1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/vmmeter.h> 85 #include <sys/sx.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_radix.h> 99 #include <vm/vm_reserv.h> 100 #include <vm/uma.h> 101 102 static int old_msync; 103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 104 "Use old (insecure) msync behavior"); 105 106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 107 int pagerflags, int flags, boolean_t *clearobjflags, 108 boolean_t *eio); 109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 110 boolean_t *clearobjflags); 111 static void vm_object_qcollapse(vm_object_t object); 112 static void vm_object_vndeallocate(vm_object_t object); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 147 "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(object->ref_count == 0, 171 ("object %p ref_count = %d", object, object->ref_count)); 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages in its memq", object)); 174 KASSERT(vm_radix_is_empty(&object->rtree), 175 ("object %p has resident pages in its trie", object)); 176 #if VM_NRESERVLEVEL > 0 177 KASSERT(LIST_EMPTY(&object->rvq), 178 ("object %p has reservations", 179 object)); 180 #endif 181 KASSERT(vm_object_cache_is_empty(object), 182 ("object %p has cached pages", 183 object)); 184 KASSERT(object->paging_in_progress == 0, 185 ("object %p paging_in_progress = %d", 186 object, object->paging_in_progress)); 187 KASSERT(object->resident_page_count == 0, 188 ("object %p resident_page_count = %d", 189 object, object->resident_page_count)); 190 KASSERT(object->shadow_count == 0, 191 ("object %p shadow_count = %d", 192 object, object->shadow_count)); 193 KASSERT(object->type == OBJT_DEAD, 194 ("object %p has non-dead type %d", 195 object, object->type)); 196 } 197 #endif 198 199 static int 200 vm_object_zinit(void *mem, int size, int flags) 201 { 202 vm_object_t object; 203 204 object = (vm_object_t)mem; 205 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 206 207 /* These are true for any object that has been freed */ 208 object->type = OBJT_DEAD; 209 object->ref_count = 0; 210 object->rtree.rt_root = 0; 211 object->rtree.rt_flags = 0; 212 object->paging_in_progress = 0; 213 object->resident_page_count = 0; 214 object->shadow_count = 0; 215 object->cache.rt_root = 0; 216 object->cache.rt_flags = 0; 217 218 mtx_lock(&vm_object_list_mtx); 219 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 220 mtx_unlock(&vm_object_list_mtx); 221 return (0); 222 } 223 224 static void 225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 226 { 227 228 TAILQ_INIT(&object->memq); 229 LIST_INIT(&object->shadow_head); 230 231 object->type = type; 232 switch (type) { 233 case OBJT_DEAD: 234 panic("_vm_object_allocate: can't create OBJT_DEAD"); 235 case OBJT_DEFAULT: 236 case OBJT_SWAP: 237 object->flags = OBJ_ONEMAPPING; 238 break; 239 case OBJT_DEVICE: 240 case OBJT_SG: 241 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 242 break; 243 case OBJT_MGTDEVICE: 244 object->flags = OBJ_FICTITIOUS; 245 break; 246 case OBJT_PHYS: 247 object->flags = OBJ_UNMANAGED; 248 break; 249 case OBJT_VNODE: 250 object->flags = 0; 251 break; 252 default: 253 panic("_vm_object_allocate: type %d is undefined", type); 254 } 255 object->size = size; 256 object->generation = 1; 257 object->ref_count = 1; 258 object->memattr = VM_MEMATTR_DEFAULT; 259 object->cred = NULL; 260 object->charge = 0; 261 object->handle = NULL; 262 object->backing_object = NULL; 263 object->backing_object_offset = (vm_ooffset_t) 0; 264 #if VM_NRESERVLEVEL > 0 265 LIST_INIT(&object->rvq); 266 #endif 267 umtx_shm_object_init(object); 268 } 269 270 /* 271 * vm_object_init: 272 * 273 * Initialize the VM objects module. 274 */ 275 void 276 vm_object_init(void) 277 { 278 TAILQ_INIT(&vm_object_list); 279 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 280 281 rw_init(&kernel_object->lock, "kernel vm object"); 282 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 283 kernel_object); 284 #if VM_NRESERVLEVEL > 0 285 kernel_object->flags |= OBJ_COLORED; 286 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 287 #endif 288 289 rw_init(&kmem_object->lock, "kmem vm object"); 290 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 291 kmem_object); 292 #if VM_NRESERVLEVEL > 0 293 kmem_object->flags |= OBJ_COLORED; 294 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 295 #endif 296 297 /* 298 * The lock portion of struct vm_object must be type stable due 299 * to vm_pageout_fallback_object_lock locking a vm object 300 * without holding any references to it. 301 */ 302 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 303 #ifdef INVARIANTS 304 vm_object_zdtor, 305 #else 306 NULL, 307 #endif 308 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 309 310 vm_radix_init(); 311 } 312 313 void 314 vm_object_clear_flag(vm_object_t object, u_short bits) 315 { 316 317 VM_OBJECT_ASSERT_WLOCKED(object); 318 object->flags &= ~bits; 319 } 320 321 /* 322 * Sets the default memory attribute for the specified object. Pages 323 * that are allocated to this object are by default assigned this memory 324 * attribute. 325 * 326 * Presently, this function must be called before any pages are allocated 327 * to the object. In the future, this requirement may be relaxed for 328 * "default" and "swap" objects. 329 */ 330 int 331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 332 { 333 334 VM_OBJECT_ASSERT_WLOCKED(object); 335 switch (object->type) { 336 case OBJT_DEFAULT: 337 case OBJT_DEVICE: 338 case OBJT_MGTDEVICE: 339 case OBJT_PHYS: 340 case OBJT_SG: 341 case OBJT_SWAP: 342 case OBJT_VNODE: 343 if (!TAILQ_EMPTY(&object->memq)) 344 return (KERN_FAILURE); 345 break; 346 case OBJT_DEAD: 347 return (KERN_INVALID_ARGUMENT); 348 default: 349 panic("vm_object_set_memattr: object %p is of undefined type", 350 object); 351 } 352 object->memattr = memattr; 353 return (KERN_SUCCESS); 354 } 355 356 void 357 vm_object_pip_add(vm_object_t object, short i) 358 { 359 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 object->paging_in_progress += i; 362 } 363 364 void 365 vm_object_pip_subtract(vm_object_t object, short i) 366 { 367 368 VM_OBJECT_ASSERT_WLOCKED(object); 369 object->paging_in_progress -= i; 370 } 371 372 void 373 vm_object_pip_wakeup(vm_object_t object) 374 { 375 376 VM_OBJECT_ASSERT_WLOCKED(object); 377 object->paging_in_progress--; 378 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 379 vm_object_clear_flag(object, OBJ_PIPWNT); 380 wakeup(object); 381 } 382 } 383 384 void 385 vm_object_pip_wakeupn(vm_object_t object, short i) 386 { 387 388 VM_OBJECT_ASSERT_WLOCKED(object); 389 if (i) 390 object->paging_in_progress -= i; 391 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 392 vm_object_clear_flag(object, OBJ_PIPWNT); 393 wakeup(object); 394 } 395 } 396 397 void 398 vm_object_pip_wait(vm_object_t object, char *waitid) 399 { 400 401 VM_OBJECT_ASSERT_WLOCKED(object); 402 while (object->paging_in_progress) { 403 object->flags |= OBJ_PIPWNT; 404 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 405 } 406 } 407 408 /* 409 * vm_object_allocate: 410 * 411 * Returns a new object with the given size. 412 */ 413 vm_object_t 414 vm_object_allocate(objtype_t type, vm_pindex_t size) 415 { 416 vm_object_t object; 417 418 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 419 _vm_object_allocate(type, size, object); 420 return (object); 421 } 422 423 424 /* 425 * vm_object_reference: 426 * 427 * Gets another reference to the given object. Note: OBJ_DEAD 428 * objects can be referenced during final cleaning. 429 */ 430 void 431 vm_object_reference(vm_object_t object) 432 { 433 if (object == NULL) 434 return; 435 VM_OBJECT_WLOCK(object); 436 vm_object_reference_locked(object); 437 VM_OBJECT_WUNLOCK(object); 438 } 439 440 /* 441 * vm_object_reference_locked: 442 * 443 * Gets another reference to the given object. 444 * 445 * The object must be locked. 446 */ 447 void 448 vm_object_reference_locked(vm_object_t object) 449 { 450 struct vnode *vp; 451 452 VM_OBJECT_ASSERT_WLOCKED(object); 453 object->ref_count++; 454 if (object->type == OBJT_VNODE) { 455 vp = object->handle; 456 vref(vp); 457 } 458 } 459 460 /* 461 * Handle deallocating an object of type OBJT_VNODE. 462 */ 463 static void 464 vm_object_vndeallocate(vm_object_t object) 465 { 466 struct vnode *vp = (struct vnode *) object->handle; 467 468 VM_OBJECT_ASSERT_WLOCKED(object); 469 KASSERT(object->type == OBJT_VNODE, 470 ("vm_object_vndeallocate: not a vnode object")); 471 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 472 #ifdef INVARIANTS 473 if (object->ref_count == 0) { 474 vprint("vm_object_vndeallocate", vp); 475 panic("vm_object_vndeallocate: bad object reference count"); 476 } 477 #endif 478 479 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 480 umtx_shm_object_terminated(object); 481 482 /* 483 * The test for text of vp vnode does not need a bypass to 484 * reach right VV_TEXT there, since it is obtained from 485 * object->handle. 486 */ 487 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 488 object->ref_count--; 489 VM_OBJECT_WUNLOCK(object); 490 /* vrele may need the vnode lock. */ 491 vrele(vp); 492 } else { 493 vhold(vp); 494 VM_OBJECT_WUNLOCK(object); 495 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 496 vdrop(vp); 497 VM_OBJECT_WLOCK(object); 498 object->ref_count--; 499 if (object->type == OBJT_DEAD) { 500 VM_OBJECT_WUNLOCK(object); 501 VOP_UNLOCK(vp, 0); 502 } else { 503 if (object->ref_count == 0) 504 VOP_UNSET_TEXT(vp); 505 VM_OBJECT_WUNLOCK(object); 506 vput(vp); 507 } 508 } 509 } 510 511 /* 512 * vm_object_deallocate: 513 * 514 * Release a reference to the specified object, 515 * gained either through a vm_object_allocate 516 * or a vm_object_reference call. When all references 517 * are gone, storage associated with this object 518 * may be relinquished. 519 * 520 * No object may be locked. 521 */ 522 void 523 vm_object_deallocate(vm_object_t object) 524 { 525 vm_object_t temp; 526 struct vnode *vp; 527 528 while (object != NULL) { 529 VM_OBJECT_WLOCK(object); 530 if (object->type == OBJT_VNODE) { 531 vm_object_vndeallocate(object); 532 return; 533 } 534 535 KASSERT(object->ref_count != 0, 536 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 537 538 /* 539 * If the reference count goes to 0 we start calling 540 * vm_object_terminate() on the object chain. 541 * A ref count of 1 may be a special case depending on the 542 * shadow count being 0 or 1. 543 */ 544 object->ref_count--; 545 if (object->ref_count > 1) { 546 VM_OBJECT_WUNLOCK(object); 547 return; 548 } else if (object->ref_count == 1) { 549 if (object->type == OBJT_SWAP && 550 (object->flags & OBJ_TMPFS) != 0) { 551 vp = object->un_pager.swp.swp_tmpfs; 552 vhold(vp); 553 VM_OBJECT_WUNLOCK(object); 554 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 555 VM_OBJECT_WLOCK(object); 556 if (object->type == OBJT_DEAD || 557 object->ref_count != 1) { 558 VM_OBJECT_WUNLOCK(object); 559 VOP_UNLOCK(vp, 0); 560 vdrop(vp); 561 return; 562 } 563 if ((object->flags & OBJ_TMPFS) != 0) 564 VOP_UNSET_TEXT(vp); 565 VOP_UNLOCK(vp, 0); 566 vdrop(vp); 567 } 568 if (object->shadow_count == 0 && 569 object->handle == NULL && 570 (object->type == OBJT_DEFAULT || 571 (object->type == OBJT_SWAP && 572 (object->flags & OBJ_TMPFS_NODE) == 0))) { 573 vm_object_set_flag(object, OBJ_ONEMAPPING); 574 } else if ((object->shadow_count == 1) && 575 (object->handle == NULL) && 576 (object->type == OBJT_DEFAULT || 577 object->type == OBJT_SWAP)) { 578 vm_object_t robject; 579 580 robject = LIST_FIRST(&object->shadow_head); 581 KASSERT(robject != NULL, 582 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 583 object->ref_count, 584 object->shadow_count)); 585 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 586 ("shadowed tmpfs v_object %p", object)); 587 if (!VM_OBJECT_TRYWLOCK(robject)) { 588 /* 589 * Avoid a potential deadlock. 590 */ 591 object->ref_count++; 592 VM_OBJECT_WUNLOCK(object); 593 /* 594 * More likely than not the thread 595 * holding robject's lock has lower 596 * priority than the current thread. 597 * Let the lower priority thread run. 598 */ 599 pause("vmo_de", 1); 600 continue; 601 } 602 /* 603 * Collapse object into its shadow unless its 604 * shadow is dead. In that case, object will 605 * be deallocated by the thread that is 606 * deallocating its shadow. 607 */ 608 if ((robject->flags & OBJ_DEAD) == 0 && 609 (robject->handle == NULL) && 610 (robject->type == OBJT_DEFAULT || 611 robject->type == OBJT_SWAP)) { 612 613 robject->ref_count++; 614 retry: 615 if (robject->paging_in_progress) { 616 VM_OBJECT_WUNLOCK(object); 617 vm_object_pip_wait(robject, 618 "objde1"); 619 temp = robject->backing_object; 620 if (object == temp) { 621 VM_OBJECT_WLOCK(object); 622 goto retry; 623 } 624 } else if (object->paging_in_progress) { 625 VM_OBJECT_WUNLOCK(robject); 626 object->flags |= OBJ_PIPWNT; 627 VM_OBJECT_SLEEP(object, object, 628 PDROP | PVM, "objde2", 0); 629 VM_OBJECT_WLOCK(robject); 630 temp = robject->backing_object; 631 if (object == temp) { 632 VM_OBJECT_WLOCK(object); 633 goto retry; 634 } 635 } else 636 VM_OBJECT_WUNLOCK(object); 637 638 if (robject->ref_count == 1) { 639 robject->ref_count--; 640 object = robject; 641 goto doterm; 642 } 643 object = robject; 644 vm_object_collapse(object); 645 VM_OBJECT_WUNLOCK(object); 646 continue; 647 } 648 VM_OBJECT_WUNLOCK(robject); 649 } 650 VM_OBJECT_WUNLOCK(object); 651 return; 652 } 653 doterm: 654 umtx_shm_object_terminated(object); 655 temp = object->backing_object; 656 if (temp != NULL) { 657 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 658 ("shadowed tmpfs v_object 2 %p", object)); 659 VM_OBJECT_WLOCK(temp); 660 LIST_REMOVE(object, shadow_list); 661 temp->shadow_count--; 662 VM_OBJECT_WUNLOCK(temp); 663 object->backing_object = NULL; 664 } 665 /* 666 * Don't double-terminate, we could be in a termination 667 * recursion due to the terminate having to sync data 668 * to disk. 669 */ 670 if ((object->flags & OBJ_DEAD) == 0) 671 vm_object_terminate(object); 672 else 673 VM_OBJECT_WUNLOCK(object); 674 object = temp; 675 } 676 } 677 678 /* 679 * vm_object_destroy removes the object from the global object list 680 * and frees the space for the object. 681 */ 682 void 683 vm_object_destroy(vm_object_t object) 684 { 685 686 /* 687 * Release the allocation charge. 688 */ 689 if (object->cred != NULL) { 690 swap_release_by_cred(object->charge, object->cred); 691 object->charge = 0; 692 crfree(object->cred); 693 object->cred = NULL; 694 } 695 696 /* 697 * Free the space for the object. 698 */ 699 uma_zfree(obj_zone, object); 700 } 701 702 /* 703 * vm_object_terminate actually destroys the specified object, freeing 704 * up all previously used resources. 705 * 706 * The object must be locked. 707 * This routine may block. 708 */ 709 void 710 vm_object_terminate(vm_object_t object) 711 { 712 vm_page_t p, p_next; 713 714 VM_OBJECT_ASSERT_WLOCKED(object); 715 716 /* 717 * Make sure no one uses us. 718 */ 719 vm_object_set_flag(object, OBJ_DEAD); 720 721 /* 722 * wait for the pageout daemon to be done with the object 723 */ 724 vm_object_pip_wait(object, "objtrm"); 725 726 KASSERT(!object->paging_in_progress, 727 ("vm_object_terminate: pageout in progress")); 728 729 /* 730 * Clean and free the pages, as appropriate. All references to the 731 * object are gone, so we don't need to lock it. 732 */ 733 if (object->type == OBJT_VNODE) { 734 struct vnode *vp = (struct vnode *)object->handle; 735 736 /* 737 * Clean pages and flush buffers. 738 */ 739 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 740 VM_OBJECT_WUNLOCK(object); 741 742 vinvalbuf(vp, V_SAVE, 0, 0); 743 744 VM_OBJECT_WLOCK(object); 745 } 746 747 KASSERT(object->ref_count == 0, 748 ("vm_object_terminate: object with references, ref_count=%d", 749 object->ref_count)); 750 751 /* 752 * Free any remaining pageable pages. This also removes them from the 753 * paging queues. However, don't free wired pages, just remove them 754 * from the object. Rather than incrementally removing each page from 755 * the object, the page and object are reset to any empty state. 756 */ 757 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 758 vm_page_assert_unbusied(p); 759 vm_page_lock(p); 760 /* 761 * Optimize the page's removal from the object by resetting 762 * its "object" field. Specifically, if the page is not 763 * wired, then the effect of this assignment is that 764 * vm_page_free()'s call to vm_page_remove() will return 765 * immediately without modifying the page or the object. 766 */ 767 p->object = NULL; 768 if (p->wire_count == 0) { 769 vm_page_free(p); 770 PCPU_INC(cnt.v_pfree); 771 } 772 vm_page_unlock(p); 773 } 774 /* 775 * If the object contained any pages, then reset it to an empty state. 776 * None of the object's fields, including "resident_page_count", were 777 * modified by the preceding loop. 778 */ 779 if (object->resident_page_count != 0) { 780 vm_radix_reclaim_allnodes(&object->rtree); 781 TAILQ_INIT(&object->memq); 782 object->resident_page_count = 0; 783 if (object->type == OBJT_VNODE) 784 vdrop(object->handle); 785 } 786 787 #if VM_NRESERVLEVEL > 0 788 if (__predict_false(!LIST_EMPTY(&object->rvq))) 789 vm_reserv_break_all(object); 790 #endif 791 if (__predict_false(!vm_object_cache_is_empty(object))) 792 vm_page_cache_free(object, 0, 0); 793 794 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 795 object->type == OBJT_SWAP, 796 ("%s: non-swap obj %p has cred", __func__, object)); 797 798 /* 799 * Let the pager know object is dead. 800 */ 801 vm_pager_deallocate(object); 802 VM_OBJECT_WUNLOCK(object); 803 804 vm_object_destroy(object); 805 } 806 807 /* 808 * Make the page read-only so that we can clear the object flags. However, if 809 * this is a nosync mmap then the object is likely to stay dirty so do not 810 * mess with the page and do not clear the object flags. Returns TRUE if the 811 * page should be flushed, and FALSE otherwise. 812 */ 813 static boolean_t 814 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 815 { 816 817 /* 818 * If we have been asked to skip nosync pages and this is a 819 * nosync page, skip it. Note that the object flags were not 820 * cleared in this case so we do not have to set them. 821 */ 822 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 823 *clearobjflags = FALSE; 824 return (FALSE); 825 } else { 826 pmap_remove_write(p); 827 return (p->dirty != 0); 828 } 829 } 830 831 /* 832 * vm_object_page_clean 833 * 834 * Clean all dirty pages in the specified range of object. Leaves page 835 * on whatever queue it is currently on. If NOSYNC is set then do not 836 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 837 * leaving the object dirty. 838 * 839 * When stuffing pages asynchronously, allow clustering. XXX we need a 840 * synchronous clustering mode implementation. 841 * 842 * Odd semantics: if start == end, we clean everything. 843 * 844 * The object must be locked. 845 * 846 * Returns FALSE if some page from the range was not written, as 847 * reported by the pager, and TRUE otherwise. 848 */ 849 boolean_t 850 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 851 int flags) 852 { 853 vm_page_t np, p; 854 vm_pindex_t pi, tend, tstart; 855 int curgeneration, n, pagerflags; 856 boolean_t clearobjflags, eio, res; 857 858 VM_OBJECT_ASSERT_WLOCKED(object); 859 860 /* 861 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 862 * objects. The check below prevents the function from 863 * operating on non-vnode objects. 864 */ 865 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 866 object->resident_page_count == 0) 867 return (TRUE); 868 869 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 870 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 871 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 872 873 tstart = OFF_TO_IDX(start); 874 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 875 clearobjflags = tstart == 0 && tend >= object->size; 876 res = TRUE; 877 878 rescan: 879 curgeneration = object->generation; 880 881 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 882 pi = p->pindex; 883 if (pi >= tend) 884 break; 885 np = TAILQ_NEXT(p, listq); 886 if (p->valid == 0) 887 continue; 888 if (vm_page_sleep_if_busy(p, "vpcwai")) { 889 if (object->generation != curgeneration) { 890 if ((flags & OBJPC_SYNC) != 0) 891 goto rescan; 892 else 893 clearobjflags = FALSE; 894 } 895 np = vm_page_find_least(object, pi); 896 continue; 897 } 898 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 899 continue; 900 901 n = vm_object_page_collect_flush(object, p, pagerflags, 902 flags, &clearobjflags, &eio); 903 if (eio) { 904 res = FALSE; 905 clearobjflags = FALSE; 906 } 907 if (object->generation != curgeneration) { 908 if ((flags & OBJPC_SYNC) != 0) 909 goto rescan; 910 else 911 clearobjflags = FALSE; 912 } 913 914 /* 915 * If the VOP_PUTPAGES() did a truncated write, so 916 * that even the first page of the run is not fully 917 * written, vm_pageout_flush() returns 0 as the run 918 * length. Since the condition that caused truncated 919 * write may be permanent, e.g. exhausted free space, 920 * accepting n == 0 would cause an infinite loop. 921 * 922 * Forwarding the iterator leaves the unwritten page 923 * behind, but there is not much we can do there if 924 * filesystem refuses to write it. 925 */ 926 if (n == 0) { 927 n = 1; 928 clearobjflags = FALSE; 929 } 930 np = vm_page_find_least(object, pi + n); 931 } 932 #if 0 933 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 934 #endif 935 936 if (clearobjflags) 937 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 938 return (res); 939 } 940 941 static int 942 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 943 int flags, boolean_t *clearobjflags, boolean_t *eio) 944 { 945 vm_page_t ma[vm_pageout_page_count], p_first, tp; 946 int count, i, mreq, runlen; 947 948 vm_page_lock_assert(p, MA_NOTOWNED); 949 VM_OBJECT_ASSERT_WLOCKED(object); 950 951 count = 1; 952 mreq = 0; 953 954 for (tp = p; count < vm_pageout_page_count; count++) { 955 tp = vm_page_next(tp); 956 if (tp == NULL || vm_page_busied(tp)) 957 break; 958 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 959 break; 960 } 961 962 for (p_first = p; count < vm_pageout_page_count; count++) { 963 tp = vm_page_prev(p_first); 964 if (tp == NULL || vm_page_busied(tp)) 965 break; 966 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 967 break; 968 p_first = tp; 969 mreq++; 970 } 971 972 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 973 ma[i] = tp; 974 975 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 976 return (runlen); 977 } 978 979 /* 980 * Note that there is absolutely no sense in writing out 981 * anonymous objects, so we track down the vnode object 982 * to write out. 983 * We invalidate (remove) all pages from the address space 984 * for semantic correctness. 985 * 986 * If the backing object is a device object with unmanaged pages, then any 987 * mappings to the specified range of pages must be removed before this 988 * function is called. 989 * 990 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 991 * may start out with a NULL object. 992 */ 993 boolean_t 994 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 995 boolean_t syncio, boolean_t invalidate) 996 { 997 vm_object_t backing_object; 998 struct vnode *vp; 999 struct mount *mp; 1000 int error, flags, fsync_after; 1001 boolean_t res; 1002 1003 if (object == NULL) 1004 return (TRUE); 1005 res = TRUE; 1006 error = 0; 1007 VM_OBJECT_WLOCK(object); 1008 while ((backing_object = object->backing_object) != NULL) { 1009 VM_OBJECT_WLOCK(backing_object); 1010 offset += object->backing_object_offset; 1011 VM_OBJECT_WUNLOCK(object); 1012 object = backing_object; 1013 if (object->size < OFF_TO_IDX(offset + size)) 1014 size = IDX_TO_OFF(object->size) - offset; 1015 } 1016 /* 1017 * Flush pages if writing is allowed, invalidate them 1018 * if invalidation requested. Pages undergoing I/O 1019 * will be ignored by vm_object_page_remove(). 1020 * 1021 * We cannot lock the vnode and then wait for paging 1022 * to complete without deadlocking against vm_fault. 1023 * Instead we simply call vm_object_page_remove() and 1024 * allow it to block internally on a page-by-page 1025 * basis when it encounters pages undergoing async 1026 * I/O. 1027 */ 1028 if (object->type == OBJT_VNODE && 1029 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1030 vp = object->handle; 1031 VM_OBJECT_WUNLOCK(object); 1032 (void) vn_start_write(vp, &mp, V_WAIT); 1033 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1034 if (syncio && !invalidate && offset == 0 && 1035 OFF_TO_IDX(size) == object->size) { 1036 /* 1037 * If syncing the whole mapping of the file, 1038 * it is faster to schedule all the writes in 1039 * async mode, also allowing the clustering, 1040 * and then wait for i/o to complete. 1041 */ 1042 flags = 0; 1043 fsync_after = TRUE; 1044 } else { 1045 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1046 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1047 fsync_after = FALSE; 1048 } 1049 VM_OBJECT_WLOCK(object); 1050 res = vm_object_page_clean(object, offset, offset + size, 1051 flags); 1052 VM_OBJECT_WUNLOCK(object); 1053 if (fsync_after) 1054 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1055 VOP_UNLOCK(vp, 0); 1056 vn_finished_write(mp); 1057 if (error != 0) 1058 res = FALSE; 1059 VM_OBJECT_WLOCK(object); 1060 } 1061 if ((object->type == OBJT_VNODE || 1062 object->type == OBJT_DEVICE) && invalidate) { 1063 if (object->type == OBJT_DEVICE) 1064 /* 1065 * The option OBJPR_NOTMAPPED must be passed here 1066 * because vm_object_page_remove() cannot remove 1067 * unmanaged mappings. 1068 */ 1069 flags = OBJPR_NOTMAPPED; 1070 else if (old_msync) 1071 flags = 0; 1072 else 1073 flags = OBJPR_CLEANONLY; 1074 vm_object_page_remove(object, OFF_TO_IDX(offset), 1075 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1076 } 1077 VM_OBJECT_WUNLOCK(object); 1078 return (res); 1079 } 1080 1081 /* 1082 * vm_object_madvise: 1083 * 1084 * Implements the madvise function at the object/page level. 1085 * 1086 * MADV_WILLNEED (any object) 1087 * 1088 * Activate the specified pages if they are resident. 1089 * 1090 * MADV_DONTNEED (any object) 1091 * 1092 * Deactivate the specified pages if they are resident. 1093 * 1094 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1095 * OBJ_ONEMAPPING only) 1096 * 1097 * Deactivate and clean the specified pages if they are 1098 * resident. This permits the process to reuse the pages 1099 * without faulting or the kernel to reclaim the pages 1100 * without I/O. 1101 */ 1102 void 1103 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1104 int advise) 1105 { 1106 vm_pindex_t tpindex; 1107 vm_object_t backing_object, tobject; 1108 vm_page_t m; 1109 1110 if (object == NULL) 1111 return; 1112 VM_OBJECT_WLOCK(object); 1113 /* 1114 * Locate and adjust resident pages 1115 */ 1116 for (; pindex < end; pindex += 1) { 1117 relookup: 1118 tobject = object; 1119 tpindex = pindex; 1120 shadowlookup: 1121 /* 1122 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1123 * and those pages must be OBJ_ONEMAPPING. 1124 */ 1125 if (advise == MADV_FREE) { 1126 if ((tobject->type != OBJT_DEFAULT && 1127 tobject->type != OBJT_SWAP) || 1128 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1129 goto unlock_tobject; 1130 } 1131 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1132 goto unlock_tobject; 1133 m = vm_page_lookup(tobject, tpindex); 1134 if (m == NULL && advise == MADV_WILLNEED) { 1135 /* 1136 * If the page is cached, reactivate it. 1137 */ 1138 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1139 VM_ALLOC_NOBUSY); 1140 } 1141 if (m == NULL) { 1142 /* 1143 * There may be swap even if there is no backing page 1144 */ 1145 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1146 swap_pager_freespace(tobject, tpindex, 1); 1147 /* 1148 * next object 1149 */ 1150 backing_object = tobject->backing_object; 1151 if (backing_object == NULL) 1152 goto unlock_tobject; 1153 VM_OBJECT_WLOCK(backing_object); 1154 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1155 if (tobject != object) 1156 VM_OBJECT_WUNLOCK(tobject); 1157 tobject = backing_object; 1158 goto shadowlookup; 1159 } else if (m->valid != VM_PAGE_BITS_ALL) 1160 goto unlock_tobject; 1161 /* 1162 * If the page is not in a normal state, skip it. 1163 */ 1164 vm_page_lock(m); 1165 if (m->hold_count != 0 || m->wire_count != 0) { 1166 vm_page_unlock(m); 1167 goto unlock_tobject; 1168 } 1169 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1170 ("vm_object_madvise: page %p is fictitious", m)); 1171 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1172 ("vm_object_madvise: page %p is not managed", m)); 1173 if (vm_page_busied(m)) { 1174 if (advise == MADV_WILLNEED) { 1175 /* 1176 * Reference the page before unlocking and 1177 * sleeping so that the page daemon is less 1178 * likely to reclaim it. 1179 */ 1180 vm_page_aflag_set(m, PGA_REFERENCED); 1181 } 1182 if (object != tobject) 1183 VM_OBJECT_WUNLOCK(object); 1184 VM_OBJECT_WUNLOCK(tobject); 1185 vm_page_busy_sleep(m, "madvpo"); 1186 VM_OBJECT_WLOCK(object); 1187 goto relookup; 1188 } 1189 if (advise == MADV_WILLNEED) { 1190 vm_page_activate(m); 1191 } else { 1192 vm_page_advise(m, advise); 1193 } 1194 vm_page_unlock(m); 1195 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1196 swap_pager_freespace(tobject, tpindex, 1); 1197 unlock_tobject: 1198 if (tobject != object) 1199 VM_OBJECT_WUNLOCK(tobject); 1200 } 1201 VM_OBJECT_WUNLOCK(object); 1202 } 1203 1204 /* 1205 * vm_object_shadow: 1206 * 1207 * Create a new object which is backed by the 1208 * specified existing object range. The source 1209 * object reference is deallocated. 1210 * 1211 * The new object and offset into that object 1212 * are returned in the source parameters. 1213 */ 1214 void 1215 vm_object_shadow( 1216 vm_object_t *object, /* IN/OUT */ 1217 vm_ooffset_t *offset, /* IN/OUT */ 1218 vm_size_t length) 1219 { 1220 vm_object_t source; 1221 vm_object_t result; 1222 1223 source = *object; 1224 1225 /* 1226 * Don't create the new object if the old object isn't shared. 1227 */ 1228 if (source != NULL) { 1229 VM_OBJECT_WLOCK(source); 1230 if (source->ref_count == 1 && 1231 source->handle == NULL && 1232 (source->type == OBJT_DEFAULT || 1233 source->type == OBJT_SWAP)) { 1234 VM_OBJECT_WUNLOCK(source); 1235 return; 1236 } 1237 VM_OBJECT_WUNLOCK(source); 1238 } 1239 1240 /* 1241 * Allocate a new object with the given length. 1242 */ 1243 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1244 1245 /* 1246 * The new object shadows the source object, adding a reference to it. 1247 * Our caller changes his reference to point to the new object, 1248 * removing a reference to the source object. Net result: no change 1249 * of reference count. 1250 * 1251 * Try to optimize the result object's page color when shadowing 1252 * in order to maintain page coloring consistency in the combined 1253 * shadowed object. 1254 */ 1255 result->backing_object = source; 1256 /* 1257 * Store the offset into the source object, and fix up the offset into 1258 * the new object. 1259 */ 1260 result->backing_object_offset = *offset; 1261 if (source != NULL) { 1262 VM_OBJECT_WLOCK(source); 1263 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1264 source->shadow_count++; 1265 #if VM_NRESERVLEVEL > 0 1266 result->flags |= source->flags & OBJ_COLORED; 1267 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1268 ((1 << (VM_NFREEORDER - 1)) - 1); 1269 #endif 1270 VM_OBJECT_WUNLOCK(source); 1271 } 1272 1273 1274 /* 1275 * Return the new things 1276 */ 1277 *offset = 0; 1278 *object = result; 1279 } 1280 1281 /* 1282 * vm_object_split: 1283 * 1284 * Split the pages in a map entry into a new object. This affords 1285 * easier removal of unused pages, and keeps object inheritance from 1286 * being a negative impact on memory usage. 1287 */ 1288 void 1289 vm_object_split(vm_map_entry_t entry) 1290 { 1291 vm_page_t m, m_next; 1292 vm_object_t orig_object, new_object, source; 1293 vm_pindex_t idx, offidxstart; 1294 vm_size_t size; 1295 1296 orig_object = entry->object.vm_object; 1297 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1298 return; 1299 if (orig_object->ref_count <= 1) 1300 return; 1301 VM_OBJECT_WUNLOCK(orig_object); 1302 1303 offidxstart = OFF_TO_IDX(entry->offset); 1304 size = atop(entry->end - entry->start); 1305 1306 /* 1307 * If swap_pager_copy() is later called, it will convert new_object 1308 * into a swap object. 1309 */ 1310 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1311 1312 /* 1313 * At this point, the new object is still private, so the order in 1314 * which the original and new objects are locked does not matter. 1315 */ 1316 VM_OBJECT_WLOCK(new_object); 1317 VM_OBJECT_WLOCK(orig_object); 1318 source = orig_object->backing_object; 1319 if (source != NULL) { 1320 VM_OBJECT_WLOCK(source); 1321 if ((source->flags & OBJ_DEAD) != 0) { 1322 VM_OBJECT_WUNLOCK(source); 1323 VM_OBJECT_WUNLOCK(orig_object); 1324 VM_OBJECT_WUNLOCK(new_object); 1325 vm_object_deallocate(new_object); 1326 VM_OBJECT_WLOCK(orig_object); 1327 return; 1328 } 1329 LIST_INSERT_HEAD(&source->shadow_head, 1330 new_object, shadow_list); 1331 source->shadow_count++; 1332 vm_object_reference_locked(source); /* for new_object */ 1333 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1334 VM_OBJECT_WUNLOCK(source); 1335 new_object->backing_object_offset = 1336 orig_object->backing_object_offset + entry->offset; 1337 new_object->backing_object = source; 1338 } 1339 if (orig_object->cred != NULL) { 1340 new_object->cred = orig_object->cred; 1341 crhold(orig_object->cred); 1342 new_object->charge = ptoa(size); 1343 KASSERT(orig_object->charge >= ptoa(size), 1344 ("orig_object->charge < 0")); 1345 orig_object->charge -= ptoa(size); 1346 } 1347 retry: 1348 m = vm_page_find_least(orig_object, offidxstart); 1349 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1350 m = m_next) { 1351 m_next = TAILQ_NEXT(m, listq); 1352 1353 /* 1354 * We must wait for pending I/O to complete before we can 1355 * rename the page. 1356 * 1357 * We do not have to VM_PROT_NONE the page as mappings should 1358 * not be changed by this operation. 1359 */ 1360 if (vm_page_busied(m)) { 1361 VM_OBJECT_WUNLOCK(new_object); 1362 vm_page_lock(m); 1363 VM_OBJECT_WUNLOCK(orig_object); 1364 vm_page_busy_sleep(m, "spltwt"); 1365 VM_OBJECT_WLOCK(orig_object); 1366 VM_OBJECT_WLOCK(new_object); 1367 goto retry; 1368 } 1369 1370 /* vm_page_rename() will handle dirty and cache. */ 1371 if (vm_page_rename(m, new_object, idx)) { 1372 VM_OBJECT_WUNLOCK(new_object); 1373 VM_OBJECT_WUNLOCK(orig_object); 1374 VM_WAIT; 1375 VM_OBJECT_WLOCK(orig_object); 1376 VM_OBJECT_WLOCK(new_object); 1377 goto retry; 1378 } 1379 #if VM_NRESERVLEVEL > 0 1380 /* 1381 * If some of the reservation's allocated pages remain with 1382 * the original object, then transferring the reservation to 1383 * the new object is neither particularly beneficial nor 1384 * particularly harmful as compared to leaving the reservation 1385 * with the original object. If, however, all of the 1386 * reservation's allocated pages are transferred to the new 1387 * object, then transferring the reservation is typically 1388 * beneficial. Determining which of these two cases applies 1389 * would be more costly than unconditionally renaming the 1390 * reservation. 1391 */ 1392 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1393 #endif 1394 if (orig_object->type == OBJT_SWAP) 1395 vm_page_xbusy(m); 1396 } 1397 if (orig_object->type == OBJT_SWAP) { 1398 /* 1399 * swap_pager_copy() can sleep, in which case the orig_object's 1400 * and new_object's locks are released and reacquired. 1401 */ 1402 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1403 TAILQ_FOREACH(m, &new_object->memq, listq) 1404 vm_page_xunbusy(m); 1405 1406 /* 1407 * Transfer any cached pages from orig_object to new_object. 1408 * If swap_pager_copy() found swapped out pages within the 1409 * specified range of orig_object, then it changed 1410 * new_object's type to OBJT_SWAP when it transferred those 1411 * pages to new_object. Otherwise, new_object's type 1412 * should still be OBJT_DEFAULT and orig_object should not 1413 * contain any cached pages within the specified range. 1414 */ 1415 if (__predict_false(!vm_object_cache_is_empty(orig_object))) 1416 vm_page_cache_transfer(orig_object, offidxstart, 1417 new_object); 1418 } 1419 VM_OBJECT_WUNLOCK(orig_object); 1420 VM_OBJECT_WUNLOCK(new_object); 1421 entry->object.vm_object = new_object; 1422 entry->offset = 0LL; 1423 vm_object_deallocate(orig_object); 1424 VM_OBJECT_WLOCK(new_object); 1425 } 1426 1427 #define OBSC_COLLAPSE_NOWAIT 0x0002 1428 #define OBSC_COLLAPSE_WAIT 0x0004 1429 1430 static vm_page_t 1431 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1432 int op) 1433 { 1434 vm_object_t backing_object; 1435 1436 VM_OBJECT_ASSERT_WLOCKED(object); 1437 backing_object = object->backing_object; 1438 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1439 1440 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1441 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1442 ("invalid ownership %p %p %p", p, object, backing_object)); 1443 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1444 return (next); 1445 if (p != NULL) 1446 vm_page_lock(p); 1447 VM_OBJECT_WUNLOCK(object); 1448 VM_OBJECT_WUNLOCK(backing_object); 1449 if (p == NULL) 1450 VM_WAIT; 1451 else 1452 vm_page_busy_sleep(p, "vmocol"); 1453 VM_OBJECT_WLOCK(object); 1454 VM_OBJECT_WLOCK(backing_object); 1455 return (TAILQ_FIRST(&backing_object->memq)); 1456 } 1457 1458 static bool 1459 vm_object_scan_all_shadowed(vm_object_t object) 1460 { 1461 vm_object_t backing_object; 1462 vm_page_t p, pp; 1463 vm_pindex_t backing_offset_index, new_pindex; 1464 1465 VM_OBJECT_ASSERT_WLOCKED(object); 1466 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1467 1468 backing_object = object->backing_object; 1469 1470 /* 1471 * Initial conditions: 1472 * 1473 * We do not want to have to test for the existence of cache or swap 1474 * pages in the backing object. XXX but with the new swapper this 1475 * would be pretty easy to do. 1476 */ 1477 if (backing_object->type != OBJT_DEFAULT) 1478 return (false); 1479 1480 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1481 1482 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; 1483 p = TAILQ_NEXT(p, listq)) { 1484 new_pindex = p->pindex - backing_offset_index; 1485 1486 /* 1487 * Ignore pages outside the parent object's range and outside 1488 * the parent object's mapping of the backing object. 1489 */ 1490 if (p->pindex < backing_offset_index || 1491 new_pindex >= object->size) 1492 continue; 1493 1494 /* 1495 * See if the parent has the page or if the parent's object 1496 * pager has the page. If the parent has the page but the page 1497 * is not valid, the parent's object pager must have the page. 1498 * 1499 * If this fails, the parent does not completely shadow the 1500 * object and we might as well give up now. 1501 */ 1502 pp = vm_page_lookup(object, new_pindex); 1503 if ((pp == NULL || pp->valid == 0) && 1504 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1505 return (false); 1506 } 1507 return (true); 1508 } 1509 1510 static bool 1511 vm_object_collapse_scan(vm_object_t object, int op) 1512 { 1513 vm_object_t backing_object; 1514 vm_page_t next, p, pp; 1515 vm_pindex_t backing_offset_index, new_pindex; 1516 1517 VM_OBJECT_ASSERT_WLOCKED(object); 1518 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1519 1520 backing_object = object->backing_object; 1521 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1522 1523 /* 1524 * Initial conditions 1525 */ 1526 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1527 vm_object_set_flag(backing_object, OBJ_DEAD); 1528 1529 /* 1530 * Our scan 1531 */ 1532 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1533 next = TAILQ_NEXT(p, listq); 1534 new_pindex = p->pindex - backing_offset_index; 1535 1536 /* 1537 * Check for busy page 1538 */ 1539 if (vm_page_busied(p)) { 1540 next = vm_object_collapse_scan_wait(object, p, next, op); 1541 continue; 1542 } 1543 1544 KASSERT(p->object == backing_object, 1545 ("vm_object_collapse_scan: object mismatch")); 1546 1547 if (p->pindex < backing_offset_index || 1548 new_pindex >= object->size) { 1549 if (backing_object->type == OBJT_SWAP) 1550 swap_pager_freespace(backing_object, p->pindex, 1551 1); 1552 1553 /* 1554 * Page is out of the parent object's range, we can 1555 * simply destroy it. 1556 */ 1557 vm_page_lock(p); 1558 KASSERT(!pmap_page_is_mapped(p), 1559 ("freeing mapped page %p", p)); 1560 if (p->wire_count == 0) 1561 vm_page_free(p); 1562 else 1563 vm_page_remove(p); 1564 vm_page_unlock(p); 1565 continue; 1566 } 1567 1568 pp = vm_page_lookup(object, new_pindex); 1569 if (pp != NULL && vm_page_busied(pp)) { 1570 /* 1571 * The page in the parent is busy and possibly not 1572 * (yet) valid. Until its state is finalized by the 1573 * busy bit owner, we can't tell whether it shadows the 1574 * original page. Therefore, we must either skip it 1575 * and the original (backing_object) page or wait for 1576 * its state to be finalized. 1577 * 1578 * This is due to a race with vm_fault() where we must 1579 * unbusy the original (backing_obj) page before we can 1580 * (re)lock the parent. Hence we can get here. 1581 */ 1582 next = vm_object_collapse_scan_wait(object, pp, next, 1583 op); 1584 continue; 1585 } 1586 1587 KASSERT(pp == NULL || pp->valid != 0, 1588 ("unbusy invalid page %p", pp)); 1589 1590 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1591 NULL)) { 1592 /* 1593 * The page already exists in the parent OR swap exists 1594 * for this location in the parent. Leave the parent's 1595 * page alone. Destroy the original page from the 1596 * backing object. 1597 */ 1598 if (backing_object->type == OBJT_SWAP) 1599 swap_pager_freespace(backing_object, p->pindex, 1600 1); 1601 vm_page_lock(p); 1602 KASSERT(!pmap_page_is_mapped(p), 1603 ("freeing mapped page %p", p)); 1604 if (p->wire_count == 0) 1605 vm_page_free(p); 1606 else 1607 vm_page_remove(p); 1608 vm_page_unlock(p); 1609 continue; 1610 } 1611 1612 /* 1613 * Page does not exist in parent, rename the page from the 1614 * backing object to the main object. 1615 * 1616 * If the page was mapped to a process, it can remain mapped 1617 * through the rename. vm_page_rename() will handle dirty and 1618 * cache. 1619 */ 1620 if (vm_page_rename(p, object, new_pindex)) { 1621 next = vm_object_collapse_scan_wait(object, NULL, next, 1622 op); 1623 continue; 1624 } 1625 1626 /* Use the old pindex to free the right page. */ 1627 if (backing_object->type == OBJT_SWAP) 1628 swap_pager_freespace(backing_object, 1629 new_pindex + backing_offset_index, 1); 1630 1631 #if VM_NRESERVLEVEL > 0 1632 /* 1633 * Rename the reservation. 1634 */ 1635 vm_reserv_rename(p, object, backing_object, 1636 backing_offset_index); 1637 #endif 1638 } 1639 return (true); 1640 } 1641 1642 1643 /* 1644 * this version of collapse allows the operation to occur earlier and 1645 * when paging_in_progress is true for an object... This is not a complete 1646 * operation, but should plug 99.9% of the rest of the leaks. 1647 */ 1648 static void 1649 vm_object_qcollapse(vm_object_t object) 1650 { 1651 vm_object_t backing_object = object->backing_object; 1652 1653 VM_OBJECT_ASSERT_WLOCKED(object); 1654 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1655 1656 if (backing_object->ref_count != 1) 1657 return; 1658 1659 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1660 } 1661 1662 /* 1663 * vm_object_collapse: 1664 * 1665 * Collapse an object with the object backing it. 1666 * Pages in the backing object are moved into the 1667 * parent, and the backing object is deallocated. 1668 */ 1669 void 1670 vm_object_collapse(vm_object_t object) 1671 { 1672 vm_object_t backing_object, new_backing_object; 1673 1674 VM_OBJECT_ASSERT_WLOCKED(object); 1675 1676 while (TRUE) { 1677 /* 1678 * Verify that the conditions are right for collapse: 1679 * 1680 * The object exists and the backing object exists. 1681 */ 1682 if ((backing_object = object->backing_object) == NULL) 1683 break; 1684 1685 /* 1686 * we check the backing object first, because it is most likely 1687 * not collapsable. 1688 */ 1689 VM_OBJECT_WLOCK(backing_object); 1690 if (backing_object->handle != NULL || 1691 (backing_object->type != OBJT_DEFAULT && 1692 backing_object->type != OBJT_SWAP) || 1693 (backing_object->flags & OBJ_DEAD) || 1694 object->handle != NULL || 1695 (object->type != OBJT_DEFAULT && 1696 object->type != OBJT_SWAP) || 1697 (object->flags & OBJ_DEAD)) { 1698 VM_OBJECT_WUNLOCK(backing_object); 1699 break; 1700 } 1701 1702 if (object->paging_in_progress != 0 || 1703 backing_object->paging_in_progress != 0) { 1704 vm_object_qcollapse(object); 1705 VM_OBJECT_WUNLOCK(backing_object); 1706 break; 1707 } 1708 1709 /* 1710 * We know that we can either collapse the backing object (if 1711 * the parent is the only reference to it) or (perhaps) have 1712 * the parent bypass the object if the parent happens to shadow 1713 * all the resident pages in the entire backing object. 1714 * 1715 * This is ignoring pager-backed pages such as swap pages. 1716 * vm_object_collapse_scan fails the shadowing test in this 1717 * case. 1718 */ 1719 if (backing_object->ref_count == 1) { 1720 vm_object_pip_add(object, 1); 1721 vm_object_pip_add(backing_object, 1); 1722 1723 /* 1724 * If there is exactly one reference to the backing 1725 * object, we can collapse it into the parent. 1726 */ 1727 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1728 1729 #if VM_NRESERVLEVEL > 0 1730 /* 1731 * Break any reservations from backing_object. 1732 */ 1733 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1734 vm_reserv_break_all(backing_object); 1735 #endif 1736 1737 /* 1738 * Move the pager from backing_object to object. 1739 */ 1740 if (backing_object->type == OBJT_SWAP) { 1741 /* 1742 * swap_pager_copy() can sleep, in which case 1743 * the backing_object's and object's locks are 1744 * released and reacquired. 1745 * Since swap_pager_copy() is being asked to 1746 * destroy the source, it will change the 1747 * backing_object's type to OBJT_DEFAULT. 1748 */ 1749 swap_pager_copy( 1750 backing_object, 1751 object, 1752 OFF_TO_IDX(object->backing_object_offset), TRUE); 1753 1754 /* 1755 * Free any cached pages from backing_object. 1756 */ 1757 if (__predict_false( 1758 !vm_object_cache_is_empty(backing_object))) 1759 vm_page_cache_free(backing_object, 0, 0); 1760 } 1761 /* 1762 * Object now shadows whatever backing_object did. 1763 * Note that the reference to 1764 * backing_object->backing_object moves from within 1765 * backing_object to within object. 1766 */ 1767 LIST_REMOVE(object, shadow_list); 1768 backing_object->shadow_count--; 1769 if (backing_object->backing_object) { 1770 VM_OBJECT_WLOCK(backing_object->backing_object); 1771 LIST_REMOVE(backing_object, shadow_list); 1772 LIST_INSERT_HEAD( 1773 &backing_object->backing_object->shadow_head, 1774 object, shadow_list); 1775 /* 1776 * The shadow_count has not changed. 1777 */ 1778 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1779 } 1780 object->backing_object = backing_object->backing_object; 1781 object->backing_object_offset += 1782 backing_object->backing_object_offset; 1783 1784 /* 1785 * Discard backing_object. 1786 * 1787 * Since the backing object has no pages, no pager left, 1788 * and no object references within it, all that is 1789 * necessary is to dispose of it. 1790 */ 1791 KASSERT(backing_object->ref_count == 1, ( 1792 "backing_object %p was somehow re-referenced during collapse!", 1793 backing_object)); 1794 vm_object_pip_wakeup(backing_object); 1795 backing_object->type = OBJT_DEAD; 1796 backing_object->ref_count = 0; 1797 VM_OBJECT_WUNLOCK(backing_object); 1798 vm_object_destroy(backing_object); 1799 1800 vm_object_pip_wakeup(object); 1801 object_collapses++; 1802 } else { 1803 /* 1804 * If we do not entirely shadow the backing object, 1805 * there is nothing we can do so we give up. 1806 */ 1807 if (object->resident_page_count != object->size && 1808 !vm_object_scan_all_shadowed(object)) { 1809 VM_OBJECT_WUNLOCK(backing_object); 1810 break; 1811 } 1812 1813 /* 1814 * Make the parent shadow the next object in the 1815 * chain. Deallocating backing_object will not remove 1816 * it, since its reference count is at least 2. 1817 */ 1818 LIST_REMOVE(object, shadow_list); 1819 backing_object->shadow_count--; 1820 1821 new_backing_object = backing_object->backing_object; 1822 if ((object->backing_object = new_backing_object) != NULL) { 1823 VM_OBJECT_WLOCK(new_backing_object); 1824 LIST_INSERT_HEAD( 1825 &new_backing_object->shadow_head, 1826 object, 1827 shadow_list 1828 ); 1829 new_backing_object->shadow_count++; 1830 vm_object_reference_locked(new_backing_object); 1831 VM_OBJECT_WUNLOCK(new_backing_object); 1832 object->backing_object_offset += 1833 backing_object->backing_object_offset; 1834 } 1835 1836 /* 1837 * Drop the reference count on backing_object. Since 1838 * its ref_count was at least 2, it will not vanish. 1839 */ 1840 backing_object->ref_count--; 1841 VM_OBJECT_WUNLOCK(backing_object); 1842 object_bypasses++; 1843 } 1844 1845 /* 1846 * Try again with this object's new backing object. 1847 */ 1848 } 1849 } 1850 1851 /* 1852 * vm_object_page_remove: 1853 * 1854 * For the given object, either frees or invalidates each of the 1855 * specified pages. In general, a page is freed. However, if a page is 1856 * wired for any reason other than the existence of a managed, wired 1857 * mapping, then it may be invalidated but not removed from the object. 1858 * Pages are specified by the given range ["start", "end") and the option 1859 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1860 * extends from "start" to the end of the object. If the option 1861 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1862 * specified range are affected. If the option OBJPR_NOTMAPPED is 1863 * specified, then the pages within the specified range must have no 1864 * mappings. Otherwise, if this option is not specified, any mappings to 1865 * the specified pages are removed before the pages are freed or 1866 * invalidated. 1867 * 1868 * In general, this operation should only be performed on objects that 1869 * contain managed pages. There are, however, two exceptions. First, it 1870 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1871 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1872 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1873 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1874 * 1875 * The object must be locked. 1876 */ 1877 void 1878 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1879 int options) 1880 { 1881 vm_page_t p, next; 1882 1883 VM_OBJECT_ASSERT_WLOCKED(object); 1884 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1885 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1886 ("vm_object_page_remove: illegal options for object %p", object)); 1887 if (object->resident_page_count == 0) 1888 goto skipmemq; 1889 vm_object_pip_add(object, 1); 1890 again: 1891 p = vm_page_find_least(object, start); 1892 1893 /* 1894 * Here, the variable "p" is either (1) the page with the least pindex 1895 * greater than or equal to the parameter "start" or (2) NULL. 1896 */ 1897 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1898 next = TAILQ_NEXT(p, listq); 1899 1900 /* 1901 * If the page is wired for any reason besides the existence 1902 * of managed, wired mappings, then it cannot be freed. For 1903 * example, fictitious pages, which represent device memory, 1904 * are inherently wired and cannot be freed. They can, 1905 * however, be invalidated if the option OBJPR_CLEANONLY is 1906 * not specified. 1907 */ 1908 vm_page_lock(p); 1909 if (vm_page_xbusied(p)) { 1910 VM_OBJECT_WUNLOCK(object); 1911 vm_page_busy_sleep(p, "vmopax"); 1912 VM_OBJECT_WLOCK(object); 1913 goto again; 1914 } 1915 if (p->wire_count != 0) { 1916 if ((options & OBJPR_NOTMAPPED) == 0) 1917 pmap_remove_all(p); 1918 if ((options & OBJPR_CLEANONLY) == 0) { 1919 p->valid = 0; 1920 vm_page_undirty(p); 1921 } 1922 goto next; 1923 } 1924 if (vm_page_busied(p)) { 1925 VM_OBJECT_WUNLOCK(object); 1926 vm_page_busy_sleep(p, "vmopar"); 1927 VM_OBJECT_WLOCK(object); 1928 goto again; 1929 } 1930 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1931 ("vm_object_page_remove: page %p is fictitious", p)); 1932 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1933 if ((options & OBJPR_NOTMAPPED) == 0) 1934 pmap_remove_write(p); 1935 if (p->dirty) 1936 goto next; 1937 } 1938 if ((options & OBJPR_NOTMAPPED) == 0) 1939 pmap_remove_all(p); 1940 vm_page_free(p); 1941 next: 1942 vm_page_unlock(p); 1943 } 1944 vm_object_pip_wakeup(object); 1945 skipmemq: 1946 if (__predict_false(!vm_object_cache_is_empty(object))) 1947 vm_page_cache_free(object, start, end); 1948 } 1949 1950 /* 1951 * vm_object_page_noreuse: 1952 * 1953 * For the given object, attempt to move the specified pages to 1954 * the head of the inactive queue. This bypasses regular LRU 1955 * operation and allows the pages to be reused quickly under memory 1956 * pressure. If a page is wired for any reason, then it will not 1957 * be queued. Pages are specified by the range ["start", "end"). 1958 * As a special case, if "end" is zero, then the range extends from 1959 * "start" to the end of the object. 1960 * 1961 * This operation should only be performed on objects that 1962 * contain non-fictitious, managed pages. 1963 * 1964 * The object must be locked. 1965 */ 1966 void 1967 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1968 { 1969 struct mtx *mtx, *new_mtx; 1970 vm_page_t p, next; 1971 1972 VM_OBJECT_ASSERT_WLOCKED(object); 1973 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1974 ("vm_object_page_noreuse: illegal object %p", object)); 1975 if (object->resident_page_count == 0) 1976 return; 1977 p = vm_page_find_least(object, start); 1978 1979 /* 1980 * Here, the variable "p" is either (1) the page with the least pindex 1981 * greater than or equal to the parameter "start" or (2) NULL. 1982 */ 1983 mtx = NULL; 1984 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1985 next = TAILQ_NEXT(p, listq); 1986 1987 /* 1988 * Avoid releasing and reacquiring the same page lock. 1989 */ 1990 new_mtx = vm_page_lockptr(p); 1991 if (mtx != new_mtx) { 1992 if (mtx != NULL) 1993 mtx_unlock(mtx); 1994 mtx = new_mtx; 1995 mtx_lock(mtx); 1996 } 1997 vm_page_deactivate_noreuse(p); 1998 } 1999 if (mtx != NULL) 2000 mtx_unlock(mtx); 2001 } 2002 2003 /* 2004 * Populate the specified range of the object with valid pages. Returns 2005 * TRUE if the range is successfully populated and FALSE otherwise. 2006 * 2007 * Note: This function should be optimized to pass a larger array of 2008 * pages to vm_pager_get_pages() before it is applied to a non- 2009 * OBJT_DEVICE object. 2010 * 2011 * The object must be locked. 2012 */ 2013 boolean_t 2014 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2015 { 2016 vm_page_t m; 2017 vm_pindex_t pindex; 2018 int rv; 2019 2020 VM_OBJECT_ASSERT_WLOCKED(object); 2021 for (pindex = start; pindex < end; pindex++) { 2022 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2023 if (m->valid != VM_PAGE_BITS_ALL) { 2024 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2025 if (rv != VM_PAGER_OK) { 2026 vm_page_lock(m); 2027 vm_page_free(m); 2028 vm_page_unlock(m); 2029 break; 2030 } 2031 } 2032 /* 2033 * Keep "m" busy because a subsequent iteration may unlock 2034 * the object. 2035 */ 2036 } 2037 if (pindex > start) { 2038 m = vm_page_lookup(object, start); 2039 while (m != NULL && m->pindex < pindex) { 2040 vm_page_xunbusy(m); 2041 m = TAILQ_NEXT(m, listq); 2042 } 2043 } 2044 return (pindex == end); 2045 } 2046 2047 /* 2048 * Routine: vm_object_coalesce 2049 * Function: Coalesces two objects backing up adjoining 2050 * regions of memory into a single object. 2051 * 2052 * returns TRUE if objects were combined. 2053 * 2054 * NOTE: Only works at the moment if the second object is NULL - 2055 * if it's not, which object do we lock first? 2056 * 2057 * Parameters: 2058 * prev_object First object to coalesce 2059 * prev_offset Offset into prev_object 2060 * prev_size Size of reference to prev_object 2061 * next_size Size of reference to the second object 2062 * reserved Indicator that extension region has 2063 * swap accounted for 2064 * 2065 * Conditions: 2066 * The object must *not* be locked. 2067 */ 2068 boolean_t 2069 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2070 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2071 { 2072 vm_pindex_t next_pindex; 2073 2074 if (prev_object == NULL) 2075 return (TRUE); 2076 VM_OBJECT_WLOCK(prev_object); 2077 if ((prev_object->type != OBJT_DEFAULT && 2078 prev_object->type != OBJT_SWAP) || 2079 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2080 VM_OBJECT_WUNLOCK(prev_object); 2081 return (FALSE); 2082 } 2083 2084 /* 2085 * Try to collapse the object first 2086 */ 2087 vm_object_collapse(prev_object); 2088 2089 /* 2090 * Can't coalesce if: . more than one reference . paged out . shadows 2091 * another object . has a copy elsewhere (any of which mean that the 2092 * pages not mapped to prev_entry may be in use anyway) 2093 */ 2094 if (prev_object->backing_object != NULL) { 2095 VM_OBJECT_WUNLOCK(prev_object); 2096 return (FALSE); 2097 } 2098 2099 prev_size >>= PAGE_SHIFT; 2100 next_size >>= PAGE_SHIFT; 2101 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2102 2103 if ((prev_object->ref_count > 1) && 2104 (prev_object->size != next_pindex)) { 2105 VM_OBJECT_WUNLOCK(prev_object); 2106 return (FALSE); 2107 } 2108 2109 /* 2110 * Account for the charge. 2111 */ 2112 if (prev_object->cred != NULL) { 2113 2114 /* 2115 * If prev_object was charged, then this mapping, 2116 * although not charged now, may become writable 2117 * later. Non-NULL cred in the object would prevent 2118 * swap reservation during enabling of the write 2119 * access, so reserve swap now. Failed reservation 2120 * cause allocation of the separate object for the map 2121 * entry, and swap reservation for this entry is 2122 * managed in appropriate time. 2123 */ 2124 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2125 prev_object->cred)) { 2126 VM_OBJECT_WUNLOCK(prev_object); 2127 return (FALSE); 2128 } 2129 prev_object->charge += ptoa(next_size); 2130 } 2131 2132 /* 2133 * Remove any pages that may still be in the object from a previous 2134 * deallocation. 2135 */ 2136 if (next_pindex < prev_object->size) { 2137 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2138 next_size, 0); 2139 if (prev_object->type == OBJT_SWAP) 2140 swap_pager_freespace(prev_object, 2141 next_pindex, next_size); 2142 #if 0 2143 if (prev_object->cred != NULL) { 2144 KASSERT(prev_object->charge >= 2145 ptoa(prev_object->size - next_pindex), 2146 ("object %p overcharged 1 %jx %jx", prev_object, 2147 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2148 prev_object->charge -= ptoa(prev_object->size - 2149 next_pindex); 2150 } 2151 #endif 2152 } 2153 2154 /* 2155 * Extend the object if necessary. 2156 */ 2157 if (next_pindex + next_size > prev_object->size) 2158 prev_object->size = next_pindex + next_size; 2159 2160 VM_OBJECT_WUNLOCK(prev_object); 2161 return (TRUE); 2162 } 2163 2164 void 2165 vm_object_set_writeable_dirty(vm_object_t object) 2166 { 2167 2168 VM_OBJECT_ASSERT_WLOCKED(object); 2169 if (object->type != OBJT_VNODE) { 2170 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2171 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2172 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2173 } 2174 return; 2175 } 2176 object->generation++; 2177 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2178 return; 2179 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2180 } 2181 2182 /* 2183 * vm_object_unwire: 2184 * 2185 * For each page offset within the specified range of the given object, 2186 * find the highest-level page in the shadow chain and unwire it. A page 2187 * must exist at every page offset, and the highest-level page must be 2188 * wired. 2189 */ 2190 void 2191 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2192 uint8_t queue) 2193 { 2194 vm_object_t tobject; 2195 vm_page_t m, tm; 2196 vm_pindex_t end_pindex, pindex, tpindex; 2197 int depth, locked_depth; 2198 2199 KASSERT((offset & PAGE_MASK) == 0, 2200 ("vm_object_unwire: offset is not page aligned")); 2201 KASSERT((length & PAGE_MASK) == 0, 2202 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2203 /* The wired count of a fictitious page never changes. */ 2204 if ((object->flags & OBJ_FICTITIOUS) != 0) 2205 return; 2206 pindex = OFF_TO_IDX(offset); 2207 end_pindex = pindex + atop(length); 2208 locked_depth = 1; 2209 VM_OBJECT_RLOCK(object); 2210 m = vm_page_find_least(object, pindex); 2211 while (pindex < end_pindex) { 2212 if (m == NULL || pindex < m->pindex) { 2213 /* 2214 * The first object in the shadow chain doesn't 2215 * contain a page at the current index. Therefore, 2216 * the page must exist in a backing object. 2217 */ 2218 tobject = object; 2219 tpindex = pindex; 2220 depth = 0; 2221 do { 2222 tpindex += 2223 OFF_TO_IDX(tobject->backing_object_offset); 2224 tobject = tobject->backing_object; 2225 KASSERT(tobject != NULL, 2226 ("vm_object_unwire: missing page")); 2227 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2228 goto next_page; 2229 depth++; 2230 if (depth == locked_depth) { 2231 locked_depth++; 2232 VM_OBJECT_RLOCK(tobject); 2233 } 2234 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2235 NULL); 2236 } else { 2237 tm = m; 2238 m = TAILQ_NEXT(m, listq); 2239 } 2240 vm_page_lock(tm); 2241 vm_page_unwire(tm, queue); 2242 vm_page_unlock(tm); 2243 next_page: 2244 pindex++; 2245 } 2246 /* Release the accumulated object locks. */ 2247 for (depth = 0; depth < locked_depth; depth++) { 2248 tobject = object->backing_object; 2249 VM_OBJECT_RUNLOCK(object); 2250 object = tobject; 2251 } 2252 } 2253 2254 struct vnode * 2255 vm_object_vnode(vm_object_t object) 2256 { 2257 2258 VM_OBJECT_ASSERT_LOCKED(object); 2259 if (object->type == OBJT_VNODE) 2260 return (object->handle); 2261 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2262 return (object->un_pager.swp.swp_tmpfs); 2263 return (NULL); 2264 } 2265 2266 static int 2267 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2268 { 2269 struct kinfo_vmobject kvo; 2270 char *fullpath, *freepath; 2271 struct vnode *vp; 2272 struct vattr va; 2273 vm_object_t obj; 2274 vm_page_t m; 2275 int count, error; 2276 2277 if (req->oldptr == NULL) { 2278 /* 2279 * If an old buffer has not been provided, generate an 2280 * estimate of the space needed for a subsequent call. 2281 */ 2282 mtx_lock(&vm_object_list_mtx); 2283 count = 0; 2284 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2285 if (obj->type == OBJT_DEAD) 2286 continue; 2287 count++; 2288 } 2289 mtx_unlock(&vm_object_list_mtx); 2290 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2291 count * 11 / 10)); 2292 } 2293 2294 error = 0; 2295 2296 /* 2297 * VM objects are type stable and are never removed from the 2298 * list once added. This allows us to safely read obj->object_list 2299 * after reacquiring the VM object lock. 2300 */ 2301 mtx_lock(&vm_object_list_mtx); 2302 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2303 if (obj->type == OBJT_DEAD) 2304 continue; 2305 VM_OBJECT_RLOCK(obj); 2306 if (obj->type == OBJT_DEAD) { 2307 VM_OBJECT_RUNLOCK(obj); 2308 continue; 2309 } 2310 mtx_unlock(&vm_object_list_mtx); 2311 kvo.kvo_size = ptoa(obj->size); 2312 kvo.kvo_resident = obj->resident_page_count; 2313 kvo.kvo_ref_count = obj->ref_count; 2314 kvo.kvo_shadow_count = obj->shadow_count; 2315 kvo.kvo_memattr = obj->memattr; 2316 kvo.kvo_active = 0; 2317 kvo.kvo_inactive = 0; 2318 TAILQ_FOREACH(m, &obj->memq, listq) { 2319 /* 2320 * A page may belong to the object but be 2321 * dequeued and set to PQ_NONE while the 2322 * object lock is not held. This makes the 2323 * reads of m->queue below racy, and we do not 2324 * count pages set to PQ_NONE. However, this 2325 * sysctl is only meant to give an 2326 * approximation of the system anyway. 2327 */ 2328 if (m->queue == PQ_ACTIVE) 2329 kvo.kvo_active++; 2330 else if (m->queue == PQ_INACTIVE) 2331 kvo.kvo_inactive++; 2332 } 2333 2334 kvo.kvo_vn_fileid = 0; 2335 kvo.kvo_vn_fsid = 0; 2336 freepath = NULL; 2337 fullpath = ""; 2338 vp = NULL; 2339 switch (obj->type) { 2340 case OBJT_DEFAULT: 2341 kvo.kvo_type = KVME_TYPE_DEFAULT; 2342 break; 2343 case OBJT_VNODE: 2344 kvo.kvo_type = KVME_TYPE_VNODE; 2345 vp = obj->handle; 2346 vref(vp); 2347 break; 2348 case OBJT_SWAP: 2349 kvo.kvo_type = KVME_TYPE_SWAP; 2350 break; 2351 case OBJT_DEVICE: 2352 kvo.kvo_type = KVME_TYPE_DEVICE; 2353 break; 2354 case OBJT_PHYS: 2355 kvo.kvo_type = KVME_TYPE_PHYS; 2356 break; 2357 case OBJT_DEAD: 2358 kvo.kvo_type = KVME_TYPE_DEAD; 2359 break; 2360 case OBJT_SG: 2361 kvo.kvo_type = KVME_TYPE_SG; 2362 break; 2363 case OBJT_MGTDEVICE: 2364 kvo.kvo_type = KVME_TYPE_MGTDEVICE; 2365 break; 2366 default: 2367 kvo.kvo_type = KVME_TYPE_UNKNOWN; 2368 break; 2369 } 2370 VM_OBJECT_RUNLOCK(obj); 2371 if (vp != NULL) { 2372 vn_fullpath(curthread, vp, &fullpath, &freepath); 2373 vn_lock(vp, LK_SHARED | LK_RETRY); 2374 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2375 kvo.kvo_vn_fileid = va.va_fileid; 2376 kvo.kvo_vn_fsid = va.va_fsid; 2377 } 2378 vput(vp); 2379 } 2380 2381 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path)); 2382 if (freepath != NULL) 2383 free(freepath, M_TEMP); 2384 2385 /* Pack record size down */ 2386 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) + 2387 strlen(kvo.kvo_path) + 1; 2388 kvo.kvo_structsize = roundup(kvo.kvo_structsize, 2389 sizeof(uint64_t)); 2390 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize); 2391 mtx_lock(&vm_object_list_mtx); 2392 if (error) 2393 break; 2394 } 2395 mtx_unlock(&vm_object_list_mtx); 2396 return (error); 2397 } 2398 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2399 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2400 "List of VM objects"); 2401 2402 #include "opt_ddb.h" 2403 #ifdef DDB 2404 #include <sys/kernel.h> 2405 2406 #include <sys/cons.h> 2407 2408 #include <ddb/ddb.h> 2409 2410 static int 2411 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2412 { 2413 vm_map_t tmpm; 2414 vm_map_entry_t tmpe; 2415 vm_object_t obj; 2416 int entcount; 2417 2418 if (map == 0) 2419 return 0; 2420 2421 if (entry == 0) { 2422 tmpe = map->header.next; 2423 entcount = map->nentries; 2424 while (entcount-- && (tmpe != &map->header)) { 2425 if (_vm_object_in_map(map, object, tmpe)) { 2426 return 1; 2427 } 2428 tmpe = tmpe->next; 2429 } 2430 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2431 tmpm = entry->object.sub_map; 2432 tmpe = tmpm->header.next; 2433 entcount = tmpm->nentries; 2434 while (entcount-- && tmpe != &tmpm->header) { 2435 if (_vm_object_in_map(tmpm, object, tmpe)) { 2436 return 1; 2437 } 2438 tmpe = tmpe->next; 2439 } 2440 } else if ((obj = entry->object.vm_object) != NULL) { 2441 for (; obj; obj = obj->backing_object) 2442 if (obj == object) { 2443 return 1; 2444 } 2445 } 2446 return 0; 2447 } 2448 2449 static int 2450 vm_object_in_map(vm_object_t object) 2451 { 2452 struct proc *p; 2453 2454 /* sx_slock(&allproc_lock); */ 2455 FOREACH_PROC_IN_SYSTEM(p) { 2456 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2457 continue; 2458 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2459 /* sx_sunlock(&allproc_lock); */ 2460 return 1; 2461 } 2462 } 2463 /* sx_sunlock(&allproc_lock); */ 2464 if (_vm_object_in_map(kernel_map, object, 0)) 2465 return 1; 2466 return 0; 2467 } 2468 2469 DB_SHOW_COMMAND(vmochk, vm_object_check) 2470 { 2471 vm_object_t object; 2472 2473 /* 2474 * make sure that internal objs are in a map somewhere 2475 * and none have zero ref counts. 2476 */ 2477 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2478 if (object->handle == NULL && 2479 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2480 if (object->ref_count == 0) { 2481 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2482 (long)object->size); 2483 } 2484 if (!vm_object_in_map(object)) { 2485 db_printf( 2486 "vmochk: internal obj is not in a map: " 2487 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2488 object->ref_count, (u_long)object->size, 2489 (u_long)object->size, 2490 (void *)object->backing_object); 2491 } 2492 } 2493 } 2494 } 2495 2496 /* 2497 * vm_object_print: [ debug ] 2498 */ 2499 DB_SHOW_COMMAND(object, vm_object_print_static) 2500 { 2501 /* XXX convert args. */ 2502 vm_object_t object = (vm_object_t)addr; 2503 boolean_t full = have_addr; 2504 2505 vm_page_t p; 2506 2507 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2508 #define count was_count 2509 2510 int count; 2511 2512 if (object == NULL) 2513 return; 2514 2515 db_iprintf( 2516 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2517 object, (int)object->type, (uintmax_t)object->size, 2518 object->resident_page_count, object->ref_count, object->flags, 2519 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2520 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2521 object->shadow_count, 2522 object->backing_object ? object->backing_object->ref_count : 0, 2523 object->backing_object, (uintmax_t)object->backing_object_offset); 2524 2525 if (!full) 2526 return; 2527 2528 db_indent += 2; 2529 count = 0; 2530 TAILQ_FOREACH(p, &object->memq, listq) { 2531 if (count == 0) 2532 db_iprintf("memory:="); 2533 else if (count == 6) { 2534 db_printf("\n"); 2535 db_iprintf(" ..."); 2536 count = 0; 2537 } else 2538 db_printf(","); 2539 count++; 2540 2541 db_printf("(off=0x%jx,page=0x%jx)", 2542 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2543 } 2544 if (count != 0) 2545 db_printf("\n"); 2546 db_indent -= 2; 2547 } 2548 2549 /* XXX. */ 2550 #undef count 2551 2552 /* XXX need this non-static entry for calling from vm_map_print. */ 2553 void 2554 vm_object_print( 2555 /* db_expr_t */ long addr, 2556 boolean_t have_addr, 2557 /* db_expr_t */ long count, 2558 char *modif) 2559 { 2560 vm_object_print_static(addr, have_addr, count, modif); 2561 } 2562 2563 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2564 { 2565 vm_object_t object; 2566 vm_pindex_t fidx; 2567 vm_paddr_t pa; 2568 vm_page_t m, prev_m; 2569 int rcount, nl, c; 2570 2571 nl = 0; 2572 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2573 db_printf("new object: %p\n", (void *)object); 2574 if (nl > 18) { 2575 c = cngetc(); 2576 if (c != ' ') 2577 return; 2578 nl = 0; 2579 } 2580 nl++; 2581 rcount = 0; 2582 fidx = 0; 2583 pa = -1; 2584 TAILQ_FOREACH(m, &object->memq, listq) { 2585 if (m->pindex > 128) 2586 break; 2587 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2588 prev_m->pindex + 1 != m->pindex) { 2589 if (rcount) { 2590 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2591 (long)fidx, rcount, (long)pa); 2592 if (nl > 18) { 2593 c = cngetc(); 2594 if (c != ' ') 2595 return; 2596 nl = 0; 2597 } 2598 nl++; 2599 rcount = 0; 2600 } 2601 } 2602 if (rcount && 2603 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2604 ++rcount; 2605 continue; 2606 } 2607 if (rcount) { 2608 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2609 (long)fidx, rcount, (long)pa); 2610 if (nl > 18) { 2611 c = cngetc(); 2612 if (c != ' ') 2613 return; 2614 nl = 0; 2615 } 2616 nl++; 2617 } 2618 fidx = m->pindex; 2619 pa = VM_PAGE_TO_PHYS(m); 2620 rcount = 1; 2621 } 2622 if (rcount) { 2623 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2624 (long)fidx, rcount, (long)pa); 2625 if (nl > 18) { 2626 c = cngetc(); 2627 if (c != ' ') 2628 return; 2629 nl = 0; 2630 } 2631 nl++; 2632 } 2633 } 2634 } 2635 #endif /* DDB */ 2636