1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_object.c,v 1.156 1999/05/30 01:12:19 alc Exp $ 65 */ 66 67 /* 68 * Virtual memory object module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> /* for curproc, pageproc */ 74 #include <sys/vnode.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/swap_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_zone.h> 92 93 static void vm_object_qcollapse __P((vm_object_t object)); 94 95 /* 96 * Virtual memory objects maintain the actual data 97 * associated with allocated virtual memory. A given 98 * page of memory exists within exactly one object. 99 * 100 * An object is only deallocated when all "references" 101 * are given up. Only one "reference" to a given 102 * region of an object should be writeable. 103 * 104 * Associated with each object is a list of all resident 105 * memory pages belonging to that object; this list is 106 * maintained by the "vm_page" module, and locked by the object's 107 * lock. 108 * 109 * Each object also records a "pager" routine which is 110 * used to retrieve (and store) pages to the proper backing 111 * storage. In addition, objects may be backed by other 112 * objects from which they were virtual-copied. 113 * 114 * The only items within the object structure which are 115 * modified after time of creation are: 116 * reference count locked by object's lock 117 * pager routine locked by object's lock 118 * 119 */ 120 121 struct object_q vm_object_list; 122 #ifndef NULL_SIMPLELOCKS 123 static struct simplelock vm_object_list_lock; 124 #endif 125 static long vm_object_count; /* count of all objects */ 126 vm_object_t kernel_object; 127 vm_object_t kmem_object; 128 static struct vm_object kernel_object_store; 129 static struct vm_object kmem_object_store; 130 extern int vm_pageout_page_count; 131 132 static long object_collapses; 133 static long object_bypasses; 134 static int next_index; 135 static vm_zone_t obj_zone; 136 static struct vm_zone obj_zone_store; 137 static int object_hash_rand; 138 #define VM_OBJECTS_INIT 256 139 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 140 141 void 142 _vm_object_allocate(type, size, object) 143 objtype_t type; 144 vm_size_t size; 145 vm_object_t object; 146 { 147 int incr; 148 TAILQ_INIT(&object->memq); 149 TAILQ_INIT(&object->shadow_head); 150 151 object->type = type; 152 object->size = size; 153 object->ref_count = 1; 154 object->flags = 0; 155 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 156 vm_object_set_flag(object, OBJ_ONEMAPPING); 157 object->behavior = OBJ_NORMAL; 158 object->paging_in_progress = 0; 159 object->resident_page_count = 0; 160 object->shadow_count = 0; 161 object->pg_color = next_index; 162 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 163 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 164 else 165 incr = size; 166 next_index = (next_index + incr) & PQ_L2_MASK; 167 object->handle = NULL; 168 object->backing_object = NULL; 169 object->backing_object_offset = (vm_ooffset_t) 0; 170 /* 171 * Try to generate a number that will spread objects out in the 172 * hash table. We 'wipe' new objects across the hash in 128 page 173 * increments plus 1 more to offset it a little more by the time 174 * it wraps around. 175 */ 176 object->hash_rand = object_hash_rand - 129; 177 178 object->last_read = 0; 179 object->generation++; 180 181 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 182 vm_object_count++; 183 object_hash_rand = object->hash_rand; 184 } 185 186 /* 187 * vm_object_init: 188 * 189 * Initialize the VM objects module. 190 */ 191 void 192 vm_object_init() 193 { 194 TAILQ_INIT(&vm_object_list); 195 simple_lock_init(&vm_object_list_lock); 196 vm_object_count = 0; 197 198 kernel_object = &kernel_object_store; 199 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 200 kernel_object); 201 202 kmem_object = &kmem_object_store; 203 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 204 kmem_object); 205 206 obj_zone = &obj_zone_store; 207 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 208 vm_objects_init, VM_OBJECTS_INIT); 209 } 210 211 void 212 vm_object_init2() { 213 zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1); 214 } 215 216 /* 217 * vm_object_allocate: 218 * 219 * Returns a new object with the given size. 220 */ 221 222 vm_object_t 223 vm_object_allocate(type, size) 224 objtype_t type; 225 vm_size_t size; 226 { 227 vm_object_t result; 228 229 result = (vm_object_t) zalloc(obj_zone); 230 231 _vm_object_allocate(type, size, result); 232 233 return (result); 234 } 235 236 237 /* 238 * vm_object_reference: 239 * 240 * Gets another reference to the given object. 241 */ 242 void 243 vm_object_reference(object) 244 vm_object_t object; 245 { 246 if (object == NULL) 247 return; 248 249 KASSERT(!(object->flags & OBJ_DEAD), 250 ("vm_object_reference: attempting to reference dead obj")); 251 252 object->ref_count++; 253 if (object->type == OBJT_VNODE) { 254 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) { 255 #if !defined(MAX_PERF) 256 printf("vm_object_reference: delay in getting object\n"); 257 #endif 258 } 259 } 260 } 261 262 void 263 vm_object_vndeallocate(object) 264 vm_object_t object; 265 { 266 struct vnode *vp = (struct vnode *) object->handle; 267 268 KASSERT(object->type == OBJT_VNODE, 269 ("vm_object_vndeallocate: not a vnode object")); 270 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 271 #ifdef INVARIANTS 272 if (object->ref_count == 0) { 273 vprint("vm_object_vndeallocate", vp); 274 panic("vm_object_vndeallocate: bad object reference count"); 275 } 276 #endif 277 278 object->ref_count--; 279 if (object->ref_count == 0) { 280 vp->v_flag &= ~VTEXT; 281 vm_object_clear_flag(object, OBJ_OPT); 282 } 283 vrele(vp); 284 } 285 286 /* 287 * vm_object_deallocate: 288 * 289 * Release a reference to the specified object, 290 * gained either through a vm_object_allocate 291 * or a vm_object_reference call. When all references 292 * are gone, storage associated with this object 293 * may be relinquished. 294 * 295 * No object may be locked. 296 */ 297 void 298 vm_object_deallocate(object) 299 vm_object_t object; 300 { 301 vm_object_t temp; 302 303 while (object != NULL) { 304 305 if (object->type == OBJT_VNODE) { 306 vm_object_vndeallocate(object); 307 return; 308 } 309 310 if (object->ref_count == 0) { 311 panic("vm_object_deallocate: object deallocated too many times: %d", object->type); 312 } else if (object->ref_count > 2) { 313 object->ref_count--; 314 return; 315 } 316 317 /* 318 * Here on ref_count of one or two, which are special cases for 319 * objects. 320 */ 321 if ((object->ref_count == 2) && (object->shadow_count == 0)) { 322 vm_object_set_flag(object, OBJ_ONEMAPPING); 323 object->ref_count--; 324 return; 325 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) { 326 object->ref_count--; 327 if ((object->handle == NULL) && 328 (object->type == OBJT_DEFAULT || 329 object->type == OBJT_SWAP)) { 330 vm_object_t robject; 331 332 robject = TAILQ_FIRST(&object->shadow_head); 333 KASSERT(robject != NULL, 334 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 335 object->ref_count, 336 object->shadow_count)); 337 if ((robject->handle == NULL) && 338 (robject->type == OBJT_DEFAULT || 339 robject->type == OBJT_SWAP)) { 340 341 robject->ref_count++; 342 343 while ( 344 robject->paging_in_progress || 345 object->paging_in_progress 346 ) { 347 vm_object_pip_sleep(robject, "objde1"); 348 vm_object_pip_sleep(object, "objde2"); 349 } 350 351 if (robject->ref_count == 1) { 352 robject->ref_count--; 353 object = robject; 354 goto doterm; 355 } 356 357 object = robject; 358 vm_object_collapse(object); 359 continue; 360 } 361 } 362 363 return; 364 365 } else { 366 object->ref_count--; 367 if (object->ref_count != 0) 368 return; 369 } 370 371 doterm: 372 373 temp = object->backing_object; 374 if (temp) { 375 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list); 376 temp->shadow_count--; 377 if (temp->ref_count == 0) 378 vm_object_clear_flag(temp, OBJ_OPT); 379 temp->generation++; 380 object->backing_object = NULL; 381 } 382 vm_object_terminate(object); 383 /* unlocks and deallocates object */ 384 object = temp; 385 } 386 } 387 388 /* 389 * vm_object_terminate actually destroys the specified object, freeing 390 * up all previously used resources. 391 * 392 * The object must be locked. 393 * This routine may block. 394 */ 395 void 396 vm_object_terminate(object) 397 vm_object_t object; 398 { 399 vm_page_t p; 400 int s; 401 402 /* 403 * Make sure no one uses us. 404 */ 405 vm_object_set_flag(object, OBJ_DEAD); 406 407 /* 408 * wait for the pageout daemon to be done with the object 409 */ 410 vm_object_pip_wait(object, "objtrm"); 411 412 KASSERT(!object->paging_in_progress, 413 ("vm_object_terminate: pageout in progress")); 414 415 /* 416 * Clean and free the pages, as appropriate. All references to the 417 * object are gone, so we don't need to lock it. 418 */ 419 if (object->type == OBJT_VNODE) { 420 struct vnode *vp; 421 422 /* 423 * Freeze optimized copies. 424 */ 425 vm_freeze_copyopts(object, 0, object->size); 426 427 /* 428 * Clean pages and flush buffers. 429 */ 430 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 431 432 vp = (struct vnode *) object->handle; 433 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0); 434 } 435 436 if (object->ref_count != 0) 437 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count); 438 439 /* 440 * Now free any remaining pages. For internal objects, this also 441 * removes them from paging queues. Don't free wired pages, just 442 * remove them from the object. 443 */ 444 s = splvm(); 445 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 446 #if !defined(MAX_PERF) 447 if (p->busy || (p->flags & PG_BUSY)) 448 panic("vm_object_terminate: freeing busy page %p\n", p); 449 #endif 450 if (p->wire_count == 0) { 451 vm_page_busy(p); 452 vm_page_free(p); 453 cnt.v_pfree++; 454 } else { 455 vm_page_busy(p); 456 vm_page_remove(p); 457 } 458 } 459 splx(s); 460 461 /* 462 * Let the pager know object is dead. 463 */ 464 vm_pager_deallocate(object); 465 466 /* 467 * Remove the object from the global object list. 468 */ 469 simple_lock(&vm_object_list_lock); 470 TAILQ_REMOVE(&vm_object_list, object, object_list); 471 simple_unlock(&vm_object_list_lock); 472 473 wakeup(object); 474 475 /* 476 * Free the space for the object. 477 */ 478 zfree(obj_zone, object); 479 } 480 481 /* 482 * vm_object_page_clean 483 * 484 * Clean all dirty pages in the specified range of object. 485 * Leaves page on whatever queue it is currently on. 486 * 487 * Odd semantics: if start == end, we clean everything. 488 * 489 * The object must be locked. 490 */ 491 492 void 493 vm_object_page_clean(object, start, end, flags) 494 vm_object_t object; 495 vm_pindex_t start; 496 vm_pindex_t end; 497 int flags; 498 { 499 vm_page_t p, np, tp; 500 vm_offset_t tstart, tend; 501 vm_pindex_t pi; 502 int s; 503 struct vnode *vp; 504 int runlen; 505 int maxf; 506 int chkb; 507 int maxb; 508 int i; 509 int pagerflags; 510 vm_page_t maf[vm_pageout_page_count]; 511 vm_page_t mab[vm_pageout_page_count]; 512 vm_page_t ma[vm_pageout_page_count]; 513 int curgeneration; 514 515 if (object->type != OBJT_VNODE || 516 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 517 return; 518 519 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0; 520 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 521 522 vp = object->handle; 523 524 vm_object_set_flag(object, OBJ_CLEANING); 525 526 tstart = start; 527 if (end == 0) { 528 tend = object->size; 529 } else { 530 tend = end; 531 } 532 533 for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) { 534 vm_page_flag_set(p, PG_CLEANCHK); 535 vm_page_protect(p, VM_PROT_READ); 536 } 537 538 if ((tstart == 0) && (tend == object->size)) { 539 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 540 } 541 542 rescan: 543 curgeneration = object->generation; 544 545 for(p = TAILQ_FIRST(&object->memq); p; p = np) { 546 np = TAILQ_NEXT(p, listq); 547 548 pi = p->pindex; 549 if (((p->flags & PG_CLEANCHK) == 0) || 550 (pi < tstart) || (pi >= tend) || 551 (p->valid == 0) || 552 ((p->queue - p->pc) == PQ_CACHE)) { 553 vm_page_flag_clear(p, PG_CLEANCHK); 554 continue; 555 } 556 557 vm_page_test_dirty(p); 558 if ((p->dirty & p->valid) == 0) { 559 vm_page_flag_clear(p, PG_CLEANCHK); 560 continue; 561 } 562 563 s = splvm(); 564 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) { 565 if (object->generation != curgeneration) { 566 splx(s); 567 goto rescan; 568 } 569 } 570 571 maxf = 0; 572 for(i=1;i<vm_pageout_page_count;i++) { 573 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 574 if ((tp->flags & PG_BUSY) || 575 (tp->flags & PG_CLEANCHK) == 0 || 576 (tp->busy != 0)) 577 break; 578 if((tp->queue - tp->pc) == PQ_CACHE) { 579 vm_page_flag_clear(tp, PG_CLEANCHK); 580 break; 581 } 582 vm_page_test_dirty(tp); 583 if ((tp->dirty & tp->valid) == 0) { 584 vm_page_flag_clear(tp, PG_CLEANCHK); 585 break; 586 } 587 maf[ i - 1 ] = tp; 588 maxf++; 589 continue; 590 } 591 break; 592 } 593 594 maxb = 0; 595 chkb = vm_pageout_page_count - maxf; 596 if (chkb) { 597 for(i = 1; i < chkb;i++) { 598 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 599 if ((tp->flags & PG_BUSY) || 600 (tp->flags & PG_CLEANCHK) == 0 || 601 (tp->busy != 0)) 602 break; 603 if((tp->queue - tp->pc) == PQ_CACHE) { 604 vm_page_flag_clear(tp, PG_CLEANCHK); 605 break; 606 } 607 vm_page_test_dirty(tp); 608 if ((tp->dirty & tp->valid) == 0) { 609 vm_page_flag_clear(tp, PG_CLEANCHK); 610 break; 611 } 612 mab[ i - 1 ] = tp; 613 maxb++; 614 continue; 615 } 616 break; 617 } 618 } 619 620 for(i=0;i<maxb;i++) { 621 int index = (maxb - i) - 1; 622 ma[index] = mab[i]; 623 vm_page_flag_clear(ma[index], PG_CLEANCHK); 624 } 625 vm_page_flag_clear(p, PG_CLEANCHK); 626 ma[maxb] = p; 627 for(i=0;i<maxf;i++) { 628 int index = (maxb + i) + 1; 629 ma[index] = maf[i]; 630 vm_page_flag_clear(ma[index], PG_CLEANCHK); 631 } 632 runlen = maxb + maxf + 1; 633 634 splx(s); 635 vm_pageout_flush(ma, runlen, pagerflags); 636 for (i = 0; i<runlen; i++) { 637 if (ma[i]->valid & ma[i]->dirty) { 638 vm_page_protect(ma[i], VM_PROT_READ); 639 vm_page_flag_set(ma[i], PG_CLEANCHK); 640 } 641 } 642 if (object->generation != curgeneration) 643 goto rescan; 644 } 645 646 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 647 648 vm_object_clear_flag(object, OBJ_CLEANING); 649 return; 650 } 651 652 #ifdef not_used 653 /* XXX I cannot tell if this should be an exported symbol */ 654 /* 655 * vm_object_deactivate_pages 656 * 657 * Deactivate all pages in the specified object. (Keep its pages 658 * in memory even though it is no longer referenced.) 659 * 660 * The object must be locked. 661 */ 662 static void 663 vm_object_deactivate_pages(object) 664 vm_object_t object; 665 { 666 vm_page_t p, next; 667 668 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 669 next = TAILQ_NEXT(p, listq); 670 vm_page_deactivate(p); 671 } 672 } 673 #endif 674 675 /* 676 * Same as vm_object_pmap_copy, except range checking really 677 * works, and is meant for small sections of an object. 678 * 679 * This code protects resident pages by making them read-only 680 * and is typically called on a fork or split when a page 681 * is converted to copy-on-write. 682 * 683 * NOTE: If the page is already at VM_PROT_NONE, calling 684 * vm_page_protect will have no effect. 685 */ 686 687 void 688 vm_object_pmap_copy_1(object, start, end) 689 vm_object_t object; 690 vm_pindex_t start; 691 vm_pindex_t end; 692 { 693 vm_pindex_t idx; 694 vm_page_t p; 695 696 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 697 return; 698 699 for (idx = start; idx < end; idx++) { 700 p = vm_page_lookup(object, idx); 701 if (p == NULL) 702 continue; 703 vm_page_protect(p, VM_PROT_READ); 704 } 705 } 706 707 /* 708 * vm_object_pmap_remove: 709 * 710 * Removes all physical pages in the specified 711 * object range from all physical maps. 712 * 713 * The object must *not* be locked. 714 */ 715 void 716 vm_object_pmap_remove(object, start, end) 717 vm_object_t object; 718 vm_pindex_t start; 719 vm_pindex_t end; 720 { 721 vm_page_t p; 722 723 if (object == NULL) 724 return; 725 for (p = TAILQ_FIRST(&object->memq); 726 p != NULL; 727 p = TAILQ_NEXT(p, listq)) { 728 if (p->pindex >= start && p->pindex < end) 729 vm_page_protect(p, VM_PROT_NONE); 730 } 731 if ((start == 0) && (object->size == end)) 732 vm_object_clear_flag(object, OBJ_WRITEABLE); 733 } 734 735 /* 736 * vm_object_madvise: 737 * 738 * Implements the madvise function at the object/page level. 739 * 740 * Currently, madvise() functions are limited to the default and 741 * swap object types only, and also limited to only the unshared portions 742 * of a process's address space. MADV_FREE, certainly, could never be 743 * run on anything else. The others are more flexible and the code could 744 * be adjusted in the future to handle expanded cases for them. 745 */ 746 void 747 vm_object_madvise(object, pindex, count, advise) 748 vm_object_t object; 749 vm_pindex_t pindex; 750 int count; 751 int advise; 752 { 753 vm_pindex_t end, tpindex; 754 vm_object_t tobject; 755 vm_page_t m; 756 757 if (object == NULL) 758 return; 759 760 end = pindex + count; 761 762 /* 763 * Locate and adjust resident pages 764 */ 765 766 for (; pindex < end; pindex += 1) { 767 relookup: 768 tobject = object; 769 tpindex = pindex; 770 shadowlookup: 771 772 if (tobject->type != OBJT_DEFAULT && 773 tobject->type != OBJT_SWAP 774 ) { 775 continue; 776 } 777 778 if ((tobject->flags & OBJ_ONEMAPPING) == 0) 779 continue; 780 781 m = vm_page_lookup(tobject, tpindex); 782 783 if (m == NULL) { 784 /* 785 * There may be swap even if there is no backing page 786 */ 787 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 788 swap_pager_freespace(tobject, tpindex, 1); 789 790 /* 791 * next object 792 */ 793 tobject = tobject->backing_object; 794 if (tobject == NULL) 795 continue; 796 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 797 goto shadowlookup; 798 } 799 800 /* 801 * If the page is busy or not in a normal active state, 802 * we skip it. Things can break if we mess with pages 803 * in any of the below states. 804 */ 805 if ( 806 m->hold_count || 807 m->wire_count || 808 m->valid != VM_PAGE_BITS_ALL 809 ) { 810 continue; 811 } 812 813 if (vm_page_sleep_busy(m, TRUE, "madvpo")) 814 goto relookup; 815 816 if (advise == MADV_WILLNEED) { 817 vm_page_activate(m); 818 } else if (advise == MADV_DONTNEED) { 819 vm_page_deactivate(m); 820 } else if (advise == MADV_FREE) { 821 /* 822 * Mark the page clean. This will allow the page 823 * to be freed up by the system. However, such pages 824 * are often reused quickly by malloc()/free() 825 * so we do not do anything that would cause 826 * a page fault if we can help it. 827 * 828 * Specifically, we do not try to actually free 829 * the page now nor do we try to put it in the 830 * cache (which would cause a page fault on reuse). 831 * 832 * But we do make the page is freeable as we 833 * can without actually taking the step of unmapping 834 * it. 835 */ 836 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 837 m->dirty = 0; 838 m->act_count = 0; 839 vm_page_deactivate(m); 840 if (tobject->type == OBJT_SWAP) 841 swap_pager_freespace(tobject, tpindex, 1); 842 } 843 } 844 } 845 846 /* 847 * vm_object_shadow: 848 * 849 * Create a new object which is backed by the 850 * specified existing object range. The source 851 * object reference is deallocated. 852 * 853 * The new object and offset into that object 854 * are returned in the source parameters. 855 */ 856 857 void 858 vm_object_shadow(object, offset, length) 859 vm_object_t *object; /* IN/OUT */ 860 vm_ooffset_t *offset; /* IN/OUT */ 861 vm_size_t length; 862 { 863 vm_object_t source; 864 vm_object_t result; 865 866 source = *object; 867 868 /* 869 * Don't create the new object if the old object isn't shared. 870 */ 871 872 if (source != NULL && 873 source->ref_count == 1 && 874 source->handle == NULL && 875 (source->type == OBJT_DEFAULT || 876 source->type == OBJT_SWAP)) 877 return; 878 879 /* 880 * Allocate a new object with the given length 881 */ 882 883 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 884 panic("vm_object_shadow: no object for shadowing"); 885 886 /* 887 * The new object shadows the source object, adding a reference to it. 888 * Our caller changes his reference to point to the new object, 889 * removing a reference to the source object. Net result: no change 890 * of reference count. 891 * 892 * Try to optimize the result object's page color when shadowing 893 * in order to maintain page coloring consistancy in the combined 894 * shadowed object. 895 */ 896 result->backing_object = source; 897 if (source) { 898 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list); 899 vm_object_clear_flag(source, OBJ_ONEMAPPING); 900 source->shadow_count++; 901 source->generation++; 902 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK; 903 } 904 905 /* 906 * Store the offset into the source object, and fix up the offset into 907 * the new object. 908 */ 909 910 result->backing_object_offset = *offset; 911 912 /* 913 * Return the new things 914 */ 915 916 *offset = 0; 917 *object = result; 918 } 919 920 #define OBSC_TEST_ALL_SHADOWED 0x0001 921 #define OBSC_COLLAPSE_NOWAIT 0x0002 922 #define OBSC_COLLAPSE_WAIT 0x0004 923 924 static __inline int 925 vm_object_backing_scan(vm_object_t object, int op) 926 { 927 int s; 928 int r = 1; 929 vm_page_t p; 930 vm_object_t backing_object; 931 vm_pindex_t backing_offset_index; 932 933 s = splvm(); 934 935 backing_object = object->backing_object; 936 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 937 938 /* 939 * Initial conditions 940 */ 941 942 if (op & OBSC_TEST_ALL_SHADOWED) { 943 /* 944 * We do not want to have to test for the existance of 945 * swap pages in the backing object. XXX but with the 946 * new swapper this would be pretty easy to do. 947 * 948 * XXX what about anonymous MAP_SHARED memory that hasn't 949 * been ZFOD faulted yet? If we do not test for this, the 950 * shadow test may succeed! XXX 951 */ 952 if (backing_object->type != OBJT_DEFAULT) { 953 splx(s); 954 return(0); 955 } 956 } 957 if (op & OBSC_COLLAPSE_WAIT) { 958 vm_object_set_flag(backing_object, OBJ_DEAD); 959 } 960 961 /* 962 * Our scan 963 */ 964 965 p = TAILQ_FIRST(&backing_object->memq); 966 while (p) { 967 vm_page_t next = TAILQ_NEXT(p, listq); 968 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 969 970 if (op & OBSC_TEST_ALL_SHADOWED) { 971 vm_page_t pp; 972 973 /* 974 * Ignore pages outside the parent object's range 975 * and outside the parent object's mapping of the 976 * backing object. 977 * 978 * note that we do not busy the backing object's 979 * page. 980 */ 981 982 if ( 983 p->pindex < backing_offset_index || 984 new_pindex >= object->size 985 ) { 986 p = next; 987 continue; 988 } 989 990 /* 991 * See if the parent has the page or if the parent's 992 * object pager has the page. If the parent has the 993 * page but the page is not valid, the parent's 994 * object pager must have the page. 995 * 996 * If this fails, the parent does not completely shadow 997 * the object and we might as well give up now. 998 */ 999 1000 pp = vm_page_lookup(object, new_pindex); 1001 if ( 1002 (pp == NULL || pp->valid == 0) && 1003 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1004 ) { 1005 r = 0; 1006 break; 1007 } 1008 } 1009 1010 /* 1011 * Check for busy page 1012 */ 1013 1014 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1015 vm_page_t pp; 1016 1017 if (op & OBSC_COLLAPSE_NOWAIT) { 1018 if ( 1019 (p->flags & PG_BUSY) || 1020 !p->valid || 1021 p->hold_count || 1022 p->wire_count || 1023 p->busy 1024 ) { 1025 p = next; 1026 continue; 1027 } 1028 } else if (op & OBSC_COLLAPSE_WAIT) { 1029 if (vm_page_sleep_busy(p, TRUE, "vmocol")) { 1030 /* 1031 * If we slept, anything could have 1032 * happened. Since the object is 1033 * marked dead, the backing offset 1034 * should not have changed so we 1035 * just restart our scan. 1036 */ 1037 p = TAILQ_FIRST(&backing_object->memq); 1038 continue; 1039 } 1040 } 1041 1042 /* 1043 * Busy the page 1044 */ 1045 vm_page_busy(p); 1046 1047 KASSERT( 1048 p->object == backing_object, 1049 ("vm_object_qcollapse(): object mismatch") 1050 ); 1051 1052 /* 1053 * Destroy any associated swap 1054 */ 1055 if (backing_object->type == OBJT_SWAP) { 1056 swap_pager_freespace( 1057 backing_object, 1058 p->pindex, 1059 1 1060 ); 1061 } 1062 1063 if ( 1064 p->pindex < backing_offset_index || 1065 new_pindex >= object->size 1066 ) { 1067 /* 1068 * Page is out of the parent object's range, we 1069 * can simply destroy it. 1070 */ 1071 vm_page_protect(p, VM_PROT_NONE); 1072 vm_page_free(p); 1073 p = next; 1074 continue; 1075 } 1076 1077 pp = vm_page_lookup(object, new_pindex); 1078 if ( 1079 pp != NULL || 1080 vm_pager_has_page(object, new_pindex, NULL, NULL) 1081 ) { 1082 /* 1083 * page already exists in parent OR swap exists 1084 * for this location in the parent. Destroy 1085 * the original page from the backing object. 1086 * 1087 * Leave the parent's page alone 1088 */ 1089 vm_page_protect(p, VM_PROT_NONE); 1090 vm_page_free(p); 1091 p = next; 1092 continue; 1093 } 1094 1095 /* 1096 * Page does not exist in parent, rename the 1097 * page from the backing object to the main object. 1098 * 1099 * If the page was mapped to a process, it can remain 1100 * mapped through the rename. 1101 */ 1102 if ((p->queue - p->pc) == PQ_CACHE) 1103 vm_page_deactivate(p); 1104 1105 vm_page_rename(p, object, new_pindex); 1106 /* page automatically made dirty by rename */ 1107 } 1108 p = next; 1109 } 1110 splx(s); 1111 return(r); 1112 } 1113 1114 1115 /* 1116 * this version of collapse allows the operation to occur earlier and 1117 * when paging_in_progress is true for an object... This is not a complete 1118 * operation, but should plug 99.9% of the rest of the leaks. 1119 */ 1120 static void 1121 vm_object_qcollapse(object) 1122 vm_object_t object; 1123 { 1124 vm_object_t backing_object = object->backing_object; 1125 1126 if (backing_object->ref_count != 1) 1127 return; 1128 1129 backing_object->ref_count += 2; 1130 1131 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1132 1133 backing_object->ref_count -= 2; 1134 } 1135 1136 /* 1137 * vm_object_collapse: 1138 * 1139 * Collapse an object with the object backing it. 1140 * Pages in the backing object are moved into the 1141 * parent, and the backing object is deallocated. 1142 */ 1143 void 1144 vm_object_collapse(object) 1145 vm_object_t object; 1146 { 1147 while (TRUE) { 1148 vm_object_t backing_object; 1149 1150 /* 1151 * Verify that the conditions are right for collapse: 1152 * 1153 * The object exists and the backing object exists. 1154 */ 1155 if (object == NULL) 1156 break; 1157 1158 if ((backing_object = object->backing_object) == NULL) 1159 break; 1160 1161 /* 1162 * we check the backing object first, because it is most likely 1163 * not collapsable. 1164 */ 1165 if (backing_object->handle != NULL || 1166 (backing_object->type != OBJT_DEFAULT && 1167 backing_object->type != OBJT_SWAP) || 1168 (backing_object->flags & OBJ_DEAD) || 1169 object->handle != NULL || 1170 (object->type != OBJT_DEFAULT && 1171 object->type != OBJT_SWAP) || 1172 (object->flags & OBJ_DEAD)) { 1173 break; 1174 } 1175 1176 if ( 1177 object->paging_in_progress != 0 || 1178 backing_object->paging_in_progress != 0 1179 ) { 1180 vm_object_qcollapse(object); 1181 break; 1182 } 1183 1184 /* 1185 * We know that we can either collapse the backing object (if 1186 * the parent is the only reference to it) or (perhaps) have 1187 * the parent bypass the object if the parent happens to shadow 1188 * all the resident pages in the entire backing object. 1189 * 1190 * This is ignoring pager-backed pages such as swap pages. 1191 * vm_object_backing_scan fails the shadowing test in this 1192 * case. 1193 */ 1194 1195 if (backing_object->ref_count == 1) { 1196 /* 1197 * If there is exactly one reference to the backing 1198 * object, we can collapse it into the parent. 1199 */ 1200 1201 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1202 1203 /* 1204 * Move the pager from backing_object to object. 1205 */ 1206 1207 if (backing_object->type == OBJT_SWAP) { 1208 vm_object_pip_add(backing_object, 1); 1209 1210 /* 1211 * scrap the paging_offset junk and do a 1212 * discrete copy. This also removes major 1213 * assumptions about how the swap-pager 1214 * works from where it doesn't belong. The 1215 * new swapper is able to optimize the 1216 * destroy-source case. 1217 */ 1218 1219 vm_object_pip_add(object, 1); 1220 swap_pager_copy( 1221 backing_object, 1222 object, 1223 OFF_TO_IDX(object->backing_object_offset), TRUE); 1224 vm_object_pip_wakeup(object); 1225 1226 vm_object_pip_wakeup(backing_object); 1227 } 1228 /* 1229 * Object now shadows whatever backing_object did. 1230 * Note that the reference to 1231 * backing_object->backing_object moves from within 1232 * backing_object to within object. 1233 */ 1234 1235 TAILQ_REMOVE( 1236 &object->backing_object->shadow_head, 1237 object, 1238 shadow_list 1239 ); 1240 object->backing_object->shadow_count--; 1241 object->backing_object->generation++; 1242 if (backing_object->backing_object) { 1243 TAILQ_REMOVE( 1244 &backing_object->backing_object->shadow_head, 1245 backing_object, 1246 shadow_list 1247 ); 1248 backing_object->backing_object->shadow_count--; 1249 backing_object->backing_object->generation++; 1250 } 1251 object->backing_object = backing_object->backing_object; 1252 if (object->backing_object) { 1253 TAILQ_INSERT_TAIL( 1254 &object->backing_object->shadow_head, 1255 object, 1256 shadow_list 1257 ); 1258 object->backing_object->shadow_count++; 1259 object->backing_object->generation++; 1260 } 1261 1262 object->backing_object_offset += 1263 backing_object->backing_object_offset; 1264 1265 /* 1266 * Discard backing_object. 1267 * 1268 * Since the backing object has no pages, no pager left, 1269 * and no object references within it, all that is 1270 * necessary is to dispose of it. 1271 */ 1272 1273 TAILQ_REMOVE( 1274 &vm_object_list, 1275 backing_object, 1276 object_list 1277 ); 1278 vm_object_count--; 1279 1280 zfree(obj_zone, backing_object); 1281 1282 object_collapses++; 1283 } else { 1284 vm_object_t new_backing_object; 1285 1286 /* 1287 * If we do not entirely shadow the backing object, 1288 * there is nothing we can do so we give up. 1289 */ 1290 1291 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1292 break; 1293 } 1294 1295 /* 1296 * Make the parent shadow the next object in the 1297 * chain. Deallocating backing_object will not remove 1298 * it, since its reference count is at least 2. 1299 */ 1300 1301 TAILQ_REMOVE( 1302 &backing_object->shadow_head, 1303 object, 1304 shadow_list 1305 ); 1306 backing_object->shadow_count--; 1307 backing_object->generation++; 1308 1309 new_backing_object = backing_object->backing_object; 1310 if ((object->backing_object = new_backing_object) != NULL) { 1311 vm_object_reference(new_backing_object); 1312 TAILQ_INSERT_TAIL( 1313 &new_backing_object->shadow_head, 1314 object, 1315 shadow_list 1316 ); 1317 new_backing_object->shadow_count++; 1318 new_backing_object->generation++; 1319 object->backing_object_offset += 1320 backing_object->backing_object_offset; 1321 } 1322 1323 /* 1324 * Drop the reference count on backing_object. Since 1325 * its ref_count was at least 2, it will not vanish; 1326 * so we don't need to call vm_object_deallocate, but 1327 * we do anyway. 1328 */ 1329 vm_object_deallocate(backing_object); 1330 object_bypasses++; 1331 } 1332 1333 /* 1334 * Try again with this object's new backing object. 1335 */ 1336 } 1337 } 1338 1339 /* 1340 * vm_object_page_remove: [internal] 1341 * 1342 * Removes all physical pages in the specified 1343 * object range from the object's list of pages. 1344 * 1345 * The object must be locked. 1346 */ 1347 void 1348 vm_object_page_remove(object, start, end, clean_only) 1349 vm_object_t object; 1350 vm_pindex_t start; 1351 vm_pindex_t end; 1352 boolean_t clean_only; 1353 { 1354 vm_page_t p, next; 1355 unsigned int size; 1356 int all; 1357 1358 if (object == NULL || 1359 object->resident_page_count == 0) 1360 return; 1361 1362 all = ((end == 0) && (start == 0)); 1363 1364 vm_object_pip_add(object, 1); 1365 again: 1366 size = end - start; 1367 if (all || size > object->resident_page_count / 4) { 1368 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 1369 next = TAILQ_NEXT(p, listq); 1370 if (all || ((start <= p->pindex) && (p->pindex < end))) { 1371 if (p->wire_count != 0) { 1372 vm_page_protect(p, VM_PROT_NONE); 1373 if (!clean_only) 1374 p->valid = 0; 1375 continue; 1376 } 1377 1378 /* 1379 * The busy flags are only cleared at 1380 * interrupt -- minimize the spl transitions 1381 */ 1382 1383 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1384 goto again; 1385 1386 if (clean_only && p->valid) { 1387 vm_page_test_dirty(p); 1388 if (p->valid & p->dirty) 1389 continue; 1390 } 1391 1392 vm_page_busy(p); 1393 vm_page_protect(p, VM_PROT_NONE); 1394 vm_page_free(p); 1395 } 1396 } 1397 } else { 1398 while (size > 0) { 1399 if ((p = vm_page_lookup(object, start)) != 0) { 1400 1401 if (p->wire_count != 0) { 1402 vm_page_protect(p, VM_PROT_NONE); 1403 if (!clean_only) 1404 p->valid = 0; 1405 start += 1; 1406 size -= 1; 1407 continue; 1408 } 1409 1410 /* 1411 * The busy flags are only cleared at 1412 * interrupt -- minimize the spl transitions 1413 */ 1414 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1415 goto again; 1416 1417 if (clean_only && p->valid) { 1418 vm_page_test_dirty(p); 1419 if (p->valid & p->dirty) { 1420 start += 1; 1421 size -= 1; 1422 continue; 1423 } 1424 } 1425 1426 vm_page_busy(p); 1427 vm_page_protect(p, VM_PROT_NONE); 1428 vm_page_free(p); 1429 } 1430 start += 1; 1431 size -= 1; 1432 } 1433 } 1434 vm_object_pip_wakeup(object); 1435 } 1436 1437 /* 1438 * Routine: vm_object_coalesce 1439 * Function: Coalesces two objects backing up adjoining 1440 * regions of memory into a single object. 1441 * 1442 * returns TRUE if objects were combined. 1443 * 1444 * NOTE: Only works at the moment if the second object is NULL - 1445 * if it's not, which object do we lock first? 1446 * 1447 * Parameters: 1448 * prev_object First object to coalesce 1449 * prev_offset Offset into prev_object 1450 * next_object Second object into coalesce 1451 * next_offset Offset into next_object 1452 * 1453 * prev_size Size of reference to prev_object 1454 * next_size Size of reference to next_object 1455 * 1456 * Conditions: 1457 * The object must *not* be locked. 1458 */ 1459 boolean_t 1460 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size) 1461 vm_object_t prev_object; 1462 vm_pindex_t prev_pindex; 1463 vm_size_t prev_size, next_size; 1464 { 1465 vm_pindex_t next_pindex; 1466 1467 if (prev_object == NULL) { 1468 return (TRUE); 1469 } 1470 1471 if (prev_object->type != OBJT_DEFAULT && 1472 prev_object->type != OBJT_SWAP) { 1473 return (FALSE); 1474 } 1475 1476 /* 1477 * Try to collapse the object first 1478 */ 1479 vm_object_collapse(prev_object); 1480 1481 /* 1482 * Can't coalesce if: . more than one reference . paged out . shadows 1483 * another object . has a copy elsewhere (any of which mean that the 1484 * pages not mapped to prev_entry may be in use anyway) 1485 */ 1486 1487 if (prev_object->backing_object != NULL) { 1488 return (FALSE); 1489 } 1490 1491 prev_size >>= PAGE_SHIFT; 1492 next_size >>= PAGE_SHIFT; 1493 next_pindex = prev_pindex + prev_size; 1494 1495 if ((prev_object->ref_count > 1) && 1496 (prev_object->size != next_pindex)) { 1497 return (FALSE); 1498 } 1499 1500 /* 1501 * Remove any pages that may still be in the object from a previous 1502 * deallocation. 1503 */ 1504 if (next_pindex < prev_object->size) { 1505 vm_object_page_remove(prev_object, 1506 next_pindex, 1507 next_pindex + next_size, FALSE); 1508 if (prev_object->type == OBJT_SWAP) 1509 swap_pager_freespace(prev_object, 1510 next_pindex, next_size); 1511 } 1512 1513 /* 1514 * Extend the object if necessary. 1515 */ 1516 if (next_pindex + next_size > prev_object->size) 1517 prev_object->size = next_pindex + next_size; 1518 1519 return (TRUE); 1520 } 1521 1522 #include "opt_ddb.h" 1523 #ifdef DDB 1524 #include <sys/kernel.h> 1525 1526 #include <machine/cons.h> 1527 1528 #include <ddb/ddb.h> 1529 1530 static int _vm_object_in_map __P((vm_map_t map, vm_object_t object, 1531 vm_map_entry_t entry)); 1532 static int vm_object_in_map __P((vm_object_t object)); 1533 1534 static int 1535 _vm_object_in_map(map, object, entry) 1536 vm_map_t map; 1537 vm_object_t object; 1538 vm_map_entry_t entry; 1539 { 1540 vm_map_t tmpm; 1541 vm_map_entry_t tmpe; 1542 vm_object_t obj; 1543 int entcount; 1544 1545 if (map == 0) 1546 return 0; 1547 1548 if (entry == 0) { 1549 tmpe = map->header.next; 1550 entcount = map->nentries; 1551 while (entcount-- && (tmpe != &map->header)) { 1552 if( _vm_object_in_map(map, object, tmpe)) { 1553 return 1; 1554 } 1555 tmpe = tmpe->next; 1556 } 1557 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1558 tmpm = entry->object.sub_map; 1559 tmpe = tmpm->header.next; 1560 entcount = tmpm->nentries; 1561 while (entcount-- && tmpe != &tmpm->header) { 1562 if( _vm_object_in_map(tmpm, object, tmpe)) { 1563 return 1; 1564 } 1565 tmpe = tmpe->next; 1566 } 1567 } else if ((obj = entry->object.vm_object) != NULL) { 1568 for(; obj; obj=obj->backing_object) 1569 if( obj == object) { 1570 return 1; 1571 } 1572 } 1573 return 0; 1574 } 1575 1576 static int 1577 vm_object_in_map( object) 1578 vm_object_t object; 1579 { 1580 struct proc *p; 1581 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 1582 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1583 continue; 1584 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) 1585 return 1; 1586 } 1587 if( _vm_object_in_map( kernel_map, object, 0)) 1588 return 1; 1589 if( _vm_object_in_map( kmem_map, object, 0)) 1590 return 1; 1591 if( _vm_object_in_map( pager_map, object, 0)) 1592 return 1; 1593 if( _vm_object_in_map( buffer_map, object, 0)) 1594 return 1; 1595 if( _vm_object_in_map( io_map, object, 0)) 1596 return 1; 1597 if( _vm_object_in_map( phys_map, object, 0)) 1598 return 1; 1599 if( _vm_object_in_map( mb_map, object, 0)) 1600 return 1; 1601 if( _vm_object_in_map( u_map, object, 0)) 1602 return 1; 1603 return 0; 1604 } 1605 1606 DB_SHOW_COMMAND(vmochk, vm_object_check) 1607 { 1608 vm_object_t object; 1609 1610 /* 1611 * make sure that internal objs are in a map somewhere 1612 * and none have zero ref counts. 1613 */ 1614 for (object = TAILQ_FIRST(&vm_object_list); 1615 object != NULL; 1616 object = TAILQ_NEXT(object, object_list)) { 1617 if (object->handle == NULL && 1618 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1619 if (object->ref_count == 0) { 1620 db_printf("vmochk: internal obj has zero ref count: %d\n", 1621 object->size); 1622 } 1623 if (!vm_object_in_map(object)) { 1624 db_printf( 1625 "vmochk: internal obj is not in a map: " 1626 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1627 object->ref_count, (u_long)object->size, 1628 (u_long)object->size, 1629 (void *)object->backing_object); 1630 } 1631 } 1632 } 1633 } 1634 1635 /* 1636 * vm_object_print: [ debug ] 1637 */ 1638 DB_SHOW_COMMAND(object, vm_object_print_static) 1639 { 1640 /* XXX convert args. */ 1641 vm_object_t object = (vm_object_t)addr; 1642 boolean_t full = have_addr; 1643 1644 vm_page_t p; 1645 1646 /* XXX count is an (unused) arg. Avoid shadowing it. */ 1647 #define count was_count 1648 1649 int count; 1650 1651 if (object == NULL) 1652 return; 1653 1654 db_iprintf( 1655 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 1656 object, (int)object->type, (u_long)object->size, 1657 object->resident_page_count, object->ref_count, object->flags); 1658 /* 1659 * XXX no %qd in kernel. Truncate object->backing_object_offset. 1660 */ 1661 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 1662 object->shadow_count, 1663 object->backing_object ? object->backing_object->ref_count : 0, 1664 object->backing_object, (long)object->backing_object_offset); 1665 1666 if (!full) 1667 return; 1668 1669 db_indent += 2; 1670 count = 0; 1671 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) { 1672 if (count == 0) 1673 db_iprintf("memory:="); 1674 else if (count == 6) { 1675 db_printf("\n"); 1676 db_iprintf(" ..."); 1677 count = 0; 1678 } else 1679 db_printf(","); 1680 count++; 1681 1682 db_printf("(off=0x%lx,page=0x%lx)", 1683 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 1684 } 1685 if (count != 0) 1686 db_printf("\n"); 1687 db_indent -= 2; 1688 } 1689 1690 /* XXX. */ 1691 #undef count 1692 1693 /* XXX need this non-static entry for calling from vm_map_print. */ 1694 void 1695 vm_object_print(addr, have_addr, count, modif) 1696 /* db_expr_t */ long addr; 1697 boolean_t have_addr; 1698 /* db_expr_t */ long count; 1699 char *modif; 1700 { 1701 vm_object_print_static(addr, have_addr, count, modif); 1702 } 1703 1704 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 1705 { 1706 vm_object_t object; 1707 int nl = 0; 1708 int c; 1709 for (object = TAILQ_FIRST(&vm_object_list); 1710 object != NULL; 1711 object = TAILQ_NEXT(object, object_list)) { 1712 vm_pindex_t idx, fidx; 1713 vm_pindex_t osize; 1714 vm_offset_t pa = -1, padiff; 1715 int rcount; 1716 vm_page_t m; 1717 1718 db_printf("new object: %p\n", (void *)object); 1719 if ( nl > 18) { 1720 c = cngetc(); 1721 if (c != ' ') 1722 return; 1723 nl = 0; 1724 } 1725 nl++; 1726 rcount = 0; 1727 fidx = 0; 1728 osize = object->size; 1729 if (osize > 128) 1730 osize = 128; 1731 for(idx=0;idx<osize;idx++) { 1732 m = vm_page_lookup(object, idx); 1733 if (m == NULL) { 1734 if (rcount) { 1735 db_printf(" index(%d)run(%d)pa(0x%x)\n", 1736 fidx, rcount, pa); 1737 if ( nl > 18) { 1738 c = cngetc(); 1739 if (c != ' ') 1740 return; 1741 nl = 0; 1742 } 1743 nl++; 1744 rcount = 0; 1745 } 1746 continue; 1747 } 1748 1749 1750 if (rcount && 1751 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 1752 ++rcount; 1753 continue; 1754 } 1755 if (rcount) { 1756 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 1757 padiff >>= PAGE_SHIFT; 1758 padiff &= PQ_L2_MASK; 1759 if (padiff == 0) { 1760 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 1761 ++rcount; 1762 continue; 1763 } 1764 db_printf(" index(%d)run(%d)pa(0x%x)", fidx, rcount, pa); 1765 db_printf("pd(%d)\n", padiff); 1766 if ( nl > 18) { 1767 c = cngetc(); 1768 if (c != ' ') 1769 return; 1770 nl = 0; 1771 } 1772 nl++; 1773 } 1774 fidx = idx; 1775 pa = VM_PAGE_TO_PHYS(m); 1776 rcount = 1; 1777 } 1778 if (rcount) { 1779 db_printf(" index(%d)run(%d)pa(0x%x)\n", fidx, rcount, pa); 1780 if ( nl > 18) { 1781 c = cngetc(); 1782 if (c != ' ') 1783 return; 1784 nl = 0; 1785 } 1786 nl++; 1787 } 1788 } 1789 } 1790 #endif /* DDB */ 1791