xref: /freebsd/sys/vm/vm_object.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/stdint.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 #define EASY_SCAN_FACTOR       8
100 
101 #define MSYNC_FLUSH_HARDSEQ	0x01
102 #define MSYNC_FLUSH_SOFTSEQ	0x02
103 
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
109         CTLFLAG_RW, &msync_flush_flags, 0, "");
110 
111 static void	vm_object_qcollapse(vm_object_t object);
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 vm_object_t kernel_object;
143 vm_object_t kmem_object;
144 static struct vm_object kernel_object_store;
145 static struct vm_object kmem_object_store;
146 extern int vm_pageout_page_count;
147 
148 static long object_collapses;
149 static long object_bypasses;
150 static int next_index;
151 static uma_zone_t obj_zone;
152 #define VM_OBJECTS_INIT 256
153 
154 static void vm_object_zinit(void *mem, int size);
155 
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158 
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162 	vm_object_t object;
163 
164 	object = (vm_object_t)mem;
165 	KASSERT(object->paging_in_progress == 0,
166 	    ("object %p paging_in_progress = %d",
167 	    object, object->paging_in_progress));
168 	KASSERT(object->resident_page_count == 0,
169 	    ("object %p resident_page_count = %d",
170 	    object, object->resident_page_count));
171 	KASSERT(object->shadow_count == 0,
172 	    ("object %p shadow_count = %d",
173 	    object, object->shadow_count));
174 }
175 #endif
176 
177 static void
178 vm_object_zinit(void *mem, int size)
179 {
180 	vm_object_t object;
181 
182 	object = (vm_object_t)mem;
183 
184 	/* These are true for any object that has been freed */
185 	object->paging_in_progress = 0;
186 	object->resident_page_count = 0;
187 	object->shadow_count = 0;
188 }
189 
190 void
191 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192 {
193 	static int object_hash_rand;
194 	int exp, incr;
195 
196 	TAILQ_INIT(&object->memq);
197 	TAILQ_INIT(&object->shadow_head);
198 
199 	object->root = NULL;
200 	object->type = type;
201 	object->size = size;
202 	object->ref_count = 1;
203 	object->flags = 0;
204 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205 		vm_object_set_flag(object, OBJ_ONEMAPPING);
206 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
207 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
208 	else
209 		incr = size;
210 	do
211 		object->pg_color = next_index;
212 	while (!atomic_cmpset_int(&next_index, object->pg_color,
213 				  (object->pg_color + incr) & PQ_L2_MASK));
214 	object->handle = NULL;
215 	object->backing_object = NULL;
216 	object->backing_object_offset = (vm_ooffset_t) 0;
217 	/*
218 	 * Try to generate a number that will spread objects out in the
219 	 * hash table.  We 'wipe' new objects across the hash in 128 page
220 	 * increments plus 1 more to offset it a little more by the time
221 	 * it wraps around.
222 	 */
223 	do {
224 		exp = object_hash_rand;
225 		object->hash_rand = exp - 129;
226 	} while (!atomic_cmpset_int(&object_hash_rand, exp, object->hash_rand));
227 
228 	atomic_add_int(&object->generation, 1);
229 
230 	mtx_lock(&vm_object_list_mtx);
231 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232 	mtx_unlock(&vm_object_list_mtx);
233 }
234 
235 /*
236  *	vm_object_init:
237  *
238  *	Initialize the VM objects module.
239  */
240 void
241 vm_object_init(void)
242 {
243 	TAILQ_INIT(&vm_object_list);
244 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
245 
246 	kernel_object = &kernel_object_store;
247 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
248 	    kernel_object);
249 
250 	kmem_object = &kmem_object_store;
251 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
252 	    kmem_object);
253 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254 #ifdef INVARIANTS
255 	    vm_object_zdtor,
256 #else
257 	    NULL,
258 #endif
259 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
260 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261 }
262 
263 void
264 vm_object_init2(void)
265 {
266 }
267 
268 void
269 vm_object_set_flag(vm_object_t object, u_short bits)
270 {
271 	object->flags |= bits;
272 }
273 
274 void
275 vm_object_clear_flag(vm_object_t object, u_short bits)
276 {
277 	GIANT_REQUIRED;
278 	object->flags &= ~bits;
279 }
280 
281 void
282 vm_object_pip_add(vm_object_t object, short i)
283 {
284 	GIANT_REQUIRED;
285 	object->paging_in_progress += i;
286 }
287 
288 void
289 vm_object_pip_subtract(vm_object_t object, short i)
290 {
291 	GIANT_REQUIRED;
292 	object->paging_in_progress -= i;
293 }
294 
295 void
296 vm_object_pip_wakeup(vm_object_t object)
297 {
298 	GIANT_REQUIRED;
299 	object->paging_in_progress--;
300 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
301 		vm_object_clear_flag(object, OBJ_PIPWNT);
302 		wakeup(object);
303 	}
304 }
305 
306 void
307 vm_object_pip_wakeupn(vm_object_t object, short i)
308 {
309 	GIANT_REQUIRED;
310 	if (i)
311 		object->paging_in_progress -= i;
312 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313 		vm_object_clear_flag(object, OBJ_PIPWNT);
314 		wakeup(object);
315 	}
316 }
317 
318 void
319 vm_object_pip_sleep(vm_object_t object, char *waitid)
320 {
321 	GIANT_REQUIRED;
322 	if (object->paging_in_progress) {
323 		int s = splvm();
324 		if (object->paging_in_progress) {
325 			vm_object_set_flag(object, OBJ_PIPWNT);
326 			tsleep(object, PVM, waitid, 0);
327 		}
328 		splx(s);
329 	}
330 }
331 
332 void
333 vm_object_pip_wait(vm_object_t object, char *waitid)
334 {
335 	GIANT_REQUIRED;
336 	while (object->paging_in_progress)
337 		vm_object_pip_sleep(object, waitid);
338 }
339 
340 /*
341  *	vm_object_allocate_wait
342  *
343  *	Return a new object with the given size, and give the user the
344  *	option of waiting for it to complete or failing if the needed
345  *	memory isn't available.
346  */
347 vm_object_t
348 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
349 {
350 	vm_object_t result;
351 
352 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
353 
354 	if (result != NULL)
355 		_vm_object_allocate(type, size, result);
356 
357 	return (result);
358 }
359 
360 /*
361  *	vm_object_allocate:
362  *
363  *	Returns a new object with the given size.
364  */
365 vm_object_t
366 vm_object_allocate(objtype_t type, vm_pindex_t size)
367 {
368 	return(vm_object_allocate_wait(type, size, M_WAITOK));
369 }
370 
371 
372 /*
373  *	vm_object_reference:
374  *
375  *	Gets another reference to the given object.
376  */
377 void
378 vm_object_reference(vm_object_t object)
379 {
380 	if (object == NULL)
381 		return;
382 
383 	vm_object_lock(object);
384 #if 0
385 	/* object can be re-referenced during final cleaning */
386 	KASSERT(!(object->flags & OBJ_DEAD),
387 	    ("vm_object_reference: attempting to reference dead obj"));
388 #endif
389 
390 	object->ref_count++;
391 	if (object->type == OBJT_VNODE) {
392 		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
393 			printf("vm_object_reference: delay in getting object\n");
394 		}
395 	}
396 	vm_object_unlock(object);
397 }
398 
399 /*
400  * handle deallocating a object of type OBJT_VNODE
401  */
402 void
403 vm_object_vndeallocate(vm_object_t object)
404 {
405 	struct vnode *vp = (struct vnode *) object->handle;
406 
407 	GIANT_REQUIRED;
408 	KASSERT(object->type == OBJT_VNODE,
409 	    ("vm_object_vndeallocate: not a vnode object"));
410 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
411 #ifdef INVARIANTS
412 	if (object->ref_count == 0) {
413 		vprint("vm_object_vndeallocate", vp);
414 		panic("vm_object_vndeallocate: bad object reference count");
415 	}
416 #endif
417 
418 	object->ref_count--;
419 	if (object->ref_count == 0) {
420 		mp_fixme("Unlocked vflag access.");
421 		vp->v_vflag &= ~VV_TEXT;
422 #ifdef ENABLE_VFS_IOOPT
423 		vm_object_clear_flag(object, OBJ_OPT);
424 #endif
425 	}
426 	/*
427 	 * vrele may need a vop lock
428 	 */
429 	vrele(vp);
430 }
431 
432 /*
433  *	vm_object_deallocate:
434  *
435  *	Release a reference to the specified object,
436  *	gained either through a vm_object_allocate
437  *	or a vm_object_reference call.  When all references
438  *	are gone, storage associated with this object
439  *	may be relinquished.
440  *
441  *	No object may be locked.
442  */
443 void
444 vm_object_deallocate(vm_object_t object)
445 {
446 	vm_object_t temp;
447 
448 	mtx_lock(&Giant);
449 	while (object != NULL) {
450 
451 		if (object->type == OBJT_VNODE) {
452 			vm_object_vndeallocate(object);
453 			mtx_unlock(&Giant);
454 			return;
455 		}
456 
457 		KASSERT(object->ref_count != 0,
458 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
459 
460 		/*
461 		 * If the reference count goes to 0 we start calling
462 		 * vm_object_terminate() on the object chain.
463 		 * A ref count of 1 may be a special case depending on the
464 		 * shadow count being 0 or 1.
465 		 */
466 		object->ref_count--;
467 		if (object->ref_count > 1) {
468 			mtx_unlock(&Giant);
469 			return;
470 		} else if (object->ref_count == 1) {
471 			if (object->shadow_count == 0) {
472 				vm_object_set_flag(object, OBJ_ONEMAPPING);
473 			} else if ((object->shadow_count == 1) &&
474 			    (object->handle == NULL) &&
475 			    (object->type == OBJT_DEFAULT ||
476 			     object->type == OBJT_SWAP)) {
477 				vm_object_t robject;
478 
479 				robject = TAILQ_FIRST(&object->shadow_head);
480 				KASSERT(robject != NULL,
481 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
482 					 object->ref_count,
483 					 object->shadow_count));
484 				if ((robject->handle == NULL) &&
485 				    (robject->type == OBJT_DEFAULT ||
486 				     robject->type == OBJT_SWAP)) {
487 
488 					robject->ref_count++;
489 
490 					while (
491 						robject->paging_in_progress ||
492 						object->paging_in_progress
493 					) {
494 						vm_object_pip_sleep(robject, "objde1");
495 						vm_object_pip_sleep(object, "objde2");
496 					}
497 
498 					if (robject->ref_count == 1) {
499 						robject->ref_count--;
500 						object = robject;
501 						goto doterm;
502 					}
503 
504 					object = robject;
505 					vm_object_collapse(object);
506 					continue;
507 				}
508 			}
509 			mtx_unlock(&Giant);
510 			return;
511 		}
512 doterm:
513 		temp = object->backing_object;
514 		if (temp) {
515 			TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
516 			temp->shadow_count--;
517 #ifdef ENABLE_VFS_IOOPT
518 			if (temp->ref_count == 0)
519 				vm_object_clear_flag(temp, OBJ_OPT);
520 #endif
521 			temp->generation++;
522 			object->backing_object = NULL;
523 		}
524 		/*
525 		 * Don't double-terminate, we could be in a termination
526 		 * recursion due to the terminate having to sync data
527 		 * to disk.
528 		 */
529 		if ((object->flags & OBJ_DEAD) == 0)
530 			vm_object_terminate(object);
531 		object = temp;
532 	}
533 	mtx_unlock(&Giant);
534 }
535 
536 /*
537  *	vm_object_terminate actually destroys the specified object, freeing
538  *	up all previously used resources.
539  *
540  *	The object must be locked.
541  *	This routine may block.
542  */
543 void
544 vm_object_terminate(vm_object_t object)
545 {
546 	vm_page_t p;
547 	int s;
548 
549 	GIANT_REQUIRED;
550 
551 	/*
552 	 * Make sure no one uses us.
553 	 */
554 	vm_object_set_flag(object, OBJ_DEAD);
555 
556 	/*
557 	 * wait for the pageout daemon to be done with the object
558 	 */
559 	vm_object_pip_wait(object, "objtrm");
560 
561 	KASSERT(!object->paging_in_progress,
562 		("vm_object_terminate: pageout in progress"));
563 
564 	/*
565 	 * Clean and free the pages, as appropriate. All references to the
566 	 * object are gone, so we don't need to lock it.
567 	 */
568 	if (object->type == OBJT_VNODE) {
569 		struct vnode *vp;
570 
571 #ifdef ENABLE_VFS_IOOPT
572 		/*
573 		 * Freeze optimized copies.
574 		 */
575 		vm_freeze_copyopts(object, 0, object->size);
576 #endif
577 		/*
578 		 * Clean pages and flush buffers.
579 		 */
580 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
581 
582 		vp = (struct vnode *) object->handle;
583 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
584 	}
585 
586 	KASSERT(object->ref_count == 0,
587 		("vm_object_terminate: object with references, ref_count=%d",
588 		object->ref_count));
589 
590 	/*
591 	 * Now free any remaining pages. For internal objects, this also
592 	 * removes them from paging queues. Don't free wired pages, just
593 	 * remove them from the object.
594 	 */
595 	s = splvm();
596 	vm_page_lock_queues();
597 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
598 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
599 			("vm_object_terminate: freeing busy page %p "
600 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
601 		if (p->wire_count == 0) {
602 			vm_page_busy(p);
603 			vm_page_free(p);
604 			cnt.v_pfree++;
605 		} else {
606 			vm_page_busy(p);
607 			vm_page_remove(p);
608 		}
609 	}
610 	vm_page_unlock_queues();
611 	splx(s);
612 
613 	/*
614 	 * Let the pager know object is dead.
615 	 */
616 	vm_pager_deallocate(object);
617 
618 	/*
619 	 * Remove the object from the global object list.
620 	 */
621 	mtx_lock(&vm_object_list_mtx);
622 	TAILQ_REMOVE(&vm_object_list, object, object_list);
623 	mtx_unlock(&vm_object_list_mtx);
624 
625 	wakeup(object);
626 
627 	/*
628 	 * Free the space for the object.
629 	 */
630 	uma_zfree(obj_zone, object);
631 }
632 
633 /*
634  *	vm_object_page_clean
635  *
636  *	Clean all dirty pages in the specified range of object.  Leaves page
637  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
638  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
639  *	leaving the object dirty.
640  *
641  *	Odd semantics: if start == end, we clean everything.
642  *
643  *	The object must be locked.
644  */
645 void
646 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647 {
648 	vm_page_t p, np;
649 	vm_pindex_t tstart, tend;
650 	vm_pindex_t pi;
651 	struct vnode *vp;
652 	int clearobjflags;
653 	int pagerflags;
654 	int curgeneration;
655 
656 	GIANT_REQUIRED;
657 
658 	if (object->type != OBJT_VNODE ||
659 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
660 		return;
661 
662 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
663 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664 
665 	vp = object->handle;
666 
667 	vm_object_set_flag(object, OBJ_CLEANING);
668 
669 	tstart = start;
670 	if (end == 0) {
671 		tend = object->size;
672 	} else {
673 		tend = end;
674 	}
675 
676 	/*
677 	 * If the caller is smart and only msync()s a range he knows is
678 	 * dirty, we may be able to avoid an object scan.  This results in
679 	 * a phenominal improvement in performance.  We cannot do this
680 	 * as a matter of course because the object may be huge - e.g.
681 	 * the size might be in the gigabytes or terrabytes.
682 	 */
683 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
684 		vm_pindex_t tscan;
685 		int scanlimit;
686 		int scanreset;
687 
688 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
689 		if (scanreset < 16)
690 			scanreset = 16;
691 
692 		scanlimit = scanreset;
693 		tscan = tstart;
694 		while (tscan < tend) {
695 			curgeneration = object->generation;
696 			p = vm_page_lookup(object, tscan);
697 			if (p == NULL || p->valid == 0 ||
698 			    (p->queue - p->pc) == PQ_CACHE) {
699 				if (--scanlimit == 0)
700 					break;
701 				++tscan;
702 				continue;
703 			}
704 			vm_page_test_dirty(p);
705 			if ((p->dirty & p->valid) == 0) {
706 				if (--scanlimit == 0)
707 					break;
708 				++tscan;
709 				continue;
710 			}
711 			/*
712 			 * If we have been asked to skip nosync pages and
713 			 * this is a nosync page, we can't continue.
714 			 */
715 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
716 				if (--scanlimit == 0)
717 					break;
718 				++tscan;
719 				continue;
720 			}
721 			scanlimit = scanreset;
722 
723 			/*
724 			 * This returns 0 if it was unable to busy the first
725 			 * page (i.e. had to sleep).
726 			 */
727 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
728 		}
729 
730 		/*
731 		 * If everything was dirty and we flushed it successfully,
732 		 * and the requested range is not the entire object, we
733 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
734 		 * return immediately.
735 		 */
736 		if (tscan >= tend && (tstart || tend < object->size)) {
737 			vm_object_clear_flag(object, OBJ_CLEANING);
738 			return;
739 		}
740 	}
741 
742 	/*
743 	 * Generally set CLEANCHK interlock and make the page read-only so
744 	 * we can then clear the object flags.
745 	 *
746 	 * However, if this is a nosync mmap then the object is likely to
747 	 * stay dirty so do not mess with the page and do not clear the
748 	 * object flags.
749 	 */
750 	clearobjflags = 1;
751 
752 	TAILQ_FOREACH(p, &object->memq, listq) {
753 		vm_page_flag_set(p, PG_CLEANCHK);
754 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
755 			clearobjflags = 0;
756 		else
757 			pmap_page_protect(p, VM_PROT_READ);
758 	}
759 
760 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
761 		struct vnode *vp;
762 
763 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
764 		if (object->type == OBJT_VNODE &&
765 		    (vp = (struct vnode *)object->handle) != NULL) {
766 			VI_LOCK(vp);
767 			if (vp->v_iflag & VI_OBJDIRTY)
768 				vp->v_iflag &= ~VI_OBJDIRTY;
769 			VI_UNLOCK(vp);
770 		}
771 	}
772 
773 rescan:
774 	curgeneration = object->generation;
775 
776 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
777 		int n;
778 
779 		np = TAILQ_NEXT(p, listq);
780 
781 again:
782 		pi = p->pindex;
783 		if (((p->flags & PG_CLEANCHK) == 0) ||
784 			(pi < tstart) || (pi >= tend) ||
785 			(p->valid == 0) ||
786 			((p->queue - p->pc) == PQ_CACHE)) {
787 			vm_page_flag_clear(p, PG_CLEANCHK);
788 			continue;
789 		}
790 
791 		vm_page_test_dirty(p);
792 		if ((p->dirty & p->valid) == 0) {
793 			vm_page_flag_clear(p, PG_CLEANCHK);
794 			continue;
795 		}
796 
797 		/*
798 		 * If we have been asked to skip nosync pages and this is a
799 		 * nosync page, skip it.  Note that the object flags were
800 		 * not cleared in this case so we do not have to set them.
801 		 */
802 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
803 			vm_page_flag_clear(p, PG_CLEANCHK);
804 			continue;
805 		}
806 
807 		n = vm_object_page_collect_flush(object, p,
808 			curgeneration, pagerflags);
809 		if (n == 0)
810 			goto rescan;
811 
812 		if (object->generation != curgeneration)
813 			goto rescan;
814 
815 		/*
816 		 * Try to optimize the next page.  If we can't we pick up
817 		 * our (random) scan where we left off.
818 		 */
819 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
820 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
821 				goto again;
822 		}
823 	}
824 
825 #if 0
826 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
827 #endif
828 
829 	vm_object_clear_flag(object, OBJ_CLEANING);
830 	return;
831 }
832 
833 static int
834 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
835 {
836 	int runlen;
837 	int s;
838 	int maxf;
839 	int chkb;
840 	int maxb;
841 	int i;
842 	vm_pindex_t pi;
843 	vm_page_t maf[vm_pageout_page_count];
844 	vm_page_t mab[vm_pageout_page_count];
845 	vm_page_t ma[vm_pageout_page_count];
846 
847 	s = splvm();
848 	pi = p->pindex;
849 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
850 		if (object->generation != curgeneration) {
851 			splx(s);
852 			return(0);
853 		}
854 	}
855 	vm_page_lock_queues();
856 	maxf = 0;
857 	for(i = 1; i < vm_pageout_page_count; i++) {
858 		vm_page_t tp;
859 
860 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
861 			if ((tp->flags & PG_BUSY) ||
862 				(tp->flags & PG_CLEANCHK) == 0 ||
863 				(tp->busy != 0))
864 				break;
865 			if((tp->queue - tp->pc) == PQ_CACHE) {
866 				vm_page_flag_clear(tp, PG_CLEANCHK);
867 				break;
868 			}
869 			vm_page_test_dirty(tp);
870 			if ((tp->dirty & tp->valid) == 0) {
871 				vm_page_flag_clear(tp, PG_CLEANCHK);
872 				break;
873 			}
874 			maf[ i - 1 ] = tp;
875 			maxf++;
876 			continue;
877 		}
878 		break;
879 	}
880 
881 	maxb = 0;
882 	chkb = vm_pageout_page_count -  maxf;
883 	if (chkb) {
884 		for(i = 1; i < chkb;i++) {
885 			vm_page_t tp;
886 
887 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
888 				if ((tp->flags & PG_BUSY) ||
889 					(tp->flags & PG_CLEANCHK) == 0 ||
890 					(tp->busy != 0))
891 					break;
892 				if ((tp->queue - tp->pc) == PQ_CACHE) {
893 					vm_page_flag_clear(tp, PG_CLEANCHK);
894 					break;
895 				}
896 				vm_page_test_dirty(tp);
897 				if ((tp->dirty & tp->valid) == 0) {
898 					vm_page_flag_clear(tp, PG_CLEANCHK);
899 					break;
900 				}
901 				mab[ i - 1 ] = tp;
902 				maxb++;
903 				continue;
904 			}
905 			break;
906 		}
907 	}
908 
909 	for(i = 0; i < maxb; i++) {
910 		int index = (maxb - i) - 1;
911 		ma[index] = mab[i];
912 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
913 	}
914 	vm_page_flag_clear(p, PG_CLEANCHK);
915 	ma[maxb] = p;
916 	for(i = 0; i < maxf; i++) {
917 		int index = (maxb + i) + 1;
918 		ma[index] = maf[i];
919 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
920 	}
921 	runlen = maxb + maxf + 1;
922 
923 	splx(s);
924 	vm_pageout_flush(ma, runlen, pagerflags);
925 	for (i = 0; i < runlen; i++) {
926 		if (ma[i]->valid & ma[i]->dirty) {
927 			pmap_page_protect(ma[i], VM_PROT_READ);
928 			vm_page_flag_set(ma[i], PG_CLEANCHK);
929 
930 			/*
931 			 * maxf will end up being the actual number of pages
932 			 * we wrote out contiguously, non-inclusive of the
933 			 * first page.  We do not count look-behind pages.
934 			 */
935 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
936 				maxf = i - maxb - 1;
937 		}
938 	}
939 	vm_page_unlock_queues();
940 	return(maxf + 1);
941 }
942 
943 #ifdef ENABLE_VFS_IOOPT
944 /*
945  * Same as vm_object_pmap_copy, except range checking really
946  * works, and is meant for small sections of an object.
947  *
948  * This code protects resident pages by making them read-only
949  * and is typically called on a fork or split when a page
950  * is converted to copy-on-write.
951  *
952  * NOTE: If the page is already at VM_PROT_NONE, calling
953  * pmap_page_protect will have no effect.
954  */
955 void
956 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
957 {
958 	vm_pindex_t idx;
959 	vm_page_t p;
960 
961 	GIANT_REQUIRED;
962 
963 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
964 		return;
965 
966 	for (idx = start; idx < end; idx++) {
967 		p = vm_page_lookup(object, idx);
968 		if (p == NULL)
969 			continue;
970 		pmap_page_protect(p, VM_PROT_READ);
971 	}
972 }
973 #endif
974 
975 /*
976  *	vm_object_madvise:
977  *
978  *	Implements the madvise function at the object/page level.
979  *
980  *	MADV_WILLNEED	(any object)
981  *
982  *	    Activate the specified pages if they are resident.
983  *
984  *	MADV_DONTNEED	(any object)
985  *
986  *	    Deactivate the specified pages if they are resident.
987  *
988  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
989  *			 OBJ_ONEMAPPING only)
990  *
991  *	    Deactivate and clean the specified pages if they are
992  *	    resident.  This permits the process to reuse the pages
993  *	    without faulting or the kernel to reclaim the pages
994  *	    without I/O.
995  */
996 void
997 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
998 {
999 	vm_pindex_t end, tpindex;
1000 	vm_object_t tobject;
1001 	vm_page_t m;
1002 
1003 	if (object == NULL)
1004 		return;
1005 
1006 	vm_object_lock(object);
1007 
1008 	end = pindex + count;
1009 
1010 	/*
1011 	 * Locate and adjust resident pages
1012 	 */
1013 	for (; pindex < end; pindex += 1) {
1014 relookup:
1015 		tobject = object;
1016 		tpindex = pindex;
1017 shadowlookup:
1018 		/*
1019 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1020 		 * and those pages must be OBJ_ONEMAPPING.
1021 		 */
1022 		if (advise == MADV_FREE) {
1023 			if ((tobject->type != OBJT_DEFAULT &&
1024 			     tobject->type != OBJT_SWAP) ||
1025 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1026 				continue;
1027 			}
1028 		}
1029 
1030 		m = vm_page_lookup(tobject, tpindex);
1031 
1032 		if (m == NULL) {
1033 			/*
1034 			 * There may be swap even if there is no backing page
1035 			 */
1036 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1037 				swap_pager_freespace(tobject, tpindex, 1);
1038 
1039 			/*
1040 			 * next object
1041 			 */
1042 			tobject = tobject->backing_object;
1043 			if (tobject == NULL)
1044 				continue;
1045 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1046 			goto shadowlookup;
1047 		}
1048 
1049 		/*
1050 		 * If the page is busy or not in a normal active state,
1051 		 * we skip it.  If the page is not managed there are no
1052 		 * page queues to mess with.  Things can break if we mess
1053 		 * with pages in any of the below states.
1054 		 */
1055 		vm_page_lock_queues();
1056 		if (m->hold_count ||
1057 		    m->wire_count ||
1058 		    (m->flags & PG_UNMANAGED) ||
1059 		    m->valid != VM_PAGE_BITS_ALL) {
1060 			vm_page_unlock_queues();
1061 			continue;
1062 		}
1063  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo"))
1064   			goto relookup;
1065 		if (advise == MADV_WILLNEED) {
1066 			vm_page_activate(m);
1067 		} else if (advise == MADV_DONTNEED) {
1068 			vm_page_dontneed(m);
1069 		} else if (advise == MADV_FREE) {
1070 			/*
1071 			 * Mark the page clean.  This will allow the page
1072 			 * to be freed up by the system.  However, such pages
1073 			 * are often reused quickly by malloc()/free()
1074 			 * so we do not do anything that would cause
1075 			 * a page fault if we can help it.
1076 			 *
1077 			 * Specifically, we do not try to actually free
1078 			 * the page now nor do we try to put it in the
1079 			 * cache (which would cause a page fault on reuse).
1080 			 *
1081 			 * But we do make the page is freeable as we
1082 			 * can without actually taking the step of unmapping
1083 			 * it.
1084 			 */
1085 			pmap_clear_modify(m);
1086 			m->dirty = 0;
1087 			m->act_count = 0;
1088 			vm_page_dontneed(m);
1089 		}
1090 		vm_page_unlock_queues();
1091 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1092 			swap_pager_freespace(tobject, tpindex, 1);
1093 	}
1094 	vm_object_unlock(object);
1095 }
1096 
1097 /*
1098  *	vm_object_shadow:
1099  *
1100  *	Create a new object which is backed by the
1101  *	specified existing object range.  The source
1102  *	object reference is deallocated.
1103  *
1104  *	The new object and offset into that object
1105  *	are returned in the source parameters.
1106  */
1107 void
1108 vm_object_shadow(
1109 	vm_object_t *object,	/* IN/OUT */
1110 	vm_ooffset_t *offset,	/* IN/OUT */
1111 	vm_size_t length)
1112 {
1113 	vm_object_t source;
1114 	vm_object_t result;
1115 
1116 	source = *object;
1117 
1118 	vm_object_lock(source);
1119 	/*
1120 	 * Don't create the new object if the old object isn't shared.
1121 	 */
1122 	if (source != NULL &&
1123 	    source->ref_count == 1 &&
1124 	    source->handle == NULL &&
1125 	    (source->type == OBJT_DEFAULT ||
1126 	     source->type == OBJT_SWAP)) {
1127 		vm_object_unlock(source);
1128 		return;
1129 	}
1130 
1131 	/*
1132 	 * Allocate a new object with the given length
1133 	 */
1134 	result = vm_object_allocate(OBJT_DEFAULT, length);
1135 	KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1136 
1137 	/*
1138 	 * The new object shadows the source object, adding a reference to it.
1139 	 * Our caller changes his reference to point to the new object,
1140 	 * removing a reference to the source object.  Net result: no change
1141 	 * of reference count.
1142 	 *
1143 	 * Try to optimize the result object's page color when shadowing
1144 	 * in order to maintain page coloring consistency in the combined
1145 	 * shadowed object.
1146 	 */
1147 	result->backing_object = source;
1148 	if (source) {
1149 		TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1150 		source->shadow_count++;
1151 		source->generation++;
1152 		if (length < source->size)
1153 			length = source->size;
1154 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1155 		    source->generation > 1)
1156 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1157 		result->pg_color = (source->pg_color +
1158 		    length * source->generation) & PQ_L2_MASK;
1159 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1160 		    PQ_L2_MASK;
1161 	}
1162 
1163 	/*
1164 	 * Store the offset into the source object, and fix up the offset into
1165 	 * the new object.
1166 	 */
1167 	result->backing_object_offset = *offset;
1168 
1169 	/*
1170 	 * Return the new things
1171 	 */
1172 	*offset = 0;
1173 	*object = result;
1174 
1175 	vm_object_unlock(source);
1176 }
1177 
1178 /*
1179  *	vm_object_split:
1180  *
1181  * Split the pages in a map entry into a new object.  This affords
1182  * easier removal of unused pages, and keeps object inheritance from
1183  * being a negative impact on memory usage.
1184  */
1185 void
1186 vm_object_split(vm_map_entry_t entry)
1187 {
1188 	vm_page_t m;
1189 	vm_object_t orig_object, new_object, source;
1190 	vm_offset_t s, e;
1191 	vm_pindex_t offidxstart, offidxend;
1192 	vm_size_t idx, size;
1193 	vm_ooffset_t offset;
1194 
1195 	GIANT_REQUIRED;
1196 
1197 	orig_object = entry->object.vm_object;
1198 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1199 		return;
1200 	if (orig_object->ref_count <= 1)
1201 		return;
1202 
1203 	offset = entry->offset;
1204 	s = entry->start;
1205 	e = entry->end;
1206 
1207 	offidxstart = OFF_TO_IDX(offset);
1208 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1209 	size = offidxend - offidxstart;
1210 
1211 	new_object = vm_pager_allocate(orig_object->type,
1212 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1213 	if (new_object == NULL)
1214 		return;
1215 
1216 	source = orig_object->backing_object;
1217 	if (source != NULL) {
1218 		vm_object_reference(source);	/* Referenced by new_object */
1219 		TAILQ_INSERT_TAIL(&source->shadow_head,
1220 				  new_object, shadow_list);
1221 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1222 		new_object->backing_object_offset =
1223 			orig_object->backing_object_offset + offset;
1224 		new_object->backing_object = source;
1225 		source->shadow_count++;
1226 		source->generation++;
1227 	}
1228 	for (idx = 0; idx < size; idx++) {
1229 	retry:
1230 		m = vm_page_lookup(orig_object, offidxstart + idx);
1231 		if (m == NULL)
1232 			continue;
1233 
1234 		/*
1235 		 * We must wait for pending I/O to complete before we can
1236 		 * rename the page.
1237 		 *
1238 		 * We do not have to VM_PROT_NONE the page as mappings should
1239 		 * not be changed by this operation.
1240 		 */
1241 		vm_page_lock_queues();
1242 		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1243 			goto retry;
1244 
1245 		vm_page_busy(m);
1246 		vm_page_unlock_queues();
1247 		vm_page_rename(m, new_object, idx);
1248 		/* page automatically made dirty by rename and cache handled */
1249 		vm_page_busy(m);
1250 	}
1251 	if (orig_object->type == OBJT_SWAP) {
1252 		vm_object_pip_add(orig_object, 1);
1253 		/*
1254 		 * copy orig_object pages into new_object
1255 		 * and destroy unneeded pages in
1256 		 * shadow object.
1257 		 */
1258 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1259 		vm_object_pip_wakeup(orig_object);
1260 	}
1261 	TAILQ_FOREACH(m, &new_object->memq, listq)
1262 		vm_page_wakeup(m);
1263 	entry->object.vm_object = new_object;
1264 	entry->offset = 0LL;
1265 	vm_object_deallocate(orig_object);
1266 }
1267 
1268 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1269 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1270 #define	OBSC_COLLAPSE_WAIT	0x0004
1271 
1272 static __inline int
1273 vm_object_backing_scan(vm_object_t object, int op)
1274 {
1275 	int s;
1276 	int r = 1;
1277 	vm_page_t p;
1278 	vm_object_t backing_object;
1279 	vm_pindex_t backing_offset_index;
1280 
1281 	s = splvm();
1282 	GIANT_REQUIRED;
1283 
1284 	backing_object = object->backing_object;
1285 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1286 
1287 	/*
1288 	 * Initial conditions
1289 	 */
1290 	if (op & OBSC_TEST_ALL_SHADOWED) {
1291 		/*
1292 		 * We do not want to have to test for the existence of
1293 		 * swap pages in the backing object.  XXX but with the
1294 		 * new swapper this would be pretty easy to do.
1295 		 *
1296 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1297 		 * been ZFOD faulted yet?  If we do not test for this, the
1298 		 * shadow test may succeed! XXX
1299 		 */
1300 		if (backing_object->type != OBJT_DEFAULT) {
1301 			splx(s);
1302 			return (0);
1303 		}
1304 	}
1305 	if (op & OBSC_COLLAPSE_WAIT) {
1306 		vm_object_set_flag(backing_object, OBJ_DEAD);
1307 	}
1308 
1309 	/*
1310 	 * Our scan
1311 	 */
1312 	p = TAILQ_FIRST(&backing_object->memq);
1313 	while (p) {
1314 		vm_page_t next = TAILQ_NEXT(p, listq);
1315 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1316 
1317 		if (op & OBSC_TEST_ALL_SHADOWED) {
1318 			vm_page_t pp;
1319 
1320 			/*
1321 			 * Ignore pages outside the parent object's range
1322 			 * and outside the parent object's mapping of the
1323 			 * backing object.
1324 			 *
1325 			 * note that we do not busy the backing object's
1326 			 * page.
1327 			 */
1328 			if (
1329 			    p->pindex < backing_offset_index ||
1330 			    new_pindex >= object->size
1331 			) {
1332 				p = next;
1333 				continue;
1334 			}
1335 
1336 			/*
1337 			 * See if the parent has the page or if the parent's
1338 			 * object pager has the page.  If the parent has the
1339 			 * page but the page is not valid, the parent's
1340 			 * object pager must have the page.
1341 			 *
1342 			 * If this fails, the parent does not completely shadow
1343 			 * the object and we might as well give up now.
1344 			 */
1345 
1346 			pp = vm_page_lookup(object, new_pindex);
1347 			if (
1348 			    (pp == NULL || pp->valid == 0) &&
1349 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1350 			) {
1351 				r = 0;
1352 				break;
1353 			}
1354 		}
1355 
1356 		/*
1357 		 * Check for busy page
1358 		 */
1359 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1360 			vm_page_t pp;
1361 
1362 			vm_page_lock_queues();
1363 			if (op & OBSC_COLLAPSE_NOWAIT) {
1364 				if ((p->flags & PG_BUSY) ||
1365 				    !p->valid ||
1366 				    p->hold_count ||
1367 				    p->wire_count ||
1368 				    p->busy) {
1369 					vm_page_unlock_queues();
1370 					p = next;
1371 					continue;
1372 				}
1373 			} else if (op & OBSC_COLLAPSE_WAIT) {
1374 				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1375 					/*
1376 					 * If we slept, anything could have
1377 					 * happened.  Since the object is
1378 					 * marked dead, the backing offset
1379 					 * should not have changed so we
1380 					 * just restart our scan.
1381 					 */
1382 					p = TAILQ_FIRST(&backing_object->memq);
1383 					continue;
1384 				}
1385 			}
1386 
1387 			/*
1388 			 * Busy the page
1389 			 */
1390 			vm_page_busy(p);
1391 			vm_page_unlock_queues();
1392 
1393 			KASSERT(
1394 			    p->object == backing_object,
1395 			    ("vm_object_qcollapse(): object mismatch")
1396 			);
1397 
1398 			/*
1399 			 * Destroy any associated swap
1400 			 */
1401 			if (backing_object->type == OBJT_SWAP) {
1402 				swap_pager_freespace(
1403 				    backing_object,
1404 				    p->pindex,
1405 				    1
1406 				);
1407 			}
1408 
1409 			if (
1410 			    p->pindex < backing_offset_index ||
1411 			    new_pindex >= object->size
1412 			) {
1413 				/*
1414 				 * Page is out of the parent object's range, we
1415 				 * can simply destroy it.
1416 				 */
1417 				vm_page_lock_queues();
1418 				pmap_remove_all(p);
1419 				vm_page_free(p);
1420 				vm_page_unlock_queues();
1421 				p = next;
1422 				continue;
1423 			}
1424 
1425 			pp = vm_page_lookup(object, new_pindex);
1426 			if (
1427 			    pp != NULL ||
1428 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1429 			) {
1430 				/*
1431 				 * page already exists in parent OR swap exists
1432 				 * for this location in the parent.  Destroy
1433 				 * the original page from the backing object.
1434 				 *
1435 				 * Leave the parent's page alone
1436 				 */
1437 				vm_page_lock_queues();
1438 				pmap_remove_all(p);
1439 				vm_page_free(p);
1440 				vm_page_unlock_queues();
1441 				p = next;
1442 				continue;
1443 			}
1444 
1445 			/*
1446 			 * Page does not exist in parent, rename the
1447 			 * page from the backing object to the main object.
1448 			 *
1449 			 * If the page was mapped to a process, it can remain
1450 			 * mapped through the rename.
1451 			 */
1452 			vm_page_rename(p, object, new_pindex);
1453 			/* page automatically made dirty by rename */
1454 		}
1455 		p = next;
1456 	}
1457 	splx(s);
1458 	return (r);
1459 }
1460 
1461 
1462 /*
1463  * this version of collapse allows the operation to occur earlier and
1464  * when paging_in_progress is true for an object...  This is not a complete
1465  * operation, but should plug 99.9% of the rest of the leaks.
1466  */
1467 static void
1468 vm_object_qcollapse(vm_object_t object)
1469 {
1470 	vm_object_t backing_object = object->backing_object;
1471 
1472 	GIANT_REQUIRED;
1473 
1474 	if (backing_object->ref_count != 1)
1475 		return;
1476 
1477 	backing_object->ref_count += 2;
1478 
1479 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1480 
1481 	backing_object->ref_count -= 2;
1482 }
1483 
1484 /*
1485  *	vm_object_collapse:
1486  *
1487  *	Collapse an object with the object backing it.
1488  *	Pages in the backing object are moved into the
1489  *	parent, and the backing object is deallocated.
1490  */
1491 void
1492 vm_object_collapse(vm_object_t object)
1493 {
1494 	GIANT_REQUIRED;
1495 
1496 	while (TRUE) {
1497 		vm_object_t backing_object;
1498 
1499 		/*
1500 		 * Verify that the conditions are right for collapse:
1501 		 *
1502 		 * The object exists and the backing object exists.
1503 		 */
1504 		if (object == NULL)
1505 			break;
1506 
1507 		if ((backing_object = object->backing_object) == NULL)
1508 			break;
1509 
1510 		/*
1511 		 * we check the backing object first, because it is most likely
1512 		 * not collapsable.
1513 		 */
1514 		if (backing_object->handle != NULL ||
1515 		    (backing_object->type != OBJT_DEFAULT &&
1516 		     backing_object->type != OBJT_SWAP) ||
1517 		    (backing_object->flags & OBJ_DEAD) ||
1518 		    object->handle != NULL ||
1519 		    (object->type != OBJT_DEFAULT &&
1520 		     object->type != OBJT_SWAP) ||
1521 		    (object->flags & OBJ_DEAD)) {
1522 			break;
1523 		}
1524 
1525 		if (
1526 		    object->paging_in_progress != 0 ||
1527 		    backing_object->paging_in_progress != 0
1528 		) {
1529 			vm_object_qcollapse(object);
1530 			break;
1531 		}
1532 
1533 		/*
1534 		 * We know that we can either collapse the backing object (if
1535 		 * the parent is the only reference to it) or (perhaps) have
1536 		 * the parent bypass the object if the parent happens to shadow
1537 		 * all the resident pages in the entire backing object.
1538 		 *
1539 		 * This is ignoring pager-backed pages such as swap pages.
1540 		 * vm_object_backing_scan fails the shadowing test in this
1541 		 * case.
1542 		 */
1543 		if (backing_object->ref_count == 1) {
1544 			/*
1545 			 * If there is exactly one reference to the backing
1546 			 * object, we can collapse it into the parent.
1547 			 */
1548 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1549 
1550 			/*
1551 			 * Move the pager from backing_object to object.
1552 			 */
1553 			if (backing_object->type == OBJT_SWAP) {
1554 				vm_object_pip_add(backing_object, 1);
1555 
1556 				/*
1557 				 * scrap the paging_offset junk and do a
1558 				 * discrete copy.  This also removes major
1559 				 * assumptions about how the swap-pager
1560 				 * works from where it doesn't belong.  The
1561 				 * new swapper is able to optimize the
1562 				 * destroy-source case.
1563 				 */
1564 				vm_object_pip_add(object, 1);
1565 				swap_pager_copy(
1566 				    backing_object,
1567 				    object,
1568 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1569 				vm_object_pip_wakeup(object);
1570 
1571 				vm_object_pip_wakeup(backing_object);
1572 			}
1573 			/*
1574 			 * Object now shadows whatever backing_object did.
1575 			 * Note that the reference to
1576 			 * backing_object->backing_object moves from within
1577 			 * backing_object to within object.
1578 			 */
1579 			TAILQ_REMOVE(
1580 			    &object->backing_object->shadow_head,
1581 			    object,
1582 			    shadow_list
1583 			);
1584 			object->backing_object->shadow_count--;
1585 			object->backing_object->generation++;
1586 			if (backing_object->backing_object) {
1587 				TAILQ_REMOVE(
1588 				    &backing_object->backing_object->shadow_head,
1589 				    backing_object,
1590 				    shadow_list
1591 				);
1592 				backing_object->backing_object->shadow_count--;
1593 				backing_object->backing_object->generation++;
1594 			}
1595 			object->backing_object = backing_object->backing_object;
1596 			if (object->backing_object) {
1597 				TAILQ_INSERT_TAIL(
1598 				    &object->backing_object->shadow_head,
1599 				    object,
1600 				    shadow_list
1601 				);
1602 				object->backing_object->shadow_count++;
1603 				object->backing_object->generation++;
1604 			}
1605 
1606 			object->backing_object_offset +=
1607 			    backing_object->backing_object_offset;
1608 
1609 			/*
1610 			 * Discard backing_object.
1611 			 *
1612 			 * Since the backing object has no pages, no pager left,
1613 			 * and no object references within it, all that is
1614 			 * necessary is to dispose of it.
1615 			 */
1616 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1617 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1618 
1619 			mtx_lock(&vm_object_list_mtx);
1620 			TAILQ_REMOVE(
1621 			    &vm_object_list,
1622 			    backing_object,
1623 			    object_list
1624 			);
1625 			mtx_unlock(&vm_object_list_mtx);
1626 
1627 			uma_zfree(obj_zone, backing_object);
1628 
1629 			object_collapses++;
1630 		} else {
1631 			vm_object_t new_backing_object;
1632 
1633 			/*
1634 			 * If we do not entirely shadow the backing object,
1635 			 * there is nothing we can do so we give up.
1636 			 */
1637 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1638 				break;
1639 			}
1640 
1641 			/*
1642 			 * Make the parent shadow the next object in the
1643 			 * chain.  Deallocating backing_object will not remove
1644 			 * it, since its reference count is at least 2.
1645 			 */
1646 			TAILQ_REMOVE(
1647 			    &backing_object->shadow_head,
1648 			    object,
1649 			    shadow_list
1650 			);
1651 			backing_object->shadow_count--;
1652 			backing_object->generation++;
1653 
1654 			new_backing_object = backing_object->backing_object;
1655 			if ((object->backing_object = new_backing_object) != NULL) {
1656 				vm_object_reference(new_backing_object);
1657 				TAILQ_INSERT_TAIL(
1658 				    &new_backing_object->shadow_head,
1659 				    object,
1660 				    shadow_list
1661 				);
1662 				new_backing_object->shadow_count++;
1663 				new_backing_object->generation++;
1664 				object->backing_object_offset +=
1665 					backing_object->backing_object_offset;
1666 			}
1667 
1668 			/*
1669 			 * Drop the reference count on backing_object. Since
1670 			 * its ref_count was at least 2, it will not vanish;
1671 			 * so we don't need to call vm_object_deallocate, but
1672 			 * we do anyway.
1673 			 */
1674 			vm_object_deallocate(backing_object);
1675 			object_bypasses++;
1676 		}
1677 
1678 		/*
1679 		 * Try again with this object's new backing object.
1680 		 */
1681 	}
1682 }
1683 
1684 /*
1685  *	vm_object_page_remove: [internal]
1686  *
1687  *	Removes all physical pages in the specified
1688  *	object range from the object's list of pages.
1689  *
1690  *	The object must be locked.
1691  */
1692 void
1693 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1694 {
1695 	vm_page_t p, next;
1696 	vm_pindex_t size;
1697 	int all;
1698 
1699 	if (object == NULL)
1700 		return;
1701 
1702 	mtx_lock(&Giant);
1703 	if (object->resident_page_count == 0) {
1704 		mtx_unlock(&Giant);
1705 		return;
1706 	}
1707 	all = ((end == 0) && (start == 0));
1708 
1709 	/*
1710 	 * Since physically-backed objects do not use managed pages, we can't
1711 	 * remove pages from the object (we must instead remove the page
1712 	 * references, and then destroy the object).
1713 	 */
1714 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1715 
1716 	vm_object_pip_add(object, 1);
1717 again:
1718 	vm_page_lock_queues();
1719 	size = end - start;
1720 	if (all || size > object->resident_page_count / 4) {
1721 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1722 			next = TAILQ_NEXT(p, listq);
1723 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1724 				if (p->wire_count != 0) {
1725 					pmap_remove_all(p);
1726 					if (!clean_only)
1727 						p->valid = 0;
1728 					continue;
1729 				}
1730 
1731 				/*
1732 				 * The busy flags are only cleared at
1733 				 * interrupt -- minimize the spl transitions
1734 				 */
1735  				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1736  					goto again;
1737 
1738 				if (clean_only && p->valid) {
1739 					vm_page_test_dirty(p);
1740 					if (p->valid & p->dirty)
1741 						continue;
1742 				}
1743 				vm_page_busy(p);
1744 				pmap_remove_all(p);
1745 				vm_page_free(p);
1746 			}
1747 		}
1748 	} else {
1749 		while (size > 0) {
1750 			if ((p = vm_page_lookup(object, start)) != NULL) {
1751 				if (p->wire_count != 0) {
1752 					pmap_remove_all(p);
1753 					if (!clean_only)
1754 						p->valid = 0;
1755 					start += 1;
1756 					size -= 1;
1757 					continue;
1758 				}
1759 
1760 				/*
1761 				 * The busy flags are only cleared at
1762 				 * interrupt -- minimize the spl transitions
1763 				 */
1764 				if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1765 					goto again;
1766 
1767 				if (clean_only && p->valid) {
1768 					vm_page_test_dirty(p);
1769 					if (p->valid & p->dirty) {
1770 						start += 1;
1771 						size -= 1;
1772 						continue;
1773 					}
1774 				}
1775 				vm_page_busy(p);
1776 				pmap_remove_all(p);
1777 				vm_page_free(p);
1778 			}
1779 			start += 1;
1780 			size -= 1;
1781 		}
1782 	}
1783 	vm_page_unlock_queues();
1784 	vm_object_pip_wakeup(object);
1785 	mtx_unlock(&Giant);
1786 }
1787 
1788 /*
1789  *	Routine:	vm_object_coalesce
1790  *	Function:	Coalesces two objects backing up adjoining
1791  *			regions of memory into a single object.
1792  *
1793  *	returns TRUE if objects were combined.
1794  *
1795  *	NOTE:	Only works at the moment if the second object is NULL -
1796  *		if it's not, which object do we lock first?
1797  *
1798  *	Parameters:
1799  *		prev_object	First object to coalesce
1800  *		prev_offset	Offset into prev_object
1801  *		next_object	Second object into coalesce
1802  *		next_offset	Offset into next_object
1803  *
1804  *		prev_size	Size of reference to prev_object
1805  *		next_size	Size of reference to next_object
1806  *
1807  *	Conditions:
1808  *	The object must *not* be locked.
1809  */
1810 boolean_t
1811 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1812 	vm_size_t prev_size, vm_size_t next_size)
1813 {
1814 	vm_pindex_t next_pindex;
1815 
1816 	if (prev_object == NULL)
1817 		return (TRUE);
1818 	vm_object_lock(prev_object);
1819 	if (prev_object->type != OBJT_DEFAULT &&
1820 	    prev_object->type != OBJT_SWAP) {
1821 		vm_object_unlock(prev_object);
1822 		return (FALSE);
1823 	}
1824 
1825 	/*
1826 	 * Try to collapse the object first
1827 	 */
1828 	vm_object_collapse(prev_object);
1829 
1830 	/*
1831 	 * Can't coalesce if: . more than one reference . paged out . shadows
1832 	 * another object . has a copy elsewhere (any of which mean that the
1833 	 * pages not mapped to prev_entry may be in use anyway)
1834 	 */
1835 	if (prev_object->backing_object != NULL) {
1836 		vm_object_unlock(prev_object);
1837 		return (FALSE);
1838 	}
1839 
1840 	prev_size >>= PAGE_SHIFT;
1841 	next_size >>= PAGE_SHIFT;
1842 	next_pindex = prev_pindex + prev_size;
1843 
1844 	if ((prev_object->ref_count > 1) &&
1845 	    (prev_object->size != next_pindex)) {
1846 		vm_object_unlock(prev_object);
1847 		return (FALSE);
1848 	}
1849 
1850 	/*
1851 	 * Remove any pages that may still be in the object from a previous
1852 	 * deallocation.
1853 	 */
1854 	if (next_pindex < prev_object->size) {
1855 		vm_object_page_remove(prev_object,
1856 				      next_pindex,
1857 				      next_pindex + next_size, FALSE);
1858 		if (prev_object->type == OBJT_SWAP)
1859 			swap_pager_freespace(prev_object,
1860 					     next_pindex, next_size);
1861 	}
1862 
1863 	/*
1864 	 * Extend the object if necessary.
1865 	 */
1866 	if (next_pindex + next_size > prev_object->size)
1867 		prev_object->size = next_pindex + next_size;
1868 
1869 	vm_object_unlock(prev_object);
1870 	return (TRUE);
1871 }
1872 
1873 void
1874 vm_object_set_writeable_dirty(vm_object_t object)
1875 {
1876 	struct vnode *vp;
1877 
1878 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1879 	if (object->type == OBJT_VNODE &&
1880 	    (vp = (struct vnode *)object->handle) != NULL) {
1881 		VI_LOCK(vp);
1882 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1883 			vp->v_iflag |= VI_OBJDIRTY;
1884 		VI_UNLOCK(vp);
1885 	}
1886 }
1887 
1888 #ifdef ENABLE_VFS_IOOPT
1889 /*
1890  * Experimental support for zero-copy I/O
1891  *
1892  * Performs the copy_on_write operations necessary to allow the virtual copies
1893  * into user space to work.  This has to be called for write(2) system calls
1894  * from other processes, file unlinking, and file size shrinkage.
1895  */
1896 void
1897 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
1898 {
1899 	int rv;
1900 	vm_object_t robject;
1901 	vm_pindex_t idx;
1902 
1903 	GIANT_REQUIRED;
1904 	if ((object == NULL) ||
1905 		((object->flags & OBJ_OPT) == 0))
1906 		return;
1907 
1908 	if (object->shadow_count > object->ref_count)
1909 		panic("vm_freeze_copyopts: sc > rc");
1910 
1911 	while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
1912 		vm_pindex_t bo_pindex;
1913 		vm_page_t m_in, m_out;
1914 
1915 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
1916 
1917 		vm_object_reference(robject);
1918 
1919 		vm_object_pip_wait(robject, "objfrz");
1920 
1921 		if (robject->ref_count == 1) {
1922 			vm_object_deallocate(robject);
1923 			continue;
1924 		}
1925 
1926 		vm_object_pip_add(robject, 1);
1927 
1928 		for (idx = 0; idx < robject->size; idx++) {
1929 
1930 			m_out = vm_page_grab(robject, idx,
1931 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1932 
1933 			if (m_out->valid == 0) {
1934 				m_in = vm_page_grab(object, bo_pindex + idx,
1935 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1936 				vm_page_lock_queues();
1937 				if (m_in->valid == 0) {
1938 					vm_page_unlock_queues();
1939 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
1940 					if (rv != VM_PAGER_OK) {
1941 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
1942 						continue;
1943 					}
1944 					vm_page_lock_queues();
1945 					vm_page_deactivate(m_in);
1946 				}
1947 
1948 				pmap_remove_all(m_in);
1949 				vm_page_unlock_queues();
1950 				pmap_copy_page(m_in, m_out);
1951 				m_out->valid = m_in->valid;
1952 				vm_page_dirty(m_out);
1953 				vm_page_lock_queues();
1954 				vm_page_activate(m_out);
1955 				vm_page_unlock_queues();
1956 				vm_page_wakeup(m_in);
1957 			}
1958 			vm_page_wakeup(m_out);
1959 		}
1960 
1961 		object->shadow_count--;
1962 		object->ref_count--;
1963 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
1964 		robject->backing_object = NULL;
1965 		robject->backing_object_offset = 0;
1966 
1967 		vm_object_pip_wakeup(robject);
1968 		vm_object_deallocate(robject);
1969 	}
1970 
1971 	vm_object_clear_flag(object, OBJ_OPT);
1972 }
1973 #endif
1974 
1975 #include "opt_ddb.h"
1976 #ifdef DDB
1977 #include <sys/kernel.h>
1978 
1979 #include <sys/cons.h>
1980 
1981 #include <ddb/ddb.h>
1982 
1983 static int
1984 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1985 {
1986 	vm_map_t tmpm;
1987 	vm_map_entry_t tmpe;
1988 	vm_object_t obj;
1989 	int entcount;
1990 
1991 	if (map == 0)
1992 		return 0;
1993 
1994 	if (entry == 0) {
1995 		tmpe = map->header.next;
1996 		entcount = map->nentries;
1997 		while (entcount-- && (tmpe != &map->header)) {
1998 			if (_vm_object_in_map(map, object, tmpe)) {
1999 				return 1;
2000 			}
2001 			tmpe = tmpe->next;
2002 		}
2003 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2004 		tmpm = entry->object.sub_map;
2005 		tmpe = tmpm->header.next;
2006 		entcount = tmpm->nentries;
2007 		while (entcount-- && tmpe != &tmpm->header) {
2008 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2009 				return 1;
2010 			}
2011 			tmpe = tmpe->next;
2012 		}
2013 	} else if ((obj = entry->object.vm_object) != NULL) {
2014 		for (; obj; obj = obj->backing_object)
2015 			if (obj == object) {
2016 				return 1;
2017 			}
2018 	}
2019 	return 0;
2020 }
2021 
2022 static int
2023 vm_object_in_map(vm_object_t object)
2024 {
2025 	struct proc *p;
2026 
2027 	/* sx_slock(&allproc_lock); */
2028 	LIST_FOREACH(p, &allproc, p_list) {
2029 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2030 			continue;
2031 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2032 			/* sx_sunlock(&allproc_lock); */
2033 			return 1;
2034 		}
2035 	}
2036 	/* sx_sunlock(&allproc_lock); */
2037 	if (_vm_object_in_map(kernel_map, object, 0))
2038 		return 1;
2039 	if (_vm_object_in_map(kmem_map, object, 0))
2040 		return 1;
2041 	if (_vm_object_in_map(pager_map, object, 0))
2042 		return 1;
2043 	if (_vm_object_in_map(buffer_map, object, 0))
2044 		return 1;
2045 	return 0;
2046 }
2047 
2048 DB_SHOW_COMMAND(vmochk, vm_object_check)
2049 {
2050 	vm_object_t object;
2051 
2052 	/*
2053 	 * make sure that internal objs are in a map somewhere
2054 	 * and none have zero ref counts.
2055 	 */
2056 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2057 		if (object->handle == NULL &&
2058 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2059 			if (object->ref_count == 0) {
2060 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2061 					(long)object->size);
2062 			}
2063 			if (!vm_object_in_map(object)) {
2064 				db_printf(
2065 			"vmochk: internal obj is not in a map: "
2066 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2067 				    object->ref_count, (u_long)object->size,
2068 				    (u_long)object->size,
2069 				    (void *)object->backing_object);
2070 			}
2071 		}
2072 	}
2073 }
2074 
2075 /*
2076  *	vm_object_print:	[ debug ]
2077  */
2078 DB_SHOW_COMMAND(object, vm_object_print_static)
2079 {
2080 	/* XXX convert args. */
2081 	vm_object_t object = (vm_object_t)addr;
2082 	boolean_t full = have_addr;
2083 
2084 	vm_page_t p;
2085 
2086 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2087 #define	count	was_count
2088 
2089 	int count;
2090 
2091 	if (object == NULL)
2092 		return;
2093 
2094 	db_iprintf(
2095 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2096 	    object, (int)object->type, (uintmax_t)object->size,
2097 	    object->resident_page_count, object->ref_count, object->flags);
2098 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2099 	    object->shadow_count,
2100 	    object->backing_object ? object->backing_object->ref_count : 0,
2101 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2102 
2103 	if (!full)
2104 		return;
2105 
2106 	db_indent += 2;
2107 	count = 0;
2108 	TAILQ_FOREACH(p, &object->memq, listq) {
2109 		if (count == 0)
2110 			db_iprintf("memory:=");
2111 		else if (count == 6) {
2112 			db_printf("\n");
2113 			db_iprintf(" ...");
2114 			count = 0;
2115 		} else
2116 			db_printf(",");
2117 		count++;
2118 
2119 		db_printf("(off=0x%jx,page=0x%jx)",
2120 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2121 	}
2122 	if (count != 0)
2123 		db_printf("\n");
2124 	db_indent -= 2;
2125 }
2126 
2127 /* XXX. */
2128 #undef count
2129 
2130 /* XXX need this non-static entry for calling from vm_map_print. */
2131 void
2132 vm_object_print(
2133         /* db_expr_t */ long addr,
2134 	boolean_t have_addr,
2135 	/* db_expr_t */ long count,
2136 	char *modif)
2137 {
2138 	vm_object_print_static(addr, have_addr, count, modif);
2139 }
2140 
2141 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2142 {
2143 	vm_object_t object;
2144 	int nl = 0;
2145 	int c;
2146 
2147 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2148 		vm_pindex_t idx, fidx;
2149 		vm_pindex_t osize;
2150 		vm_offset_t pa = -1, padiff;
2151 		int rcount;
2152 		vm_page_t m;
2153 
2154 		db_printf("new object: %p\n", (void *)object);
2155 		if (nl > 18) {
2156 			c = cngetc();
2157 			if (c != ' ')
2158 				return;
2159 			nl = 0;
2160 		}
2161 		nl++;
2162 		rcount = 0;
2163 		fidx = 0;
2164 		osize = object->size;
2165 		if (osize > 128)
2166 			osize = 128;
2167 		for (idx = 0; idx < osize; idx++) {
2168 			m = vm_page_lookup(object, idx);
2169 			if (m == NULL) {
2170 				if (rcount) {
2171 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2172 						(long)fidx, rcount, (long)pa);
2173 					if (nl > 18) {
2174 						c = cngetc();
2175 						if (c != ' ')
2176 							return;
2177 						nl = 0;
2178 					}
2179 					nl++;
2180 					rcount = 0;
2181 				}
2182 				continue;
2183 			}
2184 
2185 
2186 			if (rcount &&
2187 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2188 				++rcount;
2189 				continue;
2190 			}
2191 			if (rcount) {
2192 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2193 				padiff >>= PAGE_SHIFT;
2194 				padiff &= PQ_L2_MASK;
2195 				if (padiff == 0) {
2196 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2197 					++rcount;
2198 					continue;
2199 				}
2200 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2201 					(long)fidx, rcount, (long)pa);
2202 				db_printf("pd(%ld)\n", (long)padiff);
2203 				if (nl > 18) {
2204 					c = cngetc();
2205 					if (c != ' ')
2206 						return;
2207 					nl = 0;
2208 				}
2209 				nl++;
2210 			}
2211 			fidx = idx;
2212 			pa = VM_PAGE_TO_PHYS(m);
2213 			rcount = 1;
2214 		}
2215 		if (rcount) {
2216 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2217 				(long)fidx, rcount, (long)pa);
2218 			if (nl > 18) {
2219 				c = cngetc();
2220 				if (c != ' ')
2221 					return;
2222 				nl = 0;
2223 			}
2224 			nl++;
2225 		}
2226 	}
2227 }
2228 #endif /* DDB */
2229