) 2175 */ 2176 if (prev_object->backing_object != NULL) { 2177 VM_OBJECT_WUNLOCK(prev_object); 2178 return (FALSE); 2179 } 2180 2181 prev_size >>= PAGE_SHIFT; 2182 next_size >>= PAGE_SHIFT; 2183 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2184 2185 if ((prev_object->ref_count > 1) && 2186 (prev_object->size != next_pindex)) { 2187 VM_OBJECT_WUNLOCK(prev_object); 2188 return (FALSE); 2189 } 2190 2191 /* 2192 * Account for the charge. 2193 */ 2194 if (prev_object->cred != NULL) { 2195 2196 /* 2197 * If prev_object was charged, then this mapping, 2198 * although not charged now, may become writable 2199 * later. Non-NULL cred in the object would prevent 2200 * swap reservation during enabling of the write 2201 * access, so reserve swap now. Failed reservation 2202 * cause allocation of the separate object for the map 2203 * entry, and swap reservation for this entry is 2204 * managed in appropriate time. 2205 */ 2206 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2207 prev_object->cred)) { 2208 VM_OBJECT_WUNLOCK(prev_object); 2209 return (FALSE); 2210 } 2211 prev_object->charge += ptoa(next_size); 2212 } 2213 2214 /* 2215 * Remove any pages that may still be in the object from a previous 2216 * deallocation. 2217 */ 2218 if (next_pindex < prev_object->size) { 2219 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2220 next_size, 0); 2221 if (prev_object->type == OBJT_SWAP) 2222 swap_pager_freespace(prev_object, 2223 next_pindex, next_size); 2224 #if 0 2225 if (prev_object->cred != NULL) { 2226 KASSERT(prev_object->charge >= 2227 ptoa(prev_object->size - next_pindex), 2228 ("object %p overcharged 1 %jx %jx", prev_object, 2229 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2230 prev_object->charge -= ptoa(prev_object->size - 2231 next_pindex); 2232 } 2233 #endif 2234 } 2235 2236 /* 2237 * Extend the object if necessary. 2238 */ 2239 if (next_pindex + next_size > prev_object->size) 2240 prev_object->size = next_pindex + next_size; 2241 2242 VM_OBJECT_WUNLOCK(prev_object); 2243 return (TRUE); 2244 } 2245 2246 void 2247 vm_object_set_writeable_dirty(vm_object_t object) 2248 { 2249 2250 VM_OBJECT_ASSERT_WLOCKED(object); 2251 if (object->type != OBJT_VNODE) { 2252 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2253 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2254 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2255 } 2256 return; 2257 } 2258 object->generation++; 2259 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2260 return; 2261 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2262 } 2263 2264 /* 2265 * vm_object_unwire: 2266 * 2267 * For each page offset within the specified range of the given object, 2268 * find the highest-level page in the shadow chain and unwire it. A page 2269 * must exist at every page offset, and the highest-level page must be 2270 * wired. 2271 */ 2272 void 2273 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2274 uint8_t queue) 2275 { 2276 vm_object_t tobject; 2277 vm_page_t m, tm; 2278 vm_pindex_t end_pindex, pindex, tpindex; 2279 int depth, locked_depth; 2280 2281 KASSERT((offset & PAGE_MASK) == 0, 2282 ("vm_object_unwire: offset is not page aligned")); 2283 KASSERT((length & PAGE_MASK) == 0, 2284 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2285 /* The wired count of a fictitious page never changes. */ 2286 if ((object->flags & OBJ_FICTITIOUS) != 0) 2287 return; 2288 pindex = OFF_TO_IDX(offset); 2289 end_pindex = pindex + atop(length); 2290 locked_depth = 1; 2291 VM_OBJECT_RLOCK(object); 2292 m = vm_page_find_least(object, pindex); 2293 while (pindex < end_pindex) { 2294 if (m == NULL || pindex < m->pindex) { 2295 /* 2296 * The first object in the shadow chain doesn't 2297 * contain a page at the current index. Therefore, 2298 * the page must exist in a backing object. 2299 */ 2300 tobject = object; 2301 tpindex = pindex; 2302 depth = 0; 2303 do { 2304 tpindex += 2305 OFF_TO_IDX(tobject->backing_object_offset); 2306 tobject = tobject->backing_object; 2307 KASSERT(tobject != NULL, 2308 ("vm_object_unwire: missing page")); 2309 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2310 goto next_page; 2311 depth++; 2312 if (depth == locked_depth) { 2313 locked_depth++; 2314 VM_OBJECT_RLOCK(tobject); 2315 } 2316 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2317 NULL); 2318 } else { 2319 tm = m; 2320 m = TAILQ_NEXT(m, listq); 2321 } 2322 vm_page_lock(tm); 2323 vm_page_unwire(tm, queue); 2324 vm_page_unlock(tm); 2325 next_page: 2326 pindex++; 2327 } 2328 /* Release the accumulated object locks. */ 2329 for (depth = 0; depth < locked_depth; depth++) { 2330 tobject = object->backing_object; 2331 VM_OBJECT_RUNLOCK(object); 2332 object = tobject; 2333 } 2334 } 2335 2336 struct vnode * 2337 vm_object_vnode(vm_object_t object) 2338 { 2339 2340 VM_OBJECT_ASSERT_LOCKED(object); 2341 if (object->type == OBJT_VNODE) 2342 return (object->handle); 2343 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2344 return (object->un_pager.swp.swp_tmpfs); 2345 return (NULL); 2346 } 2347 2348 static int 2349 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2350 { 2351 struct kinfo_vmobject *kvo; 2352 char *fullpath, *freepath; 2353 struct vnode *vp; 2354 struct vattr va; 2355 vm_object_t obj; 2356 vm_page_t m; 2357 int count, error; 2358 2359 if (req->oldptr == NULL) { 2360 /* 2361 * If an old buffer has not been provided, generate an 2362 * estimate of the space needed for a subsequent call. 2363 */ 2364 mtx_lock(&vm_object_list_mtx); 2365 count = 0; 2366 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2367 if (obj->type == OBJT_DEAD) 2368 continue; 2369 count++; 2370 } 2371 mtx_unlock(&vm_object_list_mtx); 2372 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2373 count * 11 / 10)); 2374 } 2375 2376 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2377 error = 0; 2378 2379 /* 2380 * VM objects are type stable and are never removed from the 2381 * list once added. This allows us to safely read obj->object_list 2382 * after reacquiring the VM object lock. 2383 */ 2384 mtx_lock(&vm_object_list_mtx); 2385 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2386 if (obj->type == OBJT_DEAD) 2387 continue; 2388 VM_OBJECT_RLOCK(obj); 2389 if (obj->type == OBJT_DEAD) { 2390 VM_OBJECT_RUNLOCK(obj); 2391 continue; 2392 } 2393 mtx_unlock(&vm_object_list_mtx); 2394 kvo->kvo_size = ptoa(obj->size); 2395 kvo->kvo_resident = obj->resident_page_count; 2396 kvo->kvo_ref_count = obj->ref_count; 2397 kvo->kvo_shadow_count = obj->shadow_count; 2398 kvo->kvo_memattr = obj->memattr; 2399 kvo->kvo_active = 0; 2400 kvo->kvo_inactive = 0; 2401 TAILQ_FOREACH(m, &obj->memq, listq) { 2402 /* 2403 * A page may belong to the object but be 2404 * dequeued and set to PQ_NONE while the 2405 * object lock is not held. This makes the 2406 * reads of m->queue below racy, and we do not 2407 * count pages set to PQ_NONE. However, this 2408 * sysctl is only meant to give an 2409 * approximation of the system anyway. 2410 */ 2411 if (vm_page_active(m)) 2412 kvo->kvo_active++; 2413 else if (vm_page_inactive(m)) 2414 kvo->kvo_inactive++; 2415 } 2416 2417 kvo->kvo_vn_fileid = 0; 2418 kvo->kvo_vn_fsid = 0; 2419 kvo->kvo_vn_fsid_freebsd11 = 0; 2420 freepath = NULL; 2421 fullpath = ""; 2422 vp = NULL; 2423 switch (obj->type) { 2424 case OBJT_DEFAULT: 2425 kvo->kvo_type = KVME_TYPE_DEFAULT; 2426 break; 2427 case OBJT_VNODE: 2428 kvo->kvo_type = KVME_TYPE_VNODE; 2429 vp = obj->handle; 2430 vref(vp); 2431 break; 2432 case OBJT_SWAP: 2433 kvo->kvo_type = KVME_TYPE_SWAP; 2434 break; 2435 case OBJT_DEVICE: 2436 kvo->kvo_type = KVME_TYPE_DEVICE; 2437 break; 2438 case OBJT_PHYS: 2439 kvo->kvo_type = KVME_TYPE_PHYS; 2440 break; 2441 case OBJT_DEAD: 2442 kvo->kvo_type = KVME_TYPE_DEAD; 2443 break; 2444 case OBJT_SG: 2445 kvo->kvo_type = KVME_TYPE_SG; 2446 break; 2447 case OBJT_MGTDEVICE: 2448 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2449 break; 2450 default: 2451 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2452 break; 2453 } 2454 VM_OBJECT_RUNLOCK(obj); 2455 if (vp != NULL) { 2456 vn_fullpath(curthread, vp, &fullpath, &freepath); 2457 vn_lock(vp, LK_SHARED | LK_RETRY); 2458 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2459 kvo->kvo_vn_fileid = va.va_fileid; 2460 kvo->kvo_vn_fsid = va.va_fsid; 2461 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2462 /* truncate */ 2463 } 2464 vput(vp); 2465 } 2466 2467 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2468 if (freepath != NULL) 2469 free(freepath, M_TEMP); 2470 2471 /* Pack record size down */ 2472 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2473 + strlen(kvo->kvo_path) + 1; 2474 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2475 sizeof(uint64_t)); 2476 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2477 mtx_lock(&vm_object_list_mtx); 2478 if (error) 2479 break; 2480 } 2481 mtx_unlock(&vm_object_list_mtx); 2482 free(kvo, M_TEMP); 2483 return (error); 2484 } 2485 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2486 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2487 "List of VM objects"); 2488 2489 #include "opt_ddb.h" 2490 #ifdef DDB 2491 #include <sys/kernel.h> 2492 2493 #include <sys/cons.h> 2494 2495 #include <ddb/ddb.h> 2496 2497 static int 2498 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2499 { 2500 vm_map_t tmpm; 2501 vm_map_entry_t tmpe; 2502 vm_object_t obj; 2503 int entcount; 2504 2505 if (map == 0) 2506 return 0; 2507 2508 if (entry == 0) { 2509 tmpe = map->header.next; 2510 entcount = map->nentries; 2511 while (entcount-- && (tmpe != &map->header)) { 2512 if (_vm_object_in_map(map, object, tmpe)) { 2513 return 1; 2514 } 2515 tmpe = tmpe->next; 2516 } 2517 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2518 tmpm = entry->object.sub_map; 2519 tmpe = tmpm->header.next; 2520 entcount = tmpm->nentries; 2521 while (entcount-- && tmpe != &tmpm->header) { 2522 if (_vm_object_in_map(tmpm, object, tmpe)) { 2523 return 1; 2524 } 2525 tmpe = tmpe->next; 2526 } 2527 } else if ((obj = entry->object.vm_object) != NULL) { 2528 for (; obj; obj = obj->backing_object) 2529 if (obj == object) { 2530 return 1; 2531 } 2532 } 2533 return 0; 2534 } 2535 2536 static int 2537 vm_object_in_map(vm_object_t object) 2538 { 2539 struct proc *p; 2540 2541 /* sx_slock(&allproc_lock); */ 2542 FOREACH_PROC_IN_SYSTEM(p) { 2543 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2544 continue; 2545 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2546 /* sx_sunlock(&allproc_lock); */ 2547 return 1; 2548 } 2549 } 2550 /* sx_sunlock(&allproc_lock); */ 2551 if (_vm_object_in_map(kernel_map, object, 0)) 2552 return 1; 2553 return 0; 2554 } 2555 2556 DB_SHOW_COMMAND(vmochk, vm_object_check) 2557 { 2558 vm_object_t object; 2559 2560 /* 2561 * make sure that internal objs are in a map somewhere 2562 * and none have zero ref counts. 2563 */ 2564 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2565 if (object->handle == NULL && 2566 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2567 if (object->ref_count == 0) { 2568 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2569 (long)object->size); 2570 } 2571 if (!vm_object_in_map(object)) { 2572 db_printf( 2573 "vmochk: internal obj is not in a map: " 2574 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2575 object->ref_count, (u_long)object->size, 2576 (u_long)object->size, 2577 (void *)object->backing_object); 2578 } 2579 } 2580 } 2581 } 2582 2583 /* 2584 * vm_object_print: [ debug ] 2585 */ 2586 DB_SHOW_COMMAND(object, vm_object_print_static) 2587 { 2588 /* XXX convert args. */ 2589 vm_object_t object = (vm_object_t)addr; 2590 boolean_t full = have_addr; 2591 2592 vm_page_t p; 2593 2594 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2595 #define count was_count 2596 2597 int count; 2598 2599 if (object == NULL) 2600 return; 2601 2602 db_iprintf( 2603 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2604 object, (int)object->type, (uintmax_t)object->size, 2605 object->resident_page_count, object->ref_count, object->flags, 2606 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2607 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2608 object->shadow_count, 2609 object->backing_object ? object->backing_object->ref_count : 0, 2610 object->backing_object, (uintmax_t)object->backing_object_offset); 2611 2612 if (!full) 2613 return; 2614 2615 db_indent += 2; 2616 count = 0; 2617 TAILQ_FOREACH(p, &object->memq, listq) { 2618 if (count == 0) 2619 db_iprintf("memory:="); 2620 else if (count == 6) { 2621 db_printf("\n"); 2622 db_iprintf(" ..."); 2623 count = 0; 2624 } else 2625 db_printf(","); 2626 count++; 2627 2628 db_printf("(off=0x%jx,page=0x%jx)", 2629 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2630 } 2631 if (count != 0) 2632 db_printf("\n"); 2633 db_indent -= 2; 2634 } 2635 2636 /* XXX. */ 2637 #undef count 2638 2639 /* XXX need this non-static entry for calling from vm_map_print. */ 2640 void 2641 vm_object_print( 2642 /* db_expr_t */ long addr, 2643 boolean_t have_addr, 2644 /* db_expr_t */ long count, 2645 char *modif) 2646 { 2647 vm_object_print_static(addr, have_addr, count, modif); 2648 } 2649 2650 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2651 { 2652 vm_object_t object; 2653 vm_pindex_t fidx; 2654 vm_paddr_t pa; 2655 vm_page_t m, prev_m; 2656 int rcount, nl, c; 2657 2658 nl = 0; 2659 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2660 db_printf("new object: %p\n", (void *)object); 2661 if (nl > 18) { 2662 c = cngetc(); 2663 if (c != ' ') 2664 return; 2665 nl = 0; 2666 } 2667 nl++; 2668 rcount = 0; 2669 fidx = 0; 2670 pa = -1; 2671 TAILQ_FOREACH(m, &object->memq, listq) { 2672 if (m->pindex > 128) 2673 break; 2674 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2675 prev_m->pindex + 1 != m->pindex) { 2676 if (rcount) { 2677 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2678 (long)fidx, rcount, (long)pa); 2679 if (nl > 18) { 2680 c = cngetc(); 2681 if (c != ' ') 2682 return; 2683 nl = 0; 2684 } 2685 nl++; 2686 rcount = 0; 2687 } 2688 } 2689 if (rcount && 2690 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2691 ++rcount; 2692 continue; 2693 } 2694 if (rcount) { 2695 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2696 (long)fidx, rcount, (long)pa); 2697 if (nl > 18) { 2698 c = cngetc(); 2699 if (c != ' ') 2700 return; 2701 nl = 0; 2702 } 2703 nl++; 2704 } 2705 fidx = m->pindex; 2706 pa = VM_PAGE_TO_PHYS(m); 2707 rcount = 1; 2708 } 2709 if (rcount) { 2710 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2711 (long)fidx, rcount, (long)pa); 2712 if (nl > 18) { 2713 c = cngetc(); 2714 if (c != ' ') 2715 return; 2716 nl = 0; 2717 } 2718 nl++; 2719 } 2720 } 2721 } 2722 #endif /* DDB */ 2723