xref: /freebsd/sys/vm/vm_object.c (revision 6b2c1e49da284f28ec7b52f7c031474087e37104)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *allclean,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *allclean);
119 static void	vm_object_qcollapse(vm_object_t object);
120 static void	vm_object_vndeallocate(vm_object_t object);
121 static void	vm_object_backing_remove(vm_object_t object);
122 
123 /*
124  *	Virtual memory objects maintain the actual data
125  *	associated with allocated virtual memory.  A given
126  *	page of memory exists within exactly one object.
127  *
128  *	An object is only deallocated when all "references"
129  *	are given up.  Only one "reference" to a given
130  *	region of an object should be writeable.
131  *
132  *	Associated with each object is a list of all resident
133  *	memory pages belonging to that object; this list is
134  *	maintained by the "vm_page" module, and locked by the object's
135  *	lock.
136  *
137  *	Each object also records a "pager" routine which is
138  *	used to retrieve (and store) pages to the proper backing
139  *	storage.  In addition, objects may be backed by other
140  *	objects from which they were virtual-copied.
141  *
142  *	The only items within the object structure which are
143  *	modified after time of creation are:
144  *		reference count		locked by object's lock
145  *		pager routine		locked by object's lock
146  *
147  */
148 
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;	/* lock for object list and count */
151 
152 struct vm_object kernel_object_store;
153 
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
155     "VM object stats");
156 
157 static counter_u64_t object_collapses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161 
162 static counter_u64_t object_bypasses = EARLY_COUNTER;
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166 
167 static void
168 counter_startup(void)
169 {
170 
171 	object_collapses = counter_u64_alloc(M_WAITOK);
172 	object_bypasses = counter_u64_alloc(M_WAITOK);
173 }
174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
175 
176 static uma_zone_t obj_zone;
177 
178 static int vm_object_zinit(void *mem, int size, int flags);
179 
180 #ifdef INVARIANTS
181 static void vm_object_zdtor(void *mem, int size, void *arg);
182 
183 static void
184 vm_object_zdtor(void *mem, int size, void *arg)
185 {
186 	vm_object_t object;
187 
188 	object = (vm_object_t)mem;
189 	KASSERT(object->ref_count == 0,
190 	    ("object %p ref_count = %d", object, object->ref_count));
191 	KASSERT(TAILQ_EMPTY(&object->memq),
192 	    ("object %p has resident pages in its memq", object));
193 	KASSERT(vm_radix_is_empty(&object->rtree),
194 	    ("object %p has resident pages in its trie", object));
195 #if VM_NRESERVLEVEL > 0
196 	KASSERT(LIST_EMPTY(&object->rvq),
197 	    ("object %p has reservations",
198 	    object));
199 #endif
200 	KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
201 	    ("object %p paging_in_progress = %d",
202 	    object, REFCOUNT_COUNT(object->paging_in_progress)));
203 	KASSERT(object->busy == 0,
204 	    ("object %p busy = %d",
205 	    object, object->busy));
206 	KASSERT(object->resident_page_count == 0,
207 	    ("object %p resident_page_count = %d",
208 	    object, object->resident_page_count));
209 	KASSERT(object->shadow_count == 0,
210 	    ("object %p shadow_count = %d",
211 	    object, object->shadow_count));
212 	KASSERT(object->type == OBJT_DEAD,
213 	    ("object %p has non-dead type %d",
214 	    object, object->type));
215 }
216 #endif
217 
218 static int
219 vm_object_zinit(void *mem, int size, int flags)
220 {
221 	vm_object_t object;
222 
223 	object = (vm_object_t)mem;
224 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
225 
226 	/* These are true for any object that has been freed */
227 	object->type = OBJT_DEAD;
228 	vm_radix_init(&object->rtree);
229 	refcount_init(&object->ref_count, 0);
230 	refcount_init(&object->paging_in_progress, 0);
231 	refcount_init(&object->busy, 0);
232 	object->resident_page_count = 0;
233 	object->shadow_count = 0;
234 	object->flags = OBJ_DEAD;
235 
236 	mtx_lock(&vm_object_list_mtx);
237 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238 	mtx_unlock(&vm_object_list_mtx);
239 	return (0);
240 }
241 
242 static void
243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
244     vm_object_t object)
245 {
246 
247 	TAILQ_INIT(&object->memq);
248 	LIST_INIT(&object->shadow_head);
249 
250 	object->type = type;
251 	if (type == OBJT_SWAP)
252 		pctrie_init(&object->un_pager.swp.swp_blks);
253 
254 	/*
255 	 * Ensure that swap_pager_swapoff() iteration over object_list
256 	 * sees up to date type and pctrie head if it observed
257 	 * non-dead object.
258 	 */
259 	atomic_thread_fence_rel();
260 
261 	object->pg_color = 0;
262 	object->flags = flags;
263 	object->size = size;
264 	object->domain.dr_policy = NULL;
265 	object->generation = 1;
266 	object->cleangeneration = 1;
267 	refcount_init(&object->ref_count, 1);
268 	object->memattr = VM_MEMATTR_DEFAULT;
269 	object->cred = NULL;
270 	object->charge = 0;
271 	object->handle = NULL;
272 	object->backing_object = NULL;
273 	object->backing_object_offset = (vm_ooffset_t) 0;
274 #if VM_NRESERVLEVEL > 0
275 	LIST_INIT(&object->rvq);
276 #endif
277 	umtx_shm_object_init(object);
278 }
279 
280 /*
281  *	vm_object_init:
282  *
283  *	Initialize the VM objects module.
284  */
285 void
286 vm_object_init(void)
287 {
288 	TAILQ_INIT(&vm_object_list);
289 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
290 
291 	rw_init(&kernel_object->lock, "kernel vm object");
292 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
293 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object);
294 #if VM_NRESERVLEVEL > 0
295 	kernel_object->flags |= OBJ_COLORED;
296 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
297 #endif
298 
299 	/*
300 	 * The lock portion of struct vm_object must be type stable due
301 	 * to vm_pageout_fallback_object_lock locking a vm object
302 	 * without holding any references to it.
303 	 */
304 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
305 #ifdef INVARIANTS
306 	    vm_object_zdtor,
307 #else
308 	    NULL,
309 #endif
310 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
311 
312 	vm_radix_zinit();
313 }
314 
315 void
316 vm_object_clear_flag(vm_object_t object, u_short bits)
317 {
318 
319 	VM_OBJECT_ASSERT_WLOCKED(object);
320 	object->flags &= ~bits;
321 }
322 
323 /*
324  *	Sets the default memory attribute for the specified object.  Pages
325  *	that are allocated to this object are by default assigned this memory
326  *	attribute.
327  *
328  *	Presently, this function must be called before any pages are allocated
329  *	to the object.  In the future, this requirement may be relaxed for
330  *	"default" and "swap" objects.
331  */
332 int
333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
334 {
335 
336 	VM_OBJECT_ASSERT_WLOCKED(object);
337 	switch (object->type) {
338 	case OBJT_DEFAULT:
339 	case OBJT_DEVICE:
340 	case OBJT_MGTDEVICE:
341 	case OBJT_PHYS:
342 	case OBJT_SG:
343 	case OBJT_SWAP:
344 	case OBJT_VNODE:
345 		if (!TAILQ_EMPTY(&object->memq))
346 			return (KERN_FAILURE);
347 		break;
348 	case OBJT_DEAD:
349 		return (KERN_INVALID_ARGUMENT);
350 	default:
351 		panic("vm_object_set_memattr: object %p is of undefined type",
352 		    object);
353 	}
354 	object->memattr = memattr;
355 	return (KERN_SUCCESS);
356 }
357 
358 void
359 vm_object_pip_add(vm_object_t object, short i)
360 {
361 
362 	refcount_acquiren(&object->paging_in_progress, i);
363 }
364 
365 void
366 vm_object_pip_wakeup(vm_object_t object)
367 {
368 
369 	refcount_release(&object->paging_in_progress);
370 }
371 
372 void
373 vm_object_pip_wakeupn(vm_object_t object, short i)
374 {
375 
376 	refcount_releasen(&object->paging_in_progress, i);
377 }
378 
379 void
380 vm_object_pip_wait(vm_object_t object, char *waitid)
381 {
382 
383 	VM_OBJECT_ASSERT_WLOCKED(object);
384 
385 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
386 		VM_OBJECT_WUNLOCK(object);
387 		refcount_wait(&object->paging_in_progress, waitid, PVM);
388 		VM_OBJECT_WLOCK(object);
389 	}
390 }
391 
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
394 {
395 
396 	VM_OBJECT_ASSERT_UNLOCKED(object);
397 
398 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
399 		refcount_wait(&object->paging_in_progress, waitid, PVM);
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 	u_short flags;
412 
413 	switch (type) {
414 	case OBJT_DEAD:
415 		panic("vm_object_allocate: can't create OBJT_DEAD");
416 	case OBJT_DEFAULT:
417 	case OBJT_SWAP:
418 		flags = OBJ_COLORED;
419 		break;
420 	case OBJT_DEVICE:
421 	case OBJT_SG:
422 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423 		break;
424 	case OBJT_MGTDEVICE:
425 		flags = OBJ_FICTITIOUS;
426 		break;
427 	case OBJT_PHYS:
428 		flags = OBJ_UNMANAGED;
429 		break;
430 	case OBJT_VNODE:
431 		flags = 0;
432 		break;
433 	default:
434 		panic("vm_object_allocate: type %d is undefined", type);
435 	}
436 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437 	_vm_object_allocate(type, size, flags, object);
438 
439 	return (object);
440 }
441 
442 /*
443  *	vm_object_allocate_anon:
444  *
445  *	Returns a new default object of the given size and marked as
446  *	anonymous memory for special split/collapse handling.  Color
447  *	to be initialized by the caller.
448  */
449 vm_object_t
450 vm_object_allocate_anon(vm_pindex_t size)
451 {
452 	vm_object_t object;
453 
454 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
455 	_vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
456 	    object);
457 
458 	return (object);
459 }
460 
461 
462 /*
463  *	vm_object_reference:
464  *
465  *	Gets another reference to the given object.  Note: OBJ_DEAD
466  *	objects can be referenced during final cleaning.
467  */
468 void
469 vm_object_reference(vm_object_t object)
470 {
471 	if (object == NULL)
472 		return;
473 	VM_OBJECT_RLOCK(object);
474 	vm_object_reference_locked(object);
475 	VM_OBJECT_RUNLOCK(object);
476 }
477 
478 /*
479  *	vm_object_reference_locked:
480  *
481  *	Gets another reference to the given object.
482  *
483  *	The object must be locked.
484  */
485 void
486 vm_object_reference_locked(vm_object_t object)
487 {
488 	struct vnode *vp;
489 
490 	VM_OBJECT_ASSERT_LOCKED(object);
491 	refcount_acquire(&object->ref_count);
492 	if (object->type == OBJT_VNODE) {
493 		vp = object->handle;
494 		vref(vp);
495 	}
496 }
497 
498 /*
499  * Handle deallocating an object of type OBJT_VNODE.
500  */
501 static void
502 vm_object_vndeallocate(vm_object_t object)
503 {
504 	struct vnode *vp = (struct vnode *) object->handle;
505 
506 	KASSERT(object->type == OBJT_VNODE,
507 	    ("vm_object_vndeallocate: not a vnode object"));
508 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
509 
510 	if (refcount_release(&object->ref_count) &&
511 	    !umtx_shm_vnobj_persistent)
512 		umtx_shm_object_terminated(object);
513 
514 	VM_OBJECT_RUNLOCK(object);
515 	/* vrele may need the vnode lock. */
516 	vrele(vp);
517 }
518 
519 /*
520  *	vm_object_deallocate:
521  *
522  *	Release a reference to the specified object,
523  *	gained either through a vm_object_allocate
524  *	or a vm_object_reference call.  When all references
525  *	are gone, storage associated with this object
526  *	may be relinquished.
527  *
528  *	No object may be locked.
529  */
530 void
531 vm_object_deallocate(vm_object_t object)
532 {
533 	vm_object_t robject, temp;
534 	bool released;
535 
536 	while (object != NULL) {
537 		VM_OBJECT_RLOCK(object);
538 		if (object->type == OBJT_VNODE) {
539 			vm_object_vndeallocate(object);
540 			return;
541 		}
542 
543 		/*
544 		 * If the reference count goes to 0 we start calling
545 		 * vm_object_terminate() on the object chain.  A ref count
546 		 * of 1 may be a special case depending on the shadow count
547 		 * being 0 or 1.  These cases require a write lock on the
548 		 * object.
549 		 */
550 		if ((object->flags & OBJ_ANON) == 0)
551 			released = refcount_release_if_gt(&object->ref_count, 1);
552 		else
553 			released = refcount_release_if_gt(&object->ref_count, 2);
554 		VM_OBJECT_RUNLOCK(object);
555 		if (released)
556 			return;
557 
558 		VM_OBJECT_WLOCK(object);
559 		KASSERT(object->ref_count != 0,
560 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
561 
562 		refcount_release(&object->ref_count);
563 		if (object->ref_count > 1) {
564 			VM_OBJECT_WUNLOCK(object);
565 			return;
566 		} else if (object->ref_count == 1) {
567 			if (object->shadow_count == 0 &&
568 			    (object->flags & OBJ_ANON) != 0) {
569 				vm_object_set_flag(object, OBJ_ONEMAPPING);
570 			} else if (object->shadow_count == 1) {
571 				KASSERT((object->flags & OBJ_ANON) != 0,
572 				    ("obj %p with shadow_count > 0 is not anon",
573 				    object));
574 				robject = LIST_FIRST(&object->shadow_head);
575 				KASSERT(robject != NULL,
576 				    ("vm_object_deallocate: ref_count: %d, "
577 				    "shadow_count: %d", object->ref_count,
578 				    object->shadow_count));
579 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580 				    ("shadowed tmpfs v_object %p", object));
581 				if (!VM_OBJECT_TRYWLOCK(robject)) {
582 					/*
583 					 * Avoid a potential deadlock.
584 					 */
585 					refcount_acquire(&object->ref_count);
586 					VM_OBJECT_WUNLOCK(object);
587 					/*
588 					 * More likely than not the thread
589 					 * holding robject's lock has lower
590 					 * priority than the current thread.
591 					 * Let the lower priority thread run.
592 					 */
593 					pause("vmo_de", 1);
594 					continue;
595 				}
596 				/*
597 				 * Collapse object into its shadow unless its
598 				 * shadow is dead.  In that case, object will
599 				 * be deallocated by the thread that is
600 				 * deallocating its shadow.
601 				 */
602 				if ((robject->flags &
603 				    (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON) {
604 
605 					refcount_acquire(&robject->ref_count);
606 retry:
607 					if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
608 						VM_OBJECT_WUNLOCK(object);
609 						vm_object_pip_wait(robject,
610 						    "objde1");
611 						temp = robject->backing_object;
612 						if (object == temp) {
613 							VM_OBJECT_WLOCK(object);
614 							goto retry;
615 						}
616 					} else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
617 						VM_OBJECT_WUNLOCK(robject);
618 						VM_OBJECT_WUNLOCK(object);
619 						refcount_wait(
620 						    &object->paging_in_progress,
621 						    "objde2", PVM);
622 						VM_OBJECT_WLOCK(robject);
623 						temp = robject->backing_object;
624 						if (object == temp) {
625 							VM_OBJECT_WLOCK(object);
626 							goto retry;
627 						}
628 					} else
629 						VM_OBJECT_WUNLOCK(object);
630 
631 					if (robject->ref_count == 1) {
632 						robject->ref_count--;
633 						object = robject;
634 						goto doterm;
635 					}
636 					object = robject;
637 					vm_object_collapse(object);
638 					VM_OBJECT_WUNLOCK(object);
639 					continue;
640 				}
641 				VM_OBJECT_WUNLOCK(robject);
642 			}
643 			VM_OBJECT_WUNLOCK(object);
644 			return;
645 		}
646 doterm:
647 		umtx_shm_object_terminated(object);
648 		temp = object->backing_object;
649 		if (temp != NULL) {
650 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
651 			    ("shadowed tmpfs v_object 2 %p", object));
652 			vm_object_backing_remove(object);
653 		}
654 		/*
655 		 * Don't double-terminate, we could be in a termination
656 		 * recursion due to the terminate having to sync data
657 		 * to disk.
658 		 */
659 		if ((object->flags & OBJ_DEAD) == 0) {
660 			vm_object_set_flag(object, OBJ_DEAD);
661 			vm_object_terminate(object);
662 		} else
663 			VM_OBJECT_WUNLOCK(object);
664 		object = temp;
665 	}
666 }
667 
668 /*
669  *	vm_object_destroy removes the object from the global object list
670  *      and frees the space for the object.
671  */
672 void
673 vm_object_destroy(vm_object_t object)
674 {
675 
676 	/*
677 	 * Release the allocation charge.
678 	 */
679 	if (object->cred != NULL) {
680 		swap_release_by_cred(object->charge, object->cred);
681 		object->charge = 0;
682 		crfree(object->cred);
683 		object->cred = NULL;
684 	}
685 
686 	/*
687 	 * Free the space for the object.
688 	 */
689 	uma_zfree(obj_zone, object);
690 }
691 
692 static void
693 vm_object_backing_remove_locked(vm_object_t object)
694 {
695 	vm_object_t backing_object;
696 
697 	backing_object = object->backing_object;
698 	VM_OBJECT_ASSERT_WLOCKED(object);
699 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
700 
701 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
702 		LIST_REMOVE(object, shadow_list);
703 		backing_object->shadow_count--;
704 		object->flags &= ~OBJ_SHADOWLIST;
705 	}
706 	object->backing_object = NULL;
707 }
708 
709 static void
710 vm_object_backing_remove(vm_object_t object)
711 {
712 	vm_object_t backing_object;
713 
714 	VM_OBJECT_ASSERT_WLOCKED(object);
715 
716 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
717 		backing_object = object->backing_object;
718 		VM_OBJECT_WLOCK(backing_object);
719 		vm_object_backing_remove_locked(object);
720 		VM_OBJECT_WUNLOCK(backing_object);
721 	} else
722 		object->backing_object = NULL;
723 }
724 
725 static void
726 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
727 {
728 
729 	VM_OBJECT_ASSERT_WLOCKED(object);
730 
731 	if ((backing_object->flags & OBJ_ANON) != 0) {
732 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
733 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
734 		    shadow_list);
735 		backing_object->shadow_count++;
736 		object->flags |= OBJ_SHADOWLIST;
737 	}
738 	object->backing_object = backing_object;
739 }
740 
741 static void
742 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
743 {
744 
745 	VM_OBJECT_ASSERT_WLOCKED(object);
746 
747 	if ((backing_object->flags & OBJ_ANON) != 0) {
748 		VM_OBJECT_WLOCK(backing_object);
749 		vm_object_backing_insert_locked(object, backing_object);
750 		VM_OBJECT_WUNLOCK(backing_object);
751 	} else
752 		object->backing_object = backing_object;
753 }
754 
755 
756 /*
757  *	vm_object_terminate_pages removes any remaining pageable pages
758  *	from the object and resets the object to an empty state.
759  */
760 static void
761 vm_object_terminate_pages(vm_object_t object)
762 {
763 	vm_page_t p, p_next;
764 
765 	VM_OBJECT_ASSERT_WLOCKED(object);
766 
767 	/*
768 	 * Free any remaining pageable pages.  This also removes them from the
769 	 * paging queues.  However, don't free wired pages, just remove them
770 	 * from the object.  Rather than incrementally removing each page from
771 	 * the object, the page and object are reset to any empty state.
772 	 */
773 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
774 		vm_page_assert_unbusied(p);
775 		KASSERT(p->object == object &&
776 		    (p->ref_count & VPRC_OBJREF) != 0,
777 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
778 
779 		p->object = NULL;
780 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
781 			VM_CNT_INC(v_pfree);
782 			vm_page_free(p);
783 		}
784 	}
785 
786 	/*
787 	 * If the object contained any pages, then reset it to an empty state.
788 	 * None of the object's fields, including "resident_page_count", were
789 	 * modified by the preceding loop.
790 	 */
791 	if (object->resident_page_count != 0) {
792 		vm_radix_reclaim_allnodes(&object->rtree);
793 		TAILQ_INIT(&object->memq);
794 		object->resident_page_count = 0;
795 		if (object->type == OBJT_VNODE)
796 			vdrop(object->handle);
797 	}
798 }
799 
800 /*
801  *	vm_object_terminate actually destroys the specified object, freeing
802  *	up all previously used resources.
803  *
804  *	The object must be locked.
805  *	This routine may block.
806  */
807 void
808 vm_object_terminate(vm_object_t object)
809 {
810 	VM_OBJECT_ASSERT_WLOCKED(object);
811 	KASSERT((object->flags & OBJ_DEAD) != 0,
812 	    ("terminating non-dead obj %p", object));
813 
814 	/*
815 	 * wait for the pageout daemon to be done with the object
816 	 */
817 	vm_object_pip_wait(object, "objtrm");
818 
819 	KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
820 		("vm_object_terminate: pageout in progress"));
821 
822 	KASSERT(object->ref_count == 0,
823 		("vm_object_terminate: object with references, ref_count=%d",
824 		object->ref_count));
825 
826 	if ((object->flags & OBJ_PG_DTOR) == 0)
827 		vm_object_terminate_pages(object);
828 
829 #if VM_NRESERVLEVEL > 0
830 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
831 		vm_reserv_break_all(object);
832 #endif
833 
834 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
835 	    object->type == OBJT_SWAP,
836 	    ("%s: non-swap obj %p has cred", __func__, object));
837 
838 	/*
839 	 * Let the pager know object is dead.
840 	 */
841 	vm_pager_deallocate(object);
842 	VM_OBJECT_WUNLOCK(object);
843 
844 	vm_object_destroy(object);
845 }
846 
847 /*
848  * Make the page read-only so that we can clear the object flags.  However, if
849  * this is a nosync mmap then the object is likely to stay dirty so do not
850  * mess with the page and do not clear the object flags.  Returns TRUE if the
851  * page should be flushed, and FALSE otherwise.
852  */
853 static boolean_t
854 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
855 {
856 
857 	vm_page_assert_busied(p);
858 
859 	/*
860 	 * If we have been asked to skip nosync pages and this is a
861 	 * nosync page, skip it.  Note that the object flags were not
862 	 * cleared in this case so we do not have to set them.
863 	 */
864 	if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) {
865 		*allclean = FALSE;
866 		return (FALSE);
867 	} else {
868 		pmap_remove_write(p);
869 		return (p->dirty != 0);
870 	}
871 }
872 
873 /*
874  *	vm_object_page_clean
875  *
876  *	Clean all dirty pages in the specified range of object.  Leaves page
877  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
878  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
879  *	leaving the object dirty.
880  *
881  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
882  *	synchronous clustering mode implementation.
883  *
884  *	Odd semantics: if start == end, we clean everything.
885  *
886  *	The object must be locked.
887  *
888  *	Returns FALSE if some page from the range was not written, as
889  *	reported by the pager, and TRUE otherwise.
890  */
891 boolean_t
892 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
893     int flags)
894 {
895 	vm_page_t np, p;
896 	vm_pindex_t pi, tend, tstart;
897 	int curgeneration, n, pagerflags;
898 	boolean_t eio, res, allclean;
899 
900 	VM_OBJECT_ASSERT_WLOCKED(object);
901 
902 	if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
903 	    object->resident_page_count == 0)
904 		return (TRUE);
905 
906 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
907 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
908 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
909 
910 	tstart = OFF_TO_IDX(start);
911 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
912 	allclean = tstart == 0 && tend >= object->size;
913 	res = TRUE;
914 
915 rescan:
916 	curgeneration = object->generation;
917 
918 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
919 		pi = p->pindex;
920 		if (pi >= tend)
921 			break;
922 		np = TAILQ_NEXT(p, listq);
923 		if (vm_page_none_valid(p))
924 			continue;
925 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
926 			if (object->generation != curgeneration &&
927 			    (flags & OBJPC_SYNC) != 0)
928 				goto rescan;
929 			np = vm_page_find_least(object, pi);
930 			continue;
931 		}
932 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
933 			vm_page_xunbusy(p);
934 			continue;
935 		}
936 
937 		n = vm_object_page_collect_flush(object, p, pagerflags,
938 		    flags, &allclean, &eio);
939 		if (eio) {
940 			res = FALSE;
941 			allclean = FALSE;
942 		}
943 		if (object->generation != curgeneration &&
944 		    (flags & OBJPC_SYNC) != 0)
945 			goto rescan;
946 
947 		/*
948 		 * If the VOP_PUTPAGES() did a truncated write, so
949 		 * that even the first page of the run is not fully
950 		 * written, vm_pageout_flush() returns 0 as the run
951 		 * length.  Since the condition that caused truncated
952 		 * write may be permanent, e.g. exhausted free space,
953 		 * accepting n == 0 would cause an infinite loop.
954 		 *
955 		 * Forwarding the iterator leaves the unwritten page
956 		 * behind, but there is not much we can do there if
957 		 * filesystem refuses to write it.
958 		 */
959 		if (n == 0) {
960 			n = 1;
961 			allclean = FALSE;
962 		}
963 		np = vm_page_find_least(object, pi + n);
964 	}
965 #if 0
966 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
967 #endif
968 
969 	if (allclean)
970 		object->cleangeneration = curgeneration;
971 	return (res);
972 }
973 
974 static int
975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
976     int flags, boolean_t *allclean, boolean_t *eio)
977 {
978 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
979 	int count, i, mreq, runlen;
980 
981 	vm_page_lock_assert(p, MA_NOTOWNED);
982 	vm_page_assert_xbusied(p);
983 	VM_OBJECT_ASSERT_WLOCKED(object);
984 
985 	count = 1;
986 	mreq = 0;
987 
988 	for (tp = p; count < vm_pageout_page_count; count++) {
989 		tp = vm_page_next(tp);
990 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
991 			break;
992 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
993 			vm_page_xunbusy(tp);
994 			break;
995 		}
996 	}
997 
998 	for (p_first = p; count < vm_pageout_page_count; count++) {
999 		tp = vm_page_prev(p_first);
1000 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1001 			break;
1002 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1003 			vm_page_xunbusy(tp);
1004 			break;
1005 		}
1006 		p_first = tp;
1007 		mreq++;
1008 	}
1009 
1010 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1011 		ma[i] = tp;
1012 
1013 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1014 	return (runlen);
1015 }
1016 
1017 /*
1018  * Note that there is absolutely no sense in writing out
1019  * anonymous objects, so we track down the vnode object
1020  * to write out.
1021  * We invalidate (remove) all pages from the address space
1022  * for semantic correctness.
1023  *
1024  * If the backing object is a device object with unmanaged pages, then any
1025  * mappings to the specified range of pages must be removed before this
1026  * function is called.
1027  *
1028  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1029  * may start out with a NULL object.
1030  */
1031 boolean_t
1032 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1033     boolean_t syncio, boolean_t invalidate)
1034 {
1035 	vm_object_t backing_object;
1036 	struct vnode *vp;
1037 	struct mount *mp;
1038 	int error, flags, fsync_after;
1039 	boolean_t res;
1040 
1041 	if (object == NULL)
1042 		return (TRUE);
1043 	res = TRUE;
1044 	error = 0;
1045 	VM_OBJECT_WLOCK(object);
1046 	while ((backing_object = object->backing_object) != NULL) {
1047 		VM_OBJECT_WLOCK(backing_object);
1048 		offset += object->backing_object_offset;
1049 		VM_OBJECT_WUNLOCK(object);
1050 		object = backing_object;
1051 		if (object->size < OFF_TO_IDX(offset + size))
1052 			size = IDX_TO_OFF(object->size) - offset;
1053 	}
1054 	/*
1055 	 * Flush pages if writing is allowed, invalidate them
1056 	 * if invalidation requested.  Pages undergoing I/O
1057 	 * will be ignored by vm_object_page_remove().
1058 	 *
1059 	 * We cannot lock the vnode and then wait for paging
1060 	 * to complete without deadlocking against vm_fault.
1061 	 * Instead we simply call vm_object_page_remove() and
1062 	 * allow it to block internally on a page-by-page
1063 	 * basis when it encounters pages undergoing async
1064 	 * I/O.
1065 	 */
1066 	if (object->type == OBJT_VNODE &&
1067 	    vm_object_mightbedirty(object) != 0 &&
1068 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1069 		VM_OBJECT_WUNLOCK(object);
1070 		(void) vn_start_write(vp, &mp, V_WAIT);
1071 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1072 		if (syncio && !invalidate && offset == 0 &&
1073 		    atop(size) == object->size) {
1074 			/*
1075 			 * If syncing the whole mapping of the file,
1076 			 * it is faster to schedule all the writes in
1077 			 * async mode, also allowing the clustering,
1078 			 * and then wait for i/o to complete.
1079 			 */
1080 			flags = 0;
1081 			fsync_after = TRUE;
1082 		} else {
1083 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1084 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1085 			fsync_after = FALSE;
1086 		}
1087 		VM_OBJECT_WLOCK(object);
1088 		res = vm_object_page_clean(object, offset, offset + size,
1089 		    flags);
1090 		VM_OBJECT_WUNLOCK(object);
1091 		if (fsync_after)
1092 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1093 		VOP_UNLOCK(vp, 0);
1094 		vn_finished_write(mp);
1095 		if (error != 0)
1096 			res = FALSE;
1097 		VM_OBJECT_WLOCK(object);
1098 	}
1099 	if ((object->type == OBJT_VNODE ||
1100 	     object->type == OBJT_DEVICE) && invalidate) {
1101 		if (object->type == OBJT_DEVICE)
1102 			/*
1103 			 * The option OBJPR_NOTMAPPED must be passed here
1104 			 * because vm_object_page_remove() cannot remove
1105 			 * unmanaged mappings.
1106 			 */
1107 			flags = OBJPR_NOTMAPPED;
1108 		else if (old_msync)
1109 			flags = 0;
1110 		else
1111 			flags = OBJPR_CLEANONLY;
1112 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1113 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1114 	}
1115 	VM_OBJECT_WUNLOCK(object);
1116 	return (res);
1117 }
1118 
1119 /*
1120  * Determine whether the given advice can be applied to the object.  Advice is
1121  * not applied to unmanaged pages since they never belong to page queues, and
1122  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1123  * have been mapped at most once.
1124  */
1125 static bool
1126 vm_object_advice_applies(vm_object_t object, int advice)
1127 {
1128 
1129 	if ((object->flags & OBJ_UNMANAGED) != 0)
1130 		return (false);
1131 	if (advice != MADV_FREE)
1132 		return (true);
1133 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1134 	    (OBJ_ONEMAPPING | OBJ_ANON));
1135 }
1136 
1137 static void
1138 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1139     vm_size_t size)
1140 {
1141 
1142 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1143 		swap_pager_freespace(object, pindex, size);
1144 }
1145 
1146 /*
1147  *	vm_object_madvise:
1148  *
1149  *	Implements the madvise function at the object/page level.
1150  *
1151  *	MADV_WILLNEED	(any object)
1152  *
1153  *	    Activate the specified pages if they are resident.
1154  *
1155  *	MADV_DONTNEED	(any object)
1156  *
1157  *	    Deactivate the specified pages if they are resident.
1158  *
1159  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1160  *			 OBJ_ONEMAPPING only)
1161  *
1162  *	    Deactivate and clean the specified pages if they are
1163  *	    resident.  This permits the process to reuse the pages
1164  *	    without faulting or the kernel to reclaim the pages
1165  *	    without I/O.
1166  */
1167 void
1168 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1169     int advice)
1170 {
1171 	vm_pindex_t tpindex;
1172 	vm_object_t backing_object, tobject;
1173 	vm_page_t m, tm;
1174 
1175 	if (object == NULL)
1176 		return;
1177 
1178 relookup:
1179 	VM_OBJECT_WLOCK(object);
1180 	if (!vm_object_advice_applies(object, advice)) {
1181 		VM_OBJECT_WUNLOCK(object);
1182 		return;
1183 	}
1184 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1185 		tobject = object;
1186 
1187 		/*
1188 		 * If the next page isn't resident in the top-level object, we
1189 		 * need to search the shadow chain.  When applying MADV_FREE, we
1190 		 * take care to release any swap space used to store
1191 		 * non-resident pages.
1192 		 */
1193 		if (m == NULL || pindex < m->pindex) {
1194 			/*
1195 			 * Optimize a common case: if the top-level object has
1196 			 * no backing object, we can skip over the non-resident
1197 			 * range in constant time.
1198 			 */
1199 			if (object->backing_object == NULL) {
1200 				tpindex = (m != NULL && m->pindex < end) ?
1201 				    m->pindex : end;
1202 				vm_object_madvise_freespace(object, advice,
1203 				    pindex, tpindex - pindex);
1204 				if ((pindex = tpindex) == end)
1205 					break;
1206 				goto next_page;
1207 			}
1208 
1209 			tpindex = pindex;
1210 			do {
1211 				vm_object_madvise_freespace(tobject, advice,
1212 				    tpindex, 1);
1213 				/*
1214 				 * Prepare to search the next object in the
1215 				 * chain.
1216 				 */
1217 				backing_object = tobject->backing_object;
1218 				if (backing_object == NULL)
1219 					goto next_pindex;
1220 				VM_OBJECT_WLOCK(backing_object);
1221 				tpindex +=
1222 				    OFF_TO_IDX(tobject->backing_object_offset);
1223 				if (tobject != object)
1224 					VM_OBJECT_WUNLOCK(tobject);
1225 				tobject = backing_object;
1226 				if (!vm_object_advice_applies(tobject, advice))
1227 					goto next_pindex;
1228 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1229 			    NULL);
1230 		} else {
1231 next_page:
1232 			tm = m;
1233 			m = TAILQ_NEXT(m, listq);
1234 		}
1235 
1236 		/*
1237 		 * If the page is not in a normal state, skip it.  The page
1238 		 * can not be invalidated while the object lock is held.
1239 		 */
1240 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1241 			goto next_pindex;
1242 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1243 		    ("vm_object_madvise: page %p is fictitious", tm));
1244 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1245 		    ("vm_object_madvise: page %p is not managed", tm));
1246 		if (vm_page_tryxbusy(tm) == 0) {
1247 			if (object != tobject)
1248 				VM_OBJECT_WUNLOCK(object);
1249 			if (advice == MADV_WILLNEED) {
1250 				/*
1251 				 * Reference the page before unlocking and
1252 				 * sleeping so that the page daemon is less
1253 				 * likely to reclaim it.
1254 				 */
1255 				vm_page_aflag_set(tm, PGA_REFERENCED);
1256 			}
1257 			vm_page_busy_sleep(tm, "madvpo", false);
1258   			goto relookup;
1259 		}
1260 		vm_page_lock(tm);
1261 		vm_page_advise(tm, advice);
1262 		vm_page_unlock(tm);
1263 		vm_page_xunbusy(tm);
1264 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1265 next_pindex:
1266 		if (tobject != object)
1267 			VM_OBJECT_WUNLOCK(tobject);
1268 	}
1269 	VM_OBJECT_WUNLOCK(object);
1270 }
1271 
1272 /*
1273  *	vm_object_shadow:
1274  *
1275  *	Create a new object which is backed by the
1276  *	specified existing object range.  The source
1277  *	object reference is deallocated.
1278  *
1279  *	The new object and offset into that object
1280  *	are returned in the source parameters.
1281  */
1282 void
1283 vm_object_shadow(
1284 	vm_object_t *object,	/* IN/OUT */
1285 	vm_ooffset_t *offset,	/* IN/OUT */
1286 	vm_size_t length)
1287 {
1288 	vm_object_t source;
1289 	vm_object_t result;
1290 
1291 	source = *object;
1292 
1293 	/*
1294 	 * Don't create the new object if the old object isn't shared.
1295 	 *
1296 	 * If we hold the only reference we can guarantee that it won't
1297 	 * increase while we have the map locked.  Otherwise the race is
1298 	 * harmless and we will end up with an extra shadow object that
1299 	 * will be collapsed later.
1300 	 */
1301 	if (source != NULL && source->ref_count == 1 &&
1302 	    (source->flags & OBJ_ANON) != 0)
1303 		return;
1304 
1305 	/*
1306 	 * Allocate a new object with the given length.
1307 	 */
1308 	result = vm_object_allocate_anon(atop(length));
1309 
1310 	/*
1311 	 * Store the offset into the source object, and fix up the offset into
1312 	 * the new object.
1313 	 */
1314 	result->backing_object_offset = *offset;
1315 
1316 	/*
1317 	 * The new object shadows the source object, adding a reference to it.
1318 	 * Our caller changes his reference to point to the new object,
1319 	 * removing a reference to the source object.  Net result: no change
1320 	 * of reference count.
1321 	 *
1322 	 * Try to optimize the result object's page color when shadowing
1323 	 * in order to maintain page coloring consistency in the combined
1324 	 * shadowed object.
1325 	 */
1326 	if (source != NULL) {
1327 		VM_OBJECT_WLOCK(result);
1328 		vm_object_backing_insert(result, source);
1329 		result->domain = source->domain;
1330 #if VM_NRESERVLEVEL > 0
1331 		result->flags |= source->flags & OBJ_COLORED;
1332 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1333 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1334 #endif
1335 		VM_OBJECT_WUNLOCK(result);
1336 	}
1337 
1338 	/*
1339 	 * Return the new things
1340 	 */
1341 	*offset = 0;
1342 	*object = result;
1343 }
1344 
1345 /*
1346  *	vm_object_split:
1347  *
1348  * Split the pages in a map entry into a new object.  This affords
1349  * easier removal of unused pages, and keeps object inheritance from
1350  * being a negative impact on memory usage.
1351  */
1352 void
1353 vm_object_split(vm_map_entry_t entry)
1354 {
1355 	vm_page_t m, m_next;
1356 	vm_object_t orig_object, new_object, source;
1357 	vm_pindex_t idx, offidxstart;
1358 	vm_size_t size;
1359 
1360 	orig_object = entry->object.vm_object;
1361 	if ((orig_object->flags & OBJ_ANON) == 0)
1362 		return;
1363 	if (orig_object->ref_count <= 1)
1364 		return;
1365 	VM_OBJECT_WUNLOCK(orig_object);
1366 
1367 	offidxstart = OFF_TO_IDX(entry->offset);
1368 	size = atop(entry->end - entry->start);
1369 
1370 	/*
1371 	 * If swap_pager_copy() is later called, it will convert new_object
1372 	 * into a swap object.
1373 	 */
1374 	new_object = vm_object_allocate_anon(size);
1375 
1376 	/*
1377 	 * At this point, the new object is still private, so the order in
1378 	 * which the original and new objects are locked does not matter.
1379 	 */
1380 	VM_OBJECT_WLOCK(new_object);
1381 	VM_OBJECT_WLOCK(orig_object);
1382 	new_object->domain = orig_object->domain;
1383 	source = orig_object->backing_object;
1384 	if (source != NULL) {
1385 		if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) {
1386 			VM_OBJECT_WLOCK(source);
1387 			if ((source->flags & OBJ_DEAD) != 0) {
1388 				VM_OBJECT_WUNLOCK(source);
1389 				VM_OBJECT_WUNLOCK(orig_object);
1390 				VM_OBJECT_WUNLOCK(new_object);
1391 				vm_object_deallocate(new_object);
1392 				VM_OBJECT_WLOCK(orig_object);
1393 				return;
1394 			}
1395 			vm_object_backing_insert_locked(new_object, source);
1396 			vm_object_reference_locked(source);	/* for new_object */
1397 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1398 			VM_OBJECT_WUNLOCK(source);
1399 		} else {
1400 			vm_object_backing_insert(new_object, source);
1401 			vm_object_reference(source);
1402 		}
1403 		new_object->backing_object_offset =
1404 			orig_object->backing_object_offset + entry->offset;
1405 	}
1406 	if (orig_object->cred != NULL) {
1407 		new_object->cred = orig_object->cred;
1408 		crhold(orig_object->cred);
1409 		new_object->charge = ptoa(size);
1410 		KASSERT(orig_object->charge >= ptoa(size),
1411 		    ("orig_object->charge < 0"));
1412 		orig_object->charge -= ptoa(size);
1413 	}
1414 retry:
1415 	m = vm_page_find_least(orig_object, offidxstart);
1416 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1417 	    m = m_next) {
1418 		m_next = TAILQ_NEXT(m, listq);
1419 
1420 		/*
1421 		 * We must wait for pending I/O to complete before we can
1422 		 * rename the page.
1423 		 *
1424 		 * We do not have to VM_PROT_NONE the page as mappings should
1425 		 * not be changed by this operation.
1426 		 */
1427 		if (vm_page_tryxbusy(m) == 0) {
1428 			VM_OBJECT_WUNLOCK(new_object);
1429 			vm_page_sleep_if_busy(m, "spltwt");
1430 			VM_OBJECT_WLOCK(new_object);
1431 			goto retry;
1432 		}
1433 
1434 		/* vm_page_rename() will dirty the page. */
1435 		if (vm_page_rename(m, new_object, idx)) {
1436 			vm_page_xunbusy(m);
1437 			VM_OBJECT_WUNLOCK(new_object);
1438 			VM_OBJECT_WUNLOCK(orig_object);
1439 			vm_radix_wait();
1440 			VM_OBJECT_WLOCK(orig_object);
1441 			VM_OBJECT_WLOCK(new_object);
1442 			goto retry;
1443 		}
1444 
1445 #if VM_NRESERVLEVEL > 0
1446 		/*
1447 		 * If some of the reservation's allocated pages remain with
1448 		 * the original object, then transferring the reservation to
1449 		 * the new object is neither particularly beneficial nor
1450 		 * particularly harmful as compared to leaving the reservation
1451 		 * with the original object.  If, however, all of the
1452 		 * reservation's allocated pages are transferred to the new
1453 		 * object, then transferring the reservation is typically
1454 		 * beneficial.  Determining which of these two cases applies
1455 		 * would be more costly than unconditionally renaming the
1456 		 * reservation.
1457 		 */
1458 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1459 #endif
1460 		if (orig_object->type != OBJT_SWAP)
1461 			vm_page_xunbusy(m);
1462 	}
1463 	if (orig_object->type == OBJT_SWAP) {
1464 		/*
1465 		 * swap_pager_copy() can sleep, in which case the orig_object's
1466 		 * and new_object's locks are released and reacquired.
1467 		 */
1468 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1469 		TAILQ_FOREACH(m, &new_object->memq, listq)
1470 			vm_page_xunbusy(m);
1471 	}
1472 	VM_OBJECT_WUNLOCK(orig_object);
1473 	VM_OBJECT_WUNLOCK(new_object);
1474 	entry->object.vm_object = new_object;
1475 	entry->offset = 0LL;
1476 	vm_object_deallocate(orig_object);
1477 	VM_OBJECT_WLOCK(new_object);
1478 }
1479 
1480 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1481 #define	OBSC_COLLAPSE_WAIT	0x0004
1482 
1483 static vm_page_t
1484 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1485     int op)
1486 {
1487 	vm_object_t backing_object;
1488 
1489 	VM_OBJECT_ASSERT_WLOCKED(object);
1490 	backing_object = object->backing_object;
1491 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1492 
1493 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1494 	    ("invalid ownership %p %p %p", p, object, backing_object));
1495 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1496 		return (next);
1497 	/* The page is only NULL when rename fails. */
1498 	if (p == NULL) {
1499 		VM_OBJECT_WUNLOCK(object);
1500 		VM_OBJECT_WUNLOCK(backing_object);
1501 		vm_radix_wait();
1502 	} else {
1503 		if (p->object == object)
1504 			VM_OBJECT_WUNLOCK(backing_object);
1505 		else
1506 			VM_OBJECT_WUNLOCK(object);
1507 		vm_page_busy_sleep(p, "vmocol", false);
1508 	}
1509 	VM_OBJECT_WLOCK(object);
1510 	VM_OBJECT_WLOCK(backing_object);
1511 	return (TAILQ_FIRST(&backing_object->memq));
1512 }
1513 
1514 static bool
1515 vm_object_scan_all_shadowed(vm_object_t object)
1516 {
1517 	vm_object_t backing_object;
1518 	vm_page_t p, pp;
1519 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1520 
1521 	VM_OBJECT_ASSERT_WLOCKED(object);
1522 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1523 
1524 	backing_object = object->backing_object;
1525 
1526 	if ((backing_object->flags & OBJ_ANON) == 0)
1527 		return (false);
1528 
1529 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1530 	p = vm_page_find_least(backing_object, pi);
1531 	ps = swap_pager_find_least(backing_object, pi);
1532 
1533 	/*
1534 	 * Only check pages inside the parent object's range and
1535 	 * inside the parent object's mapping of the backing object.
1536 	 */
1537 	for (;; pi++) {
1538 		if (p != NULL && p->pindex < pi)
1539 			p = TAILQ_NEXT(p, listq);
1540 		if (ps < pi)
1541 			ps = swap_pager_find_least(backing_object, pi);
1542 		if (p == NULL && ps >= backing_object->size)
1543 			break;
1544 		else if (p == NULL)
1545 			pi = ps;
1546 		else
1547 			pi = MIN(p->pindex, ps);
1548 
1549 		new_pindex = pi - backing_offset_index;
1550 		if (new_pindex >= object->size)
1551 			break;
1552 
1553 		/*
1554 		 * See if the parent has the page or if the parent's object
1555 		 * pager has the page.  If the parent has the page but the page
1556 		 * is not valid, the parent's object pager must have the page.
1557 		 *
1558 		 * If this fails, the parent does not completely shadow the
1559 		 * object and we might as well give up now.
1560 		 */
1561 		pp = vm_page_lookup(object, new_pindex);
1562 		/*
1563 		 * The valid check here is stable due to object lock being
1564 		 * required to clear valid and initiate paging.
1565 		 */
1566 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1567 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1568 			return (false);
1569 	}
1570 	return (true);
1571 }
1572 
1573 static bool
1574 vm_object_collapse_scan(vm_object_t object, int op)
1575 {
1576 	vm_object_t backing_object;
1577 	vm_page_t next, p, pp;
1578 	vm_pindex_t backing_offset_index, new_pindex;
1579 
1580 	VM_OBJECT_ASSERT_WLOCKED(object);
1581 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1582 
1583 	backing_object = object->backing_object;
1584 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1585 
1586 	/*
1587 	 * Initial conditions
1588 	 */
1589 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1590 		vm_object_set_flag(backing_object, OBJ_DEAD);
1591 
1592 	/*
1593 	 * Our scan
1594 	 */
1595 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1596 		next = TAILQ_NEXT(p, listq);
1597 		new_pindex = p->pindex - backing_offset_index;
1598 
1599 		/*
1600 		 * Check for busy page
1601 		 */
1602 		if (vm_page_tryxbusy(p) == 0) {
1603 			next = vm_object_collapse_scan_wait(object, p, next, op);
1604 			continue;
1605 		}
1606 
1607 		KASSERT(p->object == backing_object,
1608 		    ("vm_object_collapse_scan: object mismatch"));
1609 
1610 		if (p->pindex < backing_offset_index ||
1611 		    new_pindex >= object->size) {
1612 			if (backing_object->type == OBJT_SWAP)
1613 				swap_pager_freespace(backing_object, p->pindex,
1614 				    1);
1615 
1616 			KASSERT(!pmap_page_is_mapped(p),
1617 			    ("freeing mapped page %p", p));
1618 			if (vm_page_remove(p))
1619 				vm_page_free(p);
1620 			else
1621 				vm_page_xunbusy(p);
1622 			continue;
1623 		}
1624 
1625 		pp = vm_page_lookup(object, new_pindex);
1626 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1627 			vm_page_xunbusy(p);
1628 			/*
1629 			 * The page in the parent is busy and possibly not
1630 			 * (yet) valid.  Until its state is finalized by the
1631 			 * busy bit owner, we can't tell whether it shadows the
1632 			 * original page.  Therefore, we must either skip it
1633 			 * and the original (backing_object) page or wait for
1634 			 * its state to be finalized.
1635 			 *
1636 			 * This is due to a race with vm_fault() where we must
1637 			 * unbusy the original (backing_obj) page before we can
1638 			 * (re)lock the parent.  Hence we can get here.
1639 			 */
1640 			next = vm_object_collapse_scan_wait(object, pp, next,
1641 			    op);
1642 			continue;
1643 		}
1644 
1645 		KASSERT(pp == NULL || !vm_page_none_valid(pp),
1646 		    ("unbusy invalid page %p", pp));
1647 
1648 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1649 			NULL)) {
1650 			/*
1651 			 * The page already exists in the parent OR swap exists
1652 			 * for this location in the parent.  Leave the parent's
1653 			 * page alone.  Destroy the original page from the
1654 			 * backing object.
1655 			 */
1656 			if (backing_object->type == OBJT_SWAP)
1657 				swap_pager_freespace(backing_object, p->pindex,
1658 				    1);
1659 			KASSERT(!pmap_page_is_mapped(p),
1660 			    ("freeing mapped page %p", p));
1661 			if (vm_page_remove(p))
1662 				vm_page_free(p);
1663 			else
1664 				vm_page_xunbusy(p);
1665 			if (pp != NULL)
1666 				vm_page_xunbusy(pp);
1667 			continue;
1668 		}
1669 
1670 		/*
1671 		 * Page does not exist in parent, rename the page from the
1672 		 * backing object to the main object.
1673 		 *
1674 		 * If the page was mapped to a process, it can remain mapped
1675 		 * through the rename.  vm_page_rename() will dirty the page.
1676 		 */
1677 		if (vm_page_rename(p, object, new_pindex)) {
1678 			vm_page_xunbusy(p);
1679 			if (pp != NULL)
1680 				vm_page_xunbusy(pp);
1681 			next = vm_object_collapse_scan_wait(object, NULL, next,
1682 			    op);
1683 			continue;
1684 		}
1685 
1686 		/* Use the old pindex to free the right page. */
1687 		if (backing_object->type == OBJT_SWAP)
1688 			swap_pager_freespace(backing_object,
1689 			    new_pindex + backing_offset_index, 1);
1690 
1691 #if VM_NRESERVLEVEL > 0
1692 		/*
1693 		 * Rename the reservation.
1694 		 */
1695 		vm_reserv_rename(p, object, backing_object,
1696 		    backing_offset_index);
1697 #endif
1698 		vm_page_xunbusy(p);
1699 	}
1700 	return (true);
1701 }
1702 
1703 
1704 /*
1705  * this version of collapse allows the operation to occur earlier and
1706  * when paging_in_progress is true for an object...  This is not a complete
1707  * operation, but should plug 99.9% of the rest of the leaks.
1708  */
1709 static void
1710 vm_object_qcollapse(vm_object_t object)
1711 {
1712 	vm_object_t backing_object = object->backing_object;
1713 
1714 	VM_OBJECT_ASSERT_WLOCKED(object);
1715 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1716 
1717 	if (backing_object->ref_count != 1)
1718 		return;
1719 
1720 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1721 }
1722 
1723 /*
1724  *	vm_object_collapse:
1725  *
1726  *	Collapse an object with the object backing it.
1727  *	Pages in the backing object are moved into the
1728  *	parent, and the backing object is deallocated.
1729  */
1730 void
1731 vm_object_collapse(vm_object_t object)
1732 {
1733 	vm_object_t backing_object, new_backing_object;
1734 
1735 	VM_OBJECT_ASSERT_WLOCKED(object);
1736 
1737 	while (TRUE) {
1738 		/*
1739 		 * Verify that the conditions are right for collapse:
1740 		 *
1741 		 * The object exists and the backing object exists.
1742 		 */
1743 		if ((backing_object = object->backing_object) == NULL)
1744 			break;
1745 
1746 		/*
1747 		 * we check the backing object first, because it is most likely
1748 		 * not collapsable.
1749 		 */
1750 		if ((backing_object->flags & OBJ_ANON) == 0)
1751 			break;
1752 		VM_OBJECT_WLOCK(backing_object);
1753 		if ((backing_object->flags & OBJ_DEAD) != 0 ||
1754 		    (object->flags & (OBJ_DEAD | OBJ_ANON)) != OBJ_ANON) {
1755 			VM_OBJECT_WUNLOCK(backing_object);
1756 			break;
1757 		}
1758 
1759 		if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1760 		    REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1761 			vm_object_qcollapse(object);
1762 			VM_OBJECT_WUNLOCK(backing_object);
1763 			break;
1764 		}
1765 
1766 		/*
1767 		 * We know that we can either collapse the backing object (if
1768 		 * the parent is the only reference to it) or (perhaps) have
1769 		 * the parent bypass the object if the parent happens to shadow
1770 		 * all the resident pages in the entire backing object.
1771 		 *
1772 		 * This is ignoring pager-backed pages such as swap pages.
1773 		 * vm_object_collapse_scan fails the shadowing test in this
1774 		 * case.
1775 		 */
1776 		if (backing_object->ref_count == 1) {
1777 			vm_object_pip_add(object, 1);
1778 			vm_object_pip_add(backing_object, 1);
1779 
1780 			/*
1781 			 * If there is exactly one reference to the backing
1782 			 * object, we can collapse it into the parent.
1783 			 */
1784 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1785 
1786 #if VM_NRESERVLEVEL > 0
1787 			/*
1788 			 * Break any reservations from backing_object.
1789 			 */
1790 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1791 				vm_reserv_break_all(backing_object);
1792 #endif
1793 
1794 			/*
1795 			 * Move the pager from backing_object to object.
1796 			 */
1797 			if (backing_object->type == OBJT_SWAP) {
1798 				/*
1799 				 * swap_pager_copy() can sleep, in which case
1800 				 * the backing_object's and object's locks are
1801 				 * released and reacquired.
1802 				 * Since swap_pager_copy() is being asked to
1803 				 * destroy the source, it will change the
1804 				 * backing_object's type to OBJT_DEFAULT.
1805 				 */
1806 				swap_pager_copy(
1807 				    backing_object,
1808 				    object,
1809 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1810 			}
1811 			/*
1812 			 * Object now shadows whatever backing_object did.
1813 			 * Note that the reference to
1814 			 * backing_object->backing_object moves from within
1815 			 * backing_object to within object.
1816 			 */
1817 			vm_object_backing_remove_locked(object);
1818 			new_backing_object = backing_object->backing_object;
1819 			if (new_backing_object != NULL) {
1820 				VM_OBJECT_WLOCK(new_backing_object);
1821 				vm_object_backing_remove_locked(backing_object);
1822 				vm_object_backing_insert_locked(object,
1823 				    new_backing_object);
1824 				VM_OBJECT_WUNLOCK(new_backing_object);
1825 			}
1826 			object->backing_object_offset +=
1827 			    backing_object->backing_object_offset;
1828 
1829 			/*
1830 			 * Discard backing_object.
1831 			 *
1832 			 * Since the backing object has no pages, no pager left,
1833 			 * and no object references within it, all that is
1834 			 * necessary is to dispose of it.
1835 			 */
1836 			KASSERT(backing_object->ref_count == 1, (
1837 "backing_object %p was somehow re-referenced during collapse!",
1838 			    backing_object));
1839 			vm_object_pip_wakeup(backing_object);
1840 			backing_object->type = OBJT_DEAD;
1841 			backing_object->ref_count = 0;
1842 			VM_OBJECT_WUNLOCK(backing_object);
1843 			vm_object_destroy(backing_object);
1844 
1845 			vm_object_pip_wakeup(object);
1846 			counter_u64_add(object_collapses, 1);
1847 		} else {
1848 			/*
1849 			 * If we do not entirely shadow the backing object,
1850 			 * there is nothing we can do so we give up.
1851 			 */
1852 			if (object->resident_page_count != object->size &&
1853 			    !vm_object_scan_all_shadowed(object)) {
1854 				VM_OBJECT_WUNLOCK(backing_object);
1855 				break;
1856 			}
1857 
1858 			/*
1859 			 * Make the parent shadow the next object in the
1860 			 * chain.  Deallocating backing_object will not remove
1861 			 * it, since its reference count is at least 2.
1862 			 */
1863 			vm_object_backing_remove_locked(object);
1864 
1865 			new_backing_object = backing_object->backing_object;
1866 			if (new_backing_object != NULL) {
1867 				vm_object_backing_insert(object,
1868 				    new_backing_object);
1869 				vm_object_reference(new_backing_object);
1870 				object->backing_object_offset +=
1871 					backing_object->backing_object_offset;
1872 			}
1873 
1874 			/*
1875 			 * Drop the reference count on backing_object. Since
1876 			 * its ref_count was at least 2, it will not vanish.
1877 			 */
1878 			refcount_release(&backing_object->ref_count);
1879 			VM_OBJECT_WUNLOCK(backing_object);
1880 			counter_u64_add(object_bypasses, 1);
1881 		}
1882 
1883 		/*
1884 		 * Try again with this object's new backing object.
1885 		 */
1886 	}
1887 }
1888 
1889 /*
1890  *	vm_object_page_remove:
1891  *
1892  *	For the given object, either frees or invalidates each of the
1893  *	specified pages.  In general, a page is freed.  However, if a page is
1894  *	wired for any reason other than the existence of a managed, wired
1895  *	mapping, then it may be invalidated but not removed from the object.
1896  *	Pages are specified by the given range ["start", "end") and the option
1897  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1898  *	extends from "start" to the end of the object.  If the option
1899  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1900  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1901  *	specified, then the pages within the specified range must have no
1902  *	mappings.  Otherwise, if this option is not specified, any mappings to
1903  *	the specified pages are removed before the pages are freed or
1904  *	invalidated.
1905  *
1906  *	In general, this operation should only be performed on objects that
1907  *	contain managed pages.  There are, however, two exceptions.  First, it
1908  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1909  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1910  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1911  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1912  *
1913  *	The object must be locked.
1914  */
1915 void
1916 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1917     int options)
1918 {
1919 	vm_page_t p, next;
1920 
1921 	VM_OBJECT_ASSERT_WLOCKED(object);
1922 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1923 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1924 	    ("vm_object_page_remove: illegal options for object %p", object));
1925 	if (object->resident_page_count == 0)
1926 		return;
1927 	vm_object_pip_add(object, 1);
1928 again:
1929 	p = vm_page_find_least(object, start);
1930 
1931 	/*
1932 	 * Here, the variable "p" is either (1) the page with the least pindex
1933 	 * greater than or equal to the parameter "start" or (2) NULL.
1934 	 */
1935 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1936 		next = TAILQ_NEXT(p, listq);
1937 
1938 		/*
1939 		 * If the page is wired for any reason besides the existence
1940 		 * of managed, wired mappings, then it cannot be freed.  For
1941 		 * example, fictitious pages, which represent device memory,
1942 		 * are inherently wired and cannot be freed.  They can,
1943 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1944 		 * not specified.
1945 		 */
1946 		if (vm_page_tryxbusy(p) == 0) {
1947 			vm_page_sleep_if_busy(p, "vmopar");
1948 			goto again;
1949 		}
1950 		if (vm_page_wired(p)) {
1951 wired:
1952 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1953 			    object->ref_count != 0)
1954 				pmap_remove_all(p);
1955 			if ((options & OBJPR_CLEANONLY) == 0) {
1956 				vm_page_invalid(p);
1957 				vm_page_undirty(p);
1958 			}
1959 			vm_page_xunbusy(p);
1960 			continue;
1961 		}
1962 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1963 		    ("vm_object_page_remove: page %p is fictitious", p));
1964 		if ((options & OBJPR_CLEANONLY) != 0 &&
1965 		    !vm_page_none_valid(p)) {
1966 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1967 			    object->ref_count != 0 &&
1968 			    !vm_page_try_remove_write(p))
1969 				goto wired;
1970 			if (p->dirty != 0) {
1971 				vm_page_xunbusy(p);
1972 				continue;
1973 			}
1974 		}
1975 		if ((options & OBJPR_NOTMAPPED) == 0 &&
1976 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
1977 			goto wired;
1978 		vm_page_free(p);
1979 	}
1980 	vm_object_pip_wakeup(object);
1981 }
1982 
1983 /*
1984  *	vm_object_page_noreuse:
1985  *
1986  *	For the given object, attempt to move the specified pages to
1987  *	the head of the inactive queue.  This bypasses regular LRU
1988  *	operation and allows the pages to be reused quickly under memory
1989  *	pressure.  If a page is wired for any reason, then it will not
1990  *	be queued.  Pages are specified by the range ["start", "end").
1991  *	As a special case, if "end" is zero, then the range extends from
1992  *	"start" to the end of the object.
1993  *
1994  *	This operation should only be performed on objects that
1995  *	contain non-fictitious, managed pages.
1996  *
1997  *	The object must be locked.
1998  */
1999 void
2000 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2001 {
2002 	struct mtx *mtx;
2003 	vm_page_t p, next;
2004 
2005 	VM_OBJECT_ASSERT_LOCKED(object);
2006 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2007 	    ("vm_object_page_noreuse: illegal object %p", object));
2008 	if (object->resident_page_count == 0)
2009 		return;
2010 	p = vm_page_find_least(object, start);
2011 
2012 	/*
2013 	 * Here, the variable "p" is either (1) the page with the least pindex
2014 	 * greater than or equal to the parameter "start" or (2) NULL.
2015 	 */
2016 	mtx = NULL;
2017 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2018 		next = TAILQ_NEXT(p, listq);
2019 		vm_page_change_lock(p, &mtx);
2020 		vm_page_deactivate_noreuse(p);
2021 	}
2022 	if (mtx != NULL)
2023 		mtx_unlock(mtx);
2024 }
2025 
2026 /*
2027  *	Populate the specified range of the object with valid pages.  Returns
2028  *	TRUE if the range is successfully populated and FALSE otherwise.
2029  *
2030  *	Note: This function should be optimized to pass a larger array of
2031  *	pages to vm_pager_get_pages() before it is applied to a non-
2032  *	OBJT_DEVICE object.
2033  *
2034  *	The object must be locked.
2035  */
2036 boolean_t
2037 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2038 {
2039 	vm_page_t m;
2040 	vm_pindex_t pindex;
2041 	int rv;
2042 
2043 	VM_OBJECT_ASSERT_WLOCKED(object);
2044 	for (pindex = start; pindex < end; pindex++) {
2045 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2046 		if (rv != VM_PAGER_OK)
2047 			break;
2048 
2049 		/*
2050 		 * Keep "m" busy because a subsequent iteration may unlock
2051 		 * the object.
2052 		 */
2053 	}
2054 	if (pindex > start) {
2055 		m = vm_page_lookup(object, start);
2056 		while (m != NULL && m->pindex < pindex) {
2057 			vm_page_xunbusy(m);
2058 			m = TAILQ_NEXT(m, listq);
2059 		}
2060 	}
2061 	return (pindex == end);
2062 }
2063 
2064 /*
2065  *	Routine:	vm_object_coalesce
2066  *	Function:	Coalesces two objects backing up adjoining
2067  *			regions of memory into a single object.
2068  *
2069  *	returns TRUE if objects were combined.
2070  *
2071  *	NOTE:	Only works at the moment if the second object is NULL -
2072  *		if it's not, which object do we lock first?
2073  *
2074  *	Parameters:
2075  *		prev_object	First object to coalesce
2076  *		prev_offset	Offset into prev_object
2077  *		prev_size	Size of reference to prev_object
2078  *		next_size	Size of reference to the second object
2079  *		reserved	Indicator that extension region has
2080  *				swap accounted for
2081  *
2082  *	Conditions:
2083  *	The object must *not* be locked.
2084  */
2085 boolean_t
2086 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2087     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2088 {
2089 	vm_pindex_t next_pindex;
2090 
2091 	if (prev_object == NULL)
2092 		return (TRUE);
2093 	if ((prev_object->flags & OBJ_ANON) == 0)
2094 		return (FALSE);
2095 
2096 	VM_OBJECT_WLOCK(prev_object);
2097 	/*
2098 	 * Try to collapse the object first
2099 	 */
2100 	vm_object_collapse(prev_object);
2101 
2102 	/*
2103 	 * Can't coalesce if: . more than one reference . paged out . shadows
2104 	 * another object . has a copy elsewhere (any of which mean that the
2105 	 * pages not mapped to prev_entry may be in use anyway)
2106 	 */
2107 	if (prev_object->backing_object != NULL) {
2108 		VM_OBJECT_WUNLOCK(prev_object);
2109 		return (FALSE);
2110 	}
2111 
2112 	prev_size >>= PAGE_SHIFT;
2113 	next_size >>= PAGE_SHIFT;
2114 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2115 
2116 	if (prev_object->ref_count > 1 &&
2117 	    prev_object->size != next_pindex &&
2118 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2119 		VM_OBJECT_WUNLOCK(prev_object);
2120 		return (FALSE);
2121 	}
2122 
2123 	/*
2124 	 * Account for the charge.
2125 	 */
2126 	if (prev_object->cred != NULL) {
2127 
2128 		/*
2129 		 * If prev_object was charged, then this mapping,
2130 		 * although not charged now, may become writable
2131 		 * later. Non-NULL cred in the object would prevent
2132 		 * swap reservation during enabling of the write
2133 		 * access, so reserve swap now. Failed reservation
2134 		 * cause allocation of the separate object for the map
2135 		 * entry, and swap reservation for this entry is
2136 		 * managed in appropriate time.
2137 		 */
2138 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2139 		    prev_object->cred)) {
2140 			VM_OBJECT_WUNLOCK(prev_object);
2141 			return (FALSE);
2142 		}
2143 		prev_object->charge += ptoa(next_size);
2144 	}
2145 
2146 	/*
2147 	 * Remove any pages that may still be in the object from a previous
2148 	 * deallocation.
2149 	 */
2150 	if (next_pindex < prev_object->size) {
2151 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2152 		    next_size, 0);
2153 		if (prev_object->type == OBJT_SWAP)
2154 			swap_pager_freespace(prev_object,
2155 					     next_pindex, next_size);
2156 #if 0
2157 		if (prev_object->cred != NULL) {
2158 			KASSERT(prev_object->charge >=
2159 			    ptoa(prev_object->size - next_pindex),
2160 			    ("object %p overcharged 1 %jx %jx", prev_object,
2161 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2162 			prev_object->charge -= ptoa(prev_object->size -
2163 			    next_pindex);
2164 		}
2165 #endif
2166 	}
2167 
2168 	/*
2169 	 * Extend the object if necessary.
2170 	 */
2171 	if (next_pindex + next_size > prev_object->size)
2172 		prev_object->size = next_pindex + next_size;
2173 
2174 	VM_OBJECT_WUNLOCK(prev_object);
2175 	return (TRUE);
2176 }
2177 
2178 void
2179 vm_object_set_writeable_dirty(vm_object_t object)
2180 {
2181 
2182 	VM_OBJECT_ASSERT_LOCKED(object);
2183 
2184 	/* Only set for vnodes & tmpfs */
2185 	if (object->type != OBJT_VNODE &&
2186 	    (object->flags & OBJ_TMPFS_NODE) == 0)
2187 		return;
2188 	atomic_add_int(&object->generation, 1);
2189 }
2190 
2191 /*
2192  *	vm_object_unwire:
2193  *
2194  *	For each page offset within the specified range of the given object,
2195  *	find the highest-level page in the shadow chain and unwire it.  A page
2196  *	must exist at every page offset, and the highest-level page must be
2197  *	wired.
2198  */
2199 void
2200 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2201     uint8_t queue)
2202 {
2203 	vm_object_t tobject, t1object;
2204 	vm_page_t m, tm;
2205 	vm_pindex_t end_pindex, pindex, tpindex;
2206 	int depth, locked_depth;
2207 
2208 	KASSERT((offset & PAGE_MASK) == 0,
2209 	    ("vm_object_unwire: offset is not page aligned"));
2210 	KASSERT((length & PAGE_MASK) == 0,
2211 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2212 	/* The wired count of a fictitious page never changes. */
2213 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2214 		return;
2215 	pindex = OFF_TO_IDX(offset);
2216 	end_pindex = pindex + atop(length);
2217 again:
2218 	locked_depth = 1;
2219 	VM_OBJECT_RLOCK(object);
2220 	m = vm_page_find_least(object, pindex);
2221 	while (pindex < end_pindex) {
2222 		if (m == NULL || pindex < m->pindex) {
2223 			/*
2224 			 * The first object in the shadow chain doesn't
2225 			 * contain a page at the current index.  Therefore,
2226 			 * the page must exist in a backing object.
2227 			 */
2228 			tobject = object;
2229 			tpindex = pindex;
2230 			depth = 0;
2231 			do {
2232 				tpindex +=
2233 				    OFF_TO_IDX(tobject->backing_object_offset);
2234 				tobject = tobject->backing_object;
2235 				KASSERT(tobject != NULL,
2236 				    ("vm_object_unwire: missing page"));
2237 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2238 					goto next_page;
2239 				depth++;
2240 				if (depth == locked_depth) {
2241 					locked_depth++;
2242 					VM_OBJECT_RLOCK(tobject);
2243 				}
2244 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2245 			    NULL);
2246 		} else {
2247 			tm = m;
2248 			m = TAILQ_NEXT(m, listq);
2249 		}
2250 		if (vm_page_trysbusy(tm) == 0) {
2251 			for (tobject = object; locked_depth >= 1;
2252 			    locked_depth--) {
2253 				t1object = tobject->backing_object;
2254 				if (tm->object != tobject)
2255 					VM_OBJECT_RUNLOCK(tobject);
2256 				tobject = t1object;
2257 			}
2258 			vm_page_busy_sleep(tm, "unwbo", true);
2259 			goto again;
2260 		}
2261 		vm_page_unwire(tm, queue);
2262 		vm_page_sunbusy(tm);
2263 next_page:
2264 		pindex++;
2265 	}
2266 	/* Release the accumulated object locks. */
2267 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2268 		t1object = tobject->backing_object;
2269 		VM_OBJECT_RUNLOCK(tobject);
2270 		tobject = t1object;
2271 	}
2272 }
2273 
2274 /*
2275  * Return the vnode for the given object, or NULL if none exists.
2276  * For tmpfs objects, the function may return NULL if there is
2277  * no vnode allocated at the time of the call.
2278  */
2279 struct vnode *
2280 vm_object_vnode(vm_object_t object)
2281 {
2282 	struct vnode *vp;
2283 
2284 	VM_OBJECT_ASSERT_LOCKED(object);
2285 	if (object->type == OBJT_VNODE) {
2286 		vp = object->handle;
2287 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2288 	} else if (object->type == OBJT_SWAP &&
2289 	    (object->flags & OBJ_TMPFS) != 0) {
2290 		vp = object->un_pager.swp.swp_tmpfs;
2291 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2292 	} else {
2293 		vp = NULL;
2294 	}
2295 	return (vp);
2296 }
2297 
2298 
2299 /*
2300  * Busy the vm object.  This prevents new pages belonging to the object from
2301  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2302  * for checking page state before proceeding.
2303  */
2304 void
2305 vm_object_busy(vm_object_t obj)
2306 {
2307 
2308 	VM_OBJECT_ASSERT_LOCKED(obj);
2309 
2310 	refcount_acquire(&obj->busy);
2311 	/* The fence is required to order loads of page busy. */
2312 	atomic_thread_fence_acq_rel();
2313 }
2314 
2315 void
2316 vm_object_unbusy(vm_object_t obj)
2317 {
2318 
2319 
2320 	refcount_release(&obj->busy);
2321 }
2322 
2323 void
2324 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2325 {
2326 
2327 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2328 
2329 	if (obj->busy)
2330 		refcount_sleep(&obj->busy, wmesg, PVM);
2331 }
2332 
2333 /*
2334  * Return the kvme type of the given object.
2335  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2336  */
2337 int
2338 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2339 {
2340 
2341 	VM_OBJECT_ASSERT_LOCKED(object);
2342 	if (vpp != NULL)
2343 		*vpp = vm_object_vnode(object);
2344 	switch (object->type) {
2345 	case OBJT_DEFAULT:
2346 		return (KVME_TYPE_DEFAULT);
2347 	case OBJT_VNODE:
2348 		return (KVME_TYPE_VNODE);
2349 	case OBJT_SWAP:
2350 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2351 			return (KVME_TYPE_VNODE);
2352 		return (KVME_TYPE_SWAP);
2353 	case OBJT_DEVICE:
2354 		return (KVME_TYPE_DEVICE);
2355 	case OBJT_PHYS:
2356 		return (KVME_TYPE_PHYS);
2357 	case OBJT_DEAD:
2358 		return (KVME_TYPE_DEAD);
2359 	case OBJT_SG:
2360 		return (KVME_TYPE_SG);
2361 	case OBJT_MGTDEVICE:
2362 		return (KVME_TYPE_MGTDEVICE);
2363 	default:
2364 		return (KVME_TYPE_UNKNOWN);
2365 	}
2366 }
2367 
2368 static int
2369 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2370 {
2371 	struct kinfo_vmobject *kvo;
2372 	char *fullpath, *freepath;
2373 	struct vnode *vp;
2374 	struct vattr va;
2375 	vm_object_t obj;
2376 	vm_page_t m;
2377 	int count, error;
2378 
2379 	if (req->oldptr == NULL) {
2380 		/*
2381 		 * If an old buffer has not been provided, generate an
2382 		 * estimate of the space needed for a subsequent call.
2383 		 */
2384 		mtx_lock(&vm_object_list_mtx);
2385 		count = 0;
2386 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2387 			if (obj->type == OBJT_DEAD)
2388 				continue;
2389 			count++;
2390 		}
2391 		mtx_unlock(&vm_object_list_mtx);
2392 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2393 		    count * 11 / 10));
2394 	}
2395 
2396 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2397 	error = 0;
2398 
2399 	/*
2400 	 * VM objects are type stable and are never removed from the
2401 	 * list once added.  This allows us to safely read obj->object_list
2402 	 * after reacquiring the VM object lock.
2403 	 */
2404 	mtx_lock(&vm_object_list_mtx);
2405 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2406 		if (obj->type == OBJT_DEAD)
2407 			continue;
2408 		VM_OBJECT_RLOCK(obj);
2409 		if (obj->type == OBJT_DEAD) {
2410 			VM_OBJECT_RUNLOCK(obj);
2411 			continue;
2412 		}
2413 		mtx_unlock(&vm_object_list_mtx);
2414 		kvo->kvo_size = ptoa(obj->size);
2415 		kvo->kvo_resident = obj->resident_page_count;
2416 		kvo->kvo_ref_count = obj->ref_count;
2417 		kvo->kvo_shadow_count = obj->shadow_count;
2418 		kvo->kvo_memattr = obj->memattr;
2419 		kvo->kvo_active = 0;
2420 		kvo->kvo_inactive = 0;
2421 		TAILQ_FOREACH(m, &obj->memq, listq) {
2422 			/*
2423 			 * A page may belong to the object but be
2424 			 * dequeued and set to PQ_NONE while the
2425 			 * object lock is not held.  This makes the
2426 			 * reads of m->queue below racy, and we do not
2427 			 * count pages set to PQ_NONE.  However, this
2428 			 * sysctl is only meant to give an
2429 			 * approximation of the system anyway.
2430 			 */
2431 			if (m->queue == PQ_ACTIVE)
2432 				kvo->kvo_active++;
2433 			else if (m->queue == PQ_INACTIVE)
2434 				kvo->kvo_inactive++;
2435 		}
2436 
2437 		kvo->kvo_vn_fileid = 0;
2438 		kvo->kvo_vn_fsid = 0;
2439 		kvo->kvo_vn_fsid_freebsd11 = 0;
2440 		freepath = NULL;
2441 		fullpath = "";
2442 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2443 		if (vp != NULL)
2444 			vref(vp);
2445 		VM_OBJECT_RUNLOCK(obj);
2446 		if (vp != NULL) {
2447 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2448 			vn_lock(vp, LK_SHARED | LK_RETRY);
2449 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2450 				kvo->kvo_vn_fileid = va.va_fileid;
2451 				kvo->kvo_vn_fsid = va.va_fsid;
2452 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2453 								/* truncate */
2454 			}
2455 			vput(vp);
2456 		}
2457 
2458 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2459 		if (freepath != NULL)
2460 			free(freepath, M_TEMP);
2461 
2462 		/* Pack record size down */
2463 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2464 		    + strlen(kvo->kvo_path) + 1;
2465 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2466 		    sizeof(uint64_t));
2467 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2468 		mtx_lock(&vm_object_list_mtx);
2469 		if (error)
2470 			break;
2471 	}
2472 	mtx_unlock(&vm_object_list_mtx);
2473 	free(kvo, M_TEMP);
2474 	return (error);
2475 }
2476 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2477     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2478     "List of VM objects");
2479 
2480 #include "opt_ddb.h"
2481 #ifdef DDB
2482 #include <sys/kernel.h>
2483 
2484 #include <sys/cons.h>
2485 
2486 #include <ddb/ddb.h>
2487 
2488 static int
2489 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2490 {
2491 	vm_map_t tmpm;
2492 	vm_map_entry_t tmpe;
2493 	vm_object_t obj;
2494 
2495 	if (map == 0)
2496 		return 0;
2497 
2498 	if (entry == 0) {
2499 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2500 			if (_vm_object_in_map(map, object, tmpe)) {
2501 				return 1;
2502 			}
2503 		}
2504 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2505 		tmpm = entry->object.sub_map;
2506 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2507 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2508 				return 1;
2509 			}
2510 		}
2511 	} else if ((obj = entry->object.vm_object) != NULL) {
2512 		for (; obj; obj = obj->backing_object)
2513 			if (obj == object) {
2514 				return 1;
2515 			}
2516 	}
2517 	return 0;
2518 }
2519 
2520 static int
2521 vm_object_in_map(vm_object_t object)
2522 {
2523 	struct proc *p;
2524 
2525 	/* sx_slock(&allproc_lock); */
2526 	FOREACH_PROC_IN_SYSTEM(p) {
2527 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2528 			continue;
2529 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2530 			/* sx_sunlock(&allproc_lock); */
2531 			return 1;
2532 		}
2533 	}
2534 	/* sx_sunlock(&allproc_lock); */
2535 	if (_vm_object_in_map(kernel_map, object, 0))
2536 		return 1;
2537 	return 0;
2538 }
2539 
2540 DB_SHOW_COMMAND(vmochk, vm_object_check)
2541 {
2542 	vm_object_t object;
2543 
2544 	/*
2545 	 * make sure that internal objs are in a map somewhere
2546 	 * and none have zero ref counts.
2547 	 */
2548 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2549 		if ((object->flags & OBJ_ANON) != 0) {
2550 			if (object->ref_count == 0) {
2551 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2552 					(long)object->size);
2553 			}
2554 			if (!vm_object_in_map(object)) {
2555 				db_printf(
2556 			"vmochk: internal obj is not in a map: "
2557 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2558 				    object->ref_count, (u_long)object->size,
2559 				    (u_long)object->size,
2560 				    (void *)object->backing_object);
2561 			}
2562 		}
2563 	}
2564 }
2565 
2566 /*
2567  *	vm_object_print:	[ debug ]
2568  */
2569 DB_SHOW_COMMAND(object, vm_object_print_static)
2570 {
2571 	/* XXX convert args. */
2572 	vm_object_t object = (vm_object_t)addr;
2573 	boolean_t full = have_addr;
2574 
2575 	vm_page_t p;
2576 
2577 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2578 #define	count	was_count
2579 
2580 	int count;
2581 
2582 	if (object == NULL)
2583 		return;
2584 
2585 	db_iprintf(
2586 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2587 	    object, (int)object->type, (uintmax_t)object->size,
2588 	    object->resident_page_count, object->ref_count, object->flags,
2589 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2590 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2591 	    object->shadow_count,
2592 	    object->backing_object ? object->backing_object->ref_count : 0,
2593 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2594 
2595 	if (!full)
2596 		return;
2597 
2598 	db_indent += 2;
2599 	count = 0;
2600 	TAILQ_FOREACH(p, &object->memq, listq) {
2601 		if (count == 0)
2602 			db_iprintf("memory:=");
2603 		else if (count == 6) {
2604 			db_printf("\n");
2605 			db_iprintf(" ...");
2606 			count = 0;
2607 		} else
2608 			db_printf(",");
2609 		count++;
2610 
2611 		db_printf("(off=0x%jx,page=0x%jx)",
2612 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2613 	}
2614 	if (count != 0)
2615 		db_printf("\n");
2616 	db_indent -= 2;
2617 }
2618 
2619 /* XXX. */
2620 #undef count
2621 
2622 /* XXX need this non-static entry for calling from vm_map_print. */
2623 void
2624 vm_object_print(
2625         /* db_expr_t */ long addr,
2626 	boolean_t have_addr,
2627 	/* db_expr_t */ long count,
2628 	char *modif)
2629 {
2630 	vm_object_print_static(addr, have_addr, count, modif);
2631 }
2632 
2633 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2634 {
2635 	vm_object_t object;
2636 	vm_pindex_t fidx;
2637 	vm_paddr_t pa;
2638 	vm_page_t m, prev_m;
2639 	int rcount, nl, c;
2640 
2641 	nl = 0;
2642 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2643 		db_printf("new object: %p\n", (void *)object);
2644 		if (nl > 18) {
2645 			c = cngetc();
2646 			if (c != ' ')
2647 				return;
2648 			nl = 0;
2649 		}
2650 		nl++;
2651 		rcount = 0;
2652 		fidx = 0;
2653 		pa = -1;
2654 		TAILQ_FOREACH(m, &object->memq, listq) {
2655 			if (m->pindex > 128)
2656 				break;
2657 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2658 			    prev_m->pindex + 1 != m->pindex) {
2659 				if (rcount) {
2660 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2661 						(long)fidx, rcount, (long)pa);
2662 					if (nl > 18) {
2663 						c = cngetc();
2664 						if (c != ' ')
2665 							return;
2666 						nl = 0;
2667 					}
2668 					nl++;
2669 					rcount = 0;
2670 				}
2671 			}
2672 			if (rcount &&
2673 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2674 				++rcount;
2675 				continue;
2676 			}
2677 			if (rcount) {
2678 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2679 					(long)fidx, rcount, (long)pa);
2680 				if (nl > 18) {
2681 					c = cngetc();
2682 					if (c != ' ')
2683 						return;
2684 					nl = 0;
2685 				}
2686 				nl++;
2687 			}
2688 			fidx = m->pindex;
2689 			pa = VM_PAGE_TO_PHYS(m);
2690 			rcount = 1;
2691 		}
2692 		if (rcount) {
2693 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2694 				(long)fidx, rcount, (long)pa);
2695 			if (nl > 18) {
2696 				c = cngetc();
2697 				if (c != ' ')
2698 					return;
2699 				nl = 0;
2700 			}
2701 			nl++;
2702 		}
2703 	}
2704 }
2705 #endif /* DDB */
2706