xref: /freebsd/sys/vm/vm_object.c (revision 59c7ad52aaa5b26e503871334672af0f58f9c2e8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102 
103 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104 		    int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106 		    int *clearobjflags);
107 static void	vm_object_qcollapse(vm_object_t object);
108 static void	vm_object_vndeallocate(vm_object_t object);
109 
110 /*
111  *	Virtual memory objects maintain the actual data
112  *	associated with allocated virtual memory.  A given
113  *	page of memory exists within exactly one object.
114  *
115  *	An object is only deallocated when all "references"
116  *	are given up.  Only one "reference" to a given
117  *	region of an object should be writeable.
118  *
119  *	Associated with each object is a list of all resident
120  *	memory pages belonging to that object; this list is
121  *	maintained by the "vm_page" module, and locked by the object's
122  *	lock.
123  *
124  *	Each object also records a "pager" routine which is
125  *	used to retrieve (and store) pages to the proper backing
126  *	storage.  In addition, objects may be backed by other
127  *	objects from which they were virtual-copied.
128  *
129  *	The only items within the object structure which are
130  *	modified after time of creation are:
131  *		reference count		locked by object's lock
132  *		pager routine		locked by object's lock
133  *
134  */
135 
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;	/* lock for object list and count */
138 
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141 
142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
143 
144 static long object_collapses;
145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
146     &object_collapses, 0, "VM object collapses");
147 
148 static long object_bypasses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
150     &object_bypasses, 0, "VM object bypasses");
151 
152 static uma_zone_t obj_zone;
153 
154 static int vm_object_zinit(void *mem, int size, int flags);
155 
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158 
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162 	vm_object_t object;
163 
164 	object = (vm_object_t)mem;
165 	KASSERT(TAILQ_EMPTY(&object->memq),
166 	    ("object %p has resident pages",
167 	    object));
168 #if VM_NRESERVLEVEL > 0
169 	KASSERT(LIST_EMPTY(&object->rvq),
170 	    ("object %p has reservations",
171 	    object));
172 #endif
173 	KASSERT(object->cache == NULL,
174 	    ("object %p has cached pages",
175 	    object));
176 	KASSERT(object->paging_in_progress == 0,
177 	    ("object %p paging_in_progress = %d",
178 	    object, object->paging_in_progress));
179 	KASSERT(object->resident_page_count == 0,
180 	    ("object %p resident_page_count = %d",
181 	    object, object->resident_page_count));
182 	KASSERT(object->shadow_count == 0,
183 	    ("object %p shadow_count = %d",
184 	    object, object->shadow_count));
185 }
186 #endif
187 
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191 	vm_object_t object;
192 
193 	object = (vm_object_t)mem;
194 	bzero(&object->mtx, sizeof(object->mtx));
195 	VM_OBJECT_LOCK_INIT(object, "standard object");
196 
197 	/* These are true for any object that has been freed */
198 	object->paging_in_progress = 0;
199 	object->resident_page_count = 0;
200 	object->shadow_count = 0;
201 	return (0);
202 }
203 
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207 
208 	TAILQ_INIT(&object->memq);
209 	LIST_INIT(&object->shadow_head);
210 
211 	object->root = NULL;
212 	object->type = type;
213 	object->size = size;
214 	object->generation = 1;
215 	object->ref_count = 1;
216 	object->memattr = VM_MEMATTR_DEFAULT;
217 	object->flags = 0;
218 	object->cred = NULL;
219 	object->charge = 0;
220 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
221 		object->flags = OBJ_ONEMAPPING;
222 	object->pg_color = 0;
223 	object->handle = NULL;
224 	object->backing_object = NULL;
225 	object->backing_object_offset = (vm_ooffset_t) 0;
226 #if VM_NRESERVLEVEL > 0
227 	LIST_INIT(&object->rvq);
228 #endif
229 	object->cache = NULL;
230 
231 	mtx_lock(&vm_object_list_mtx);
232 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233 	mtx_unlock(&vm_object_list_mtx);
234 }
235 
236 /*
237  *	vm_object_init:
238  *
239  *	Initialize the VM objects module.
240  */
241 void
242 vm_object_init(void)
243 {
244 	TAILQ_INIT(&vm_object_list);
245 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
246 
247 	VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
248 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249 	    kernel_object);
250 #if VM_NRESERVLEVEL > 0
251 	kernel_object->flags |= OBJ_COLORED;
252 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
253 #endif
254 
255 	VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
256 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
257 	    kmem_object);
258 #if VM_NRESERVLEVEL > 0
259 	kmem_object->flags |= OBJ_COLORED;
260 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
261 #endif
262 
263 	/*
264 	 * The lock portion of struct vm_object must be type stable due
265 	 * to vm_pageout_fallback_object_lock locking a vm object
266 	 * without holding any references to it.
267 	 */
268 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
269 #ifdef INVARIANTS
270 	    vm_object_zdtor,
271 #else
272 	    NULL,
273 #endif
274 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
275 }
276 
277 void
278 vm_object_clear_flag(vm_object_t object, u_short bits)
279 {
280 
281 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282 	object->flags &= ~bits;
283 }
284 
285 /*
286  *	Sets the default memory attribute for the specified object.  Pages
287  *	that are allocated to this object are by default assigned this memory
288  *	attribute.
289  *
290  *	Presently, this function must be called before any pages are allocated
291  *	to the object.  In the future, this requirement may be relaxed for
292  *	"default" and "swap" objects.
293  */
294 int
295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
296 {
297 
298 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
299 	switch (object->type) {
300 	case OBJT_DEFAULT:
301 	case OBJT_DEVICE:
302 	case OBJT_PHYS:
303 	case OBJT_SG:
304 	case OBJT_SWAP:
305 	case OBJT_VNODE:
306 		if (!TAILQ_EMPTY(&object->memq))
307 			return (KERN_FAILURE);
308 		break;
309 	case OBJT_DEAD:
310 		return (KERN_INVALID_ARGUMENT);
311 	}
312 	object->memattr = memattr;
313 	return (KERN_SUCCESS);
314 }
315 
316 void
317 vm_object_pip_add(vm_object_t object, short i)
318 {
319 
320 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
321 	object->paging_in_progress += i;
322 }
323 
324 void
325 vm_object_pip_subtract(vm_object_t object, short i)
326 {
327 
328 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329 	object->paging_in_progress -= i;
330 }
331 
332 void
333 vm_object_pip_wakeup(vm_object_t object)
334 {
335 
336 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
337 	object->paging_in_progress--;
338 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
339 		vm_object_clear_flag(object, OBJ_PIPWNT);
340 		wakeup(object);
341 	}
342 }
343 
344 void
345 vm_object_pip_wakeupn(vm_object_t object, short i)
346 {
347 
348 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
349 	if (i)
350 		object->paging_in_progress -= i;
351 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
352 		vm_object_clear_flag(object, OBJ_PIPWNT);
353 		wakeup(object);
354 	}
355 }
356 
357 void
358 vm_object_pip_wait(vm_object_t object, char *waitid)
359 {
360 
361 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
362 	while (object->paging_in_progress) {
363 		object->flags |= OBJ_PIPWNT;
364 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
365 	}
366 }
367 
368 /*
369  *	vm_object_allocate:
370  *
371  *	Returns a new object with the given size.
372  */
373 vm_object_t
374 vm_object_allocate(objtype_t type, vm_pindex_t size)
375 {
376 	vm_object_t object;
377 
378 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
379 	_vm_object_allocate(type, size, object);
380 	return (object);
381 }
382 
383 
384 /*
385  *	vm_object_reference:
386  *
387  *	Gets another reference to the given object.  Note: OBJ_DEAD
388  *	objects can be referenced during final cleaning.
389  */
390 void
391 vm_object_reference(vm_object_t object)
392 {
393 	if (object == NULL)
394 		return;
395 	VM_OBJECT_LOCK(object);
396 	vm_object_reference_locked(object);
397 	VM_OBJECT_UNLOCK(object);
398 }
399 
400 /*
401  *	vm_object_reference_locked:
402  *
403  *	Gets another reference to the given object.
404  *
405  *	The object must be locked.
406  */
407 void
408 vm_object_reference_locked(vm_object_t object)
409 {
410 	struct vnode *vp;
411 
412 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
413 	object->ref_count++;
414 	if (object->type == OBJT_VNODE) {
415 		vp = object->handle;
416 		vref(vp);
417 	}
418 }
419 
420 /*
421  * Handle deallocating an object of type OBJT_VNODE.
422  */
423 static void
424 vm_object_vndeallocate(vm_object_t object)
425 {
426 	struct vnode *vp = (struct vnode *) object->handle;
427 
428 	VFS_ASSERT_GIANT(vp->v_mount);
429 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
430 	KASSERT(object->type == OBJT_VNODE,
431 	    ("vm_object_vndeallocate: not a vnode object"));
432 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
433 #ifdef INVARIANTS
434 	if (object->ref_count == 0) {
435 		vprint("vm_object_vndeallocate", vp);
436 		panic("vm_object_vndeallocate: bad object reference count");
437 	}
438 #endif
439 
440 	if (object->ref_count > 1) {
441 		object->ref_count--;
442 		VM_OBJECT_UNLOCK(object);
443 		/* vrele may need the vnode lock. */
444 		vrele(vp);
445 	} else {
446 		vhold(vp);
447 		VM_OBJECT_UNLOCK(object);
448 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
449 		vdrop(vp);
450 		VM_OBJECT_LOCK(object);
451 		object->ref_count--;
452 		if (object->type == OBJT_DEAD) {
453 			VM_OBJECT_UNLOCK(object);
454 			VOP_UNLOCK(vp, 0);
455 		} else {
456 			if (object->ref_count == 0)
457 				vp->v_vflag &= ~VV_TEXT;
458 			VM_OBJECT_UNLOCK(object);
459 			vput(vp);
460 		}
461 	}
462 }
463 
464 /*
465  *	vm_object_deallocate:
466  *
467  *	Release a reference to the specified object,
468  *	gained either through a vm_object_allocate
469  *	or a vm_object_reference call.  When all references
470  *	are gone, storage associated with this object
471  *	may be relinquished.
472  *
473  *	No object may be locked.
474  */
475 void
476 vm_object_deallocate(vm_object_t object)
477 {
478 	vm_object_t temp;
479 
480 	while (object != NULL) {
481 		int vfslocked;
482 
483 		vfslocked = 0;
484 	restart:
485 		VM_OBJECT_LOCK(object);
486 		if (object->type == OBJT_VNODE) {
487 			struct vnode *vp = (struct vnode *) object->handle;
488 
489 			/*
490 			 * Conditionally acquire Giant for a vnode-backed
491 			 * object.  We have to be careful since the type of
492 			 * a vnode object can change while the object is
493 			 * unlocked.
494 			 */
495 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
496 				vfslocked = 1;
497 				if (!mtx_trylock(&Giant)) {
498 					VM_OBJECT_UNLOCK(object);
499 					mtx_lock(&Giant);
500 					goto restart;
501 				}
502 			}
503 			vm_object_vndeallocate(object);
504 			VFS_UNLOCK_GIANT(vfslocked);
505 			return;
506 		} else
507 			/*
508 			 * This is to handle the case that the object
509 			 * changed type while we dropped its lock to
510 			 * obtain Giant.
511 			 */
512 			VFS_UNLOCK_GIANT(vfslocked);
513 
514 		KASSERT(object->ref_count != 0,
515 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
516 
517 		/*
518 		 * If the reference count goes to 0 we start calling
519 		 * vm_object_terminate() on the object chain.
520 		 * A ref count of 1 may be a special case depending on the
521 		 * shadow count being 0 or 1.
522 		 */
523 		object->ref_count--;
524 		if (object->ref_count > 1) {
525 			VM_OBJECT_UNLOCK(object);
526 			return;
527 		} else if (object->ref_count == 1) {
528 			if (object->shadow_count == 0 &&
529 			    object->handle == NULL &&
530 			    (object->type == OBJT_DEFAULT ||
531 			     object->type == OBJT_SWAP)) {
532 				vm_object_set_flag(object, OBJ_ONEMAPPING);
533 			} else if ((object->shadow_count == 1) &&
534 			    (object->handle == NULL) &&
535 			    (object->type == OBJT_DEFAULT ||
536 			     object->type == OBJT_SWAP)) {
537 				vm_object_t robject;
538 
539 				robject = LIST_FIRST(&object->shadow_head);
540 				KASSERT(robject != NULL,
541 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
542 					 object->ref_count,
543 					 object->shadow_count));
544 				if (!VM_OBJECT_TRYLOCK(robject)) {
545 					/*
546 					 * Avoid a potential deadlock.
547 					 */
548 					object->ref_count++;
549 					VM_OBJECT_UNLOCK(object);
550 					/*
551 					 * More likely than not the thread
552 					 * holding robject's lock has lower
553 					 * priority than the current thread.
554 					 * Let the lower priority thread run.
555 					 */
556 					pause("vmo_de", 1);
557 					continue;
558 				}
559 				/*
560 				 * Collapse object into its shadow unless its
561 				 * shadow is dead.  In that case, object will
562 				 * be deallocated by the thread that is
563 				 * deallocating its shadow.
564 				 */
565 				if ((robject->flags & OBJ_DEAD) == 0 &&
566 				    (robject->handle == NULL) &&
567 				    (robject->type == OBJT_DEFAULT ||
568 				     robject->type == OBJT_SWAP)) {
569 
570 					robject->ref_count++;
571 retry:
572 					if (robject->paging_in_progress) {
573 						VM_OBJECT_UNLOCK(object);
574 						vm_object_pip_wait(robject,
575 						    "objde1");
576 						temp = robject->backing_object;
577 						if (object == temp) {
578 							VM_OBJECT_LOCK(object);
579 							goto retry;
580 						}
581 					} else if (object->paging_in_progress) {
582 						VM_OBJECT_UNLOCK(robject);
583 						object->flags |= OBJ_PIPWNT;
584 						msleep(object,
585 						    VM_OBJECT_MTX(object),
586 						    PDROP | PVM, "objde2", 0);
587 						VM_OBJECT_LOCK(robject);
588 						temp = robject->backing_object;
589 						if (object == temp) {
590 							VM_OBJECT_LOCK(object);
591 							goto retry;
592 						}
593 					} else
594 						VM_OBJECT_UNLOCK(object);
595 
596 					if (robject->ref_count == 1) {
597 						robject->ref_count--;
598 						object = robject;
599 						goto doterm;
600 					}
601 					object = robject;
602 					vm_object_collapse(object);
603 					VM_OBJECT_UNLOCK(object);
604 					continue;
605 				}
606 				VM_OBJECT_UNLOCK(robject);
607 			}
608 			VM_OBJECT_UNLOCK(object);
609 			return;
610 		}
611 doterm:
612 		temp = object->backing_object;
613 		if (temp != NULL) {
614 			VM_OBJECT_LOCK(temp);
615 			LIST_REMOVE(object, shadow_list);
616 			temp->shadow_count--;
617 			VM_OBJECT_UNLOCK(temp);
618 			object->backing_object = NULL;
619 		}
620 		/*
621 		 * Don't double-terminate, we could be in a termination
622 		 * recursion due to the terminate having to sync data
623 		 * to disk.
624 		 */
625 		if ((object->flags & OBJ_DEAD) == 0)
626 			vm_object_terminate(object);
627 		else
628 			VM_OBJECT_UNLOCK(object);
629 		object = temp;
630 	}
631 }
632 
633 /*
634  *	vm_object_destroy removes the object from the global object list
635  *      and frees the space for the object.
636  */
637 void
638 vm_object_destroy(vm_object_t object)
639 {
640 
641 	/*
642 	 * Remove the object from the global object list.
643 	 */
644 	mtx_lock(&vm_object_list_mtx);
645 	TAILQ_REMOVE(&vm_object_list, object, object_list);
646 	mtx_unlock(&vm_object_list_mtx);
647 
648 	/*
649 	 * Release the allocation charge.
650 	 */
651 	if (object->cred != NULL) {
652 		KASSERT(object->type == OBJT_DEFAULT ||
653 		    object->type == OBJT_SWAP,
654 		    ("vm_object_terminate: non-swap obj %p has cred",
655 		     object));
656 		swap_release_by_cred(object->charge, object->cred);
657 		object->charge = 0;
658 		crfree(object->cred);
659 		object->cred = NULL;
660 	}
661 
662 	/*
663 	 * Free the space for the object.
664 	 */
665 	uma_zfree(obj_zone, object);
666 }
667 
668 /*
669  *	vm_object_terminate actually destroys the specified object, freeing
670  *	up all previously used resources.
671  *
672  *	The object must be locked.
673  *	This routine may block.
674  */
675 void
676 vm_object_terminate(vm_object_t object)
677 {
678 	vm_page_t p, p_next;
679 
680 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
681 
682 	/*
683 	 * Make sure no one uses us.
684 	 */
685 	vm_object_set_flag(object, OBJ_DEAD);
686 
687 	/*
688 	 * wait for the pageout daemon to be done with the object
689 	 */
690 	vm_object_pip_wait(object, "objtrm");
691 
692 	KASSERT(!object->paging_in_progress,
693 		("vm_object_terminate: pageout in progress"));
694 
695 	/*
696 	 * Clean and free the pages, as appropriate. All references to the
697 	 * object are gone, so we don't need to lock it.
698 	 */
699 	if (object->type == OBJT_VNODE) {
700 		struct vnode *vp = (struct vnode *)object->handle;
701 
702 		/*
703 		 * Clean pages and flush buffers.
704 		 */
705 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
706 		VM_OBJECT_UNLOCK(object);
707 
708 		vinvalbuf(vp, V_SAVE, 0, 0);
709 
710 		VM_OBJECT_LOCK(object);
711 	}
712 
713 	KASSERT(object->ref_count == 0,
714 		("vm_object_terminate: object with references, ref_count=%d",
715 		object->ref_count));
716 
717 	/*
718 	 * Free any remaining pageable pages.  This also removes them from the
719 	 * paging queues.  However, don't free wired pages, just remove them
720 	 * from the object.  Rather than incrementally removing each page from
721 	 * the object, the page and object are reset to any empty state.
722 	 */
723 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
724 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
725 		    ("vm_object_terminate: freeing busy page %p", p));
726 		vm_page_lock(p);
727 		/*
728 		 * Optimize the page's removal from the object by resetting
729 		 * its "object" field.  Specifically, if the page is not
730 		 * wired, then the effect of this assignment is that
731 		 * vm_page_free()'s call to vm_page_remove() will return
732 		 * immediately without modifying the page or the object.
733 		 */
734 		p->object = NULL;
735 		if (p->wire_count == 0) {
736 			vm_page_free(p);
737 			PCPU_INC(cnt.v_pfree);
738 		}
739 		vm_page_unlock(p);
740 	}
741 	/*
742 	 * If the object contained any pages, then reset it to an empty state.
743 	 * None of the object's fields, including "resident_page_count", were
744 	 * modified by the preceding loop.
745 	 */
746 	if (object->resident_page_count != 0) {
747 		object->root = NULL;
748 		TAILQ_INIT(&object->memq);
749 		object->resident_page_count = 0;
750 		if (object->type == OBJT_VNODE)
751 			vdrop(object->handle);
752 	}
753 
754 #if VM_NRESERVLEVEL > 0
755 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
756 		vm_reserv_break_all(object);
757 #endif
758 	if (__predict_false(object->cache != NULL))
759 		vm_page_cache_free(object, 0, 0);
760 
761 	/*
762 	 * Let the pager know object is dead.
763 	 */
764 	vm_pager_deallocate(object);
765 	VM_OBJECT_UNLOCK(object);
766 
767 	vm_object_destroy(object);
768 }
769 
770 /*
771  * Make the page read-only so that we can clear the object flags.  However, if
772  * this is a nosync mmap then the object is likely to stay dirty so do not
773  * mess with the page and do not clear the object flags.  Returns TRUE if the
774  * page should be flushed, and FALSE otherwise.
775  */
776 static boolean_t
777 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
778 {
779 
780 	/*
781 	 * If we have been asked to skip nosync pages and this is a
782 	 * nosync page, skip it.  Note that the object flags were not
783 	 * cleared in this case so we do not have to set them.
784 	 */
785 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
786 		*clearobjflags = 0;
787 		return (FALSE);
788 	} else {
789 		pmap_remove_write(p);
790 		return (p->dirty != 0);
791 	}
792 }
793 
794 /*
795  *	vm_object_page_clean
796  *
797  *	Clean all dirty pages in the specified range of object.  Leaves page
798  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
799  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
800  *	leaving the object dirty.
801  *
802  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
803  *	synchronous clustering mode implementation.
804  *
805  *	Odd semantics: if start == end, we clean everything.
806  *
807  *	The object must be locked.
808  */
809 void
810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
811     int flags)
812 {
813 	vm_page_t np, p;
814 	vm_pindex_t pi, tend, tstart;
815 	int clearobjflags, curgeneration, n, pagerflags;
816 
817 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
818 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
819 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
820 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
821 	    object->resident_page_count == 0)
822 		return;
823 
824 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
825 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
826 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
827 
828 	tstart = OFF_TO_IDX(start);
829 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
830 	clearobjflags = tstart == 0 && tend >= object->size;
831 
832 rescan:
833 	curgeneration = object->generation;
834 
835 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
836 		pi = p->pindex;
837 		if (pi >= tend)
838 			break;
839 		np = TAILQ_NEXT(p, listq);
840 		if (p->valid == 0)
841 			continue;
842 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
843 			if (object->generation != curgeneration)
844 				goto rescan;
845 			np = vm_page_find_least(object, pi);
846 			continue;
847 		}
848 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
849 			continue;
850 
851 		n = vm_object_page_collect_flush(object, p, pagerflags,
852 		    flags, &clearobjflags);
853 		if (object->generation != curgeneration)
854 			goto rescan;
855 		np = vm_page_find_least(object, pi + n);
856 	}
857 #if 0
858 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
859 #endif
860 
861 	if (clearobjflags)
862 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
863 }
864 
865 static int
866 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
867     int flags, int *clearobjflags)
868 {
869 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
870 	int count, i, mreq, runlen;
871 
872 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
873 	vm_page_lock_assert(p, MA_NOTOWNED);
874 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
875 
876 	count = 1;
877 	mreq = 0;
878 
879 	for (tp = p; count < vm_pageout_page_count; count++) {
880 		tp = vm_page_next(tp);
881 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
882 			break;
883 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
884 			break;
885 	}
886 
887 	for (p_first = p; count < vm_pageout_page_count; count++) {
888 		tp = vm_page_prev(p_first);
889 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
890 			break;
891 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
892 			break;
893 		p_first = tp;
894 		mreq++;
895 	}
896 
897 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
898 		ma[i] = tp;
899 
900 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
901 	return (runlen);
902 }
903 
904 /*
905  * Note that there is absolutely no sense in writing out
906  * anonymous objects, so we track down the vnode object
907  * to write out.
908  * We invalidate (remove) all pages from the address space
909  * for semantic correctness.
910  *
911  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
912  * may start out with a NULL object.
913  */
914 void
915 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
916     boolean_t syncio, boolean_t invalidate)
917 {
918 	vm_object_t backing_object;
919 	struct vnode *vp;
920 	struct mount *mp;
921 	int flags;
922 
923 	if (object == NULL)
924 		return;
925 	VM_OBJECT_LOCK(object);
926 	while ((backing_object = object->backing_object) != NULL) {
927 		VM_OBJECT_LOCK(backing_object);
928 		offset += object->backing_object_offset;
929 		VM_OBJECT_UNLOCK(object);
930 		object = backing_object;
931 		if (object->size < OFF_TO_IDX(offset + size))
932 			size = IDX_TO_OFF(object->size) - offset;
933 	}
934 	/*
935 	 * Flush pages if writing is allowed, invalidate them
936 	 * if invalidation requested.  Pages undergoing I/O
937 	 * will be ignored by vm_object_page_remove().
938 	 *
939 	 * We cannot lock the vnode and then wait for paging
940 	 * to complete without deadlocking against vm_fault.
941 	 * Instead we simply call vm_object_page_remove() and
942 	 * allow it to block internally on a page-by-page
943 	 * basis when it encounters pages undergoing async
944 	 * I/O.
945 	 */
946 	if (object->type == OBJT_VNODE &&
947 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
948 		int vfslocked;
949 		vp = object->handle;
950 		VM_OBJECT_UNLOCK(object);
951 		(void) vn_start_write(vp, &mp, V_WAIT);
952 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
953 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
954 		flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
955 		flags |= invalidate ? OBJPC_INVAL : 0;
956 		VM_OBJECT_LOCK(object);
957 		vm_object_page_clean(object, offset, offset + size, flags);
958 		VM_OBJECT_UNLOCK(object);
959 		VOP_UNLOCK(vp, 0);
960 		VFS_UNLOCK_GIANT(vfslocked);
961 		vn_finished_write(mp);
962 		VM_OBJECT_LOCK(object);
963 	}
964 	if ((object->type == OBJT_VNODE ||
965 	     object->type == OBJT_DEVICE) && invalidate) {
966 		boolean_t purge;
967 		purge = old_msync || (object->type == OBJT_DEVICE);
968 		vm_object_page_remove(object,
969 		    OFF_TO_IDX(offset),
970 		    OFF_TO_IDX(offset + size + PAGE_MASK),
971 		    purge ? FALSE : TRUE);
972 	}
973 	VM_OBJECT_UNLOCK(object);
974 }
975 
976 /*
977  *	vm_object_madvise:
978  *
979  *	Implements the madvise function at the object/page level.
980  *
981  *	MADV_WILLNEED	(any object)
982  *
983  *	    Activate the specified pages if they are resident.
984  *
985  *	MADV_DONTNEED	(any object)
986  *
987  *	    Deactivate the specified pages if they are resident.
988  *
989  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
990  *			 OBJ_ONEMAPPING only)
991  *
992  *	    Deactivate and clean the specified pages if they are
993  *	    resident.  This permits the process to reuse the pages
994  *	    without faulting or the kernel to reclaim the pages
995  *	    without I/O.
996  */
997 void
998 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
999 {
1000 	vm_pindex_t end, tpindex;
1001 	vm_object_t backing_object, tobject;
1002 	vm_page_t m;
1003 
1004 	if (object == NULL)
1005 		return;
1006 	VM_OBJECT_LOCK(object);
1007 	end = pindex + count;
1008 	/*
1009 	 * Locate and adjust resident pages
1010 	 */
1011 	for (; pindex < end; pindex += 1) {
1012 relookup:
1013 		tobject = object;
1014 		tpindex = pindex;
1015 shadowlookup:
1016 		/*
1017 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1018 		 * and those pages must be OBJ_ONEMAPPING.
1019 		 */
1020 		if (advise == MADV_FREE) {
1021 			if ((tobject->type != OBJT_DEFAULT &&
1022 			     tobject->type != OBJT_SWAP) ||
1023 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1024 				goto unlock_tobject;
1025 			}
1026 		} else if (tobject->type == OBJT_PHYS)
1027 			goto unlock_tobject;
1028 		m = vm_page_lookup(tobject, tpindex);
1029 		if (m == NULL && advise == MADV_WILLNEED) {
1030 			/*
1031 			 * If the page is cached, reactivate it.
1032 			 */
1033 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1034 			    VM_ALLOC_NOBUSY);
1035 		}
1036 		if (m == NULL) {
1037 			/*
1038 			 * There may be swap even if there is no backing page
1039 			 */
1040 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1041 				swap_pager_freespace(tobject, tpindex, 1);
1042 			/*
1043 			 * next object
1044 			 */
1045 			backing_object = tobject->backing_object;
1046 			if (backing_object == NULL)
1047 				goto unlock_tobject;
1048 			VM_OBJECT_LOCK(backing_object);
1049 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1050 			if (tobject != object)
1051 				VM_OBJECT_UNLOCK(tobject);
1052 			tobject = backing_object;
1053 			goto shadowlookup;
1054 		} else if (m->valid != VM_PAGE_BITS_ALL)
1055 			goto unlock_tobject;
1056 		/*
1057 		 * If the page is not in a normal state, skip it.
1058 		 */
1059 		vm_page_lock(m);
1060 		if (m->hold_count != 0 || m->wire_count != 0) {
1061 			vm_page_unlock(m);
1062 			goto unlock_tobject;
1063 		}
1064 		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1065 		    ("vm_object_madvise: page %p is not managed", m));
1066 		if ((m->oflags & VPO_BUSY) || m->busy) {
1067 			if (advise == MADV_WILLNEED) {
1068 				/*
1069 				 * Reference the page before unlocking and
1070 				 * sleeping so that the page daemon is less
1071 				 * likely to reclaim it.
1072 				 */
1073 				vm_page_lock_queues();
1074 				vm_page_flag_set(m, PG_REFERENCED);
1075 				vm_page_unlock_queues();
1076 			}
1077 			vm_page_unlock(m);
1078 			if (object != tobject)
1079 				VM_OBJECT_UNLOCK(object);
1080 			m->oflags |= VPO_WANTED;
1081 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1082 			    0);
1083 			VM_OBJECT_LOCK(object);
1084   			goto relookup;
1085 		}
1086 		if (advise == MADV_WILLNEED) {
1087 			vm_page_activate(m);
1088 		} else if (advise == MADV_DONTNEED) {
1089 			vm_page_dontneed(m);
1090 		} else if (advise == MADV_FREE) {
1091 			/*
1092 			 * Mark the page clean.  This will allow the page
1093 			 * to be freed up by the system.  However, such pages
1094 			 * are often reused quickly by malloc()/free()
1095 			 * so we do not do anything that would cause
1096 			 * a page fault if we can help it.
1097 			 *
1098 			 * Specifically, we do not try to actually free
1099 			 * the page now nor do we try to put it in the
1100 			 * cache (which would cause a page fault on reuse).
1101 			 *
1102 			 * But we do make the page is freeable as we
1103 			 * can without actually taking the step of unmapping
1104 			 * it.
1105 			 */
1106 			pmap_clear_modify(m);
1107 			m->dirty = 0;
1108 			m->act_count = 0;
1109 			vm_page_dontneed(m);
1110 		}
1111 		vm_page_unlock(m);
1112 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1113 			swap_pager_freespace(tobject, tpindex, 1);
1114 unlock_tobject:
1115 		if (tobject != object)
1116 			VM_OBJECT_UNLOCK(tobject);
1117 	}
1118 	VM_OBJECT_UNLOCK(object);
1119 }
1120 
1121 /*
1122  *	vm_object_shadow:
1123  *
1124  *	Create a new object which is backed by the
1125  *	specified existing object range.  The source
1126  *	object reference is deallocated.
1127  *
1128  *	The new object and offset into that object
1129  *	are returned in the source parameters.
1130  */
1131 void
1132 vm_object_shadow(
1133 	vm_object_t *object,	/* IN/OUT */
1134 	vm_ooffset_t *offset,	/* IN/OUT */
1135 	vm_size_t length)
1136 {
1137 	vm_object_t source;
1138 	vm_object_t result;
1139 
1140 	source = *object;
1141 
1142 	/*
1143 	 * Don't create the new object if the old object isn't shared.
1144 	 */
1145 	if (source != NULL) {
1146 		VM_OBJECT_LOCK(source);
1147 		if (source->ref_count == 1 &&
1148 		    source->handle == NULL &&
1149 		    (source->type == OBJT_DEFAULT ||
1150 		     source->type == OBJT_SWAP)) {
1151 			VM_OBJECT_UNLOCK(source);
1152 			return;
1153 		}
1154 		VM_OBJECT_UNLOCK(source);
1155 	}
1156 
1157 	/*
1158 	 * Allocate a new object with the given length.
1159 	 */
1160 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1161 
1162 	/*
1163 	 * The new object shadows the source object, adding a reference to it.
1164 	 * Our caller changes his reference to point to the new object,
1165 	 * removing a reference to the source object.  Net result: no change
1166 	 * of reference count.
1167 	 *
1168 	 * Try to optimize the result object's page color when shadowing
1169 	 * in order to maintain page coloring consistency in the combined
1170 	 * shadowed object.
1171 	 */
1172 	result->backing_object = source;
1173 	/*
1174 	 * Store the offset into the source object, and fix up the offset into
1175 	 * the new object.
1176 	 */
1177 	result->backing_object_offset = *offset;
1178 	if (source != NULL) {
1179 		VM_OBJECT_LOCK(source);
1180 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1181 		source->shadow_count++;
1182 #if VM_NRESERVLEVEL > 0
1183 		result->flags |= source->flags & OBJ_COLORED;
1184 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1185 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1186 #endif
1187 		VM_OBJECT_UNLOCK(source);
1188 	}
1189 
1190 
1191 	/*
1192 	 * Return the new things
1193 	 */
1194 	*offset = 0;
1195 	*object = result;
1196 }
1197 
1198 /*
1199  *	vm_object_split:
1200  *
1201  * Split the pages in a map entry into a new object.  This affords
1202  * easier removal of unused pages, and keeps object inheritance from
1203  * being a negative impact on memory usage.
1204  */
1205 void
1206 vm_object_split(vm_map_entry_t entry)
1207 {
1208 	vm_page_t m, m_next;
1209 	vm_object_t orig_object, new_object, source;
1210 	vm_pindex_t idx, offidxstart;
1211 	vm_size_t size;
1212 
1213 	orig_object = entry->object.vm_object;
1214 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1215 		return;
1216 	if (orig_object->ref_count <= 1)
1217 		return;
1218 	VM_OBJECT_UNLOCK(orig_object);
1219 
1220 	offidxstart = OFF_TO_IDX(entry->offset);
1221 	size = atop(entry->end - entry->start);
1222 
1223 	/*
1224 	 * If swap_pager_copy() is later called, it will convert new_object
1225 	 * into a swap object.
1226 	 */
1227 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1228 
1229 	/*
1230 	 * At this point, the new object is still private, so the order in
1231 	 * which the original and new objects are locked does not matter.
1232 	 */
1233 	VM_OBJECT_LOCK(new_object);
1234 	VM_OBJECT_LOCK(orig_object);
1235 	source = orig_object->backing_object;
1236 	if (source != NULL) {
1237 		VM_OBJECT_LOCK(source);
1238 		if ((source->flags & OBJ_DEAD) != 0) {
1239 			VM_OBJECT_UNLOCK(source);
1240 			VM_OBJECT_UNLOCK(orig_object);
1241 			VM_OBJECT_UNLOCK(new_object);
1242 			vm_object_deallocate(new_object);
1243 			VM_OBJECT_LOCK(orig_object);
1244 			return;
1245 		}
1246 		LIST_INSERT_HEAD(&source->shadow_head,
1247 				  new_object, shadow_list);
1248 		source->shadow_count++;
1249 		vm_object_reference_locked(source);	/* for new_object */
1250 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1251 		VM_OBJECT_UNLOCK(source);
1252 		new_object->backing_object_offset =
1253 			orig_object->backing_object_offset + entry->offset;
1254 		new_object->backing_object = source;
1255 	}
1256 	if (orig_object->cred != NULL) {
1257 		new_object->cred = orig_object->cred;
1258 		crhold(orig_object->cred);
1259 		new_object->charge = ptoa(size);
1260 		KASSERT(orig_object->charge >= ptoa(size),
1261 		    ("orig_object->charge < 0"));
1262 		orig_object->charge -= ptoa(size);
1263 	}
1264 retry:
1265 	m = vm_page_find_least(orig_object, offidxstart);
1266 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1267 	    m = m_next) {
1268 		m_next = TAILQ_NEXT(m, listq);
1269 
1270 		/*
1271 		 * We must wait for pending I/O to complete before we can
1272 		 * rename the page.
1273 		 *
1274 		 * We do not have to VM_PROT_NONE the page as mappings should
1275 		 * not be changed by this operation.
1276 		 */
1277 		if ((m->oflags & VPO_BUSY) || m->busy) {
1278 			VM_OBJECT_UNLOCK(new_object);
1279 			m->oflags |= VPO_WANTED;
1280 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1281 			VM_OBJECT_LOCK(new_object);
1282 			goto retry;
1283 		}
1284 		vm_page_lock(m);
1285 		vm_page_rename(m, new_object, idx);
1286 		vm_page_unlock(m);
1287 		/* page automatically made dirty by rename and cache handled */
1288 		vm_page_busy(m);
1289 	}
1290 	if (orig_object->type == OBJT_SWAP) {
1291 		/*
1292 		 * swap_pager_copy() can sleep, in which case the orig_object's
1293 		 * and new_object's locks are released and reacquired.
1294 		 */
1295 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1296 
1297 		/*
1298 		 * Transfer any cached pages from orig_object to new_object.
1299 		 */
1300 		if (__predict_false(orig_object->cache != NULL))
1301 			vm_page_cache_transfer(orig_object, offidxstart,
1302 			    new_object);
1303 	}
1304 	VM_OBJECT_UNLOCK(orig_object);
1305 	TAILQ_FOREACH(m, &new_object->memq, listq)
1306 		vm_page_wakeup(m);
1307 	VM_OBJECT_UNLOCK(new_object);
1308 	entry->object.vm_object = new_object;
1309 	entry->offset = 0LL;
1310 	vm_object_deallocate(orig_object);
1311 	VM_OBJECT_LOCK(new_object);
1312 }
1313 
1314 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1315 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1316 #define	OBSC_COLLAPSE_WAIT	0x0004
1317 
1318 static int
1319 vm_object_backing_scan(vm_object_t object, int op)
1320 {
1321 	int r = 1;
1322 	vm_page_t p;
1323 	vm_object_t backing_object;
1324 	vm_pindex_t backing_offset_index;
1325 
1326 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1327 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1328 
1329 	backing_object = object->backing_object;
1330 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1331 
1332 	/*
1333 	 * Initial conditions
1334 	 */
1335 	if (op & OBSC_TEST_ALL_SHADOWED) {
1336 		/*
1337 		 * We do not want to have to test for the existence of cache
1338 		 * or swap pages in the backing object.  XXX but with the
1339 		 * new swapper this would be pretty easy to do.
1340 		 *
1341 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1342 		 * been ZFOD faulted yet?  If we do not test for this, the
1343 		 * shadow test may succeed! XXX
1344 		 */
1345 		if (backing_object->type != OBJT_DEFAULT) {
1346 			return (0);
1347 		}
1348 	}
1349 	if (op & OBSC_COLLAPSE_WAIT) {
1350 		vm_object_set_flag(backing_object, OBJ_DEAD);
1351 	}
1352 
1353 	/*
1354 	 * Our scan
1355 	 */
1356 	p = TAILQ_FIRST(&backing_object->memq);
1357 	while (p) {
1358 		vm_page_t next = TAILQ_NEXT(p, listq);
1359 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1360 
1361 		if (op & OBSC_TEST_ALL_SHADOWED) {
1362 			vm_page_t pp;
1363 
1364 			/*
1365 			 * Ignore pages outside the parent object's range
1366 			 * and outside the parent object's mapping of the
1367 			 * backing object.
1368 			 *
1369 			 * note that we do not busy the backing object's
1370 			 * page.
1371 			 */
1372 			if (
1373 			    p->pindex < backing_offset_index ||
1374 			    new_pindex >= object->size
1375 			) {
1376 				p = next;
1377 				continue;
1378 			}
1379 
1380 			/*
1381 			 * See if the parent has the page or if the parent's
1382 			 * object pager has the page.  If the parent has the
1383 			 * page but the page is not valid, the parent's
1384 			 * object pager must have the page.
1385 			 *
1386 			 * If this fails, the parent does not completely shadow
1387 			 * the object and we might as well give up now.
1388 			 */
1389 
1390 			pp = vm_page_lookup(object, new_pindex);
1391 			if (
1392 			    (pp == NULL || pp->valid == 0) &&
1393 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1394 			) {
1395 				r = 0;
1396 				break;
1397 			}
1398 		}
1399 
1400 		/*
1401 		 * Check for busy page
1402 		 */
1403 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1404 			vm_page_t pp;
1405 
1406 			if (op & OBSC_COLLAPSE_NOWAIT) {
1407 				if ((p->oflags & VPO_BUSY) ||
1408 				    !p->valid ||
1409 				    p->busy) {
1410 					p = next;
1411 					continue;
1412 				}
1413 			} else if (op & OBSC_COLLAPSE_WAIT) {
1414 				if ((p->oflags & VPO_BUSY) || p->busy) {
1415 					VM_OBJECT_UNLOCK(object);
1416 					p->oflags |= VPO_WANTED;
1417 					msleep(p, VM_OBJECT_MTX(backing_object),
1418 					    PDROP | PVM, "vmocol", 0);
1419 					VM_OBJECT_LOCK(object);
1420 					VM_OBJECT_LOCK(backing_object);
1421 					/*
1422 					 * If we slept, anything could have
1423 					 * happened.  Since the object is
1424 					 * marked dead, the backing offset
1425 					 * should not have changed so we
1426 					 * just restart our scan.
1427 					 */
1428 					p = TAILQ_FIRST(&backing_object->memq);
1429 					continue;
1430 				}
1431 			}
1432 
1433 			KASSERT(
1434 			    p->object == backing_object,
1435 			    ("vm_object_backing_scan: object mismatch")
1436 			);
1437 
1438 			/*
1439 			 * Destroy any associated swap
1440 			 */
1441 			if (backing_object->type == OBJT_SWAP) {
1442 				swap_pager_freespace(
1443 				    backing_object,
1444 				    p->pindex,
1445 				    1
1446 				);
1447 			}
1448 
1449 			if (
1450 			    p->pindex < backing_offset_index ||
1451 			    new_pindex >= object->size
1452 			) {
1453 				/*
1454 				 * Page is out of the parent object's range, we
1455 				 * can simply destroy it.
1456 				 */
1457 				vm_page_lock(p);
1458 				KASSERT(!pmap_page_is_mapped(p),
1459 				    ("freeing mapped page %p", p));
1460 				if (p->wire_count == 0)
1461 					vm_page_free(p);
1462 				else
1463 					vm_page_remove(p);
1464 				vm_page_unlock(p);
1465 				p = next;
1466 				continue;
1467 			}
1468 
1469 			pp = vm_page_lookup(object, new_pindex);
1470 			if (
1471 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1472 			    (pp != NULL && pp->valid == 0)
1473 			) {
1474 				/*
1475 				 * The page in the parent is not (yet) valid.
1476 				 * We don't know anything about the state of
1477 				 * the original page.  It might be mapped,
1478 				 * so we must avoid the next if here.
1479 				 *
1480 				 * This is due to a race in vm_fault() where
1481 				 * we must unbusy the original (backing_obj)
1482 				 * page before we can (re)lock the parent.
1483 				 * Hence we can get here.
1484 				 */
1485 				p = next;
1486 				continue;
1487 			}
1488 			if (
1489 			    pp != NULL ||
1490 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1491 			) {
1492 				/*
1493 				 * page already exists in parent OR swap exists
1494 				 * for this location in the parent.  Destroy
1495 				 * the original page from the backing object.
1496 				 *
1497 				 * Leave the parent's page alone
1498 				 */
1499 				vm_page_lock(p);
1500 				KASSERT(!pmap_page_is_mapped(p),
1501 				    ("freeing mapped page %p", p));
1502 				if (p->wire_count == 0)
1503 					vm_page_free(p);
1504 				else
1505 					vm_page_remove(p);
1506 				vm_page_unlock(p);
1507 				p = next;
1508 				continue;
1509 			}
1510 
1511 #if VM_NRESERVLEVEL > 0
1512 			/*
1513 			 * Rename the reservation.
1514 			 */
1515 			vm_reserv_rename(p, object, backing_object,
1516 			    backing_offset_index);
1517 #endif
1518 
1519 			/*
1520 			 * Page does not exist in parent, rename the
1521 			 * page from the backing object to the main object.
1522 			 *
1523 			 * If the page was mapped to a process, it can remain
1524 			 * mapped through the rename.
1525 			 */
1526 			vm_page_lock(p);
1527 			vm_page_rename(p, object, new_pindex);
1528 			vm_page_unlock(p);
1529 			/* page automatically made dirty by rename */
1530 		}
1531 		p = next;
1532 	}
1533 	return (r);
1534 }
1535 
1536 
1537 /*
1538  * this version of collapse allows the operation to occur earlier and
1539  * when paging_in_progress is true for an object...  This is not a complete
1540  * operation, but should plug 99.9% of the rest of the leaks.
1541  */
1542 static void
1543 vm_object_qcollapse(vm_object_t object)
1544 {
1545 	vm_object_t backing_object = object->backing_object;
1546 
1547 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1548 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1549 
1550 	if (backing_object->ref_count != 1)
1551 		return;
1552 
1553 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1554 }
1555 
1556 /*
1557  *	vm_object_collapse:
1558  *
1559  *	Collapse an object with the object backing it.
1560  *	Pages in the backing object are moved into the
1561  *	parent, and the backing object is deallocated.
1562  */
1563 void
1564 vm_object_collapse(vm_object_t object)
1565 {
1566 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1567 
1568 	while (TRUE) {
1569 		vm_object_t backing_object;
1570 
1571 		/*
1572 		 * Verify that the conditions are right for collapse:
1573 		 *
1574 		 * The object exists and the backing object exists.
1575 		 */
1576 		if ((backing_object = object->backing_object) == NULL)
1577 			break;
1578 
1579 		/*
1580 		 * we check the backing object first, because it is most likely
1581 		 * not collapsable.
1582 		 */
1583 		VM_OBJECT_LOCK(backing_object);
1584 		if (backing_object->handle != NULL ||
1585 		    (backing_object->type != OBJT_DEFAULT &&
1586 		     backing_object->type != OBJT_SWAP) ||
1587 		    (backing_object->flags & OBJ_DEAD) ||
1588 		    object->handle != NULL ||
1589 		    (object->type != OBJT_DEFAULT &&
1590 		     object->type != OBJT_SWAP) ||
1591 		    (object->flags & OBJ_DEAD)) {
1592 			VM_OBJECT_UNLOCK(backing_object);
1593 			break;
1594 		}
1595 
1596 		if (
1597 		    object->paging_in_progress != 0 ||
1598 		    backing_object->paging_in_progress != 0
1599 		) {
1600 			vm_object_qcollapse(object);
1601 			VM_OBJECT_UNLOCK(backing_object);
1602 			break;
1603 		}
1604 		/*
1605 		 * We know that we can either collapse the backing object (if
1606 		 * the parent is the only reference to it) or (perhaps) have
1607 		 * the parent bypass the object if the parent happens to shadow
1608 		 * all the resident pages in the entire backing object.
1609 		 *
1610 		 * This is ignoring pager-backed pages such as swap pages.
1611 		 * vm_object_backing_scan fails the shadowing test in this
1612 		 * case.
1613 		 */
1614 		if (backing_object->ref_count == 1) {
1615 			/*
1616 			 * If there is exactly one reference to the backing
1617 			 * object, we can collapse it into the parent.
1618 			 */
1619 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1620 
1621 #if VM_NRESERVLEVEL > 0
1622 			/*
1623 			 * Break any reservations from backing_object.
1624 			 */
1625 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1626 				vm_reserv_break_all(backing_object);
1627 #endif
1628 
1629 			/*
1630 			 * Move the pager from backing_object to object.
1631 			 */
1632 			if (backing_object->type == OBJT_SWAP) {
1633 				/*
1634 				 * swap_pager_copy() can sleep, in which case
1635 				 * the backing_object's and object's locks are
1636 				 * released and reacquired.
1637 				 */
1638 				swap_pager_copy(
1639 				    backing_object,
1640 				    object,
1641 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1642 
1643 				/*
1644 				 * Free any cached pages from backing_object.
1645 				 */
1646 				if (__predict_false(backing_object->cache != NULL))
1647 					vm_page_cache_free(backing_object, 0, 0);
1648 			}
1649 			/*
1650 			 * Object now shadows whatever backing_object did.
1651 			 * Note that the reference to
1652 			 * backing_object->backing_object moves from within
1653 			 * backing_object to within object.
1654 			 */
1655 			LIST_REMOVE(object, shadow_list);
1656 			backing_object->shadow_count--;
1657 			if (backing_object->backing_object) {
1658 				VM_OBJECT_LOCK(backing_object->backing_object);
1659 				LIST_REMOVE(backing_object, shadow_list);
1660 				LIST_INSERT_HEAD(
1661 				    &backing_object->backing_object->shadow_head,
1662 				    object, shadow_list);
1663 				/*
1664 				 * The shadow_count has not changed.
1665 				 */
1666 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1667 			}
1668 			object->backing_object = backing_object->backing_object;
1669 			object->backing_object_offset +=
1670 			    backing_object->backing_object_offset;
1671 
1672 			/*
1673 			 * Discard backing_object.
1674 			 *
1675 			 * Since the backing object has no pages, no pager left,
1676 			 * and no object references within it, all that is
1677 			 * necessary is to dispose of it.
1678 			 */
1679 			KASSERT(backing_object->ref_count == 1, (
1680 "backing_object %p was somehow re-referenced during collapse!",
1681 			    backing_object));
1682 			VM_OBJECT_UNLOCK(backing_object);
1683 			vm_object_destroy(backing_object);
1684 
1685 			object_collapses++;
1686 		} else {
1687 			vm_object_t new_backing_object;
1688 
1689 			/*
1690 			 * If we do not entirely shadow the backing object,
1691 			 * there is nothing we can do so we give up.
1692 			 */
1693 			if (object->resident_page_count != object->size &&
1694 			    vm_object_backing_scan(object,
1695 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1696 				VM_OBJECT_UNLOCK(backing_object);
1697 				break;
1698 			}
1699 
1700 			/*
1701 			 * Make the parent shadow the next object in the
1702 			 * chain.  Deallocating backing_object will not remove
1703 			 * it, since its reference count is at least 2.
1704 			 */
1705 			LIST_REMOVE(object, shadow_list);
1706 			backing_object->shadow_count--;
1707 
1708 			new_backing_object = backing_object->backing_object;
1709 			if ((object->backing_object = new_backing_object) != NULL) {
1710 				VM_OBJECT_LOCK(new_backing_object);
1711 				LIST_INSERT_HEAD(
1712 				    &new_backing_object->shadow_head,
1713 				    object,
1714 				    shadow_list
1715 				);
1716 				new_backing_object->shadow_count++;
1717 				vm_object_reference_locked(new_backing_object);
1718 				VM_OBJECT_UNLOCK(new_backing_object);
1719 				object->backing_object_offset +=
1720 					backing_object->backing_object_offset;
1721 			}
1722 
1723 			/*
1724 			 * Drop the reference count on backing_object. Since
1725 			 * its ref_count was at least 2, it will not vanish.
1726 			 */
1727 			backing_object->ref_count--;
1728 			VM_OBJECT_UNLOCK(backing_object);
1729 			object_bypasses++;
1730 		}
1731 
1732 		/*
1733 		 * Try again with this object's new backing object.
1734 		 */
1735 	}
1736 }
1737 
1738 /*
1739  *	vm_object_page_remove:
1740  *
1741  *	For the given object, either frees or invalidates each of the
1742  *	specified pages.  In general, a page is freed.  However, if a
1743  *	page is wired for any reason other than the existence of a
1744  *	managed, wired mapping, then it may be invalidated but not
1745  *	removed from the object.  Pages are specified by the given
1746  *	range ["start", "end") and Boolean "clean_only".  As a
1747  *	special case, if "end" is zero, then the range extends from
1748  *	"start" to the end of the object.  If "clean_only" is TRUE,
1749  *	then only the non-dirty pages within the specified range are
1750  *	affected.
1751  *
1752  *	In general, this operation should only be performed on objects
1753  *	that contain managed pages.  There are two exceptions.  First,
1754  *	it may be performed on the kernel and kmem objects.  Second,
1755  *	it may be used by msync(..., MS_INVALIDATE) to invalidate
1756  *	device-backed pages.  In both of these cases, "clean_only"
1757  *	must be FALSE.
1758  *
1759  *	The object must be locked.
1760  */
1761 void
1762 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1763     boolean_t clean_only)
1764 {
1765 	vm_page_t p, next;
1766 	int wirings;
1767 
1768 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1769 	if (object->resident_page_count == 0)
1770 		goto skipmemq;
1771 
1772 	/*
1773 	 * Since physically-backed objects do not use managed pages, we can't
1774 	 * remove pages from the object (we must instead remove the page
1775 	 * references, and then destroy the object).
1776 	 */
1777 	KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1778 	    object == kmem_object,
1779 	    ("attempt to remove pages from a physical object"));
1780 
1781 	vm_object_pip_add(object, 1);
1782 again:
1783 	p = vm_page_find_least(object, start);
1784 
1785 	/*
1786 	 * Assert: the variable p is either (1) the page with the
1787 	 * least pindex greater than or equal to the parameter pindex
1788 	 * or (2) NULL.
1789 	 */
1790 	for (;
1791 	     p != NULL && (p->pindex < end || end == 0);
1792 	     p = next) {
1793 		next = TAILQ_NEXT(p, listq);
1794 
1795 		/*
1796 		 * If the page is wired for any reason besides the
1797 		 * existence of managed, wired mappings, then it cannot
1798 		 * be freed.  For example, fictitious pages, which
1799 		 * represent device memory, are inherently wired and
1800 		 * cannot be freed.  They can, however, be invalidated
1801 		 * if "clean_only" is FALSE.
1802 		 */
1803 		vm_page_lock(p);
1804 		if ((wirings = p->wire_count) != 0 &&
1805 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1806 			/* Fictitious pages do not have managed mappings. */
1807 			if ((p->flags & PG_FICTITIOUS) == 0)
1808 				pmap_remove_all(p);
1809 			/* Account for removal of managed, wired mappings. */
1810 			p->wire_count -= wirings;
1811 			if (!clean_only) {
1812 				p->valid = 0;
1813 				vm_page_undirty(p);
1814 			}
1815 			vm_page_unlock(p);
1816 			continue;
1817 		}
1818 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1819 			goto again;
1820 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1821 		    ("vm_object_page_remove: page %p is fictitious", p));
1822 		if (clean_only && p->valid) {
1823 			pmap_remove_write(p);
1824 			if (p->dirty) {
1825 				vm_page_unlock(p);
1826 				continue;
1827 			}
1828 		}
1829 		pmap_remove_all(p);
1830 		/* Account for removal of managed, wired mappings. */
1831 		if (wirings != 0)
1832 			p->wire_count -= wirings;
1833 		vm_page_free(p);
1834 		vm_page_unlock(p);
1835 	}
1836 	vm_object_pip_wakeup(object);
1837 skipmemq:
1838 	if (__predict_false(object->cache != NULL))
1839 		vm_page_cache_free(object, start, end);
1840 }
1841 
1842 /*
1843  *	Populate the specified range of the object with valid pages.  Returns
1844  *	TRUE if the range is successfully populated and FALSE otherwise.
1845  *
1846  *	Note: This function should be optimized to pass a larger array of
1847  *	pages to vm_pager_get_pages() before it is applied to a non-
1848  *	OBJT_DEVICE object.
1849  *
1850  *	The object must be locked.
1851  */
1852 boolean_t
1853 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1854 {
1855 	vm_page_t m, ma[1];
1856 	vm_pindex_t pindex;
1857 	int rv;
1858 
1859 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1860 	for (pindex = start; pindex < end; pindex++) {
1861 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1862 		    VM_ALLOC_RETRY);
1863 		if (m->valid != VM_PAGE_BITS_ALL) {
1864 			ma[0] = m;
1865 			rv = vm_pager_get_pages(object, ma, 1, 0);
1866 			m = vm_page_lookup(object, pindex);
1867 			if (m == NULL)
1868 				break;
1869 			if (rv != VM_PAGER_OK) {
1870 				vm_page_lock(m);
1871 				vm_page_free(m);
1872 				vm_page_unlock(m);
1873 				break;
1874 			}
1875 		}
1876 		/*
1877 		 * Keep "m" busy because a subsequent iteration may unlock
1878 		 * the object.
1879 		 */
1880 	}
1881 	if (pindex > start) {
1882 		m = vm_page_lookup(object, start);
1883 		while (m != NULL && m->pindex < pindex) {
1884 			vm_page_wakeup(m);
1885 			m = TAILQ_NEXT(m, listq);
1886 		}
1887 	}
1888 	return (pindex == end);
1889 }
1890 
1891 /*
1892  *	Routine:	vm_object_coalesce
1893  *	Function:	Coalesces two objects backing up adjoining
1894  *			regions of memory into a single object.
1895  *
1896  *	returns TRUE if objects were combined.
1897  *
1898  *	NOTE:	Only works at the moment if the second object is NULL -
1899  *		if it's not, which object do we lock first?
1900  *
1901  *	Parameters:
1902  *		prev_object	First object to coalesce
1903  *		prev_offset	Offset into prev_object
1904  *		prev_size	Size of reference to prev_object
1905  *		next_size	Size of reference to the second object
1906  *		reserved	Indicator that extension region has
1907  *				swap accounted for
1908  *
1909  *	Conditions:
1910  *	The object must *not* be locked.
1911  */
1912 boolean_t
1913 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1914     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1915 {
1916 	vm_pindex_t next_pindex;
1917 
1918 	if (prev_object == NULL)
1919 		return (TRUE);
1920 	VM_OBJECT_LOCK(prev_object);
1921 	if (prev_object->type != OBJT_DEFAULT &&
1922 	    prev_object->type != OBJT_SWAP) {
1923 		VM_OBJECT_UNLOCK(prev_object);
1924 		return (FALSE);
1925 	}
1926 
1927 	/*
1928 	 * Try to collapse the object first
1929 	 */
1930 	vm_object_collapse(prev_object);
1931 
1932 	/*
1933 	 * Can't coalesce if: . more than one reference . paged out . shadows
1934 	 * another object . has a copy elsewhere (any of which mean that the
1935 	 * pages not mapped to prev_entry may be in use anyway)
1936 	 */
1937 	if (prev_object->backing_object != NULL) {
1938 		VM_OBJECT_UNLOCK(prev_object);
1939 		return (FALSE);
1940 	}
1941 
1942 	prev_size >>= PAGE_SHIFT;
1943 	next_size >>= PAGE_SHIFT;
1944 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1945 
1946 	if ((prev_object->ref_count > 1) &&
1947 	    (prev_object->size != next_pindex)) {
1948 		VM_OBJECT_UNLOCK(prev_object);
1949 		return (FALSE);
1950 	}
1951 
1952 	/*
1953 	 * Account for the charge.
1954 	 */
1955 	if (prev_object->cred != NULL) {
1956 
1957 		/*
1958 		 * If prev_object was charged, then this mapping,
1959 		 * althought not charged now, may become writable
1960 		 * later. Non-NULL cred in the object would prevent
1961 		 * swap reservation during enabling of the write
1962 		 * access, so reserve swap now. Failed reservation
1963 		 * cause allocation of the separate object for the map
1964 		 * entry, and swap reservation for this entry is
1965 		 * managed in appropriate time.
1966 		 */
1967 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
1968 		    prev_object->cred)) {
1969 			return (FALSE);
1970 		}
1971 		prev_object->charge += ptoa(next_size);
1972 	}
1973 
1974 	/*
1975 	 * Remove any pages that may still be in the object from a previous
1976 	 * deallocation.
1977 	 */
1978 	if (next_pindex < prev_object->size) {
1979 		vm_object_page_remove(prev_object,
1980 				      next_pindex,
1981 				      next_pindex + next_size, FALSE);
1982 		if (prev_object->type == OBJT_SWAP)
1983 			swap_pager_freespace(prev_object,
1984 					     next_pindex, next_size);
1985 #if 0
1986 		if (prev_object->cred != NULL) {
1987 			KASSERT(prev_object->charge >=
1988 			    ptoa(prev_object->size - next_pindex),
1989 			    ("object %p overcharged 1 %jx %jx", prev_object,
1990 				(uintmax_t)next_pindex, (uintmax_t)next_size));
1991 			prev_object->charge -= ptoa(prev_object->size -
1992 			    next_pindex);
1993 		}
1994 #endif
1995 	}
1996 
1997 	/*
1998 	 * Extend the object if necessary.
1999 	 */
2000 	if (next_pindex + next_size > prev_object->size)
2001 		prev_object->size = next_pindex + next_size;
2002 
2003 	VM_OBJECT_UNLOCK(prev_object);
2004 	return (TRUE);
2005 }
2006 
2007 void
2008 vm_object_set_writeable_dirty(vm_object_t object)
2009 {
2010 
2011 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2012 	if (object->type != OBJT_VNODE)
2013 		return;
2014 	object->generation++;
2015 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2016 		return;
2017 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2018 }
2019 
2020 #include "opt_ddb.h"
2021 #ifdef DDB
2022 #include <sys/kernel.h>
2023 
2024 #include <sys/cons.h>
2025 
2026 #include <ddb/ddb.h>
2027 
2028 static int
2029 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2030 {
2031 	vm_map_t tmpm;
2032 	vm_map_entry_t tmpe;
2033 	vm_object_t obj;
2034 	int entcount;
2035 
2036 	if (map == 0)
2037 		return 0;
2038 
2039 	if (entry == 0) {
2040 		tmpe = map->header.next;
2041 		entcount = map->nentries;
2042 		while (entcount-- && (tmpe != &map->header)) {
2043 			if (_vm_object_in_map(map, object, tmpe)) {
2044 				return 1;
2045 			}
2046 			tmpe = tmpe->next;
2047 		}
2048 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2049 		tmpm = entry->object.sub_map;
2050 		tmpe = tmpm->header.next;
2051 		entcount = tmpm->nentries;
2052 		while (entcount-- && tmpe != &tmpm->header) {
2053 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2054 				return 1;
2055 			}
2056 			tmpe = tmpe->next;
2057 		}
2058 	} else if ((obj = entry->object.vm_object) != NULL) {
2059 		for (; obj; obj = obj->backing_object)
2060 			if (obj == object) {
2061 				return 1;
2062 			}
2063 	}
2064 	return 0;
2065 }
2066 
2067 static int
2068 vm_object_in_map(vm_object_t object)
2069 {
2070 	struct proc *p;
2071 
2072 	/* sx_slock(&allproc_lock); */
2073 	FOREACH_PROC_IN_SYSTEM(p) {
2074 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2075 			continue;
2076 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2077 			/* sx_sunlock(&allproc_lock); */
2078 			return 1;
2079 		}
2080 	}
2081 	/* sx_sunlock(&allproc_lock); */
2082 	if (_vm_object_in_map(kernel_map, object, 0))
2083 		return 1;
2084 	if (_vm_object_in_map(kmem_map, object, 0))
2085 		return 1;
2086 	if (_vm_object_in_map(pager_map, object, 0))
2087 		return 1;
2088 	if (_vm_object_in_map(buffer_map, object, 0))
2089 		return 1;
2090 	return 0;
2091 }
2092 
2093 DB_SHOW_COMMAND(vmochk, vm_object_check)
2094 {
2095 	vm_object_t object;
2096 
2097 	/*
2098 	 * make sure that internal objs are in a map somewhere
2099 	 * and none have zero ref counts.
2100 	 */
2101 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2102 		if (object->handle == NULL &&
2103 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2104 			if (object->ref_count == 0) {
2105 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2106 					(long)object->size);
2107 			}
2108 			if (!vm_object_in_map(object)) {
2109 				db_printf(
2110 			"vmochk: internal obj is not in a map: "
2111 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2112 				    object->ref_count, (u_long)object->size,
2113 				    (u_long)object->size,
2114 				    (void *)object->backing_object);
2115 			}
2116 		}
2117 	}
2118 }
2119 
2120 /*
2121  *	vm_object_print:	[ debug ]
2122  */
2123 DB_SHOW_COMMAND(object, vm_object_print_static)
2124 {
2125 	/* XXX convert args. */
2126 	vm_object_t object = (vm_object_t)addr;
2127 	boolean_t full = have_addr;
2128 
2129 	vm_page_t p;
2130 
2131 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2132 #define	count	was_count
2133 
2134 	int count;
2135 
2136 	if (object == NULL)
2137 		return;
2138 
2139 	db_iprintf(
2140 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2141 	    object, (int)object->type, (uintmax_t)object->size,
2142 	    object->resident_page_count, object->ref_count, object->flags,
2143 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2144 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2145 	    object->shadow_count,
2146 	    object->backing_object ? object->backing_object->ref_count : 0,
2147 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2148 
2149 	if (!full)
2150 		return;
2151 
2152 	db_indent += 2;
2153 	count = 0;
2154 	TAILQ_FOREACH(p, &object->memq, listq) {
2155 		if (count == 0)
2156 			db_iprintf("memory:=");
2157 		else if (count == 6) {
2158 			db_printf("\n");
2159 			db_iprintf(" ...");
2160 			count = 0;
2161 		} else
2162 			db_printf(",");
2163 		count++;
2164 
2165 		db_printf("(off=0x%jx,page=0x%jx)",
2166 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2167 	}
2168 	if (count != 0)
2169 		db_printf("\n");
2170 	db_indent -= 2;
2171 }
2172 
2173 /* XXX. */
2174 #undef count
2175 
2176 /* XXX need this non-static entry for calling from vm_map_print. */
2177 void
2178 vm_object_print(
2179         /* db_expr_t */ long addr,
2180 	boolean_t have_addr,
2181 	/* db_expr_t */ long count,
2182 	char *modif)
2183 {
2184 	vm_object_print_static(addr, have_addr, count, modif);
2185 }
2186 
2187 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2188 {
2189 	vm_object_t object;
2190 	vm_pindex_t fidx;
2191 	vm_paddr_t pa;
2192 	vm_page_t m, prev_m;
2193 	int rcount, nl, c;
2194 
2195 	nl = 0;
2196 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2197 		db_printf("new object: %p\n", (void *)object);
2198 		if (nl > 18) {
2199 			c = cngetc();
2200 			if (c != ' ')
2201 				return;
2202 			nl = 0;
2203 		}
2204 		nl++;
2205 		rcount = 0;
2206 		fidx = 0;
2207 		pa = -1;
2208 		TAILQ_FOREACH(m, &object->memq, listq) {
2209 			if (m->pindex > 128)
2210 				break;
2211 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2212 			    prev_m->pindex + 1 != m->pindex) {
2213 				if (rcount) {
2214 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2215 						(long)fidx, rcount, (long)pa);
2216 					if (nl > 18) {
2217 						c = cngetc();
2218 						if (c != ' ')
2219 							return;
2220 						nl = 0;
2221 					}
2222 					nl++;
2223 					rcount = 0;
2224 				}
2225 			}
2226 			if (rcount &&
2227 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2228 				++rcount;
2229 				continue;
2230 			}
2231 			if (rcount) {
2232 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2233 					(long)fidx, rcount, (long)pa);
2234 				if (nl > 18) {
2235 					c = cngetc();
2236 					if (c != ' ')
2237 						return;
2238 					nl = 0;
2239 				}
2240 				nl++;
2241 			}
2242 			fidx = m->pindex;
2243 			pa = VM_PAGE_TO_PHYS(m);
2244 			rcount = 1;
2245 		}
2246 		if (rcount) {
2247 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2248 				(long)fidx, rcount, (long)pa);
2249 			if (nl > 18) {
2250 				c = cngetc();
2251 				if (c != ' ')
2252 					return;
2253 				nl = 0;
2254 			}
2255 			nl++;
2256 		}
2257 	}
2258 }
2259 #endif /* DDB */
2260