xref: /freebsd/sys/vm/vm_object.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102 
103 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104 		    int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106 		    int *clearobjflags);
107 static void	vm_object_qcollapse(vm_object_t object);
108 static void	vm_object_vndeallocate(vm_object_t object);
109 
110 /*
111  *	Virtual memory objects maintain the actual data
112  *	associated with allocated virtual memory.  A given
113  *	page of memory exists within exactly one object.
114  *
115  *	An object is only deallocated when all "references"
116  *	are given up.  Only one "reference" to a given
117  *	region of an object should be writeable.
118  *
119  *	Associated with each object is a list of all resident
120  *	memory pages belonging to that object; this list is
121  *	maintained by the "vm_page" module, and locked by the object's
122  *	lock.
123  *
124  *	Each object also records a "pager" routine which is
125  *	used to retrieve (and store) pages to the proper backing
126  *	storage.  In addition, objects may be backed by other
127  *	objects from which they were virtual-copied.
128  *
129  *	The only items within the object structure which are
130  *	modified after time of creation are:
131  *		reference count		locked by object's lock
132  *		pager routine		locked by object's lock
133  *
134  */
135 
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;	/* lock for object list and count */
138 
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141 
142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
143     "VM object stats");
144 
145 static long object_collapses;
146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
147     &object_collapses, 0, "VM object collapses");
148 
149 static long object_bypasses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
151     &object_bypasses, 0, "VM object bypasses");
152 
153 static uma_zone_t obj_zone;
154 
155 static int vm_object_zinit(void *mem, int size, int flags);
156 
157 #ifdef INVARIANTS
158 static void vm_object_zdtor(void *mem, int size, void *arg);
159 
160 static void
161 vm_object_zdtor(void *mem, int size, void *arg)
162 {
163 	vm_object_t object;
164 
165 	object = (vm_object_t)mem;
166 	KASSERT(TAILQ_EMPTY(&object->memq),
167 	    ("object %p has resident pages",
168 	    object));
169 #if VM_NRESERVLEVEL > 0
170 	KASSERT(LIST_EMPTY(&object->rvq),
171 	    ("object %p has reservations",
172 	    object));
173 #endif
174 	KASSERT(object->cache == NULL,
175 	    ("object %p has cached pages",
176 	    object));
177 	KASSERT(object->paging_in_progress == 0,
178 	    ("object %p paging_in_progress = %d",
179 	    object, object->paging_in_progress));
180 	KASSERT(object->resident_page_count == 0,
181 	    ("object %p resident_page_count = %d",
182 	    object, object->resident_page_count));
183 	KASSERT(object->shadow_count == 0,
184 	    ("object %p shadow_count = %d",
185 	    object, object->shadow_count));
186 }
187 #endif
188 
189 static int
190 vm_object_zinit(void *mem, int size, int flags)
191 {
192 	vm_object_t object;
193 
194 	object = (vm_object_t)mem;
195 	bzero(&object->mtx, sizeof(object->mtx));
196 	VM_OBJECT_LOCK_INIT(object, "standard object");
197 
198 	/* These are true for any object that has been freed */
199 	object->paging_in_progress = 0;
200 	object->resident_page_count = 0;
201 	object->shadow_count = 0;
202 	return (0);
203 }
204 
205 void
206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
207 {
208 
209 	TAILQ_INIT(&object->memq);
210 	LIST_INIT(&object->shadow_head);
211 
212 	object->root = NULL;
213 	object->type = type;
214 	object->size = size;
215 	object->generation = 1;
216 	object->ref_count = 1;
217 	object->memattr = VM_MEMATTR_DEFAULT;
218 	object->flags = 0;
219 	object->cred = NULL;
220 	object->charge = 0;
221 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
222 		object->flags = OBJ_ONEMAPPING;
223 	object->pg_color = 0;
224 	object->handle = NULL;
225 	object->backing_object = NULL;
226 	object->backing_object_offset = (vm_ooffset_t) 0;
227 #if VM_NRESERVLEVEL > 0
228 	LIST_INIT(&object->rvq);
229 #endif
230 	object->cache = NULL;
231 
232 	mtx_lock(&vm_object_list_mtx);
233 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
234 	mtx_unlock(&vm_object_list_mtx);
235 }
236 
237 /*
238  *	vm_object_init:
239  *
240  *	Initialize the VM objects module.
241  */
242 void
243 vm_object_init(void)
244 {
245 	TAILQ_INIT(&vm_object_list);
246 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
247 
248 	VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
249 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250 	    kernel_object);
251 #if VM_NRESERVLEVEL > 0
252 	kernel_object->flags |= OBJ_COLORED;
253 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
254 #endif
255 
256 	VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
257 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258 	    kmem_object);
259 #if VM_NRESERVLEVEL > 0
260 	kmem_object->flags |= OBJ_COLORED;
261 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263 
264 	/*
265 	 * The lock portion of struct vm_object must be type stable due
266 	 * to vm_pageout_fallback_object_lock locking a vm object
267 	 * without holding any references to it.
268 	 */
269 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
270 #ifdef INVARIANTS
271 	    vm_object_zdtor,
272 #else
273 	    NULL,
274 #endif
275 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
276 }
277 
278 void
279 vm_object_clear_flag(vm_object_t object, u_short bits)
280 {
281 
282 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
283 	object->flags &= ~bits;
284 }
285 
286 /*
287  *	Sets the default memory attribute for the specified object.  Pages
288  *	that are allocated to this object are by default assigned this memory
289  *	attribute.
290  *
291  *	Presently, this function must be called before any pages are allocated
292  *	to the object.  In the future, this requirement may be relaxed for
293  *	"default" and "swap" objects.
294  */
295 int
296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
297 {
298 
299 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
300 	switch (object->type) {
301 	case OBJT_DEFAULT:
302 	case OBJT_DEVICE:
303 	case OBJT_PHYS:
304 	case OBJT_SG:
305 	case OBJT_SWAP:
306 	case OBJT_VNODE:
307 		if (!TAILQ_EMPTY(&object->memq))
308 			return (KERN_FAILURE);
309 		break;
310 	case OBJT_DEAD:
311 		return (KERN_INVALID_ARGUMENT);
312 	}
313 	object->memattr = memattr;
314 	return (KERN_SUCCESS);
315 }
316 
317 void
318 vm_object_pip_add(vm_object_t object, short i)
319 {
320 
321 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322 	object->paging_in_progress += i;
323 }
324 
325 void
326 vm_object_pip_subtract(vm_object_t object, short i)
327 {
328 
329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330 	object->paging_in_progress -= i;
331 }
332 
333 void
334 vm_object_pip_wakeup(vm_object_t object)
335 {
336 
337 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338 	object->paging_in_progress--;
339 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
340 		vm_object_clear_flag(object, OBJ_PIPWNT);
341 		wakeup(object);
342 	}
343 }
344 
345 void
346 vm_object_pip_wakeupn(vm_object_t object, short i)
347 {
348 
349 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
350 	if (i)
351 		object->paging_in_progress -= i;
352 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
353 		vm_object_clear_flag(object, OBJ_PIPWNT);
354 		wakeup(object);
355 	}
356 }
357 
358 void
359 vm_object_pip_wait(vm_object_t object, char *waitid)
360 {
361 
362 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
363 	while (object->paging_in_progress) {
364 		object->flags |= OBJ_PIPWNT;
365 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
366 	}
367 }
368 
369 /*
370  *	vm_object_allocate:
371  *
372  *	Returns a new object with the given size.
373  */
374 vm_object_t
375 vm_object_allocate(objtype_t type, vm_pindex_t size)
376 {
377 	vm_object_t object;
378 
379 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
380 	_vm_object_allocate(type, size, object);
381 	return (object);
382 }
383 
384 
385 /*
386  *	vm_object_reference:
387  *
388  *	Gets another reference to the given object.  Note: OBJ_DEAD
389  *	objects can be referenced during final cleaning.
390  */
391 void
392 vm_object_reference(vm_object_t object)
393 {
394 	if (object == NULL)
395 		return;
396 	VM_OBJECT_LOCK(object);
397 	vm_object_reference_locked(object);
398 	VM_OBJECT_UNLOCK(object);
399 }
400 
401 /*
402  *	vm_object_reference_locked:
403  *
404  *	Gets another reference to the given object.
405  *
406  *	The object must be locked.
407  */
408 void
409 vm_object_reference_locked(vm_object_t object)
410 {
411 	struct vnode *vp;
412 
413 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
414 	object->ref_count++;
415 	if (object->type == OBJT_VNODE) {
416 		vp = object->handle;
417 		vref(vp);
418 	}
419 }
420 
421 /*
422  * Handle deallocating an object of type OBJT_VNODE.
423  */
424 static void
425 vm_object_vndeallocate(vm_object_t object)
426 {
427 	struct vnode *vp = (struct vnode *) object->handle;
428 
429 	VFS_ASSERT_GIANT(vp->v_mount);
430 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
431 	KASSERT(object->type == OBJT_VNODE,
432 	    ("vm_object_vndeallocate: not a vnode object"));
433 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
434 #ifdef INVARIANTS
435 	if (object->ref_count == 0) {
436 		vprint("vm_object_vndeallocate", vp);
437 		panic("vm_object_vndeallocate: bad object reference count");
438 	}
439 #endif
440 
441 	if (object->ref_count > 1) {
442 		object->ref_count--;
443 		VM_OBJECT_UNLOCK(object);
444 		/* vrele may need the vnode lock. */
445 		vrele(vp);
446 	} else {
447 		vhold(vp);
448 		VM_OBJECT_UNLOCK(object);
449 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
450 		vdrop(vp);
451 		VM_OBJECT_LOCK(object);
452 		object->ref_count--;
453 		if (object->type == OBJT_DEAD) {
454 			VM_OBJECT_UNLOCK(object);
455 			VOP_UNLOCK(vp, 0);
456 		} else {
457 			if (object->ref_count == 0)
458 				vp->v_vflag &= ~VV_TEXT;
459 			VM_OBJECT_UNLOCK(object);
460 			vput(vp);
461 		}
462 	}
463 }
464 
465 /*
466  *	vm_object_deallocate:
467  *
468  *	Release a reference to the specified object,
469  *	gained either through a vm_object_allocate
470  *	or a vm_object_reference call.  When all references
471  *	are gone, storage associated with this object
472  *	may be relinquished.
473  *
474  *	No object may be locked.
475  */
476 void
477 vm_object_deallocate(vm_object_t object)
478 {
479 	vm_object_t temp;
480 
481 	while (object != NULL) {
482 		int vfslocked;
483 
484 		vfslocked = 0;
485 	restart:
486 		VM_OBJECT_LOCK(object);
487 		if (object->type == OBJT_VNODE) {
488 			struct vnode *vp = (struct vnode *) object->handle;
489 
490 			/*
491 			 * Conditionally acquire Giant for a vnode-backed
492 			 * object.  We have to be careful since the type of
493 			 * a vnode object can change while the object is
494 			 * unlocked.
495 			 */
496 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
497 				vfslocked = 1;
498 				if (!mtx_trylock(&Giant)) {
499 					VM_OBJECT_UNLOCK(object);
500 					mtx_lock(&Giant);
501 					goto restart;
502 				}
503 			}
504 			vm_object_vndeallocate(object);
505 			VFS_UNLOCK_GIANT(vfslocked);
506 			return;
507 		} else
508 			/*
509 			 * This is to handle the case that the object
510 			 * changed type while we dropped its lock to
511 			 * obtain Giant.
512 			 */
513 			VFS_UNLOCK_GIANT(vfslocked);
514 
515 		KASSERT(object->ref_count != 0,
516 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
517 
518 		/*
519 		 * If the reference count goes to 0 we start calling
520 		 * vm_object_terminate() on the object chain.
521 		 * A ref count of 1 may be a special case depending on the
522 		 * shadow count being 0 or 1.
523 		 */
524 		object->ref_count--;
525 		if (object->ref_count > 1) {
526 			VM_OBJECT_UNLOCK(object);
527 			return;
528 		} else if (object->ref_count == 1) {
529 			if (object->shadow_count == 0 &&
530 			    object->handle == NULL &&
531 			    (object->type == OBJT_DEFAULT ||
532 			     object->type == OBJT_SWAP)) {
533 				vm_object_set_flag(object, OBJ_ONEMAPPING);
534 			} else if ((object->shadow_count == 1) &&
535 			    (object->handle == NULL) &&
536 			    (object->type == OBJT_DEFAULT ||
537 			     object->type == OBJT_SWAP)) {
538 				vm_object_t robject;
539 
540 				robject = LIST_FIRST(&object->shadow_head);
541 				KASSERT(robject != NULL,
542 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
543 					 object->ref_count,
544 					 object->shadow_count));
545 				if (!VM_OBJECT_TRYLOCK(robject)) {
546 					/*
547 					 * Avoid a potential deadlock.
548 					 */
549 					object->ref_count++;
550 					VM_OBJECT_UNLOCK(object);
551 					/*
552 					 * More likely than not the thread
553 					 * holding robject's lock has lower
554 					 * priority than the current thread.
555 					 * Let the lower priority thread run.
556 					 */
557 					pause("vmo_de", 1);
558 					continue;
559 				}
560 				/*
561 				 * Collapse object into its shadow unless its
562 				 * shadow is dead.  In that case, object will
563 				 * be deallocated by the thread that is
564 				 * deallocating its shadow.
565 				 */
566 				if ((robject->flags & OBJ_DEAD) == 0 &&
567 				    (robject->handle == NULL) &&
568 				    (robject->type == OBJT_DEFAULT ||
569 				     robject->type == OBJT_SWAP)) {
570 
571 					robject->ref_count++;
572 retry:
573 					if (robject->paging_in_progress) {
574 						VM_OBJECT_UNLOCK(object);
575 						vm_object_pip_wait(robject,
576 						    "objde1");
577 						temp = robject->backing_object;
578 						if (object == temp) {
579 							VM_OBJECT_LOCK(object);
580 							goto retry;
581 						}
582 					} else if (object->paging_in_progress) {
583 						VM_OBJECT_UNLOCK(robject);
584 						object->flags |= OBJ_PIPWNT;
585 						msleep(object,
586 						    VM_OBJECT_MTX(object),
587 						    PDROP | PVM, "objde2", 0);
588 						VM_OBJECT_LOCK(robject);
589 						temp = robject->backing_object;
590 						if (object == temp) {
591 							VM_OBJECT_LOCK(object);
592 							goto retry;
593 						}
594 					} else
595 						VM_OBJECT_UNLOCK(object);
596 
597 					if (robject->ref_count == 1) {
598 						robject->ref_count--;
599 						object = robject;
600 						goto doterm;
601 					}
602 					object = robject;
603 					vm_object_collapse(object);
604 					VM_OBJECT_UNLOCK(object);
605 					continue;
606 				}
607 				VM_OBJECT_UNLOCK(robject);
608 			}
609 			VM_OBJECT_UNLOCK(object);
610 			return;
611 		}
612 doterm:
613 		temp = object->backing_object;
614 		if (temp != NULL) {
615 			VM_OBJECT_LOCK(temp);
616 			LIST_REMOVE(object, shadow_list);
617 			temp->shadow_count--;
618 			VM_OBJECT_UNLOCK(temp);
619 			object->backing_object = NULL;
620 		}
621 		/*
622 		 * Don't double-terminate, we could be in a termination
623 		 * recursion due to the terminate having to sync data
624 		 * to disk.
625 		 */
626 		if ((object->flags & OBJ_DEAD) == 0)
627 			vm_object_terminate(object);
628 		else
629 			VM_OBJECT_UNLOCK(object);
630 		object = temp;
631 	}
632 }
633 
634 /*
635  *	vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641 
642 	/*
643 	 * Remove the object from the global object list.
644 	 */
645 	mtx_lock(&vm_object_list_mtx);
646 	TAILQ_REMOVE(&vm_object_list, object, object_list);
647 	mtx_unlock(&vm_object_list_mtx);
648 
649 	/*
650 	 * Release the allocation charge.
651 	 */
652 	if (object->cred != NULL) {
653 		KASSERT(object->type == OBJT_DEFAULT ||
654 		    object->type == OBJT_SWAP,
655 		    ("vm_object_terminate: non-swap obj %p has cred",
656 		     object));
657 		swap_release_by_cred(object->charge, object->cred);
658 		object->charge = 0;
659 		crfree(object->cred);
660 		object->cred = NULL;
661 	}
662 
663 	/*
664 	 * Free the space for the object.
665 	 */
666 	uma_zfree(obj_zone, object);
667 }
668 
669 /*
670  *	vm_object_terminate actually destroys the specified object, freeing
671  *	up all previously used resources.
672  *
673  *	The object must be locked.
674  *	This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679 	vm_page_t p, p_next;
680 
681 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
682 
683 	/*
684 	 * Make sure no one uses us.
685 	 */
686 	vm_object_set_flag(object, OBJ_DEAD);
687 
688 	/*
689 	 * wait for the pageout daemon to be done with the object
690 	 */
691 	vm_object_pip_wait(object, "objtrm");
692 
693 	KASSERT(!object->paging_in_progress,
694 		("vm_object_terminate: pageout in progress"));
695 
696 	/*
697 	 * Clean and free the pages, as appropriate. All references to the
698 	 * object are gone, so we don't need to lock it.
699 	 */
700 	if (object->type == OBJT_VNODE) {
701 		struct vnode *vp = (struct vnode *)object->handle;
702 
703 		/*
704 		 * Clean pages and flush buffers.
705 		 */
706 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707 		VM_OBJECT_UNLOCK(object);
708 
709 		vinvalbuf(vp, V_SAVE, 0, 0);
710 
711 		VM_OBJECT_LOCK(object);
712 	}
713 
714 	KASSERT(object->ref_count == 0,
715 		("vm_object_terminate: object with references, ref_count=%d",
716 		object->ref_count));
717 
718 	/*
719 	 * Free any remaining pageable pages.  This also removes them from the
720 	 * paging queues.  However, don't free wired pages, just remove them
721 	 * from the object.  Rather than incrementally removing each page from
722 	 * the object, the page and object are reset to any empty state.
723 	 */
724 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726 		    ("vm_object_terminate: freeing busy page %p", p));
727 		vm_page_lock(p);
728 		/*
729 		 * Optimize the page's removal from the object by resetting
730 		 * its "object" field.  Specifically, if the page is not
731 		 * wired, then the effect of this assignment is that
732 		 * vm_page_free()'s call to vm_page_remove() will return
733 		 * immediately without modifying the page or the object.
734 		 */
735 		p->object = NULL;
736 		if (p->wire_count == 0) {
737 			vm_page_free(p);
738 			PCPU_INC(cnt.v_pfree);
739 		}
740 		vm_page_unlock(p);
741 	}
742 	/*
743 	 * If the object contained any pages, then reset it to an empty state.
744 	 * None of the object's fields, including "resident_page_count", were
745 	 * modified by the preceding loop.
746 	 */
747 	if (object->resident_page_count != 0) {
748 		object->root = NULL;
749 		TAILQ_INIT(&object->memq);
750 		object->resident_page_count = 0;
751 		if (object->type == OBJT_VNODE)
752 			vdrop(object->handle);
753 	}
754 
755 #if VM_NRESERVLEVEL > 0
756 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
757 		vm_reserv_break_all(object);
758 #endif
759 	if (__predict_false(object->cache != NULL))
760 		vm_page_cache_free(object, 0, 0);
761 
762 	/*
763 	 * Let the pager know object is dead.
764 	 */
765 	vm_pager_deallocate(object);
766 	VM_OBJECT_UNLOCK(object);
767 
768 	vm_object_destroy(object);
769 }
770 
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
779 {
780 
781 	/*
782 	 * If we have been asked to skip nosync pages and this is a
783 	 * nosync page, skip it.  Note that the object flags were not
784 	 * cleared in this case so we do not have to set them.
785 	 */
786 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787 		*clearobjflags = 0;
788 		return (FALSE);
789 	} else {
790 		pmap_remove_write(p);
791 		return (p->dirty != 0);
792 	}
793 }
794 
795 /*
796  *	vm_object_page_clean
797  *
798  *	Clean all dirty pages in the specified range of object.  Leaves page
799  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
800  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *	leaving the object dirty.
802  *
803  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *	synchronous clustering mode implementation.
805  *
806  *	Odd semantics: if start == end, we clean everything.
807  *
808  *	The object must be locked.
809  */
810 void
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814 	vm_page_t np, p;
815 	vm_pindex_t pi, tend, tstart;
816 	int clearobjflags, curgeneration, n, pagerflags;
817 
818 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
819 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
820 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
821 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
822 	    object->resident_page_count == 0)
823 		return;
824 
825 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828 
829 	tstart = OFF_TO_IDX(start);
830 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831 	clearobjflags = tstart == 0 && tend >= object->size;
832 
833 rescan:
834 	curgeneration = object->generation;
835 
836 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
837 		pi = p->pindex;
838 		if (pi >= tend)
839 			break;
840 		np = TAILQ_NEXT(p, listq);
841 		if (p->valid == 0)
842 			continue;
843 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
844 			if (object->generation != curgeneration) {
845 				if ((flags & OBJPC_SYNC) != 0)
846 					goto rescan;
847 				else
848 					clearobjflags = 0;
849 			}
850 			np = vm_page_find_least(object, pi);
851 			continue;
852 		}
853 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
854 			continue;
855 
856 		n = vm_object_page_collect_flush(object, p, pagerflags,
857 		    flags, &clearobjflags);
858 		if (object->generation != curgeneration) {
859 			if ((flags & OBJPC_SYNC) != 0)
860 				goto rescan;
861 			else
862 				clearobjflags = 0;
863 		}
864 
865 		/*
866 		 * If the VOP_PUTPAGES() did a truncated write, so
867 		 * that even the first page of the run is not fully
868 		 * written, vm_pageout_flush() returns 0 as the run
869 		 * length.  Since the condition that caused truncated
870 		 * write may be permanent, e.g. exhausted free space,
871 		 * accepting n == 0 would cause an infinite loop.
872 		 *
873 		 * Forwarding the iterator leaves the unwritten page
874 		 * behind, but there is not much we can do there if
875 		 * filesystem refuses to write it.
876 		 */
877 		if (n == 0)
878 			n = 1;
879 		np = vm_page_find_least(object, pi + n);
880 	}
881 #if 0
882 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
883 #endif
884 
885 	if (clearobjflags)
886 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
887 }
888 
889 static int
890 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
891     int flags, int *clearobjflags)
892 {
893 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
894 	int count, i, mreq, runlen;
895 
896 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
897 	vm_page_lock_assert(p, MA_NOTOWNED);
898 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
899 
900 	count = 1;
901 	mreq = 0;
902 
903 	for (tp = p; count < vm_pageout_page_count; count++) {
904 		tp = vm_page_next(tp);
905 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906 			break;
907 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908 			break;
909 	}
910 
911 	for (p_first = p; count < vm_pageout_page_count; count++) {
912 		tp = vm_page_prev(p_first);
913 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
914 			break;
915 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
916 			break;
917 		p_first = tp;
918 		mreq++;
919 	}
920 
921 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
922 		ma[i] = tp;
923 
924 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
925 	return (runlen);
926 }
927 
928 /*
929  * Note that there is absolutely no sense in writing out
930  * anonymous objects, so we track down the vnode object
931  * to write out.
932  * We invalidate (remove) all pages from the address space
933  * for semantic correctness.
934  *
935  * If the backing object is a device object with unmanaged pages, then any
936  * mappings to the specified range of pages must be removed before this
937  * function is called.
938  *
939  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
940  * may start out with a NULL object.
941  */
942 void
943 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
944     boolean_t syncio, boolean_t invalidate)
945 {
946 	vm_object_t backing_object;
947 	struct vnode *vp;
948 	struct mount *mp;
949 	int flags, fsync_after;
950 
951 	if (object == NULL)
952 		return;
953 	VM_OBJECT_LOCK(object);
954 	while ((backing_object = object->backing_object) != NULL) {
955 		VM_OBJECT_LOCK(backing_object);
956 		offset += object->backing_object_offset;
957 		VM_OBJECT_UNLOCK(object);
958 		object = backing_object;
959 		if (object->size < OFF_TO_IDX(offset + size))
960 			size = IDX_TO_OFF(object->size) - offset;
961 	}
962 	/*
963 	 * Flush pages if writing is allowed, invalidate them
964 	 * if invalidation requested.  Pages undergoing I/O
965 	 * will be ignored by vm_object_page_remove().
966 	 *
967 	 * We cannot lock the vnode and then wait for paging
968 	 * to complete without deadlocking against vm_fault.
969 	 * Instead we simply call vm_object_page_remove() and
970 	 * allow it to block internally on a page-by-page
971 	 * basis when it encounters pages undergoing async
972 	 * I/O.
973 	 */
974 	if (object->type == OBJT_VNODE &&
975 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
976 		int vfslocked;
977 		vp = object->handle;
978 		VM_OBJECT_UNLOCK(object);
979 		(void) vn_start_write(vp, &mp, V_WAIT);
980 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
981 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
982 		if (syncio && !invalidate && offset == 0 &&
983 		    OFF_TO_IDX(size) == object->size) {
984 			/*
985 			 * If syncing the whole mapping of the file,
986 			 * it is faster to schedule all the writes in
987 			 * async mode, also allowing the clustering,
988 			 * and then wait for i/o to complete.
989 			 */
990 			flags = 0;
991 			fsync_after = TRUE;
992 		} else {
993 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
994 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
995 			fsync_after = FALSE;
996 		}
997 		VM_OBJECT_LOCK(object);
998 		vm_object_page_clean(object, offset, offset + size, flags);
999 		VM_OBJECT_UNLOCK(object);
1000 		if (fsync_after)
1001 			(void) VOP_FSYNC(vp, MNT_WAIT, curthread);
1002 		VOP_UNLOCK(vp, 0);
1003 		VFS_UNLOCK_GIANT(vfslocked);
1004 		vn_finished_write(mp);
1005 		VM_OBJECT_LOCK(object);
1006 	}
1007 	if ((object->type == OBJT_VNODE ||
1008 	     object->type == OBJT_DEVICE) && invalidate) {
1009 		if (object->type == OBJT_DEVICE)
1010 			/*
1011 			 * The option OBJPR_NOTMAPPED must be passed here
1012 			 * because vm_object_page_remove() cannot remove
1013 			 * unmanaged mappings.
1014 			 */
1015 			flags = OBJPR_NOTMAPPED;
1016 		else if (old_msync)
1017 			flags = 0;
1018 		else
1019 			flags = OBJPR_CLEANONLY;
1020 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1021 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1022 	}
1023 	VM_OBJECT_UNLOCK(object);
1024 }
1025 
1026 /*
1027  *	vm_object_madvise:
1028  *
1029  *	Implements the madvise function at the object/page level.
1030  *
1031  *	MADV_WILLNEED	(any object)
1032  *
1033  *	    Activate the specified pages if they are resident.
1034  *
1035  *	MADV_DONTNEED	(any object)
1036  *
1037  *	    Deactivate the specified pages if they are resident.
1038  *
1039  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1040  *			 OBJ_ONEMAPPING only)
1041  *
1042  *	    Deactivate and clean the specified pages if they are
1043  *	    resident.  This permits the process to reuse the pages
1044  *	    without faulting or the kernel to reclaim the pages
1045  *	    without I/O.
1046  */
1047 void
1048 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1049 {
1050 	vm_pindex_t end, tpindex;
1051 	vm_object_t backing_object, tobject;
1052 	vm_page_t m;
1053 
1054 	if (object == NULL)
1055 		return;
1056 	VM_OBJECT_LOCK(object);
1057 	end = pindex + count;
1058 	/*
1059 	 * Locate and adjust resident pages
1060 	 */
1061 	for (; pindex < end; pindex += 1) {
1062 relookup:
1063 		tobject = object;
1064 		tpindex = pindex;
1065 shadowlookup:
1066 		/*
1067 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1068 		 * and those pages must be OBJ_ONEMAPPING.
1069 		 */
1070 		if (advise == MADV_FREE) {
1071 			if ((tobject->type != OBJT_DEFAULT &&
1072 			     tobject->type != OBJT_SWAP) ||
1073 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1074 				goto unlock_tobject;
1075 			}
1076 		} else if (tobject->type == OBJT_PHYS)
1077 			goto unlock_tobject;
1078 		m = vm_page_lookup(tobject, tpindex);
1079 		if (m == NULL && advise == MADV_WILLNEED) {
1080 			/*
1081 			 * If the page is cached, reactivate it.
1082 			 */
1083 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1084 			    VM_ALLOC_NOBUSY);
1085 		}
1086 		if (m == NULL) {
1087 			/*
1088 			 * There may be swap even if there is no backing page
1089 			 */
1090 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1091 				swap_pager_freespace(tobject, tpindex, 1);
1092 			/*
1093 			 * next object
1094 			 */
1095 			backing_object = tobject->backing_object;
1096 			if (backing_object == NULL)
1097 				goto unlock_tobject;
1098 			VM_OBJECT_LOCK(backing_object);
1099 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1100 			if (tobject != object)
1101 				VM_OBJECT_UNLOCK(tobject);
1102 			tobject = backing_object;
1103 			goto shadowlookup;
1104 		} else if (m->valid != VM_PAGE_BITS_ALL)
1105 			goto unlock_tobject;
1106 		/*
1107 		 * If the page is not in a normal state, skip it.
1108 		 */
1109 		vm_page_lock(m);
1110 		if (m->hold_count != 0 || m->wire_count != 0) {
1111 			vm_page_unlock(m);
1112 			goto unlock_tobject;
1113 		}
1114 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1115 		    ("vm_object_madvise: page %p is fictitious", m));
1116 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1117 		    ("vm_object_madvise: page %p is not managed", m));
1118 		if ((m->oflags & VPO_BUSY) || m->busy) {
1119 			if (advise == MADV_WILLNEED) {
1120 				/*
1121 				 * Reference the page before unlocking and
1122 				 * sleeping so that the page daemon is less
1123 				 * likely to reclaim it.
1124 				 */
1125 				vm_page_aflag_set(m, PGA_REFERENCED);
1126 			}
1127 			vm_page_unlock(m);
1128 			if (object != tobject)
1129 				VM_OBJECT_UNLOCK(object);
1130 			m->oflags |= VPO_WANTED;
1131 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1132 			    0);
1133 			VM_OBJECT_LOCK(object);
1134   			goto relookup;
1135 		}
1136 		if (advise == MADV_WILLNEED) {
1137 			vm_page_activate(m);
1138 		} else if (advise == MADV_DONTNEED) {
1139 			vm_page_dontneed(m);
1140 		} else if (advise == MADV_FREE) {
1141 			/*
1142 			 * Mark the page clean.  This will allow the page
1143 			 * to be freed up by the system.  However, such pages
1144 			 * are often reused quickly by malloc()/free()
1145 			 * so we do not do anything that would cause
1146 			 * a page fault if we can help it.
1147 			 *
1148 			 * Specifically, we do not try to actually free
1149 			 * the page now nor do we try to put it in the
1150 			 * cache (which would cause a page fault on reuse).
1151 			 *
1152 			 * But we do make the page is freeable as we
1153 			 * can without actually taking the step of unmapping
1154 			 * it.
1155 			 */
1156 			pmap_clear_modify(m);
1157 			m->dirty = 0;
1158 			m->act_count = 0;
1159 			vm_page_dontneed(m);
1160 		}
1161 		vm_page_unlock(m);
1162 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1163 			swap_pager_freespace(tobject, tpindex, 1);
1164 unlock_tobject:
1165 		if (tobject != object)
1166 			VM_OBJECT_UNLOCK(tobject);
1167 	}
1168 	VM_OBJECT_UNLOCK(object);
1169 }
1170 
1171 /*
1172  *	vm_object_shadow:
1173  *
1174  *	Create a new object which is backed by the
1175  *	specified existing object range.  The source
1176  *	object reference is deallocated.
1177  *
1178  *	The new object and offset into that object
1179  *	are returned in the source parameters.
1180  */
1181 void
1182 vm_object_shadow(
1183 	vm_object_t *object,	/* IN/OUT */
1184 	vm_ooffset_t *offset,	/* IN/OUT */
1185 	vm_size_t length)
1186 {
1187 	vm_object_t source;
1188 	vm_object_t result;
1189 
1190 	source = *object;
1191 
1192 	/*
1193 	 * Don't create the new object if the old object isn't shared.
1194 	 */
1195 	if (source != NULL) {
1196 		VM_OBJECT_LOCK(source);
1197 		if (source->ref_count == 1 &&
1198 		    source->handle == NULL &&
1199 		    (source->type == OBJT_DEFAULT ||
1200 		     source->type == OBJT_SWAP)) {
1201 			VM_OBJECT_UNLOCK(source);
1202 			return;
1203 		}
1204 		VM_OBJECT_UNLOCK(source);
1205 	}
1206 
1207 	/*
1208 	 * Allocate a new object with the given length.
1209 	 */
1210 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1211 
1212 	/*
1213 	 * The new object shadows the source object, adding a reference to it.
1214 	 * Our caller changes his reference to point to the new object,
1215 	 * removing a reference to the source object.  Net result: no change
1216 	 * of reference count.
1217 	 *
1218 	 * Try to optimize the result object's page color when shadowing
1219 	 * in order to maintain page coloring consistency in the combined
1220 	 * shadowed object.
1221 	 */
1222 	result->backing_object = source;
1223 	/*
1224 	 * Store the offset into the source object, and fix up the offset into
1225 	 * the new object.
1226 	 */
1227 	result->backing_object_offset = *offset;
1228 	if (source != NULL) {
1229 		VM_OBJECT_LOCK(source);
1230 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1231 		source->shadow_count++;
1232 #if VM_NRESERVLEVEL > 0
1233 		result->flags |= source->flags & OBJ_COLORED;
1234 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1235 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1236 #endif
1237 		VM_OBJECT_UNLOCK(source);
1238 	}
1239 
1240 
1241 	/*
1242 	 * Return the new things
1243 	 */
1244 	*offset = 0;
1245 	*object = result;
1246 }
1247 
1248 /*
1249  *	vm_object_split:
1250  *
1251  * Split the pages in a map entry into a new object.  This affords
1252  * easier removal of unused pages, and keeps object inheritance from
1253  * being a negative impact on memory usage.
1254  */
1255 void
1256 vm_object_split(vm_map_entry_t entry)
1257 {
1258 	vm_page_t m, m_next;
1259 	vm_object_t orig_object, new_object, source;
1260 	vm_pindex_t idx, offidxstart;
1261 	vm_size_t size;
1262 
1263 	orig_object = entry->object.vm_object;
1264 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1265 		return;
1266 	if (orig_object->ref_count <= 1)
1267 		return;
1268 	VM_OBJECT_UNLOCK(orig_object);
1269 
1270 	offidxstart = OFF_TO_IDX(entry->offset);
1271 	size = atop(entry->end - entry->start);
1272 
1273 	/*
1274 	 * If swap_pager_copy() is later called, it will convert new_object
1275 	 * into a swap object.
1276 	 */
1277 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1278 
1279 	/*
1280 	 * At this point, the new object is still private, so the order in
1281 	 * which the original and new objects are locked does not matter.
1282 	 */
1283 	VM_OBJECT_LOCK(new_object);
1284 	VM_OBJECT_LOCK(orig_object);
1285 	source = orig_object->backing_object;
1286 	if (source != NULL) {
1287 		VM_OBJECT_LOCK(source);
1288 		if ((source->flags & OBJ_DEAD) != 0) {
1289 			VM_OBJECT_UNLOCK(source);
1290 			VM_OBJECT_UNLOCK(orig_object);
1291 			VM_OBJECT_UNLOCK(new_object);
1292 			vm_object_deallocate(new_object);
1293 			VM_OBJECT_LOCK(orig_object);
1294 			return;
1295 		}
1296 		LIST_INSERT_HEAD(&source->shadow_head,
1297 				  new_object, shadow_list);
1298 		source->shadow_count++;
1299 		vm_object_reference_locked(source);	/* for new_object */
1300 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1301 		VM_OBJECT_UNLOCK(source);
1302 		new_object->backing_object_offset =
1303 			orig_object->backing_object_offset + entry->offset;
1304 		new_object->backing_object = source;
1305 	}
1306 	if (orig_object->cred != NULL) {
1307 		new_object->cred = orig_object->cred;
1308 		crhold(orig_object->cred);
1309 		new_object->charge = ptoa(size);
1310 		KASSERT(orig_object->charge >= ptoa(size),
1311 		    ("orig_object->charge < 0"));
1312 		orig_object->charge -= ptoa(size);
1313 	}
1314 retry:
1315 	m = vm_page_find_least(orig_object, offidxstart);
1316 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1317 	    m = m_next) {
1318 		m_next = TAILQ_NEXT(m, listq);
1319 
1320 		/*
1321 		 * We must wait for pending I/O to complete before we can
1322 		 * rename the page.
1323 		 *
1324 		 * We do not have to VM_PROT_NONE the page as mappings should
1325 		 * not be changed by this operation.
1326 		 */
1327 		if ((m->oflags & VPO_BUSY) || m->busy) {
1328 			VM_OBJECT_UNLOCK(new_object);
1329 			m->oflags |= VPO_WANTED;
1330 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1331 			VM_OBJECT_LOCK(new_object);
1332 			goto retry;
1333 		}
1334 #if VM_NRESERVLEVEL > 0
1335 		/*
1336 		 * If some of the reservation's allocated pages remain with
1337 		 * the original object, then transferring the reservation to
1338 		 * the new object is neither particularly beneficial nor
1339 		 * particularly harmful as compared to leaving the reservation
1340 		 * with the original object.  If, however, all of the
1341 		 * reservation's allocated pages are transferred to the new
1342 		 * object, then transferring the reservation is typically
1343 		 * beneficial.  Determining which of these two cases applies
1344 		 * would be more costly than unconditionally renaming the
1345 		 * reservation.
1346 		 */
1347 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1348 #endif
1349 		vm_page_lock(m);
1350 		vm_page_rename(m, new_object, idx);
1351 		vm_page_unlock(m);
1352 		/* page automatically made dirty by rename and cache handled */
1353 		vm_page_busy(m);
1354 	}
1355 	if (orig_object->type == OBJT_SWAP) {
1356 		/*
1357 		 * swap_pager_copy() can sleep, in which case the orig_object's
1358 		 * and new_object's locks are released and reacquired.
1359 		 */
1360 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1361 
1362 		/*
1363 		 * Transfer any cached pages from orig_object to new_object.
1364 		 */
1365 		if (__predict_false(orig_object->cache != NULL))
1366 			vm_page_cache_transfer(orig_object, offidxstart,
1367 			    new_object);
1368 	}
1369 	VM_OBJECT_UNLOCK(orig_object);
1370 	TAILQ_FOREACH(m, &new_object->memq, listq)
1371 		vm_page_wakeup(m);
1372 	VM_OBJECT_UNLOCK(new_object);
1373 	entry->object.vm_object = new_object;
1374 	entry->offset = 0LL;
1375 	vm_object_deallocate(orig_object);
1376 	VM_OBJECT_LOCK(new_object);
1377 }
1378 
1379 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1380 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1381 #define	OBSC_COLLAPSE_WAIT	0x0004
1382 
1383 static int
1384 vm_object_backing_scan(vm_object_t object, int op)
1385 {
1386 	int r = 1;
1387 	vm_page_t p;
1388 	vm_object_t backing_object;
1389 	vm_pindex_t backing_offset_index;
1390 
1391 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1392 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1393 
1394 	backing_object = object->backing_object;
1395 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1396 
1397 	/*
1398 	 * Initial conditions
1399 	 */
1400 	if (op & OBSC_TEST_ALL_SHADOWED) {
1401 		/*
1402 		 * We do not want to have to test for the existence of cache
1403 		 * or swap pages in the backing object.  XXX but with the
1404 		 * new swapper this would be pretty easy to do.
1405 		 *
1406 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1407 		 * been ZFOD faulted yet?  If we do not test for this, the
1408 		 * shadow test may succeed! XXX
1409 		 */
1410 		if (backing_object->type != OBJT_DEFAULT) {
1411 			return (0);
1412 		}
1413 	}
1414 	if (op & OBSC_COLLAPSE_WAIT) {
1415 		vm_object_set_flag(backing_object, OBJ_DEAD);
1416 	}
1417 
1418 	/*
1419 	 * Our scan
1420 	 */
1421 	p = TAILQ_FIRST(&backing_object->memq);
1422 	while (p) {
1423 		vm_page_t next = TAILQ_NEXT(p, listq);
1424 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1425 
1426 		if (op & OBSC_TEST_ALL_SHADOWED) {
1427 			vm_page_t pp;
1428 
1429 			/*
1430 			 * Ignore pages outside the parent object's range
1431 			 * and outside the parent object's mapping of the
1432 			 * backing object.
1433 			 *
1434 			 * note that we do not busy the backing object's
1435 			 * page.
1436 			 */
1437 			if (
1438 			    p->pindex < backing_offset_index ||
1439 			    new_pindex >= object->size
1440 			) {
1441 				p = next;
1442 				continue;
1443 			}
1444 
1445 			/*
1446 			 * See if the parent has the page or if the parent's
1447 			 * object pager has the page.  If the parent has the
1448 			 * page but the page is not valid, the parent's
1449 			 * object pager must have the page.
1450 			 *
1451 			 * If this fails, the parent does not completely shadow
1452 			 * the object and we might as well give up now.
1453 			 */
1454 
1455 			pp = vm_page_lookup(object, new_pindex);
1456 			if (
1457 			    (pp == NULL || pp->valid == 0) &&
1458 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1459 			) {
1460 				r = 0;
1461 				break;
1462 			}
1463 		}
1464 
1465 		/*
1466 		 * Check for busy page
1467 		 */
1468 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1469 			vm_page_t pp;
1470 
1471 			if (op & OBSC_COLLAPSE_NOWAIT) {
1472 				if ((p->oflags & VPO_BUSY) ||
1473 				    !p->valid ||
1474 				    p->busy) {
1475 					p = next;
1476 					continue;
1477 				}
1478 			} else if (op & OBSC_COLLAPSE_WAIT) {
1479 				if ((p->oflags & VPO_BUSY) || p->busy) {
1480 					VM_OBJECT_UNLOCK(object);
1481 					p->oflags |= VPO_WANTED;
1482 					msleep(p, VM_OBJECT_MTX(backing_object),
1483 					    PDROP | PVM, "vmocol", 0);
1484 					VM_OBJECT_LOCK(object);
1485 					VM_OBJECT_LOCK(backing_object);
1486 					/*
1487 					 * If we slept, anything could have
1488 					 * happened.  Since the object is
1489 					 * marked dead, the backing offset
1490 					 * should not have changed so we
1491 					 * just restart our scan.
1492 					 */
1493 					p = TAILQ_FIRST(&backing_object->memq);
1494 					continue;
1495 				}
1496 			}
1497 
1498 			KASSERT(
1499 			    p->object == backing_object,
1500 			    ("vm_object_backing_scan: object mismatch")
1501 			);
1502 
1503 			/*
1504 			 * Destroy any associated swap
1505 			 */
1506 			if (backing_object->type == OBJT_SWAP) {
1507 				swap_pager_freespace(
1508 				    backing_object,
1509 				    p->pindex,
1510 				    1
1511 				);
1512 			}
1513 
1514 			if (
1515 			    p->pindex < backing_offset_index ||
1516 			    new_pindex >= object->size
1517 			) {
1518 				/*
1519 				 * Page is out of the parent object's range, we
1520 				 * can simply destroy it.
1521 				 */
1522 				vm_page_lock(p);
1523 				KASSERT(!pmap_page_is_mapped(p),
1524 				    ("freeing mapped page %p", p));
1525 				if (p->wire_count == 0)
1526 					vm_page_free(p);
1527 				else
1528 					vm_page_remove(p);
1529 				vm_page_unlock(p);
1530 				p = next;
1531 				continue;
1532 			}
1533 
1534 			pp = vm_page_lookup(object, new_pindex);
1535 			if (
1536 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1537 			    (pp != NULL && pp->valid == 0)
1538 			) {
1539 				/*
1540 				 * The page in the parent is not (yet) valid.
1541 				 * We don't know anything about the state of
1542 				 * the original page.  It might be mapped,
1543 				 * so we must avoid the next if here.
1544 				 *
1545 				 * This is due to a race in vm_fault() where
1546 				 * we must unbusy the original (backing_obj)
1547 				 * page before we can (re)lock the parent.
1548 				 * Hence we can get here.
1549 				 */
1550 				p = next;
1551 				continue;
1552 			}
1553 			if (
1554 			    pp != NULL ||
1555 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1556 			) {
1557 				/*
1558 				 * page already exists in parent OR swap exists
1559 				 * for this location in the parent.  Destroy
1560 				 * the original page from the backing object.
1561 				 *
1562 				 * Leave the parent's page alone
1563 				 */
1564 				vm_page_lock(p);
1565 				KASSERT(!pmap_page_is_mapped(p),
1566 				    ("freeing mapped page %p", p));
1567 				if (p->wire_count == 0)
1568 					vm_page_free(p);
1569 				else
1570 					vm_page_remove(p);
1571 				vm_page_unlock(p);
1572 				p = next;
1573 				continue;
1574 			}
1575 
1576 #if VM_NRESERVLEVEL > 0
1577 			/*
1578 			 * Rename the reservation.
1579 			 */
1580 			vm_reserv_rename(p, object, backing_object,
1581 			    backing_offset_index);
1582 #endif
1583 
1584 			/*
1585 			 * Page does not exist in parent, rename the
1586 			 * page from the backing object to the main object.
1587 			 *
1588 			 * If the page was mapped to a process, it can remain
1589 			 * mapped through the rename.
1590 			 */
1591 			vm_page_lock(p);
1592 			vm_page_rename(p, object, new_pindex);
1593 			vm_page_unlock(p);
1594 			/* page automatically made dirty by rename */
1595 		}
1596 		p = next;
1597 	}
1598 	return (r);
1599 }
1600 
1601 
1602 /*
1603  * this version of collapse allows the operation to occur earlier and
1604  * when paging_in_progress is true for an object...  This is not a complete
1605  * operation, but should plug 99.9% of the rest of the leaks.
1606  */
1607 static void
1608 vm_object_qcollapse(vm_object_t object)
1609 {
1610 	vm_object_t backing_object = object->backing_object;
1611 
1612 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1613 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1614 
1615 	if (backing_object->ref_count != 1)
1616 		return;
1617 
1618 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1619 }
1620 
1621 /*
1622  *	vm_object_collapse:
1623  *
1624  *	Collapse an object with the object backing it.
1625  *	Pages in the backing object are moved into the
1626  *	parent, and the backing object is deallocated.
1627  */
1628 void
1629 vm_object_collapse(vm_object_t object)
1630 {
1631 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1632 
1633 	while (TRUE) {
1634 		vm_object_t backing_object;
1635 
1636 		/*
1637 		 * Verify that the conditions are right for collapse:
1638 		 *
1639 		 * The object exists and the backing object exists.
1640 		 */
1641 		if ((backing_object = object->backing_object) == NULL)
1642 			break;
1643 
1644 		/*
1645 		 * we check the backing object first, because it is most likely
1646 		 * not collapsable.
1647 		 */
1648 		VM_OBJECT_LOCK(backing_object);
1649 		if (backing_object->handle != NULL ||
1650 		    (backing_object->type != OBJT_DEFAULT &&
1651 		     backing_object->type != OBJT_SWAP) ||
1652 		    (backing_object->flags & OBJ_DEAD) ||
1653 		    object->handle != NULL ||
1654 		    (object->type != OBJT_DEFAULT &&
1655 		     object->type != OBJT_SWAP) ||
1656 		    (object->flags & OBJ_DEAD)) {
1657 			VM_OBJECT_UNLOCK(backing_object);
1658 			break;
1659 		}
1660 
1661 		if (
1662 		    object->paging_in_progress != 0 ||
1663 		    backing_object->paging_in_progress != 0
1664 		) {
1665 			vm_object_qcollapse(object);
1666 			VM_OBJECT_UNLOCK(backing_object);
1667 			break;
1668 		}
1669 		/*
1670 		 * We know that we can either collapse the backing object (if
1671 		 * the parent is the only reference to it) or (perhaps) have
1672 		 * the parent bypass the object if the parent happens to shadow
1673 		 * all the resident pages in the entire backing object.
1674 		 *
1675 		 * This is ignoring pager-backed pages such as swap pages.
1676 		 * vm_object_backing_scan fails the shadowing test in this
1677 		 * case.
1678 		 */
1679 		if (backing_object->ref_count == 1) {
1680 			/*
1681 			 * If there is exactly one reference to the backing
1682 			 * object, we can collapse it into the parent.
1683 			 */
1684 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1685 
1686 #if VM_NRESERVLEVEL > 0
1687 			/*
1688 			 * Break any reservations from backing_object.
1689 			 */
1690 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1691 				vm_reserv_break_all(backing_object);
1692 #endif
1693 
1694 			/*
1695 			 * Move the pager from backing_object to object.
1696 			 */
1697 			if (backing_object->type == OBJT_SWAP) {
1698 				/*
1699 				 * swap_pager_copy() can sleep, in which case
1700 				 * the backing_object's and object's locks are
1701 				 * released and reacquired.
1702 				 */
1703 				swap_pager_copy(
1704 				    backing_object,
1705 				    object,
1706 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1707 
1708 				/*
1709 				 * Free any cached pages from backing_object.
1710 				 */
1711 				if (__predict_false(backing_object->cache != NULL))
1712 					vm_page_cache_free(backing_object, 0, 0);
1713 			}
1714 			/*
1715 			 * Object now shadows whatever backing_object did.
1716 			 * Note that the reference to
1717 			 * backing_object->backing_object moves from within
1718 			 * backing_object to within object.
1719 			 */
1720 			LIST_REMOVE(object, shadow_list);
1721 			backing_object->shadow_count--;
1722 			if (backing_object->backing_object) {
1723 				VM_OBJECT_LOCK(backing_object->backing_object);
1724 				LIST_REMOVE(backing_object, shadow_list);
1725 				LIST_INSERT_HEAD(
1726 				    &backing_object->backing_object->shadow_head,
1727 				    object, shadow_list);
1728 				/*
1729 				 * The shadow_count has not changed.
1730 				 */
1731 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1732 			}
1733 			object->backing_object = backing_object->backing_object;
1734 			object->backing_object_offset +=
1735 			    backing_object->backing_object_offset;
1736 
1737 			/*
1738 			 * Discard backing_object.
1739 			 *
1740 			 * Since the backing object has no pages, no pager left,
1741 			 * and no object references within it, all that is
1742 			 * necessary is to dispose of it.
1743 			 */
1744 			KASSERT(backing_object->ref_count == 1, (
1745 "backing_object %p was somehow re-referenced during collapse!",
1746 			    backing_object));
1747 			VM_OBJECT_UNLOCK(backing_object);
1748 			vm_object_destroy(backing_object);
1749 
1750 			object_collapses++;
1751 		} else {
1752 			vm_object_t new_backing_object;
1753 
1754 			/*
1755 			 * If we do not entirely shadow the backing object,
1756 			 * there is nothing we can do so we give up.
1757 			 */
1758 			if (object->resident_page_count != object->size &&
1759 			    vm_object_backing_scan(object,
1760 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1761 				VM_OBJECT_UNLOCK(backing_object);
1762 				break;
1763 			}
1764 
1765 			/*
1766 			 * Make the parent shadow the next object in the
1767 			 * chain.  Deallocating backing_object will not remove
1768 			 * it, since its reference count is at least 2.
1769 			 */
1770 			LIST_REMOVE(object, shadow_list);
1771 			backing_object->shadow_count--;
1772 
1773 			new_backing_object = backing_object->backing_object;
1774 			if ((object->backing_object = new_backing_object) != NULL) {
1775 				VM_OBJECT_LOCK(new_backing_object);
1776 				LIST_INSERT_HEAD(
1777 				    &new_backing_object->shadow_head,
1778 				    object,
1779 				    shadow_list
1780 				);
1781 				new_backing_object->shadow_count++;
1782 				vm_object_reference_locked(new_backing_object);
1783 				VM_OBJECT_UNLOCK(new_backing_object);
1784 				object->backing_object_offset +=
1785 					backing_object->backing_object_offset;
1786 			}
1787 
1788 			/*
1789 			 * Drop the reference count on backing_object. Since
1790 			 * its ref_count was at least 2, it will not vanish.
1791 			 */
1792 			backing_object->ref_count--;
1793 			VM_OBJECT_UNLOCK(backing_object);
1794 			object_bypasses++;
1795 		}
1796 
1797 		/*
1798 		 * Try again with this object's new backing object.
1799 		 */
1800 	}
1801 }
1802 
1803 /*
1804  *	vm_object_page_remove:
1805  *
1806  *	For the given object, either frees or invalidates each of the
1807  *	specified pages.  In general, a page is freed.  However, if a page is
1808  *	wired for any reason other than the existence of a managed, wired
1809  *	mapping, then it may be invalidated but not removed from the object.
1810  *	Pages are specified by the given range ["start", "end") and the option
1811  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1812  *	extends from "start" to the end of the object.  If the option
1813  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1814  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1815  *	specified, then the pages within the specified range must have no
1816  *	mappings.  Otherwise, if this option is not specified, any mappings to
1817  *	the specified pages are removed before the pages are freed or
1818  *	invalidated.
1819  *
1820  *	In general, this operation should only be performed on objects that
1821  *	contain managed pages.  There are, however, two exceptions.  First, it
1822  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1823  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1824  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1825  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1826  *
1827  *	The object must be locked.
1828  */
1829 void
1830 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1831     int options)
1832 {
1833 	vm_page_t p, next;
1834 	int wirings;
1835 
1836 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1837 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1838 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1839 	    ("vm_object_page_remove: illegal options for object %p", object));
1840 	if (object->resident_page_count == 0)
1841 		goto skipmemq;
1842 	vm_object_pip_add(object, 1);
1843 again:
1844 	p = vm_page_find_least(object, start);
1845 
1846 	/*
1847 	 * Here, the variable "p" is either (1) the page with the least pindex
1848 	 * greater than or equal to the parameter "start" or (2) NULL.
1849 	 */
1850 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1851 		next = TAILQ_NEXT(p, listq);
1852 
1853 		/*
1854 		 * If the page is wired for any reason besides the existence
1855 		 * of managed, wired mappings, then it cannot be freed.  For
1856 		 * example, fictitious pages, which represent device memory,
1857 		 * are inherently wired and cannot be freed.  They can,
1858 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1859 		 * not specified.
1860 		 */
1861 		vm_page_lock(p);
1862 		if ((wirings = p->wire_count) != 0 &&
1863 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1864 			if ((options & OBJPR_NOTMAPPED) == 0) {
1865 				pmap_remove_all(p);
1866 				/* Account for removal of wired mappings. */
1867 				if (wirings != 0)
1868 					p->wire_count -= wirings;
1869 			}
1870 			if ((options & OBJPR_CLEANONLY) == 0) {
1871 				p->valid = 0;
1872 				vm_page_undirty(p);
1873 			}
1874 			vm_page_unlock(p);
1875 			continue;
1876 		}
1877 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1878 			goto again;
1879 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1880 		    ("vm_object_page_remove: page %p is fictitious", p));
1881 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1882 			if ((options & OBJPR_NOTMAPPED) == 0)
1883 				pmap_remove_write(p);
1884 			if (p->dirty) {
1885 				vm_page_unlock(p);
1886 				continue;
1887 			}
1888 		}
1889 		if ((options & OBJPR_NOTMAPPED) == 0) {
1890 			pmap_remove_all(p);
1891 			/* Account for removal of wired mappings. */
1892 			if (wirings != 0)
1893 				p->wire_count -= wirings;
1894 		}
1895 		vm_page_free(p);
1896 		vm_page_unlock(p);
1897 	}
1898 	vm_object_pip_wakeup(object);
1899 skipmemq:
1900 	if (__predict_false(object->cache != NULL))
1901 		vm_page_cache_free(object, start, end);
1902 }
1903 
1904 /*
1905  *	vm_object_page_cache:
1906  *
1907  *	For the given object, attempt to move the specified clean
1908  *	pages to the cache queue.  If a page is wired for any reason,
1909  *	then it will not be changed.  Pages are specified by the given
1910  *	range ["start", "end").  As a special case, if "end" is zero,
1911  *	then the range extends from "start" to the end of the object.
1912  *	Any mappings to the specified pages are removed before the
1913  *	pages are moved to the cache queue.
1914  *
1915  *	This operation should only be performed on objects that
1916  *	contain managed pages.
1917  *
1918  *	The object must be locked.
1919  */
1920 void
1921 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1922 {
1923 	struct mtx *mtx, *new_mtx;
1924 	vm_page_t p, next;
1925 
1926 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1927 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1928 	    object->type != OBJT_PHYS),
1929 	    ("vm_object_page_cache: illegal object %p", object));
1930 	if (object->resident_page_count == 0)
1931 		return;
1932 	p = vm_page_find_least(object, start);
1933 
1934 	/*
1935 	 * Here, the variable "p" is either (1) the page with the least pindex
1936 	 * greater than or equal to the parameter "start" or (2) NULL.
1937 	 */
1938 	mtx = NULL;
1939 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1940 		next = TAILQ_NEXT(p, listq);
1941 
1942 		/*
1943 		 * Avoid releasing and reacquiring the same page lock.
1944 		 */
1945 		new_mtx = vm_page_lockptr(p);
1946 		if (mtx != new_mtx) {
1947 			if (mtx != NULL)
1948 				mtx_unlock(mtx);
1949 			mtx = new_mtx;
1950 			mtx_lock(mtx);
1951 		}
1952 		vm_page_try_to_cache(p);
1953 	}
1954 	if (mtx != NULL)
1955 		mtx_unlock(mtx);
1956 }
1957 
1958 /*
1959  *	Populate the specified range of the object with valid pages.  Returns
1960  *	TRUE if the range is successfully populated and FALSE otherwise.
1961  *
1962  *	Note: This function should be optimized to pass a larger array of
1963  *	pages to vm_pager_get_pages() before it is applied to a non-
1964  *	OBJT_DEVICE object.
1965  *
1966  *	The object must be locked.
1967  */
1968 boolean_t
1969 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1970 {
1971 	vm_page_t m, ma[1];
1972 	vm_pindex_t pindex;
1973 	int rv;
1974 
1975 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1976 	for (pindex = start; pindex < end; pindex++) {
1977 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1978 		    VM_ALLOC_RETRY);
1979 		if (m->valid != VM_PAGE_BITS_ALL) {
1980 			ma[0] = m;
1981 			rv = vm_pager_get_pages(object, ma, 1, 0);
1982 			m = vm_page_lookup(object, pindex);
1983 			if (m == NULL)
1984 				break;
1985 			if (rv != VM_PAGER_OK) {
1986 				vm_page_lock(m);
1987 				vm_page_free(m);
1988 				vm_page_unlock(m);
1989 				break;
1990 			}
1991 		}
1992 		/*
1993 		 * Keep "m" busy because a subsequent iteration may unlock
1994 		 * the object.
1995 		 */
1996 	}
1997 	if (pindex > start) {
1998 		m = vm_page_lookup(object, start);
1999 		while (m != NULL && m->pindex < pindex) {
2000 			vm_page_wakeup(m);
2001 			m = TAILQ_NEXT(m, listq);
2002 		}
2003 	}
2004 	return (pindex == end);
2005 }
2006 
2007 /*
2008  *	Routine:	vm_object_coalesce
2009  *	Function:	Coalesces two objects backing up adjoining
2010  *			regions of memory into a single object.
2011  *
2012  *	returns TRUE if objects were combined.
2013  *
2014  *	NOTE:	Only works at the moment if the second object is NULL -
2015  *		if it's not, which object do we lock first?
2016  *
2017  *	Parameters:
2018  *		prev_object	First object to coalesce
2019  *		prev_offset	Offset into prev_object
2020  *		prev_size	Size of reference to prev_object
2021  *		next_size	Size of reference to the second object
2022  *		reserved	Indicator that extension region has
2023  *				swap accounted for
2024  *
2025  *	Conditions:
2026  *	The object must *not* be locked.
2027  */
2028 boolean_t
2029 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2030     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2031 {
2032 	vm_pindex_t next_pindex;
2033 
2034 	if (prev_object == NULL)
2035 		return (TRUE);
2036 	VM_OBJECT_LOCK(prev_object);
2037 	if (prev_object->type != OBJT_DEFAULT &&
2038 	    prev_object->type != OBJT_SWAP) {
2039 		VM_OBJECT_UNLOCK(prev_object);
2040 		return (FALSE);
2041 	}
2042 
2043 	/*
2044 	 * Try to collapse the object first
2045 	 */
2046 	vm_object_collapse(prev_object);
2047 
2048 	/*
2049 	 * Can't coalesce if: . more than one reference . paged out . shadows
2050 	 * another object . has a copy elsewhere (any of which mean that the
2051 	 * pages not mapped to prev_entry may be in use anyway)
2052 	 */
2053 	if (prev_object->backing_object != NULL) {
2054 		VM_OBJECT_UNLOCK(prev_object);
2055 		return (FALSE);
2056 	}
2057 
2058 	prev_size >>= PAGE_SHIFT;
2059 	next_size >>= PAGE_SHIFT;
2060 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2061 
2062 	if ((prev_object->ref_count > 1) &&
2063 	    (prev_object->size != next_pindex)) {
2064 		VM_OBJECT_UNLOCK(prev_object);
2065 		return (FALSE);
2066 	}
2067 
2068 	/*
2069 	 * Account for the charge.
2070 	 */
2071 	if (prev_object->cred != NULL) {
2072 
2073 		/*
2074 		 * If prev_object was charged, then this mapping,
2075 		 * althought not charged now, may become writable
2076 		 * later. Non-NULL cred in the object would prevent
2077 		 * swap reservation during enabling of the write
2078 		 * access, so reserve swap now. Failed reservation
2079 		 * cause allocation of the separate object for the map
2080 		 * entry, and swap reservation for this entry is
2081 		 * managed in appropriate time.
2082 		 */
2083 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2084 		    prev_object->cred)) {
2085 			return (FALSE);
2086 		}
2087 		prev_object->charge += ptoa(next_size);
2088 	}
2089 
2090 	/*
2091 	 * Remove any pages that may still be in the object from a previous
2092 	 * deallocation.
2093 	 */
2094 	if (next_pindex < prev_object->size) {
2095 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2096 		    next_size, 0);
2097 		if (prev_object->type == OBJT_SWAP)
2098 			swap_pager_freespace(prev_object,
2099 					     next_pindex, next_size);
2100 #if 0
2101 		if (prev_object->cred != NULL) {
2102 			KASSERT(prev_object->charge >=
2103 			    ptoa(prev_object->size - next_pindex),
2104 			    ("object %p overcharged 1 %jx %jx", prev_object,
2105 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2106 			prev_object->charge -= ptoa(prev_object->size -
2107 			    next_pindex);
2108 		}
2109 #endif
2110 	}
2111 
2112 	/*
2113 	 * Extend the object if necessary.
2114 	 */
2115 	if (next_pindex + next_size > prev_object->size)
2116 		prev_object->size = next_pindex + next_size;
2117 
2118 	VM_OBJECT_UNLOCK(prev_object);
2119 	return (TRUE);
2120 }
2121 
2122 void
2123 vm_object_set_writeable_dirty(vm_object_t object)
2124 {
2125 
2126 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2127 	if (object->type != OBJT_VNODE)
2128 		return;
2129 	object->generation++;
2130 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2131 		return;
2132 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2133 }
2134 
2135 #include "opt_ddb.h"
2136 #ifdef DDB
2137 #include <sys/kernel.h>
2138 
2139 #include <sys/cons.h>
2140 
2141 #include <ddb/ddb.h>
2142 
2143 static int
2144 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2145 {
2146 	vm_map_t tmpm;
2147 	vm_map_entry_t tmpe;
2148 	vm_object_t obj;
2149 	int entcount;
2150 
2151 	if (map == 0)
2152 		return 0;
2153 
2154 	if (entry == 0) {
2155 		tmpe = map->header.next;
2156 		entcount = map->nentries;
2157 		while (entcount-- && (tmpe != &map->header)) {
2158 			if (_vm_object_in_map(map, object, tmpe)) {
2159 				return 1;
2160 			}
2161 			tmpe = tmpe->next;
2162 		}
2163 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2164 		tmpm = entry->object.sub_map;
2165 		tmpe = tmpm->header.next;
2166 		entcount = tmpm->nentries;
2167 		while (entcount-- && tmpe != &tmpm->header) {
2168 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2169 				return 1;
2170 			}
2171 			tmpe = tmpe->next;
2172 		}
2173 	} else if ((obj = entry->object.vm_object) != NULL) {
2174 		for (; obj; obj = obj->backing_object)
2175 			if (obj == object) {
2176 				return 1;
2177 			}
2178 	}
2179 	return 0;
2180 }
2181 
2182 static int
2183 vm_object_in_map(vm_object_t object)
2184 {
2185 	struct proc *p;
2186 
2187 	/* sx_slock(&allproc_lock); */
2188 	FOREACH_PROC_IN_SYSTEM(p) {
2189 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2190 			continue;
2191 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2192 			/* sx_sunlock(&allproc_lock); */
2193 			return 1;
2194 		}
2195 	}
2196 	/* sx_sunlock(&allproc_lock); */
2197 	if (_vm_object_in_map(kernel_map, object, 0))
2198 		return 1;
2199 	if (_vm_object_in_map(kmem_map, object, 0))
2200 		return 1;
2201 	if (_vm_object_in_map(pager_map, object, 0))
2202 		return 1;
2203 	if (_vm_object_in_map(buffer_map, object, 0))
2204 		return 1;
2205 	return 0;
2206 }
2207 
2208 DB_SHOW_COMMAND(vmochk, vm_object_check)
2209 {
2210 	vm_object_t object;
2211 
2212 	/*
2213 	 * make sure that internal objs are in a map somewhere
2214 	 * and none have zero ref counts.
2215 	 */
2216 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2217 		if (object->handle == NULL &&
2218 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2219 			if (object->ref_count == 0) {
2220 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2221 					(long)object->size);
2222 			}
2223 			if (!vm_object_in_map(object)) {
2224 				db_printf(
2225 			"vmochk: internal obj is not in a map: "
2226 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2227 				    object->ref_count, (u_long)object->size,
2228 				    (u_long)object->size,
2229 				    (void *)object->backing_object);
2230 			}
2231 		}
2232 	}
2233 }
2234 
2235 /*
2236  *	vm_object_print:	[ debug ]
2237  */
2238 DB_SHOW_COMMAND(object, vm_object_print_static)
2239 {
2240 	/* XXX convert args. */
2241 	vm_object_t object = (vm_object_t)addr;
2242 	boolean_t full = have_addr;
2243 
2244 	vm_page_t p;
2245 
2246 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2247 #define	count	was_count
2248 
2249 	int count;
2250 
2251 	if (object == NULL)
2252 		return;
2253 
2254 	db_iprintf(
2255 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2256 	    object, (int)object->type, (uintmax_t)object->size,
2257 	    object->resident_page_count, object->ref_count, object->flags,
2258 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2259 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2260 	    object->shadow_count,
2261 	    object->backing_object ? object->backing_object->ref_count : 0,
2262 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2263 
2264 	if (!full)
2265 		return;
2266 
2267 	db_indent += 2;
2268 	count = 0;
2269 	TAILQ_FOREACH(p, &object->memq, listq) {
2270 		if (count == 0)
2271 			db_iprintf("memory:=");
2272 		else if (count == 6) {
2273 			db_printf("\n");
2274 			db_iprintf(" ...");
2275 			count = 0;
2276 		} else
2277 			db_printf(",");
2278 		count++;
2279 
2280 		db_printf("(off=0x%jx,page=0x%jx)",
2281 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2282 	}
2283 	if (count != 0)
2284 		db_printf("\n");
2285 	db_indent -= 2;
2286 }
2287 
2288 /* XXX. */
2289 #undef count
2290 
2291 /* XXX need this non-static entry for calling from vm_map_print. */
2292 void
2293 vm_object_print(
2294         /* db_expr_t */ long addr,
2295 	boolean_t have_addr,
2296 	/* db_expr_t */ long count,
2297 	char *modif)
2298 {
2299 	vm_object_print_static(addr, have_addr, count, modif);
2300 }
2301 
2302 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2303 {
2304 	vm_object_t object;
2305 	vm_pindex_t fidx;
2306 	vm_paddr_t pa;
2307 	vm_page_t m, prev_m;
2308 	int rcount, nl, c;
2309 
2310 	nl = 0;
2311 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2312 		db_printf("new object: %p\n", (void *)object);
2313 		if (nl > 18) {
2314 			c = cngetc();
2315 			if (c != ' ')
2316 				return;
2317 			nl = 0;
2318 		}
2319 		nl++;
2320 		rcount = 0;
2321 		fidx = 0;
2322 		pa = -1;
2323 		TAILQ_FOREACH(m, &object->memq, listq) {
2324 			if (m->pindex > 128)
2325 				break;
2326 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2327 			    prev_m->pindex + 1 != m->pindex) {
2328 				if (rcount) {
2329 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2330 						(long)fidx, rcount, (long)pa);
2331 					if (nl > 18) {
2332 						c = cngetc();
2333 						if (c != ' ')
2334 							return;
2335 						nl = 0;
2336 					}
2337 					nl++;
2338 					rcount = 0;
2339 				}
2340 			}
2341 			if (rcount &&
2342 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2343 				++rcount;
2344 				continue;
2345 			}
2346 			if (rcount) {
2347 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2348 					(long)fidx, rcount, (long)pa);
2349 				if (nl > 18) {
2350 					c = cngetc();
2351 					if (c != ' ')
2352 						return;
2353 					nl = 0;
2354 				}
2355 				nl++;
2356 			}
2357 			fidx = m->pindex;
2358 			pa = VM_PAGE_TO_PHYS(m);
2359 			rcount = 1;
2360 		}
2361 		if (rcount) {
2362 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2363 				(long)fidx, rcount, (long)pa);
2364 			if (nl > 18) {
2365 				c = cngetc();
2366 				if (c != ' ')
2367 					return;
2368 				nl = 0;
2369 			}
2370 			nl++;
2371 		}
2372 	}
2373 }
2374 #endif /* DDB */
2375