1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, int *clearobjflags); 105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 106 int *clearobjflags); 107 static void vm_object_qcollapse(vm_object_t object); 108 static void vm_object_vndeallocate(vm_object_t object); 109 110 /* 111 * Virtual memory objects maintain the actual data 112 * associated with allocated virtual memory. A given 113 * page of memory exists within exactly one object. 114 * 115 * An object is only deallocated when all "references" 116 * are given up. Only one "reference" to a given 117 * region of an object should be writeable. 118 * 119 * Associated with each object is a list of all resident 120 * memory pages belonging to that object; this list is 121 * maintained by the "vm_page" module, and locked by the object's 122 * lock. 123 * 124 * Each object also records a "pager" routine which is 125 * used to retrieve (and store) pages to the proper backing 126 * storage. In addition, objects may be backed by other 127 * objects from which they were virtual-copied. 128 * 129 * The only items within the object structure which are 130 * modified after time of creation are: 131 * reference count locked by object's lock 132 * pager routine locked by object's lock 133 * 134 */ 135 136 struct object_q vm_object_list; 137 struct mtx vm_object_list_mtx; /* lock for object list and count */ 138 139 struct vm_object kernel_object_store; 140 struct vm_object kmem_object_store; 141 142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 143 "VM object stats"); 144 145 static long object_collapses; 146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 147 &object_collapses, 0, "VM object collapses"); 148 149 static long object_bypasses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 151 &object_bypasses, 0, "VM object bypasses"); 152 153 static uma_zone_t obj_zone; 154 155 static int vm_object_zinit(void *mem, int size, int flags); 156 157 #ifdef INVARIANTS 158 static void vm_object_zdtor(void *mem, int size, void *arg); 159 160 static void 161 vm_object_zdtor(void *mem, int size, void *arg) 162 { 163 vm_object_t object; 164 165 object = (vm_object_t)mem; 166 KASSERT(TAILQ_EMPTY(&object->memq), 167 ("object %p has resident pages", 168 object)); 169 #if VM_NRESERVLEVEL > 0 170 KASSERT(LIST_EMPTY(&object->rvq), 171 ("object %p has reservations", 172 object)); 173 #endif 174 KASSERT(object->cache == NULL, 175 ("object %p has cached pages", 176 object)); 177 KASSERT(object->paging_in_progress == 0, 178 ("object %p paging_in_progress = %d", 179 object, object->paging_in_progress)); 180 KASSERT(object->resident_page_count == 0, 181 ("object %p resident_page_count = %d", 182 object, object->resident_page_count)); 183 KASSERT(object->shadow_count == 0, 184 ("object %p shadow_count = %d", 185 object, object->shadow_count)); 186 } 187 #endif 188 189 static int 190 vm_object_zinit(void *mem, int size, int flags) 191 { 192 vm_object_t object; 193 194 object = (vm_object_t)mem; 195 bzero(&object->mtx, sizeof(object->mtx)); 196 VM_OBJECT_LOCK_INIT(object, "standard object"); 197 198 /* These are true for any object that has been freed */ 199 object->paging_in_progress = 0; 200 object->resident_page_count = 0; 201 object->shadow_count = 0; 202 return (0); 203 } 204 205 void 206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 207 { 208 209 TAILQ_INIT(&object->memq); 210 LIST_INIT(&object->shadow_head); 211 212 object->root = NULL; 213 object->type = type; 214 object->size = size; 215 object->generation = 1; 216 object->ref_count = 1; 217 object->memattr = VM_MEMATTR_DEFAULT; 218 object->flags = 0; 219 object->cred = NULL; 220 object->charge = 0; 221 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 222 object->flags = OBJ_ONEMAPPING; 223 object->pg_color = 0; 224 object->handle = NULL; 225 object->backing_object = NULL; 226 object->backing_object_offset = (vm_ooffset_t) 0; 227 #if VM_NRESERVLEVEL > 0 228 LIST_INIT(&object->rvq); 229 #endif 230 object->cache = NULL; 231 232 mtx_lock(&vm_object_list_mtx); 233 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 234 mtx_unlock(&vm_object_list_mtx); 235 } 236 237 /* 238 * vm_object_init: 239 * 240 * Initialize the VM objects module. 241 */ 242 void 243 vm_object_init(void) 244 { 245 TAILQ_INIT(&vm_object_list); 246 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 247 248 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 249 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 250 kernel_object); 251 #if VM_NRESERVLEVEL > 0 252 kernel_object->flags |= OBJ_COLORED; 253 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 254 #endif 255 256 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 257 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 258 kmem_object); 259 #if VM_NRESERVLEVEL > 0 260 kmem_object->flags |= OBJ_COLORED; 261 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 262 #endif 263 264 /* 265 * The lock portion of struct vm_object must be type stable due 266 * to vm_pageout_fallback_object_lock locking a vm object 267 * without holding any references to it. 268 */ 269 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 270 #ifdef INVARIANTS 271 vm_object_zdtor, 272 #else 273 NULL, 274 #endif 275 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 276 } 277 278 void 279 vm_object_clear_flag(vm_object_t object, u_short bits) 280 { 281 282 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 283 object->flags &= ~bits; 284 } 285 286 /* 287 * Sets the default memory attribute for the specified object. Pages 288 * that are allocated to this object are by default assigned this memory 289 * attribute. 290 * 291 * Presently, this function must be called before any pages are allocated 292 * to the object. In the future, this requirement may be relaxed for 293 * "default" and "swap" objects. 294 */ 295 int 296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 297 { 298 299 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 300 switch (object->type) { 301 case OBJT_DEFAULT: 302 case OBJT_DEVICE: 303 case OBJT_PHYS: 304 case OBJT_SG: 305 case OBJT_SWAP: 306 case OBJT_VNODE: 307 if (!TAILQ_EMPTY(&object->memq)) 308 return (KERN_FAILURE); 309 break; 310 case OBJT_DEAD: 311 return (KERN_INVALID_ARGUMENT); 312 } 313 object->memattr = memattr; 314 return (KERN_SUCCESS); 315 } 316 317 void 318 vm_object_pip_add(vm_object_t object, short i) 319 { 320 321 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 322 object->paging_in_progress += i; 323 } 324 325 void 326 vm_object_pip_subtract(vm_object_t object, short i) 327 { 328 329 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 330 object->paging_in_progress -= i; 331 } 332 333 void 334 vm_object_pip_wakeup(vm_object_t object) 335 { 336 337 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 338 object->paging_in_progress--; 339 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 340 vm_object_clear_flag(object, OBJ_PIPWNT); 341 wakeup(object); 342 } 343 } 344 345 void 346 vm_object_pip_wakeupn(vm_object_t object, short i) 347 { 348 349 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 350 if (i) 351 object->paging_in_progress -= i; 352 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 353 vm_object_clear_flag(object, OBJ_PIPWNT); 354 wakeup(object); 355 } 356 } 357 358 void 359 vm_object_pip_wait(vm_object_t object, char *waitid) 360 { 361 362 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 363 while (object->paging_in_progress) { 364 object->flags |= OBJ_PIPWNT; 365 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 366 } 367 } 368 369 /* 370 * vm_object_allocate: 371 * 372 * Returns a new object with the given size. 373 */ 374 vm_object_t 375 vm_object_allocate(objtype_t type, vm_pindex_t size) 376 { 377 vm_object_t object; 378 379 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 380 _vm_object_allocate(type, size, object); 381 return (object); 382 } 383 384 385 /* 386 * vm_object_reference: 387 * 388 * Gets another reference to the given object. Note: OBJ_DEAD 389 * objects can be referenced during final cleaning. 390 */ 391 void 392 vm_object_reference(vm_object_t object) 393 { 394 if (object == NULL) 395 return; 396 VM_OBJECT_LOCK(object); 397 vm_object_reference_locked(object); 398 VM_OBJECT_UNLOCK(object); 399 } 400 401 /* 402 * vm_object_reference_locked: 403 * 404 * Gets another reference to the given object. 405 * 406 * The object must be locked. 407 */ 408 void 409 vm_object_reference_locked(vm_object_t object) 410 { 411 struct vnode *vp; 412 413 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 414 object->ref_count++; 415 if (object->type == OBJT_VNODE) { 416 vp = object->handle; 417 vref(vp); 418 } 419 } 420 421 /* 422 * Handle deallocating an object of type OBJT_VNODE. 423 */ 424 static void 425 vm_object_vndeallocate(vm_object_t object) 426 { 427 struct vnode *vp = (struct vnode *) object->handle; 428 429 VFS_ASSERT_GIANT(vp->v_mount); 430 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 431 KASSERT(object->type == OBJT_VNODE, 432 ("vm_object_vndeallocate: not a vnode object")); 433 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 434 #ifdef INVARIANTS 435 if (object->ref_count == 0) { 436 vprint("vm_object_vndeallocate", vp); 437 panic("vm_object_vndeallocate: bad object reference count"); 438 } 439 #endif 440 441 if (object->ref_count > 1) { 442 object->ref_count--; 443 VM_OBJECT_UNLOCK(object); 444 /* vrele may need the vnode lock. */ 445 vrele(vp); 446 } else { 447 vhold(vp); 448 VM_OBJECT_UNLOCK(object); 449 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 450 vdrop(vp); 451 VM_OBJECT_LOCK(object); 452 object->ref_count--; 453 if (object->type == OBJT_DEAD) { 454 VM_OBJECT_UNLOCK(object); 455 VOP_UNLOCK(vp, 0); 456 } else { 457 if (object->ref_count == 0) 458 vp->v_vflag &= ~VV_TEXT; 459 VM_OBJECT_UNLOCK(object); 460 vput(vp); 461 } 462 } 463 } 464 465 /* 466 * vm_object_deallocate: 467 * 468 * Release a reference to the specified object, 469 * gained either through a vm_object_allocate 470 * or a vm_object_reference call. When all references 471 * are gone, storage associated with this object 472 * may be relinquished. 473 * 474 * No object may be locked. 475 */ 476 void 477 vm_object_deallocate(vm_object_t object) 478 { 479 vm_object_t temp; 480 481 while (object != NULL) { 482 int vfslocked; 483 484 vfslocked = 0; 485 restart: 486 VM_OBJECT_LOCK(object); 487 if (object->type == OBJT_VNODE) { 488 struct vnode *vp = (struct vnode *) object->handle; 489 490 /* 491 * Conditionally acquire Giant for a vnode-backed 492 * object. We have to be careful since the type of 493 * a vnode object can change while the object is 494 * unlocked. 495 */ 496 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 497 vfslocked = 1; 498 if (!mtx_trylock(&Giant)) { 499 VM_OBJECT_UNLOCK(object); 500 mtx_lock(&Giant); 501 goto restart; 502 } 503 } 504 vm_object_vndeallocate(object); 505 VFS_UNLOCK_GIANT(vfslocked); 506 return; 507 } else 508 /* 509 * This is to handle the case that the object 510 * changed type while we dropped its lock to 511 * obtain Giant. 512 */ 513 VFS_UNLOCK_GIANT(vfslocked); 514 515 KASSERT(object->ref_count != 0, 516 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 517 518 /* 519 * If the reference count goes to 0 we start calling 520 * vm_object_terminate() on the object chain. 521 * A ref count of 1 may be a special case depending on the 522 * shadow count being 0 or 1. 523 */ 524 object->ref_count--; 525 if (object->ref_count > 1) { 526 VM_OBJECT_UNLOCK(object); 527 return; 528 } else if (object->ref_count == 1) { 529 if (object->shadow_count == 0 && 530 object->handle == NULL && 531 (object->type == OBJT_DEFAULT || 532 object->type == OBJT_SWAP)) { 533 vm_object_set_flag(object, OBJ_ONEMAPPING); 534 } else if ((object->shadow_count == 1) && 535 (object->handle == NULL) && 536 (object->type == OBJT_DEFAULT || 537 object->type == OBJT_SWAP)) { 538 vm_object_t robject; 539 540 robject = LIST_FIRST(&object->shadow_head); 541 KASSERT(robject != NULL, 542 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 543 object->ref_count, 544 object->shadow_count)); 545 if (!VM_OBJECT_TRYLOCK(robject)) { 546 /* 547 * Avoid a potential deadlock. 548 */ 549 object->ref_count++; 550 VM_OBJECT_UNLOCK(object); 551 /* 552 * More likely than not the thread 553 * holding robject's lock has lower 554 * priority than the current thread. 555 * Let the lower priority thread run. 556 */ 557 pause("vmo_de", 1); 558 continue; 559 } 560 /* 561 * Collapse object into its shadow unless its 562 * shadow is dead. In that case, object will 563 * be deallocated by the thread that is 564 * deallocating its shadow. 565 */ 566 if ((robject->flags & OBJ_DEAD) == 0 && 567 (robject->handle == NULL) && 568 (robject->type == OBJT_DEFAULT || 569 robject->type == OBJT_SWAP)) { 570 571 robject->ref_count++; 572 retry: 573 if (robject->paging_in_progress) { 574 VM_OBJECT_UNLOCK(object); 575 vm_object_pip_wait(robject, 576 "objde1"); 577 temp = robject->backing_object; 578 if (object == temp) { 579 VM_OBJECT_LOCK(object); 580 goto retry; 581 } 582 } else if (object->paging_in_progress) { 583 VM_OBJECT_UNLOCK(robject); 584 object->flags |= OBJ_PIPWNT; 585 msleep(object, 586 VM_OBJECT_MTX(object), 587 PDROP | PVM, "objde2", 0); 588 VM_OBJECT_LOCK(robject); 589 temp = robject->backing_object; 590 if (object == temp) { 591 VM_OBJECT_LOCK(object); 592 goto retry; 593 } 594 } else 595 VM_OBJECT_UNLOCK(object); 596 597 if (robject->ref_count == 1) { 598 robject->ref_count--; 599 object = robject; 600 goto doterm; 601 } 602 object = robject; 603 vm_object_collapse(object); 604 VM_OBJECT_UNLOCK(object); 605 continue; 606 } 607 VM_OBJECT_UNLOCK(robject); 608 } 609 VM_OBJECT_UNLOCK(object); 610 return; 611 } 612 doterm: 613 temp = object->backing_object; 614 if (temp != NULL) { 615 VM_OBJECT_LOCK(temp); 616 LIST_REMOVE(object, shadow_list); 617 temp->shadow_count--; 618 VM_OBJECT_UNLOCK(temp); 619 object->backing_object = NULL; 620 } 621 /* 622 * Don't double-terminate, we could be in a termination 623 * recursion due to the terminate having to sync data 624 * to disk. 625 */ 626 if ((object->flags & OBJ_DEAD) == 0) 627 vm_object_terminate(object); 628 else 629 VM_OBJECT_UNLOCK(object); 630 object = temp; 631 } 632 } 633 634 /* 635 * vm_object_destroy removes the object from the global object list 636 * and frees the space for the object. 637 */ 638 void 639 vm_object_destroy(vm_object_t object) 640 { 641 642 /* 643 * Remove the object from the global object list. 644 */ 645 mtx_lock(&vm_object_list_mtx); 646 TAILQ_REMOVE(&vm_object_list, object, object_list); 647 mtx_unlock(&vm_object_list_mtx); 648 649 /* 650 * Release the allocation charge. 651 */ 652 if (object->cred != NULL) { 653 KASSERT(object->type == OBJT_DEFAULT || 654 object->type == OBJT_SWAP, 655 ("vm_object_terminate: non-swap obj %p has cred", 656 object)); 657 swap_release_by_cred(object->charge, object->cred); 658 object->charge = 0; 659 crfree(object->cred); 660 object->cred = NULL; 661 } 662 663 /* 664 * Free the space for the object. 665 */ 666 uma_zfree(obj_zone, object); 667 } 668 669 /* 670 * vm_object_terminate actually destroys the specified object, freeing 671 * up all previously used resources. 672 * 673 * The object must be locked. 674 * This routine may block. 675 */ 676 void 677 vm_object_terminate(vm_object_t object) 678 { 679 vm_page_t p, p_next; 680 681 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 682 683 /* 684 * Make sure no one uses us. 685 */ 686 vm_object_set_flag(object, OBJ_DEAD); 687 688 /* 689 * wait for the pageout daemon to be done with the object 690 */ 691 vm_object_pip_wait(object, "objtrm"); 692 693 KASSERT(!object->paging_in_progress, 694 ("vm_object_terminate: pageout in progress")); 695 696 /* 697 * Clean and free the pages, as appropriate. All references to the 698 * object are gone, so we don't need to lock it. 699 */ 700 if (object->type == OBJT_VNODE) { 701 struct vnode *vp = (struct vnode *)object->handle; 702 703 /* 704 * Clean pages and flush buffers. 705 */ 706 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 707 VM_OBJECT_UNLOCK(object); 708 709 vinvalbuf(vp, V_SAVE, 0, 0); 710 711 VM_OBJECT_LOCK(object); 712 } 713 714 KASSERT(object->ref_count == 0, 715 ("vm_object_terminate: object with references, ref_count=%d", 716 object->ref_count)); 717 718 /* 719 * Free any remaining pageable pages. This also removes them from the 720 * paging queues. However, don't free wired pages, just remove them 721 * from the object. Rather than incrementally removing each page from 722 * the object, the page and object are reset to any empty state. 723 */ 724 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 725 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 726 ("vm_object_terminate: freeing busy page %p", p)); 727 vm_page_lock(p); 728 /* 729 * Optimize the page's removal from the object by resetting 730 * its "object" field. Specifically, if the page is not 731 * wired, then the effect of this assignment is that 732 * vm_page_free()'s call to vm_page_remove() will return 733 * immediately without modifying the page or the object. 734 */ 735 p->object = NULL; 736 if (p->wire_count == 0) { 737 vm_page_free(p); 738 PCPU_INC(cnt.v_pfree); 739 } 740 vm_page_unlock(p); 741 } 742 /* 743 * If the object contained any pages, then reset it to an empty state. 744 * None of the object's fields, including "resident_page_count", were 745 * modified by the preceding loop. 746 */ 747 if (object->resident_page_count != 0) { 748 object->root = NULL; 749 TAILQ_INIT(&object->memq); 750 object->resident_page_count = 0; 751 if (object->type == OBJT_VNODE) 752 vdrop(object->handle); 753 } 754 755 #if VM_NRESERVLEVEL > 0 756 if (__predict_false(!LIST_EMPTY(&object->rvq))) 757 vm_reserv_break_all(object); 758 #endif 759 if (__predict_false(object->cache != NULL)) 760 vm_page_cache_free(object, 0, 0); 761 762 /* 763 * Let the pager know object is dead. 764 */ 765 vm_pager_deallocate(object); 766 VM_OBJECT_UNLOCK(object); 767 768 vm_object_destroy(object); 769 } 770 771 /* 772 * Make the page read-only so that we can clear the object flags. However, if 773 * this is a nosync mmap then the object is likely to stay dirty so do not 774 * mess with the page and do not clear the object flags. Returns TRUE if the 775 * page should be flushed, and FALSE otherwise. 776 */ 777 static boolean_t 778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags) 779 { 780 781 /* 782 * If we have been asked to skip nosync pages and this is a 783 * nosync page, skip it. Note that the object flags were not 784 * cleared in this case so we do not have to set them. 785 */ 786 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 787 *clearobjflags = 0; 788 return (FALSE); 789 } else { 790 pmap_remove_write(p); 791 return (p->dirty != 0); 792 } 793 } 794 795 /* 796 * vm_object_page_clean 797 * 798 * Clean all dirty pages in the specified range of object. Leaves page 799 * on whatever queue it is currently on. If NOSYNC is set then do not 800 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 801 * leaving the object dirty. 802 * 803 * When stuffing pages asynchronously, allow clustering. XXX we need a 804 * synchronous clustering mode implementation. 805 * 806 * Odd semantics: if start == end, we clean everything. 807 * 808 * The object must be locked. 809 */ 810 void 811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 812 int flags) 813 { 814 vm_page_t np, p; 815 vm_pindex_t pi, tend, tstart; 816 int clearobjflags, curgeneration, n, pagerflags; 817 818 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 819 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 820 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 821 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 822 object->resident_page_count == 0) 823 return; 824 825 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 826 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 827 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 828 829 tstart = OFF_TO_IDX(start); 830 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 831 clearobjflags = tstart == 0 && tend >= object->size; 832 833 rescan: 834 curgeneration = object->generation; 835 836 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 837 pi = p->pindex; 838 if (pi >= tend) 839 break; 840 np = TAILQ_NEXT(p, listq); 841 if (p->valid == 0) 842 continue; 843 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 844 if (object->generation != curgeneration) { 845 if ((flags & OBJPC_SYNC) != 0) 846 goto rescan; 847 else 848 clearobjflags = 0; 849 } 850 np = vm_page_find_least(object, pi); 851 continue; 852 } 853 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 854 continue; 855 856 n = vm_object_page_collect_flush(object, p, pagerflags, 857 flags, &clearobjflags); 858 if (object->generation != curgeneration) { 859 if ((flags & OBJPC_SYNC) != 0) 860 goto rescan; 861 else 862 clearobjflags = 0; 863 } 864 865 /* 866 * If the VOP_PUTPAGES() did a truncated write, so 867 * that even the first page of the run is not fully 868 * written, vm_pageout_flush() returns 0 as the run 869 * length. Since the condition that caused truncated 870 * write may be permanent, e.g. exhausted free space, 871 * accepting n == 0 would cause an infinite loop. 872 * 873 * Forwarding the iterator leaves the unwritten page 874 * behind, but there is not much we can do there if 875 * filesystem refuses to write it. 876 */ 877 if (n == 0) 878 n = 1; 879 np = vm_page_find_least(object, pi + n); 880 } 881 #if 0 882 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 883 #endif 884 885 if (clearobjflags) 886 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 887 } 888 889 static int 890 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 891 int flags, int *clearobjflags) 892 { 893 vm_page_t ma[vm_pageout_page_count], p_first, tp; 894 int count, i, mreq, runlen; 895 896 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 897 vm_page_lock_assert(p, MA_NOTOWNED); 898 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 899 900 count = 1; 901 mreq = 0; 902 903 for (tp = p; count < vm_pageout_page_count; count++) { 904 tp = vm_page_next(tp); 905 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 906 break; 907 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 908 break; 909 } 910 911 for (p_first = p; count < vm_pageout_page_count; count++) { 912 tp = vm_page_prev(p_first); 913 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 914 break; 915 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 916 break; 917 p_first = tp; 918 mreq++; 919 } 920 921 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 922 ma[i] = tp; 923 924 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen); 925 return (runlen); 926 } 927 928 /* 929 * Note that there is absolutely no sense in writing out 930 * anonymous objects, so we track down the vnode object 931 * to write out. 932 * We invalidate (remove) all pages from the address space 933 * for semantic correctness. 934 * 935 * If the backing object is a device object with unmanaged pages, then any 936 * mappings to the specified range of pages must be removed before this 937 * function is called. 938 * 939 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 940 * may start out with a NULL object. 941 */ 942 void 943 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 944 boolean_t syncio, boolean_t invalidate) 945 { 946 vm_object_t backing_object; 947 struct vnode *vp; 948 struct mount *mp; 949 int flags, fsync_after; 950 951 if (object == NULL) 952 return; 953 VM_OBJECT_LOCK(object); 954 while ((backing_object = object->backing_object) != NULL) { 955 VM_OBJECT_LOCK(backing_object); 956 offset += object->backing_object_offset; 957 VM_OBJECT_UNLOCK(object); 958 object = backing_object; 959 if (object->size < OFF_TO_IDX(offset + size)) 960 size = IDX_TO_OFF(object->size) - offset; 961 } 962 /* 963 * Flush pages if writing is allowed, invalidate them 964 * if invalidation requested. Pages undergoing I/O 965 * will be ignored by vm_object_page_remove(). 966 * 967 * We cannot lock the vnode and then wait for paging 968 * to complete without deadlocking against vm_fault. 969 * Instead we simply call vm_object_page_remove() and 970 * allow it to block internally on a page-by-page 971 * basis when it encounters pages undergoing async 972 * I/O. 973 */ 974 if (object->type == OBJT_VNODE && 975 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 976 int vfslocked; 977 vp = object->handle; 978 VM_OBJECT_UNLOCK(object); 979 (void) vn_start_write(vp, &mp, V_WAIT); 980 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 981 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 982 if (syncio && !invalidate && offset == 0 && 983 OFF_TO_IDX(size) == object->size) { 984 /* 985 * If syncing the whole mapping of the file, 986 * it is faster to schedule all the writes in 987 * async mode, also allowing the clustering, 988 * and then wait for i/o to complete. 989 */ 990 flags = 0; 991 fsync_after = TRUE; 992 } else { 993 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 994 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 995 fsync_after = FALSE; 996 } 997 VM_OBJECT_LOCK(object); 998 vm_object_page_clean(object, offset, offset + size, flags); 999 VM_OBJECT_UNLOCK(object); 1000 if (fsync_after) 1001 (void) VOP_FSYNC(vp, MNT_WAIT, curthread); 1002 VOP_UNLOCK(vp, 0); 1003 VFS_UNLOCK_GIANT(vfslocked); 1004 vn_finished_write(mp); 1005 VM_OBJECT_LOCK(object); 1006 } 1007 if ((object->type == OBJT_VNODE || 1008 object->type == OBJT_DEVICE) && invalidate) { 1009 if (object->type == OBJT_DEVICE) 1010 /* 1011 * The option OBJPR_NOTMAPPED must be passed here 1012 * because vm_object_page_remove() cannot remove 1013 * unmanaged mappings. 1014 */ 1015 flags = OBJPR_NOTMAPPED; 1016 else if (old_msync) 1017 flags = 0; 1018 else 1019 flags = OBJPR_CLEANONLY; 1020 vm_object_page_remove(object, OFF_TO_IDX(offset), 1021 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1022 } 1023 VM_OBJECT_UNLOCK(object); 1024 } 1025 1026 /* 1027 * vm_object_madvise: 1028 * 1029 * Implements the madvise function at the object/page level. 1030 * 1031 * MADV_WILLNEED (any object) 1032 * 1033 * Activate the specified pages if they are resident. 1034 * 1035 * MADV_DONTNEED (any object) 1036 * 1037 * Deactivate the specified pages if they are resident. 1038 * 1039 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1040 * OBJ_ONEMAPPING only) 1041 * 1042 * Deactivate and clean the specified pages if they are 1043 * resident. This permits the process to reuse the pages 1044 * without faulting or the kernel to reclaim the pages 1045 * without I/O. 1046 */ 1047 void 1048 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1049 { 1050 vm_pindex_t end, tpindex; 1051 vm_object_t backing_object, tobject; 1052 vm_page_t m; 1053 1054 if (object == NULL) 1055 return; 1056 VM_OBJECT_LOCK(object); 1057 end = pindex + count; 1058 /* 1059 * Locate and adjust resident pages 1060 */ 1061 for (; pindex < end; pindex += 1) { 1062 relookup: 1063 tobject = object; 1064 tpindex = pindex; 1065 shadowlookup: 1066 /* 1067 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1068 * and those pages must be OBJ_ONEMAPPING. 1069 */ 1070 if (advise == MADV_FREE) { 1071 if ((tobject->type != OBJT_DEFAULT && 1072 tobject->type != OBJT_SWAP) || 1073 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1074 goto unlock_tobject; 1075 } 1076 } else if (tobject->type == OBJT_PHYS) 1077 goto unlock_tobject; 1078 m = vm_page_lookup(tobject, tpindex); 1079 if (m == NULL && advise == MADV_WILLNEED) { 1080 /* 1081 * If the page is cached, reactivate it. 1082 */ 1083 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1084 VM_ALLOC_NOBUSY); 1085 } 1086 if (m == NULL) { 1087 /* 1088 * There may be swap even if there is no backing page 1089 */ 1090 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1091 swap_pager_freespace(tobject, tpindex, 1); 1092 /* 1093 * next object 1094 */ 1095 backing_object = tobject->backing_object; 1096 if (backing_object == NULL) 1097 goto unlock_tobject; 1098 VM_OBJECT_LOCK(backing_object); 1099 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1100 if (tobject != object) 1101 VM_OBJECT_UNLOCK(tobject); 1102 tobject = backing_object; 1103 goto shadowlookup; 1104 } else if (m->valid != VM_PAGE_BITS_ALL) 1105 goto unlock_tobject; 1106 /* 1107 * If the page is not in a normal state, skip it. 1108 */ 1109 vm_page_lock(m); 1110 if (m->hold_count != 0 || m->wire_count != 0) { 1111 vm_page_unlock(m); 1112 goto unlock_tobject; 1113 } 1114 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1115 ("vm_object_madvise: page %p is fictitious", m)); 1116 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1117 ("vm_object_madvise: page %p is not managed", m)); 1118 if ((m->oflags & VPO_BUSY) || m->busy) { 1119 if (advise == MADV_WILLNEED) { 1120 /* 1121 * Reference the page before unlocking and 1122 * sleeping so that the page daemon is less 1123 * likely to reclaim it. 1124 */ 1125 vm_page_aflag_set(m, PGA_REFERENCED); 1126 } 1127 vm_page_unlock(m); 1128 if (object != tobject) 1129 VM_OBJECT_UNLOCK(object); 1130 m->oflags |= VPO_WANTED; 1131 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1132 0); 1133 VM_OBJECT_LOCK(object); 1134 goto relookup; 1135 } 1136 if (advise == MADV_WILLNEED) { 1137 vm_page_activate(m); 1138 } else if (advise == MADV_DONTNEED) { 1139 vm_page_dontneed(m); 1140 } else if (advise == MADV_FREE) { 1141 /* 1142 * Mark the page clean. This will allow the page 1143 * to be freed up by the system. However, such pages 1144 * are often reused quickly by malloc()/free() 1145 * so we do not do anything that would cause 1146 * a page fault if we can help it. 1147 * 1148 * Specifically, we do not try to actually free 1149 * the page now nor do we try to put it in the 1150 * cache (which would cause a page fault on reuse). 1151 * 1152 * But we do make the page is freeable as we 1153 * can without actually taking the step of unmapping 1154 * it. 1155 */ 1156 pmap_clear_modify(m); 1157 m->dirty = 0; 1158 m->act_count = 0; 1159 vm_page_dontneed(m); 1160 } 1161 vm_page_unlock(m); 1162 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1163 swap_pager_freespace(tobject, tpindex, 1); 1164 unlock_tobject: 1165 if (tobject != object) 1166 VM_OBJECT_UNLOCK(tobject); 1167 } 1168 VM_OBJECT_UNLOCK(object); 1169 } 1170 1171 /* 1172 * vm_object_shadow: 1173 * 1174 * Create a new object which is backed by the 1175 * specified existing object range. The source 1176 * object reference is deallocated. 1177 * 1178 * The new object and offset into that object 1179 * are returned in the source parameters. 1180 */ 1181 void 1182 vm_object_shadow( 1183 vm_object_t *object, /* IN/OUT */ 1184 vm_ooffset_t *offset, /* IN/OUT */ 1185 vm_size_t length) 1186 { 1187 vm_object_t source; 1188 vm_object_t result; 1189 1190 source = *object; 1191 1192 /* 1193 * Don't create the new object if the old object isn't shared. 1194 */ 1195 if (source != NULL) { 1196 VM_OBJECT_LOCK(source); 1197 if (source->ref_count == 1 && 1198 source->handle == NULL && 1199 (source->type == OBJT_DEFAULT || 1200 source->type == OBJT_SWAP)) { 1201 VM_OBJECT_UNLOCK(source); 1202 return; 1203 } 1204 VM_OBJECT_UNLOCK(source); 1205 } 1206 1207 /* 1208 * Allocate a new object with the given length. 1209 */ 1210 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1211 1212 /* 1213 * The new object shadows the source object, adding a reference to it. 1214 * Our caller changes his reference to point to the new object, 1215 * removing a reference to the source object. Net result: no change 1216 * of reference count. 1217 * 1218 * Try to optimize the result object's page color when shadowing 1219 * in order to maintain page coloring consistency in the combined 1220 * shadowed object. 1221 */ 1222 result->backing_object = source; 1223 /* 1224 * Store the offset into the source object, and fix up the offset into 1225 * the new object. 1226 */ 1227 result->backing_object_offset = *offset; 1228 if (source != NULL) { 1229 VM_OBJECT_LOCK(source); 1230 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1231 source->shadow_count++; 1232 #if VM_NRESERVLEVEL > 0 1233 result->flags |= source->flags & OBJ_COLORED; 1234 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1235 ((1 << (VM_NFREEORDER - 1)) - 1); 1236 #endif 1237 VM_OBJECT_UNLOCK(source); 1238 } 1239 1240 1241 /* 1242 * Return the new things 1243 */ 1244 *offset = 0; 1245 *object = result; 1246 } 1247 1248 /* 1249 * vm_object_split: 1250 * 1251 * Split the pages in a map entry into a new object. This affords 1252 * easier removal of unused pages, and keeps object inheritance from 1253 * being a negative impact on memory usage. 1254 */ 1255 void 1256 vm_object_split(vm_map_entry_t entry) 1257 { 1258 vm_page_t m, m_next; 1259 vm_object_t orig_object, new_object, source; 1260 vm_pindex_t idx, offidxstart; 1261 vm_size_t size; 1262 1263 orig_object = entry->object.vm_object; 1264 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1265 return; 1266 if (orig_object->ref_count <= 1) 1267 return; 1268 VM_OBJECT_UNLOCK(orig_object); 1269 1270 offidxstart = OFF_TO_IDX(entry->offset); 1271 size = atop(entry->end - entry->start); 1272 1273 /* 1274 * If swap_pager_copy() is later called, it will convert new_object 1275 * into a swap object. 1276 */ 1277 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1278 1279 /* 1280 * At this point, the new object is still private, so the order in 1281 * which the original and new objects are locked does not matter. 1282 */ 1283 VM_OBJECT_LOCK(new_object); 1284 VM_OBJECT_LOCK(orig_object); 1285 source = orig_object->backing_object; 1286 if (source != NULL) { 1287 VM_OBJECT_LOCK(source); 1288 if ((source->flags & OBJ_DEAD) != 0) { 1289 VM_OBJECT_UNLOCK(source); 1290 VM_OBJECT_UNLOCK(orig_object); 1291 VM_OBJECT_UNLOCK(new_object); 1292 vm_object_deallocate(new_object); 1293 VM_OBJECT_LOCK(orig_object); 1294 return; 1295 } 1296 LIST_INSERT_HEAD(&source->shadow_head, 1297 new_object, shadow_list); 1298 source->shadow_count++; 1299 vm_object_reference_locked(source); /* for new_object */ 1300 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1301 VM_OBJECT_UNLOCK(source); 1302 new_object->backing_object_offset = 1303 orig_object->backing_object_offset + entry->offset; 1304 new_object->backing_object = source; 1305 } 1306 if (orig_object->cred != NULL) { 1307 new_object->cred = orig_object->cred; 1308 crhold(orig_object->cred); 1309 new_object->charge = ptoa(size); 1310 KASSERT(orig_object->charge >= ptoa(size), 1311 ("orig_object->charge < 0")); 1312 orig_object->charge -= ptoa(size); 1313 } 1314 retry: 1315 m = vm_page_find_least(orig_object, offidxstart); 1316 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1317 m = m_next) { 1318 m_next = TAILQ_NEXT(m, listq); 1319 1320 /* 1321 * We must wait for pending I/O to complete before we can 1322 * rename the page. 1323 * 1324 * We do not have to VM_PROT_NONE the page as mappings should 1325 * not be changed by this operation. 1326 */ 1327 if ((m->oflags & VPO_BUSY) || m->busy) { 1328 VM_OBJECT_UNLOCK(new_object); 1329 m->oflags |= VPO_WANTED; 1330 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1331 VM_OBJECT_LOCK(new_object); 1332 goto retry; 1333 } 1334 #if VM_NRESERVLEVEL > 0 1335 /* 1336 * If some of the reservation's allocated pages remain with 1337 * the original object, then transferring the reservation to 1338 * the new object is neither particularly beneficial nor 1339 * particularly harmful as compared to leaving the reservation 1340 * with the original object. If, however, all of the 1341 * reservation's allocated pages are transferred to the new 1342 * object, then transferring the reservation is typically 1343 * beneficial. Determining which of these two cases applies 1344 * would be more costly than unconditionally renaming the 1345 * reservation. 1346 */ 1347 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1348 #endif 1349 vm_page_lock(m); 1350 vm_page_rename(m, new_object, idx); 1351 vm_page_unlock(m); 1352 /* page automatically made dirty by rename and cache handled */ 1353 vm_page_busy(m); 1354 } 1355 if (orig_object->type == OBJT_SWAP) { 1356 /* 1357 * swap_pager_copy() can sleep, in which case the orig_object's 1358 * and new_object's locks are released and reacquired. 1359 */ 1360 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1361 1362 /* 1363 * Transfer any cached pages from orig_object to new_object. 1364 */ 1365 if (__predict_false(orig_object->cache != NULL)) 1366 vm_page_cache_transfer(orig_object, offidxstart, 1367 new_object); 1368 } 1369 VM_OBJECT_UNLOCK(orig_object); 1370 TAILQ_FOREACH(m, &new_object->memq, listq) 1371 vm_page_wakeup(m); 1372 VM_OBJECT_UNLOCK(new_object); 1373 entry->object.vm_object = new_object; 1374 entry->offset = 0LL; 1375 vm_object_deallocate(orig_object); 1376 VM_OBJECT_LOCK(new_object); 1377 } 1378 1379 #define OBSC_TEST_ALL_SHADOWED 0x0001 1380 #define OBSC_COLLAPSE_NOWAIT 0x0002 1381 #define OBSC_COLLAPSE_WAIT 0x0004 1382 1383 static int 1384 vm_object_backing_scan(vm_object_t object, int op) 1385 { 1386 int r = 1; 1387 vm_page_t p; 1388 vm_object_t backing_object; 1389 vm_pindex_t backing_offset_index; 1390 1391 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1392 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1393 1394 backing_object = object->backing_object; 1395 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1396 1397 /* 1398 * Initial conditions 1399 */ 1400 if (op & OBSC_TEST_ALL_SHADOWED) { 1401 /* 1402 * We do not want to have to test for the existence of cache 1403 * or swap pages in the backing object. XXX but with the 1404 * new swapper this would be pretty easy to do. 1405 * 1406 * XXX what about anonymous MAP_SHARED memory that hasn't 1407 * been ZFOD faulted yet? If we do not test for this, the 1408 * shadow test may succeed! XXX 1409 */ 1410 if (backing_object->type != OBJT_DEFAULT) { 1411 return (0); 1412 } 1413 } 1414 if (op & OBSC_COLLAPSE_WAIT) { 1415 vm_object_set_flag(backing_object, OBJ_DEAD); 1416 } 1417 1418 /* 1419 * Our scan 1420 */ 1421 p = TAILQ_FIRST(&backing_object->memq); 1422 while (p) { 1423 vm_page_t next = TAILQ_NEXT(p, listq); 1424 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1425 1426 if (op & OBSC_TEST_ALL_SHADOWED) { 1427 vm_page_t pp; 1428 1429 /* 1430 * Ignore pages outside the parent object's range 1431 * and outside the parent object's mapping of the 1432 * backing object. 1433 * 1434 * note that we do not busy the backing object's 1435 * page. 1436 */ 1437 if ( 1438 p->pindex < backing_offset_index || 1439 new_pindex >= object->size 1440 ) { 1441 p = next; 1442 continue; 1443 } 1444 1445 /* 1446 * See if the parent has the page or if the parent's 1447 * object pager has the page. If the parent has the 1448 * page but the page is not valid, the parent's 1449 * object pager must have the page. 1450 * 1451 * If this fails, the parent does not completely shadow 1452 * the object and we might as well give up now. 1453 */ 1454 1455 pp = vm_page_lookup(object, new_pindex); 1456 if ( 1457 (pp == NULL || pp->valid == 0) && 1458 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1459 ) { 1460 r = 0; 1461 break; 1462 } 1463 } 1464 1465 /* 1466 * Check for busy page 1467 */ 1468 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1469 vm_page_t pp; 1470 1471 if (op & OBSC_COLLAPSE_NOWAIT) { 1472 if ((p->oflags & VPO_BUSY) || 1473 !p->valid || 1474 p->busy) { 1475 p = next; 1476 continue; 1477 } 1478 } else if (op & OBSC_COLLAPSE_WAIT) { 1479 if ((p->oflags & VPO_BUSY) || p->busy) { 1480 VM_OBJECT_UNLOCK(object); 1481 p->oflags |= VPO_WANTED; 1482 msleep(p, VM_OBJECT_MTX(backing_object), 1483 PDROP | PVM, "vmocol", 0); 1484 VM_OBJECT_LOCK(object); 1485 VM_OBJECT_LOCK(backing_object); 1486 /* 1487 * If we slept, anything could have 1488 * happened. Since the object is 1489 * marked dead, the backing offset 1490 * should not have changed so we 1491 * just restart our scan. 1492 */ 1493 p = TAILQ_FIRST(&backing_object->memq); 1494 continue; 1495 } 1496 } 1497 1498 KASSERT( 1499 p->object == backing_object, 1500 ("vm_object_backing_scan: object mismatch") 1501 ); 1502 1503 /* 1504 * Destroy any associated swap 1505 */ 1506 if (backing_object->type == OBJT_SWAP) { 1507 swap_pager_freespace( 1508 backing_object, 1509 p->pindex, 1510 1 1511 ); 1512 } 1513 1514 if ( 1515 p->pindex < backing_offset_index || 1516 new_pindex >= object->size 1517 ) { 1518 /* 1519 * Page is out of the parent object's range, we 1520 * can simply destroy it. 1521 */ 1522 vm_page_lock(p); 1523 KASSERT(!pmap_page_is_mapped(p), 1524 ("freeing mapped page %p", p)); 1525 if (p->wire_count == 0) 1526 vm_page_free(p); 1527 else 1528 vm_page_remove(p); 1529 vm_page_unlock(p); 1530 p = next; 1531 continue; 1532 } 1533 1534 pp = vm_page_lookup(object, new_pindex); 1535 if ( 1536 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1537 (pp != NULL && pp->valid == 0) 1538 ) { 1539 /* 1540 * The page in the parent is not (yet) valid. 1541 * We don't know anything about the state of 1542 * the original page. It might be mapped, 1543 * so we must avoid the next if here. 1544 * 1545 * This is due to a race in vm_fault() where 1546 * we must unbusy the original (backing_obj) 1547 * page before we can (re)lock the parent. 1548 * Hence we can get here. 1549 */ 1550 p = next; 1551 continue; 1552 } 1553 if ( 1554 pp != NULL || 1555 vm_pager_has_page(object, new_pindex, NULL, NULL) 1556 ) { 1557 /* 1558 * page already exists in parent OR swap exists 1559 * for this location in the parent. Destroy 1560 * the original page from the backing object. 1561 * 1562 * Leave the parent's page alone 1563 */ 1564 vm_page_lock(p); 1565 KASSERT(!pmap_page_is_mapped(p), 1566 ("freeing mapped page %p", p)); 1567 if (p->wire_count == 0) 1568 vm_page_free(p); 1569 else 1570 vm_page_remove(p); 1571 vm_page_unlock(p); 1572 p = next; 1573 continue; 1574 } 1575 1576 #if VM_NRESERVLEVEL > 0 1577 /* 1578 * Rename the reservation. 1579 */ 1580 vm_reserv_rename(p, object, backing_object, 1581 backing_offset_index); 1582 #endif 1583 1584 /* 1585 * Page does not exist in parent, rename the 1586 * page from the backing object to the main object. 1587 * 1588 * If the page was mapped to a process, it can remain 1589 * mapped through the rename. 1590 */ 1591 vm_page_lock(p); 1592 vm_page_rename(p, object, new_pindex); 1593 vm_page_unlock(p); 1594 /* page automatically made dirty by rename */ 1595 } 1596 p = next; 1597 } 1598 return (r); 1599 } 1600 1601 1602 /* 1603 * this version of collapse allows the operation to occur earlier and 1604 * when paging_in_progress is true for an object... This is not a complete 1605 * operation, but should plug 99.9% of the rest of the leaks. 1606 */ 1607 static void 1608 vm_object_qcollapse(vm_object_t object) 1609 { 1610 vm_object_t backing_object = object->backing_object; 1611 1612 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1613 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1614 1615 if (backing_object->ref_count != 1) 1616 return; 1617 1618 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1619 } 1620 1621 /* 1622 * vm_object_collapse: 1623 * 1624 * Collapse an object with the object backing it. 1625 * Pages in the backing object are moved into the 1626 * parent, and the backing object is deallocated. 1627 */ 1628 void 1629 vm_object_collapse(vm_object_t object) 1630 { 1631 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1632 1633 while (TRUE) { 1634 vm_object_t backing_object; 1635 1636 /* 1637 * Verify that the conditions are right for collapse: 1638 * 1639 * The object exists and the backing object exists. 1640 */ 1641 if ((backing_object = object->backing_object) == NULL) 1642 break; 1643 1644 /* 1645 * we check the backing object first, because it is most likely 1646 * not collapsable. 1647 */ 1648 VM_OBJECT_LOCK(backing_object); 1649 if (backing_object->handle != NULL || 1650 (backing_object->type != OBJT_DEFAULT && 1651 backing_object->type != OBJT_SWAP) || 1652 (backing_object->flags & OBJ_DEAD) || 1653 object->handle != NULL || 1654 (object->type != OBJT_DEFAULT && 1655 object->type != OBJT_SWAP) || 1656 (object->flags & OBJ_DEAD)) { 1657 VM_OBJECT_UNLOCK(backing_object); 1658 break; 1659 } 1660 1661 if ( 1662 object->paging_in_progress != 0 || 1663 backing_object->paging_in_progress != 0 1664 ) { 1665 vm_object_qcollapse(object); 1666 VM_OBJECT_UNLOCK(backing_object); 1667 break; 1668 } 1669 /* 1670 * We know that we can either collapse the backing object (if 1671 * the parent is the only reference to it) or (perhaps) have 1672 * the parent bypass the object if the parent happens to shadow 1673 * all the resident pages in the entire backing object. 1674 * 1675 * This is ignoring pager-backed pages such as swap pages. 1676 * vm_object_backing_scan fails the shadowing test in this 1677 * case. 1678 */ 1679 if (backing_object->ref_count == 1) { 1680 /* 1681 * If there is exactly one reference to the backing 1682 * object, we can collapse it into the parent. 1683 */ 1684 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1685 1686 #if VM_NRESERVLEVEL > 0 1687 /* 1688 * Break any reservations from backing_object. 1689 */ 1690 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1691 vm_reserv_break_all(backing_object); 1692 #endif 1693 1694 /* 1695 * Move the pager from backing_object to object. 1696 */ 1697 if (backing_object->type == OBJT_SWAP) { 1698 /* 1699 * swap_pager_copy() can sleep, in which case 1700 * the backing_object's and object's locks are 1701 * released and reacquired. 1702 */ 1703 swap_pager_copy( 1704 backing_object, 1705 object, 1706 OFF_TO_IDX(object->backing_object_offset), TRUE); 1707 1708 /* 1709 * Free any cached pages from backing_object. 1710 */ 1711 if (__predict_false(backing_object->cache != NULL)) 1712 vm_page_cache_free(backing_object, 0, 0); 1713 } 1714 /* 1715 * Object now shadows whatever backing_object did. 1716 * Note that the reference to 1717 * backing_object->backing_object moves from within 1718 * backing_object to within object. 1719 */ 1720 LIST_REMOVE(object, shadow_list); 1721 backing_object->shadow_count--; 1722 if (backing_object->backing_object) { 1723 VM_OBJECT_LOCK(backing_object->backing_object); 1724 LIST_REMOVE(backing_object, shadow_list); 1725 LIST_INSERT_HEAD( 1726 &backing_object->backing_object->shadow_head, 1727 object, shadow_list); 1728 /* 1729 * The shadow_count has not changed. 1730 */ 1731 VM_OBJECT_UNLOCK(backing_object->backing_object); 1732 } 1733 object->backing_object = backing_object->backing_object; 1734 object->backing_object_offset += 1735 backing_object->backing_object_offset; 1736 1737 /* 1738 * Discard backing_object. 1739 * 1740 * Since the backing object has no pages, no pager left, 1741 * and no object references within it, all that is 1742 * necessary is to dispose of it. 1743 */ 1744 KASSERT(backing_object->ref_count == 1, ( 1745 "backing_object %p was somehow re-referenced during collapse!", 1746 backing_object)); 1747 VM_OBJECT_UNLOCK(backing_object); 1748 vm_object_destroy(backing_object); 1749 1750 object_collapses++; 1751 } else { 1752 vm_object_t new_backing_object; 1753 1754 /* 1755 * If we do not entirely shadow the backing object, 1756 * there is nothing we can do so we give up. 1757 */ 1758 if (object->resident_page_count != object->size && 1759 vm_object_backing_scan(object, 1760 OBSC_TEST_ALL_SHADOWED) == 0) { 1761 VM_OBJECT_UNLOCK(backing_object); 1762 break; 1763 } 1764 1765 /* 1766 * Make the parent shadow the next object in the 1767 * chain. Deallocating backing_object will not remove 1768 * it, since its reference count is at least 2. 1769 */ 1770 LIST_REMOVE(object, shadow_list); 1771 backing_object->shadow_count--; 1772 1773 new_backing_object = backing_object->backing_object; 1774 if ((object->backing_object = new_backing_object) != NULL) { 1775 VM_OBJECT_LOCK(new_backing_object); 1776 LIST_INSERT_HEAD( 1777 &new_backing_object->shadow_head, 1778 object, 1779 shadow_list 1780 ); 1781 new_backing_object->shadow_count++; 1782 vm_object_reference_locked(new_backing_object); 1783 VM_OBJECT_UNLOCK(new_backing_object); 1784 object->backing_object_offset += 1785 backing_object->backing_object_offset; 1786 } 1787 1788 /* 1789 * Drop the reference count on backing_object. Since 1790 * its ref_count was at least 2, it will not vanish. 1791 */ 1792 backing_object->ref_count--; 1793 VM_OBJECT_UNLOCK(backing_object); 1794 object_bypasses++; 1795 } 1796 1797 /* 1798 * Try again with this object's new backing object. 1799 */ 1800 } 1801 } 1802 1803 /* 1804 * vm_object_page_remove: 1805 * 1806 * For the given object, either frees or invalidates each of the 1807 * specified pages. In general, a page is freed. However, if a page is 1808 * wired for any reason other than the existence of a managed, wired 1809 * mapping, then it may be invalidated but not removed from the object. 1810 * Pages are specified by the given range ["start", "end") and the option 1811 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1812 * extends from "start" to the end of the object. If the option 1813 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1814 * specified range are affected. If the option OBJPR_NOTMAPPED is 1815 * specified, then the pages within the specified range must have no 1816 * mappings. Otherwise, if this option is not specified, any mappings to 1817 * the specified pages are removed before the pages are freed or 1818 * invalidated. 1819 * 1820 * In general, this operation should only be performed on objects that 1821 * contain managed pages. There are, however, two exceptions. First, it 1822 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1823 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1824 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1825 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1826 * 1827 * The object must be locked. 1828 */ 1829 void 1830 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1831 int options) 1832 { 1833 vm_page_t p, next; 1834 int wirings; 1835 1836 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1837 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) || 1838 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1839 ("vm_object_page_remove: illegal options for object %p", object)); 1840 if (object->resident_page_count == 0) 1841 goto skipmemq; 1842 vm_object_pip_add(object, 1); 1843 again: 1844 p = vm_page_find_least(object, start); 1845 1846 /* 1847 * Here, the variable "p" is either (1) the page with the least pindex 1848 * greater than or equal to the parameter "start" or (2) NULL. 1849 */ 1850 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1851 next = TAILQ_NEXT(p, listq); 1852 1853 /* 1854 * If the page is wired for any reason besides the existence 1855 * of managed, wired mappings, then it cannot be freed. For 1856 * example, fictitious pages, which represent device memory, 1857 * are inherently wired and cannot be freed. They can, 1858 * however, be invalidated if the option OBJPR_CLEANONLY is 1859 * not specified. 1860 */ 1861 vm_page_lock(p); 1862 if ((wirings = p->wire_count) != 0 && 1863 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1864 if ((options & OBJPR_NOTMAPPED) == 0) { 1865 pmap_remove_all(p); 1866 /* Account for removal of wired mappings. */ 1867 if (wirings != 0) 1868 p->wire_count -= wirings; 1869 } 1870 if ((options & OBJPR_CLEANONLY) == 0) { 1871 p->valid = 0; 1872 vm_page_undirty(p); 1873 } 1874 vm_page_unlock(p); 1875 continue; 1876 } 1877 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1878 goto again; 1879 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1880 ("vm_object_page_remove: page %p is fictitious", p)); 1881 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1882 if ((options & OBJPR_NOTMAPPED) == 0) 1883 pmap_remove_write(p); 1884 if (p->dirty) { 1885 vm_page_unlock(p); 1886 continue; 1887 } 1888 } 1889 if ((options & OBJPR_NOTMAPPED) == 0) { 1890 pmap_remove_all(p); 1891 /* Account for removal of wired mappings. */ 1892 if (wirings != 0) 1893 p->wire_count -= wirings; 1894 } 1895 vm_page_free(p); 1896 vm_page_unlock(p); 1897 } 1898 vm_object_pip_wakeup(object); 1899 skipmemq: 1900 if (__predict_false(object->cache != NULL)) 1901 vm_page_cache_free(object, start, end); 1902 } 1903 1904 /* 1905 * vm_object_page_cache: 1906 * 1907 * For the given object, attempt to move the specified clean 1908 * pages to the cache queue. If a page is wired for any reason, 1909 * then it will not be changed. Pages are specified by the given 1910 * range ["start", "end"). As a special case, if "end" is zero, 1911 * then the range extends from "start" to the end of the object. 1912 * Any mappings to the specified pages are removed before the 1913 * pages are moved to the cache queue. 1914 * 1915 * This operation should only be performed on objects that 1916 * contain managed pages. 1917 * 1918 * The object must be locked. 1919 */ 1920 void 1921 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1922 { 1923 struct mtx *mtx, *new_mtx; 1924 vm_page_t p, next; 1925 1926 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1927 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG && 1928 object->type != OBJT_PHYS), 1929 ("vm_object_page_cache: illegal object %p", object)); 1930 if (object->resident_page_count == 0) 1931 return; 1932 p = vm_page_find_least(object, start); 1933 1934 /* 1935 * Here, the variable "p" is either (1) the page with the least pindex 1936 * greater than or equal to the parameter "start" or (2) NULL. 1937 */ 1938 mtx = NULL; 1939 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1940 next = TAILQ_NEXT(p, listq); 1941 1942 /* 1943 * Avoid releasing and reacquiring the same page lock. 1944 */ 1945 new_mtx = vm_page_lockptr(p); 1946 if (mtx != new_mtx) { 1947 if (mtx != NULL) 1948 mtx_unlock(mtx); 1949 mtx = new_mtx; 1950 mtx_lock(mtx); 1951 } 1952 vm_page_try_to_cache(p); 1953 } 1954 if (mtx != NULL) 1955 mtx_unlock(mtx); 1956 } 1957 1958 /* 1959 * Populate the specified range of the object with valid pages. Returns 1960 * TRUE if the range is successfully populated and FALSE otherwise. 1961 * 1962 * Note: This function should be optimized to pass a larger array of 1963 * pages to vm_pager_get_pages() before it is applied to a non- 1964 * OBJT_DEVICE object. 1965 * 1966 * The object must be locked. 1967 */ 1968 boolean_t 1969 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1970 { 1971 vm_page_t m, ma[1]; 1972 vm_pindex_t pindex; 1973 int rv; 1974 1975 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1976 for (pindex = start; pindex < end; pindex++) { 1977 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1978 VM_ALLOC_RETRY); 1979 if (m->valid != VM_PAGE_BITS_ALL) { 1980 ma[0] = m; 1981 rv = vm_pager_get_pages(object, ma, 1, 0); 1982 m = vm_page_lookup(object, pindex); 1983 if (m == NULL) 1984 break; 1985 if (rv != VM_PAGER_OK) { 1986 vm_page_lock(m); 1987 vm_page_free(m); 1988 vm_page_unlock(m); 1989 break; 1990 } 1991 } 1992 /* 1993 * Keep "m" busy because a subsequent iteration may unlock 1994 * the object. 1995 */ 1996 } 1997 if (pindex > start) { 1998 m = vm_page_lookup(object, start); 1999 while (m != NULL && m->pindex < pindex) { 2000 vm_page_wakeup(m); 2001 m = TAILQ_NEXT(m, listq); 2002 } 2003 } 2004 return (pindex == end); 2005 } 2006 2007 /* 2008 * Routine: vm_object_coalesce 2009 * Function: Coalesces two objects backing up adjoining 2010 * regions of memory into a single object. 2011 * 2012 * returns TRUE if objects were combined. 2013 * 2014 * NOTE: Only works at the moment if the second object is NULL - 2015 * if it's not, which object do we lock first? 2016 * 2017 * Parameters: 2018 * prev_object First object to coalesce 2019 * prev_offset Offset into prev_object 2020 * prev_size Size of reference to prev_object 2021 * next_size Size of reference to the second object 2022 * reserved Indicator that extension region has 2023 * swap accounted for 2024 * 2025 * Conditions: 2026 * The object must *not* be locked. 2027 */ 2028 boolean_t 2029 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2030 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2031 { 2032 vm_pindex_t next_pindex; 2033 2034 if (prev_object == NULL) 2035 return (TRUE); 2036 VM_OBJECT_LOCK(prev_object); 2037 if (prev_object->type != OBJT_DEFAULT && 2038 prev_object->type != OBJT_SWAP) { 2039 VM_OBJECT_UNLOCK(prev_object); 2040 return (FALSE); 2041 } 2042 2043 /* 2044 * Try to collapse the object first 2045 */ 2046 vm_object_collapse(prev_object); 2047 2048 /* 2049 * Can't coalesce if: . more than one reference . paged out . shadows 2050 * another object . has a copy elsewhere (any of which mean that the 2051 * pages not mapped to prev_entry may be in use anyway) 2052 */ 2053 if (prev_object->backing_object != NULL) { 2054 VM_OBJECT_UNLOCK(prev_object); 2055 return (FALSE); 2056 } 2057 2058 prev_size >>= PAGE_SHIFT; 2059 next_size >>= PAGE_SHIFT; 2060 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2061 2062 if ((prev_object->ref_count > 1) && 2063 (prev_object->size != next_pindex)) { 2064 VM_OBJECT_UNLOCK(prev_object); 2065 return (FALSE); 2066 } 2067 2068 /* 2069 * Account for the charge. 2070 */ 2071 if (prev_object->cred != NULL) { 2072 2073 /* 2074 * If prev_object was charged, then this mapping, 2075 * althought not charged now, may become writable 2076 * later. Non-NULL cred in the object would prevent 2077 * swap reservation during enabling of the write 2078 * access, so reserve swap now. Failed reservation 2079 * cause allocation of the separate object for the map 2080 * entry, and swap reservation for this entry is 2081 * managed in appropriate time. 2082 */ 2083 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2084 prev_object->cred)) { 2085 return (FALSE); 2086 } 2087 prev_object->charge += ptoa(next_size); 2088 } 2089 2090 /* 2091 * Remove any pages that may still be in the object from a previous 2092 * deallocation. 2093 */ 2094 if (next_pindex < prev_object->size) { 2095 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2096 next_size, 0); 2097 if (prev_object->type == OBJT_SWAP) 2098 swap_pager_freespace(prev_object, 2099 next_pindex, next_size); 2100 #if 0 2101 if (prev_object->cred != NULL) { 2102 KASSERT(prev_object->charge >= 2103 ptoa(prev_object->size - next_pindex), 2104 ("object %p overcharged 1 %jx %jx", prev_object, 2105 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2106 prev_object->charge -= ptoa(prev_object->size - 2107 next_pindex); 2108 } 2109 #endif 2110 } 2111 2112 /* 2113 * Extend the object if necessary. 2114 */ 2115 if (next_pindex + next_size > prev_object->size) 2116 prev_object->size = next_pindex + next_size; 2117 2118 VM_OBJECT_UNLOCK(prev_object); 2119 return (TRUE); 2120 } 2121 2122 void 2123 vm_object_set_writeable_dirty(vm_object_t object) 2124 { 2125 2126 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2127 if (object->type != OBJT_VNODE) 2128 return; 2129 object->generation++; 2130 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2131 return; 2132 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2133 } 2134 2135 #include "opt_ddb.h" 2136 #ifdef DDB 2137 #include <sys/kernel.h> 2138 2139 #include <sys/cons.h> 2140 2141 #include <ddb/ddb.h> 2142 2143 static int 2144 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2145 { 2146 vm_map_t tmpm; 2147 vm_map_entry_t tmpe; 2148 vm_object_t obj; 2149 int entcount; 2150 2151 if (map == 0) 2152 return 0; 2153 2154 if (entry == 0) { 2155 tmpe = map->header.next; 2156 entcount = map->nentries; 2157 while (entcount-- && (tmpe != &map->header)) { 2158 if (_vm_object_in_map(map, object, tmpe)) { 2159 return 1; 2160 } 2161 tmpe = tmpe->next; 2162 } 2163 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2164 tmpm = entry->object.sub_map; 2165 tmpe = tmpm->header.next; 2166 entcount = tmpm->nentries; 2167 while (entcount-- && tmpe != &tmpm->header) { 2168 if (_vm_object_in_map(tmpm, object, tmpe)) { 2169 return 1; 2170 } 2171 tmpe = tmpe->next; 2172 } 2173 } else if ((obj = entry->object.vm_object) != NULL) { 2174 for (; obj; obj = obj->backing_object) 2175 if (obj == object) { 2176 return 1; 2177 } 2178 } 2179 return 0; 2180 } 2181 2182 static int 2183 vm_object_in_map(vm_object_t object) 2184 { 2185 struct proc *p; 2186 2187 /* sx_slock(&allproc_lock); */ 2188 FOREACH_PROC_IN_SYSTEM(p) { 2189 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2190 continue; 2191 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2192 /* sx_sunlock(&allproc_lock); */ 2193 return 1; 2194 } 2195 } 2196 /* sx_sunlock(&allproc_lock); */ 2197 if (_vm_object_in_map(kernel_map, object, 0)) 2198 return 1; 2199 if (_vm_object_in_map(kmem_map, object, 0)) 2200 return 1; 2201 if (_vm_object_in_map(pager_map, object, 0)) 2202 return 1; 2203 if (_vm_object_in_map(buffer_map, object, 0)) 2204 return 1; 2205 return 0; 2206 } 2207 2208 DB_SHOW_COMMAND(vmochk, vm_object_check) 2209 { 2210 vm_object_t object; 2211 2212 /* 2213 * make sure that internal objs are in a map somewhere 2214 * and none have zero ref counts. 2215 */ 2216 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2217 if (object->handle == NULL && 2218 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2219 if (object->ref_count == 0) { 2220 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2221 (long)object->size); 2222 } 2223 if (!vm_object_in_map(object)) { 2224 db_printf( 2225 "vmochk: internal obj is not in a map: " 2226 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2227 object->ref_count, (u_long)object->size, 2228 (u_long)object->size, 2229 (void *)object->backing_object); 2230 } 2231 } 2232 } 2233 } 2234 2235 /* 2236 * vm_object_print: [ debug ] 2237 */ 2238 DB_SHOW_COMMAND(object, vm_object_print_static) 2239 { 2240 /* XXX convert args. */ 2241 vm_object_t object = (vm_object_t)addr; 2242 boolean_t full = have_addr; 2243 2244 vm_page_t p; 2245 2246 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2247 #define count was_count 2248 2249 int count; 2250 2251 if (object == NULL) 2252 return; 2253 2254 db_iprintf( 2255 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2256 object, (int)object->type, (uintmax_t)object->size, 2257 object->resident_page_count, object->ref_count, object->flags, 2258 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2259 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2260 object->shadow_count, 2261 object->backing_object ? object->backing_object->ref_count : 0, 2262 object->backing_object, (uintmax_t)object->backing_object_offset); 2263 2264 if (!full) 2265 return; 2266 2267 db_indent += 2; 2268 count = 0; 2269 TAILQ_FOREACH(p, &object->memq, listq) { 2270 if (count == 0) 2271 db_iprintf("memory:="); 2272 else if (count == 6) { 2273 db_printf("\n"); 2274 db_iprintf(" ..."); 2275 count = 0; 2276 } else 2277 db_printf(","); 2278 count++; 2279 2280 db_printf("(off=0x%jx,page=0x%jx)", 2281 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2282 } 2283 if (count != 0) 2284 db_printf("\n"); 2285 db_indent -= 2; 2286 } 2287 2288 /* XXX. */ 2289 #undef count 2290 2291 /* XXX need this non-static entry for calling from vm_map_print. */ 2292 void 2293 vm_object_print( 2294 /* db_expr_t */ long addr, 2295 boolean_t have_addr, 2296 /* db_expr_t */ long count, 2297 char *modif) 2298 { 2299 vm_object_print_static(addr, have_addr, count, modif); 2300 } 2301 2302 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2303 { 2304 vm_object_t object; 2305 vm_pindex_t fidx; 2306 vm_paddr_t pa; 2307 vm_page_t m, prev_m; 2308 int rcount, nl, c; 2309 2310 nl = 0; 2311 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2312 db_printf("new object: %p\n", (void *)object); 2313 if (nl > 18) { 2314 c = cngetc(); 2315 if (c != ' ') 2316 return; 2317 nl = 0; 2318 } 2319 nl++; 2320 rcount = 0; 2321 fidx = 0; 2322 pa = -1; 2323 TAILQ_FOREACH(m, &object->memq, listq) { 2324 if (m->pindex > 128) 2325 break; 2326 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2327 prev_m->pindex + 1 != m->pindex) { 2328 if (rcount) { 2329 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2330 (long)fidx, rcount, (long)pa); 2331 if (nl > 18) { 2332 c = cngetc(); 2333 if (c != ' ') 2334 return; 2335 nl = 0; 2336 } 2337 nl++; 2338 rcount = 0; 2339 } 2340 } 2341 if (rcount && 2342 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2343 ++rcount; 2344 continue; 2345 } 2346 if (rcount) { 2347 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2348 (long)fidx, rcount, (long)pa); 2349 if (nl > 18) { 2350 c = cngetc(); 2351 if (c != ' ') 2352 return; 2353 nl = 0; 2354 } 2355 nl++; 2356 } 2357 fidx = m->pindex; 2358 pa = VM_PAGE_TO_PHYS(m); 2359 rcount = 1; 2360 } 2361 if (rcount) { 2362 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2363 (long)fidx, rcount, (long)pa); 2364 if (nl > 18) { 2365 c = cngetc(); 2366 if (c != ' ') 2367 return; 2368 nl = 0; 2369 } 2370 nl++; 2371 } 2372 } 2373 } 2374 #endif /* DDB */ 2375