1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory object module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> /* for curproc, pageproc */ 74 #include <sys/vnode.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_pager.h> 88 #include <vm/swap_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_zone.h> 92 93 static void vm_object_qcollapse __P((vm_object_t object)); 94 95 /* 96 * Virtual memory objects maintain the actual data 97 * associated with allocated virtual memory. A given 98 * page of memory exists within exactly one object. 99 * 100 * An object is only deallocated when all "references" 101 * are given up. Only one "reference" to a given 102 * region of an object should be writeable. 103 * 104 * Associated with each object is a list of all resident 105 * memory pages belonging to that object; this list is 106 * maintained by the "vm_page" module, and locked by the object's 107 * lock. 108 * 109 * Each object also records a "pager" routine which is 110 * used to retrieve (and store) pages to the proper backing 111 * storage. In addition, objects may be backed by other 112 * objects from which they were virtual-copied. 113 * 114 * The only items within the object structure which are 115 * modified after time of creation are: 116 * reference count locked by object's lock 117 * pager routine locked by object's lock 118 * 119 */ 120 121 struct object_q vm_object_list; 122 #ifndef NULL_SIMPLELOCKS 123 static struct simplelock vm_object_list_lock; 124 #endif 125 static long vm_object_count; /* count of all objects */ 126 vm_object_t kernel_object; 127 vm_object_t kmem_object; 128 static struct vm_object kernel_object_store; 129 static struct vm_object kmem_object_store; 130 extern int vm_pageout_page_count; 131 132 static long object_collapses; 133 static long object_bypasses; 134 static int next_index; 135 static vm_zone_t obj_zone; 136 static struct vm_zone obj_zone_store; 137 static int object_hash_rand; 138 #define VM_OBJECTS_INIT 256 139 static struct vm_object vm_objects_init[VM_OBJECTS_INIT]; 140 141 void 142 _vm_object_allocate(type, size, object) 143 objtype_t type; 144 vm_size_t size; 145 vm_object_t object; 146 { 147 int incr; 148 TAILQ_INIT(&object->memq); 149 TAILQ_INIT(&object->shadow_head); 150 151 object->type = type; 152 object->size = size; 153 object->ref_count = 1; 154 object->flags = 0; 155 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 156 vm_object_set_flag(object, OBJ_ONEMAPPING); 157 object->paging_in_progress = 0; 158 object->resident_page_count = 0; 159 object->shadow_count = 0; 160 object->pg_color = next_index; 161 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1)) 162 incr = PQ_L2_SIZE / 3 + PQ_PRIME1; 163 else 164 incr = size; 165 next_index = (next_index + incr) & PQ_L2_MASK; 166 object->handle = NULL; 167 object->backing_object = NULL; 168 object->backing_object_offset = (vm_ooffset_t) 0; 169 /* 170 * Try to generate a number that will spread objects out in the 171 * hash table. We 'wipe' new objects across the hash in 128 page 172 * increments plus 1 more to offset it a little more by the time 173 * it wraps around. 174 */ 175 object->hash_rand = object_hash_rand - 129; 176 177 object->generation++; 178 179 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 180 vm_object_count++; 181 object_hash_rand = object->hash_rand; 182 } 183 184 /* 185 * vm_object_init: 186 * 187 * Initialize the VM objects module. 188 */ 189 void 190 vm_object_init() 191 { 192 TAILQ_INIT(&vm_object_list); 193 simple_lock_init(&vm_object_list_lock); 194 vm_object_count = 0; 195 196 kernel_object = &kernel_object_store; 197 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 198 kernel_object); 199 200 kmem_object = &kmem_object_store; 201 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 202 kmem_object); 203 204 obj_zone = &obj_zone_store; 205 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object), 206 vm_objects_init, VM_OBJECTS_INIT); 207 } 208 209 void 210 vm_object_init2() { 211 zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1); 212 } 213 214 /* 215 * vm_object_allocate: 216 * 217 * Returns a new object with the given size. 218 */ 219 220 vm_object_t 221 vm_object_allocate(type, size) 222 objtype_t type; 223 vm_size_t size; 224 { 225 vm_object_t result; 226 227 result = (vm_object_t) zalloc(obj_zone); 228 229 _vm_object_allocate(type, size, result); 230 231 return (result); 232 } 233 234 235 /* 236 * vm_object_reference: 237 * 238 * Gets another reference to the given object. 239 */ 240 void 241 vm_object_reference(object) 242 vm_object_t object; 243 { 244 if (object == NULL) 245 return; 246 247 KASSERT(!(object->flags & OBJ_DEAD), 248 ("vm_object_reference: attempting to reference dead obj")); 249 250 object->ref_count++; 251 if (object->type == OBJT_VNODE) { 252 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) { 253 #if !defined(MAX_PERF) 254 printf("vm_object_reference: delay in getting object\n"); 255 #endif 256 } 257 } 258 } 259 260 void 261 vm_object_vndeallocate(object) 262 vm_object_t object; 263 { 264 struct vnode *vp = (struct vnode *) object->handle; 265 266 KASSERT(object->type == OBJT_VNODE, 267 ("vm_object_vndeallocate: not a vnode object")); 268 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 269 #ifdef INVARIANTS 270 if (object->ref_count == 0) { 271 vprint("vm_object_vndeallocate", vp); 272 panic("vm_object_vndeallocate: bad object reference count"); 273 } 274 #endif 275 276 object->ref_count--; 277 if (object->ref_count == 0) { 278 vp->v_flag &= ~VTEXT; 279 vm_object_clear_flag(object, OBJ_OPT); 280 } 281 vrele(vp); 282 } 283 284 /* 285 * vm_object_deallocate: 286 * 287 * Release a reference to the specified object, 288 * gained either through a vm_object_allocate 289 * or a vm_object_reference call. When all references 290 * are gone, storage associated with this object 291 * may be relinquished. 292 * 293 * No object may be locked. 294 */ 295 void 296 vm_object_deallocate(object) 297 vm_object_t object; 298 { 299 vm_object_t temp; 300 301 while (object != NULL) { 302 303 if (object->type == OBJT_VNODE) { 304 vm_object_vndeallocate(object); 305 return; 306 } 307 308 if (object->ref_count == 0) { 309 panic("vm_object_deallocate: object deallocated too many times: %d", object->type); 310 } else if (object->ref_count > 2) { 311 object->ref_count--; 312 return; 313 } 314 315 /* 316 * Here on ref_count of one or two, which are special cases for 317 * objects. 318 */ 319 if ((object->ref_count == 2) && (object->shadow_count == 0)) { 320 vm_object_set_flag(object, OBJ_ONEMAPPING); 321 object->ref_count--; 322 return; 323 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) { 324 object->ref_count--; 325 if ((object->handle == NULL) && 326 (object->type == OBJT_DEFAULT || 327 object->type == OBJT_SWAP)) { 328 vm_object_t robject; 329 330 robject = TAILQ_FIRST(&object->shadow_head); 331 KASSERT(robject != NULL, 332 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 333 object->ref_count, 334 object->shadow_count)); 335 if ((robject->handle == NULL) && 336 (robject->type == OBJT_DEFAULT || 337 robject->type == OBJT_SWAP)) { 338 339 robject->ref_count++; 340 341 while ( 342 robject->paging_in_progress || 343 object->paging_in_progress 344 ) { 345 vm_object_pip_sleep(robject, "objde1"); 346 vm_object_pip_sleep(object, "objde2"); 347 } 348 349 if (robject->ref_count == 1) { 350 robject->ref_count--; 351 object = robject; 352 goto doterm; 353 } 354 355 object = robject; 356 vm_object_collapse(object); 357 continue; 358 } 359 } 360 361 return; 362 363 } else { 364 object->ref_count--; 365 if (object->ref_count != 0) 366 return; 367 } 368 369 doterm: 370 371 temp = object->backing_object; 372 if (temp) { 373 TAILQ_REMOVE(&temp->shadow_head, object, shadow_list); 374 temp->shadow_count--; 375 if (temp->ref_count == 0) 376 vm_object_clear_flag(temp, OBJ_OPT); 377 temp->generation++; 378 object->backing_object = NULL; 379 } 380 vm_object_terminate(object); 381 /* unlocks and deallocates object */ 382 object = temp; 383 } 384 } 385 386 /* 387 * vm_object_terminate actually destroys the specified object, freeing 388 * up all previously used resources. 389 * 390 * The object must be locked. 391 * This routine may block. 392 */ 393 void 394 vm_object_terminate(object) 395 vm_object_t object; 396 { 397 vm_page_t p; 398 int s; 399 400 /* 401 * Make sure no one uses us. 402 */ 403 vm_object_set_flag(object, OBJ_DEAD); 404 405 /* 406 * wait for the pageout daemon to be done with the object 407 */ 408 vm_object_pip_wait(object, "objtrm"); 409 410 KASSERT(!object->paging_in_progress, 411 ("vm_object_terminate: pageout in progress")); 412 413 /* 414 * Clean and free the pages, as appropriate. All references to the 415 * object are gone, so we don't need to lock it. 416 */ 417 if (object->type == OBJT_VNODE) { 418 struct vnode *vp; 419 420 /* 421 * Freeze optimized copies. 422 */ 423 vm_freeze_copyopts(object, 0, object->size); 424 425 /* 426 * Clean pages and flush buffers. 427 */ 428 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 429 430 vp = (struct vnode *) object->handle; 431 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0); 432 } 433 434 if (object->ref_count != 0) 435 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count); 436 437 /* 438 * Now free any remaining pages. For internal objects, this also 439 * removes them from paging queues. Don't free wired pages, just 440 * remove them from the object. 441 */ 442 s = splvm(); 443 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 444 #if !defined(MAX_PERF) 445 if (p->busy || (p->flags & PG_BUSY)) 446 panic("vm_object_terminate: freeing busy page %p\n", p); 447 #endif 448 if (p->wire_count == 0) { 449 vm_page_busy(p); 450 vm_page_free(p); 451 cnt.v_pfree++; 452 } else { 453 vm_page_busy(p); 454 vm_page_remove(p); 455 } 456 } 457 splx(s); 458 459 /* 460 * Let the pager know object is dead. 461 */ 462 vm_pager_deallocate(object); 463 464 /* 465 * Remove the object from the global object list. 466 */ 467 simple_lock(&vm_object_list_lock); 468 TAILQ_REMOVE(&vm_object_list, object, object_list); 469 simple_unlock(&vm_object_list_lock); 470 471 wakeup(object); 472 473 /* 474 * Free the space for the object. 475 */ 476 zfree(obj_zone, object); 477 } 478 479 /* 480 * vm_object_page_clean 481 * 482 * Clean all dirty pages in the specified range of object. 483 * Leaves page on whatever queue it is currently on. 484 * 485 * Odd semantics: if start == end, we clean everything. 486 * 487 * The object must be locked. 488 */ 489 490 void 491 vm_object_page_clean(object, start, end, flags) 492 vm_object_t object; 493 vm_pindex_t start; 494 vm_pindex_t end; 495 int flags; 496 { 497 vm_page_t p, np, tp; 498 vm_offset_t tstart, tend; 499 vm_pindex_t pi; 500 int s; 501 struct vnode *vp; 502 int runlen; 503 int maxf; 504 int chkb; 505 int maxb; 506 int i; 507 int pagerflags; 508 vm_page_t maf[vm_pageout_page_count]; 509 vm_page_t mab[vm_pageout_page_count]; 510 vm_page_t ma[vm_pageout_page_count]; 511 int curgeneration; 512 513 if (object->type != OBJT_VNODE || 514 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 515 return; 516 517 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0; 518 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 519 520 vp = object->handle; 521 522 vm_object_set_flag(object, OBJ_CLEANING); 523 524 tstart = start; 525 if (end == 0) { 526 tend = object->size; 527 } else { 528 tend = end; 529 } 530 531 for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) { 532 vm_page_flag_set(p, PG_CLEANCHK); 533 vm_page_protect(p, VM_PROT_READ); 534 } 535 536 if ((tstart == 0) && (tend == object->size)) { 537 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 538 } 539 540 rescan: 541 curgeneration = object->generation; 542 543 for(p = TAILQ_FIRST(&object->memq); p; p = np) { 544 np = TAILQ_NEXT(p, listq); 545 546 pi = p->pindex; 547 if (((p->flags & PG_CLEANCHK) == 0) || 548 (pi < tstart) || (pi >= tend) || 549 (p->valid == 0) || 550 ((p->queue - p->pc) == PQ_CACHE)) { 551 vm_page_flag_clear(p, PG_CLEANCHK); 552 continue; 553 } 554 555 vm_page_test_dirty(p); 556 if ((p->dirty & p->valid) == 0) { 557 vm_page_flag_clear(p, PG_CLEANCHK); 558 continue; 559 } 560 561 s = splvm(); 562 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) { 563 if (object->generation != curgeneration) { 564 splx(s); 565 goto rescan; 566 } 567 } 568 569 maxf = 0; 570 for(i=1;i<vm_pageout_page_count;i++) { 571 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 572 if ((tp->flags & PG_BUSY) || 573 (tp->flags & PG_CLEANCHK) == 0 || 574 (tp->busy != 0)) 575 break; 576 if((tp->queue - tp->pc) == PQ_CACHE) { 577 vm_page_flag_clear(tp, PG_CLEANCHK); 578 break; 579 } 580 vm_page_test_dirty(tp); 581 if ((tp->dirty & tp->valid) == 0) { 582 vm_page_flag_clear(tp, PG_CLEANCHK); 583 break; 584 } 585 maf[ i - 1 ] = tp; 586 maxf++; 587 continue; 588 } 589 break; 590 } 591 592 maxb = 0; 593 chkb = vm_pageout_page_count - maxf; 594 if (chkb) { 595 for(i = 1; i < chkb;i++) { 596 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 597 if ((tp->flags & PG_BUSY) || 598 (tp->flags & PG_CLEANCHK) == 0 || 599 (tp->busy != 0)) 600 break; 601 if((tp->queue - tp->pc) == PQ_CACHE) { 602 vm_page_flag_clear(tp, PG_CLEANCHK); 603 break; 604 } 605 vm_page_test_dirty(tp); 606 if ((tp->dirty & tp->valid) == 0) { 607 vm_page_flag_clear(tp, PG_CLEANCHK); 608 break; 609 } 610 mab[ i - 1 ] = tp; 611 maxb++; 612 continue; 613 } 614 break; 615 } 616 } 617 618 for(i=0;i<maxb;i++) { 619 int index = (maxb - i) - 1; 620 ma[index] = mab[i]; 621 vm_page_flag_clear(ma[index], PG_CLEANCHK); 622 } 623 vm_page_flag_clear(p, PG_CLEANCHK); 624 ma[maxb] = p; 625 for(i=0;i<maxf;i++) { 626 int index = (maxb + i) + 1; 627 ma[index] = maf[i]; 628 vm_page_flag_clear(ma[index], PG_CLEANCHK); 629 } 630 runlen = maxb + maxf + 1; 631 632 splx(s); 633 vm_pageout_flush(ma, runlen, pagerflags); 634 for (i = 0; i<runlen; i++) { 635 if (ma[i]->valid & ma[i]->dirty) { 636 vm_page_protect(ma[i], VM_PROT_READ); 637 vm_page_flag_set(ma[i], PG_CLEANCHK); 638 } 639 } 640 if (object->generation != curgeneration) 641 goto rescan; 642 } 643 644 #if 0 645 VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 646 #endif 647 648 vm_object_clear_flag(object, OBJ_CLEANING); 649 return; 650 } 651 652 #ifdef not_used 653 /* XXX I cannot tell if this should be an exported symbol */ 654 /* 655 * vm_object_deactivate_pages 656 * 657 * Deactivate all pages in the specified object. (Keep its pages 658 * in memory even though it is no longer referenced.) 659 * 660 * The object must be locked. 661 */ 662 static void 663 vm_object_deactivate_pages(object) 664 vm_object_t object; 665 { 666 vm_page_t p, next; 667 668 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 669 next = TAILQ_NEXT(p, listq); 670 vm_page_deactivate(p); 671 } 672 } 673 #endif 674 675 /* 676 * Same as vm_object_pmap_copy, except range checking really 677 * works, and is meant for small sections of an object. 678 * 679 * This code protects resident pages by making them read-only 680 * and is typically called on a fork or split when a page 681 * is converted to copy-on-write. 682 * 683 * NOTE: If the page is already at VM_PROT_NONE, calling 684 * vm_page_protect will have no effect. 685 */ 686 687 void 688 vm_object_pmap_copy_1(object, start, end) 689 vm_object_t object; 690 vm_pindex_t start; 691 vm_pindex_t end; 692 { 693 vm_pindex_t idx; 694 vm_page_t p; 695 696 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0) 697 return; 698 699 for (idx = start; idx < end; idx++) { 700 p = vm_page_lookup(object, idx); 701 if (p == NULL) 702 continue; 703 vm_page_protect(p, VM_PROT_READ); 704 } 705 } 706 707 /* 708 * vm_object_pmap_remove: 709 * 710 * Removes all physical pages in the specified 711 * object range from all physical maps. 712 * 713 * The object must *not* be locked. 714 */ 715 void 716 vm_object_pmap_remove(object, start, end) 717 vm_object_t object; 718 vm_pindex_t start; 719 vm_pindex_t end; 720 { 721 vm_page_t p; 722 723 if (object == NULL) 724 return; 725 for (p = TAILQ_FIRST(&object->memq); 726 p != NULL; 727 p = TAILQ_NEXT(p, listq)) { 728 if (p->pindex >= start && p->pindex < end) 729 vm_page_protect(p, VM_PROT_NONE); 730 } 731 if ((start == 0) && (object->size == end)) 732 vm_object_clear_flag(object, OBJ_WRITEABLE); 733 } 734 735 /* 736 * vm_object_madvise: 737 * 738 * Implements the madvise function at the object/page level. 739 * 740 * MADV_WILLNEED (any object) 741 * 742 * Activate the specified pages if they are resident. 743 * 744 * MADV_DONTNEED (any object) 745 * 746 * Deactivate the specified pages if they are resident. 747 * 748 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 749 * OBJ_ONEMAPPING only) 750 * 751 * Deactivate and clean the specified pages if they are 752 * resident. This permits the process to reuse the pages 753 * without faulting or the kernel to reclaim the pages 754 * without I/O. 755 */ 756 void 757 vm_object_madvise(object, pindex, count, advise) 758 vm_object_t object; 759 vm_pindex_t pindex; 760 int count; 761 int advise; 762 { 763 vm_pindex_t end, tpindex; 764 vm_object_t tobject; 765 vm_page_t m; 766 767 if (object == NULL) 768 return; 769 770 end = pindex + count; 771 772 /* 773 * Locate and adjust resident pages 774 */ 775 776 for (; pindex < end; pindex += 1) { 777 relookup: 778 tobject = object; 779 tpindex = pindex; 780 shadowlookup: 781 /* 782 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 783 * and those pages must be OBJ_ONEMAPPING. 784 */ 785 if (advise == MADV_FREE) { 786 if ((tobject->type != OBJT_DEFAULT && 787 tobject->type != OBJT_SWAP) || 788 (tobject->flags & OBJ_ONEMAPPING) == 0) { 789 continue; 790 } 791 } 792 793 m = vm_page_lookup(tobject, tpindex); 794 795 if (m == NULL) { 796 /* 797 * There may be swap even if there is no backing page 798 */ 799 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 800 swap_pager_freespace(tobject, tpindex, 1); 801 802 /* 803 * next object 804 */ 805 tobject = tobject->backing_object; 806 if (tobject == NULL) 807 continue; 808 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 809 goto shadowlookup; 810 } 811 812 /* 813 * If the page is busy or not in a normal active state, 814 * we skip it. Things can break if we mess with pages 815 * in any of the below states. 816 */ 817 if ( 818 m->hold_count || 819 m->wire_count || 820 m->valid != VM_PAGE_BITS_ALL 821 ) { 822 continue; 823 } 824 825 if (vm_page_sleep_busy(m, TRUE, "madvpo")) 826 goto relookup; 827 828 if (advise == MADV_WILLNEED) { 829 vm_page_activate(m); 830 } else if (advise == MADV_DONTNEED) { 831 vm_page_dontneed(m); 832 } else if (advise == MADV_FREE) { 833 /* 834 * Mark the page clean. This will allow the page 835 * to be freed up by the system. However, such pages 836 * are often reused quickly by malloc()/free() 837 * so we do not do anything that would cause 838 * a page fault if we can help it. 839 * 840 * Specifically, we do not try to actually free 841 * the page now nor do we try to put it in the 842 * cache (which would cause a page fault on reuse). 843 * 844 * But we do make the page is freeable as we 845 * can without actually taking the step of unmapping 846 * it. 847 */ 848 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 849 m->dirty = 0; 850 m->act_count = 0; 851 vm_page_dontneed(m); 852 if (tobject->type == OBJT_SWAP) 853 swap_pager_freespace(tobject, tpindex, 1); 854 } 855 } 856 } 857 858 /* 859 * vm_object_shadow: 860 * 861 * Create a new object which is backed by the 862 * specified existing object range. The source 863 * object reference is deallocated. 864 * 865 * The new object and offset into that object 866 * are returned in the source parameters. 867 */ 868 869 void 870 vm_object_shadow(object, offset, length) 871 vm_object_t *object; /* IN/OUT */ 872 vm_ooffset_t *offset; /* IN/OUT */ 873 vm_size_t length; 874 { 875 vm_object_t source; 876 vm_object_t result; 877 878 source = *object; 879 880 /* 881 * Don't create the new object if the old object isn't shared. 882 */ 883 884 if (source != NULL && 885 source->ref_count == 1 && 886 source->handle == NULL && 887 (source->type == OBJT_DEFAULT || 888 source->type == OBJT_SWAP)) 889 return; 890 891 KASSERT((source->flags & OBJ_ONEMAPPING) == 0, 892 ("vm_object_shadow: source object has OBJ_ONEMAPPING set.\n")); 893 894 /* 895 * Allocate a new object with the given length 896 */ 897 898 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL) 899 panic("vm_object_shadow: no object for shadowing"); 900 901 /* 902 * The new object shadows the source object, adding a reference to it. 903 * Our caller changes his reference to point to the new object, 904 * removing a reference to the source object. Net result: no change 905 * of reference count. 906 * 907 * Try to optimize the result object's page color when shadowing 908 * in order to maintain page coloring consistancy in the combined 909 * shadowed object. 910 */ 911 result->backing_object = source; 912 if (source) { 913 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list); 914 source->shadow_count++; 915 source->generation++; 916 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK; 917 } 918 919 /* 920 * Store the offset into the source object, and fix up the offset into 921 * the new object. 922 */ 923 924 result->backing_object_offset = *offset; 925 926 /* 927 * Return the new things 928 */ 929 930 *offset = 0; 931 *object = result; 932 } 933 934 #define OBSC_TEST_ALL_SHADOWED 0x0001 935 #define OBSC_COLLAPSE_NOWAIT 0x0002 936 #define OBSC_COLLAPSE_WAIT 0x0004 937 938 static __inline int 939 vm_object_backing_scan(vm_object_t object, int op) 940 { 941 int s; 942 int r = 1; 943 vm_page_t p; 944 vm_object_t backing_object; 945 vm_pindex_t backing_offset_index; 946 947 s = splvm(); 948 949 backing_object = object->backing_object; 950 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 951 952 /* 953 * Initial conditions 954 */ 955 956 if (op & OBSC_TEST_ALL_SHADOWED) { 957 /* 958 * We do not want to have to test for the existance of 959 * swap pages in the backing object. XXX but with the 960 * new swapper this would be pretty easy to do. 961 * 962 * XXX what about anonymous MAP_SHARED memory that hasn't 963 * been ZFOD faulted yet? If we do not test for this, the 964 * shadow test may succeed! XXX 965 */ 966 if (backing_object->type != OBJT_DEFAULT) { 967 splx(s); 968 return(0); 969 } 970 } 971 if (op & OBSC_COLLAPSE_WAIT) { 972 vm_object_set_flag(backing_object, OBJ_DEAD); 973 } 974 975 /* 976 * Our scan 977 */ 978 979 p = TAILQ_FIRST(&backing_object->memq); 980 while (p) { 981 vm_page_t next = TAILQ_NEXT(p, listq); 982 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 983 984 if (op & OBSC_TEST_ALL_SHADOWED) { 985 vm_page_t pp; 986 987 /* 988 * Ignore pages outside the parent object's range 989 * and outside the parent object's mapping of the 990 * backing object. 991 * 992 * note that we do not busy the backing object's 993 * page. 994 */ 995 996 if ( 997 p->pindex < backing_offset_index || 998 new_pindex >= object->size 999 ) { 1000 p = next; 1001 continue; 1002 } 1003 1004 /* 1005 * See if the parent has the page or if the parent's 1006 * object pager has the page. If the parent has the 1007 * page but the page is not valid, the parent's 1008 * object pager must have the page. 1009 * 1010 * If this fails, the parent does not completely shadow 1011 * the object and we might as well give up now. 1012 */ 1013 1014 pp = vm_page_lookup(object, new_pindex); 1015 if ( 1016 (pp == NULL || pp->valid == 0) && 1017 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1018 ) { 1019 r = 0; 1020 break; 1021 } 1022 } 1023 1024 /* 1025 * Check for busy page 1026 */ 1027 1028 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1029 vm_page_t pp; 1030 1031 if (op & OBSC_COLLAPSE_NOWAIT) { 1032 if ( 1033 (p->flags & PG_BUSY) || 1034 !p->valid || 1035 p->hold_count || 1036 p->wire_count || 1037 p->busy 1038 ) { 1039 p = next; 1040 continue; 1041 } 1042 } else if (op & OBSC_COLLAPSE_WAIT) { 1043 if (vm_page_sleep_busy(p, TRUE, "vmocol")) { 1044 /* 1045 * If we slept, anything could have 1046 * happened. Since the object is 1047 * marked dead, the backing offset 1048 * should not have changed so we 1049 * just restart our scan. 1050 */ 1051 p = TAILQ_FIRST(&backing_object->memq); 1052 continue; 1053 } 1054 } 1055 1056 /* 1057 * Busy the page 1058 */ 1059 vm_page_busy(p); 1060 1061 KASSERT( 1062 p->object == backing_object, 1063 ("vm_object_qcollapse(): object mismatch") 1064 ); 1065 1066 /* 1067 * Destroy any associated swap 1068 */ 1069 if (backing_object->type == OBJT_SWAP) { 1070 swap_pager_freespace( 1071 backing_object, 1072 p->pindex, 1073 1 1074 ); 1075 } 1076 1077 if ( 1078 p->pindex < backing_offset_index || 1079 new_pindex >= object->size 1080 ) { 1081 /* 1082 * Page is out of the parent object's range, we 1083 * can simply destroy it. 1084 */ 1085 vm_page_protect(p, VM_PROT_NONE); 1086 vm_page_free(p); 1087 p = next; 1088 continue; 1089 } 1090 1091 pp = vm_page_lookup(object, new_pindex); 1092 if ( 1093 pp != NULL || 1094 vm_pager_has_page(object, new_pindex, NULL, NULL) 1095 ) { 1096 /* 1097 * page already exists in parent OR swap exists 1098 * for this location in the parent. Destroy 1099 * the original page from the backing object. 1100 * 1101 * Leave the parent's page alone 1102 */ 1103 vm_page_protect(p, VM_PROT_NONE); 1104 vm_page_free(p); 1105 p = next; 1106 continue; 1107 } 1108 1109 /* 1110 * Page does not exist in parent, rename the 1111 * page from the backing object to the main object. 1112 * 1113 * If the page was mapped to a process, it can remain 1114 * mapped through the rename. 1115 */ 1116 if ((p->queue - p->pc) == PQ_CACHE) 1117 vm_page_deactivate(p); 1118 1119 vm_page_rename(p, object, new_pindex); 1120 /* page automatically made dirty by rename */ 1121 } 1122 p = next; 1123 } 1124 splx(s); 1125 return(r); 1126 } 1127 1128 1129 /* 1130 * this version of collapse allows the operation to occur earlier and 1131 * when paging_in_progress is true for an object... This is not a complete 1132 * operation, but should plug 99.9% of the rest of the leaks. 1133 */ 1134 static void 1135 vm_object_qcollapse(object) 1136 vm_object_t object; 1137 { 1138 vm_object_t backing_object = object->backing_object; 1139 1140 if (backing_object->ref_count != 1) 1141 return; 1142 1143 backing_object->ref_count += 2; 1144 1145 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1146 1147 backing_object->ref_count -= 2; 1148 } 1149 1150 /* 1151 * vm_object_collapse: 1152 * 1153 * Collapse an object with the object backing it. 1154 * Pages in the backing object are moved into the 1155 * parent, and the backing object is deallocated. 1156 */ 1157 void 1158 vm_object_collapse(object) 1159 vm_object_t object; 1160 { 1161 while (TRUE) { 1162 vm_object_t backing_object; 1163 1164 /* 1165 * Verify that the conditions are right for collapse: 1166 * 1167 * The object exists and the backing object exists. 1168 */ 1169 if (object == NULL) 1170 break; 1171 1172 if ((backing_object = object->backing_object) == NULL) 1173 break; 1174 1175 /* 1176 * we check the backing object first, because it is most likely 1177 * not collapsable. 1178 */ 1179 if (backing_object->handle != NULL || 1180 (backing_object->type != OBJT_DEFAULT && 1181 backing_object->type != OBJT_SWAP) || 1182 (backing_object->flags & OBJ_DEAD) || 1183 object->handle != NULL || 1184 (object->type != OBJT_DEFAULT && 1185 object->type != OBJT_SWAP) || 1186 (object->flags & OBJ_DEAD)) { 1187 break; 1188 } 1189 1190 if ( 1191 object->paging_in_progress != 0 || 1192 backing_object->paging_in_progress != 0 1193 ) { 1194 vm_object_qcollapse(object); 1195 break; 1196 } 1197 1198 /* 1199 * We know that we can either collapse the backing object (if 1200 * the parent is the only reference to it) or (perhaps) have 1201 * the parent bypass the object if the parent happens to shadow 1202 * all the resident pages in the entire backing object. 1203 * 1204 * This is ignoring pager-backed pages such as swap pages. 1205 * vm_object_backing_scan fails the shadowing test in this 1206 * case. 1207 */ 1208 1209 if (backing_object->ref_count == 1) { 1210 /* 1211 * If there is exactly one reference to the backing 1212 * object, we can collapse it into the parent. 1213 */ 1214 1215 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1216 1217 /* 1218 * Move the pager from backing_object to object. 1219 */ 1220 1221 if (backing_object->type == OBJT_SWAP) { 1222 vm_object_pip_add(backing_object, 1); 1223 1224 /* 1225 * scrap the paging_offset junk and do a 1226 * discrete copy. This also removes major 1227 * assumptions about how the swap-pager 1228 * works from where it doesn't belong. The 1229 * new swapper is able to optimize the 1230 * destroy-source case. 1231 */ 1232 1233 vm_object_pip_add(object, 1); 1234 swap_pager_copy( 1235 backing_object, 1236 object, 1237 OFF_TO_IDX(object->backing_object_offset), TRUE); 1238 vm_object_pip_wakeup(object); 1239 1240 vm_object_pip_wakeup(backing_object); 1241 } 1242 /* 1243 * Object now shadows whatever backing_object did. 1244 * Note that the reference to 1245 * backing_object->backing_object moves from within 1246 * backing_object to within object. 1247 */ 1248 1249 TAILQ_REMOVE( 1250 &object->backing_object->shadow_head, 1251 object, 1252 shadow_list 1253 ); 1254 object->backing_object->shadow_count--; 1255 object->backing_object->generation++; 1256 if (backing_object->backing_object) { 1257 TAILQ_REMOVE( 1258 &backing_object->backing_object->shadow_head, 1259 backing_object, 1260 shadow_list 1261 ); 1262 backing_object->backing_object->shadow_count--; 1263 backing_object->backing_object->generation++; 1264 } 1265 object->backing_object = backing_object->backing_object; 1266 if (object->backing_object) { 1267 TAILQ_INSERT_TAIL( 1268 &object->backing_object->shadow_head, 1269 object, 1270 shadow_list 1271 ); 1272 object->backing_object->shadow_count++; 1273 object->backing_object->generation++; 1274 } 1275 1276 object->backing_object_offset += 1277 backing_object->backing_object_offset; 1278 1279 /* 1280 * Discard backing_object. 1281 * 1282 * Since the backing object has no pages, no pager left, 1283 * and no object references within it, all that is 1284 * necessary is to dispose of it. 1285 */ 1286 1287 TAILQ_REMOVE( 1288 &vm_object_list, 1289 backing_object, 1290 object_list 1291 ); 1292 vm_object_count--; 1293 1294 zfree(obj_zone, backing_object); 1295 1296 object_collapses++; 1297 } else { 1298 vm_object_t new_backing_object; 1299 1300 /* 1301 * If we do not entirely shadow the backing object, 1302 * there is nothing we can do so we give up. 1303 */ 1304 1305 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1306 break; 1307 } 1308 1309 /* 1310 * Make the parent shadow the next object in the 1311 * chain. Deallocating backing_object will not remove 1312 * it, since its reference count is at least 2. 1313 */ 1314 1315 TAILQ_REMOVE( 1316 &backing_object->shadow_head, 1317 object, 1318 shadow_list 1319 ); 1320 backing_object->shadow_count--; 1321 backing_object->generation++; 1322 1323 new_backing_object = backing_object->backing_object; 1324 if ((object->backing_object = new_backing_object) != NULL) { 1325 vm_object_reference(new_backing_object); 1326 TAILQ_INSERT_TAIL( 1327 &new_backing_object->shadow_head, 1328 object, 1329 shadow_list 1330 ); 1331 new_backing_object->shadow_count++; 1332 new_backing_object->generation++; 1333 object->backing_object_offset += 1334 backing_object->backing_object_offset; 1335 } 1336 1337 /* 1338 * Drop the reference count on backing_object. Since 1339 * its ref_count was at least 2, it will not vanish; 1340 * so we don't need to call vm_object_deallocate, but 1341 * we do anyway. 1342 */ 1343 vm_object_deallocate(backing_object); 1344 object_bypasses++; 1345 } 1346 1347 /* 1348 * Try again with this object's new backing object. 1349 */ 1350 } 1351 } 1352 1353 /* 1354 * vm_object_page_remove: [internal] 1355 * 1356 * Removes all physical pages in the specified 1357 * object range from the object's list of pages. 1358 * 1359 * The object must be locked. 1360 */ 1361 void 1362 vm_object_page_remove(object, start, end, clean_only) 1363 vm_object_t object; 1364 vm_pindex_t start; 1365 vm_pindex_t end; 1366 boolean_t clean_only; 1367 { 1368 vm_page_t p, next; 1369 unsigned int size; 1370 int all; 1371 1372 if (object == NULL || 1373 object->resident_page_count == 0) 1374 return; 1375 1376 all = ((end == 0) && (start == 0)); 1377 1378 vm_object_pip_add(object, 1); 1379 again: 1380 size = end - start; 1381 if (all || size > object->resident_page_count / 4) { 1382 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) { 1383 next = TAILQ_NEXT(p, listq); 1384 if (all || ((start <= p->pindex) && (p->pindex < end))) { 1385 if (p->wire_count != 0) { 1386 vm_page_protect(p, VM_PROT_NONE); 1387 if (!clean_only) 1388 p->valid = 0; 1389 continue; 1390 } 1391 1392 /* 1393 * The busy flags are only cleared at 1394 * interrupt -- minimize the spl transitions 1395 */ 1396 1397 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1398 goto again; 1399 1400 if (clean_only && p->valid) { 1401 vm_page_test_dirty(p); 1402 if (p->valid & p->dirty) 1403 continue; 1404 } 1405 1406 vm_page_busy(p); 1407 vm_page_protect(p, VM_PROT_NONE); 1408 vm_page_free(p); 1409 } 1410 } 1411 } else { 1412 while (size > 0) { 1413 if ((p = vm_page_lookup(object, start)) != 0) { 1414 1415 if (p->wire_count != 0) { 1416 vm_page_protect(p, VM_PROT_NONE); 1417 if (!clean_only) 1418 p->valid = 0; 1419 start += 1; 1420 size -= 1; 1421 continue; 1422 } 1423 1424 /* 1425 * The busy flags are only cleared at 1426 * interrupt -- minimize the spl transitions 1427 */ 1428 if (vm_page_sleep_busy(p, TRUE, "vmopar")) 1429 goto again; 1430 1431 if (clean_only && p->valid) { 1432 vm_page_test_dirty(p); 1433 if (p->valid & p->dirty) { 1434 start += 1; 1435 size -= 1; 1436 continue; 1437 } 1438 } 1439 1440 vm_page_busy(p); 1441 vm_page_protect(p, VM_PROT_NONE); 1442 vm_page_free(p); 1443 } 1444 start += 1; 1445 size -= 1; 1446 } 1447 } 1448 vm_object_pip_wakeup(object); 1449 } 1450 1451 /* 1452 * Routine: vm_object_coalesce 1453 * Function: Coalesces two objects backing up adjoining 1454 * regions of memory into a single object. 1455 * 1456 * returns TRUE if objects were combined. 1457 * 1458 * NOTE: Only works at the moment if the second object is NULL - 1459 * if it's not, which object do we lock first? 1460 * 1461 * Parameters: 1462 * prev_object First object to coalesce 1463 * prev_offset Offset into prev_object 1464 * next_object Second object into coalesce 1465 * next_offset Offset into next_object 1466 * 1467 * prev_size Size of reference to prev_object 1468 * next_size Size of reference to next_object 1469 * 1470 * Conditions: 1471 * The object must *not* be locked. 1472 */ 1473 boolean_t 1474 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size) 1475 vm_object_t prev_object; 1476 vm_pindex_t prev_pindex; 1477 vm_size_t prev_size, next_size; 1478 { 1479 vm_pindex_t next_pindex; 1480 1481 if (prev_object == NULL) { 1482 return (TRUE); 1483 } 1484 1485 if (prev_object->type != OBJT_DEFAULT && 1486 prev_object->type != OBJT_SWAP) { 1487 return (FALSE); 1488 } 1489 1490 /* 1491 * Try to collapse the object first 1492 */ 1493 vm_object_collapse(prev_object); 1494 1495 /* 1496 * Can't coalesce if: . more than one reference . paged out . shadows 1497 * another object . has a copy elsewhere (any of which mean that the 1498 * pages not mapped to prev_entry may be in use anyway) 1499 */ 1500 1501 if (prev_object->backing_object != NULL) { 1502 return (FALSE); 1503 } 1504 1505 prev_size >>= PAGE_SHIFT; 1506 next_size >>= PAGE_SHIFT; 1507 next_pindex = prev_pindex + prev_size; 1508 1509 if ((prev_object->ref_count > 1) && 1510 (prev_object->size != next_pindex)) { 1511 return (FALSE); 1512 } 1513 1514 /* 1515 * Remove any pages that may still be in the object from a previous 1516 * deallocation. 1517 */ 1518 if (next_pindex < prev_object->size) { 1519 vm_object_page_remove(prev_object, 1520 next_pindex, 1521 next_pindex + next_size, FALSE); 1522 if (prev_object->type == OBJT_SWAP) 1523 swap_pager_freespace(prev_object, 1524 next_pindex, next_size); 1525 } 1526 1527 /* 1528 * Extend the object if necessary. 1529 */ 1530 if (next_pindex + next_size > prev_object->size) 1531 prev_object->size = next_pindex + next_size; 1532 1533 return (TRUE); 1534 } 1535 1536 #include "opt_ddb.h" 1537 #ifdef DDB 1538 #include <sys/kernel.h> 1539 1540 #include <sys/cons.h> 1541 1542 #include <ddb/ddb.h> 1543 1544 static int _vm_object_in_map __P((vm_map_t map, vm_object_t object, 1545 vm_map_entry_t entry)); 1546 static int vm_object_in_map __P((vm_object_t object)); 1547 1548 static int 1549 _vm_object_in_map(map, object, entry) 1550 vm_map_t map; 1551 vm_object_t object; 1552 vm_map_entry_t entry; 1553 { 1554 vm_map_t tmpm; 1555 vm_map_entry_t tmpe; 1556 vm_object_t obj; 1557 int entcount; 1558 1559 if (map == 0) 1560 return 0; 1561 1562 if (entry == 0) { 1563 tmpe = map->header.next; 1564 entcount = map->nentries; 1565 while (entcount-- && (tmpe != &map->header)) { 1566 if( _vm_object_in_map(map, object, tmpe)) { 1567 return 1; 1568 } 1569 tmpe = tmpe->next; 1570 } 1571 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1572 tmpm = entry->object.sub_map; 1573 tmpe = tmpm->header.next; 1574 entcount = tmpm->nentries; 1575 while (entcount-- && tmpe != &tmpm->header) { 1576 if( _vm_object_in_map(tmpm, object, tmpe)) { 1577 return 1; 1578 } 1579 tmpe = tmpe->next; 1580 } 1581 } else if ((obj = entry->object.vm_object) != NULL) { 1582 for(; obj; obj=obj->backing_object) 1583 if( obj == object) { 1584 return 1; 1585 } 1586 } 1587 return 0; 1588 } 1589 1590 static int 1591 vm_object_in_map( object) 1592 vm_object_t object; 1593 { 1594 struct proc *p; 1595 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { 1596 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1597 continue; 1598 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) 1599 return 1; 1600 } 1601 if( _vm_object_in_map( kernel_map, object, 0)) 1602 return 1; 1603 if( _vm_object_in_map( kmem_map, object, 0)) 1604 return 1; 1605 if( _vm_object_in_map( pager_map, object, 0)) 1606 return 1; 1607 if( _vm_object_in_map( buffer_map, object, 0)) 1608 return 1; 1609 if( _vm_object_in_map( phys_map, object, 0)) 1610 return 1; 1611 if( _vm_object_in_map( mb_map, object, 0)) 1612 return 1; 1613 return 0; 1614 } 1615 1616 DB_SHOW_COMMAND(vmochk, vm_object_check) 1617 { 1618 vm_object_t object; 1619 1620 /* 1621 * make sure that internal objs are in a map somewhere 1622 * and none have zero ref counts. 1623 */ 1624 for (object = TAILQ_FIRST(&vm_object_list); 1625 object != NULL; 1626 object = TAILQ_NEXT(object, object_list)) { 1627 if (object->handle == NULL && 1628 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1629 if (object->ref_count == 0) { 1630 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1631 (long)object->size); 1632 } 1633 if (!vm_object_in_map(object)) { 1634 db_printf( 1635 "vmochk: internal obj is not in a map: " 1636 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 1637 object->ref_count, (u_long)object->size, 1638 (u_long)object->size, 1639 (void *)object->backing_object); 1640 } 1641 } 1642 } 1643 } 1644 1645 /* 1646 * vm_object_print: [ debug ] 1647 */ 1648 DB_SHOW_COMMAND(object, vm_object_print_static) 1649 { 1650 /* XXX convert args. */ 1651 vm_object_t object = (vm_object_t)addr; 1652 boolean_t full = have_addr; 1653 1654 vm_page_t p; 1655 1656 /* XXX count is an (unused) arg. Avoid shadowing it. */ 1657 #define count was_count 1658 1659 int count; 1660 1661 if (object == NULL) 1662 return; 1663 1664 db_iprintf( 1665 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n", 1666 object, (int)object->type, (u_long)object->size, 1667 object->resident_page_count, object->ref_count, object->flags); 1668 /* 1669 * XXX no %qd in kernel. Truncate object->backing_object_offset. 1670 */ 1671 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n", 1672 object->shadow_count, 1673 object->backing_object ? object->backing_object->ref_count : 0, 1674 object->backing_object, (long)object->backing_object_offset); 1675 1676 if (!full) 1677 return; 1678 1679 db_indent += 2; 1680 count = 0; 1681 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) { 1682 if (count == 0) 1683 db_iprintf("memory:="); 1684 else if (count == 6) { 1685 db_printf("\n"); 1686 db_iprintf(" ..."); 1687 count = 0; 1688 } else 1689 db_printf(","); 1690 count++; 1691 1692 db_printf("(off=0x%lx,page=0x%lx)", 1693 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p)); 1694 } 1695 if (count != 0) 1696 db_printf("\n"); 1697 db_indent -= 2; 1698 } 1699 1700 /* XXX. */ 1701 #undef count 1702 1703 /* XXX need this non-static entry for calling from vm_map_print. */ 1704 void 1705 vm_object_print(addr, have_addr, count, modif) 1706 /* db_expr_t */ long addr; 1707 boolean_t have_addr; 1708 /* db_expr_t */ long count; 1709 char *modif; 1710 { 1711 vm_object_print_static(addr, have_addr, count, modif); 1712 } 1713 1714 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 1715 { 1716 vm_object_t object; 1717 int nl = 0; 1718 int c; 1719 for (object = TAILQ_FIRST(&vm_object_list); 1720 object != NULL; 1721 object = TAILQ_NEXT(object, object_list)) { 1722 vm_pindex_t idx, fidx; 1723 vm_pindex_t osize; 1724 vm_offset_t pa = -1, padiff; 1725 int rcount; 1726 vm_page_t m; 1727 1728 db_printf("new object: %p\n", (void *)object); 1729 if ( nl > 18) { 1730 c = cngetc(); 1731 if (c != ' ') 1732 return; 1733 nl = 0; 1734 } 1735 nl++; 1736 rcount = 0; 1737 fidx = 0; 1738 osize = object->size; 1739 if (osize > 128) 1740 osize = 128; 1741 for(idx=0;idx<osize;idx++) { 1742 m = vm_page_lookup(object, idx); 1743 if (m == NULL) { 1744 if (rcount) { 1745 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1746 (long)fidx, rcount, (long)pa); 1747 if ( nl > 18) { 1748 c = cngetc(); 1749 if (c != ' ') 1750 return; 1751 nl = 0; 1752 } 1753 nl++; 1754 rcount = 0; 1755 } 1756 continue; 1757 } 1758 1759 1760 if (rcount && 1761 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 1762 ++rcount; 1763 continue; 1764 } 1765 if (rcount) { 1766 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 1767 padiff >>= PAGE_SHIFT; 1768 padiff &= PQ_L2_MASK; 1769 if (padiff == 0) { 1770 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 1771 ++rcount; 1772 continue; 1773 } 1774 db_printf(" index(%ld)run(%d)pa(0x%lx)", 1775 (long)fidx, rcount, (long)pa); 1776 db_printf("pd(%ld)\n", (long)padiff); 1777 if ( nl > 18) { 1778 c = cngetc(); 1779 if (c != ' ') 1780 return; 1781 nl = 0; 1782 } 1783 nl++; 1784 } 1785 fidx = idx; 1786 pa = VM_PAGE_TO_PHYS(m); 1787 rcount = 1; 1788 } 1789 if (rcount) { 1790 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 1791 (long)fidx, rcount, (long)pa); 1792 if ( nl > 18) { 1793 c = cngetc(); 1794 if (c != ' ') 1795 return; 1796 nl = 0; 1797 } 1798 nl++; 1799 } 1800 } 1801 } 1802 #endif /* DDB */ 1803