xref: /freebsd/sys/vm/vm_object.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>		/* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94 
95 #define EASY_SCAN_FACTOR       8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 /*
101  * msync / VM object flushing optimizations
102  */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105         CTLFLAG_RW, &msync_flush_flags, 0, "");
106 
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109     "Use old (insecure) msync behavior");
110 
111 static void	vm_object_qcollapse(vm_object_t object);
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static long object_collapses;
147 static long object_bypasses;
148 
149 /*
150  * next_index determines the page color that is assigned to the next
151  * allocated object.  Accesses to next_index are not synchronized
152  * because the effects of two or more object allocations using
153  * next_index simultaneously are inconsequential.  At any given time,
154  * numerous objects have the same page color.
155  */
156 static int next_index;
157 
158 static uma_zone_t obj_zone;
159 #define VM_OBJECTS_INIT 256
160 
161 static int vm_object_zinit(void *mem, int size, int flags);
162 
163 #ifdef INVARIANTS
164 static void vm_object_zdtor(void *mem, int size, void *arg);
165 
166 static void
167 vm_object_zdtor(void *mem, int size, void *arg)
168 {
169 	vm_object_t object;
170 
171 	object = (vm_object_t)mem;
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages",
174 	    object));
175 	KASSERT(object->paging_in_progress == 0,
176 	    ("object %p paging_in_progress = %d",
177 	    object, object->paging_in_progress));
178 	KASSERT(object->resident_page_count == 0,
179 	    ("object %p resident_page_count = %d",
180 	    object, object->resident_page_count));
181 	KASSERT(object->shadow_count == 0,
182 	    ("object %p shadow_count = %d",
183 	    object, object->shadow_count));
184 }
185 #endif
186 
187 static int
188 vm_object_zinit(void *mem, int size, int flags)
189 {
190 	vm_object_t object;
191 
192 	object = (vm_object_t)mem;
193 	bzero(&object->mtx, sizeof(object->mtx));
194 	VM_OBJECT_LOCK_INIT(object, "standard object");
195 
196 	/* These are true for any object that has been freed */
197 	object->paging_in_progress = 0;
198 	object->resident_page_count = 0;
199 	object->shadow_count = 0;
200 	return (0);
201 }
202 
203 void
204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205 {
206 	int incr;
207 
208 	TAILQ_INIT(&object->memq);
209 	LIST_INIT(&object->shadow_head);
210 
211 	object->root = NULL;
212 	object->type = type;
213 	object->size = size;
214 	object->generation = 1;
215 	object->ref_count = 1;
216 	object->flags = 0;
217 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218 		object->flags = OBJ_ONEMAPPING;
219 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221 	else
222 		incr = size;
223 	object->pg_color = next_index;
224 	next_index = (object->pg_color + incr) & PQ_L2_MASK;
225 	object->handle = NULL;
226 	object->backing_object = NULL;
227 	object->backing_object_offset = (vm_ooffset_t) 0;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 }
233 
234 /*
235  *	vm_object_init:
236  *
237  *	Initialize the VM objects module.
238  */
239 void
240 vm_object_init(void)
241 {
242 	TAILQ_INIT(&vm_object_list);
243 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244 
245 	VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247 	    kernel_object);
248 
249 	VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251 	    kmem_object);
252 
253 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254 #ifdef INVARIANTS
255 	    vm_object_zdtor,
256 #else
257 	    NULL,
258 #endif
259 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
260 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261 }
262 
263 void
264 vm_object_clear_flag(vm_object_t object, u_short bits)
265 {
266 
267 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268 	object->flags &= ~bits;
269 }
270 
271 void
272 vm_object_pip_add(vm_object_t object, short i)
273 {
274 
275 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276 	object->paging_in_progress += i;
277 }
278 
279 void
280 vm_object_pip_subtract(vm_object_t object, short i)
281 {
282 
283 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284 	object->paging_in_progress -= i;
285 }
286 
287 void
288 vm_object_pip_wakeup(vm_object_t object)
289 {
290 
291 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292 	object->paging_in_progress--;
293 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294 		vm_object_clear_flag(object, OBJ_PIPWNT);
295 		wakeup(object);
296 	}
297 }
298 
299 void
300 vm_object_pip_wakeupn(vm_object_t object, short i)
301 {
302 
303 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304 	if (i)
305 		object->paging_in_progress -= i;
306 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307 		vm_object_clear_flag(object, OBJ_PIPWNT);
308 		wakeup(object);
309 	}
310 }
311 
312 void
313 vm_object_pip_wait(vm_object_t object, char *waitid)
314 {
315 
316 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317 	while (object->paging_in_progress) {
318 		object->flags |= OBJ_PIPWNT;
319 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320 	}
321 }
322 
323 /*
324  *	vm_object_allocate:
325  *
326  *	Returns a new object with the given size.
327  */
328 vm_object_t
329 vm_object_allocate(objtype_t type, vm_pindex_t size)
330 {
331 	vm_object_t object;
332 
333 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334 	_vm_object_allocate(type, size, object);
335 	return (object);
336 }
337 
338 
339 /*
340  *	vm_object_reference:
341  *
342  *	Gets another reference to the given object.  Note: OBJ_DEAD
343  *	objects can be referenced during final cleaning.
344  */
345 void
346 vm_object_reference(vm_object_t object)
347 {
348 	struct vnode *vp;
349 	int flags;
350 
351 	if (object == NULL)
352 		return;
353 	VM_OBJECT_LOCK(object);
354 	object->ref_count++;
355 	if (object->type == OBJT_VNODE) {
356 		vp = object->handle;
357 		VI_LOCK(vp);
358 		VM_OBJECT_UNLOCK(object);
359 		for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
360 		     flags = 0)
361 			printf("vm_object_reference: delay in vget\n");
362 	} else
363 		VM_OBJECT_UNLOCK(object);
364 }
365 
366 /*
367  *	vm_object_reference_locked:
368  *
369  *	Gets another reference to the given object.
370  *
371  *	The object must be locked.
372  */
373 void
374 vm_object_reference_locked(vm_object_t object)
375 {
376 	struct vnode *vp;
377 
378 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379 	KASSERT((object->flags & OBJ_DEAD) == 0,
380 	    ("vm_object_reference_locked: dead object referenced"));
381 	object->ref_count++;
382 	if (object->type == OBJT_VNODE) {
383 		vp = object->handle;
384 		vref(vp);
385 	}
386 }
387 
388 /*
389  * Handle deallocating an object of type OBJT_VNODE.
390  */
391 void
392 vm_object_vndeallocate(vm_object_t object)
393 {
394 	struct vnode *vp = (struct vnode *) object->handle;
395 
396 	VFS_ASSERT_GIANT(vp->v_mount);
397 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398 	KASSERT(object->type == OBJT_VNODE,
399 	    ("vm_object_vndeallocate: not a vnode object"));
400 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401 #ifdef INVARIANTS
402 	if (object->ref_count == 0) {
403 		vprint("vm_object_vndeallocate", vp);
404 		panic("vm_object_vndeallocate: bad object reference count");
405 	}
406 #endif
407 
408 	object->ref_count--;
409 	if (object->ref_count == 0) {
410 		mp_fixme("Unlocked vflag access.");
411 		vp->v_vflag &= ~VV_TEXT;
412 	}
413 	VM_OBJECT_UNLOCK(object);
414 	/*
415 	 * vrele may need a vop lock
416 	 */
417 	vrele(vp);
418 }
419 
420 /*
421  *	vm_object_deallocate:
422  *
423  *	Release a reference to the specified object,
424  *	gained either through a vm_object_allocate
425  *	or a vm_object_reference call.  When all references
426  *	are gone, storage associated with this object
427  *	may be relinquished.
428  *
429  *	No object may be locked.
430  */
431 void
432 vm_object_deallocate(vm_object_t object)
433 {
434 	vm_object_t temp;
435 
436 	while (object != NULL) {
437 		int vfslocked;
438 		/*
439 		 * In general, the object should be locked when working with
440 		 * its type.  In this case, in order to maintain proper lock
441 		 * ordering, an exception is possible because a vnode-backed
442 		 * object never changes its type.
443 		 */
444 		vfslocked = 0;
445 		if (object->type == OBJT_VNODE) {
446 			struct vnode *vp = (struct vnode *) object->handle;
447 			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
448 		}
449 		VM_OBJECT_LOCK(object);
450 		if (object->type == OBJT_VNODE) {
451 			vm_object_vndeallocate(object);
452 			VFS_UNLOCK_GIANT(vfslocked);
453 			return;
454 		}
455 
456 		KASSERT(object->ref_count != 0,
457 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
458 
459 		/*
460 		 * If the reference count goes to 0 we start calling
461 		 * vm_object_terminate() on the object chain.
462 		 * A ref count of 1 may be a special case depending on the
463 		 * shadow count being 0 or 1.
464 		 */
465 		object->ref_count--;
466 		if (object->ref_count > 1) {
467 			VM_OBJECT_UNLOCK(object);
468 			return;
469 		} else if (object->ref_count == 1) {
470 			if (object->shadow_count == 0) {
471 				vm_object_set_flag(object, OBJ_ONEMAPPING);
472 			} else if ((object->shadow_count == 1) &&
473 			    (object->handle == NULL) &&
474 			    (object->type == OBJT_DEFAULT ||
475 			     object->type == OBJT_SWAP)) {
476 				vm_object_t robject;
477 
478 				robject = LIST_FIRST(&object->shadow_head);
479 				KASSERT(robject != NULL,
480 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
481 					 object->ref_count,
482 					 object->shadow_count));
483 				if (!VM_OBJECT_TRYLOCK(robject)) {
484 					/*
485 					 * Avoid a potential deadlock.
486 					 */
487 					object->ref_count++;
488 					VM_OBJECT_UNLOCK(object);
489 					/*
490 					 * More likely than not the thread
491 					 * holding robject's lock has lower
492 					 * priority than the current thread.
493 					 * Let the lower priority thread run.
494 					 */
495 					tsleep(&proc0, PVM, "vmo_de", 1);
496 					continue;
497 				}
498 				/*
499 				 * Collapse object into its shadow unless its
500 				 * shadow is dead.  In that case, object will
501 				 * be deallocated by the thread that is
502 				 * deallocating its shadow.
503 				 */
504 				if ((robject->flags & OBJ_DEAD) == 0 &&
505 				    (robject->handle == NULL) &&
506 				    (robject->type == OBJT_DEFAULT ||
507 				     robject->type == OBJT_SWAP)) {
508 
509 					robject->ref_count++;
510 retry:
511 					if (robject->paging_in_progress) {
512 						VM_OBJECT_UNLOCK(object);
513 						vm_object_pip_wait(robject,
514 						    "objde1");
515 						VM_OBJECT_LOCK(object);
516 						goto retry;
517 					} else if (object->paging_in_progress) {
518 						VM_OBJECT_UNLOCK(robject);
519 						object->flags |= OBJ_PIPWNT;
520 						msleep(object,
521 						    VM_OBJECT_MTX(object),
522 						    PDROP | PVM, "objde2", 0);
523 						VM_OBJECT_LOCK(robject);
524 						VM_OBJECT_LOCK(object);
525 						goto retry;
526 					}
527 					VM_OBJECT_UNLOCK(object);
528 					if (robject->ref_count == 1) {
529 						robject->ref_count--;
530 						object = robject;
531 						goto doterm;
532 					}
533 					object = robject;
534 					vm_object_collapse(object);
535 					VM_OBJECT_UNLOCK(object);
536 					continue;
537 				}
538 				VM_OBJECT_UNLOCK(robject);
539 			}
540 			VM_OBJECT_UNLOCK(object);
541 			return;
542 		}
543 doterm:
544 		temp = object->backing_object;
545 		if (temp != NULL) {
546 			VM_OBJECT_LOCK(temp);
547 			LIST_REMOVE(object, shadow_list);
548 			temp->shadow_count--;
549 			temp->generation++;
550 			VM_OBJECT_UNLOCK(temp);
551 			object->backing_object = NULL;
552 		}
553 		/*
554 		 * Don't double-terminate, we could be in a termination
555 		 * recursion due to the terminate having to sync data
556 		 * to disk.
557 		 */
558 		if ((object->flags & OBJ_DEAD) == 0)
559 			vm_object_terminate(object);
560 		else
561 			VM_OBJECT_UNLOCK(object);
562 		object = temp;
563 	}
564 }
565 
566 /*
567  *	vm_object_terminate actually destroys the specified object, freeing
568  *	up all previously used resources.
569  *
570  *	The object must be locked.
571  *	This routine may block.
572  */
573 void
574 vm_object_terminate(vm_object_t object)
575 {
576 	vm_page_t p;
577 
578 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
579 
580 	/*
581 	 * Make sure no one uses us.
582 	 */
583 	vm_object_set_flag(object, OBJ_DEAD);
584 
585 	/*
586 	 * wait for the pageout daemon to be done with the object
587 	 */
588 	vm_object_pip_wait(object, "objtrm");
589 
590 	KASSERT(!object->paging_in_progress,
591 		("vm_object_terminate: pageout in progress"));
592 
593 	/*
594 	 * Clean and free the pages, as appropriate. All references to the
595 	 * object are gone, so we don't need to lock it.
596 	 */
597 	if (object->type == OBJT_VNODE) {
598 		struct vnode *vp = (struct vnode *)object->handle;
599 
600 		/*
601 		 * Clean pages and flush buffers.
602 		 */
603 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
604 		VM_OBJECT_UNLOCK(object);
605 
606 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
607 
608 		VM_OBJECT_LOCK(object);
609 	}
610 
611 	KASSERT(object->ref_count == 0,
612 		("vm_object_terminate: object with references, ref_count=%d",
613 		object->ref_count));
614 
615 	/*
616 	 * Now free any remaining pages. For internal objects, this also
617 	 * removes them from paging queues. Don't free wired pages, just
618 	 * remove them from the object.
619 	 */
620 	vm_page_lock_queues();
621 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
622 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
623 			("vm_object_terminate: freeing busy page %p "
624 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
625 		if (p->wire_count == 0) {
626 			vm_page_free(p);
627 			cnt.v_pfree++;
628 		} else {
629 			vm_page_remove(p);
630 		}
631 	}
632 	vm_page_unlock_queues();
633 
634 	/*
635 	 * Let the pager know object is dead.
636 	 */
637 	vm_pager_deallocate(object);
638 	VM_OBJECT_UNLOCK(object);
639 
640 	/*
641 	 * Remove the object from the global object list.
642 	 */
643 	mtx_lock(&vm_object_list_mtx);
644 	TAILQ_REMOVE(&vm_object_list, object, object_list);
645 	mtx_unlock(&vm_object_list_mtx);
646 
647 	/*
648 	 * Free the space for the object.
649 	 */
650 	uma_zfree(obj_zone, object);
651 }
652 
653 /*
654  *	vm_object_page_clean
655  *
656  *	Clean all dirty pages in the specified range of object.  Leaves page
657  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
658  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
659  *	leaving the object dirty.
660  *
661  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
662  *	synchronous clustering mode implementation.
663  *
664  *	Odd semantics: if start == end, we clean everything.
665  *
666  *	The object must be locked.
667  */
668 void
669 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
670 {
671 	vm_page_t p, np;
672 	vm_pindex_t tstart, tend;
673 	vm_pindex_t pi;
674 	int clearobjflags;
675 	int pagerflags;
676 	int curgeneration;
677 
678 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679 	if (object->type != OBJT_VNODE ||
680 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
681 		return;
682 
683 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
684 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
685 
686 	vm_object_set_flag(object, OBJ_CLEANING);
687 
688 	tstart = start;
689 	if (end == 0) {
690 		tend = object->size;
691 	} else {
692 		tend = end;
693 	}
694 
695 	vm_page_lock_queues();
696 	/*
697 	 * If the caller is smart and only msync()s a range he knows is
698 	 * dirty, we may be able to avoid an object scan.  This results in
699 	 * a phenominal improvement in performance.  We cannot do this
700 	 * as a matter of course because the object may be huge - e.g.
701 	 * the size might be in the gigabytes or terrabytes.
702 	 */
703 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
704 		vm_pindex_t tscan;
705 		int scanlimit;
706 		int scanreset;
707 
708 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
709 		if (scanreset < 16)
710 			scanreset = 16;
711 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
712 
713 		scanlimit = scanreset;
714 		tscan = tstart;
715 		while (tscan < tend) {
716 			curgeneration = object->generation;
717 			p = vm_page_lookup(object, tscan);
718 			if (p == NULL || p->valid == 0 ||
719 			    (p->queue - p->pc) == PQ_CACHE) {
720 				if (--scanlimit == 0)
721 					break;
722 				++tscan;
723 				continue;
724 			}
725 			vm_page_test_dirty(p);
726 			if ((p->dirty & p->valid) == 0) {
727 				if (--scanlimit == 0)
728 					break;
729 				++tscan;
730 				continue;
731 			}
732 			/*
733 			 * If we have been asked to skip nosync pages and
734 			 * this is a nosync page, we can't continue.
735 			 */
736 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
737 				if (--scanlimit == 0)
738 					break;
739 				++tscan;
740 				continue;
741 			}
742 			scanlimit = scanreset;
743 
744 			/*
745 			 * This returns 0 if it was unable to busy the first
746 			 * page (i.e. had to sleep).
747 			 */
748 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
749 		}
750 
751 		/*
752 		 * If everything was dirty and we flushed it successfully,
753 		 * and the requested range is not the entire object, we
754 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
755 		 * return immediately.
756 		 */
757 		if (tscan >= tend && (tstart || tend < object->size)) {
758 			vm_page_unlock_queues();
759 			vm_object_clear_flag(object, OBJ_CLEANING);
760 			return;
761 		}
762 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
763 	}
764 
765 	/*
766 	 * Generally set CLEANCHK interlock and make the page read-only so
767 	 * we can then clear the object flags.
768 	 *
769 	 * However, if this is a nosync mmap then the object is likely to
770 	 * stay dirty so do not mess with the page and do not clear the
771 	 * object flags.
772 	 */
773 	clearobjflags = 1;
774 	TAILQ_FOREACH(p, &object->memq, listq) {
775 		vm_page_flag_set(p, PG_CLEANCHK);
776 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
777 			clearobjflags = 0;
778 		else
779 			pmap_page_protect(p, VM_PROT_READ);
780 	}
781 
782 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
783 		struct vnode *vp;
784 
785 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
786 		if (object->type == OBJT_VNODE &&
787 		    (vp = (struct vnode *)object->handle) != NULL) {
788 			VI_LOCK(vp);
789 			if (vp->v_iflag & VI_OBJDIRTY)
790 				vp->v_iflag &= ~VI_OBJDIRTY;
791 			VI_UNLOCK(vp);
792 		}
793 	}
794 
795 rescan:
796 	curgeneration = object->generation;
797 
798 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
799 		int n;
800 
801 		np = TAILQ_NEXT(p, listq);
802 
803 again:
804 		pi = p->pindex;
805 		if (((p->flags & PG_CLEANCHK) == 0) ||
806 			(pi < tstart) || (pi >= tend) ||
807 			(p->valid == 0) ||
808 			((p->queue - p->pc) == PQ_CACHE)) {
809 			vm_page_flag_clear(p, PG_CLEANCHK);
810 			continue;
811 		}
812 
813 		vm_page_test_dirty(p);
814 		if ((p->dirty & p->valid) == 0) {
815 			vm_page_flag_clear(p, PG_CLEANCHK);
816 			continue;
817 		}
818 
819 		/*
820 		 * If we have been asked to skip nosync pages and this is a
821 		 * nosync page, skip it.  Note that the object flags were
822 		 * not cleared in this case so we do not have to set them.
823 		 */
824 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
825 			vm_page_flag_clear(p, PG_CLEANCHK);
826 			continue;
827 		}
828 
829 		n = vm_object_page_collect_flush(object, p,
830 			curgeneration, pagerflags);
831 		if (n == 0)
832 			goto rescan;
833 
834 		if (object->generation != curgeneration)
835 			goto rescan;
836 
837 		/*
838 		 * Try to optimize the next page.  If we can't we pick up
839 		 * our (random) scan where we left off.
840 		 */
841 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
842 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
843 				goto again;
844 		}
845 	}
846 	vm_page_unlock_queues();
847 #if 0
848 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
849 #endif
850 
851 	vm_object_clear_flag(object, OBJ_CLEANING);
852 	return;
853 }
854 
855 static int
856 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
857 {
858 	int runlen;
859 	int maxf;
860 	int chkb;
861 	int maxb;
862 	int i;
863 	vm_pindex_t pi;
864 	vm_page_t maf[vm_pageout_page_count];
865 	vm_page_t mab[vm_pageout_page_count];
866 	vm_page_t ma[vm_pageout_page_count];
867 
868 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
869 	pi = p->pindex;
870 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
871 		vm_page_lock_queues();
872 		if (object->generation != curgeneration) {
873 			return(0);
874 		}
875 	}
876 	maxf = 0;
877 	for(i = 1; i < vm_pageout_page_count; i++) {
878 		vm_page_t tp;
879 
880 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
881 			if ((tp->flags & PG_BUSY) ||
882 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
883 				 (tp->flags & PG_CLEANCHK) == 0) ||
884 				(tp->busy != 0))
885 				break;
886 			if((tp->queue - tp->pc) == PQ_CACHE) {
887 				vm_page_flag_clear(tp, PG_CLEANCHK);
888 				break;
889 			}
890 			vm_page_test_dirty(tp);
891 			if ((tp->dirty & tp->valid) == 0) {
892 				vm_page_flag_clear(tp, PG_CLEANCHK);
893 				break;
894 			}
895 			maf[ i - 1 ] = tp;
896 			maxf++;
897 			continue;
898 		}
899 		break;
900 	}
901 
902 	maxb = 0;
903 	chkb = vm_pageout_page_count -  maxf;
904 	if (chkb) {
905 		for(i = 1; i < chkb;i++) {
906 			vm_page_t tp;
907 
908 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
909 				if ((tp->flags & PG_BUSY) ||
910 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
911 					 (tp->flags & PG_CLEANCHK) == 0) ||
912 					(tp->busy != 0))
913 					break;
914 				if ((tp->queue - tp->pc) == PQ_CACHE) {
915 					vm_page_flag_clear(tp, PG_CLEANCHK);
916 					break;
917 				}
918 				vm_page_test_dirty(tp);
919 				if ((tp->dirty & tp->valid) == 0) {
920 					vm_page_flag_clear(tp, PG_CLEANCHK);
921 					break;
922 				}
923 				mab[ i - 1 ] = tp;
924 				maxb++;
925 				continue;
926 			}
927 			break;
928 		}
929 	}
930 
931 	for(i = 0; i < maxb; i++) {
932 		int index = (maxb - i) - 1;
933 		ma[index] = mab[i];
934 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
935 	}
936 	vm_page_flag_clear(p, PG_CLEANCHK);
937 	ma[maxb] = p;
938 	for(i = 0; i < maxf; i++) {
939 		int index = (maxb + i) + 1;
940 		ma[index] = maf[i];
941 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
942 	}
943 	runlen = maxb + maxf + 1;
944 
945 	vm_pageout_flush(ma, runlen, pagerflags);
946 	for (i = 0; i < runlen; i++) {
947 		if (ma[i]->valid & ma[i]->dirty) {
948 			pmap_page_protect(ma[i], VM_PROT_READ);
949 			vm_page_flag_set(ma[i], PG_CLEANCHK);
950 
951 			/*
952 			 * maxf will end up being the actual number of pages
953 			 * we wrote out contiguously, non-inclusive of the
954 			 * first page.  We do not count look-behind pages.
955 			 */
956 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
957 				maxf = i - maxb - 1;
958 		}
959 	}
960 	return(maxf + 1);
961 }
962 
963 /*
964  * Note that there is absolutely no sense in writing out
965  * anonymous objects, so we track down the vnode object
966  * to write out.
967  * We invalidate (remove) all pages from the address space
968  * for semantic correctness.
969  *
970  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
971  * may start out with a NULL object.
972  */
973 void
974 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
975     boolean_t syncio, boolean_t invalidate)
976 {
977 	vm_object_t backing_object;
978 	struct vnode *vp;
979 	int flags;
980 
981 	if (object == NULL)
982 		return;
983 	VM_OBJECT_LOCK(object);
984 	while ((backing_object = object->backing_object) != NULL) {
985 		VM_OBJECT_LOCK(backing_object);
986 		offset += object->backing_object_offset;
987 		VM_OBJECT_UNLOCK(object);
988 		object = backing_object;
989 		if (object->size < OFF_TO_IDX(offset + size))
990 			size = IDX_TO_OFF(object->size) - offset;
991 	}
992 	/*
993 	 * Flush pages if writing is allowed, invalidate them
994 	 * if invalidation requested.  Pages undergoing I/O
995 	 * will be ignored by vm_object_page_remove().
996 	 *
997 	 * We cannot lock the vnode and then wait for paging
998 	 * to complete without deadlocking against vm_fault.
999 	 * Instead we simply call vm_object_page_remove() and
1000 	 * allow it to block internally on a page-by-page
1001 	 * basis when it encounters pages undergoing async
1002 	 * I/O.
1003 	 */
1004 	if (object->type == OBJT_VNODE &&
1005 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1006 		int vfslocked;
1007 		vp = object->handle;
1008 		VM_OBJECT_UNLOCK(object);
1009 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1010 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1011 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1012 		flags |= invalidate ? OBJPC_INVAL : 0;
1013 		VM_OBJECT_LOCK(object);
1014 		vm_object_page_clean(object,
1015 		    OFF_TO_IDX(offset),
1016 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1017 		    flags);
1018 		VM_OBJECT_UNLOCK(object);
1019 		VOP_UNLOCK(vp, 0, curthread);
1020 		VFS_UNLOCK_GIANT(vfslocked);
1021 		VM_OBJECT_LOCK(object);
1022 	}
1023 	if ((object->type == OBJT_VNODE ||
1024 	     object->type == OBJT_DEVICE) && invalidate) {
1025 		boolean_t purge;
1026 		purge = old_msync || (object->type == OBJT_DEVICE);
1027 		vm_object_page_remove(object,
1028 		    OFF_TO_IDX(offset),
1029 		    OFF_TO_IDX(offset + size + PAGE_MASK),
1030 		    purge ? FALSE : TRUE);
1031 	}
1032 	VM_OBJECT_UNLOCK(object);
1033 }
1034 
1035 /*
1036  *	vm_object_madvise:
1037  *
1038  *	Implements the madvise function at the object/page level.
1039  *
1040  *	MADV_WILLNEED	(any object)
1041  *
1042  *	    Activate the specified pages if they are resident.
1043  *
1044  *	MADV_DONTNEED	(any object)
1045  *
1046  *	    Deactivate the specified pages if they are resident.
1047  *
1048  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1049  *			 OBJ_ONEMAPPING only)
1050  *
1051  *	    Deactivate and clean the specified pages if they are
1052  *	    resident.  This permits the process to reuse the pages
1053  *	    without faulting or the kernel to reclaim the pages
1054  *	    without I/O.
1055  */
1056 void
1057 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1058 {
1059 	vm_pindex_t end, tpindex;
1060 	vm_object_t backing_object, tobject;
1061 	vm_page_t m;
1062 
1063 	if (object == NULL)
1064 		return;
1065 	VM_OBJECT_LOCK(object);
1066 	end = pindex + count;
1067 	/*
1068 	 * Locate and adjust resident pages
1069 	 */
1070 	for (; pindex < end; pindex += 1) {
1071 relookup:
1072 		tobject = object;
1073 		tpindex = pindex;
1074 shadowlookup:
1075 		/*
1076 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1077 		 * and those pages must be OBJ_ONEMAPPING.
1078 		 */
1079 		if (advise == MADV_FREE) {
1080 			if ((tobject->type != OBJT_DEFAULT &&
1081 			     tobject->type != OBJT_SWAP) ||
1082 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1083 				goto unlock_tobject;
1084 			}
1085 		}
1086 		m = vm_page_lookup(tobject, tpindex);
1087 		if (m == NULL) {
1088 			/*
1089 			 * There may be swap even if there is no backing page
1090 			 */
1091 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1092 				swap_pager_freespace(tobject, tpindex, 1);
1093 			/*
1094 			 * next object
1095 			 */
1096 			backing_object = tobject->backing_object;
1097 			if (backing_object == NULL)
1098 				goto unlock_tobject;
1099 			VM_OBJECT_LOCK(backing_object);
1100 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1101 			if (tobject != object)
1102 				VM_OBJECT_UNLOCK(tobject);
1103 			tobject = backing_object;
1104 			goto shadowlookup;
1105 		}
1106 		/*
1107 		 * If the page is busy or not in a normal active state,
1108 		 * we skip it.  If the page is not managed there are no
1109 		 * page queues to mess with.  Things can break if we mess
1110 		 * with pages in any of the below states.
1111 		 */
1112 		vm_page_lock_queues();
1113 		if (m->hold_count ||
1114 		    m->wire_count ||
1115 		    (m->flags & PG_UNMANAGED) ||
1116 		    m->valid != VM_PAGE_BITS_ALL) {
1117 			vm_page_unlock_queues();
1118 			goto unlock_tobject;
1119 		}
1120 		if ((m->flags & PG_BUSY) || m->busy) {
1121 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1122 			if (object != tobject)
1123 				VM_OBJECT_UNLOCK(object);
1124 			VM_OBJECT_UNLOCK(tobject);
1125 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1126 			VM_OBJECT_LOCK(object);
1127   			goto relookup;
1128 		}
1129 		if (advise == MADV_WILLNEED) {
1130 			vm_page_activate(m);
1131 		} else if (advise == MADV_DONTNEED) {
1132 			vm_page_dontneed(m);
1133 		} else if (advise == MADV_FREE) {
1134 			/*
1135 			 * Mark the page clean.  This will allow the page
1136 			 * to be freed up by the system.  However, such pages
1137 			 * are often reused quickly by malloc()/free()
1138 			 * so we do not do anything that would cause
1139 			 * a page fault if we can help it.
1140 			 *
1141 			 * Specifically, we do not try to actually free
1142 			 * the page now nor do we try to put it in the
1143 			 * cache (which would cause a page fault on reuse).
1144 			 *
1145 			 * But we do make the page is freeable as we
1146 			 * can without actually taking the step of unmapping
1147 			 * it.
1148 			 */
1149 			pmap_clear_modify(m);
1150 			m->dirty = 0;
1151 			m->act_count = 0;
1152 			vm_page_dontneed(m);
1153 		}
1154 		vm_page_unlock_queues();
1155 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1156 			swap_pager_freespace(tobject, tpindex, 1);
1157 unlock_tobject:
1158 		if (tobject != object)
1159 			VM_OBJECT_UNLOCK(tobject);
1160 	}
1161 	VM_OBJECT_UNLOCK(object);
1162 }
1163 
1164 /*
1165  *	vm_object_shadow:
1166  *
1167  *	Create a new object which is backed by the
1168  *	specified existing object range.  The source
1169  *	object reference is deallocated.
1170  *
1171  *	The new object and offset into that object
1172  *	are returned in the source parameters.
1173  */
1174 void
1175 vm_object_shadow(
1176 	vm_object_t *object,	/* IN/OUT */
1177 	vm_ooffset_t *offset,	/* IN/OUT */
1178 	vm_size_t length)
1179 {
1180 	vm_object_t source;
1181 	vm_object_t result;
1182 
1183 	source = *object;
1184 
1185 	/*
1186 	 * Don't create the new object if the old object isn't shared.
1187 	 */
1188 	if (source != NULL) {
1189 		VM_OBJECT_LOCK(source);
1190 		if (source->ref_count == 1 &&
1191 		    source->handle == NULL &&
1192 		    (source->type == OBJT_DEFAULT ||
1193 		     source->type == OBJT_SWAP)) {
1194 			VM_OBJECT_UNLOCK(source);
1195 			return;
1196 		}
1197 		VM_OBJECT_UNLOCK(source);
1198 	}
1199 
1200 	/*
1201 	 * Allocate a new object with the given length.
1202 	 */
1203 	result = vm_object_allocate(OBJT_DEFAULT, length);
1204 
1205 	/*
1206 	 * The new object shadows the source object, adding a reference to it.
1207 	 * Our caller changes his reference to point to the new object,
1208 	 * removing a reference to the source object.  Net result: no change
1209 	 * of reference count.
1210 	 *
1211 	 * Try to optimize the result object's page color when shadowing
1212 	 * in order to maintain page coloring consistency in the combined
1213 	 * shadowed object.
1214 	 */
1215 	result->backing_object = source;
1216 	/*
1217 	 * Store the offset into the source object, and fix up the offset into
1218 	 * the new object.
1219 	 */
1220 	result->backing_object_offset = *offset;
1221 	if (source != NULL) {
1222 		VM_OBJECT_LOCK(source);
1223 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1224 		source->shadow_count++;
1225 		source->generation++;
1226 		if (length < source->size)
1227 			length = source->size;
1228 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1229 		    source->generation > 1)
1230 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1231 		result->pg_color = (source->pg_color +
1232 		    length * source->generation) & PQ_L2_MASK;
1233 		VM_OBJECT_UNLOCK(source);
1234 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1235 		    PQ_L2_MASK;
1236 	}
1237 
1238 
1239 	/*
1240 	 * Return the new things
1241 	 */
1242 	*offset = 0;
1243 	*object = result;
1244 }
1245 
1246 /*
1247  *	vm_object_split:
1248  *
1249  * Split the pages in a map entry into a new object.  This affords
1250  * easier removal of unused pages, and keeps object inheritance from
1251  * being a negative impact on memory usage.
1252  */
1253 void
1254 vm_object_split(vm_map_entry_t entry)
1255 {
1256 	vm_page_t m;
1257 	vm_object_t orig_object, new_object, source;
1258 	vm_pindex_t offidxstart, offidxend;
1259 	vm_size_t idx, size;
1260 
1261 	orig_object = entry->object.vm_object;
1262 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1263 		return;
1264 	if (orig_object->ref_count <= 1)
1265 		return;
1266 	VM_OBJECT_UNLOCK(orig_object);
1267 
1268 	offidxstart = OFF_TO_IDX(entry->offset);
1269 	offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1270 	size = offidxend - offidxstart;
1271 
1272 	/*
1273 	 * If swap_pager_copy() is later called, it will convert new_object
1274 	 * into a swap object.
1275 	 */
1276 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1277 
1278 	VM_OBJECT_LOCK(new_object);
1279 	VM_OBJECT_LOCK(orig_object);
1280 	source = orig_object->backing_object;
1281 	if (source != NULL) {
1282 		VM_OBJECT_LOCK(source);
1283 		LIST_INSERT_HEAD(&source->shadow_head,
1284 				  new_object, shadow_list);
1285 		source->shadow_count++;
1286 		source->generation++;
1287 		vm_object_reference_locked(source);	/* for new_object */
1288 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1289 		VM_OBJECT_UNLOCK(source);
1290 		new_object->backing_object_offset =
1291 			orig_object->backing_object_offset + entry->offset;
1292 		new_object->backing_object = source;
1293 	}
1294 	vm_page_lock_queues();
1295 	for (idx = 0; idx < size; idx++) {
1296 	retry:
1297 		m = vm_page_lookup(orig_object, offidxstart + idx);
1298 		if (m == NULL)
1299 			continue;
1300 
1301 		/*
1302 		 * We must wait for pending I/O to complete before we can
1303 		 * rename the page.
1304 		 *
1305 		 * We do not have to VM_PROT_NONE the page as mappings should
1306 		 * not be changed by this operation.
1307 		 */
1308 		if ((m->flags & PG_BUSY) || m->busy) {
1309 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1310 			VM_OBJECT_UNLOCK(orig_object);
1311 			VM_OBJECT_UNLOCK(new_object);
1312 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1313 			VM_OBJECT_LOCK(new_object);
1314 			VM_OBJECT_LOCK(orig_object);
1315 			vm_page_lock_queues();
1316 			goto retry;
1317 		}
1318 		vm_page_rename(m, new_object, idx);
1319 		/* page automatically made dirty by rename and cache handled */
1320 		vm_page_busy(m);
1321 	}
1322 	vm_page_unlock_queues();
1323 	if (orig_object->type == OBJT_SWAP) {
1324 		/*
1325 		 * swap_pager_copy() can sleep, in which case the orig_object's
1326 		 * and new_object's locks are released and reacquired.
1327 		 */
1328 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1329 	}
1330 	VM_OBJECT_UNLOCK(orig_object);
1331 	vm_page_lock_queues();
1332 	TAILQ_FOREACH(m, &new_object->memq, listq)
1333 		vm_page_wakeup(m);
1334 	vm_page_unlock_queues();
1335 	VM_OBJECT_UNLOCK(new_object);
1336 	entry->object.vm_object = new_object;
1337 	entry->offset = 0LL;
1338 	vm_object_deallocate(orig_object);
1339 	VM_OBJECT_LOCK(new_object);
1340 }
1341 
1342 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1343 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1344 #define	OBSC_COLLAPSE_WAIT	0x0004
1345 
1346 static int
1347 vm_object_backing_scan(vm_object_t object, int op)
1348 {
1349 	int r = 1;
1350 	vm_page_t p;
1351 	vm_object_t backing_object;
1352 	vm_pindex_t backing_offset_index;
1353 
1354 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1355 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1356 
1357 	backing_object = object->backing_object;
1358 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1359 
1360 	/*
1361 	 * Initial conditions
1362 	 */
1363 	if (op & OBSC_TEST_ALL_SHADOWED) {
1364 		/*
1365 		 * We do not want to have to test for the existence of
1366 		 * swap pages in the backing object.  XXX but with the
1367 		 * new swapper this would be pretty easy to do.
1368 		 *
1369 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1370 		 * been ZFOD faulted yet?  If we do not test for this, the
1371 		 * shadow test may succeed! XXX
1372 		 */
1373 		if (backing_object->type != OBJT_DEFAULT) {
1374 			return (0);
1375 		}
1376 	}
1377 	if (op & OBSC_COLLAPSE_WAIT) {
1378 		vm_object_set_flag(backing_object, OBJ_DEAD);
1379 	}
1380 
1381 	/*
1382 	 * Our scan
1383 	 */
1384 	p = TAILQ_FIRST(&backing_object->memq);
1385 	while (p) {
1386 		vm_page_t next = TAILQ_NEXT(p, listq);
1387 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1388 
1389 		if (op & OBSC_TEST_ALL_SHADOWED) {
1390 			vm_page_t pp;
1391 
1392 			/*
1393 			 * Ignore pages outside the parent object's range
1394 			 * and outside the parent object's mapping of the
1395 			 * backing object.
1396 			 *
1397 			 * note that we do not busy the backing object's
1398 			 * page.
1399 			 */
1400 			if (
1401 			    p->pindex < backing_offset_index ||
1402 			    new_pindex >= object->size
1403 			) {
1404 				p = next;
1405 				continue;
1406 			}
1407 
1408 			/*
1409 			 * See if the parent has the page or if the parent's
1410 			 * object pager has the page.  If the parent has the
1411 			 * page but the page is not valid, the parent's
1412 			 * object pager must have the page.
1413 			 *
1414 			 * If this fails, the parent does not completely shadow
1415 			 * the object and we might as well give up now.
1416 			 */
1417 
1418 			pp = vm_page_lookup(object, new_pindex);
1419 			if (
1420 			    (pp == NULL || pp->valid == 0) &&
1421 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1422 			) {
1423 				r = 0;
1424 				break;
1425 			}
1426 		}
1427 
1428 		/*
1429 		 * Check for busy page
1430 		 */
1431 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1432 			vm_page_t pp;
1433 
1434 			vm_page_lock_queues();
1435 			if (op & OBSC_COLLAPSE_NOWAIT) {
1436 				if ((p->flags & PG_BUSY) ||
1437 				    !p->valid ||
1438 				    p->hold_count ||
1439 				    p->wire_count ||
1440 				    p->busy) {
1441 					vm_page_unlock_queues();
1442 					p = next;
1443 					continue;
1444 				}
1445 			} else if (op & OBSC_COLLAPSE_WAIT) {
1446 				if ((p->flags & PG_BUSY) || p->busy) {
1447 					vm_page_flag_set(p,
1448 					    PG_WANTED | PG_REFERENCED);
1449 					VM_OBJECT_UNLOCK(backing_object);
1450 					VM_OBJECT_UNLOCK(object);
1451 					msleep(p, &vm_page_queue_mtx,
1452 					    PDROP | PVM, "vmocol", 0);
1453 					VM_OBJECT_LOCK(object);
1454 					VM_OBJECT_LOCK(backing_object);
1455 					/*
1456 					 * If we slept, anything could have
1457 					 * happened.  Since the object is
1458 					 * marked dead, the backing offset
1459 					 * should not have changed so we
1460 					 * just restart our scan.
1461 					 */
1462 					p = TAILQ_FIRST(&backing_object->memq);
1463 					continue;
1464 				}
1465 			}
1466 			vm_page_unlock_queues();
1467 
1468 			KASSERT(
1469 			    p->object == backing_object,
1470 			    ("vm_object_backing_scan: object mismatch")
1471 			);
1472 
1473 			/*
1474 			 * Destroy any associated swap
1475 			 */
1476 			if (backing_object->type == OBJT_SWAP) {
1477 				swap_pager_freespace(
1478 				    backing_object,
1479 				    p->pindex,
1480 				    1
1481 				);
1482 			}
1483 
1484 			if (
1485 			    p->pindex < backing_offset_index ||
1486 			    new_pindex >= object->size
1487 			) {
1488 				/*
1489 				 * Page is out of the parent object's range, we
1490 				 * can simply destroy it.
1491 				 */
1492 				vm_page_lock_queues();
1493 				pmap_remove_all(p);
1494 				vm_page_free(p);
1495 				vm_page_unlock_queues();
1496 				p = next;
1497 				continue;
1498 			}
1499 
1500 			pp = vm_page_lookup(object, new_pindex);
1501 			if (
1502 			    pp != NULL ||
1503 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1504 			) {
1505 				/*
1506 				 * page already exists in parent OR swap exists
1507 				 * for this location in the parent.  Destroy
1508 				 * the original page from the backing object.
1509 				 *
1510 				 * Leave the parent's page alone
1511 				 */
1512 				vm_page_lock_queues();
1513 				pmap_remove_all(p);
1514 				vm_page_free(p);
1515 				vm_page_unlock_queues();
1516 				p = next;
1517 				continue;
1518 			}
1519 
1520 			/*
1521 			 * Page does not exist in parent, rename the
1522 			 * page from the backing object to the main object.
1523 			 *
1524 			 * If the page was mapped to a process, it can remain
1525 			 * mapped through the rename.
1526 			 */
1527 			vm_page_lock_queues();
1528 			vm_page_rename(p, object, new_pindex);
1529 			vm_page_unlock_queues();
1530 			/* page automatically made dirty by rename */
1531 		}
1532 		p = next;
1533 	}
1534 	return (r);
1535 }
1536 
1537 
1538 /*
1539  * this version of collapse allows the operation to occur earlier and
1540  * when paging_in_progress is true for an object...  This is not a complete
1541  * operation, but should plug 99.9% of the rest of the leaks.
1542  */
1543 static void
1544 vm_object_qcollapse(vm_object_t object)
1545 {
1546 	vm_object_t backing_object = object->backing_object;
1547 
1548 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1549 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1550 
1551 	if (backing_object->ref_count != 1)
1552 		return;
1553 
1554 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1555 }
1556 
1557 /*
1558  *	vm_object_collapse:
1559  *
1560  *	Collapse an object with the object backing it.
1561  *	Pages in the backing object are moved into the
1562  *	parent, and the backing object is deallocated.
1563  */
1564 void
1565 vm_object_collapse(vm_object_t object)
1566 {
1567 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1568 
1569 	while (TRUE) {
1570 		vm_object_t backing_object;
1571 
1572 		/*
1573 		 * Verify that the conditions are right for collapse:
1574 		 *
1575 		 * The object exists and the backing object exists.
1576 		 */
1577 		if ((backing_object = object->backing_object) == NULL)
1578 			break;
1579 
1580 		/*
1581 		 * we check the backing object first, because it is most likely
1582 		 * not collapsable.
1583 		 */
1584 		VM_OBJECT_LOCK(backing_object);
1585 		if (backing_object->handle != NULL ||
1586 		    (backing_object->type != OBJT_DEFAULT &&
1587 		     backing_object->type != OBJT_SWAP) ||
1588 		    (backing_object->flags & OBJ_DEAD) ||
1589 		    object->handle != NULL ||
1590 		    (object->type != OBJT_DEFAULT &&
1591 		     object->type != OBJT_SWAP) ||
1592 		    (object->flags & OBJ_DEAD)) {
1593 			VM_OBJECT_UNLOCK(backing_object);
1594 			break;
1595 		}
1596 
1597 		if (
1598 		    object->paging_in_progress != 0 ||
1599 		    backing_object->paging_in_progress != 0
1600 		) {
1601 			vm_object_qcollapse(object);
1602 			VM_OBJECT_UNLOCK(backing_object);
1603 			break;
1604 		}
1605 		/*
1606 		 * We know that we can either collapse the backing object (if
1607 		 * the parent is the only reference to it) or (perhaps) have
1608 		 * the parent bypass the object if the parent happens to shadow
1609 		 * all the resident pages in the entire backing object.
1610 		 *
1611 		 * This is ignoring pager-backed pages such as swap pages.
1612 		 * vm_object_backing_scan fails the shadowing test in this
1613 		 * case.
1614 		 */
1615 		if (backing_object->ref_count == 1) {
1616 			/*
1617 			 * If there is exactly one reference to the backing
1618 			 * object, we can collapse it into the parent.
1619 			 */
1620 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1621 
1622 			/*
1623 			 * Move the pager from backing_object to object.
1624 			 */
1625 			if (backing_object->type == OBJT_SWAP) {
1626 				/*
1627 				 * swap_pager_copy() can sleep, in which case
1628 				 * the backing_object's and object's locks are
1629 				 * released and reacquired.
1630 				 */
1631 				swap_pager_copy(
1632 				    backing_object,
1633 				    object,
1634 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1635 			}
1636 			/*
1637 			 * Object now shadows whatever backing_object did.
1638 			 * Note that the reference to
1639 			 * backing_object->backing_object moves from within
1640 			 * backing_object to within object.
1641 			 */
1642 			LIST_REMOVE(object, shadow_list);
1643 			backing_object->shadow_count--;
1644 			backing_object->generation++;
1645 			if (backing_object->backing_object) {
1646 				VM_OBJECT_LOCK(backing_object->backing_object);
1647 				LIST_REMOVE(backing_object, shadow_list);
1648 				LIST_INSERT_HEAD(
1649 				    &backing_object->backing_object->shadow_head,
1650 				    object, shadow_list);
1651 				/*
1652 				 * The shadow_count has not changed.
1653 				 */
1654 				backing_object->backing_object->generation++;
1655 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1656 			}
1657 			object->backing_object = backing_object->backing_object;
1658 			object->backing_object_offset +=
1659 			    backing_object->backing_object_offset;
1660 
1661 			/*
1662 			 * Discard backing_object.
1663 			 *
1664 			 * Since the backing object has no pages, no pager left,
1665 			 * and no object references within it, all that is
1666 			 * necessary is to dispose of it.
1667 			 */
1668 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1669 			VM_OBJECT_UNLOCK(backing_object);
1670 
1671 			mtx_lock(&vm_object_list_mtx);
1672 			TAILQ_REMOVE(
1673 			    &vm_object_list,
1674 			    backing_object,
1675 			    object_list
1676 			);
1677 			mtx_unlock(&vm_object_list_mtx);
1678 
1679 			uma_zfree(obj_zone, backing_object);
1680 
1681 			object_collapses++;
1682 		} else {
1683 			vm_object_t new_backing_object;
1684 
1685 			/*
1686 			 * If we do not entirely shadow the backing object,
1687 			 * there is nothing we can do so we give up.
1688 			 */
1689 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1690 				VM_OBJECT_UNLOCK(backing_object);
1691 				break;
1692 			}
1693 
1694 			/*
1695 			 * Make the parent shadow the next object in the
1696 			 * chain.  Deallocating backing_object will not remove
1697 			 * it, since its reference count is at least 2.
1698 			 */
1699 			LIST_REMOVE(object, shadow_list);
1700 			backing_object->shadow_count--;
1701 			backing_object->generation++;
1702 
1703 			new_backing_object = backing_object->backing_object;
1704 			if ((object->backing_object = new_backing_object) != NULL) {
1705 				VM_OBJECT_LOCK(new_backing_object);
1706 				LIST_INSERT_HEAD(
1707 				    &new_backing_object->shadow_head,
1708 				    object,
1709 				    shadow_list
1710 				);
1711 				new_backing_object->shadow_count++;
1712 				new_backing_object->generation++;
1713 				vm_object_reference_locked(new_backing_object);
1714 				VM_OBJECT_UNLOCK(new_backing_object);
1715 				object->backing_object_offset +=
1716 					backing_object->backing_object_offset;
1717 			}
1718 
1719 			/*
1720 			 * Drop the reference count on backing_object. Since
1721 			 * its ref_count was at least 2, it will not vanish.
1722 			 */
1723 			backing_object->ref_count--;
1724 			VM_OBJECT_UNLOCK(backing_object);
1725 			object_bypasses++;
1726 		}
1727 
1728 		/*
1729 		 * Try again with this object's new backing object.
1730 		 */
1731 	}
1732 }
1733 
1734 /*
1735  *	vm_object_page_remove:
1736  *
1737  *	Removes all physical pages in the given range from the
1738  *	object's list of pages.  If the range's end is zero, all
1739  *	physical pages from the range's start to the end of the object
1740  *	are deleted.
1741  *
1742  *	The object must be locked.
1743  */
1744 void
1745 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1746     boolean_t clean_only)
1747 {
1748 	vm_page_t p, next;
1749 
1750 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1751 	if (object->resident_page_count == 0)
1752 		return;
1753 
1754 	/*
1755 	 * Since physically-backed objects do not use managed pages, we can't
1756 	 * remove pages from the object (we must instead remove the page
1757 	 * references, and then destroy the object).
1758 	 */
1759 	KASSERT(object->type != OBJT_PHYS,
1760 	    ("attempt to remove pages from a physical object"));
1761 
1762 	vm_object_pip_add(object, 1);
1763 again:
1764 	vm_page_lock_queues();
1765 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1766 		if (p->pindex < start) {
1767 			p = vm_page_splay(start, object->root);
1768 			if ((object->root = p)->pindex < start)
1769 				p = TAILQ_NEXT(p, listq);
1770 		}
1771 	}
1772 	/*
1773 	 * Assert: the variable p is either (1) the page with the
1774 	 * least pindex greater than or equal to the parameter pindex
1775 	 * or (2) NULL.
1776 	 */
1777 	for (;
1778 	     p != NULL && (p->pindex < end || end == 0);
1779 	     p = next) {
1780 		next = TAILQ_NEXT(p, listq);
1781 
1782 		if (p->wire_count != 0) {
1783 			pmap_remove_all(p);
1784 			if (!clean_only)
1785 				p->valid = 0;
1786 			continue;
1787 		}
1788 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1789 			goto again;
1790 		if (clean_only && p->valid) {
1791 			pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1792 			if (p->valid & p->dirty)
1793 				continue;
1794 		}
1795 		pmap_remove_all(p);
1796 		vm_page_free(p);
1797 	}
1798 	vm_page_unlock_queues();
1799 	vm_object_pip_wakeup(object);
1800 }
1801 
1802 /*
1803  *	Routine:	vm_object_coalesce
1804  *	Function:	Coalesces two objects backing up adjoining
1805  *			regions of memory into a single object.
1806  *
1807  *	returns TRUE if objects were combined.
1808  *
1809  *	NOTE:	Only works at the moment if the second object is NULL -
1810  *		if it's not, which object do we lock first?
1811  *
1812  *	Parameters:
1813  *		prev_object	First object to coalesce
1814  *		prev_offset	Offset into prev_object
1815  *		prev_size	Size of reference to prev_object
1816  *		next_size	Size of reference to the second object
1817  *
1818  *	Conditions:
1819  *	The object must *not* be locked.
1820  */
1821 boolean_t
1822 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1823 	vm_size_t prev_size, vm_size_t next_size)
1824 {
1825 	vm_pindex_t next_pindex;
1826 
1827 	if (prev_object == NULL)
1828 		return (TRUE);
1829 	VM_OBJECT_LOCK(prev_object);
1830 	if (prev_object->type != OBJT_DEFAULT &&
1831 	    prev_object->type != OBJT_SWAP) {
1832 		VM_OBJECT_UNLOCK(prev_object);
1833 		return (FALSE);
1834 	}
1835 
1836 	/*
1837 	 * Try to collapse the object first
1838 	 */
1839 	vm_object_collapse(prev_object);
1840 
1841 	/*
1842 	 * Can't coalesce if: . more than one reference . paged out . shadows
1843 	 * another object . has a copy elsewhere (any of which mean that the
1844 	 * pages not mapped to prev_entry may be in use anyway)
1845 	 */
1846 	if (prev_object->backing_object != NULL) {
1847 		VM_OBJECT_UNLOCK(prev_object);
1848 		return (FALSE);
1849 	}
1850 
1851 	prev_size >>= PAGE_SHIFT;
1852 	next_size >>= PAGE_SHIFT;
1853 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1854 
1855 	if ((prev_object->ref_count > 1) &&
1856 	    (prev_object->size != next_pindex)) {
1857 		VM_OBJECT_UNLOCK(prev_object);
1858 		return (FALSE);
1859 	}
1860 
1861 	/*
1862 	 * Remove any pages that may still be in the object from a previous
1863 	 * deallocation.
1864 	 */
1865 	if (next_pindex < prev_object->size) {
1866 		vm_object_page_remove(prev_object,
1867 				      next_pindex,
1868 				      next_pindex + next_size, FALSE);
1869 		if (prev_object->type == OBJT_SWAP)
1870 			swap_pager_freespace(prev_object,
1871 					     next_pindex, next_size);
1872 	}
1873 
1874 	/*
1875 	 * Extend the object if necessary.
1876 	 */
1877 	if (next_pindex + next_size > prev_object->size)
1878 		prev_object->size = next_pindex + next_size;
1879 
1880 	VM_OBJECT_UNLOCK(prev_object);
1881 	return (TRUE);
1882 }
1883 
1884 void
1885 vm_object_set_writeable_dirty(vm_object_t object)
1886 {
1887 	struct vnode *vp;
1888 
1889 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1890 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1891 	if (object->type == OBJT_VNODE &&
1892 	    (vp = (struct vnode *)object->handle) != NULL) {
1893 		VI_LOCK(vp);
1894 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1895 			vp->v_iflag |= VI_OBJDIRTY;
1896 		VI_UNLOCK(vp);
1897 	}
1898 }
1899 
1900 #include "opt_ddb.h"
1901 #ifdef DDB
1902 #include <sys/kernel.h>
1903 
1904 #include <sys/cons.h>
1905 
1906 #include <ddb/ddb.h>
1907 
1908 static int
1909 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1910 {
1911 	vm_map_t tmpm;
1912 	vm_map_entry_t tmpe;
1913 	vm_object_t obj;
1914 	int entcount;
1915 
1916 	if (map == 0)
1917 		return 0;
1918 
1919 	if (entry == 0) {
1920 		tmpe = map->header.next;
1921 		entcount = map->nentries;
1922 		while (entcount-- && (tmpe != &map->header)) {
1923 			if (_vm_object_in_map(map, object, tmpe)) {
1924 				return 1;
1925 			}
1926 			tmpe = tmpe->next;
1927 		}
1928 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1929 		tmpm = entry->object.sub_map;
1930 		tmpe = tmpm->header.next;
1931 		entcount = tmpm->nentries;
1932 		while (entcount-- && tmpe != &tmpm->header) {
1933 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1934 				return 1;
1935 			}
1936 			tmpe = tmpe->next;
1937 		}
1938 	} else if ((obj = entry->object.vm_object) != NULL) {
1939 		for (; obj; obj = obj->backing_object)
1940 			if (obj == object) {
1941 				return 1;
1942 			}
1943 	}
1944 	return 0;
1945 }
1946 
1947 static int
1948 vm_object_in_map(vm_object_t object)
1949 {
1950 	struct proc *p;
1951 
1952 	/* sx_slock(&allproc_lock); */
1953 	LIST_FOREACH(p, &allproc, p_list) {
1954 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1955 			continue;
1956 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1957 			/* sx_sunlock(&allproc_lock); */
1958 			return 1;
1959 		}
1960 	}
1961 	/* sx_sunlock(&allproc_lock); */
1962 	if (_vm_object_in_map(kernel_map, object, 0))
1963 		return 1;
1964 	if (_vm_object_in_map(kmem_map, object, 0))
1965 		return 1;
1966 	if (_vm_object_in_map(pager_map, object, 0))
1967 		return 1;
1968 	if (_vm_object_in_map(buffer_map, object, 0))
1969 		return 1;
1970 	return 0;
1971 }
1972 
1973 DB_SHOW_COMMAND(vmochk, vm_object_check)
1974 {
1975 	vm_object_t object;
1976 
1977 	/*
1978 	 * make sure that internal objs are in a map somewhere
1979 	 * and none have zero ref counts.
1980 	 */
1981 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1982 		if (object->handle == NULL &&
1983 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1984 			if (object->ref_count == 0) {
1985 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1986 					(long)object->size);
1987 			}
1988 			if (!vm_object_in_map(object)) {
1989 				db_printf(
1990 			"vmochk: internal obj is not in a map: "
1991 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1992 				    object->ref_count, (u_long)object->size,
1993 				    (u_long)object->size,
1994 				    (void *)object->backing_object);
1995 			}
1996 		}
1997 	}
1998 }
1999 
2000 /*
2001  *	vm_object_print:	[ debug ]
2002  */
2003 DB_SHOW_COMMAND(object, vm_object_print_static)
2004 {
2005 	/* XXX convert args. */
2006 	vm_object_t object = (vm_object_t)addr;
2007 	boolean_t full = have_addr;
2008 
2009 	vm_page_t p;
2010 
2011 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2012 #define	count	was_count
2013 
2014 	int count;
2015 
2016 	if (object == NULL)
2017 		return;
2018 
2019 	db_iprintf(
2020 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2021 	    object, (int)object->type, (uintmax_t)object->size,
2022 	    object->resident_page_count, object->ref_count, object->flags);
2023 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2024 	    object->shadow_count,
2025 	    object->backing_object ? object->backing_object->ref_count : 0,
2026 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2027 
2028 	if (!full)
2029 		return;
2030 
2031 	db_indent += 2;
2032 	count = 0;
2033 	TAILQ_FOREACH(p, &object->memq, listq) {
2034 		if (count == 0)
2035 			db_iprintf("memory:=");
2036 		else if (count == 6) {
2037 			db_printf("\n");
2038 			db_iprintf(" ...");
2039 			count = 0;
2040 		} else
2041 			db_printf(",");
2042 		count++;
2043 
2044 		db_printf("(off=0x%jx,page=0x%jx)",
2045 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2046 	}
2047 	if (count != 0)
2048 		db_printf("\n");
2049 	db_indent -= 2;
2050 }
2051 
2052 /* XXX. */
2053 #undef count
2054 
2055 /* XXX need this non-static entry for calling from vm_map_print. */
2056 void
2057 vm_object_print(
2058         /* db_expr_t */ long addr,
2059 	boolean_t have_addr,
2060 	/* db_expr_t */ long count,
2061 	char *modif)
2062 {
2063 	vm_object_print_static(addr, have_addr, count, modif);
2064 }
2065 
2066 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2067 {
2068 	vm_object_t object;
2069 	int nl = 0;
2070 	int c;
2071 
2072 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2073 		vm_pindex_t idx, fidx;
2074 		vm_pindex_t osize;
2075 		vm_paddr_t pa = -1, padiff;
2076 		int rcount;
2077 		vm_page_t m;
2078 
2079 		db_printf("new object: %p\n", (void *)object);
2080 		if (nl > 18) {
2081 			c = cngetc();
2082 			if (c != ' ')
2083 				return;
2084 			nl = 0;
2085 		}
2086 		nl++;
2087 		rcount = 0;
2088 		fidx = 0;
2089 		osize = object->size;
2090 		if (osize > 128)
2091 			osize = 128;
2092 		for (idx = 0; idx < osize; idx++) {
2093 			m = vm_page_lookup(object, idx);
2094 			if (m == NULL) {
2095 				if (rcount) {
2096 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2097 						(long)fidx, rcount, (long)pa);
2098 					if (nl > 18) {
2099 						c = cngetc();
2100 						if (c != ' ')
2101 							return;
2102 						nl = 0;
2103 					}
2104 					nl++;
2105 					rcount = 0;
2106 				}
2107 				continue;
2108 			}
2109 
2110 
2111 			if (rcount &&
2112 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2113 				++rcount;
2114 				continue;
2115 			}
2116 			if (rcount) {
2117 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2118 				padiff >>= PAGE_SHIFT;
2119 				padiff &= PQ_L2_MASK;
2120 				if (padiff == 0) {
2121 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2122 					++rcount;
2123 					continue;
2124 				}
2125 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2126 					(long)fidx, rcount, (long)pa);
2127 				db_printf("pd(%ld)\n", (long)padiff);
2128 				if (nl > 18) {
2129 					c = cngetc();
2130 					if (c != ' ')
2131 						return;
2132 					nl = 0;
2133 				}
2134 				nl++;
2135 			}
2136 			fidx = idx;
2137 			pa = VM_PAGE_TO_PHYS(m);
2138 			rcount = 1;
2139 		}
2140 		if (rcount) {
2141 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2142 				(long)fidx, rcount, (long)pa);
2143 			if (nl > 18) {
2144 				c = cngetc();
2145 				if (c != ' ')
2146 					return;
2147 				nl = 0;
2148 			}
2149 			nl++;
2150 		}
2151 	}
2152 }
2153 #endif /* DDB */
2154