1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/cpuset.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/refcount.h> 87 #include <sys/rwlock.h> 88 #include <sys/user.h> 89 #include <sys/vnode.h> 90 #include <sys/vmmeter.h> 91 #include <sys/sx.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_param.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/swap_pager.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/uma.h> 109 110 static int old_msync; 111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 112 "Use old (insecure) msync behavior"); 113 114 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 115 int pagerflags, int flags, boolean_t *allclean, 116 boolean_t *eio); 117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 118 boolean_t *allclean); 119 static void vm_object_qcollapse(vm_object_t object); 120 static void vm_object_vndeallocate(vm_object_t object); 121 static void vm_object_backing_remove(vm_object_t object); 122 123 /* 124 * Virtual memory objects maintain the actual data 125 * associated with allocated virtual memory. A given 126 * page of memory exists within exactly one object. 127 * 128 * An object is only deallocated when all "references" 129 * are given up. Only one "reference" to a given 130 * region of an object should be writeable. 131 * 132 * Associated with each object is a list of all resident 133 * memory pages belonging to that object; this list is 134 * maintained by the "vm_page" module, and locked by the object's 135 * lock. 136 * 137 * Each object also records a "pager" routine which is 138 * used to retrieve (and store) pages to the proper backing 139 * storage. In addition, objects may be backed by other 140 * objects from which they were virtual-copied. 141 * 142 * The only items within the object structure which are 143 * modified after time of creation are: 144 * reference count locked by object's lock 145 * pager routine locked by object's lock 146 * 147 */ 148 149 struct object_q vm_object_list; 150 struct mtx vm_object_list_mtx; /* lock for object list and count */ 151 152 struct vm_object kernel_object_store; 153 154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 155 "VM object stats"); 156 157 static counter_u64_t object_collapses = EARLY_COUNTER; 158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 159 &object_collapses, 160 "VM object collapses"); 161 162 static counter_u64_t object_bypasses = EARLY_COUNTER; 163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 164 &object_bypasses, 165 "VM object bypasses"); 166 167 static void 168 counter_startup(void) 169 { 170 171 object_collapses = counter_u64_alloc(M_WAITOK); 172 object_bypasses = counter_u64_alloc(M_WAITOK); 173 } 174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 175 176 static uma_zone_t obj_zone; 177 178 static int vm_object_zinit(void *mem, int size, int flags); 179 180 #ifdef INVARIANTS 181 static void vm_object_zdtor(void *mem, int size, void *arg); 182 183 static void 184 vm_object_zdtor(void *mem, int size, void *arg) 185 { 186 vm_object_t object; 187 188 object = (vm_object_t)mem; 189 KASSERT(object->ref_count == 0, 190 ("object %p ref_count = %d", object, object->ref_count)); 191 KASSERT(TAILQ_EMPTY(&object->memq), 192 ("object %p has resident pages in its memq", object)); 193 KASSERT(vm_radix_is_empty(&object->rtree), 194 ("object %p has resident pages in its trie", object)); 195 #if VM_NRESERVLEVEL > 0 196 KASSERT(LIST_EMPTY(&object->rvq), 197 ("object %p has reservations", 198 object)); 199 #endif 200 KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0, 201 ("object %p paging_in_progress = %d", 202 object, REFCOUNT_COUNT(object->paging_in_progress))); 203 KASSERT(object->busy == 0, 204 ("object %p busy = %d", 205 object, object->busy)); 206 KASSERT(object->resident_page_count == 0, 207 ("object %p resident_page_count = %d", 208 object, object->resident_page_count)); 209 KASSERT(object->shadow_count == 0, 210 ("object %p shadow_count = %d", 211 object, object->shadow_count)); 212 KASSERT(object->type == OBJT_DEAD, 213 ("object %p has non-dead type %d", 214 object, object->type)); 215 } 216 #endif 217 218 static int 219 vm_object_zinit(void *mem, int size, int flags) 220 { 221 vm_object_t object; 222 223 object = (vm_object_t)mem; 224 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 225 226 /* These are true for any object that has been freed */ 227 object->type = OBJT_DEAD; 228 vm_radix_init(&object->rtree); 229 refcount_init(&object->ref_count, 0); 230 refcount_init(&object->paging_in_progress, 0); 231 refcount_init(&object->busy, 0); 232 object->resident_page_count = 0; 233 object->shadow_count = 0; 234 object->flags = OBJ_DEAD; 235 236 mtx_lock(&vm_object_list_mtx); 237 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 238 mtx_unlock(&vm_object_list_mtx); 239 return (0); 240 } 241 242 static void 243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 244 vm_object_t object) 245 { 246 247 TAILQ_INIT(&object->memq); 248 LIST_INIT(&object->shadow_head); 249 250 object->type = type; 251 if (type == OBJT_SWAP) 252 pctrie_init(&object->un_pager.swp.swp_blks); 253 254 /* 255 * Ensure that swap_pager_swapoff() iteration over object_list 256 * sees up to date type and pctrie head if it observed 257 * non-dead object. 258 */ 259 atomic_thread_fence_rel(); 260 261 object->pg_color = 0; 262 object->flags = flags; 263 object->size = size; 264 object->domain.dr_policy = NULL; 265 object->generation = 1; 266 object->cleangeneration = 1; 267 refcount_init(&object->ref_count, 1); 268 object->memattr = VM_MEMATTR_DEFAULT; 269 object->cred = NULL; 270 object->charge = 0; 271 object->handle = NULL; 272 object->backing_object = NULL; 273 object->backing_object_offset = (vm_ooffset_t) 0; 274 #if VM_NRESERVLEVEL > 0 275 LIST_INIT(&object->rvq); 276 #endif 277 umtx_shm_object_init(object); 278 } 279 280 /* 281 * vm_object_init: 282 * 283 * Initialize the VM objects module. 284 */ 285 void 286 vm_object_init(void) 287 { 288 TAILQ_INIT(&vm_object_list); 289 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 290 291 rw_init(&kernel_object->lock, "kernel vm object"); 292 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 293 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object); 294 #if VM_NRESERVLEVEL > 0 295 kernel_object->flags |= OBJ_COLORED; 296 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 297 #endif 298 299 /* 300 * The lock portion of struct vm_object must be type stable due 301 * to vm_pageout_fallback_object_lock locking a vm object 302 * without holding any references to it. 303 */ 304 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 305 #ifdef INVARIANTS 306 vm_object_zdtor, 307 #else 308 NULL, 309 #endif 310 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 311 312 vm_radix_zinit(); 313 } 314 315 void 316 vm_object_clear_flag(vm_object_t object, u_short bits) 317 { 318 319 VM_OBJECT_ASSERT_WLOCKED(object); 320 object->flags &= ~bits; 321 } 322 323 /* 324 * Sets the default memory attribute for the specified object. Pages 325 * that are allocated to this object are by default assigned this memory 326 * attribute. 327 * 328 * Presently, this function must be called before any pages are allocated 329 * to the object. In the future, this requirement may be relaxed for 330 * "default" and "swap" objects. 331 */ 332 int 333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 334 { 335 336 VM_OBJECT_ASSERT_WLOCKED(object); 337 switch (object->type) { 338 case OBJT_DEFAULT: 339 case OBJT_DEVICE: 340 case OBJT_MGTDEVICE: 341 case OBJT_PHYS: 342 case OBJT_SG: 343 case OBJT_SWAP: 344 case OBJT_VNODE: 345 if (!TAILQ_EMPTY(&object->memq)) 346 return (KERN_FAILURE); 347 break; 348 case OBJT_DEAD: 349 return (KERN_INVALID_ARGUMENT); 350 default: 351 panic("vm_object_set_memattr: object %p is of undefined type", 352 object); 353 } 354 object->memattr = memattr; 355 return (KERN_SUCCESS); 356 } 357 358 void 359 vm_object_pip_add(vm_object_t object, short i) 360 { 361 362 refcount_acquiren(&object->paging_in_progress, i); 363 } 364 365 void 366 vm_object_pip_wakeup(vm_object_t object) 367 { 368 369 refcount_release(&object->paging_in_progress); 370 } 371 372 void 373 vm_object_pip_wakeupn(vm_object_t object, short i) 374 { 375 376 refcount_releasen(&object->paging_in_progress, i); 377 } 378 379 void 380 vm_object_pip_wait(vm_object_t object, char *waitid) 381 { 382 383 VM_OBJECT_ASSERT_WLOCKED(object); 384 385 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 386 VM_OBJECT_WUNLOCK(object); 387 refcount_wait(&object->paging_in_progress, waitid, PVM); 388 VM_OBJECT_WLOCK(object); 389 } 390 } 391 392 void 393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid) 394 { 395 396 VM_OBJECT_ASSERT_UNLOCKED(object); 397 398 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) 399 refcount_wait(&object->paging_in_progress, waitid, PVM); 400 } 401 402 /* 403 * vm_object_allocate: 404 * 405 * Returns a new object with the given size. 406 */ 407 vm_object_t 408 vm_object_allocate(objtype_t type, vm_pindex_t size) 409 { 410 vm_object_t object; 411 u_short flags; 412 413 switch (type) { 414 case OBJT_DEAD: 415 panic("vm_object_allocate: can't create OBJT_DEAD"); 416 case OBJT_DEFAULT: 417 case OBJT_SWAP: 418 flags = OBJ_COLORED; 419 break; 420 case OBJT_DEVICE: 421 case OBJT_SG: 422 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 423 break; 424 case OBJT_MGTDEVICE: 425 flags = OBJ_FICTITIOUS; 426 break; 427 case OBJT_PHYS: 428 flags = OBJ_UNMANAGED; 429 break; 430 case OBJT_VNODE: 431 flags = 0; 432 break; 433 default: 434 panic("vm_object_allocate: type %d is undefined", type); 435 } 436 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 437 _vm_object_allocate(type, size, flags, object); 438 439 return (object); 440 } 441 442 /* 443 * vm_object_allocate_anon: 444 * 445 * Returns a new default object of the given size and marked as 446 * anonymous memory for special split/collapse handling. Color 447 * to be initialized by the caller. 448 */ 449 vm_object_t 450 vm_object_allocate_anon(vm_pindex_t size) 451 { 452 vm_object_t object; 453 454 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 455 _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING, 456 object); 457 458 return (object); 459 } 460 461 462 /* 463 * vm_object_reference: 464 * 465 * Gets another reference to the given object. Note: OBJ_DEAD 466 * objects can be referenced during final cleaning. 467 */ 468 void 469 vm_object_reference(vm_object_t object) 470 { 471 if (object == NULL) 472 return; 473 VM_OBJECT_RLOCK(object); 474 vm_object_reference_locked(object); 475 VM_OBJECT_RUNLOCK(object); 476 } 477 478 /* 479 * vm_object_reference_locked: 480 * 481 * Gets another reference to the given object. 482 * 483 * The object must be locked. 484 */ 485 void 486 vm_object_reference_locked(vm_object_t object) 487 { 488 struct vnode *vp; 489 490 VM_OBJECT_ASSERT_LOCKED(object); 491 refcount_acquire(&object->ref_count); 492 if (object->type == OBJT_VNODE) { 493 vp = object->handle; 494 vref(vp); 495 } 496 } 497 498 /* 499 * Handle deallocating an object of type OBJT_VNODE. 500 */ 501 static void 502 vm_object_vndeallocate(vm_object_t object) 503 { 504 struct vnode *vp = (struct vnode *) object->handle; 505 506 KASSERT(object->type == OBJT_VNODE, 507 ("vm_object_vndeallocate: not a vnode object")); 508 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 509 510 if (refcount_release(&object->ref_count) && 511 !umtx_shm_vnobj_persistent) 512 umtx_shm_object_terminated(object); 513 514 VM_OBJECT_RUNLOCK(object); 515 /* vrele may need the vnode lock. */ 516 vrele(vp); 517 } 518 519 /* 520 * vm_object_deallocate: 521 * 522 * Release a reference to the specified object, 523 * gained either through a vm_object_allocate 524 * or a vm_object_reference call. When all references 525 * are gone, storage associated with this object 526 * may be relinquished. 527 * 528 * No object may be locked. 529 */ 530 void 531 vm_object_deallocate(vm_object_t object) 532 { 533 vm_object_t robject, temp; 534 bool released; 535 536 while (object != NULL) { 537 VM_OBJECT_RLOCK(object); 538 if (object->type == OBJT_VNODE) { 539 vm_object_vndeallocate(object); 540 return; 541 } 542 543 /* 544 * If the reference count goes to 0 we start calling 545 * vm_object_terminate() on the object chain. A ref count 546 * of 1 may be a special case depending on the shadow count 547 * being 0 or 1. These cases require a write lock on the 548 * object. 549 */ 550 if ((object->flags & OBJ_ANON) == 0) 551 released = refcount_release_if_gt(&object->ref_count, 1); 552 else 553 released = refcount_release_if_gt(&object->ref_count, 2); 554 VM_OBJECT_RUNLOCK(object); 555 if (released) 556 return; 557 558 VM_OBJECT_WLOCK(object); 559 KASSERT(object->ref_count != 0, 560 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 561 562 refcount_release(&object->ref_count); 563 if (object->ref_count > 1) { 564 VM_OBJECT_WUNLOCK(object); 565 return; 566 } else if (object->ref_count == 1) { 567 if (object->shadow_count == 0 && 568 (object->flags & OBJ_ANON) != 0) { 569 vm_object_set_flag(object, OBJ_ONEMAPPING); 570 } else if (object->shadow_count == 1) { 571 KASSERT((object->flags & OBJ_ANON) != 0, 572 ("obj %p with shadow_count > 0 is not anon", 573 object)); 574 robject = LIST_FIRST(&object->shadow_head); 575 KASSERT(robject != NULL, 576 ("vm_object_deallocate: ref_count: %d, " 577 "shadow_count: %d", object->ref_count, 578 object->shadow_count)); 579 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 580 ("shadowed tmpfs v_object %p", object)); 581 if (!VM_OBJECT_TRYWLOCK(robject)) { 582 /* 583 * Avoid a potential deadlock. 584 */ 585 refcount_acquire(&object->ref_count); 586 VM_OBJECT_WUNLOCK(object); 587 /* 588 * More likely than not the thread 589 * holding robject's lock has lower 590 * priority than the current thread. 591 * Let the lower priority thread run. 592 */ 593 pause("vmo_de", 1); 594 continue; 595 } 596 /* 597 * Collapse object into its shadow unless its 598 * shadow is dead. In that case, object will 599 * be deallocated by the thread that is 600 * deallocating its shadow. 601 */ 602 if ((robject->flags & 603 (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON) { 604 605 refcount_acquire(&robject->ref_count); 606 retry: 607 if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) { 608 VM_OBJECT_WUNLOCK(object); 609 vm_object_pip_wait(robject, 610 "objde1"); 611 temp = robject->backing_object; 612 if (object == temp) { 613 VM_OBJECT_WLOCK(object); 614 goto retry; 615 } 616 } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 617 VM_OBJECT_WUNLOCK(robject); 618 VM_OBJECT_WUNLOCK(object); 619 refcount_wait( 620 &object->paging_in_progress, 621 "objde2", PVM); 622 VM_OBJECT_WLOCK(robject); 623 temp = robject->backing_object; 624 if (object == temp) { 625 VM_OBJECT_WLOCK(object); 626 goto retry; 627 } 628 } else 629 VM_OBJECT_WUNLOCK(object); 630 631 if (robject->ref_count == 1) { 632 robject->ref_count--; 633 object = robject; 634 goto doterm; 635 } 636 object = robject; 637 vm_object_collapse(object); 638 VM_OBJECT_WUNLOCK(object); 639 continue; 640 } 641 VM_OBJECT_WUNLOCK(robject); 642 } 643 VM_OBJECT_WUNLOCK(object); 644 return; 645 } 646 doterm: 647 umtx_shm_object_terminated(object); 648 temp = object->backing_object; 649 if (temp != NULL) { 650 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 651 ("shadowed tmpfs v_object 2 %p", object)); 652 vm_object_backing_remove(object); 653 } 654 /* 655 * Don't double-terminate, we could be in a termination 656 * recursion due to the terminate having to sync data 657 * to disk. 658 */ 659 if ((object->flags & OBJ_DEAD) == 0) { 660 vm_object_set_flag(object, OBJ_DEAD); 661 vm_object_terminate(object); 662 } else 663 VM_OBJECT_WUNLOCK(object); 664 object = temp; 665 } 666 } 667 668 /* 669 * vm_object_destroy removes the object from the global object list 670 * and frees the space for the object. 671 */ 672 void 673 vm_object_destroy(vm_object_t object) 674 { 675 676 /* 677 * Release the allocation charge. 678 */ 679 if (object->cred != NULL) { 680 swap_release_by_cred(object->charge, object->cred); 681 object->charge = 0; 682 crfree(object->cred); 683 object->cred = NULL; 684 } 685 686 /* 687 * Free the space for the object. 688 */ 689 uma_zfree(obj_zone, object); 690 } 691 692 static void 693 vm_object_backing_remove_locked(vm_object_t object) 694 { 695 vm_object_t backing_object; 696 697 backing_object = object->backing_object; 698 VM_OBJECT_ASSERT_WLOCKED(object); 699 VM_OBJECT_ASSERT_WLOCKED(backing_object); 700 701 if ((object->flags & OBJ_SHADOWLIST) != 0) { 702 LIST_REMOVE(object, shadow_list); 703 backing_object->shadow_count--; 704 object->flags &= ~OBJ_SHADOWLIST; 705 } 706 object->backing_object = NULL; 707 } 708 709 static void 710 vm_object_backing_remove(vm_object_t object) 711 { 712 vm_object_t backing_object; 713 714 VM_OBJECT_ASSERT_WLOCKED(object); 715 716 if ((object->flags & OBJ_SHADOWLIST) != 0) { 717 backing_object = object->backing_object; 718 VM_OBJECT_WLOCK(backing_object); 719 vm_object_backing_remove_locked(object); 720 VM_OBJECT_WUNLOCK(backing_object); 721 } else 722 object->backing_object = NULL; 723 } 724 725 static void 726 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 727 { 728 729 VM_OBJECT_ASSERT_WLOCKED(object); 730 731 if ((backing_object->flags & OBJ_ANON) != 0) { 732 VM_OBJECT_ASSERT_WLOCKED(backing_object); 733 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 734 shadow_list); 735 backing_object->shadow_count++; 736 object->flags |= OBJ_SHADOWLIST; 737 } 738 object->backing_object = backing_object; 739 } 740 741 static void 742 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 743 { 744 745 VM_OBJECT_ASSERT_WLOCKED(object); 746 747 if ((backing_object->flags & OBJ_ANON) != 0) { 748 VM_OBJECT_WLOCK(backing_object); 749 vm_object_backing_insert_locked(object, backing_object); 750 VM_OBJECT_WUNLOCK(backing_object); 751 } else 752 object->backing_object = backing_object; 753 } 754 755 756 /* 757 * vm_object_terminate_pages removes any remaining pageable pages 758 * from the object and resets the object to an empty state. 759 */ 760 static void 761 vm_object_terminate_pages(vm_object_t object) 762 { 763 vm_page_t p, p_next; 764 765 VM_OBJECT_ASSERT_WLOCKED(object); 766 767 /* 768 * Free any remaining pageable pages. This also removes them from the 769 * paging queues. However, don't free wired pages, just remove them 770 * from the object. Rather than incrementally removing each page from 771 * the object, the page and object are reset to any empty state. 772 */ 773 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 774 vm_page_assert_unbusied(p); 775 KASSERT(p->object == object && 776 (p->ref_count & VPRC_OBJREF) != 0, 777 ("vm_object_terminate_pages: page %p is inconsistent", p)); 778 779 p->object = NULL; 780 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 781 VM_CNT_INC(v_pfree); 782 vm_page_free(p); 783 } 784 } 785 786 /* 787 * If the object contained any pages, then reset it to an empty state. 788 * None of the object's fields, including "resident_page_count", were 789 * modified by the preceding loop. 790 */ 791 if (object->resident_page_count != 0) { 792 vm_radix_reclaim_allnodes(&object->rtree); 793 TAILQ_INIT(&object->memq); 794 object->resident_page_count = 0; 795 if (object->type == OBJT_VNODE) 796 vdrop(object->handle); 797 } 798 } 799 800 /* 801 * vm_object_terminate actually destroys the specified object, freeing 802 * up all previously used resources. 803 * 804 * The object must be locked. 805 * This routine may block. 806 */ 807 void 808 vm_object_terminate(vm_object_t object) 809 { 810 VM_OBJECT_ASSERT_WLOCKED(object); 811 KASSERT((object->flags & OBJ_DEAD) != 0, 812 ("terminating non-dead obj %p", object)); 813 814 /* 815 * wait for the pageout daemon to be done with the object 816 */ 817 vm_object_pip_wait(object, "objtrm"); 818 819 KASSERT(!REFCOUNT_COUNT(object->paging_in_progress), 820 ("vm_object_terminate: pageout in progress")); 821 822 KASSERT(object->ref_count == 0, 823 ("vm_object_terminate: object with references, ref_count=%d", 824 object->ref_count)); 825 826 if ((object->flags & OBJ_PG_DTOR) == 0) 827 vm_object_terminate_pages(object); 828 829 #if VM_NRESERVLEVEL > 0 830 if (__predict_false(!LIST_EMPTY(&object->rvq))) 831 vm_reserv_break_all(object); 832 #endif 833 834 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 835 object->type == OBJT_SWAP, 836 ("%s: non-swap obj %p has cred", __func__, object)); 837 838 /* 839 * Let the pager know object is dead. 840 */ 841 vm_pager_deallocate(object); 842 VM_OBJECT_WUNLOCK(object); 843 844 vm_object_destroy(object); 845 } 846 847 /* 848 * Make the page read-only so that we can clear the object flags. However, if 849 * this is a nosync mmap then the object is likely to stay dirty so do not 850 * mess with the page and do not clear the object flags. Returns TRUE if the 851 * page should be flushed, and FALSE otherwise. 852 */ 853 static boolean_t 854 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 855 { 856 857 vm_page_assert_busied(p); 858 859 /* 860 * If we have been asked to skip nosync pages and this is a 861 * nosync page, skip it. Note that the object flags were not 862 * cleared in this case so we do not have to set them. 863 */ 864 if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) { 865 *allclean = FALSE; 866 return (FALSE); 867 } else { 868 pmap_remove_write(p); 869 return (p->dirty != 0); 870 } 871 } 872 873 /* 874 * vm_object_page_clean 875 * 876 * Clean all dirty pages in the specified range of object. Leaves page 877 * on whatever queue it is currently on. If NOSYNC is set then do not 878 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 879 * leaving the object dirty. 880 * 881 * When stuffing pages asynchronously, allow clustering. XXX we need a 882 * synchronous clustering mode implementation. 883 * 884 * Odd semantics: if start == end, we clean everything. 885 * 886 * The object must be locked. 887 * 888 * Returns FALSE if some page from the range was not written, as 889 * reported by the pager, and TRUE otherwise. 890 */ 891 boolean_t 892 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 893 int flags) 894 { 895 vm_page_t np, p; 896 vm_pindex_t pi, tend, tstart; 897 int curgeneration, n, pagerflags; 898 boolean_t eio, res, allclean; 899 900 VM_OBJECT_ASSERT_WLOCKED(object); 901 902 if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) || 903 object->resident_page_count == 0) 904 return (TRUE); 905 906 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 907 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 908 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 909 910 tstart = OFF_TO_IDX(start); 911 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 912 allclean = tstart == 0 && tend >= object->size; 913 res = TRUE; 914 915 rescan: 916 curgeneration = object->generation; 917 918 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 919 pi = p->pindex; 920 if (pi >= tend) 921 break; 922 np = TAILQ_NEXT(p, listq); 923 if (vm_page_none_valid(p)) 924 continue; 925 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 926 if (object->generation != curgeneration && 927 (flags & OBJPC_SYNC) != 0) 928 goto rescan; 929 np = vm_page_find_least(object, pi); 930 continue; 931 } 932 if (!vm_object_page_remove_write(p, flags, &allclean)) { 933 vm_page_xunbusy(p); 934 continue; 935 } 936 937 n = vm_object_page_collect_flush(object, p, pagerflags, 938 flags, &allclean, &eio); 939 if (eio) { 940 res = FALSE; 941 allclean = FALSE; 942 } 943 if (object->generation != curgeneration && 944 (flags & OBJPC_SYNC) != 0) 945 goto rescan; 946 947 /* 948 * If the VOP_PUTPAGES() did a truncated write, so 949 * that even the first page of the run is not fully 950 * written, vm_pageout_flush() returns 0 as the run 951 * length. Since the condition that caused truncated 952 * write may be permanent, e.g. exhausted free space, 953 * accepting n == 0 would cause an infinite loop. 954 * 955 * Forwarding the iterator leaves the unwritten page 956 * behind, but there is not much we can do there if 957 * filesystem refuses to write it. 958 */ 959 if (n == 0) { 960 n = 1; 961 allclean = FALSE; 962 } 963 np = vm_page_find_least(object, pi + n); 964 } 965 #if 0 966 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 967 #endif 968 969 if (allclean) 970 object->cleangeneration = curgeneration; 971 return (res); 972 } 973 974 static int 975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 976 int flags, boolean_t *allclean, boolean_t *eio) 977 { 978 vm_page_t ma[vm_pageout_page_count], p_first, tp; 979 int count, i, mreq, runlen; 980 981 vm_page_lock_assert(p, MA_NOTOWNED); 982 vm_page_assert_xbusied(p); 983 VM_OBJECT_ASSERT_WLOCKED(object); 984 985 count = 1; 986 mreq = 0; 987 988 for (tp = p; count < vm_pageout_page_count; count++) { 989 tp = vm_page_next(tp); 990 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 991 break; 992 if (!vm_object_page_remove_write(tp, flags, allclean)) { 993 vm_page_xunbusy(tp); 994 break; 995 } 996 } 997 998 for (p_first = p; count < vm_pageout_page_count; count++) { 999 tp = vm_page_prev(p_first); 1000 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1001 break; 1002 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1003 vm_page_xunbusy(tp); 1004 break; 1005 } 1006 p_first = tp; 1007 mreq++; 1008 } 1009 1010 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1011 ma[i] = tp; 1012 1013 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1014 return (runlen); 1015 } 1016 1017 /* 1018 * Note that there is absolutely no sense in writing out 1019 * anonymous objects, so we track down the vnode object 1020 * to write out. 1021 * We invalidate (remove) all pages from the address space 1022 * for semantic correctness. 1023 * 1024 * If the backing object is a device object with unmanaged pages, then any 1025 * mappings to the specified range of pages must be removed before this 1026 * function is called. 1027 * 1028 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1029 * may start out with a NULL object. 1030 */ 1031 boolean_t 1032 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1033 boolean_t syncio, boolean_t invalidate) 1034 { 1035 vm_object_t backing_object; 1036 struct vnode *vp; 1037 struct mount *mp; 1038 int error, flags, fsync_after; 1039 boolean_t res; 1040 1041 if (object == NULL) 1042 return (TRUE); 1043 res = TRUE; 1044 error = 0; 1045 VM_OBJECT_WLOCK(object); 1046 while ((backing_object = object->backing_object) != NULL) { 1047 VM_OBJECT_WLOCK(backing_object); 1048 offset += object->backing_object_offset; 1049 VM_OBJECT_WUNLOCK(object); 1050 object = backing_object; 1051 if (object->size < OFF_TO_IDX(offset + size)) 1052 size = IDX_TO_OFF(object->size) - offset; 1053 } 1054 /* 1055 * Flush pages if writing is allowed, invalidate them 1056 * if invalidation requested. Pages undergoing I/O 1057 * will be ignored by vm_object_page_remove(). 1058 * 1059 * We cannot lock the vnode and then wait for paging 1060 * to complete without deadlocking against vm_fault. 1061 * Instead we simply call vm_object_page_remove() and 1062 * allow it to block internally on a page-by-page 1063 * basis when it encounters pages undergoing async 1064 * I/O. 1065 */ 1066 if (object->type == OBJT_VNODE && 1067 vm_object_mightbedirty(object) != 0 && 1068 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1069 VM_OBJECT_WUNLOCK(object); 1070 (void) vn_start_write(vp, &mp, V_WAIT); 1071 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1072 if (syncio && !invalidate && offset == 0 && 1073 atop(size) == object->size) { 1074 /* 1075 * If syncing the whole mapping of the file, 1076 * it is faster to schedule all the writes in 1077 * async mode, also allowing the clustering, 1078 * and then wait for i/o to complete. 1079 */ 1080 flags = 0; 1081 fsync_after = TRUE; 1082 } else { 1083 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1084 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1085 fsync_after = FALSE; 1086 } 1087 VM_OBJECT_WLOCK(object); 1088 res = vm_object_page_clean(object, offset, offset + size, 1089 flags); 1090 VM_OBJECT_WUNLOCK(object); 1091 if (fsync_after) 1092 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1093 VOP_UNLOCK(vp, 0); 1094 vn_finished_write(mp); 1095 if (error != 0) 1096 res = FALSE; 1097 VM_OBJECT_WLOCK(object); 1098 } 1099 if ((object->type == OBJT_VNODE || 1100 object->type == OBJT_DEVICE) && invalidate) { 1101 if (object->type == OBJT_DEVICE) 1102 /* 1103 * The option OBJPR_NOTMAPPED must be passed here 1104 * because vm_object_page_remove() cannot remove 1105 * unmanaged mappings. 1106 */ 1107 flags = OBJPR_NOTMAPPED; 1108 else if (old_msync) 1109 flags = 0; 1110 else 1111 flags = OBJPR_CLEANONLY; 1112 vm_object_page_remove(object, OFF_TO_IDX(offset), 1113 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1114 } 1115 VM_OBJECT_WUNLOCK(object); 1116 return (res); 1117 } 1118 1119 /* 1120 * Determine whether the given advice can be applied to the object. Advice is 1121 * not applied to unmanaged pages since they never belong to page queues, and 1122 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1123 * have been mapped at most once. 1124 */ 1125 static bool 1126 vm_object_advice_applies(vm_object_t object, int advice) 1127 { 1128 1129 if ((object->flags & OBJ_UNMANAGED) != 0) 1130 return (false); 1131 if (advice != MADV_FREE) 1132 return (true); 1133 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1134 (OBJ_ONEMAPPING | OBJ_ANON)); 1135 } 1136 1137 static void 1138 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1139 vm_size_t size) 1140 { 1141 1142 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1143 swap_pager_freespace(object, pindex, size); 1144 } 1145 1146 /* 1147 * vm_object_madvise: 1148 * 1149 * Implements the madvise function at the object/page level. 1150 * 1151 * MADV_WILLNEED (any object) 1152 * 1153 * Activate the specified pages if they are resident. 1154 * 1155 * MADV_DONTNEED (any object) 1156 * 1157 * Deactivate the specified pages if they are resident. 1158 * 1159 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1160 * OBJ_ONEMAPPING only) 1161 * 1162 * Deactivate and clean the specified pages if they are 1163 * resident. This permits the process to reuse the pages 1164 * without faulting or the kernel to reclaim the pages 1165 * without I/O. 1166 */ 1167 void 1168 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1169 int advice) 1170 { 1171 vm_pindex_t tpindex; 1172 vm_object_t backing_object, tobject; 1173 vm_page_t m, tm; 1174 1175 if (object == NULL) 1176 return; 1177 1178 relookup: 1179 VM_OBJECT_WLOCK(object); 1180 if (!vm_object_advice_applies(object, advice)) { 1181 VM_OBJECT_WUNLOCK(object); 1182 return; 1183 } 1184 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1185 tobject = object; 1186 1187 /* 1188 * If the next page isn't resident in the top-level object, we 1189 * need to search the shadow chain. When applying MADV_FREE, we 1190 * take care to release any swap space used to store 1191 * non-resident pages. 1192 */ 1193 if (m == NULL || pindex < m->pindex) { 1194 /* 1195 * Optimize a common case: if the top-level object has 1196 * no backing object, we can skip over the non-resident 1197 * range in constant time. 1198 */ 1199 if (object->backing_object == NULL) { 1200 tpindex = (m != NULL && m->pindex < end) ? 1201 m->pindex : end; 1202 vm_object_madvise_freespace(object, advice, 1203 pindex, tpindex - pindex); 1204 if ((pindex = tpindex) == end) 1205 break; 1206 goto next_page; 1207 } 1208 1209 tpindex = pindex; 1210 do { 1211 vm_object_madvise_freespace(tobject, advice, 1212 tpindex, 1); 1213 /* 1214 * Prepare to search the next object in the 1215 * chain. 1216 */ 1217 backing_object = tobject->backing_object; 1218 if (backing_object == NULL) 1219 goto next_pindex; 1220 VM_OBJECT_WLOCK(backing_object); 1221 tpindex += 1222 OFF_TO_IDX(tobject->backing_object_offset); 1223 if (tobject != object) 1224 VM_OBJECT_WUNLOCK(tobject); 1225 tobject = backing_object; 1226 if (!vm_object_advice_applies(tobject, advice)) 1227 goto next_pindex; 1228 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1229 NULL); 1230 } else { 1231 next_page: 1232 tm = m; 1233 m = TAILQ_NEXT(m, listq); 1234 } 1235 1236 /* 1237 * If the page is not in a normal state, skip it. The page 1238 * can not be invalidated while the object lock is held. 1239 */ 1240 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1241 goto next_pindex; 1242 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1243 ("vm_object_madvise: page %p is fictitious", tm)); 1244 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1245 ("vm_object_madvise: page %p is not managed", tm)); 1246 if (vm_page_tryxbusy(tm) == 0) { 1247 if (object != tobject) 1248 VM_OBJECT_WUNLOCK(object); 1249 if (advice == MADV_WILLNEED) { 1250 /* 1251 * Reference the page before unlocking and 1252 * sleeping so that the page daemon is less 1253 * likely to reclaim it. 1254 */ 1255 vm_page_aflag_set(tm, PGA_REFERENCED); 1256 } 1257 vm_page_busy_sleep(tm, "madvpo", false); 1258 goto relookup; 1259 } 1260 vm_page_lock(tm); 1261 vm_page_advise(tm, advice); 1262 vm_page_unlock(tm); 1263 vm_page_xunbusy(tm); 1264 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1265 next_pindex: 1266 if (tobject != object) 1267 VM_OBJECT_WUNLOCK(tobject); 1268 } 1269 VM_OBJECT_WUNLOCK(object); 1270 } 1271 1272 /* 1273 * vm_object_shadow: 1274 * 1275 * Create a new object which is backed by the 1276 * specified existing object range. The source 1277 * object reference is deallocated. 1278 * 1279 * The new object and offset into that object 1280 * are returned in the source parameters. 1281 */ 1282 void 1283 vm_object_shadow( 1284 vm_object_t *object, /* IN/OUT */ 1285 vm_ooffset_t *offset, /* IN/OUT */ 1286 vm_size_t length) 1287 { 1288 vm_object_t source; 1289 vm_object_t result; 1290 1291 source = *object; 1292 1293 /* 1294 * Don't create the new object if the old object isn't shared. 1295 * 1296 * If we hold the only reference we can guarantee that it won't 1297 * increase while we have the map locked. Otherwise the race is 1298 * harmless and we will end up with an extra shadow object that 1299 * will be collapsed later. 1300 */ 1301 if (source != NULL && source->ref_count == 1 && 1302 (source->flags & OBJ_ANON) != 0) 1303 return; 1304 1305 /* 1306 * Allocate a new object with the given length. 1307 */ 1308 result = vm_object_allocate_anon(atop(length)); 1309 1310 /* 1311 * Store the offset into the source object, and fix up the offset into 1312 * the new object. 1313 */ 1314 result->backing_object_offset = *offset; 1315 1316 /* 1317 * The new object shadows the source object, adding a reference to it. 1318 * Our caller changes his reference to point to the new object, 1319 * removing a reference to the source object. Net result: no change 1320 * of reference count. 1321 * 1322 * Try to optimize the result object's page color when shadowing 1323 * in order to maintain page coloring consistency in the combined 1324 * shadowed object. 1325 */ 1326 if (source != NULL) { 1327 VM_OBJECT_WLOCK(result); 1328 vm_object_backing_insert(result, source); 1329 result->domain = source->domain; 1330 #if VM_NRESERVLEVEL > 0 1331 result->flags |= source->flags & OBJ_COLORED; 1332 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1333 ((1 << (VM_NFREEORDER - 1)) - 1); 1334 #endif 1335 VM_OBJECT_WUNLOCK(result); 1336 } 1337 1338 /* 1339 * Return the new things 1340 */ 1341 *offset = 0; 1342 *object = result; 1343 } 1344 1345 /* 1346 * vm_object_split: 1347 * 1348 * Split the pages in a map entry into a new object. This affords 1349 * easier removal of unused pages, and keeps object inheritance from 1350 * being a negative impact on memory usage. 1351 */ 1352 void 1353 vm_object_split(vm_map_entry_t entry) 1354 { 1355 vm_page_t m, m_next; 1356 vm_object_t orig_object, new_object, source; 1357 vm_pindex_t idx, offidxstart; 1358 vm_size_t size; 1359 1360 orig_object = entry->object.vm_object; 1361 if ((orig_object->flags & OBJ_ANON) == 0) 1362 return; 1363 if (orig_object->ref_count <= 1) 1364 return; 1365 VM_OBJECT_WUNLOCK(orig_object); 1366 1367 offidxstart = OFF_TO_IDX(entry->offset); 1368 size = atop(entry->end - entry->start); 1369 1370 /* 1371 * If swap_pager_copy() is later called, it will convert new_object 1372 * into a swap object. 1373 */ 1374 new_object = vm_object_allocate_anon(size); 1375 1376 /* 1377 * At this point, the new object is still private, so the order in 1378 * which the original and new objects are locked does not matter. 1379 */ 1380 VM_OBJECT_WLOCK(new_object); 1381 VM_OBJECT_WLOCK(orig_object); 1382 new_object->domain = orig_object->domain; 1383 source = orig_object->backing_object; 1384 if (source != NULL) { 1385 if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) { 1386 VM_OBJECT_WLOCK(source); 1387 if ((source->flags & OBJ_DEAD) != 0) { 1388 VM_OBJECT_WUNLOCK(source); 1389 VM_OBJECT_WUNLOCK(orig_object); 1390 VM_OBJECT_WUNLOCK(new_object); 1391 vm_object_deallocate(new_object); 1392 VM_OBJECT_WLOCK(orig_object); 1393 return; 1394 } 1395 vm_object_backing_insert_locked(new_object, source); 1396 vm_object_reference_locked(source); /* for new_object */ 1397 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1398 VM_OBJECT_WUNLOCK(source); 1399 } else { 1400 vm_object_backing_insert(new_object, source); 1401 vm_object_reference(source); 1402 } 1403 new_object->backing_object_offset = 1404 orig_object->backing_object_offset + entry->offset; 1405 } 1406 if (orig_object->cred != NULL) { 1407 new_object->cred = orig_object->cred; 1408 crhold(orig_object->cred); 1409 new_object->charge = ptoa(size); 1410 KASSERT(orig_object->charge >= ptoa(size), 1411 ("orig_object->charge < 0")); 1412 orig_object->charge -= ptoa(size); 1413 } 1414 retry: 1415 m = vm_page_find_least(orig_object, offidxstart); 1416 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1417 m = m_next) { 1418 m_next = TAILQ_NEXT(m, listq); 1419 1420 /* 1421 * We must wait for pending I/O to complete before we can 1422 * rename the page. 1423 * 1424 * We do not have to VM_PROT_NONE the page as mappings should 1425 * not be changed by this operation. 1426 */ 1427 if (vm_page_tryxbusy(m) == 0) { 1428 VM_OBJECT_WUNLOCK(new_object); 1429 vm_page_sleep_if_busy(m, "spltwt"); 1430 VM_OBJECT_WLOCK(new_object); 1431 goto retry; 1432 } 1433 1434 /* vm_page_rename() will dirty the page. */ 1435 if (vm_page_rename(m, new_object, idx)) { 1436 vm_page_xunbusy(m); 1437 VM_OBJECT_WUNLOCK(new_object); 1438 VM_OBJECT_WUNLOCK(orig_object); 1439 vm_radix_wait(); 1440 VM_OBJECT_WLOCK(orig_object); 1441 VM_OBJECT_WLOCK(new_object); 1442 goto retry; 1443 } 1444 1445 #if VM_NRESERVLEVEL > 0 1446 /* 1447 * If some of the reservation's allocated pages remain with 1448 * the original object, then transferring the reservation to 1449 * the new object is neither particularly beneficial nor 1450 * particularly harmful as compared to leaving the reservation 1451 * with the original object. If, however, all of the 1452 * reservation's allocated pages are transferred to the new 1453 * object, then transferring the reservation is typically 1454 * beneficial. Determining which of these two cases applies 1455 * would be more costly than unconditionally renaming the 1456 * reservation. 1457 */ 1458 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1459 #endif 1460 if (orig_object->type != OBJT_SWAP) 1461 vm_page_xunbusy(m); 1462 } 1463 if (orig_object->type == OBJT_SWAP) { 1464 /* 1465 * swap_pager_copy() can sleep, in which case the orig_object's 1466 * and new_object's locks are released and reacquired. 1467 */ 1468 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1469 TAILQ_FOREACH(m, &new_object->memq, listq) 1470 vm_page_xunbusy(m); 1471 } 1472 VM_OBJECT_WUNLOCK(orig_object); 1473 VM_OBJECT_WUNLOCK(new_object); 1474 entry->object.vm_object = new_object; 1475 entry->offset = 0LL; 1476 vm_object_deallocate(orig_object); 1477 VM_OBJECT_WLOCK(new_object); 1478 } 1479 1480 #define OBSC_COLLAPSE_NOWAIT 0x0002 1481 #define OBSC_COLLAPSE_WAIT 0x0004 1482 1483 static vm_page_t 1484 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1485 int op) 1486 { 1487 vm_object_t backing_object; 1488 1489 VM_OBJECT_ASSERT_WLOCKED(object); 1490 backing_object = object->backing_object; 1491 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1492 1493 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1494 ("invalid ownership %p %p %p", p, object, backing_object)); 1495 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1496 return (next); 1497 /* The page is only NULL when rename fails. */ 1498 if (p == NULL) { 1499 VM_OBJECT_WUNLOCK(object); 1500 VM_OBJECT_WUNLOCK(backing_object); 1501 vm_radix_wait(); 1502 } else { 1503 if (p->object == object) 1504 VM_OBJECT_WUNLOCK(backing_object); 1505 else 1506 VM_OBJECT_WUNLOCK(object); 1507 vm_page_busy_sleep(p, "vmocol", false); 1508 } 1509 VM_OBJECT_WLOCK(object); 1510 VM_OBJECT_WLOCK(backing_object); 1511 return (TAILQ_FIRST(&backing_object->memq)); 1512 } 1513 1514 static bool 1515 vm_object_scan_all_shadowed(vm_object_t object) 1516 { 1517 vm_object_t backing_object; 1518 vm_page_t p, pp; 1519 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1520 1521 VM_OBJECT_ASSERT_WLOCKED(object); 1522 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1523 1524 backing_object = object->backing_object; 1525 1526 if ((backing_object->flags & OBJ_ANON) == 0) 1527 return (false); 1528 1529 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1530 p = vm_page_find_least(backing_object, pi); 1531 ps = swap_pager_find_least(backing_object, pi); 1532 1533 /* 1534 * Only check pages inside the parent object's range and 1535 * inside the parent object's mapping of the backing object. 1536 */ 1537 for (;; pi++) { 1538 if (p != NULL && p->pindex < pi) 1539 p = TAILQ_NEXT(p, listq); 1540 if (ps < pi) 1541 ps = swap_pager_find_least(backing_object, pi); 1542 if (p == NULL && ps >= backing_object->size) 1543 break; 1544 else if (p == NULL) 1545 pi = ps; 1546 else 1547 pi = MIN(p->pindex, ps); 1548 1549 new_pindex = pi - backing_offset_index; 1550 if (new_pindex >= object->size) 1551 break; 1552 1553 /* 1554 * See if the parent has the page or if the parent's object 1555 * pager has the page. If the parent has the page but the page 1556 * is not valid, the parent's object pager must have the page. 1557 * 1558 * If this fails, the parent does not completely shadow the 1559 * object and we might as well give up now. 1560 */ 1561 pp = vm_page_lookup(object, new_pindex); 1562 /* 1563 * The valid check here is stable due to object lock being 1564 * required to clear valid and initiate paging. 1565 */ 1566 if ((pp == NULL || vm_page_none_valid(pp)) && 1567 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1568 return (false); 1569 } 1570 return (true); 1571 } 1572 1573 static bool 1574 vm_object_collapse_scan(vm_object_t object, int op) 1575 { 1576 vm_object_t backing_object; 1577 vm_page_t next, p, pp; 1578 vm_pindex_t backing_offset_index, new_pindex; 1579 1580 VM_OBJECT_ASSERT_WLOCKED(object); 1581 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1582 1583 backing_object = object->backing_object; 1584 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1585 1586 /* 1587 * Initial conditions 1588 */ 1589 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1590 vm_object_set_flag(backing_object, OBJ_DEAD); 1591 1592 /* 1593 * Our scan 1594 */ 1595 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1596 next = TAILQ_NEXT(p, listq); 1597 new_pindex = p->pindex - backing_offset_index; 1598 1599 /* 1600 * Check for busy page 1601 */ 1602 if (vm_page_tryxbusy(p) == 0) { 1603 next = vm_object_collapse_scan_wait(object, p, next, op); 1604 continue; 1605 } 1606 1607 KASSERT(p->object == backing_object, 1608 ("vm_object_collapse_scan: object mismatch")); 1609 1610 if (p->pindex < backing_offset_index || 1611 new_pindex >= object->size) { 1612 if (backing_object->type == OBJT_SWAP) 1613 swap_pager_freespace(backing_object, p->pindex, 1614 1); 1615 1616 KASSERT(!pmap_page_is_mapped(p), 1617 ("freeing mapped page %p", p)); 1618 if (vm_page_remove(p)) 1619 vm_page_free(p); 1620 else 1621 vm_page_xunbusy(p); 1622 continue; 1623 } 1624 1625 pp = vm_page_lookup(object, new_pindex); 1626 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1627 vm_page_xunbusy(p); 1628 /* 1629 * The page in the parent is busy and possibly not 1630 * (yet) valid. Until its state is finalized by the 1631 * busy bit owner, we can't tell whether it shadows the 1632 * original page. Therefore, we must either skip it 1633 * and the original (backing_object) page or wait for 1634 * its state to be finalized. 1635 * 1636 * This is due to a race with vm_fault() where we must 1637 * unbusy the original (backing_obj) page before we can 1638 * (re)lock the parent. Hence we can get here. 1639 */ 1640 next = vm_object_collapse_scan_wait(object, pp, next, 1641 op); 1642 continue; 1643 } 1644 1645 KASSERT(pp == NULL || !vm_page_none_valid(pp), 1646 ("unbusy invalid page %p", pp)); 1647 1648 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1649 NULL)) { 1650 /* 1651 * The page already exists in the parent OR swap exists 1652 * for this location in the parent. Leave the parent's 1653 * page alone. Destroy the original page from the 1654 * backing object. 1655 */ 1656 if (backing_object->type == OBJT_SWAP) 1657 swap_pager_freespace(backing_object, p->pindex, 1658 1); 1659 KASSERT(!pmap_page_is_mapped(p), 1660 ("freeing mapped page %p", p)); 1661 if (vm_page_remove(p)) 1662 vm_page_free(p); 1663 else 1664 vm_page_xunbusy(p); 1665 if (pp != NULL) 1666 vm_page_xunbusy(pp); 1667 continue; 1668 } 1669 1670 /* 1671 * Page does not exist in parent, rename the page from the 1672 * backing object to the main object. 1673 * 1674 * If the page was mapped to a process, it can remain mapped 1675 * through the rename. vm_page_rename() will dirty the page. 1676 */ 1677 if (vm_page_rename(p, object, new_pindex)) { 1678 vm_page_xunbusy(p); 1679 if (pp != NULL) 1680 vm_page_xunbusy(pp); 1681 next = vm_object_collapse_scan_wait(object, NULL, next, 1682 op); 1683 continue; 1684 } 1685 1686 /* Use the old pindex to free the right page. */ 1687 if (backing_object->type == OBJT_SWAP) 1688 swap_pager_freespace(backing_object, 1689 new_pindex + backing_offset_index, 1); 1690 1691 #if VM_NRESERVLEVEL > 0 1692 /* 1693 * Rename the reservation. 1694 */ 1695 vm_reserv_rename(p, object, backing_object, 1696 backing_offset_index); 1697 #endif 1698 vm_page_xunbusy(p); 1699 } 1700 return (true); 1701 } 1702 1703 1704 /* 1705 * this version of collapse allows the operation to occur earlier and 1706 * when paging_in_progress is true for an object... This is not a complete 1707 * operation, but should plug 99.9% of the rest of the leaks. 1708 */ 1709 static void 1710 vm_object_qcollapse(vm_object_t object) 1711 { 1712 vm_object_t backing_object = object->backing_object; 1713 1714 VM_OBJECT_ASSERT_WLOCKED(object); 1715 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1716 1717 if (backing_object->ref_count != 1) 1718 return; 1719 1720 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1721 } 1722 1723 /* 1724 * vm_object_collapse: 1725 * 1726 * Collapse an object with the object backing it. 1727 * Pages in the backing object are moved into the 1728 * parent, and the backing object is deallocated. 1729 */ 1730 void 1731 vm_object_collapse(vm_object_t object) 1732 { 1733 vm_object_t backing_object, new_backing_object; 1734 1735 VM_OBJECT_ASSERT_WLOCKED(object); 1736 1737 while (TRUE) { 1738 /* 1739 * Verify that the conditions are right for collapse: 1740 * 1741 * The object exists and the backing object exists. 1742 */ 1743 if ((backing_object = object->backing_object) == NULL) 1744 break; 1745 1746 /* 1747 * we check the backing object first, because it is most likely 1748 * not collapsable. 1749 */ 1750 if ((backing_object->flags & OBJ_ANON) == 0) 1751 break; 1752 VM_OBJECT_WLOCK(backing_object); 1753 if ((backing_object->flags & OBJ_DEAD) != 0 || 1754 (object->flags & (OBJ_DEAD | OBJ_ANON)) != OBJ_ANON) { 1755 VM_OBJECT_WUNLOCK(backing_object); 1756 break; 1757 } 1758 1759 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 || 1760 REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) { 1761 vm_object_qcollapse(object); 1762 VM_OBJECT_WUNLOCK(backing_object); 1763 break; 1764 } 1765 1766 /* 1767 * We know that we can either collapse the backing object (if 1768 * the parent is the only reference to it) or (perhaps) have 1769 * the parent bypass the object if the parent happens to shadow 1770 * all the resident pages in the entire backing object. 1771 * 1772 * This is ignoring pager-backed pages such as swap pages. 1773 * vm_object_collapse_scan fails the shadowing test in this 1774 * case. 1775 */ 1776 if (backing_object->ref_count == 1) { 1777 vm_object_pip_add(object, 1); 1778 vm_object_pip_add(backing_object, 1); 1779 1780 /* 1781 * If there is exactly one reference to the backing 1782 * object, we can collapse it into the parent. 1783 */ 1784 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1785 1786 #if VM_NRESERVLEVEL > 0 1787 /* 1788 * Break any reservations from backing_object. 1789 */ 1790 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1791 vm_reserv_break_all(backing_object); 1792 #endif 1793 1794 /* 1795 * Move the pager from backing_object to object. 1796 */ 1797 if (backing_object->type == OBJT_SWAP) { 1798 /* 1799 * swap_pager_copy() can sleep, in which case 1800 * the backing_object's and object's locks are 1801 * released and reacquired. 1802 * Since swap_pager_copy() is being asked to 1803 * destroy the source, it will change the 1804 * backing_object's type to OBJT_DEFAULT. 1805 */ 1806 swap_pager_copy( 1807 backing_object, 1808 object, 1809 OFF_TO_IDX(object->backing_object_offset), TRUE); 1810 } 1811 /* 1812 * Object now shadows whatever backing_object did. 1813 * Note that the reference to 1814 * backing_object->backing_object moves from within 1815 * backing_object to within object. 1816 */ 1817 vm_object_backing_remove_locked(object); 1818 new_backing_object = backing_object->backing_object; 1819 if (new_backing_object != NULL) { 1820 VM_OBJECT_WLOCK(new_backing_object); 1821 vm_object_backing_remove_locked(backing_object); 1822 vm_object_backing_insert_locked(object, 1823 new_backing_object); 1824 VM_OBJECT_WUNLOCK(new_backing_object); 1825 } 1826 object->backing_object_offset += 1827 backing_object->backing_object_offset; 1828 1829 /* 1830 * Discard backing_object. 1831 * 1832 * Since the backing object has no pages, no pager left, 1833 * and no object references within it, all that is 1834 * necessary is to dispose of it. 1835 */ 1836 KASSERT(backing_object->ref_count == 1, ( 1837 "backing_object %p was somehow re-referenced during collapse!", 1838 backing_object)); 1839 vm_object_pip_wakeup(backing_object); 1840 backing_object->type = OBJT_DEAD; 1841 backing_object->ref_count = 0; 1842 VM_OBJECT_WUNLOCK(backing_object); 1843 vm_object_destroy(backing_object); 1844 1845 vm_object_pip_wakeup(object); 1846 counter_u64_add(object_collapses, 1); 1847 } else { 1848 /* 1849 * If we do not entirely shadow the backing object, 1850 * there is nothing we can do so we give up. 1851 */ 1852 if (object->resident_page_count != object->size && 1853 !vm_object_scan_all_shadowed(object)) { 1854 VM_OBJECT_WUNLOCK(backing_object); 1855 break; 1856 } 1857 1858 /* 1859 * Make the parent shadow the next object in the 1860 * chain. Deallocating backing_object will not remove 1861 * it, since its reference count is at least 2. 1862 */ 1863 vm_object_backing_remove_locked(object); 1864 1865 new_backing_object = backing_object->backing_object; 1866 if (new_backing_object != NULL) { 1867 vm_object_backing_insert(object, 1868 new_backing_object); 1869 vm_object_reference(new_backing_object); 1870 object->backing_object_offset += 1871 backing_object->backing_object_offset; 1872 } 1873 1874 /* 1875 * Drop the reference count on backing_object. Since 1876 * its ref_count was at least 2, it will not vanish. 1877 */ 1878 refcount_release(&backing_object->ref_count); 1879 VM_OBJECT_WUNLOCK(backing_object); 1880 counter_u64_add(object_bypasses, 1); 1881 } 1882 1883 /* 1884 * Try again with this object's new backing object. 1885 */ 1886 } 1887 } 1888 1889 /* 1890 * vm_object_page_remove: 1891 * 1892 * For the given object, either frees or invalidates each of the 1893 * specified pages. In general, a page is freed. However, if a page is 1894 * wired for any reason other than the existence of a managed, wired 1895 * mapping, then it may be invalidated but not removed from the object. 1896 * Pages are specified by the given range ["start", "end") and the option 1897 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1898 * extends from "start" to the end of the object. If the option 1899 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1900 * specified range are affected. If the option OBJPR_NOTMAPPED is 1901 * specified, then the pages within the specified range must have no 1902 * mappings. Otherwise, if this option is not specified, any mappings to 1903 * the specified pages are removed before the pages are freed or 1904 * invalidated. 1905 * 1906 * In general, this operation should only be performed on objects that 1907 * contain managed pages. There are, however, two exceptions. First, it 1908 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1909 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1910 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1911 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1912 * 1913 * The object must be locked. 1914 */ 1915 void 1916 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1917 int options) 1918 { 1919 vm_page_t p, next; 1920 1921 VM_OBJECT_ASSERT_WLOCKED(object); 1922 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1923 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1924 ("vm_object_page_remove: illegal options for object %p", object)); 1925 if (object->resident_page_count == 0) 1926 return; 1927 vm_object_pip_add(object, 1); 1928 again: 1929 p = vm_page_find_least(object, start); 1930 1931 /* 1932 * Here, the variable "p" is either (1) the page with the least pindex 1933 * greater than or equal to the parameter "start" or (2) NULL. 1934 */ 1935 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1936 next = TAILQ_NEXT(p, listq); 1937 1938 /* 1939 * If the page is wired for any reason besides the existence 1940 * of managed, wired mappings, then it cannot be freed. For 1941 * example, fictitious pages, which represent device memory, 1942 * are inherently wired and cannot be freed. They can, 1943 * however, be invalidated if the option OBJPR_CLEANONLY is 1944 * not specified. 1945 */ 1946 if (vm_page_tryxbusy(p) == 0) { 1947 vm_page_sleep_if_busy(p, "vmopar"); 1948 goto again; 1949 } 1950 if (vm_page_wired(p)) { 1951 wired: 1952 if ((options & OBJPR_NOTMAPPED) == 0 && 1953 object->ref_count != 0) 1954 pmap_remove_all(p); 1955 if ((options & OBJPR_CLEANONLY) == 0) { 1956 vm_page_invalid(p); 1957 vm_page_undirty(p); 1958 } 1959 vm_page_xunbusy(p); 1960 continue; 1961 } 1962 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1963 ("vm_object_page_remove: page %p is fictitious", p)); 1964 if ((options & OBJPR_CLEANONLY) != 0 && 1965 !vm_page_none_valid(p)) { 1966 if ((options & OBJPR_NOTMAPPED) == 0 && 1967 object->ref_count != 0 && 1968 !vm_page_try_remove_write(p)) 1969 goto wired; 1970 if (p->dirty != 0) { 1971 vm_page_xunbusy(p); 1972 continue; 1973 } 1974 } 1975 if ((options & OBJPR_NOTMAPPED) == 0 && 1976 object->ref_count != 0 && !vm_page_try_remove_all(p)) 1977 goto wired; 1978 vm_page_free(p); 1979 } 1980 vm_object_pip_wakeup(object); 1981 } 1982 1983 /* 1984 * vm_object_page_noreuse: 1985 * 1986 * For the given object, attempt to move the specified pages to 1987 * the head of the inactive queue. This bypasses regular LRU 1988 * operation and allows the pages to be reused quickly under memory 1989 * pressure. If a page is wired for any reason, then it will not 1990 * be queued. Pages are specified by the range ["start", "end"). 1991 * As a special case, if "end" is zero, then the range extends from 1992 * "start" to the end of the object. 1993 * 1994 * This operation should only be performed on objects that 1995 * contain non-fictitious, managed pages. 1996 * 1997 * The object must be locked. 1998 */ 1999 void 2000 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2001 { 2002 struct mtx *mtx; 2003 vm_page_t p, next; 2004 2005 VM_OBJECT_ASSERT_LOCKED(object); 2006 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2007 ("vm_object_page_noreuse: illegal object %p", object)); 2008 if (object->resident_page_count == 0) 2009 return; 2010 p = vm_page_find_least(object, start); 2011 2012 /* 2013 * Here, the variable "p" is either (1) the page with the least pindex 2014 * greater than or equal to the parameter "start" or (2) NULL. 2015 */ 2016 mtx = NULL; 2017 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2018 next = TAILQ_NEXT(p, listq); 2019 vm_page_change_lock(p, &mtx); 2020 vm_page_deactivate_noreuse(p); 2021 } 2022 if (mtx != NULL) 2023 mtx_unlock(mtx); 2024 } 2025 2026 /* 2027 * Populate the specified range of the object with valid pages. Returns 2028 * TRUE if the range is successfully populated and FALSE otherwise. 2029 * 2030 * Note: This function should be optimized to pass a larger array of 2031 * pages to vm_pager_get_pages() before it is applied to a non- 2032 * OBJT_DEVICE object. 2033 * 2034 * The object must be locked. 2035 */ 2036 boolean_t 2037 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2038 { 2039 vm_page_t m; 2040 vm_pindex_t pindex; 2041 int rv; 2042 2043 VM_OBJECT_ASSERT_WLOCKED(object); 2044 for (pindex = start; pindex < end; pindex++) { 2045 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2046 if (rv != VM_PAGER_OK) 2047 break; 2048 2049 /* 2050 * Keep "m" busy because a subsequent iteration may unlock 2051 * the object. 2052 */ 2053 } 2054 if (pindex > start) { 2055 m = vm_page_lookup(object, start); 2056 while (m != NULL && m->pindex < pindex) { 2057 vm_page_xunbusy(m); 2058 m = TAILQ_NEXT(m, listq); 2059 } 2060 } 2061 return (pindex == end); 2062 } 2063 2064 /* 2065 * Routine: vm_object_coalesce 2066 * Function: Coalesces two objects backing up adjoining 2067 * regions of memory into a single object. 2068 * 2069 * returns TRUE if objects were combined. 2070 * 2071 * NOTE: Only works at the moment if the second object is NULL - 2072 * if it's not, which object do we lock first? 2073 * 2074 * Parameters: 2075 * prev_object First object to coalesce 2076 * prev_offset Offset into prev_object 2077 * prev_size Size of reference to prev_object 2078 * next_size Size of reference to the second object 2079 * reserved Indicator that extension region has 2080 * swap accounted for 2081 * 2082 * Conditions: 2083 * The object must *not* be locked. 2084 */ 2085 boolean_t 2086 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2087 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2088 { 2089 vm_pindex_t next_pindex; 2090 2091 if (prev_object == NULL) 2092 return (TRUE); 2093 if ((prev_object->flags & OBJ_ANON) == 0) 2094 return (FALSE); 2095 2096 VM_OBJECT_WLOCK(prev_object); 2097 /* 2098 * Try to collapse the object first 2099 */ 2100 vm_object_collapse(prev_object); 2101 2102 /* 2103 * Can't coalesce if: . more than one reference . paged out . shadows 2104 * another object . has a copy elsewhere (any of which mean that the 2105 * pages not mapped to prev_entry may be in use anyway) 2106 */ 2107 if (prev_object->backing_object != NULL) { 2108 VM_OBJECT_WUNLOCK(prev_object); 2109 return (FALSE); 2110 } 2111 2112 prev_size >>= PAGE_SHIFT; 2113 next_size >>= PAGE_SHIFT; 2114 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2115 2116 if (prev_object->ref_count > 1 && 2117 prev_object->size != next_pindex && 2118 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2119 VM_OBJECT_WUNLOCK(prev_object); 2120 return (FALSE); 2121 } 2122 2123 /* 2124 * Account for the charge. 2125 */ 2126 if (prev_object->cred != NULL) { 2127 2128 /* 2129 * If prev_object was charged, then this mapping, 2130 * although not charged now, may become writable 2131 * later. Non-NULL cred in the object would prevent 2132 * swap reservation during enabling of the write 2133 * access, so reserve swap now. Failed reservation 2134 * cause allocation of the separate object for the map 2135 * entry, and swap reservation for this entry is 2136 * managed in appropriate time. 2137 */ 2138 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2139 prev_object->cred)) { 2140 VM_OBJECT_WUNLOCK(prev_object); 2141 return (FALSE); 2142 } 2143 prev_object->charge += ptoa(next_size); 2144 } 2145 2146 /* 2147 * Remove any pages that may still be in the object from a previous 2148 * deallocation. 2149 */ 2150 if (next_pindex < prev_object->size) { 2151 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2152 next_size, 0); 2153 if (prev_object->type == OBJT_SWAP) 2154 swap_pager_freespace(prev_object, 2155 next_pindex, next_size); 2156 #if 0 2157 if (prev_object->cred != NULL) { 2158 KASSERT(prev_object->charge >= 2159 ptoa(prev_object->size - next_pindex), 2160 ("object %p overcharged 1 %jx %jx", prev_object, 2161 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2162 prev_object->charge -= ptoa(prev_object->size - 2163 next_pindex); 2164 } 2165 #endif 2166 } 2167 2168 /* 2169 * Extend the object if necessary. 2170 */ 2171 if (next_pindex + next_size > prev_object->size) 2172 prev_object->size = next_pindex + next_size; 2173 2174 VM_OBJECT_WUNLOCK(prev_object); 2175 return (TRUE); 2176 } 2177 2178 void 2179 vm_object_set_writeable_dirty(vm_object_t object) 2180 { 2181 2182 VM_OBJECT_ASSERT_LOCKED(object); 2183 2184 /* Only set for vnodes & tmpfs */ 2185 if (object->type != OBJT_VNODE && 2186 (object->flags & OBJ_TMPFS_NODE) == 0) 2187 return; 2188 atomic_add_int(&object->generation, 1); 2189 } 2190 2191 /* 2192 * vm_object_unwire: 2193 * 2194 * For each page offset within the specified range of the given object, 2195 * find the highest-level page in the shadow chain and unwire it. A page 2196 * must exist at every page offset, and the highest-level page must be 2197 * wired. 2198 */ 2199 void 2200 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2201 uint8_t queue) 2202 { 2203 vm_object_t tobject, t1object; 2204 vm_page_t m, tm; 2205 vm_pindex_t end_pindex, pindex, tpindex; 2206 int depth, locked_depth; 2207 2208 KASSERT((offset & PAGE_MASK) == 0, 2209 ("vm_object_unwire: offset is not page aligned")); 2210 KASSERT((length & PAGE_MASK) == 0, 2211 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2212 /* The wired count of a fictitious page never changes. */ 2213 if ((object->flags & OBJ_FICTITIOUS) != 0) 2214 return; 2215 pindex = OFF_TO_IDX(offset); 2216 end_pindex = pindex + atop(length); 2217 again: 2218 locked_depth = 1; 2219 VM_OBJECT_RLOCK(object); 2220 m = vm_page_find_least(object, pindex); 2221 while (pindex < end_pindex) { 2222 if (m == NULL || pindex < m->pindex) { 2223 /* 2224 * The first object in the shadow chain doesn't 2225 * contain a page at the current index. Therefore, 2226 * the page must exist in a backing object. 2227 */ 2228 tobject = object; 2229 tpindex = pindex; 2230 depth = 0; 2231 do { 2232 tpindex += 2233 OFF_TO_IDX(tobject->backing_object_offset); 2234 tobject = tobject->backing_object; 2235 KASSERT(tobject != NULL, 2236 ("vm_object_unwire: missing page")); 2237 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2238 goto next_page; 2239 depth++; 2240 if (depth == locked_depth) { 2241 locked_depth++; 2242 VM_OBJECT_RLOCK(tobject); 2243 } 2244 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2245 NULL); 2246 } else { 2247 tm = m; 2248 m = TAILQ_NEXT(m, listq); 2249 } 2250 if (vm_page_trysbusy(tm) == 0) { 2251 for (tobject = object; locked_depth >= 1; 2252 locked_depth--) { 2253 t1object = tobject->backing_object; 2254 if (tm->object != tobject) 2255 VM_OBJECT_RUNLOCK(tobject); 2256 tobject = t1object; 2257 } 2258 vm_page_busy_sleep(tm, "unwbo", true); 2259 goto again; 2260 } 2261 vm_page_unwire(tm, queue); 2262 vm_page_sunbusy(tm); 2263 next_page: 2264 pindex++; 2265 } 2266 /* Release the accumulated object locks. */ 2267 for (tobject = object; locked_depth >= 1; locked_depth--) { 2268 t1object = tobject->backing_object; 2269 VM_OBJECT_RUNLOCK(tobject); 2270 tobject = t1object; 2271 } 2272 } 2273 2274 /* 2275 * Return the vnode for the given object, or NULL if none exists. 2276 * For tmpfs objects, the function may return NULL if there is 2277 * no vnode allocated at the time of the call. 2278 */ 2279 struct vnode * 2280 vm_object_vnode(vm_object_t object) 2281 { 2282 struct vnode *vp; 2283 2284 VM_OBJECT_ASSERT_LOCKED(object); 2285 if (object->type == OBJT_VNODE) { 2286 vp = object->handle; 2287 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2288 } else if (object->type == OBJT_SWAP && 2289 (object->flags & OBJ_TMPFS) != 0) { 2290 vp = object->un_pager.swp.swp_tmpfs; 2291 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2292 } else { 2293 vp = NULL; 2294 } 2295 return (vp); 2296 } 2297 2298 2299 /* 2300 * Busy the vm object. This prevents new pages belonging to the object from 2301 * becoming busy. Existing pages persist as busy. Callers are responsible 2302 * for checking page state before proceeding. 2303 */ 2304 void 2305 vm_object_busy(vm_object_t obj) 2306 { 2307 2308 VM_OBJECT_ASSERT_LOCKED(obj); 2309 2310 refcount_acquire(&obj->busy); 2311 /* The fence is required to order loads of page busy. */ 2312 atomic_thread_fence_acq_rel(); 2313 } 2314 2315 void 2316 vm_object_unbusy(vm_object_t obj) 2317 { 2318 2319 2320 refcount_release(&obj->busy); 2321 } 2322 2323 void 2324 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2325 { 2326 2327 VM_OBJECT_ASSERT_UNLOCKED(obj); 2328 2329 if (obj->busy) 2330 refcount_sleep(&obj->busy, wmesg, PVM); 2331 } 2332 2333 /* 2334 * Return the kvme type of the given object. 2335 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2336 */ 2337 int 2338 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2339 { 2340 2341 VM_OBJECT_ASSERT_LOCKED(object); 2342 if (vpp != NULL) 2343 *vpp = vm_object_vnode(object); 2344 switch (object->type) { 2345 case OBJT_DEFAULT: 2346 return (KVME_TYPE_DEFAULT); 2347 case OBJT_VNODE: 2348 return (KVME_TYPE_VNODE); 2349 case OBJT_SWAP: 2350 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2351 return (KVME_TYPE_VNODE); 2352 return (KVME_TYPE_SWAP); 2353 case OBJT_DEVICE: 2354 return (KVME_TYPE_DEVICE); 2355 case OBJT_PHYS: 2356 return (KVME_TYPE_PHYS); 2357 case OBJT_DEAD: 2358 return (KVME_TYPE_DEAD); 2359 case OBJT_SG: 2360 return (KVME_TYPE_SG); 2361 case OBJT_MGTDEVICE: 2362 return (KVME_TYPE_MGTDEVICE); 2363 default: 2364 return (KVME_TYPE_UNKNOWN); 2365 } 2366 } 2367 2368 static int 2369 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2370 { 2371 struct kinfo_vmobject *kvo; 2372 char *fullpath, *freepath; 2373 struct vnode *vp; 2374 struct vattr va; 2375 vm_object_t obj; 2376 vm_page_t m; 2377 int count, error; 2378 2379 if (req->oldptr == NULL) { 2380 /* 2381 * If an old buffer has not been provided, generate an 2382 * estimate of the space needed for a subsequent call. 2383 */ 2384 mtx_lock(&vm_object_list_mtx); 2385 count = 0; 2386 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2387 if (obj->type == OBJT_DEAD) 2388 continue; 2389 count++; 2390 } 2391 mtx_unlock(&vm_object_list_mtx); 2392 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2393 count * 11 / 10)); 2394 } 2395 2396 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2397 error = 0; 2398 2399 /* 2400 * VM objects are type stable and are never removed from the 2401 * list once added. This allows us to safely read obj->object_list 2402 * after reacquiring the VM object lock. 2403 */ 2404 mtx_lock(&vm_object_list_mtx); 2405 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2406 if (obj->type == OBJT_DEAD) 2407 continue; 2408 VM_OBJECT_RLOCK(obj); 2409 if (obj->type == OBJT_DEAD) { 2410 VM_OBJECT_RUNLOCK(obj); 2411 continue; 2412 } 2413 mtx_unlock(&vm_object_list_mtx); 2414 kvo->kvo_size = ptoa(obj->size); 2415 kvo->kvo_resident = obj->resident_page_count; 2416 kvo->kvo_ref_count = obj->ref_count; 2417 kvo->kvo_shadow_count = obj->shadow_count; 2418 kvo->kvo_memattr = obj->memattr; 2419 kvo->kvo_active = 0; 2420 kvo->kvo_inactive = 0; 2421 TAILQ_FOREACH(m, &obj->memq, listq) { 2422 /* 2423 * A page may belong to the object but be 2424 * dequeued and set to PQ_NONE while the 2425 * object lock is not held. This makes the 2426 * reads of m->queue below racy, and we do not 2427 * count pages set to PQ_NONE. However, this 2428 * sysctl is only meant to give an 2429 * approximation of the system anyway. 2430 */ 2431 if (m->queue == PQ_ACTIVE) 2432 kvo->kvo_active++; 2433 else if (m->queue == PQ_INACTIVE) 2434 kvo->kvo_inactive++; 2435 } 2436 2437 kvo->kvo_vn_fileid = 0; 2438 kvo->kvo_vn_fsid = 0; 2439 kvo->kvo_vn_fsid_freebsd11 = 0; 2440 freepath = NULL; 2441 fullpath = ""; 2442 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2443 if (vp != NULL) 2444 vref(vp); 2445 VM_OBJECT_RUNLOCK(obj); 2446 if (vp != NULL) { 2447 vn_fullpath(curthread, vp, &fullpath, &freepath); 2448 vn_lock(vp, LK_SHARED | LK_RETRY); 2449 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2450 kvo->kvo_vn_fileid = va.va_fileid; 2451 kvo->kvo_vn_fsid = va.va_fsid; 2452 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2453 /* truncate */ 2454 } 2455 vput(vp); 2456 } 2457 2458 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2459 if (freepath != NULL) 2460 free(freepath, M_TEMP); 2461 2462 /* Pack record size down */ 2463 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2464 + strlen(kvo->kvo_path) + 1; 2465 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2466 sizeof(uint64_t)); 2467 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2468 mtx_lock(&vm_object_list_mtx); 2469 if (error) 2470 break; 2471 } 2472 mtx_unlock(&vm_object_list_mtx); 2473 free(kvo, M_TEMP); 2474 return (error); 2475 } 2476 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2477 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2478 "List of VM objects"); 2479 2480 #include "opt_ddb.h" 2481 #ifdef DDB 2482 #include <sys/kernel.h> 2483 2484 #include <sys/cons.h> 2485 2486 #include <ddb/ddb.h> 2487 2488 static int 2489 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2490 { 2491 vm_map_t tmpm; 2492 vm_map_entry_t tmpe; 2493 vm_object_t obj; 2494 2495 if (map == 0) 2496 return 0; 2497 2498 if (entry == 0) { 2499 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2500 if (_vm_object_in_map(map, object, tmpe)) { 2501 return 1; 2502 } 2503 } 2504 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2505 tmpm = entry->object.sub_map; 2506 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2507 if (_vm_object_in_map(tmpm, object, tmpe)) { 2508 return 1; 2509 } 2510 } 2511 } else if ((obj = entry->object.vm_object) != NULL) { 2512 for (; obj; obj = obj->backing_object) 2513 if (obj == object) { 2514 return 1; 2515 } 2516 } 2517 return 0; 2518 } 2519 2520 static int 2521 vm_object_in_map(vm_object_t object) 2522 { 2523 struct proc *p; 2524 2525 /* sx_slock(&allproc_lock); */ 2526 FOREACH_PROC_IN_SYSTEM(p) { 2527 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2528 continue; 2529 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2530 /* sx_sunlock(&allproc_lock); */ 2531 return 1; 2532 } 2533 } 2534 /* sx_sunlock(&allproc_lock); */ 2535 if (_vm_object_in_map(kernel_map, object, 0)) 2536 return 1; 2537 return 0; 2538 } 2539 2540 DB_SHOW_COMMAND(vmochk, vm_object_check) 2541 { 2542 vm_object_t object; 2543 2544 /* 2545 * make sure that internal objs are in a map somewhere 2546 * and none have zero ref counts. 2547 */ 2548 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2549 if ((object->flags & OBJ_ANON) != 0) { 2550 if (object->ref_count == 0) { 2551 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2552 (long)object->size); 2553 } 2554 if (!vm_object_in_map(object)) { 2555 db_printf( 2556 "vmochk: internal obj is not in a map: " 2557 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2558 object->ref_count, (u_long)object->size, 2559 (u_long)object->size, 2560 (void *)object->backing_object); 2561 } 2562 } 2563 } 2564 } 2565 2566 /* 2567 * vm_object_print: [ debug ] 2568 */ 2569 DB_SHOW_COMMAND(object, vm_object_print_static) 2570 { 2571 /* XXX convert args. */ 2572 vm_object_t object = (vm_object_t)addr; 2573 boolean_t full = have_addr; 2574 2575 vm_page_t p; 2576 2577 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2578 #define count was_count 2579 2580 int count; 2581 2582 if (object == NULL) 2583 return; 2584 2585 db_iprintf( 2586 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2587 object, (int)object->type, (uintmax_t)object->size, 2588 object->resident_page_count, object->ref_count, object->flags, 2589 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2590 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2591 object->shadow_count, 2592 object->backing_object ? object->backing_object->ref_count : 0, 2593 object->backing_object, (uintmax_t)object->backing_object_offset); 2594 2595 if (!full) 2596 return; 2597 2598 db_indent += 2; 2599 count = 0; 2600 TAILQ_FOREACH(p, &object->memq, listq) { 2601 if (count == 0) 2602 db_iprintf("memory:="); 2603 else if (count == 6) { 2604 db_printf("\n"); 2605 db_iprintf(" ..."); 2606 count = 0; 2607 } else 2608 db_printf(","); 2609 count++; 2610 2611 db_printf("(off=0x%jx,page=0x%jx)", 2612 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2613 } 2614 if (count != 0) 2615 db_printf("\n"); 2616 db_indent -= 2; 2617 } 2618 2619 /* XXX. */ 2620 #undef count 2621 2622 /* XXX need this non-static entry for calling from vm_map_print. */ 2623 void 2624 vm_object_print( 2625 /* db_expr_t */ long addr, 2626 boolean_t have_addr, 2627 /* db_expr_t */ long count, 2628 char *modif) 2629 { 2630 vm_object_print_static(addr, have_addr, count, modif); 2631 } 2632 2633 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2634 { 2635 vm_object_t object; 2636 vm_pindex_t fidx; 2637 vm_paddr_t pa; 2638 vm_page_t m, prev_m; 2639 int rcount, nl, c; 2640 2641 nl = 0; 2642 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2643 db_printf("new object: %p\n", (void *)object); 2644 if (nl > 18) { 2645 c = cngetc(); 2646 if (c != ' ') 2647 return; 2648 nl = 0; 2649 } 2650 nl++; 2651 rcount = 0; 2652 fidx = 0; 2653 pa = -1; 2654 TAILQ_FOREACH(m, &object->memq, listq) { 2655 if (m->pindex > 128) 2656 break; 2657 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2658 prev_m->pindex + 1 != m->pindex) { 2659 if (rcount) { 2660 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2661 (long)fidx, rcount, (long)pa); 2662 if (nl > 18) { 2663 c = cngetc(); 2664 if (c != ' ') 2665 return; 2666 nl = 0; 2667 } 2668 nl++; 2669 rcount = 0; 2670 } 2671 } 2672 if (rcount && 2673 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2674 ++rcount; 2675 continue; 2676 } 2677 if (rcount) { 2678 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2679 (long)fidx, rcount, (long)pa); 2680 if (nl > 18) { 2681 c = cngetc(); 2682 if (c != ' ') 2683 return; 2684 nl = 0; 2685 } 2686 nl++; 2687 } 2688 fidx = m->pindex; 2689 pa = VM_PAGE_TO_PHYS(m); 2690 rcount = 1; 2691 } 2692 if (rcount) { 2693 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2694 (long)fidx, rcount, (long)pa); 2695 if (nl > 18) { 2696 c = cngetc(); 2697 if (c != ' ') 2698 return; 2699 nl = 0; 2700 } 2701 nl++; 2702 } 2703 } 2704 } 2705 #endif /* DDB */ 2706