xref: /freebsd/sys/vm/vm_object.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(vm_object_cache_is_empty(object),
182 	    ("object %p has cached pages",
183 	    object));
184 	KASSERT(object->paging_in_progress == 0,
185 	    ("object %p paging_in_progress = %d",
186 	    object, object->paging_in_progress));
187 	KASSERT(object->resident_page_count == 0,
188 	    ("object %p resident_page_count = %d",
189 	    object, object->resident_page_count));
190 	KASSERT(object->shadow_count == 0,
191 	    ("object %p shadow_count = %d",
192 	    object, object->shadow_count));
193 	KASSERT(object->type == OBJT_DEAD,
194 	    ("object %p has non-dead type %d",
195 	    object, object->type));
196 }
197 #endif
198 
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202 	vm_object_t object;
203 
204 	object = (vm_object_t)mem;
205 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206 
207 	/* These are true for any object that has been freed */
208 	object->type = OBJT_DEAD;
209 	object->ref_count = 0;
210 	object->rtree.rt_root = 0;
211 	object->rtree.rt_flags = 0;
212 	object->paging_in_progress = 0;
213 	object->resident_page_count = 0;
214 	object->shadow_count = 0;
215 	object->cache.rt_root = 0;
216 	object->cache.rt_flags = 0;
217 
218 	mtx_lock(&vm_object_list_mtx);
219 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220 	mtx_unlock(&vm_object_list_mtx);
221 	return (0);
222 }
223 
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227 
228 	TAILQ_INIT(&object->memq);
229 	LIST_INIT(&object->shadow_head);
230 
231 	object->type = type;
232 	switch (type) {
233 	case OBJT_DEAD:
234 		panic("_vm_object_allocate: can't create OBJT_DEAD");
235 	case OBJT_DEFAULT:
236 	case OBJT_SWAP:
237 		object->flags = OBJ_ONEMAPPING;
238 		break;
239 	case OBJT_DEVICE:
240 	case OBJT_SG:
241 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242 		break;
243 	case OBJT_MGTDEVICE:
244 		object->flags = OBJ_FICTITIOUS;
245 		break;
246 	case OBJT_PHYS:
247 		object->flags = OBJ_UNMANAGED;
248 		break;
249 	case OBJT_VNODE:
250 		object->flags = 0;
251 		break;
252 	default:
253 		panic("_vm_object_allocate: type %d is undefined", type);
254 	}
255 	object->size = size;
256 	object->generation = 1;
257 	object->ref_count = 1;
258 	object->memattr = VM_MEMATTR_DEFAULT;
259 	object->cred = NULL;
260 	object->charge = 0;
261 	object->handle = NULL;
262 	object->backing_object = NULL;
263 	object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265 	LIST_INIT(&object->rvq);
266 #endif
267 	umtx_shm_object_init(object);
268 }
269 
270 /*
271  *	vm_object_init:
272  *
273  *	Initialize the VM objects module.
274  */
275 void
276 vm_object_init(void)
277 {
278 	TAILQ_INIT(&vm_object_list);
279 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280 
281 	rw_init(&kernel_object->lock, "kernel vm object");
282 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283 	    kernel_object);
284 #if VM_NRESERVLEVEL > 0
285 	kernel_object->flags |= OBJ_COLORED;
286 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288 
289 	rw_init(&kmem_object->lock, "kmem vm object");
290 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291 	    kmem_object);
292 #if VM_NRESERVLEVEL > 0
293 	kmem_object->flags |= OBJ_COLORED;
294 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296 
297 	/*
298 	 * The lock portion of struct vm_object must be type stable due
299 	 * to vm_pageout_fallback_object_lock locking a vm object
300 	 * without holding any references to it.
301 	 */
302 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304 	    vm_object_zdtor,
305 #else
306 	    NULL,
307 #endif
308 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309 
310 	vm_radix_init();
311 }
312 
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316 
317 	VM_OBJECT_ASSERT_WLOCKED(object);
318 	object->flags &= ~bits;
319 }
320 
321 /*
322  *	Sets the default memory attribute for the specified object.  Pages
323  *	that are allocated to this object are by default assigned this memory
324  *	attribute.
325  *
326  *	Presently, this function must be called before any pages are allocated
327  *	to the object.  In the future, this requirement may be relaxed for
328  *	"default" and "swap" objects.
329  */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333 
334 	VM_OBJECT_ASSERT_WLOCKED(object);
335 	switch (object->type) {
336 	case OBJT_DEFAULT:
337 	case OBJT_DEVICE:
338 	case OBJT_MGTDEVICE:
339 	case OBJT_PHYS:
340 	case OBJT_SG:
341 	case OBJT_SWAP:
342 	case OBJT_VNODE:
343 		if (!TAILQ_EMPTY(&object->memq))
344 			return (KERN_FAILURE);
345 		break;
346 	case OBJT_DEAD:
347 		return (KERN_INVALID_ARGUMENT);
348 	default:
349 		panic("vm_object_set_memattr: object %p is of undefined type",
350 		    object);
351 	}
352 	object->memattr = memattr;
353 	return (KERN_SUCCESS);
354 }
355 
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359 
360 	VM_OBJECT_ASSERT_WLOCKED(object);
361 	object->paging_in_progress += i;
362 }
363 
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367 
368 	VM_OBJECT_ASSERT_WLOCKED(object);
369 	object->paging_in_progress -= i;
370 }
371 
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375 
376 	VM_OBJECT_ASSERT_WLOCKED(object);
377 	object->paging_in_progress--;
378 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379 		vm_object_clear_flag(object, OBJ_PIPWNT);
380 		wakeup(object);
381 	}
382 }
383 
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387 
388 	VM_OBJECT_ASSERT_WLOCKED(object);
389 	if (i)
390 		object->paging_in_progress -= i;
391 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392 		vm_object_clear_flag(object, OBJ_PIPWNT);
393 		wakeup(object);
394 	}
395 }
396 
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400 
401 	VM_OBJECT_ASSERT_WLOCKED(object);
402 	while (object->paging_in_progress) {
403 		object->flags |= OBJ_PIPWNT;
404 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405 	}
406 }
407 
408 /*
409  *	vm_object_allocate:
410  *
411  *	Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416 	vm_object_t object;
417 
418 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419 	_vm_object_allocate(type, size, object);
420 	return (object);
421 }
422 
423 
424 /*
425  *	vm_object_reference:
426  *
427  *	Gets another reference to the given object.  Note: OBJ_DEAD
428  *	objects can be referenced during final cleaning.
429  */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433 	if (object == NULL)
434 		return;
435 	VM_OBJECT_WLOCK(object);
436 	vm_object_reference_locked(object);
437 	VM_OBJECT_WUNLOCK(object);
438 }
439 
440 /*
441  *	vm_object_reference_locked:
442  *
443  *	Gets another reference to the given object.
444  *
445  *	The object must be locked.
446  */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450 	struct vnode *vp;
451 
452 	VM_OBJECT_ASSERT_WLOCKED(object);
453 	object->ref_count++;
454 	if (object->type == OBJT_VNODE) {
455 		vp = object->handle;
456 		vref(vp);
457 	}
458 }
459 
460 /*
461  * Handle deallocating an object of type OBJT_VNODE.
462  */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466 	struct vnode *vp = (struct vnode *) object->handle;
467 
468 	VM_OBJECT_ASSERT_WLOCKED(object);
469 	KASSERT(object->type == OBJT_VNODE,
470 	    ("vm_object_vndeallocate: not a vnode object"));
471 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473 	if (object->ref_count == 0) {
474 		vn_printf(vp, "vm_object_vndeallocate ");
475 		panic("vm_object_vndeallocate: bad object reference count");
476 	}
477 #endif
478 
479 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
480 		umtx_shm_object_terminated(object);
481 
482 	/*
483 	 * The test for text of vp vnode does not need a bypass to
484 	 * reach right VV_TEXT there, since it is obtained from
485 	 * object->handle.
486 	 */
487 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
488 		object->ref_count--;
489 		VM_OBJECT_WUNLOCK(object);
490 		/* vrele may need the vnode lock. */
491 		vrele(vp);
492 	} else {
493 		vhold(vp);
494 		VM_OBJECT_WUNLOCK(object);
495 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
496 		vdrop(vp);
497 		VM_OBJECT_WLOCK(object);
498 		object->ref_count--;
499 		if (object->type == OBJT_DEAD) {
500 			VM_OBJECT_WUNLOCK(object);
501 			VOP_UNLOCK(vp, 0);
502 		} else {
503 			if (object->ref_count == 0)
504 				VOP_UNSET_TEXT(vp);
505 			VM_OBJECT_WUNLOCK(object);
506 			vput(vp);
507 		}
508 	}
509 }
510 
511 /*
512  *	vm_object_deallocate:
513  *
514  *	Release a reference to the specified object,
515  *	gained either through a vm_object_allocate
516  *	or a vm_object_reference call.  When all references
517  *	are gone, storage associated with this object
518  *	may be relinquished.
519  *
520  *	No object may be locked.
521  */
522 void
523 vm_object_deallocate(vm_object_t object)
524 {
525 	vm_object_t temp;
526 	struct vnode *vp;
527 
528 	while (object != NULL) {
529 		VM_OBJECT_WLOCK(object);
530 		if (object->type == OBJT_VNODE) {
531 			vm_object_vndeallocate(object);
532 			return;
533 		}
534 
535 		KASSERT(object->ref_count != 0,
536 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
537 
538 		/*
539 		 * If the reference count goes to 0 we start calling
540 		 * vm_object_terminate() on the object chain.
541 		 * A ref count of 1 may be a special case depending on the
542 		 * shadow count being 0 or 1.
543 		 */
544 		object->ref_count--;
545 		if (object->ref_count > 1) {
546 			VM_OBJECT_WUNLOCK(object);
547 			return;
548 		} else if (object->ref_count == 1) {
549 			if (object->type == OBJT_SWAP &&
550 			    (object->flags & OBJ_TMPFS) != 0) {
551 				vp = object->un_pager.swp.swp_tmpfs;
552 				vhold(vp);
553 				VM_OBJECT_WUNLOCK(object);
554 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
555 				VM_OBJECT_WLOCK(object);
556 				if (object->type == OBJT_DEAD ||
557 				    object->ref_count != 1) {
558 					VM_OBJECT_WUNLOCK(object);
559 					VOP_UNLOCK(vp, 0);
560 					vdrop(vp);
561 					return;
562 				}
563 				if ((object->flags & OBJ_TMPFS) != 0)
564 					VOP_UNSET_TEXT(vp);
565 				VOP_UNLOCK(vp, 0);
566 				vdrop(vp);
567 			}
568 			if (object->shadow_count == 0 &&
569 			    object->handle == NULL &&
570 			    (object->type == OBJT_DEFAULT ||
571 			    (object->type == OBJT_SWAP &&
572 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
573 				vm_object_set_flag(object, OBJ_ONEMAPPING);
574 			} else if ((object->shadow_count == 1) &&
575 			    (object->handle == NULL) &&
576 			    (object->type == OBJT_DEFAULT ||
577 			     object->type == OBJT_SWAP)) {
578 				vm_object_t robject;
579 
580 				robject = LIST_FIRST(&object->shadow_head);
581 				KASSERT(robject != NULL,
582 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
583 					 object->ref_count,
584 					 object->shadow_count));
585 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
586 				    ("shadowed tmpfs v_object %p", object));
587 				if (!VM_OBJECT_TRYWLOCK(robject)) {
588 					/*
589 					 * Avoid a potential deadlock.
590 					 */
591 					object->ref_count++;
592 					VM_OBJECT_WUNLOCK(object);
593 					/*
594 					 * More likely than not the thread
595 					 * holding robject's lock has lower
596 					 * priority than the current thread.
597 					 * Let the lower priority thread run.
598 					 */
599 					pause("vmo_de", 1);
600 					continue;
601 				}
602 				/*
603 				 * Collapse object into its shadow unless its
604 				 * shadow is dead.  In that case, object will
605 				 * be deallocated by the thread that is
606 				 * deallocating its shadow.
607 				 */
608 				if ((robject->flags & OBJ_DEAD) == 0 &&
609 				    (robject->handle == NULL) &&
610 				    (robject->type == OBJT_DEFAULT ||
611 				     robject->type == OBJT_SWAP)) {
612 
613 					robject->ref_count++;
614 retry:
615 					if (robject->paging_in_progress) {
616 						VM_OBJECT_WUNLOCK(object);
617 						vm_object_pip_wait(robject,
618 						    "objde1");
619 						temp = robject->backing_object;
620 						if (object == temp) {
621 							VM_OBJECT_WLOCK(object);
622 							goto retry;
623 						}
624 					} else if (object->paging_in_progress) {
625 						VM_OBJECT_WUNLOCK(robject);
626 						object->flags |= OBJ_PIPWNT;
627 						VM_OBJECT_SLEEP(object, object,
628 						    PDROP | PVM, "objde2", 0);
629 						VM_OBJECT_WLOCK(robject);
630 						temp = robject->backing_object;
631 						if (object == temp) {
632 							VM_OBJECT_WLOCK(object);
633 							goto retry;
634 						}
635 					} else
636 						VM_OBJECT_WUNLOCK(object);
637 
638 					if (robject->ref_count == 1) {
639 						robject->ref_count--;
640 						object = robject;
641 						goto doterm;
642 					}
643 					object = robject;
644 					vm_object_collapse(object);
645 					VM_OBJECT_WUNLOCK(object);
646 					continue;
647 				}
648 				VM_OBJECT_WUNLOCK(robject);
649 			}
650 			VM_OBJECT_WUNLOCK(object);
651 			return;
652 		}
653 doterm:
654 		umtx_shm_object_terminated(object);
655 		temp = object->backing_object;
656 		if (temp != NULL) {
657 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
658 			    ("shadowed tmpfs v_object 2 %p", object));
659 			VM_OBJECT_WLOCK(temp);
660 			LIST_REMOVE(object, shadow_list);
661 			temp->shadow_count--;
662 			VM_OBJECT_WUNLOCK(temp);
663 			object->backing_object = NULL;
664 		}
665 		/*
666 		 * Don't double-terminate, we could be in a termination
667 		 * recursion due to the terminate having to sync data
668 		 * to disk.
669 		 */
670 		if ((object->flags & OBJ_DEAD) == 0)
671 			vm_object_terminate(object);
672 		else
673 			VM_OBJECT_WUNLOCK(object);
674 		object = temp;
675 	}
676 }
677 
678 /*
679  *	vm_object_destroy removes the object from the global object list
680  *      and frees the space for the object.
681  */
682 void
683 vm_object_destroy(vm_object_t object)
684 {
685 
686 	/*
687 	 * Release the allocation charge.
688 	 */
689 	if (object->cred != NULL) {
690 		swap_release_by_cred(object->charge, object->cred);
691 		object->charge = 0;
692 		crfree(object->cred);
693 		object->cred = NULL;
694 	}
695 
696 	/*
697 	 * Free the space for the object.
698 	 */
699 	uma_zfree(obj_zone, object);
700 }
701 
702 /*
703  *	vm_object_terminate actually destroys the specified object, freeing
704  *	up all previously used resources.
705  *
706  *	The object must be locked.
707  *	This routine may block.
708  */
709 void
710 vm_object_terminate(vm_object_t object)
711 {
712 	vm_page_t p, p_next;
713 
714 	VM_OBJECT_ASSERT_WLOCKED(object);
715 
716 	/*
717 	 * Make sure no one uses us.
718 	 */
719 	vm_object_set_flag(object, OBJ_DEAD);
720 
721 	/*
722 	 * wait for the pageout daemon to be done with the object
723 	 */
724 	vm_object_pip_wait(object, "objtrm");
725 
726 	KASSERT(!object->paging_in_progress,
727 		("vm_object_terminate: pageout in progress"));
728 
729 	/*
730 	 * Clean and free the pages, as appropriate. All references to the
731 	 * object are gone, so we don't need to lock it.
732 	 */
733 	if (object->type == OBJT_VNODE) {
734 		struct vnode *vp = (struct vnode *)object->handle;
735 
736 		/*
737 		 * Clean pages and flush buffers.
738 		 */
739 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
740 		VM_OBJECT_WUNLOCK(object);
741 
742 		vinvalbuf(vp, V_SAVE, 0, 0);
743 
744 		BO_LOCK(&vp->v_bufobj);
745 		vp->v_bufobj.bo_flag |= BO_DEAD;
746 		BO_UNLOCK(&vp->v_bufobj);
747 
748 		VM_OBJECT_WLOCK(object);
749 	}
750 
751 	KASSERT(object->ref_count == 0,
752 		("vm_object_terminate: object with references, ref_count=%d",
753 		object->ref_count));
754 
755 	/*
756 	 * Free any remaining pageable pages.  This also removes them from the
757 	 * paging queues.  However, don't free wired pages, just remove them
758 	 * from the object.  Rather than incrementally removing each page from
759 	 * the object, the page and object are reset to any empty state.
760 	 */
761 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
762 		vm_page_assert_unbusied(p);
763 		vm_page_lock(p);
764 		/*
765 		 * Optimize the page's removal from the object by resetting
766 		 * its "object" field.  Specifically, if the page is not
767 		 * wired, then the effect of this assignment is that
768 		 * vm_page_free()'s call to vm_page_remove() will return
769 		 * immediately without modifying the page or the object.
770 		 */
771 		p->object = NULL;
772 		if (p->wire_count == 0) {
773 			vm_page_free(p);
774 			PCPU_INC(cnt.v_pfree);
775 		}
776 		vm_page_unlock(p);
777 	}
778 	/*
779 	 * If the object contained any pages, then reset it to an empty state.
780 	 * None of the object's fields, including "resident_page_count", were
781 	 * modified by the preceding loop.
782 	 */
783 	if (object->resident_page_count != 0) {
784 		vm_radix_reclaim_allnodes(&object->rtree);
785 		TAILQ_INIT(&object->memq);
786 		object->resident_page_count = 0;
787 		if (object->type == OBJT_VNODE)
788 			vdrop(object->handle);
789 	}
790 
791 #if VM_NRESERVLEVEL > 0
792 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
793 		vm_reserv_break_all(object);
794 #endif
795 	if (__predict_false(!vm_object_cache_is_empty(object)))
796 		vm_page_cache_free(object, 0, 0);
797 
798 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
799 	    object->type == OBJT_SWAP,
800 	    ("%s: non-swap obj %p has cred", __func__, object));
801 
802 	/*
803 	 * Let the pager know object is dead.
804 	 */
805 	vm_pager_deallocate(object);
806 	VM_OBJECT_WUNLOCK(object);
807 
808 	vm_object_destroy(object);
809 }
810 
811 /*
812  * Make the page read-only so that we can clear the object flags.  However, if
813  * this is a nosync mmap then the object is likely to stay dirty so do not
814  * mess with the page and do not clear the object flags.  Returns TRUE if the
815  * page should be flushed, and FALSE otherwise.
816  */
817 static boolean_t
818 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
819 {
820 
821 	/*
822 	 * If we have been asked to skip nosync pages and this is a
823 	 * nosync page, skip it.  Note that the object flags were not
824 	 * cleared in this case so we do not have to set them.
825 	 */
826 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
827 		*clearobjflags = FALSE;
828 		return (FALSE);
829 	} else {
830 		pmap_remove_write(p);
831 		return (p->dirty != 0);
832 	}
833 }
834 
835 /*
836  *	vm_object_page_clean
837  *
838  *	Clean all dirty pages in the specified range of object.  Leaves page
839  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
840  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
841  *	leaving the object dirty.
842  *
843  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
844  *	synchronous clustering mode implementation.
845  *
846  *	Odd semantics: if start == end, we clean everything.
847  *
848  *	The object must be locked.
849  *
850  *	Returns FALSE if some page from the range was not written, as
851  *	reported by the pager, and TRUE otherwise.
852  */
853 boolean_t
854 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
855     int flags)
856 {
857 	vm_page_t np, p;
858 	vm_pindex_t pi, tend, tstart;
859 	int curgeneration, n, pagerflags;
860 	boolean_t clearobjflags, eio, res;
861 
862 	VM_OBJECT_ASSERT_WLOCKED(object);
863 
864 	/*
865 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
866 	 * objects.  The check below prevents the function from
867 	 * operating on non-vnode objects.
868 	 */
869 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
870 	    object->resident_page_count == 0)
871 		return (TRUE);
872 
873 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
874 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
875 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
876 
877 	tstart = OFF_TO_IDX(start);
878 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
879 	clearobjflags = tstart == 0 && tend >= object->size;
880 	res = TRUE;
881 
882 rescan:
883 	curgeneration = object->generation;
884 
885 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
886 		pi = p->pindex;
887 		if (pi >= tend)
888 			break;
889 		np = TAILQ_NEXT(p, listq);
890 		if (p->valid == 0)
891 			continue;
892 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
893 			if (object->generation != curgeneration) {
894 				if ((flags & OBJPC_SYNC) != 0)
895 					goto rescan;
896 				else
897 					clearobjflags = FALSE;
898 			}
899 			np = vm_page_find_least(object, pi);
900 			continue;
901 		}
902 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
903 			continue;
904 
905 		n = vm_object_page_collect_flush(object, p, pagerflags,
906 		    flags, &clearobjflags, &eio);
907 		if (eio) {
908 			res = FALSE;
909 			clearobjflags = FALSE;
910 		}
911 		if (object->generation != curgeneration) {
912 			if ((flags & OBJPC_SYNC) != 0)
913 				goto rescan;
914 			else
915 				clearobjflags = FALSE;
916 		}
917 
918 		/*
919 		 * If the VOP_PUTPAGES() did a truncated write, so
920 		 * that even the first page of the run is not fully
921 		 * written, vm_pageout_flush() returns 0 as the run
922 		 * length.  Since the condition that caused truncated
923 		 * write may be permanent, e.g. exhausted free space,
924 		 * accepting n == 0 would cause an infinite loop.
925 		 *
926 		 * Forwarding the iterator leaves the unwritten page
927 		 * behind, but there is not much we can do there if
928 		 * filesystem refuses to write it.
929 		 */
930 		if (n == 0) {
931 			n = 1;
932 			clearobjflags = FALSE;
933 		}
934 		np = vm_page_find_least(object, pi + n);
935 	}
936 #if 0
937 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
938 #endif
939 
940 	if (clearobjflags)
941 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
942 	return (res);
943 }
944 
945 static int
946 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
947     int flags, boolean_t *clearobjflags, boolean_t *eio)
948 {
949 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
950 	int count, i, mreq, runlen;
951 
952 	vm_page_lock_assert(p, MA_NOTOWNED);
953 	VM_OBJECT_ASSERT_WLOCKED(object);
954 
955 	count = 1;
956 	mreq = 0;
957 
958 	for (tp = p; count < vm_pageout_page_count; count++) {
959 		tp = vm_page_next(tp);
960 		if (tp == NULL || vm_page_busied(tp))
961 			break;
962 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963 			break;
964 	}
965 
966 	for (p_first = p; count < vm_pageout_page_count; count++) {
967 		tp = vm_page_prev(p_first);
968 		if (tp == NULL || vm_page_busied(tp))
969 			break;
970 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
971 			break;
972 		p_first = tp;
973 		mreq++;
974 	}
975 
976 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
977 		ma[i] = tp;
978 
979 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
980 	return (runlen);
981 }
982 
983 /*
984  * Note that there is absolutely no sense in writing out
985  * anonymous objects, so we track down the vnode object
986  * to write out.
987  * We invalidate (remove) all pages from the address space
988  * for semantic correctness.
989  *
990  * If the backing object is a device object with unmanaged pages, then any
991  * mappings to the specified range of pages must be removed before this
992  * function is called.
993  *
994  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
995  * may start out with a NULL object.
996  */
997 boolean_t
998 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
999     boolean_t syncio, boolean_t invalidate)
1000 {
1001 	vm_object_t backing_object;
1002 	struct vnode *vp;
1003 	struct mount *mp;
1004 	int error, flags, fsync_after;
1005 	boolean_t res;
1006 
1007 	if (object == NULL)
1008 		return (TRUE);
1009 	res = TRUE;
1010 	error = 0;
1011 	VM_OBJECT_WLOCK(object);
1012 	while ((backing_object = object->backing_object) != NULL) {
1013 		VM_OBJECT_WLOCK(backing_object);
1014 		offset += object->backing_object_offset;
1015 		VM_OBJECT_WUNLOCK(object);
1016 		object = backing_object;
1017 		if (object->size < OFF_TO_IDX(offset + size))
1018 			size = IDX_TO_OFF(object->size) - offset;
1019 	}
1020 	/*
1021 	 * Flush pages if writing is allowed, invalidate them
1022 	 * if invalidation requested.  Pages undergoing I/O
1023 	 * will be ignored by vm_object_page_remove().
1024 	 *
1025 	 * We cannot lock the vnode and then wait for paging
1026 	 * to complete without deadlocking against vm_fault.
1027 	 * Instead we simply call vm_object_page_remove() and
1028 	 * allow it to block internally on a page-by-page
1029 	 * basis when it encounters pages undergoing async
1030 	 * I/O.
1031 	 */
1032 	if (object->type == OBJT_VNODE &&
1033 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1034 		vp = object->handle;
1035 		VM_OBJECT_WUNLOCK(object);
1036 		(void) vn_start_write(vp, &mp, V_WAIT);
1037 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1038 		if (syncio && !invalidate && offset == 0 &&
1039 		    OFF_TO_IDX(size) == object->size) {
1040 			/*
1041 			 * If syncing the whole mapping of the file,
1042 			 * it is faster to schedule all the writes in
1043 			 * async mode, also allowing the clustering,
1044 			 * and then wait for i/o to complete.
1045 			 */
1046 			flags = 0;
1047 			fsync_after = TRUE;
1048 		} else {
1049 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1050 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1051 			fsync_after = FALSE;
1052 		}
1053 		VM_OBJECT_WLOCK(object);
1054 		res = vm_object_page_clean(object, offset, offset + size,
1055 		    flags);
1056 		VM_OBJECT_WUNLOCK(object);
1057 		if (fsync_after)
1058 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1059 		VOP_UNLOCK(vp, 0);
1060 		vn_finished_write(mp);
1061 		if (error != 0)
1062 			res = FALSE;
1063 		VM_OBJECT_WLOCK(object);
1064 	}
1065 	if ((object->type == OBJT_VNODE ||
1066 	     object->type == OBJT_DEVICE) && invalidate) {
1067 		if (object->type == OBJT_DEVICE)
1068 			/*
1069 			 * The option OBJPR_NOTMAPPED must be passed here
1070 			 * because vm_object_page_remove() cannot remove
1071 			 * unmanaged mappings.
1072 			 */
1073 			flags = OBJPR_NOTMAPPED;
1074 		else if (old_msync)
1075 			flags = 0;
1076 		else
1077 			flags = OBJPR_CLEANONLY;
1078 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1079 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1080 	}
1081 	VM_OBJECT_WUNLOCK(object);
1082 	return (res);
1083 }
1084 
1085 /*
1086  *	vm_object_madvise:
1087  *
1088  *	Implements the madvise function at the object/page level.
1089  *
1090  *	MADV_WILLNEED	(any object)
1091  *
1092  *	    Activate the specified pages if they are resident.
1093  *
1094  *	MADV_DONTNEED	(any object)
1095  *
1096  *	    Deactivate the specified pages if they are resident.
1097  *
1098  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1099  *			 OBJ_ONEMAPPING only)
1100  *
1101  *	    Deactivate and clean the specified pages if they are
1102  *	    resident.  This permits the process to reuse the pages
1103  *	    without faulting or the kernel to reclaim the pages
1104  *	    without I/O.
1105  */
1106 void
1107 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1108     int advise)
1109 {
1110 	vm_pindex_t tpindex;
1111 	vm_object_t backing_object, tobject;
1112 	vm_page_t m;
1113 
1114 	if (object == NULL)
1115 		return;
1116 	VM_OBJECT_WLOCK(object);
1117 	/*
1118 	 * Locate and adjust resident pages
1119 	 */
1120 	for (; pindex < end; pindex += 1) {
1121 relookup:
1122 		tobject = object;
1123 		tpindex = pindex;
1124 shadowlookup:
1125 		/*
1126 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1127 		 * and those pages must be OBJ_ONEMAPPING.
1128 		 */
1129 		if (advise == MADV_FREE) {
1130 			if ((tobject->type != OBJT_DEFAULT &&
1131 			     tobject->type != OBJT_SWAP) ||
1132 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1133 				goto unlock_tobject;
1134 			}
1135 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1136 			goto unlock_tobject;
1137 		m = vm_page_lookup(tobject, tpindex);
1138 		if (m == NULL && advise == MADV_WILLNEED) {
1139 			/*
1140 			 * If the page is cached, reactivate it.
1141 			 */
1142 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1143 			    VM_ALLOC_NOBUSY);
1144 		}
1145 		if (m == NULL) {
1146 			/*
1147 			 * There may be swap even if there is no backing page
1148 			 */
1149 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1150 				swap_pager_freespace(tobject, tpindex, 1);
1151 			/*
1152 			 * next object
1153 			 */
1154 			backing_object = tobject->backing_object;
1155 			if (backing_object == NULL)
1156 				goto unlock_tobject;
1157 			VM_OBJECT_WLOCK(backing_object);
1158 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1159 			if (tobject != object)
1160 				VM_OBJECT_WUNLOCK(tobject);
1161 			tobject = backing_object;
1162 			goto shadowlookup;
1163 		} else if (m->valid != VM_PAGE_BITS_ALL)
1164 			goto unlock_tobject;
1165 		/*
1166 		 * If the page is not in a normal state, skip it.
1167 		 */
1168 		vm_page_lock(m);
1169 		if (m->hold_count != 0 || m->wire_count != 0) {
1170 			vm_page_unlock(m);
1171 			goto unlock_tobject;
1172 		}
1173 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1174 		    ("vm_object_madvise: page %p is fictitious", m));
1175 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1176 		    ("vm_object_madvise: page %p is not managed", m));
1177 		if (vm_page_busied(m)) {
1178 			if (advise == MADV_WILLNEED) {
1179 				/*
1180 				 * Reference the page before unlocking and
1181 				 * sleeping so that the page daemon is less
1182 				 * likely to reclaim it.
1183 				 */
1184 				vm_page_aflag_set(m, PGA_REFERENCED);
1185 			}
1186 			if (object != tobject)
1187 				VM_OBJECT_WUNLOCK(object);
1188 			VM_OBJECT_WUNLOCK(tobject);
1189 			vm_page_busy_sleep(m, "madvpo", false);
1190 			VM_OBJECT_WLOCK(object);
1191   			goto relookup;
1192 		}
1193 		if (advise == MADV_WILLNEED) {
1194 			vm_page_activate(m);
1195 		} else {
1196 			vm_page_advise(m, advise);
1197 		}
1198 		vm_page_unlock(m);
1199 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1200 			swap_pager_freespace(tobject, tpindex, 1);
1201 unlock_tobject:
1202 		if (tobject != object)
1203 			VM_OBJECT_WUNLOCK(tobject);
1204 	}
1205 	VM_OBJECT_WUNLOCK(object);
1206 }
1207 
1208 /*
1209  *	vm_object_shadow:
1210  *
1211  *	Create a new object which is backed by the
1212  *	specified existing object range.  The source
1213  *	object reference is deallocated.
1214  *
1215  *	The new object and offset into that object
1216  *	are returned in the source parameters.
1217  */
1218 void
1219 vm_object_shadow(
1220 	vm_object_t *object,	/* IN/OUT */
1221 	vm_ooffset_t *offset,	/* IN/OUT */
1222 	vm_size_t length)
1223 {
1224 	vm_object_t source;
1225 	vm_object_t result;
1226 
1227 	source = *object;
1228 
1229 	/*
1230 	 * Don't create the new object if the old object isn't shared.
1231 	 */
1232 	if (source != NULL) {
1233 		VM_OBJECT_WLOCK(source);
1234 		if (source->ref_count == 1 &&
1235 		    source->handle == NULL &&
1236 		    (source->type == OBJT_DEFAULT ||
1237 		     source->type == OBJT_SWAP)) {
1238 			VM_OBJECT_WUNLOCK(source);
1239 			return;
1240 		}
1241 		VM_OBJECT_WUNLOCK(source);
1242 	}
1243 
1244 	/*
1245 	 * Allocate a new object with the given length.
1246 	 */
1247 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1248 
1249 	/*
1250 	 * The new object shadows the source object, adding a reference to it.
1251 	 * Our caller changes his reference to point to the new object,
1252 	 * removing a reference to the source object.  Net result: no change
1253 	 * of reference count.
1254 	 *
1255 	 * Try to optimize the result object's page color when shadowing
1256 	 * in order to maintain page coloring consistency in the combined
1257 	 * shadowed object.
1258 	 */
1259 	result->backing_object = source;
1260 	/*
1261 	 * Store the offset into the source object, and fix up the offset into
1262 	 * the new object.
1263 	 */
1264 	result->backing_object_offset = *offset;
1265 	if (source != NULL) {
1266 		VM_OBJECT_WLOCK(source);
1267 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1268 		source->shadow_count++;
1269 #if VM_NRESERVLEVEL > 0
1270 		result->flags |= source->flags & OBJ_COLORED;
1271 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1272 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1273 #endif
1274 		VM_OBJECT_WUNLOCK(source);
1275 	}
1276 
1277 
1278 	/*
1279 	 * Return the new things
1280 	 */
1281 	*offset = 0;
1282 	*object = result;
1283 }
1284 
1285 /*
1286  *	vm_object_split:
1287  *
1288  * Split the pages in a map entry into a new object.  This affords
1289  * easier removal of unused pages, and keeps object inheritance from
1290  * being a negative impact on memory usage.
1291  */
1292 void
1293 vm_object_split(vm_map_entry_t entry)
1294 {
1295 	vm_page_t m, m_next;
1296 	vm_object_t orig_object, new_object, source;
1297 	vm_pindex_t idx, offidxstart;
1298 	vm_size_t size;
1299 
1300 	orig_object = entry->object.vm_object;
1301 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1302 		return;
1303 	if (orig_object->ref_count <= 1)
1304 		return;
1305 	VM_OBJECT_WUNLOCK(orig_object);
1306 
1307 	offidxstart = OFF_TO_IDX(entry->offset);
1308 	size = atop(entry->end - entry->start);
1309 
1310 	/*
1311 	 * If swap_pager_copy() is later called, it will convert new_object
1312 	 * into a swap object.
1313 	 */
1314 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1315 
1316 	/*
1317 	 * At this point, the new object is still private, so the order in
1318 	 * which the original and new objects are locked does not matter.
1319 	 */
1320 	VM_OBJECT_WLOCK(new_object);
1321 	VM_OBJECT_WLOCK(orig_object);
1322 	source = orig_object->backing_object;
1323 	if (source != NULL) {
1324 		VM_OBJECT_WLOCK(source);
1325 		if ((source->flags & OBJ_DEAD) != 0) {
1326 			VM_OBJECT_WUNLOCK(source);
1327 			VM_OBJECT_WUNLOCK(orig_object);
1328 			VM_OBJECT_WUNLOCK(new_object);
1329 			vm_object_deallocate(new_object);
1330 			VM_OBJECT_WLOCK(orig_object);
1331 			return;
1332 		}
1333 		LIST_INSERT_HEAD(&source->shadow_head,
1334 				  new_object, shadow_list);
1335 		source->shadow_count++;
1336 		vm_object_reference_locked(source);	/* for new_object */
1337 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1338 		VM_OBJECT_WUNLOCK(source);
1339 		new_object->backing_object_offset =
1340 			orig_object->backing_object_offset + entry->offset;
1341 		new_object->backing_object = source;
1342 	}
1343 	if (orig_object->cred != NULL) {
1344 		new_object->cred = orig_object->cred;
1345 		crhold(orig_object->cred);
1346 		new_object->charge = ptoa(size);
1347 		KASSERT(orig_object->charge >= ptoa(size),
1348 		    ("orig_object->charge < 0"));
1349 		orig_object->charge -= ptoa(size);
1350 	}
1351 retry:
1352 	m = vm_page_find_least(orig_object, offidxstart);
1353 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1354 	    m = m_next) {
1355 		m_next = TAILQ_NEXT(m, listq);
1356 
1357 		/*
1358 		 * We must wait for pending I/O to complete before we can
1359 		 * rename the page.
1360 		 *
1361 		 * We do not have to VM_PROT_NONE the page as mappings should
1362 		 * not be changed by this operation.
1363 		 */
1364 		if (vm_page_busied(m)) {
1365 			VM_OBJECT_WUNLOCK(new_object);
1366 			vm_page_lock(m);
1367 			VM_OBJECT_WUNLOCK(orig_object);
1368 			vm_page_busy_sleep(m, "spltwt", false);
1369 			VM_OBJECT_WLOCK(orig_object);
1370 			VM_OBJECT_WLOCK(new_object);
1371 			goto retry;
1372 		}
1373 
1374 		/* vm_page_rename() will handle dirty and cache. */
1375 		if (vm_page_rename(m, new_object, idx)) {
1376 			VM_OBJECT_WUNLOCK(new_object);
1377 			VM_OBJECT_WUNLOCK(orig_object);
1378 			VM_WAIT;
1379 			VM_OBJECT_WLOCK(orig_object);
1380 			VM_OBJECT_WLOCK(new_object);
1381 			goto retry;
1382 		}
1383 #if VM_NRESERVLEVEL > 0
1384 		/*
1385 		 * If some of the reservation's allocated pages remain with
1386 		 * the original object, then transferring the reservation to
1387 		 * the new object is neither particularly beneficial nor
1388 		 * particularly harmful as compared to leaving the reservation
1389 		 * with the original object.  If, however, all of the
1390 		 * reservation's allocated pages are transferred to the new
1391 		 * object, then transferring the reservation is typically
1392 		 * beneficial.  Determining which of these two cases applies
1393 		 * would be more costly than unconditionally renaming the
1394 		 * reservation.
1395 		 */
1396 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1397 #endif
1398 		if (orig_object->type == OBJT_SWAP)
1399 			vm_page_xbusy(m);
1400 	}
1401 	if (orig_object->type == OBJT_SWAP) {
1402 		/*
1403 		 * swap_pager_copy() can sleep, in which case the orig_object's
1404 		 * and new_object's locks are released and reacquired.
1405 		 */
1406 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1407 		TAILQ_FOREACH(m, &new_object->memq, listq)
1408 			vm_page_xunbusy(m);
1409 
1410 		/*
1411 		 * Transfer any cached pages from orig_object to new_object.
1412 		 * If swap_pager_copy() found swapped out pages within the
1413 		 * specified range of orig_object, then it changed
1414 		 * new_object's type to OBJT_SWAP when it transferred those
1415 		 * pages to new_object.  Otherwise, new_object's type
1416 		 * should still be OBJT_DEFAULT and orig_object should not
1417 		 * contain any cached pages within the specified range.
1418 		 */
1419 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1420 			vm_page_cache_transfer(orig_object, offidxstart,
1421 			    new_object);
1422 	}
1423 	VM_OBJECT_WUNLOCK(orig_object);
1424 	VM_OBJECT_WUNLOCK(new_object);
1425 	entry->object.vm_object = new_object;
1426 	entry->offset = 0LL;
1427 	vm_object_deallocate(orig_object);
1428 	VM_OBJECT_WLOCK(new_object);
1429 }
1430 
1431 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1432 #define	OBSC_COLLAPSE_WAIT	0x0004
1433 
1434 static vm_page_t
1435 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1436     int op)
1437 {
1438 	vm_object_t backing_object;
1439 
1440 	VM_OBJECT_ASSERT_WLOCKED(object);
1441 	backing_object = object->backing_object;
1442 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1443 
1444 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1445 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1446 	    ("invalid ownership %p %p %p", p, object, backing_object));
1447 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1448 		return (next);
1449 	if (p != NULL)
1450 		vm_page_lock(p);
1451 	VM_OBJECT_WUNLOCK(object);
1452 	VM_OBJECT_WUNLOCK(backing_object);
1453 	if (p == NULL)
1454 		VM_WAIT;
1455 	else
1456 		vm_page_busy_sleep(p, "vmocol", false);
1457 	VM_OBJECT_WLOCK(object);
1458 	VM_OBJECT_WLOCK(backing_object);
1459 	return (TAILQ_FIRST(&backing_object->memq));
1460 }
1461 
1462 static bool
1463 vm_object_scan_all_shadowed(vm_object_t object)
1464 {
1465 	vm_object_t backing_object;
1466 	vm_page_t p, pp;
1467 	vm_pindex_t backing_offset_index, new_pindex;
1468 
1469 	VM_OBJECT_ASSERT_WLOCKED(object);
1470 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1471 
1472 	backing_object = object->backing_object;
1473 
1474 	/*
1475 	 * Initial conditions:
1476 	 *
1477 	 * We do not want to have to test for the existence of cache or swap
1478 	 * pages in the backing object.  XXX but with the new swapper this
1479 	 * would be pretty easy to do.
1480 	 */
1481 	if (backing_object->type != OBJT_DEFAULT)
1482 		return (false);
1483 
1484 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1485 
1486 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1487 	    p = TAILQ_NEXT(p, listq)) {
1488 		new_pindex = p->pindex - backing_offset_index;
1489 
1490 		/*
1491 		 * Ignore pages outside the parent object's range and outside
1492 		 * the parent object's mapping of the backing object.
1493 		 */
1494 		if (p->pindex < backing_offset_index ||
1495 		    new_pindex >= object->size)
1496 			continue;
1497 
1498 		/*
1499 		 * See if the parent has the page or if the parent's object
1500 		 * pager has the page.  If the parent has the page but the page
1501 		 * is not valid, the parent's object pager must have the page.
1502 		 *
1503 		 * If this fails, the parent does not completely shadow the
1504 		 * object and we might as well give up now.
1505 		 */
1506 		pp = vm_page_lookup(object, new_pindex);
1507 		if ((pp == NULL || pp->valid == 0) &&
1508 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1509 			return (false);
1510 	}
1511 	return (true);
1512 }
1513 
1514 static bool
1515 vm_object_collapse_scan(vm_object_t object, int op)
1516 {
1517 	vm_object_t backing_object;
1518 	vm_page_t next, p, pp;
1519 	vm_pindex_t backing_offset_index, new_pindex;
1520 
1521 	VM_OBJECT_ASSERT_WLOCKED(object);
1522 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1523 
1524 	backing_object = object->backing_object;
1525 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1526 
1527 	/*
1528 	 * Initial conditions
1529 	 */
1530 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1531 		vm_object_set_flag(backing_object, OBJ_DEAD);
1532 
1533 	/*
1534 	 * Our scan
1535 	 */
1536 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1537 		next = TAILQ_NEXT(p, listq);
1538 		new_pindex = p->pindex - backing_offset_index;
1539 
1540 		/*
1541 		 * Check for busy page
1542 		 */
1543 		if (vm_page_busied(p)) {
1544 			next = vm_object_collapse_scan_wait(object, p, next, op);
1545 			continue;
1546 		}
1547 
1548 		KASSERT(p->object == backing_object,
1549 		    ("vm_object_collapse_scan: object mismatch"));
1550 
1551 		if (p->pindex < backing_offset_index ||
1552 		    new_pindex >= object->size) {
1553 			if (backing_object->type == OBJT_SWAP)
1554 				swap_pager_freespace(backing_object, p->pindex,
1555 				    1);
1556 
1557 			/*
1558 			 * Page is out of the parent object's range, we can
1559 			 * simply destroy it.
1560 			 */
1561 			vm_page_lock(p);
1562 			KASSERT(!pmap_page_is_mapped(p),
1563 			    ("freeing mapped page %p", p));
1564 			if (p->wire_count == 0)
1565 				vm_page_free(p);
1566 			else
1567 				vm_page_remove(p);
1568 			vm_page_unlock(p);
1569 			continue;
1570 		}
1571 
1572 		pp = vm_page_lookup(object, new_pindex);
1573 		if (pp != NULL && vm_page_busied(pp)) {
1574 			/*
1575 			 * The page in the parent is busy and possibly not
1576 			 * (yet) valid.  Until its state is finalized by the
1577 			 * busy bit owner, we can't tell whether it shadows the
1578 			 * original page.  Therefore, we must either skip it
1579 			 * and the original (backing_object) page or wait for
1580 			 * its state to be finalized.
1581 			 *
1582 			 * This is due to a race with vm_fault() where we must
1583 			 * unbusy the original (backing_obj) page before we can
1584 			 * (re)lock the parent.  Hence we can get here.
1585 			 */
1586 			next = vm_object_collapse_scan_wait(object, pp, next,
1587 			    op);
1588 			continue;
1589 		}
1590 
1591 		KASSERT(pp == NULL || pp->valid != 0,
1592 		    ("unbusy invalid page %p", pp));
1593 
1594 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1595 			NULL)) {
1596 			/*
1597 			 * The page already exists in the parent OR swap exists
1598 			 * for this location in the parent.  Leave the parent's
1599 			 * page alone.  Destroy the original page from the
1600 			 * backing object.
1601 			 */
1602 			if (backing_object->type == OBJT_SWAP)
1603 				swap_pager_freespace(backing_object, p->pindex,
1604 				    1);
1605 			vm_page_lock(p);
1606 			KASSERT(!pmap_page_is_mapped(p),
1607 			    ("freeing mapped page %p", p));
1608 			if (p->wire_count == 0)
1609 				vm_page_free(p);
1610 			else
1611 				vm_page_remove(p);
1612 			vm_page_unlock(p);
1613 			continue;
1614 		}
1615 
1616 		/*
1617 		 * Page does not exist in parent, rename the page from the
1618 		 * backing object to the main object.
1619 		 *
1620 		 * If the page was mapped to a process, it can remain mapped
1621 		 * through the rename.  vm_page_rename() will handle dirty and
1622 		 * cache.
1623 		 */
1624 		if (vm_page_rename(p, object, new_pindex)) {
1625 			next = vm_object_collapse_scan_wait(object, NULL, next,
1626 			    op);
1627 			continue;
1628 		}
1629 
1630 		/* Use the old pindex to free the right page. */
1631 		if (backing_object->type == OBJT_SWAP)
1632 			swap_pager_freespace(backing_object,
1633 			    new_pindex + backing_offset_index, 1);
1634 
1635 #if VM_NRESERVLEVEL > 0
1636 		/*
1637 		 * Rename the reservation.
1638 		 */
1639 		vm_reserv_rename(p, object, backing_object,
1640 		    backing_offset_index);
1641 #endif
1642 	}
1643 	return (true);
1644 }
1645 
1646 
1647 /*
1648  * this version of collapse allows the operation to occur earlier and
1649  * when paging_in_progress is true for an object...  This is not a complete
1650  * operation, but should plug 99.9% of the rest of the leaks.
1651  */
1652 static void
1653 vm_object_qcollapse(vm_object_t object)
1654 {
1655 	vm_object_t backing_object = object->backing_object;
1656 
1657 	VM_OBJECT_ASSERT_WLOCKED(object);
1658 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1659 
1660 	if (backing_object->ref_count != 1)
1661 		return;
1662 
1663 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1664 }
1665 
1666 /*
1667  *	vm_object_collapse:
1668  *
1669  *	Collapse an object with the object backing it.
1670  *	Pages in the backing object are moved into the
1671  *	parent, and the backing object is deallocated.
1672  */
1673 void
1674 vm_object_collapse(vm_object_t object)
1675 {
1676 	vm_object_t backing_object, new_backing_object;
1677 
1678 	VM_OBJECT_ASSERT_WLOCKED(object);
1679 
1680 	while (TRUE) {
1681 		/*
1682 		 * Verify that the conditions are right for collapse:
1683 		 *
1684 		 * The object exists and the backing object exists.
1685 		 */
1686 		if ((backing_object = object->backing_object) == NULL)
1687 			break;
1688 
1689 		/*
1690 		 * we check the backing object first, because it is most likely
1691 		 * not collapsable.
1692 		 */
1693 		VM_OBJECT_WLOCK(backing_object);
1694 		if (backing_object->handle != NULL ||
1695 		    (backing_object->type != OBJT_DEFAULT &&
1696 		     backing_object->type != OBJT_SWAP) ||
1697 		    (backing_object->flags & OBJ_DEAD) ||
1698 		    object->handle != NULL ||
1699 		    (object->type != OBJT_DEFAULT &&
1700 		     object->type != OBJT_SWAP) ||
1701 		    (object->flags & OBJ_DEAD)) {
1702 			VM_OBJECT_WUNLOCK(backing_object);
1703 			break;
1704 		}
1705 
1706 		if (object->paging_in_progress != 0 ||
1707 		    backing_object->paging_in_progress != 0) {
1708 			vm_object_qcollapse(object);
1709 			VM_OBJECT_WUNLOCK(backing_object);
1710 			break;
1711 		}
1712 
1713 		/*
1714 		 * We know that we can either collapse the backing object (if
1715 		 * the parent is the only reference to it) or (perhaps) have
1716 		 * the parent bypass the object if the parent happens to shadow
1717 		 * all the resident pages in the entire backing object.
1718 		 *
1719 		 * This is ignoring pager-backed pages such as swap pages.
1720 		 * vm_object_collapse_scan fails the shadowing test in this
1721 		 * case.
1722 		 */
1723 		if (backing_object->ref_count == 1) {
1724 			vm_object_pip_add(object, 1);
1725 			vm_object_pip_add(backing_object, 1);
1726 
1727 			/*
1728 			 * If there is exactly one reference to the backing
1729 			 * object, we can collapse it into the parent.
1730 			 */
1731 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1732 
1733 #if VM_NRESERVLEVEL > 0
1734 			/*
1735 			 * Break any reservations from backing_object.
1736 			 */
1737 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1738 				vm_reserv_break_all(backing_object);
1739 #endif
1740 
1741 			/*
1742 			 * Move the pager from backing_object to object.
1743 			 */
1744 			if (backing_object->type == OBJT_SWAP) {
1745 				/*
1746 				 * swap_pager_copy() can sleep, in which case
1747 				 * the backing_object's and object's locks are
1748 				 * released and reacquired.
1749 				 * Since swap_pager_copy() is being asked to
1750 				 * destroy the source, it will change the
1751 				 * backing_object's type to OBJT_DEFAULT.
1752 				 */
1753 				swap_pager_copy(
1754 				    backing_object,
1755 				    object,
1756 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1757 
1758 				/*
1759 				 * Free any cached pages from backing_object.
1760 				 */
1761 				if (__predict_false(
1762 				    !vm_object_cache_is_empty(backing_object)))
1763 					vm_page_cache_free(backing_object, 0, 0);
1764 			}
1765 			/*
1766 			 * Object now shadows whatever backing_object did.
1767 			 * Note that the reference to
1768 			 * backing_object->backing_object moves from within
1769 			 * backing_object to within object.
1770 			 */
1771 			LIST_REMOVE(object, shadow_list);
1772 			backing_object->shadow_count--;
1773 			if (backing_object->backing_object) {
1774 				VM_OBJECT_WLOCK(backing_object->backing_object);
1775 				LIST_REMOVE(backing_object, shadow_list);
1776 				LIST_INSERT_HEAD(
1777 				    &backing_object->backing_object->shadow_head,
1778 				    object, shadow_list);
1779 				/*
1780 				 * The shadow_count has not changed.
1781 				 */
1782 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1783 			}
1784 			object->backing_object = backing_object->backing_object;
1785 			object->backing_object_offset +=
1786 			    backing_object->backing_object_offset;
1787 
1788 			/*
1789 			 * Discard backing_object.
1790 			 *
1791 			 * Since the backing object has no pages, no pager left,
1792 			 * and no object references within it, all that is
1793 			 * necessary is to dispose of it.
1794 			 */
1795 			KASSERT(backing_object->ref_count == 1, (
1796 "backing_object %p was somehow re-referenced during collapse!",
1797 			    backing_object));
1798 			vm_object_pip_wakeup(backing_object);
1799 			backing_object->type = OBJT_DEAD;
1800 			backing_object->ref_count = 0;
1801 			VM_OBJECT_WUNLOCK(backing_object);
1802 			vm_object_destroy(backing_object);
1803 
1804 			vm_object_pip_wakeup(object);
1805 			object_collapses++;
1806 		} else {
1807 			/*
1808 			 * If we do not entirely shadow the backing object,
1809 			 * there is nothing we can do so we give up.
1810 			 */
1811 			if (object->resident_page_count != object->size &&
1812 			    !vm_object_scan_all_shadowed(object)) {
1813 				VM_OBJECT_WUNLOCK(backing_object);
1814 				break;
1815 			}
1816 
1817 			/*
1818 			 * Make the parent shadow the next object in the
1819 			 * chain.  Deallocating backing_object will not remove
1820 			 * it, since its reference count is at least 2.
1821 			 */
1822 			LIST_REMOVE(object, shadow_list);
1823 			backing_object->shadow_count--;
1824 
1825 			new_backing_object = backing_object->backing_object;
1826 			if ((object->backing_object = new_backing_object) != NULL) {
1827 				VM_OBJECT_WLOCK(new_backing_object);
1828 				LIST_INSERT_HEAD(
1829 				    &new_backing_object->shadow_head,
1830 				    object,
1831 				    shadow_list
1832 				);
1833 				new_backing_object->shadow_count++;
1834 				vm_object_reference_locked(new_backing_object);
1835 				VM_OBJECT_WUNLOCK(new_backing_object);
1836 				object->backing_object_offset +=
1837 					backing_object->backing_object_offset;
1838 			}
1839 
1840 			/*
1841 			 * Drop the reference count on backing_object. Since
1842 			 * its ref_count was at least 2, it will not vanish.
1843 			 */
1844 			backing_object->ref_count--;
1845 			VM_OBJECT_WUNLOCK(backing_object);
1846 			object_bypasses++;
1847 		}
1848 
1849 		/*
1850 		 * Try again with this object's new backing object.
1851 		 */
1852 	}
1853 }
1854 
1855 /*
1856  *	vm_object_page_remove:
1857  *
1858  *	For the given object, either frees or invalidates each of the
1859  *	specified pages.  In general, a page is freed.  However, if a page is
1860  *	wired for any reason other than the existence of a managed, wired
1861  *	mapping, then it may be invalidated but not removed from the object.
1862  *	Pages are specified by the given range ["start", "end") and the option
1863  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1864  *	extends from "start" to the end of the object.  If the option
1865  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1866  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1867  *	specified, then the pages within the specified range must have no
1868  *	mappings.  Otherwise, if this option is not specified, any mappings to
1869  *	the specified pages are removed before the pages are freed or
1870  *	invalidated.
1871  *
1872  *	In general, this operation should only be performed on objects that
1873  *	contain managed pages.  There are, however, two exceptions.  First, it
1874  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1875  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1876  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1877  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1878  *
1879  *	The object must be locked.
1880  */
1881 void
1882 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1883     int options)
1884 {
1885 	vm_page_t p, next;
1886 
1887 	VM_OBJECT_ASSERT_WLOCKED(object);
1888 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1889 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1890 	    ("vm_object_page_remove: illegal options for object %p", object));
1891 	if (object->resident_page_count == 0)
1892 		goto skipmemq;
1893 	vm_object_pip_add(object, 1);
1894 again:
1895 	p = vm_page_find_least(object, start);
1896 
1897 	/*
1898 	 * Here, the variable "p" is either (1) the page with the least pindex
1899 	 * greater than or equal to the parameter "start" or (2) NULL.
1900 	 */
1901 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1902 		next = TAILQ_NEXT(p, listq);
1903 
1904 		/*
1905 		 * If the page is wired for any reason besides the existence
1906 		 * of managed, wired mappings, then it cannot be freed.  For
1907 		 * example, fictitious pages, which represent device memory,
1908 		 * are inherently wired and cannot be freed.  They can,
1909 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1910 		 * not specified.
1911 		 */
1912 		vm_page_lock(p);
1913 		if (vm_page_xbusied(p)) {
1914 			VM_OBJECT_WUNLOCK(object);
1915 			vm_page_busy_sleep(p, "vmopax", true);
1916 			VM_OBJECT_WLOCK(object);
1917 			goto again;
1918 		}
1919 		if (p->wire_count != 0) {
1920 			if ((options & OBJPR_NOTMAPPED) == 0)
1921 				pmap_remove_all(p);
1922 			if ((options & OBJPR_CLEANONLY) == 0) {
1923 				p->valid = 0;
1924 				vm_page_undirty(p);
1925 			}
1926 			goto next;
1927 		}
1928 		if (vm_page_busied(p)) {
1929 			VM_OBJECT_WUNLOCK(object);
1930 			vm_page_busy_sleep(p, "vmopar", false);
1931 			VM_OBJECT_WLOCK(object);
1932 			goto again;
1933 		}
1934 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1935 		    ("vm_object_page_remove: page %p is fictitious", p));
1936 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1937 			if ((options & OBJPR_NOTMAPPED) == 0)
1938 				pmap_remove_write(p);
1939 			if (p->dirty)
1940 				goto next;
1941 		}
1942 		if ((options & OBJPR_NOTMAPPED) == 0)
1943 			pmap_remove_all(p);
1944 		vm_page_free(p);
1945 next:
1946 		vm_page_unlock(p);
1947 	}
1948 	vm_object_pip_wakeup(object);
1949 skipmemq:
1950 	if (__predict_false(!vm_object_cache_is_empty(object)))
1951 		vm_page_cache_free(object, start, end);
1952 }
1953 
1954 /*
1955  *	vm_object_page_noreuse:
1956  *
1957  *	For the given object, attempt to move the specified pages to
1958  *	the head of the inactive queue.  This bypasses regular LRU
1959  *	operation and allows the pages to be reused quickly under memory
1960  *	pressure.  If a page is wired for any reason, then it will not
1961  *	be queued.  Pages are specified by the range ["start", "end").
1962  *	As a special case, if "end" is zero, then the range extends from
1963  *	"start" to the end of the object.
1964  *
1965  *	This operation should only be performed on objects that
1966  *	contain non-fictitious, managed pages.
1967  *
1968  *	The object must be locked.
1969  */
1970 void
1971 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1972 {
1973 	struct mtx *mtx, *new_mtx;
1974 	vm_page_t p, next;
1975 
1976 	VM_OBJECT_ASSERT_WLOCKED(object);
1977 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1978 	    ("vm_object_page_noreuse: illegal object %p", object));
1979 	if (object->resident_page_count == 0)
1980 		return;
1981 	p = vm_page_find_least(object, start);
1982 
1983 	/*
1984 	 * Here, the variable "p" is either (1) the page with the least pindex
1985 	 * greater than or equal to the parameter "start" or (2) NULL.
1986 	 */
1987 	mtx = NULL;
1988 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1989 		next = TAILQ_NEXT(p, listq);
1990 
1991 		/*
1992 		 * Avoid releasing and reacquiring the same page lock.
1993 		 */
1994 		new_mtx = vm_page_lockptr(p);
1995 		if (mtx != new_mtx) {
1996 			if (mtx != NULL)
1997 				mtx_unlock(mtx);
1998 			mtx = new_mtx;
1999 			mtx_lock(mtx);
2000 		}
2001 		vm_page_deactivate_noreuse(p);
2002 	}
2003 	if (mtx != NULL)
2004 		mtx_unlock(mtx);
2005 }
2006 
2007 /*
2008  *	Populate the specified range of the object with valid pages.  Returns
2009  *	TRUE if the range is successfully populated and FALSE otherwise.
2010  *
2011  *	Note: This function should be optimized to pass a larger array of
2012  *	pages to vm_pager_get_pages() before it is applied to a non-
2013  *	OBJT_DEVICE object.
2014  *
2015  *	The object must be locked.
2016  */
2017 boolean_t
2018 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2019 {
2020 	vm_page_t m;
2021 	vm_pindex_t pindex;
2022 	int rv;
2023 
2024 	VM_OBJECT_ASSERT_WLOCKED(object);
2025 	for (pindex = start; pindex < end; pindex++) {
2026 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2027 		if (m->valid != VM_PAGE_BITS_ALL) {
2028 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2029 			if (rv != VM_PAGER_OK) {
2030 				vm_page_lock(m);
2031 				vm_page_free(m);
2032 				vm_page_unlock(m);
2033 				break;
2034 			}
2035 		}
2036 		/*
2037 		 * Keep "m" busy because a subsequent iteration may unlock
2038 		 * the object.
2039 		 */
2040 	}
2041 	if (pindex > start) {
2042 		m = vm_page_lookup(object, start);
2043 		while (m != NULL && m->pindex < pindex) {
2044 			vm_page_xunbusy(m);
2045 			m = TAILQ_NEXT(m, listq);
2046 		}
2047 	}
2048 	return (pindex == end);
2049 }
2050 
2051 /*
2052  *	Routine:	vm_object_coalesce
2053  *	Function:	Coalesces two objects backing up adjoining
2054  *			regions of memory into a single object.
2055  *
2056  *	returns TRUE if objects were combined.
2057  *
2058  *	NOTE:	Only works at the moment if the second object is NULL -
2059  *		if it's not, which object do we lock first?
2060  *
2061  *	Parameters:
2062  *		prev_object	First object to coalesce
2063  *		prev_offset	Offset into prev_object
2064  *		prev_size	Size of reference to prev_object
2065  *		next_size	Size of reference to the second object
2066  *		reserved	Indicator that extension region has
2067  *				swap accounted for
2068  *
2069  *	Conditions:
2070  *	The object must *not* be locked.
2071  */
2072 boolean_t
2073 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2074     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2075 {
2076 	vm_pindex_t next_pindex;
2077 
2078 	if (prev_object == NULL)
2079 		return (TRUE);
2080 	VM_OBJECT_WLOCK(prev_object);
2081 	if ((prev_object->type != OBJT_DEFAULT &&
2082 	    prev_object->type != OBJT_SWAP) ||
2083 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2084 		VM_OBJECT_WUNLOCK(prev_object);
2085 		return (FALSE);
2086 	}
2087 
2088 	/*
2089 	 * Try to collapse the object first
2090 	 */
2091 	vm_object_collapse(prev_object);
2092 
2093 	/*
2094 	 * Can't coalesce if: . more than one reference . paged out . shadows
2095 	 * another object . has a copy elsewhere (any of which mean that the
2096 	 * pages not mapped to prev_entry may be in use anyway)
2097 	 */
2098 	if (prev_object->backing_object != NULL) {
2099 		VM_OBJECT_WUNLOCK(prev_object);
2100 		return (FALSE);
2101 	}
2102 
2103 	prev_size >>= PAGE_SHIFT;
2104 	next_size >>= PAGE_SHIFT;
2105 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2106 
2107 	if ((prev_object->ref_count > 1) &&
2108 	    (prev_object->size != next_pindex)) {
2109 		VM_OBJECT_WUNLOCK(prev_object);
2110 		return (FALSE);
2111 	}
2112 
2113 	/*
2114 	 * Account for the charge.
2115 	 */
2116 	if (prev_object->cred != NULL) {
2117 
2118 		/*
2119 		 * If prev_object was charged, then this mapping,
2120 		 * although not charged now, may become writable
2121 		 * later. Non-NULL cred in the object would prevent
2122 		 * swap reservation during enabling of the write
2123 		 * access, so reserve swap now. Failed reservation
2124 		 * cause allocation of the separate object for the map
2125 		 * entry, and swap reservation for this entry is
2126 		 * managed in appropriate time.
2127 		 */
2128 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2129 		    prev_object->cred)) {
2130 			VM_OBJECT_WUNLOCK(prev_object);
2131 			return (FALSE);
2132 		}
2133 		prev_object->charge += ptoa(next_size);
2134 	}
2135 
2136 	/*
2137 	 * Remove any pages that may still be in the object from a previous
2138 	 * deallocation.
2139 	 */
2140 	if (next_pindex < prev_object->size) {
2141 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2142 		    next_size, 0);
2143 		if (prev_object->type == OBJT_SWAP)
2144 			swap_pager_freespace(prev_object,
2145 					     next_pindex, next_size);
2146 #if 0
2147 		if (prev_object->cred != NULL) {
2148 			KASSERT(prev_object->charge >=
2149 			    ptoa(prev_object->size - next_pindex),
2150 			    ("object %p overcharged 1 %jx %jx", prev_object,
2151 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2152 			prev_object->charge -= ptoa(prev_object->size -
2153 			    next_pindex);
2154 		}
2155 #endif
2156 	}
2157 
2158 	/*
2159 	 * Extend the object if necessary.
2160 	 */
2161 	if (next_pindex + next_size > prev_object->size)
2162 		prev_object->size = next_pindex + next_size;
2163 
2164 	VM_OBJECT_WUNLOCK(prev_object);
2165 	return (TRUE);
2166 }
2167 
2168 void
2169 vm_object_set_writeable_dirty(vm_object_t object)
2170 {
2171 
2172 	VM_OBJECT_ASSERT_WLOCKED(object);
2173 	if (object->type != OBJT_VNODE) {
2174 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2175 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2176 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2177 		}
2178 		return;
2179 	}
2180 	object->generation++;
2181 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2182 		return;
2183 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2184 }
2185 
2186 /*
2187  *	vm_object_unwire:
2188  *
2189  *	For each page offset within the specified range of the given object,
2190  *	find the highest-level page in the shadow chain and unwire it.  A page
2191  *	must exist at every page offset, and the highest-level page must be
2192  *	wired.
2193  */
2194 void
2195 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2196     uint8_t queue)
2197 {
2198 	vm_object_t tobject;
2199 	vm_page_t m, tm;
2200 	vm_pindex_t end_pindex, pindex, tpindex;
2201 	int depth, locked_depth;
2202 
2203 	KASSERT((offset & PAGE_MASK) == 0,
2204 	    ("vm_object_unwire: offset is not page aligned"));
2205 	KASSERT((length & PAGE_MASK) == 0,
2206 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2207 	/* The wired count of a fictitious page never changes. */
2208 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2209 		return;
2210 	pindex = OFF_TO_IDX(offset);
2211 	end_pindex = pindex + atop(length);
2212 	locked_depth = 1;
2213 	VM_OBJECT_RLOCK(object);
2214 	m = vm_page_find_least(object, pindex);
2215 	while (pindex < end_pindex) {
2216 		if (m == NULL || pindex < m->pindex) {
2217 			/*
2218 			 * The first object in the shadow chain doesn't
2219 			 * contain a page at the current index.  Therefore,
2220 			 * the page must exist in a backing object.
2221 			 */
2222 			tobject = object;
2223 			tpindex = pindex;
2224 			depth = 0;
2225 			do {
2226 				tpindex +=
2227 				    OFF_TO_IDX(tobject->backing_object_offset);
2228 				tobject = tobject->backing_object;
2229 				KASSERT(tobject != NULL,
2230 				    ("vm_object_unwire: missing page"));
2231 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2232 					goto next_page;
2233 				depth++;
2234 				if (depth == locked_depth) {
2235 					locked_depth++;
2236 					VM_OBJECT_RLOCK(tobject);
2237 				}
2238 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2239 			    NULL);
2240 		} else {
2241 			tm = m;
2242 			m = TAILQ_NEXT(m, listq);
2243 		}
2244 		vm_page_lock(tm);
2245 		vm_page_unwire(tm, queue);
2246 		vm_page_unlock(tm);
2247 next_page:
2248 		pindex++;
2249 	}
2250 	/* Release the accumulated object locks. */
2251 	for (depth = 0; depth < locked_depth; depth++) {
2252 		tobject = object->backing_object;
2253 		VM_OBJECT_RUNLOCK(object);
2254 		object = tobject;
2255 	}
2256 }
2257 
2258 struct vnode *
2259 vm_object_vnode(vm_object_t object)
2260 {
2261 
2262 	VM_OBJECT_ASSERT_LOCKED(object);
2263 	if (object->type == OBJT_VNODE)
2264 		return (object->handle);
2265 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2266 		return (object->un_pager.swp.swp_tmpfs);
2267 	return (NULL);
2268 }
2269 
2270 static int
2271 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2272 {
2273 	struct kinfo_vmobject kvo;
2274 	char *fullpath, *freepath;
2275 	struct vnode *vp;
2276 	struct vattr va;
2277 	vm_object_t obj;
2278 	vm_page_t m;
2279 	int count, error;
2280 
2281 	if (req->oldptr == NULL) {
2282 		/*
2283 		 * If an old buffer has not been provided, generate an
2284 		 * estimate of the space needed for a subsequent call.
2285 		 */
2286 		mtx_lock(&vm_object_list_mtx);
2287 		count = 0;
2288 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2289 			if (obj->type == OBJT_DEAD)
2290 				continue;
2291 			count++;
2292 		}
2293 		mtx_unlock(&vm_object_list_mtx);
2294 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2295 		    count * 11 / 10));
2296 	}
2297 
2298 	error = 0;
2299 
2300 	/*
2301 	 * VM objects are type stable and are never removed from the
2302 	 * list once added.  This allows us to safely read obj->object_list
2303 	 * after reacquiring the VM object lock.
2304 	 */
2305 	mtx_lock(&vm_object_list_mtx);
2306 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2307 		if (obj->type == OBJT_DEAD)
2308 			continue;
2309 		VM_OBJECT_RLOCK(obj);
2310 		if (obj->type == OBJT_DEAD) {
2311 			VM_OBJECT_RUNLOCK(obj);
2312 			continue;
2313 		}
2314 		mtx_unlock(&vm_object_list_mtx);
2315 		kvo.kvo_size = ptoa(obj->size);
2316 		kvo.kvo_resident = obj->resident_page_count;
2317 		kvo.kvo_ref_count = obj->ref_count;
2318 		kvo.kvo_shadow_count = obj->shadow_count;
2319 		kvo.kvo_memattr = obj->memattr;
2320 		kvo.kvo_active = 0;
2321 		kvo.kvo_inactive = 0;
2322 		TAILQ_FOREACH(m, &obj->memq, listq) {
2323 			/*
2324 			 * A page may belong to the object but be
2325 			 * dequeued and set to PQ_NONE while the
2326 			 * object lock is not held.  This makes the
2327 			 * reads of m->queue below racy, and we do not
2328 			 * count pages set to PQ_NONE.  However, this
2329 			 * sysctl is only meant to give an
2330 			 * approximation of the system anyway.
2331 			 */
2332 			if (m->queue == PQ_ACTIVE)
2333 				kvo.kvo_active++;
2334 			else if (m->queue == PQ_INACTIVE)
2335 				kvo.kvo_inactive++;
2336 		}
2337 
2338 		kvo.kvo_vn_fileid = 0;
2339 		kvo.kvo_vn_fsid = 0;
2340 		freepath = NULL;
2341 		fullpath = "";
2342 		vp = NULL;
2343 		switch (obj->type) {
2344 		case OBJT_DEFAULT:
2345 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2346 			break;
2347 		case OBJT_VNODE:
2348 			kvo.kvo_type = KVME_TYPE_VNODE;
2349 			vp = obj->handle;
2350 			vref(vp);
2351 			break;
2352 		case OBJT_SWAP:
2353 			kvo.kvo_type = KVME_TYPE_SWAP;
2354 			break;
2355 		case OBJT_DEVICE:
2356 			kvo.kvo_type = KVME_TYPE_DEVICE;
2357 			break;
2358 		case OBJT_PHYS:
2359 			kvo.kvo_type = KVME_TYPE_PHYS;
2360 			break;
2361 		case OBJT_DEAD:
2362 			kvo.kvo_type = KVME_TYPE_DEAD;
2363 			break;
2364 		case OBJT_SG:
2365 			kvo.kvo_type = KVME_TYPE_SG;
2366 			break;
2367 		case OBJT_MGTDEVICE:
2368 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2369 			break;
2370 		default:
2371 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2372 			break;
2373 		}
2374 		VM_OBJECT_RUNLOCK(obj);
2375 		if (vp != NULL) {
2376 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2377 			vn_lock(vp, LK_SHARED | LK_RETRY);
2378 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2379 				kvo.kvo_vn_fileid = va.va_fileid;
2380 				kvo.kvo_vn_fsid = va.va_fsid;
2381 			}
2382 			vput(vp);
2383 		}
2384 
2385 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2386 		if (freepath != NULL)
2387 			free(freepath, M_TEMP);
2388 
2389 		/* Pack record size down */
2390 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2391 		    strlen(kvo.kvo_path) + 1;
2392 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2393 		    sizeof(uint64_t));
2394 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2395 		mtx_lock(&vm_object_list_mtx);
2396 		if (error)
2397 			break;
2398 	}
2399 	mtx_unlock(&vm_object_list_mtx);
2400 	return (error);
2401 }
2402 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2403     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2404     "List of VM objects");
2405 
2406 #include "opt_ddb.h"
2407 #ifdef DDB
2408 #include <sys/kernel.h>
2409 
2410 #include <sys/cons.h>
2411 
2412 #include <ddb/ddb.h>
2413 
2414 static int
2415 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2416 {
2417 	vm_map_t tmpm;
2418 	vm_map_entry_t tmpe;
2419 	vm_object_t obj;
2420 	int entcount;
2421 
2422 	if (map == 0)
2423 		return 0;
2424 
2425 	if (entry == 0) {
2426 		tmpe = map->header.next;
2427 		entcount = map->nentries;
2428 		while (entcount-- && (tmpe != &map->header)) {
2429 			if (_vm_object_in_map(map, object, tmpe)) {
2430 				return 1;
2431 			}
2432 			tmpe = tmpe->next;
2433 		}
2434 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2435 		tmpm = entry->object.sub_map;
2436 		tmpe = tmpm->header.next;
2437 		entcount = tmpm->nentries;
2438 		while (entcount-- && tmpe != &tmpm->header) {
2439 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2440 				return 1;
2441 			}
2442 			tmpe = tmpe->next;
2443 		}
2444 	} else if ((obj = entry->object.vm_object) != NULL) {
2445 		for (; obj; obj = obj->backing_object)
2446 			if (obj == object) {
2447 				return 1;
2448 			}
2449 	}
2450 	return 0;
2451 }
2452 
2453 static int
2454 vm_object_in_map(vm_object_t object)
2455 {
2456 	struct proc *p;
2457 
2458 	/* sx_slock(&allproc_lock); */
2459 	FOREACH_PROC_IN_SYSTEM(p) {
2460 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2461 			continue;
2462 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2463 			/* sx_sunlock(&allproc_lock); */
2464 			return 1;
2465 		}
2466 	}
2467 	/* sx_sunlock(&allproc_lock); */
2468 	if (_vm_object_in_map(kernel_map, object, 0))
2469 		return 1;
2470 	return 0;
2471 }
2472 
2473 DB_SHOW_COMMAND(vmochk, vm_object_check)
2474 {
2475 	vm_object_t object;
2476 
2477 	/*
2478 	 * make sure that internal objs are in a map somewhere
2479 	 * and none have zero ref counts.
2480 	 */
2481 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2482 		if (object->handle == NULL &&
2483 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2484 			if (object->ref_count == 0) {
2485 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2486 					(long)object->size);
2487 			}
2488 			if (!vm_object_in_map(object)) {
2489 				db_printf(
2490 			"vmochk: internal obj is not in a map: "
2491 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2492 				    object->ref_count, (u_long)object->size,
2493 				    (u_long)object->size,
2494 				    (void *)object->backing_object);
2495 			}
2496 		}
2497 	}
2498 }
2499 
2500 /*
2501  *	vm_object_print:	[ debug ]
2502  */
2503 DB_SHOW_COMMAND(object, vm_object_print_static)
2504 {
2505 	/* XXX convert args. */
2506 	vm_object_t object = (vm_object_t)addr;
2507 	boolean_t full = have_addr;
2508 
2509 	vm_page_t p;
2510 
2511 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2512 #define	count	was_count
2513 
2514 	int count;
2515 
2516 	if (object == NULL)
2517 		return;
2518 
2519 	db_iprintf(
2520 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2521 	    object, (int)object->type, (uintmax_t)object->size,
2522 	    object->resident_page_count, object->ref_count, object->flags,
2523 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2524 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2525 	    object->shadow_count,
2526 	    object->backing_object ? object->backing_object->ref_count : 0,
2527 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2528 
2529 	if (!full)
2530 		return;
2531 
2532 	db_indent += 2;
2533 	count = 0;
2534 	TAILQ_FOREACH(p, &object->memq, listq) {
2535 		if (count == 0)
2536 			db_iprintf("memory:=");
2537 		else if (count == 6) {
2538 			db_printf("\n");
2539 			db_iprintf(" ...");
2540 			count = 0;
2541 		} else
2542 			db_printf(",");
2543 		count++;
2544 
2545 		db_printf("(off=0x%jx,page=0x%jx)",
2546 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2547 	}
2548 	if (count != 0)
2549 		db_printf("\n");
2550 	db_indent -= 2;
2551 }
2552 
2553 /* XXX. */
2554 #undef count
2555 
2556 /* XXX need this non-static entry for calling from vm_map_print. */
2557 void
2558 vm_object_print(
2559         /* db_expr_t */ long addr,
2560 	boolean_t have_addr,
2561 	/* db_expr_t */ long count,
2562 	char *modif)
2563 {
2564 	vm_object_print_static(addr, have_addr, count, modif);
2565 }
2566 
2567 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2568 {
2569 	vm_object_t object;
2570 	vm_pindex_t fidx;
2571 	vm_paddr_t pa;
2572 	vm_page_t m, prev_m;
2573 	int rcount, nl, c;
2574 
2575 	nl = 0;
2576 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2577 		db_printf("new object: %p\n", (void *)object);
2578 		if (nl > 18) {
2579 			c = cngetc();
2580 			if (c != ' ')
2581 				return;
2582 			nl = 0;
2583 		}
2584 		nl++;
2585 		rcount = 0;
2586 		fidx = 0;
2587 		pa = -1;
2588 		TAILQ_FOREACH(m, &object->memq, listq) {
2589 			if (m->pindex > 128)
2590 				break;
2591 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2592 			    prev_m->pindex + 1 != m->pindex) {
2593 				if (rcount) {
2594 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2595 						(long)fidx, rcount, (long)pa);
2596 					if (nl > 18) {
2597 						c = cngetc();
2598 						if (c != ' ')
2599 							return;
2600 						nl = 0;
2601 					}
2602 					nl++;
2603 					rcount = 0;
2604 				}
2605 			}
2606 			if (rcount &&
2607 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2608 				++rcount;
2609 				continue;
2610 			}
2611 			if (rcount) {
2612 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2613 					(long)fidx, rcount, (long)pa);
2614 				if (nl > 18) {
2615 					c = cngetc();
2616 					if (c != ' ')
2617 						return;
2618 					nl = 0;
2619 				}
2620 				nl++;
2621 			}
2622 			fidx = m->pindex;
2623 			pa = VM_PAGE_TO_PHYS(m);
2624 			rcount = 1;
2625 		}
2626 		if (rcount) {
2627 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2628 				(long)fidx, rcount, (long)pa);
2629 			if (nl > 18) {
2630 				c = cngetc();
2631 				if (c != ' ')
2632 					return;
2633 				nl = 0;
2634 			}
2635 			nl++;
2636 		}
2637 	}
2638 }
2639 #endif /* DDB */
2640