1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/vnode.h> 83 #include <sys/vmmeter.h> 84 #include <sys/sx.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pageout.h> 93 #include <vm/vm_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_reserv.h> 99 #include <vm/uma.h> 100 101 static int old_msync; 102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 103 "Use old (insecure) msync behavior"); 104 105 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 106 int pagerflags, int flags, boolean_t *clearobjflags, 107 boolean_t *eio); 108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 109 boolean_t *clearobjflags); 110 static void vm_object_qcollapse(vm_object_t object); 111 static void vm_object_vndeallocate(vm_object_t object); 112 113 /* 114 * Virtual memory objects maintain the actual data 115 * associated with allocated virtual memory. A given 116 * page of memory exists within exactly one object. 117 * 118 * An object is only deallocated when all "references" 119 * are given up. Only one "reference" to a given 120 * region of an object should be writeable. 121 * 122 * Associated with each object is a list of all resident 123 * memory pages belonging to that object; this list is 124 * maintained by the "vm_page" module, and locked by the object's 125 * lock. 126 * 127 * Each object also records a "pager" routine which is 128 * used to retrieve (and store) pages to the proper backing 129 * storage. In addition, objects may be backed by other 130 * objects from which they were virtual-copied. 131 * 132 * The only items within the object structure which are 133 * modified after time of creation are: 134 * reference count locked by object's lock 135 * pager routine locked by object's lock 136 * 137 */ 138 139 struct object_q vm_object_list; 140 struct mtx vm_object_list_mtx; /* lock for object list and count */ 141 142 struct vm_object kernel_object_store; 143 struct vm_object kmem_object_store; 144 145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 146 "VM object stats"); 147 148 static long object_collapses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 150 &object_collapses, 0, "VM object collapses"); 151 152 static long object_bypasses; 153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 154 &object_bypasses, 0, "VM object bypasses"); 155 156 static uma_zone_t obj_zone; 157 158 static int vm_object_zinit(void *mem, int size, int flags); 159 160 #ifdef INVARIANTS 161 static void vm_object_zdtor(void *mem, int size, void *arg); 162 163 static void 164 vm_object_zdtor(void *mem, int size, void *arg) 165 { 166 vm_object_t object; 167 168 object = (vm_object_t)mem; 169 KASSERT(TAILQ_EMPTY(&object->memq), 170 ("object %p has resident pages in its memq", object)); 171 KASSERT(vm_radix_is_empty(&object->rtree), 172 ("object %p has resident pages in its trie", object)); 173 #if VM_NRESERVLEVEL > 0 174 KASSERT(LIST_EMPTY(&object->rvq), 175 ("object %p has reservations", 176 object)); 177 #endif 178 KASSERT(vm_object_cache_is_empty(object), 179 ("object %p has cached pages", 180 object)); 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 } 191 #endif 192 193 static int 194 vm_object_zinit(void *mem, int size, int flags) 195 { 196 vm_object_t object; 197 198 object = (vm_object_t)mem; 199 bzero(&object->lock, sizeof(object->lock)); 200 rw_init_flags(&object->lock, "vm object", RW_DUPOK); 201 202 /* These are true for any object that has been freed */ 203 object->rtree.rt_root = 0; 204 object->paging_in_progress = 0; 205 object->resident_page_count = 0; 206 object->shadow_count = 0; 207 object->cache.rt_root = 0; 208 return (0); 209 } 210 211 static void 212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 213 { 214 215 TAILQ_INIT(&object->memq); 216 LIST_INIT(&object->shadow_head); 217 218 object->type = type; 219 switch (type) { 220 case OBJT_DEAD: 221 panic("_vm_object_allocate: can't create OBJT_DEAD"); 222 case OBJT_DEFAULT: 223 case OBJT_SWAP: 224 object->flags = OBJ_ONEMAPPING; 225 break; 226 case OBJT_DEVICE: 227 case OBJT_SG: 228 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 229 break; 230 case OBJT_MGTDEVICE: 231 object->flags = OBJ_FICTITIOUS; 232 break; 233 case OBJT_PHYS: 234 object->flags = OBJ_UNMANAGED; 235 break; 236 case OBJT_VNODE: 237 object->flags = 0; 238 break; 239 default: 240 panic("_vm_object_allocate: type %d is undefined", type); 241 } 242 object->size = size; 243 object->generation = 1; 244 object->ref_count = 1; 245 object->memattr = VM_MEMATTR_DEFAULT; 246 object->cred = NULL; 247 object->charge = 0; 248 object->handle = NULL; 249 object->backing_object = NULL; 250 object->backing_object_offset = (vm_ooffset_t) 0; 251 #if VM_NRESERVLEVEL > 0 252 LIST_INIT(&object->rvq); 253 #endif 254 255 mtx_lock(&vm_object_list_mtx); 256 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 257 mtx_unlock(&vm_object_list_mtx); 258 } 259 260 /* 261 * vm_object_init: 262 * 263 * Initialize the VM objects module. 264 */ 265 void 266 vm_object_init(void) 267 { 268 TAILQ_INIT(&vm_object_list); 269 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 270 271 rw_init(&kernel_object->lock, "kernel vm object"); 272 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 273 kernel_object); 274 #if VM_NRESERVLEVEL > 0 275 kernel_object->flags |= OBJ_COLORED; 276 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 277 #endif 278 279 rw_init(&kmem_object->lock, "kmem vm object"); 280 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 281 kmem_object); 282 #if VM_NRESERVLEVEL > 0 283 kmem_object->flags |= OBJ_COLORED; 284 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 285 #endif 286 287 /* 288 * The lock portion of struct vm_object must be type stable due 289 * to vm_pageout_fallback_object_lock locking a vm object 290 * without holding any references to it. 291 */ 292 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 293 #ifdef INVARIANTS 294 vm_object_zdtor, 295 #else 296 NULL, 297 #endif 298 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 299 300 vm_radix_init(); 301 } 302 303 void 304 vm_object_clear_flag(vm_object_t object, u_short bits) 305 { 306 307 VM_OBJECT_ASSERT_WLOCKED(object); 308 object->flags &= ~bits; 309 } 310 311 /* 312 * Sets the default memory attribute for the specified object. Pages 313 * that are allocated to this object are by default assigned this memory 314 * attribute. 315 * 316 * Presently, this function must be called before any pages are allocated 317 * to the object. In the future, this requirement may be relaxed for 318 * "default" and "swap" objects. 319 */ 320 int 321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 322 { 323 324 VM_OBJECT_ASSERT_WLOCKED(object); 325 switch (object->type) { 326 case OBJT_DEFAULT: 327 case OBJT_DEVICE: 328 case OBJT_MGTDEVICE: 329 case OBJT_PHYS: 330 case OBJT_SG: 331 case OBJT_SWAP: 332 case OBJT_VNODE: 333 if (!TAILQ_EMPTY(&object->memq)) 334 return (KERN_FAILURE); 335 break; 336 case OBJT_DEAD: 337 return (KERN_INVALID_ARGUMENT); 338 default: 339 panic("vm_object_set_memattr: object %p is of undefined type", 340 object); 341 } 342 object->memattr = memattr; 343 return (KERN_SUCCESS); 344 } 345 346 void 347 vm_object_pip_add(vm_object_t object, short i) 348 { 349 350 VM_OBJECT_ASSERT_WLOCKED(object); 351 object->paging_in_progress += i; 352 } 353 354 void 355 vm_object_pip_subtract(vm_object_t object, short i) 356 { 357 358 VM_OBJECT_ASSERT_WLOCKED(object); 359 object->paging_in_progress -= i; 360 } 361 362 void 363 vm_object_pip_wakeup(vm_object_t object) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress--; 368 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 369 vm_object_clear_flag(object, OBJ_PIPWNT); 370 wakeup(object); 371 } 372 } 373 374 void 375 vm_object_pip_wakeupn(vm_object_t object, short i) 376 { 377 378 VM_OBJECT_ASSERT_WLOCKED(object); 379 if (i) 380 object->paging_in_progress -= i; 381 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 382 vm_object_clear_flag(object, OBJ_PIPWNT); 383 wakeup(object); 384 } 385 } 386 387 void 388 vm_object_pip_wait(vm_object_t object, char *waitid) 389 { 390 391 VM_OBJECT_ASSERT_WLOCKED(object); 392 while (object->paging_in_progress) { 393 object->flags |= OBJ_PIPWNT; 394 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 395 } 396 } 397 398 /* 399 * vm_object_allocate: 400 * 401 * Returns a new object with the given size. 402 */ 403 vm_object_t 404 vm_object_allocate(objtype_t type, vm_pindex_t size) 405 { 406 vm_object_t object; 407 408 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 409 _vm_object_allocate(type, size, object); 410 return (object); 411 } 412 413 414 /* 415 * vm_object_reference: 416 * 417 * Gets another reference to the given object. Note: OBJ_DEAD 418 * objects can be referenced during final cleaning. 419 */ 420 void 421 vm_object_reference(vm_object_t object) 422 { 423 if (object == NULL) 424 return; 425 VM_OBJECT_WLOCK(object); 426 vm_object_reference_locked(object); 427 VM_OBJECT_WUNLOCK(object); 428 } 429 430 /* 431 * vm_object_reference_locked: 432 * 433 * Gets another reference to the given object. 434 * 435 * The object must be locked. 436 */ 437 void 438 vm_object_reference_locked(vm_object_t object) 439 { 440 struct vnode *vp; 441 442 VM_OBJECT_ASSERT_WLOCKED(object); 443 object->ref_count++; 444 if (object->type == OBJT_VNODE) { 445 vp = object->handle; 446 vref(vp); 447 } 448 } 449 450 /* 451 * Handle deallocating an object of type OBJT_VNODE. 452 */ 453 static void 454 vm_object_vndeallocate(vm_object_t object) 455 { 456 struct vnode *vp = (struct vnode *) object->handle; 457 458 VM_OBJECT_ASSERT_WLOCKED(object); 459 KASSERT(object->type == OBJT_VNODE, 460 ("vm_object_vndeallocate: not a vnode object")); 461 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 462 #ifdef INVARIANTS 463 if (object->ref_count == 0) { 464 vprint("vm_object_vndeallocate", vp); 465 panic("vm_object_vndeallocate: bad object reference count"); 466 } 467 #endif 468 469 if (object->ref_count > 1) { 470 object->ref_count--; 471 VM_OBJECT_WUNLOCK(object); 472 /* vrele may need the vnode lock. */ 473 vrele(vp); 474 } else { 475 vhold(vp); 476 VM_OBJECT_WUNLOCK(object); 477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 478 vdrop(vp); 479 VM_OBJECT_WLOCK(object); 480 object->ref_count--; 481 if (object->type == OBJT_DEAD) { 482 VM_OBJECT_WUNLOCK(object); 483 VOP_UNLOCK(vp, 0); 484 } else { 485 if (object->ref_count == 0) 486 VOP_UNSET_TEXT(vp); 487 VM_OBJECT_WUNLOCK(object); 488 vput(vp); 489 } 490 } 491 } 492 493 /* 494 * vm_object_deallocate: 495 * 496 * Release a reference to the specified object, 497 * gained either through a vm_object_allocate 498 * or a vm_object_reference call. When all references 499 * are gone, storage associated with this object 500 * may be relinquished. 501 * 502 * No object may be locked. 503 */ 504 void 505 vm_object_deallocate(vm_object_t object) 506 { 507 vm_object_t temp; 508 struct vnode *vp; 509 510 while (object != NULL) { 511 VM_OBJECT_WLOCK(object); 512 if (object->type == OBJT_VNODE) { 513 vm_object_vndeallocate(object); 514 return; 515 } 516 517 KASSERT(object->ref_count != 0, 518 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 519 520 /* 521 * If the reference count goes to 0 we start calling 522 * vm_object_terminate() on the object chain. 523 * A ref count of 1 may be a special case depending on the 524 * shadow count being 0 or 1. 525 */ 526 object->ref_count--; 527 if (object->ref_count > 1) { 528 VM_OBJECT_WUNLOCK(object); 529 return; 530 } else if (object->ref_count == 1) { 531 if (object->type == OBJT_SWAP && 532 (object->flags & OBJ_TMPFS) != 0) { 533 vp = object->un_pager.swp.swp_tmpfs; 534 vhold(vp); 535 VM_OBJECT_WUNLOCK(object); 536 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 537 vdrop(vp); 538 VM_OBJECT_WLOCK(object); 539 if (object->type == OBJT_DEAD) { 540 VM_OBJECT_WUNLOCK(object); 541 VOP_UNLOCK(vp, 0); 542 return; 543 } else if ((object->flags & OBJ_TMPFS) != 0) { 544 if (object->ref_count == 1) 545 VOP_UNSET_TEXT(vp); 546 VOP_UNLOCK(vp, 0); 547 } 548 } 549 if (object->shadow_count == 0 && 550 object->handle == NULL && 551 (object->type == OBJT_DEFAULT || 552 (object->type == OBJT_SWAP && 553 (object->flags & OBJ_TMPFS) == 0))) { 554 vm_object_set_flag(object, OBJ_ONEMAPPING); 555 } else if ((object->shadow_count == 1) && 556 (object->handle == NULL) && 557 (object->type == OBJT_DEFAULT || 558 object->type == OBJT_SWAP)) { 559 KASSERT((object->flags & OBJ_TMPFS) == 0, 560 ("Shadowed tmpfs v_object")); 561 vm_object_t robject; 562 563 robject = LIST_FIRST(&object->shadow_head); 564 KASSERT(robject != NULL, 565 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 566 object->ref_count, 567 object->shadow_count)); 568 if (!VM_OBJECT_TRYWLOCK(robject)) { 569 /* 570 * Avoid a potential deadlock. 571 */ 572 object->ref_count++; 573 VM_OBJECT_WUNLOCK(object); 574 /* 575 * More likely than not the thread 576 * holding robject's lock has lower 577 * priority than the current thread. 578 * Let the lower priority thread run. 579 */ 580 pause("vmo_de", 1); 581 continue; 582 } 583 /* 584 * Collapse object into its shadow unless its 585 * shadow is dead. In that case, object will 586 * be deallocated by the thread that is 587 * deallocating its shadow. 588 */ 589 if ((robject->flags & OBJ_DEAD) == 0 && 590 (robject->handle == NULL) && 591 (robject->type == OBJT_DEFAULT || 592 robject->type == OBJT_SWAP)) { 593 594 robject->ref_count++; 595 retry: 596 if (robject->paging_in_progress) { 597 VM_OBJECT_WUNLOCK(object); 598 vm_object_pip_wait(robject, 599 "objde1"); 600 temp = robject->backing_object; 601 if (object == temp) { 602 VM_OBJECT_WLOCK(object); 603 goto retry; 604 } 605 } else if (object->paging_in_progress) { 606 VM_OBJECT_WUNLOCK(robject); 607 object->flags |= OBJ_PIPWNT; 608 VM_OBJECT_SLEEP(object, object, 609 PDROP | PVM, "objde2", 0); 610 VM_OBJECT_WLOCK(robject); 611 temp = robject->backing_object; 612 if (object == temp) { 613 VM_OBJECT_WLOCK(object); 614 goto retry; 615 } 616 } else 617 VM_OBJECT_WUNLOCK(object); 618 619 if (robject->ref_count == 1) { 620 robject->ref_count--; 621 object = robject; 622 goto doterm; 623 } 624 object = robject; 625 vm_object_collapse(object); 626 VM_OBJECT_WUNLOCK(object); 627 continue; 628 } 629 VM_OBJECT_WUNLOCK(robject); 630 } 631 VM_OBJECT_WUNLOCK(object); 632 return; 633 } 634 doterm: 635 temp = object->backing_object; 636 if (temp != NULL) { 637 VM_OBJECT_WLOCK(temp); 638 LIST_REMOVE(object, shadow_list); 639 temp->shadow_count--; 640 VM_OBJECT_WUNLOCK(temp); 641 object->backing_object = NULL; 642 } 643 /* 644 * Don't double-terminate, we could be in a termination 645 * recursion due to the terminate having to sync data 646 * to disk. 647 */ 648 if ((object->flags & OBJ_DEAD) == 0) 649 vm_object_terminate(object); 650 else 651 VM_OBJECT_WUNLOCK(object); 652 object = temp; 653 } 654 } 655 656 /* 657 * vm_object_destroy removes the object from the global object list 658 * and frees the space for the object. 659 */ 660 void 661 vm_object_destroy(vm_object_t object) 662 { 663 664 /* 665 * Remove the object from the global object list. 666 */ 667 mtx_lock(&vm_object_list_mtx); 668 TAILQ_REMOVE(&vm_object_list, object, object_list); 669 mtx_unlock(&vm_object_list_mtx); 670 671 /* 672 * Release the allocation charge. 673 */ 674 if (object->cred != NULL) { 675 KASSERT(object->type == OBJT_DEFAULT || 676 object->type == OBJT_SWAP, 677 ("vm_object_terminate: non-swap obj %p has cred", 678 object)); 679 swap_release_by_cred(object->charge, object->cred); 680 object->charge = 0; 681 crfree(object->cred); 682 object->cred = NULL; 683 } 684 685 /* 686 * Free the space for the object. 687 */ 688 uma_zfree(obj_zone, object); 689 } 690 691 /* 692 * vm_object_terminate actually destroys the specified object, freeing 693 * up all previously used resources. 694 * 695 * The object must be locked. 696 * This routine may block. 697 */ 698 void 699 vm_object_terminate(vm_object_t object) 700 { 701 vm_page_t p, p_next; 702 703 VM_OBJECT_ASSERT_WLOCKED(object); 704 705 /* 706 * Make sure no one uses us. 707 */ 708 vm_object_set_flag(object, OBJ_DEAD); 709 710 /* 711 * wait for the pageout daemon to be done with the object 712 */ 713 vm_object_pip_wait(object, "objtrm"); 714 715 KASSERT(!object->paging_in_progress, 716 ("vm_object_terminate: pageout in progress")); 717 718 /* 719 * Clean and free the pages, as appropriate. All references to the 720 * object are gone, so we don't need to lock it. 721 */ 722 if (object->type == OBJT_VNODE) { 723 struct vnode *vp = (struct vnode *)object->handle; 724 725 /* 726 * Clean pages and flush buffers. 727 */ 728 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 729 VM_OBJECT_WUNLOCK(object); 730 731 vinvalbuf(vp, V_SAVE, 0, 0); 732 733 VM_OBJECT_WLOCK(object); 734 } 735 736 KASSERT(object->ref_count == 0, 737 ("vm_object_terminate: object with references, ref_count=%d", 738 object->ref_count)); 739 740 /* 741 * Free any remaining pageable pages. This also removes them from the 742 * paging queues. However, don't free wired pages, just remove them 743 * from the object. Rather than incrementally removing each page from 744 * the object, the page and object are reset to any empty state. 745 */ 746 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 747 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 748 ("vm_object_terminate: freeing busy page %p", p)); 749 vm_page_lock(p); 750 /* 751 * Optimize the page's removal from the object by resetting 752 * its "object" field. Specifically, if the page is not 753 * wired, then the effect of this assignment is that 754 * vm_page_free()'s call to vm_page_remove() will return 755 * immediately without modifying the page or the object. 756 */ 757 p->object = NULL; 758 if (p->wire_count == 0) { 759 vm_page_free(p); 760 PCPU_INC(cnt.v_pfree); 761 } 762 vm_page_unlock(p); 763 } 764 /* 765 * If the object contained any pages, then reset it to an empty state. 766 * None of the object's fields, including "resident_page_count", were 767 * modified by the preceding loop. 768 */ 769 if (object->resident_page_count != 0) { 770 vm_radix_reclaim_allnodes(&object->rtree); 771 TAILQ_INIT(&object->memq); 772 object->resident_page_count = 0; 773 if (object->type == OBJT_VNODE) 774 vdrop(object->handle); 775 } 776 777 #if VM_NRESERVLEVEL > 0 778 if (__predict_false(!LIST_EMPTY(&object->rvq))) 779 vm_reserv_break_all(object); 780 #endif 781 if (__predict_false(!vm_object_cache_is_empty(object))) 782 vm_page_cache_free(object, 0, 0); 783 784 /* 785 * Let the pager know object is dead. 786 */ 787 vm_pager_deallocate(object); 788 VM_OBJECT_WUNLOCK(object); 789 790 vm_object_destroy(object); 791 } 792 793 /* 794 * Make the page read-only so that we can clear the object flags. However, if 795 * this is a nosync mmap then the object is likely to stay dirty so do not 796 * mess with the page and do not clear the object flags. Returns TRUE if the 797 * page should be flushed, and FALSE otherwise. 798 */ 799 static boolean_t 800 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 801 { 802 803 /* 804 * If we have been asked to skip nosync pages and this is a 805 * nosync page, skip it. Note that the object flags were not 806 * cleared in this case so we do not have to set them. 807 */ 808 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 809 *clearobjflags = FALSE; 810 return (FALSE); 811 } else { 812 pmap_remove_write(p); 813 return (p->dirty != 0); 814 } 815 } 816 817 /* 818 * vm_object_page_clean 819 * 820 * Clean all dirty pages in the specified range of object. Leaves page 821 * on whatever queue it is currently on. If NOSYNC is set then do not 822 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 823 * leaving the object dirty. 824 * 825 * When stuffing pages asynchronously, allow clustering. XXX we need a 826 * synchronous clustering mode implementation. 827 * 828 * Odd semantics: if start == end, we clean everything. 829 * 830 * The object must be locked. 831 * 832 * Returns FALSE if some page from the range was not written, as 833 * reported by the pager, and TRUE otherwise. 834 */ 835 boolean_t 836 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 837 int flags) 838 { 839 vm_page_t np, p; 840 vm_pindex_t pi, tend, tstart; 841 int curgeneration, n, pagerflags; 842 boolean_t clearobjflags, eio, res; 843 844 VM_OBJECT_ASSERT_WLOCKED(object); 845 846 /* 847 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 848 * objects. The check below prevents the function from 849 * operating on non-vnode objects. 850 */ 851 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 852 object->resident_page_count == 0) 853 return (TRUE); 854 855 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 856 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 857 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 858 859 tstart = OFF_TO_IDX(start); 860 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 861 clearobjflags = tstart == 0 && tend >= object->size; 862 res = TRUE; 863 864 rescan: 865 curgeneration = object->generation; 866 867 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 868 pi = p->pindex; 869 if (pi >= tend) 870 break; 871 np = TAILQ_NEXT(p, listq); 872 if (p->valid == 0) 873 continue; 874 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 875 if (object->generation != curgeneration) { 876 if ((flags & OBJPC_SYNC) != 0) 877 goto rescan; 878 else 879 clearobjflags = FALSE; 880 } 881 np = vm_page_find_least(object, pi); 882 continue; 883 } 884 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 885 continue; 886 887 n = vm_object_page_collect_flush(object, p, pagerflags, 888 flags, &clearobjflags, &eio); 889 if (eio) { 890 res = FALSE; 891 clearobjflags = FALSE; 892 } 893 if (object->generation != curgeneration) { 894 if ((flags & OBJPC_SYNC) != 0) 895 goto rescan; 896 else 897 clearobjflags = FALSE; 898 } 899 900 /* 901 * If the VOP_PUTPAGES() did a truncated write, so 902 * that even the first page of the run is not fully 903 * written, vm_pageout_flush() returns 0 as the run 904 * length. Since the condition that caused truncated 905 * write may be permanent, e.g. exhausted free space, 906 * accepting n == 0 would cause an infinite loop. 907 * 908 * Forwarding the iterator leaves the unwritten page 909 * behind, but there is not much we can do there if 910 * filesystem refuses to write it. 911 */ 912 if (n == 0) { 913 n = 1; 914 clearobjflags = FALSE; 915 } 916 np = vm_page_find_least(object, pi + n); 917 } 918 #if 0 919 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 920 #endif 921 922 if (clearobjflags) 923 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 924 return (res); 925 } 926 927 static int 928 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 929 int flags, boolean_t *clearobjflags, boolean_t *eio) 930 { 931 vm_page_t ma[vm_pageout_page_count], p_first, tp; 932 int count, i, mreq, runlen; 933 934 vm_page_lock_assert(p, MA_NOTOWNED); 935 VM_OBJECT_ASSERT_WLOCKED(object); 936 937 count = 1; 938 mreq = 0; 939 940 for (tp = p; count < vm_pageout_page_count; count++) { 941 tp = vm_page_next(tp); 942 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 943 break; 944 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 945 break; 946 } 947 948 for (p_first = p; count < vm_pageout_page_count; count++) { 949 tp = vm_page_prev(p_first); 950 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 951 break; 952 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 953 break; 954 p_first = tp; 955 mreq++; 956 } 957 958 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 959 ma[i] = tp; 960 961 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 962 return (runlen); 963 } 964 965 /* 966 * Note that there is absolutely no sense in writing out 967 * anonymous objects, so we track down the vnode object 968 * to write out. 969 * We invalidate (remove) all pages from the address space 970 * for semantic correctness. 971 * 972 * If the backing object is a device object with unmanaged pages, then any 973 * mappings to the specified range of pages must be removed before this 974 * function is called. 975 * 976 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 977 * may start out with a NULL object. 978 */ 979 boolean_t 980 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 981 boolean_t syncio, boolean_t invalidate) 982 { 983 vm_object_t backing_object; 984 struct vnode *vp; 985 struct mount *mp; 986 int error, flags, fsync_after; 987 boolean_t res; 988 989 if (object == NULL) 990 return (TRUE); 991 res = TRUE; 992 error = 0; 993 VM_OBJECT_WLOCK(object); 994 while ((backing_object = object->backing_object) != NULL) { 995 VM_OBJECT_WLOCK(backing_object); 996 offset += object->backing_object_offset; 997 VM_OBJECT_WUNLOCK(object); 998 object = backing_object; 999 if (object->size < OFF_TO_IDX(offset + size)) 1000 size = IDX_TO_OFF(object->size) - offset; 1001 } 1002 /* 1003 * Flush pages if writing is allowed, invalidate them 1004 * if invalidation requested. Pages undergoing I/O 1005 * will be ignored by vm_object_page_remove(). 1006 * 1007 * We cannot lock the vnode and then wait for paging 1008 * to complete without deadlocking against vm_fault. 1009 * Instead we simply call vm_object_page_remove() and 1010 * allow it to block internally on a page-by-page 1011 * basis when it encounters pages undergoing async 1012 * I/O. 1013 */ 1014 if (object->type == OBJT_VNODE && 1015 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1016 vp = object->handle; 1017 VM_OBJECT_WUNLOCK(object); 1018 (void) vn_start_write(vp, &mp, V_WAIT); 1019 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1020 if (syncio && !invalidate && offset == 0 && 1021 OFF_TO_IDX(size) == object->size) { 1022 /* 1023 * If syncing the whole mapping of the file, 1024 * it is faster to schedule all the writes in 1025 * async mode, also allowing the clustering, 1026 * and then wait for i/o to complete. 1027 */ 1028 flags = 0; 1029 fsync_after = TRUE; 1030 } else { 1031 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1032 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1033 fsync_after = FALSE; 1034 } 1035 VM_OBJECT_WLOCK(object); 1036 res = vm_object_page_clean(object, offset, offset + size, 1037 flags); 1038 VM_OBJECT_WUNLOCK(object); 1039 if (fsync_after) 1040 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1041 VOP_UNLOCK(vp, 0); 1042 vn_finished_write(mp); 1043 if (error != 0) 1044 res = FALSE; 1045 VM_OBJECT_WLOCK(object); 1046 } 1047 if ((object->type == OBJT_VNODE || 1048 object->type == OBJT_DEVICE) && invalidate) { 1049 if (object->type == OBJT_DEVICE) 1050 /* 1051 * The option OBJPR_NOTMAPPED must be passed here 1052 * because vm_object_page_remove() cannot remove 1053 * unmanaged mappings. 1054 */ 1055 flags = OBJPR_NOTMAPPED; 1056 else if (old_msync) 1057 flags = 0; 1058 else 1059 flags = OBJPR_CLEANONLY; 1060 vm_object_page_remove(object, OFF_TO_IDX(offset), 1061 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1062 } 1063 VM_OBJECT_WUNLOCK(object); 1064 return (res); 1065 } 1066 1067 /* 1068 * vm_object_madvise: 1069 * 1070 * Implements the madvise function at the object/page level. 1071 * 1072 * MADV_WILLNEED (any object) 1073 * 1074 * Activate the specified pages if they are resident. 1075 * 1076 * MADV_DONTNEED (any object) 1077 * 1078 * Deactivate the specified pages if they are resident. 1079 * 1080 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1081 * OBJ_ONEMAPPING only) 1082 * 1083 * Deactivate and clean the specified pages if they are 1084 * resident. This permits the process to reuse the pages 1085 * without faulting or the kernel to reclaim the pages 1086 * without I/O. 1087 */ 1088 void 1089 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1090 int advise) 1091 { 1092 vm_pindex_t tpindex; 1093 vm_object_t backing_object, tobject; 1094 vm_page_t m; 1095 1096 if (object == NULL) 1097 return; 1098 VM_OBJECT_WLOCK(object); 1099 /* 1100 * Locate and adjust resident pages 1101 */ 1102 for (; pindex < end; pindex += 1) { 1103 relookup: 1104 tobject = object; 1105 tpindex = pindex; 1106 shadowlookup: 1107 /* 1108 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1109 * and those pages must be OBJ_ONEMAPPING. 1110 */ 1111 if (advise == MADV_FREE) { 1112 if ((tobject->type != OBJT_DEFAULT && 1113 tobject->type != OBJT_SWAP) || 1114 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1115 goto unlock_tobject; 1116 } 1117 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1118 goto unlock_tobject; 1119 m = vm_page_lookup(tobject, tpindex); 1120 if (m == NULL && advise == MADV_WILLNEED) { 1121 /* 1122 * If the page is cached, reactivate it. 1123 */ 1124 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1125 VM_ALLOC_NOBUSY); 1126 } 1127 if (m == NULL) { 1128 /* 1129 * There may be swap even if there is no backing page 1130 */ 1131 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1132 swap_pager_freespace(tobject, tpindex, 1); 1133 /* 1134 * next object 1135 */ 1136 backing_object = tobject->backing_object; 1137 if (backing_object == NULL) 1138 goto unlock_tobject; 1139 VM_OBJECT_WLOCK(backing_object); 1140 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1141 if (tobject != object) 1142 VM_OBJECT_WUNLOCK(tobject); 1143 tobject = backing_object; 1144 goto shadowlookup; 1145 } else if (m->valid != VM_PAGE_BITS_ALL) 1146 goto unlock_tobject; 1147 /* 1148 * If the page is not in a normal state, skip it. 1149 */ 1150 vm_page_lock(m); 1151 if (m->hold_count != 0 || m->wire_count != 0) { 1152 vm_page_unlock(m); 1153 goto unlock_tobject; 1154 } 1155 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1156 ("vm_object_madvise: page %p is fictitious", m)); 1157 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1158 ("vm_object_madvise: page %p is not managed", m)); 1159 if ((m->oflags & VPO_BUSY) || m->busy) { 1160 if (advise == MADV_WILLNEED) { 1161 /* 1162 * Reference the page before unlocking and 1163 * sleeping so that the page daemon is less 1164 * likely to reclaim it. 1165 */ 1166 vm_page_aflag_set(m, PGA_REFERENCED); 1167 } 1168 vm_page_unlock(m); 1169 if (object != tobject) 1170 VM_OBJECT_WUNLOCK(object); 1171 m->oflags |= VPO_WANTED; 1172 VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0); 1173 VM_OBJECT_WLOCK(object); 1174 goto relookup; 1175 } 1176 if (advise == MADV_WILLNEED) { 1177 vm_page_activate(m); 1178 } else if (advise == MADV_DONTNEED) { 1179 vm_page_dontneed(m); 1180 } else if (advise == MADV_FREE) { 1181 /* 1182 * Mark the page clean. This will allow the page 1183 * to be freed up by the system. However, such pages 1184 * are often reused quickly by malloc()/free() 1185 * so we do not do anything that would cause 1186 * a page fault if we can help it. 1187 * 1188 * Specifically, we do not try to actually free 1189 * the page now nor do we try to put it in the 1190 * cache (which would cause a page fault on reuse). 1191 * 1192 * But we do make the page is freeable as we 1193 * can without actually taking the step of unmapping 1194 * it. 1195 */ 1196 pmap_clear_modify(m); 1197 m->dirty = 0; 1198 m->act_count = 0; 1199 vm_page_dontneed(m); 1200 } 1201 vm_page_unlock(m); 1202 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1203 swap_pager_freespace(tobject, tpindex, 1); 1204 unlock_tobject: 1205 if (tobject != object) 1206 VM_OBJECT_WUNLOCK(tobject); 1207 } 1208 VM_OBJECT_WUNLOCK(object); 1209 } 1210 1211 /* 1212 * vm_object_shadow: 1213 * 1214 * Create a new object which is backed by the 1215 * specified existing object range. The source 1216 * object reference is deallocated. 1217 * 1218 * The new object and offset into that object 1219 * are returned in the source parameters. 1220 */ 1221 void 1222 vm_object_shadow( 1223 vm_object_t *object, /* IN/OUT */ 1224 vm_ooffset_t *offset, /* IN/OUT */ 1225 vm_size_t length) 1226 { 1227 vm_object_t source; 1228 vm_object_t result; 1229 1230 source = *object; 1231 1232 /* 1233 * Don't create the new object if the old object isn't shared. 1234 */ 1235 if (source != NULL) { 1236 VM_OBJECT_WLOCK(source); 1237 if (source->ref_count == 1 && 1238 source->handle == NULL && 1239 (source->type == OBJT_DEFAULT || 1240 source->type == OBJT_SWAP)) { 1241 VM_OBJECT_WUNLOCK(source); 1242 return; 1243 } 1244 VM_OBJECT_WUNLOCK(source); 1245 } 1246 1247 /* 1248 * Allocate a new object with the given length. 1249 */ 1250 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1251 1252 /* 1253 * The new object shadows the source object, adding a reference to it. 1254 * Our caller changes his reference to point to the new object, 1255 * removing a reference to the source object. Net result: no change 1256 * of reference count. 1257 * 1258 * Try to optimize the result object's page color when shadowing 1259 * in order to maintain page coloring consistency in the combined 1260 * shadowed object. 1261 */ 1262 result->backing_object = source; 1263 /* 1264 * Store the offset into the source object, and fix up the offset into 1265 * the new object. 1266 */ 1267 result->backing_object_offset = *offset; 1268 if (source != NULL) { 1269 VM_OBJECT_WLOCK(source); 1270 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1271 source->shadow_count++; 1272 #if VM_NRESERVLEVEL > 0 1273 result->flags |= source->flags & OBJ_COLORED; 1274 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1275 ((1 << (VM_NFREEORDER - 1)) - 1); 1276 #endif 1277 VM_OBJECT_WUNLOCK(source); 1278 } 1279 1280 1281 /* 1282 * Return the new things 1283 */ 1284 *offset = 0; 1285 *object = result; 1286 } 1287 1288 /* 1289 * vm_object_split: 1290 * 1291 * Split the pages in a map entry into a new object. This affords 1292 * easier removal of unused pages, and keeps object inheritance from 1293 * being a negative impact on memory usage. 1294 */ 1295 void 1296 vm_object_split(vm_map_entry_t entry) 1297 { 1298 vm_page_t m, m_next; 1299 vm_object_t orig_object, new_object, source; 1300 vm_pindex_t idx, offidxstart; 1301 vm_size_t size; 1302 1303 orig_object = entry->object.vm_object; 1304 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1305 return; 1306 if (orig_object->ref_count <= 1) 1307 return; 1308 VM_OBJECT_WUNLOCK(orig_object); 1309 1310 offidxstart = OFF_TO_IDX(entry->offset); 1311 size = atop(entry->end - entry->start); 1312 1313 /* 1314 * If swap_pager_copy() is later called, it will convert new_object 1315 * into a swap object. 1316 */ 1317 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1318 1319 /* 1320 * At this point, the new object is still private, so the order in 1321 * which the original and new objects are locked does not matter. 1322 */ 1323 VM_OBJECT_WLOCK(new_object); 1324 VM_OBJECT_WLOCK(orig_object); 1325 source = orig_object->backing_object; 1326 if (source != NULL) { 1327 VM_OBJECT_WLOCK(source); 1328 if ((source->flags & OBJ_DEAD) != 0) { 1329 VM_OBJECT_WUNLOCK(source); 1330 VM_OBJECT_WUNLOCK(orig_object); 1331 VM_OBJECT_WUNLOCK(new_object); 1332 vm_object_deallocate(new_object); 1333 VM_OBJECT_WLOCK(orig_object); 1334 return; 1335 } 1336 LIST_INSERT_HEAD(&source->shadow_head, 1337 new_object, shadow_list); 1338 source->shadow_count++; 1339 vm_object_reference_locked(source); /* for new_object */ 1340 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1341 VM_OBJECT_WUNLOCK(source); 1342 new_object->backing_object_offset = 1343 orig_object->backing_object_offset + entry->offset; 1344 new_object->backing_object = source; 1345 } 1346 if (orig_object->cred != NULL) { 1347 new_object->cred = orig_object->cred; 1348 crhold(orig_object->cred); 1349 new_object->charge = ptoa(size); 1350 KASSERT(orig_object->charge >= ptoa(size), 1351 ("orig_object->charge < 0")); 1352 orig_object->charge -= ptoa(size); 1353 } 1354 retry: 1355 m = vm_page_find_least(orig_object, offidxstart); 1356 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1357 m = m_next) { 1358 m_next = TAILQ_NEXT(m, listq); 1359 1360 /* 1361 * We must wait for pending I/O to complete before we can 1362 * rename the page. 1363 * 1364 * We do not have to VM_PROT_NONE the page as mappings should 1365 * not be changed by this operation. 1366 */ 1367 if ((m->oflags & VPO_BUSY) || m->busy) { 1368 VM_OBJECT_WUNLOCK(new_object); 1369 m->oflags |= VPO_WANTED; 1370 VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0); 1371 VM_OBJECT_WLOCK(new_object); 1372 goto retry; 1373 } 1374 #if VM_NRESERVLEVEL > 0 1375 /* 1376 * If some of the reservation's allocated pages remain with 1377 * the original object, then transferring the reservation to 1378 * the new object is neither particularly beneficial nor 1379 * particularly harmful as compared to leaving the reservation 1380 * with the original object. If, however, all of the 1381 * reservation's allocated pages are transferred to the new 1382 * object, then transferring the reservation is typically 1383 * beneficial. Determining which of these two cases applies 1384 * would be more costly than unconditionally renaming the 1385 * reservation. 1386 */ 1387 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1388 #endif 1389 vm_page_lock(m); 1390 vm_page_rename(m, new_object, idx); 1391 vm_page_unlock(m); 1392 /* page automatically made dirty by rename and cache handled */ 1393 vm_page_busy(m); 1394 } 1395 if (orig_object->type == OBJT_SWAP) { 1396 /* 1397 * swap_pager_copy() can sleep, in which case the orig_object's 1398 * and new_object's locks are released and reacquired. 1399 */ 1400 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1401 1402 /* 1403 * Transfer any cached pages from orig_object to new_object. 1404 * If swap_pager_copy() found swapped out pages within the 1405 * specified range of orig_object, then it changed 1406 * new_object's type to OBJT_SWAP when it transferred those 1407 * pages to new_object. Otherwise, new_object's type 1408 * should still be OBJT_DEFAULT and orig_object should not 1409 * contain any cached pages within the specified range. 1410 */ 1411 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1412 vm_page_cache_transfer(orig_object, offidxstart, 1413 new_object); 1414 } 1415 VM_OBJECT_WUNLOCK(orig_object); 1416 TAILQ_FOREACH(m, &new_object->memq, listq) 1417 vm_page_wakeup(m); 1418 VM_OBJECT_WUNLOCK(new_object); 1419 entry->object.vm_object = new_object; 1420 entry->offset = 0LL; 1421 vm_object_deallocate(orig_object); 1422 VM_OBJECT_WLOCK(new_object); 1423 } 1424 1425 #define OBSC_TEST_ALL_SHADOWED 0x0001 1426 #define OBSC_COLLAPSE_NOWAIT 0x0002 1427 #define OBSC_COLLAPSE_WAIT 0x0004 1428 1429 static int 1430 vm_object_backing_scan(vm_object_t object, int op) 1431 { 1432 int r = 1; 1433 vm_page_t p; 1434 vm_object_t backing_object; 1435 vm_pindex_t backing_offset_index; 1436 1437 VM_OBJECT_ASSERT_WLOCKED(object); 1438 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1439 1440 backing_object = object->backing_object; 1441 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1442 1443 /* 1444 * Initial conditions 1445 */ 1446 if (op & OBSC_TEST_ALL_SHADOWED) { 1447 /* 1448 * We do not want to have to test for the existence of cache 1449 * or swap pages in the backing object. XXX but with the 1450 * new swapper this would be pretty easy to do. 1451 * 1452 * XXX what about anonymous MAP_SHARED memory that hasn't 1453 * been ZFOD faulted yet? If we do not test for this, the 1454 * shadow test may succeed! XXX 1455 */ 1456 if (backing_object->type != OBJT_DEFAULT) { 1457 return (0); 1458 } 1459 } 1460 if (op & OBSC_COLLAPSE_WAIT) { 1461 vm_object_set_flag(backing_object, OBJ_DEAD); 1462 } 1463 1464 /* 1465 * Our scan 1466 */ 1467 p = TAILQ_FIRST(&backing_object->memq); 1468 while (p) { 1469 vm_page_t next = TAILQ_NEXT(p, listq); 1470 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1471 1472 if (op & OBSC_TEST_ALL_SHADOWED) { 1473 vm_page_t pp; 1474 1475 /* 1476 * Ignore pages outside the parent object's range 1477 * and outside the parent object's mapping of the 1478 * backing object. 1479 * 1480 * note that we do not busy the backing object's 1481 * page. 1482 */ 1483 if ( 1484 p->pindex < backing_offset_index || 1485 new_pindex >= object->size 1486 ) { 1487 p = next; 1488 continue; 1489 } 1490 1491 /* 1492 * See if the parent has the page or if the parent's 1493 * object pager has the page. If the parent has the 1494 * page but the page is not valid, the parent's 1495 * object pager must have the page. 1496 * 1497 * If this fails, the parent does not completely shadow 1498 * the object and we might as well give up now. 1499 */ 1500 1501 pp = vm_page_lookup(object, new_pindex); 1502 if ( 1503 (pp == NULL || pp->valid == 0) && 1504 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1505 ) { 1506 r = 0; 1507 break; 1508 } 1509 } 1510 1511 /* 1512 * Check for busy page 1513 */ 1514 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1515 vm_page_t pp; 1516 1517 if (op & OBSC_COLLAPSE_NOWAIT) { 1518 if ((p->oflags & VPO_BUSY) || 1519 !p->valid || 1520 p->busy) { 1521 p = next; 1522 continue; 1523 } 1524 } else if (op & OBSC_COLLAPSE_WAIT) { 1525 if ((p->oflags & VPO_BUSY) || p->busy) { 1526 VM_OBJECT_WUNLOCK(object); 1527 p->oflags |= VPO_WANTED; 1528 VM_OBJECT_SLEEP(backing_object, p, 1529 PDROP | PVM, "vmocol", 0); 1530 VM_OBJECT_WLOCK(object); 1531 VM_OBJECT_WLOCK(backing_object); 1532 /* 1533 * If we slept, anything could have 1534 * happened. Since the object is 1535 * marked dead, the backing offset 1536 * should not have changed so we 1537 * just restart our scan. 1538 */ 1539 p = TAILQ_FIRST(&backing_object->memq); 1540 continue; 1541 } 1542 } 1543 1544 KASSERT( 1545 p->object == backing_object, 1546 ("vm_object_backing_scan: object mismatch") 1547 ); 1548 1549 /* 1550 * Destroy any associated swap 1551 */ 1552 if (backing_object->type == OBJT_SWAP) { 1553 swap_pager_freespace( 1554 backing_object, 1555 p->pindex, 1556 1 1557 ); 1558 } 1559 1560 if ( 1561 p->pindex < backing_offset_index || 1562 new_pindex >= object->size 1563 ) { 1564 /* 1565 * Page is out of the parent object's range, we 1566 * can simply destroy it. 1567 */ 1568 vm_page_lock(p); 1569 KASSERT(!pmap_page_is_mapped(p), 1570 ("freeing mapped page %p", p)); 1571 if (p->wire_count == 0) 1572 vm_page_free(p); 1573 else 1574 vm_page_remove(p); 1575 vm_page_unlock(p); 1576 p = next; 1577 continue; 1578 } 1579 1580 pp = vm_page_lookup(object, new_pindex); 1581 if ( 1582 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1583 (pp != NULL && pp->valid == 0) 1584 ) { 1585 /* 1586 * The page in the parent is not (yet) valid. 1587 * We don't know anything about the state of 1588 * the original page. It might be mapped, 1589 * so we must avoid the next if here. 1590 * 1591 * This is due to a race in vm_fault() where 1592 * we must unbusy the original (backing_obj) 1593 * page before we can (re)lock the parent. 1594 * Hence we can get here. 1595 */ 1596 p = next; 1597 continue; 1598 } 1599 if ( 1600 pp != NULL || 1601 vm_pager_has_page(object, new_pindex, NULL, NULL) 1602 ) { 1603 /* 1604 * page already exists in parent OR swap exists 1605 * for this location in the parent. Destroy 1606 * the original page from the backing object. 1607 * 1608 * Leave the parent's page alone 1609 */ 1610 vm_page_lock(p); 1611 KASSERT(!pmap_page_is_mapped(p), 1612 ("freeing mapped page %p", p)); 1613 if (p->wire_count == 0) 1614 vm_page_free(p); 1615 else 1616 vm_page_remove(p); 1617 vm_page_unlock(p); 1618 p = next; 1619 continue; 1620 } 1621 1622 #if VM_NRESERVLEVEL > 0 1623 /* 1624 * Rename the reservation. 1625 */ 1626 vm_reserv_rename(p, object, backing_object, 1627 backing_offset_index); 1628 #endif 1629 1630 /* 1631 * Page does not exist in parent, rename the 1632 * page from the backing object to the main object. 1633 * 1634 * If the page was mapped to a process, it can remain 1635 * mapped through the rename. 1636 */ 1637 vm_page_lock(p); 1638 vm_page_rename(p, object, new_pindex); 1639 vm_page_unlock(p); 1640 /* page automatically made dirty by rename */ 1641 } 1642 p = next; 1643 } 1644 return (r); 1645 } 1646 1647 1648 /* 1649 * this version of collapse allows the operation to occur earlier and 1650 * when paging_in_progress is true for an object... This is not a complete 1651 * operation, but should plug 99.9% of the rest of the leaks. 1652 */ 1653 static void 1654 vm_object_qcollapse(vm_object_t object) 1655 { 1656 vm_object_t backing_object = object->backing_object; 1657 1658 VM_OBJECT_ASSERT_WLOCKED(object); 1659 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1660 1661 if (backing_object->ref_count != 1) 1662 return; 1663 1664 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1665 } 1666 1667 /* 1668 * vm_object_collapse: 1669 * 1670 * Collapse an object with the object backing it. 1671 * Pages in the backing object are moved into the 1672 * parent, and the backing object is deallocated. 1673 */ 1674 void 1675 vm_object_collapse(vm_object_t object) 1676 { 1677 VM_OBJECT_ASSERT_WLOCKED(object); 1678 1679 while (TRUE) { 1680 vm_object_t backing_object; 1681 1682 /* 1683 * Verify that the conditions are right for collapse: 1684 * 1685 * The object exists and the backing object exists. 1686 */ 1687 if ((backing_object = object->backing_object) == NULL) 1688 break; 1689 1690 /* 1691 * we check the backing object first, because it is most likely 1692 * not collapsable. 1693 */ 1694 VM_OBJECT_WLOCK(backing_object); 1695 if (backing_object->handle != NULL || 1696 (backing_object->type != OBJT_DEFAULT && 1697 backing_object->type != OBJT_SWAP) || 1698 (backing_object->flags & OBJ_DEAD) || 1699 object->handle != NULL || 1700 (object->type != OBJT_DEFAULT && 1701 object->type != OBJT_SWAP) || 1702 (object->flags & OBJ_DEAD)) { 1703 VM_OBJECT_WUNLOCK(backing_object); 1704 break; 1705 } 1706 1707 if ( 1708 object->paging_in_progress != 0 || 1709 backing_object->paging_in_progress != 0 1710 ) { 1711 vm_object_qcollapse(object); 1712 VM_OBJECT_WUNLOCK(backing_object); 1713 break; 1714 } 1715 /* 1716 * We know that we can either collapse the backing object (if 1717 * the parent is the only reference to it) or (perhaps) have 1718 * the parent bypass the object if the parent happens to shadow 1719 * all the resident pages in the entire backing object. 1720 * 1721 * This is ignoring pager-backed pages such as swap pages. 1722 * vm_object_backing_scan fails the shadowing test in this 1723 * case. 1724 */ 1725 if (backing_object->ref_count == 1) { 1726 /* 1727 * If there is exactly one reference to the backing 1728 * object, we can collapse it into the parent. 1729 */ 1730 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1731 1732 #if VM_NRESERVLEVEL > 0 1733 /* 1734 * Break any reservations from backing_object. 1735 */ 1736 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1737 vm_reserv_break_all(backing_object); 1738 #endif 1739 1740 /* 1741 * Move the pager from backing_object to object. 1742 */ 1743 if (backing_object->type == OBJT_SWAP) { 1744 /* 1745 * swap_pager_copy() can sleep, in which case 1746 * the backing_object's and object's locks are 1747 * released and reacquired. 1748 * Since swap_pager_copy() is being asked to 1749 * destroy the source, it will change the 1750 * backing_object's type to OBJT_DEFAULT. 1751 */ 1752 swap_pager_copy( 1753 backing_object, 1754 object, 1755 OFF_TO_IDX(object->backing_object_offset), TRUE); 1756 1757 /* 1758 * Free any cached pages from backing_object. 1759 */ 1760 if (__predict_false( 1761 !vm_object_cache_is_empty(backing_object))) 1762 vm_page_cache_free(backing_object, 0, 0); 1763 } 1764 /* 1765 * Object now shadows whatever backing_object did. 1766 * Note that the reference to 1767 * backing_object->backing_object moves from within 1768 * backing_object to within object. 1769 */ 1770 LIST_REMOVE(object, shadow_list); 1771 backing_object->shadow_count--; 1772 if (backing_object->backing_object) { 1773 VM_OBJECT_WLOCK(backing_object->backing_object); 1774 LIST_REMOVE(backing_object, shadow_list); 1775 LIST_INSERT_HEAD( 1776 &backing_object->backing_object->shadow_head, 1777 object, shadow_list); 1778 /* 1779 * The shadow_count has not changed. 1780 */ 1781 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1782 } 1783 object->backing_object = backing_object->backing_object; 1784 object->backing_object_offset += 1785 backing_object->backing_object_offset; 1786 1787 /* 1788 * Discard backing_object. 1789 * 1790 * Since the backing object has no pages, no pager left, 1791 * and no object references within it, all that is 1792 * necessary is to dispose of it. 1793 */ 1794 KASSERT(backing_object->ref_count == 1, ( 1795 "backing_object %p was somehow re-referenced during collapse!", 1796 backing_object)); 1797 VM_OBJECT_WUNLOCK(backing_object); 1798 vm_object_destroy(backing_object); 1799 1800 object_collapses++; 1801 } else { 1802 vm_object_t new_backing_object; 1803 1804 /* 1805 * If we do not entirely shadow the backing object, 1806 * there is nothing we can do so we give up. 1807 */ 1808 if (object->resident_page_count != object->size && 1809 vm_object_backing_scan(object, 1810 OBSC_TEST_ALL_SHADOWED) == 0) { 1811 VM_OBJECT_WUNLOCK(backing_object); 1812 break; 1813 } 1814 1815 /* 1816 * Make the parent shadow the next object in the 1817 * chain. Deallocating backing_object will not remove 1818 * it, since its reference count is at least 2. 1819 */ 1820 LIST_REMOVE(object, shadow_list); 1821 backing_object->shadow_count--; 1822 1823 new_backing_object = backing_object->backing_object; 1824 if ((object->backing_object = new_backing_object) != NULL) { 1825 VM_OBJECT_WLOCK(new_backing_object); 1826 LIST_INSERT_HEAD( 1827 &new_backing_object->shadow_head, 1828 object, 1829 shadow_list 1830 ); 1831 new_backing_object->shadow_count++; 1832 vm_object_reference_locked(new_backing_object); 1833 VM_OBJECT_WUNLOCK(new_backing_object); 1834 object->backing_object_offset += 1835 backing_object->backing_object_offset; 1836 } 1837 1838 /* 1839 * Drop the reference count on backing_object. Since 1840 * its ref_count was at least 2, it will not vanish. 1841 */ 1842 backing_object->ref_count--; 1843 VM_OBJECT_WUNLOCK(backing_object); 1844 object_bypasses++; 1845 } 1846 1847 /* 1848 * Try again with this object's new backing object. 1849 */ 1850 } 1851 } 1852 1853 /* 1854 * vm_object_page_remove: 1855 * 1856 * For the given object, either frees or invalidates each of the 1857 * specified pages. In general, a page is freed. However, if a page is 1858 * wired for any reason other than the existence of a managed, wired 1859 * mapping, then it may be invalidated but not removed from the object. 1860 * Pages are specified by the given range ["start", "end") and the option 1861 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1862 * extends from "start" to the end of the object. If the option 1863 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1864 * specified range are affected. If the option OBJPR_NOTMAPPED is 1865 * specified, then the pages within the specified range must have no 1866 * mappings. Otherwise, if this option is not specified, any mappings to 1867 * the specified pages are removed before the pages are freed or 1868 * invalidated. 1869 * 1870 * In general, this operation should only be performed on objects that 1871 * contain managed pages. There are, however, two exceptions. First, it 1872 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1873 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1874 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1875 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1876 * 1877 * The object must be locked. 1878 */ 1879 void 1880 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1881 int options) 1882 { 1883 vm_page_t p, next; 1884 int wirings; 1885 1886 VM_OBJECT_ASSERT_WLOCKED(object); 1887 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1888 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1889 ("vm_object_page_remove: illegal options for object %p", object)); 1890 if (object->resident_page_count == 0) 1891 goto skipmemq; 1892 vm_object_pip_add(object, 1); 1893 again: 1894 p = vm_page_find_least(object, start); 1895 1896 /* 1897 * Here, the variable "p" is either (1) the page with the least pindex 1898 * greater than or equal to the parameter "start" or (2) NULL. 1899 */ 1900 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1901 next = TAILQ_NEXT(p, listq); 1902 1903 /* 1904 * If the page is wired for any reason besides the existence 1905 * of managed, wired mappings, then it cannot be freed. For 1906 * example, fictitious pages, which represent device memory, 1907 * are inherently wired and cannot be freed. They can, 1908 * however, be invalidated if the option OBJPR_CLEANONLY is 1909 * not specified. 1910 */ 1911 vm_page_lock(p); 1912 if ((wirings = p->wire_count) != 0 && 1913 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1914 if ((options & OBJPR_NOTMAPPED) == 0) { 1915 pmap_remove_all(p); 1916 /* Account for removal of wired mappings. */ 1917 if (wirings != 0) 1918 p->wire_count -= wirings; 1919 } 1920 if ((options & OBJPR_CLEANONLY) == 0) { 1921 p->valid = 0; 1922 vm_page_undirty(p); 1923 } 1924 vm_page_unlock(p); 1925 continue; 1926 } 1927 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1928 goto again; 1929 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1930 ("vm_object_page_remove: page %p is fictitious", p)); 1931 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1932 if ((options & OBJPR_NOTMAPPED) == 0) 1933 pmap_remove_write(p); 1934 if (p->dirty) { 1935 vm_page_unlock(p); 1936 continue; 1937 } 1938 } 1939 if ((options & OBJPR_NOTMAPPED) == 0) { 1940 pmap_remove_all(p); 1941 /* Account for removal of wired mappings. */ 1942 if (wirings != 0) { 1943 KASSERT(p->wire_count == wirings, 1944 ("inconsistent wire count %d %d %p", 1945 p->wire_count, wirings, p)); 1946 p->wire_count = 0; 1947 atomic_subtract_int(&cnt.v_wire_count, 1); 1948 } 1949 } 1950 vm_page_free(p); 1951 vm_page_unlock(p); 1952 } 1953 vm_object_pip_wakeup(object); 1954 skipmemq: 1955 if (__predict_false(!vm_object_cache_is_empty(object))) 1956 vm_page_cache_free(object, start, end); 1957 } 1958 1959 /* 1960 * vm_object_page_cache: 1961 * 1962 * For the given object, attempt to move the specified clean 1963 * pages to the cache queue. If a page is wired for any reason, 1964 * then it will not be changed. Pages are specified by the given 1965 * range ["start", "end"). As a special case, if "end" is zero, 1966 * then the range extends from "start" to the end of the object. 1967 * Any mappings to the specified pages are removed before the 1968 * pages are moved to the cache queue. 1969 * 1970 * This operation should only be performed on objects that 1971 * contain non-fictitious, managed pages. 1972 * 1973 * The object must be locked. 1974 */ 1975 void 1976 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1977 { 1978 struct mtx *mtx, *new_mtx; 1979 vm_page_t p, next; 1980 1981 VM_OBJECT_ASSERT_WLOCKED(object); 1982 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1983 ("vm_object_page_cache: illegal object %p", object)); 1984 if (object->resident_page_count == 0) 1985 return; 1986 p = vm_page_find_least(object, start); 1987 1988 /* 1989 * Here, the variable "p" is either (1) the page with the least pindex 1990 * greater than or equal to the parameter "start" or (2) NULL. 1991 */ 1992 mtx = NULL; 1993 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1994 next = TAILQ_NEXT(p, listq); 1995 1996 /* 1997 * Avoid releasing and reacquiring the same page lock. 1998 */ 1999 new_mtx = vm_page_lockptr(p); 2000 if (mtx != new_mtx) { 2001 if (mtx != NULL) 2002 mtx_unlock(mtx); 2003 mtx = new_mtx; 2004 mtx_lock(mtx); 2005 } 2006 vm_page_try_to_cache(p); 2007 } 2008 if (mtx != NULL) 2009 mtx_unlock(mtx); 2010 } 2011 2012 /* 2013 * Populate the specified range of the object with valid pages. Returns 2014 * TRUE if the range is successfully populated and FALSE otherwise. 2015 * 2016 * Note: This function should be optimized to pass a larger array of 2017 * pages to vm_pager_get_pages() before it is applied to a non- 2018 * OBJT_DEVICE object. 2019 * 2020 * The object must be locked. 2021 */ 2022 boolean_t 2023 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2024 { 2025 vm_page_t m, ma[1]; 2026 vm_pindex_t pindex; 2027 int rv; 2028 2029 VM_OBJECT_ASSERT_WLOCKED(object); 2030 for (pindex = start; pindex < end; pindex++) { 2031 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 2032 VM_ALLOC_RETRY); 2033 if (m->valid != VM_PAGE_BITS_ALL) { 2034 ma[0] = m; 2035 rv = vm_pager_get_pages(object, ma, 1, 0); 2036 m = vm_page_lookup(object, pindex); 2037 if (m == NULL) 2038 break; 2039 if (rv != VM_PAGER_OK) { 2040 vm_page_lock(m); 2041 vm_page_free(m); 2042 vm_page_unlock(m); 2043 break; 2044 } 2045 } 2046 /* 2047 * Keep "m" busy because a subsequent iteration may unlock 2048 * the object. 2049 */ 2050 } 2051 if (pindex > start) { 2052 m = vm_page_lookup(object, start); 2053 while (m != NULL && m->pindex < pindex) { 2054 vm_page_wakeup(m); 2055 m = TAILQ_NEXT(m, listq); 2056 } 2057 } 2058 return (pindex == end); 2059 } 2060 2061 /* 2062 * Routine: vm_object_coalesce 2063 * Function: Coalesces two objects backing up adjoining 2064 * regions of memory into a single object. 2065 * 2066 * returns TRUE if objects were combined. 2067 * 2068 * NOTE: Only works at the moment if the second object is NULL - 2069 * if it's not, which object do we lock first? 2070 * 2071 * Parameters: 2072 * prev_object First object to coalesce 2073 * prev_offset Offset into prev_object 2074 * prev_size Size of reference to prev_object 2075 * next_size Size of reference to the second object 2076 * reserved Indicator that extension region has 2077 * swap accounted for 2078 * 2079 * Conditions: 2080 * The object must *not* be locked. 2081 */ 2082 boolean_t 2083 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2084 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2085 { 2086 vm_pindex_t next_pindex; 2087 2088 if (prev_object == NULL) 2089 return (TRUE); 2090 VM_OBJECT_WLOCK(prev_object); 2091 if (prev_object->type != OBJT_DEFAULT && 2092 prev_object->type != OBJT_SWAP) { 2093 VM_OBJECT_WUNLOCK(prev_object); 2094 return (FALSE); 2095 } 2096 2097 /* 2098 * Try to collapse the object first 2099 */ 2100 vm_object_collapse(prev_object); 2101 2102 /* 2103 * Can't coalesce if: . more than one reference . paged out . shadows 2104 * another object . has a copy elsewhere (any of which mean that the 2105 * pages not mapped to prev_entry may be in use anyway) 2106 */ 2107 if (prev_object->backing_object != NULL) { 2108 VM_OBJECT_WUNLOCK(prev_object); 2109 return (FALSE); 2110 } 2111 2112 prev_size >>= PAGE_SHIFT; 2113 next_size >>= PAGE_SHIFT; 2114 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2115 2116 if ((prev_object->ref_count > 1) && 2117 (prev_object->size != next_pindex)) { 2118 VM_OBJECT_WUNLOCK(prev_object); 2119 return (FALSE); 2120 } 2121 2122 /* 2123 * Account for the charge. 2124 */ 2125 if (prev_object->cred != NULL) { 2126 2127 /* 2128 * If prev_object was charged, then this mapping, 2129 * althought not charged now, may become writable 2130 * later. Non-NULL cred in the object would prevent 2131 * swap reservation during enabling of the write 2132 * access, so reserve swap now. Failed reservation 2133 * cause allocation of the separate object for the map 2134 * entry, and swap reservation for this entry is 2135 * managed in appropriate time. 2136 */ 2137 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2138 prev_object->cred)) { 2139 return (FALSE); 2140 } 2141 prev_object->charge += ptoa(next_size); 2142 } 2143 2144 /* 2145 * Remove any pages that may still be in the object from a previous 2146 * deallocation. 2147 */ 2148 if (next_pindex < prev_object->size) { 2149 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2150 next_size, 0); 2151 if (prev_object->type == OBJT_SWAP) 2152 swap_pager_freespace(prev_object, 2153 next_pindex, next_size); 2154 #if 0 2155 if (prev_object->cred != NULL) { 2156 KASSERT(prev_object->charge >= 2157 ptoa(prev_object->size - next_pindex), 2158 ("object %p overcharged 1 %jx %jx", prev_object, 2159 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2160 prev_object->charge -= ptoa(prev_object->size - 2161 next_pindex); 2162 } 2163 #endif 2164 } 2165 2166 /* 2167 * Extend the object if necessary. 2168 */ 2169 if (next_pindex + next_size > prev_object->size) 2170 prev_object->size = next_pindex + next_size; 2171 2172 VM_OBJECT_WUNLOCK(prev_object); 2173 return (TRUE); 2174 } 2175 2176 void 2177 vm_object_set_writeable_dirty(vm_object_t object) 2178 { 2179 2180 VM_OBJECT_ASSERT_WLOCKED(object); 2181 if (object->type != OBJT_VNODE) 2182 return; 2183 object->generation++; 2184 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2185 return; 2186 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2187 } 2188 2189 #include "opt_ddb.h" 2190 #ifdef DDB 2191 #include <sys/kernel.h> 2192 2193 #include <sys/cons.h> 2194 2195 #include <ddb/ddb.h> 2196 2197 static int 2198 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2199 { 2200 vm_map_t tmpm; 2201 vm_map_entry_t tmpe; 2202 vm_object_t obj; 2203 int entcount; 2204 2205 if (map == 0) 2206 return 0; 2207 2208 if (entry == 0) { 2209 tmpe = map->header.next; 2210 entcount = map->nentries; 2211 while (entcount-- && (tmpe != &map->header)) { 2212 if (_vm_object_in_map(map, object, tmpe)) { 2213 return 1; 2214 } 2215 tmpe = tmpe->next; 2216 } 2217 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2218 tmpm = entry->object.sub_map; 2219 tmpe = tmpm->header.next; 2220 entcount = tmpm->nentries; 2221 while (entcount-- && tmpe != &tmpm->header) { 2222 if (_vm_object_in_map(tmpm, object, tmpe)) { 2223 return 1; 2224 } 2225 tmpe = tmpe->next; 2226 } 2227 } else if ((obj = entry->object.vm_object) != NULL) { 2228 for (; obj; obj = obj->backing_object) 2229 if (obj == object) { 2230 return 1; 2231 } 2232 } 2233 return 0; 2234 } 2235 2236 static int 2237 vm_object_in_map(vm_object_t object) 2238 { 2239 struct proc *p; 2240 2241 /* sx_slock(&allproc_lock); */ 2242 FOREACH_PROC_IN_SYSTEM(p) { 2243 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2244 continue; 2245 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2246 /* sx_sunlock(&allproc_lock); */ 2247 return 1; 2248 } 2249 } 2250 /* sx_sunlock(&allproc_lock); */ 2251 if (_vm_object_in_map(kernel_map, object, 0)) 2252 return 1; 2253 if (_vm_object_in_map(kmem_map, object, 0)) 2254 return 1; 2255 if (_vm_object_in_map(pager_map, object, 0)) 2256 return 1; 2257 if (_vm_object_in_map(buffer_map, object, 0)) 2258 return 1; 2259 return 0; 2260 } 2261 2262 DB_SHOW_COMMAND(vmochk, vm_object_check) 2263 { 2264 vm_object_t object; 2265 2266 /* 2267 * make sure that internal objs are in a map somewhere 2268 * and none have zero ref counts. 2269 */ 2270 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2271 if (object->handle == NULL && 2272 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2273 if (object->ref_count == 0) { 2274 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2275 (long)object->size); 2276 } 2277 if (!vm_object_in_map(object)) { 2278 db_printf( 2279 "vmochk: internal obj is not in a map: " 2280 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2281 object->ref_count, (u_long)object->size, 2282 (u_long)object->size, 2283 (void *)object->backing_object); 2284 } 2285 } 2286 } 2287 } 2288 2289 /* 2290 * vm_object_print: [ debug ] 2291 */ 2292 DB_SHOW_COMMAND(object, vm_object_print_static) 2293 { 2294 /* XXX convert args. */ 2295 vm_object_t object = (vm_object_t)addr; 2296 boolean_t full = have_addr; 2297 2298 vm_page_t p; 2299 2300 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2301 #define count was_count 2302 2303 int count; 2304 2305 if (object == NULL) 2306 return; 2307 2308 db_iprintf( 2309 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2310 object, (int)object->type, (uintmax_t)object->size, 2311 object->resident_page_count, object->ref_count, object->flags, 2312 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2313 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2314 object->shadow_count, 2315 object->backing_object ? object->backing_object->ref_count : 0, 2316 object->backing_object, (uintmax_t)object->backing_object_offset); 2317 2318 if (!full) 2319 return; 2320 2321 db_indent += 2; 2322 count = 0; 2323 TAILQ_FOREACH(p, &object->memq, listq) { 2324 if (count == 0) 2325 db_iprintf("memory:="); 2326 else if (count == 6) { 2327 db_printf("\n"); 2328 db_iprintf(" ..."); 2329 count = 0; 2330 } else 2331 db_printf(","); 2332 count++; 2333 2334 db_printf("(off=0x%jx,page=0x%jx)", 2335 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2336 } 2337 if (count != 0) 2338 db_printf("\n"); 2339 db_indent -= 2; 2340 } 2341 2342 /* XXX. */ 2343 #undef count 2344 2345 /* XXX need this non-static entry for calling from vm_map_print. */ 2346 void 2347 vm_object_print( 2348 /* db_expr_t */ long addr, 2349 boolean_t have_addr, 2350 /* db_expr_t */ long count, 2351 char *modif) 2352 { 2353 vm_object_print_static(addr, have_addr, count, modif); 2354 } 2355 2356 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2357 { 2358 vm_object_t object; 2359 vm_pindex_t fidx; 2360 vm_paddr_t pa; 2361 vm_page_t m, prev_m; 2362 int rcount, nl, c; 2363 2364 nl = 0; 2365 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2366 db_printf("new object: %p\n", (void *)object); 2367 if (nl > 18) { 2368 c = cngetc(); 2369 if (c != ' ') 2370 return; 2371 nl = 0; 2372 } 2373 nl++; 2374 rcount = 0; 2375 fidx = 0; 2376 pa = -1; 2377 TAILQ_FOREACH(m, &object->memq, listq) { 2378 if (m->pindex > 128) 2379 break; 2380 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2381 prev_m->pindex + 1 != m->pindex) { 2382 if (rcount) { 2383 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2384 (long)fidx, rcount, (long)pa); 2385 if (nl > 18) { 2386 c = cngetc(); 2387 if (c != ' ') 2388 return; 2389 nl = 0; 2390 } 2391 nl++; 2392 rcount = 0; 2393 } 2394 } 2395 if (rcount && 2396 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2397 ++rcount; 2398 continue; 2399 } 2400 if (rcount) { 2401 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2402 (long)fidx, rcount, (long)pa); 2403 if (nl > 18) { 2404 c = cngetc(); 2405 if (c != ' ') 2406 return; 2407 nl = 0; 2408 } 2409 nl++; 2410 } 2411 fidx = m->pindex; 2412 pa = VM_PAGE_TO_PHYS(m); 2413 rcount = 1; 2414 } 2415 if (rcount) { 2416 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2417 (long)fidx, rcount, (long)pa); 2418 if (nl > 18) { 2419 c = cngetc(); 2420 if (c != ' ') 2421 return; 2422 nl = 0; 2423 } 2424 nl++; 2425 } 2426 } 2427 } 2428 #endif /* DDB */ 2429