xref: /freebsd/sys/vm/vm_object.c (revision 4acf8d706e36dba0a51abf45def6c31c3fe7bac5)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 	KASSERT(object->type == OBJT_DEAD,
191 	    ("object %p has non-dead type %d",
192 	    object, object->type));
193 }
194 #endif
195 
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199 	vm_object_t object;
200 
201 	object = (vm_object_t)mem;
202 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203 
204 	/* These are true for any object that has been freed */
205 	object->type = OBJT_DEAD;
206 	object->ref_count = 0;
207 	object->rtree.rt_root = 0;
208 	object->paging_in_progress = 0;
209 	object->resident_page_count = 0;
210 	object->shadow_count = 0;
211 
212 	mtx_lock(&vm_object_list_mtx);
213 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214 	mtx_unlock(&vm_object_list_mtx);
215 	return (0);
216 }
217 
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221 
222 	TAILQ_INIT(&object->memq);
223 	LIST_INIT(&object->shadow_head);
224 
225 	object->type = type;
226 	switch (type) {
227 	case OBJT_DEAD:
228 		panic("_vm_object_allocate: can't create OBJT_DEAD");
229 	case OBJT_DEFAULT:
230 	case OBJT_SWAP:
231 		object->flags = OBJ_ONEMAPPING;
232 		break;
233 	case OBJT_DEVICE:
234 	case OBJT_SG:
235 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236 		break;
237 	case OBJT_MGTDEVICE:
238 		object->flags = OBJ_FICTITIOUS;
239 		break;
240 	case OBJT_PHYS:
241 		object->flags = OBJ_UNMANAGED;
242 		break;
243 	case OBJT_VNODE:
244 		object->flags = 0;
245 		break;
246 	default:
247 		panic("_vm_object_allocate: type %d is undefined", type);
248 	}
249 	object->size = size;
250 	object->generation = 1;
251 	object->ref_count = 1;
252 	object->memattr = VM_MEMATTR_DEFAULT;
253 	object->cred = NULL;
254 	object->charge = 0;
255 	object->handle = NULL;
256 	object->backing_object = NULL;
257 	object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259 	LIST_INIT(&object->rvq);
260 #endif
261 	umtx_shm_object_init(object);
262 }
263 
264 /*
265  *	vm_object_init:
266  *
267  *	Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272 	TAILQ_INIT(&vm_object_list);
273 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274 
275 	rw_init(&kernel_object->lock, "kernel vm object");
276 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
277 	    kernel_object);
278 #if VM_NRESERVLEVEL > 0
279 	kernel_object->flags |= OBJ_COLORED;
280 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282 
283 	rw_init(&kmem_object->lock, "kmem vm object");
284 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
285 	    kmem_object);
286 #if VM_NRESERVLEVEL > 0
287 	kmem_object->flags |= OBJ_COLORED;
288 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290 
291 	/*
292 	 * The lock portion of struct vm_object must be type stable due
293 	 * to vm_pageout_fallback_object_lock locking a vm object
294 	 * without holding any references to it.
295 	 */
296 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298 	    vm_object_zdtor,
299 #else
300 	    NULL,
301 #endif
302 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303 
304 	vm_radix_init();
305 }
306 
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310 
311 	VM_OBJECT_ASSERT_WLOCKED(object);
312 	object->flags &= ~bits;
313 }
314 
315 /*
316  *	Sets the default memory attribute for the specified object.  Pages
317  *	that are allocated to this object are by default assigned this memory
318  *	attribute.
319  *
320  *	Presently, this function must be called before any pages are allocated
321  *	to the object.  In the future, this requirement may be relaxed for
322  *	"default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	switch (object->type) {
330 	case OBJT_DEFAULT:
331 	case OBJT_DEVICE:
332 	case OBJT_MGTDEVICE:
333 	case OBJT_PHYS:
334 	case OBJT_SG:
335 	case OBJT_SWAP:
336 	case OBJT_VNODE:
337 		if (!TAILQ_EMPTY(&object->memq))
338 			return (KERN_FAILURE);
339 		break;
340 	case OBJT_DEAD:
341 		return (KERN_INVALID_ARGUMENT);
342 	default:
343 		panic("vm_object_set_memattr: object %p is of undefined type",
344 		    object);
345 	}
346 	object->memattr = memattr;
347 	return (KERN_SUCCESS);
348 }
349 
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353 
354 	VM_OBJECT_ASSERT_WLOCKED(object);
355 	object->paging_in_progress += i;
356 }
357 
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361 
362 	VM_OBJECT_ASSERT_WLOCKED(object);
363 	object->paging_in_progress -= i;
364 }
365 
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369 
370 	VM_OBJECT_ASSERT_WLOCKED(object);
371 	object->paging_in_progress--;
372 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373 		vm_object_clear_flag(object, OBJ_PIPWNT);
374 		wakeup(object);
375 	}
376 }
377 
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	if (i)
384 		object->paging_in_progress -= i;
385 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386 		vm_object_clear_flag(object, OBJ_PIPWNT);
387 		wakeup(object);
388 	}
389 }
390 
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394 
395 	VM_OBJECT_ASSERT_WLOCKED(object);
396 	while (object->paging_in_progress) {
397 		object->flags |= OBJ_PIPWNT;
398 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399 	}
400 }
401 
402 /*
403  *	vm_object_allocate:
404  *
405  *	Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410 	vm_object_t object;
411 
412 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413 	_vm_object_allocate(type, size, object);
414 	return (object);
415 }
416 
417 
418 /*
419  *	vm_object_reference:
420  *
421  *	Gets another reference to the given object.  Note: OBJ_DEAD
422  *	objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427 	if (object == NULL)
428 		return;
429 	VM_OBJECT_WLOCK(object);
430 	vm_object_reference_locked(object);
431 	VM_OBJECT_WUNLOCK(object);
432 }
433 
434 /*
435  *	vm_object_reference_locked:
436  *
437  *	Gets another reference to the given object.
438  *
439  *	The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444 	struct vnode *vp;
445 
446 	VM_OBJECT_ASSERT_WLOCKED(object);
447 	object->ref_count++;
448 	if (object->type == OBJT_VNODE) {
449 		vp = object->handle;
450 		vref(vp);
451 	}
452 }
453 
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460 	struct vnode *vp = (struct vnode *) object->handle;
461 
462 	VM_OBJECT_ASSERT_WLOCKED(object);
463 	KASSERT(object->type == OBJT_VNODE,
464 	    ("vm_object_vndeallocate: not a vnode object"));
465 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467 	if (object->ref_count == 0) {
468 		vn_printf(vp, "vm_object_vndeallocate ");
469 		panic("vm_object_vndeallocate: bad object reference count");
470 	}
471 #endif
472 
473 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474 		umtx_shm_object_terminated(object);
475 
476 	/*
477 	 * The test for text of vp vnode does not need a bypass to
478 	 * reach right VV_TEXT there, since it is obtained from
479 	 * object->handle.
480 	 */
481 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482 		object->ref_count--;
483 		VM_OBJECT_WUNLOCK(object);
484 		/* vrele may need the vnode lock. */
485 		vrele(vp);
486 	} else {
487 		vhold(vp);
488 		VM_OBJECT_WUNLOCK(object);
489 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490 		vdrop(vp);
491 		VM_OBJECT_WLOCK(object);
492 		object->ref_count--;
493 		if (object->type == OBJT_DEAD) {
494 			VM_OBJECT_WUNLOCK(object);
495 			VOP_UNLOCK(vp, 0);
496 		} else {
497 			if (object->ref_count == 0)
498 				VOP_UNSET_TEXT(vp);
499 			VM_OBJECT_WUNLOCK(object);
500 			vput(vp);
501 		}
502 	}
503 }
504 
505 /*
506  *	vm_object_deallocate:
507  *
508  *	Release a reference to the specified object,
509  *	gained either through a vm_object_allocate
510  *	or a vm_object_reference call.  When all references
511  *	are gone, storage associated with this object
512  *	may be relinquished.
513  *
514  *	No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519 	vm_object_t temp;
520 	struct vnode *vp;
521 
522 	while (object != NULL) {
523 		VM_OBJECT_WLOCK(object);
524 		if (object->type == OBJT_VNODE) {
525 			vm_object_vndeallocate(object);
526 			return;
527 		}
528 
529 		KASSERT(object->ref_count != 0,
530 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
531 
532 		/*
533 		 * If the reference count goes to 0 we start calling
534 		 * vm_object_terminate() on the object chain.
535 		 * A ref count of 1 may be a special case depending on the
536 		 * shadow count being 0 or 1.
537 		 */
538 		object->ref_count--;
539 		if (object->ref_count > 1) {
540 			VM_OBJECT_WUNLOCK(object);
541 			return;
542 		} else if (object->ref_count == 1) {
543 			if (object->type == OBJT_SWAP &&
544 			    (object->flags & OBJ_TMPFS) != 0) {
545 				vp = object->un_pager.swp.swp_tmpfs;
546 				vhold(vp);
547 				VM_OBJECT_WUNLOCK(object);
548 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549 				VM_OBJECT_WLOCK(object);
550 				if (object->type == OBJT_DEAD ||
551 				    object->ref_count != 1) {
552 					VM_OBJECT_WUNLOCK(object);
553 					VOP_UNLOCK(vp, 0);
554 					vdrop(vp);
555 					return;
556 				}
557 				if ((object->flags & OBJ_TMPFS) != 0)
558 					VOP_UNSET_TEXT(vp);
559 				VOP_UNLOCK(vp, 0);
560 				vdrop(vp);
561 			}
562 			if (object->shadow_count == 0 &&
563 			    object->handle == NULL &&
564 			    (object->type == OBJT_DEFAULT ||
565 			    (object->type == OBJT_SWAP &&
566 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
567 				vm_object_set_flag(object, OBJ_ONEMAPPING);
568 			} else if ((object->shadow_count == 1) &&
569 			    (object->handle == NULL) &&
570 			    (object->type == OBJT_DEFAULT ||
571 			     object->type == OBJT_SWAP)) {
572 				vm_object_t robject;
573 
574 				robject = LIST_FIRST(&object->shadow_head);
575 				KASSERT(robject != NULL,
576 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577 					 object->ref_count,
578 					 object->shadow_count));
579 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580 				    ("shadowed tmpfs v_object %p", object));
581 				if (!VM_OBJECT_TRYWLOCK(robject)) {
582 					/*
583 					 * Avoid a potential deadlock.
584 					 */
585 					object->ref_count++;
586 					VM_OBJECT_WUNLOCK(object);
587 					/*
588 					 * More likely than not the thread
589 					 * holding robject's lock has lower
590 					 * priority than the current thread.
591 					 * Let the lower priority thread run.
592 					 */
593 					pause("vmo_de", 1);
594 					continue;
595 				}
596 				/*
597 				 * Collapse object into its shadow unless its
598 				 * shadow is dead.  In that case, object will
599 				 * be deallocated by the thread that is
600 				 * deallocating its shadow.
601 				 */
602 				if ((robject->flags & OBJ_DEAD) == 0 &&
603 				    (robject->handle == NULL) &&
604 				    (robject->type == OBJT_DEFAULT ||
605 				     robject->type == OBJT_SWAP)) {
606 
607 					robject->ref_count++;
608 retry:
609 					if (robject->paging_in_progress) {
610 						VM_OBJECT_WUNLOCK(object);
611 						vm_object_pip_wait(robject,
612 						    "objde1");
613 						temp = robject->backing_object;
614 						if (object == temp) {
615 							VM_OBJECT_WLOCK(object);
616 							goto retry;
617 						}
618 					} else if (object->paging_in_progress) {
619 						VM_OBJECT_WUNLOCK(robject);
620 						object->flags |= OBJ_PIPWNT;
621 						VM_OBJECT_SLEEP(object, object,
622 						    PDROP | PVM, "objde2", 0);
623 						VM_OBJECT_WLOCK(robject);
624 						temp = robject->backing_object;
625 						if (object == temp) {
626 							VM_OBJECT_WLOCK(object);
627 							goto retry;
628 						}
629 					} else
630 						VM_OBJECT_WUNLOCK(object);
631 
632 					if (robject->ref_count == 1) {
633 						robject->ref_count--;
634 						object = robject;
635 						goto doterm;
636 					}
637 					object = robject;
638 					vm_object_collapse(object);
639 					VM_OBJECT_WUNLOCK(object);
640 					continue;
641 				}
642 				VM_OBJECT_WUNLOCK(robject);
643 			}
644 			VM_OBJECT_WUNLOCK(object);
645 			return;
646 		}
647 doterm:
648 		umtx_shm_object_terminated(object);
649 		temp = object->backing_object;
650 		if (temp != NULL) {
651 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652 			    ("shadowed tmpfs v_object 2 %p", object));
653 			VM_OBJECT_WLOCK(temp);
654 			LIST_REMOVE(object, shadow_list);
655 			temp->shadow_count--;
656 			VM_OBJECT_WUNLOCK(temp);
657 			object->backing_object = NULL;
658 		}
659 		/*
660 		 * Don't double-terminate, we could be in a termination
661 		 * recursion due to the terminate having to sync data
662 		 * to disk.
663 		 */
664 		if ((object->flags & OBJ_DEAD) == 0)
665 			vm_object_terminate(object);
666 		else
667 			VM_OBJECT_WUNLOCK(object);
668 		object = temp;
669 	}
670 }
671 
672 /*
673  *	vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679 
680 	/*
681 	 * Release the allocation charge.
682 	 */
683 	if (object->cred != NULL) {
684 		swap_release_by_cred(object->charge, object->cred);
685 		object->charge = 0;
686 		crfree(object->cred);
687 		object->cred = NULL;
688 	}
689 
690 	/*
691 	 * Free the space for the object.
692 	 */
693 	uma_zfree(obj_zone, object);
694 }
695 
696 /*
697  *	vm_object_terminate actually destroys the specified object, freeing
698  *	up all previously used resources.
699  *
700  *	The object must be locked.
701  *	This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706 	vm_page_t p, p_next;
707 
708 	VM_OBJECT_ASSERT_WLOCKED(object);
709 
710 	/*
711 	 * Make sure no one uses us.
712 	 */
713 	vm_object_set_flag(object, OBJ_DEAD);
714 
715 	/*
716 	 * wait for the pageout daemon to be done with the object
717 	 */
718 	vm_object_pip_wait(object, "objtrm");
719 
720 	KASSERT(!object->paging_in_progress,
721 		("vm_object_terminate: pageout in progress"));
722 
723 	/*
724 	 * Clean and free the pages, as appropriate. All references to the
725 	 * object are gone, so we don't need to lock it.
726 	 */
727 	if (object->type == OBJT_VNODE) {
728 		struct vnode *vp = (struct vnode *)object->handle;
729 
730 		/*
731 		 * Clean pages and flush buffers.
732 		 */
733 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734 		VM_OBJECT_WUNLOCK(object);
735 
736 		vinvalbuf(vp, V_SAVE, 0, 0);
737 
738 		BO_LOCK(&vp->v_bufobj);
739 		vp->v_bufobj.bo_flag |= BO_DEAD;
740 		BO_UNLOCK(&vp->v_bufobj);
741 
742 		VM_OBJECT_WLOCK(object);
743 	}
744 
745 	KASSERT(object->ref_count == 0,
746 		("vm_object_terminate: object with references, ref_count=%d",
747 		object->ref_count));
748 
749 	/*
750 	 * Free any remaining pageable pages.  This also removes them from the
751 	 * paging queues.  However, don't free wired pages, just remove them
752 	 * from the object.  Rather than incrementally removing each page from
753 	 * the object, the page and object are reset to any empty state.
754 	 */
755 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756 		vm_page_assert_unbusied(p);
757 		vm_page_lock(p);
758 		/*
759 		 * Optimize the page's removal from the object by resetting
760 		 * its "object" field.  Specifically, if the page is not
761 		 * wired, then the effect of this assignment is that
762 		 * vm_page_free()'s call to vm_page_remove() will return
763 		 * immediately without modifying the page or the object.
764 		 */
765 		p->object = NULL;
766 		if (p->wire_count == 0) {
767 			vm_page_free(p);
768 			PCPU_INC(cnt.v_pfree);
769 		}
770 		vm_page_unlock(p);
771 	}
772 	/*
773 	 * If the object contained any pages, then reset it to an empty state.
774 	 * None of the object's fields, including "resident_page_count", were
775 	 * modified by the preceding loop.
776 	 */
777 	if (object->resident_page_count != 0) {
778 		vm_radix_reclaim_allnodes(&object->rtree);
779 		TAILQ_INIT(&object->memq);
780 		object->resident_page_count = 0;
781 		if (object->type == OBJT_VNODE)
782 			vdrop(object->handle);
783 	}
784 
785 #if VM_NRESERVLEVEL > 0
786 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
787 		vm_reserv_break_all(object);
788 #endif
789 
790 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791 	    object->type == OBJT_SWAP,
792 	    ("%s: non-swap obj %p has cred", __func__, object));
793 
794 	/*
795 	 * Let the pager know object is dead.
796 	 */
797 	vm_pager_deallocate(object);
798 	VM_OBJECT_WUNLOCK(object);
799 
800 	vm_object_destroy(object);
801 }
802 
803 /*
804  * Make the page read-only so that we can clear the object flags.  However, if
805  * this is a nosync mmap then the object is likely to stay dirty so do not
806  * mess with the page and do not clear the object flags.  Returns TRUE if the
807  * page should be flushed, and FALSE otherwise.
808  */
809 static boolean_t
810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811 {
812 
813 	/*
814 	 * If we have been asked to skip nosync pages and this is a
815 	 * nosync page, skip it.  Note that the object flags were not
816 	 * cleared in this case so we do not have to set them.
817 	 */
818 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819 		*clearobjflags = FALSE;
820 		return (FALSE);
821 	} else {
822 		pmap_remove_write(p);
823 		return (p->dirty != 0);
824 	}
825 }
826 
827 /*
828  *	vm_object_page_clean
829  *
830  *	Clean all dirty pages in the specified range of object.  Leaves page
831  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
832  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833  *	leaving the object dirty.
834  *
835  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
836  *	synchronous clustering mode implementation.
837  *
838  *	Odd semantics: if start == end, we clean everything.
839  *
840  *	The object must be locked.
841  *
842  *	Returns FALSE if some page from the range was not written, as
843  *	reported by the pager, and TRUE otherwise.
844  */
845 boolean_t
846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847     int flags)
848 {
849 	vm_page_t np, p;
850 	vm_pindex_t pi, tend, tstart;
851 	int curgeneration, n, pagerflags;
852 	boolean_t clearobjflags, eio, res;
853 
854 	VM_OBJECT_ASSERT_WLOCKED(object);
855 
856 	/*
857 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858 	 * objects.  The check below prevents the function from
859 	 * operating on non-vnode objects.
860 	 */
861 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862 	    object->resident_page_count == 0)
863 		return (TRUE);
864 
865 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868 
869 	tstart = OFF_TO_IDX(start);
870 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871 	clearobjflags = tstart == 0 && tend >= object->size;
872 	res = TRUE;
873 
874 rescan:
875 	curgeneration = object->generation;
876 
877 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878 		pi = p->pindex;
879 		if (pi >= tend)
880 			break;
881 		np = TAILQ_NEXT(p, listq);
882 		if (p->valid == 0)
883 			continue;
884 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
885 			if (object->generation != curgeneration) {
886 				if ((flags & OBJPC_SYNC) != 0)
887 					goto rescan;
888 				else
889 					clearobjflags = FALSE;
890 			}
891 			np = vm_page_find_least(object, pi);
892 			continue;
893 		}
894 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895 			continue;
896 
897 		n = vm_object_page_collect_flush(object, p, pagerflags,
898 		    flags, &clearobjflags, &eio);
899 		if (eio) {
900 			res = FALSE;
901 			clearobjflags = FALSE;
902 		}
903 		if (object->generation != curgeneration) {
904 			if ((flags & OBJPC_SYNC) != 0)
905 				goto rescan;
906 			else
907 				clearobjflags = FALSE;
908 		}
909 
910 		/*
911 		 * If the VOP_PUTPAGES() did a truncated write, so
912 		 * that even the first page of the run is not fully
913 		 * written, vm_pageout_flush() returns 0 as the run
914 		 * length.  Since the condition that caused truncated
915 		 * write may be permanent, e.g. exhausted free space,
916 		 * accepting n == 0 would cause an infinite loop.
917 		 *
918 		 * Forwarding the iterator leaves the unwritten page
919 		 * behind, but there is not much we can do there if
920 		 * filesystem refuses to write it.
921 		 */
922 		if (n == 0) {
923 			n = 1;
924 			clearobjflags = FALSE;
925 		}
926 		np = vm_page_find_least(object, pi + n);
927 	}
928 #if 0
929 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930 #endif
931 
932 	if (clearobjflags)
933 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934 	return (res);
935 }
936 
937 static int
938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939     int flags, boolean_t *clearobjflags, boolean_t *eio)
940 {
941 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
942 	int count, i, mreq, runlen;
943 
944 	vm_page_lock_assert(p, MA_NOTOWNED);
945 	VM_OBJECT_ASSERT_WLOCKED(object);
946 
947 	count = 1;
948 	mreq = 0;
949 
950 	for (tp = p; count < vm_pageout_page_count; count++) {
951 		tp = vm_page_next(tp);
952 		if (tp == NULL || vm_page_busied(tp))
953 			break;
954 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955 			break;
956 	}
957 
958 	for (p_first = p; count < vm_pageout_page_count; count++) {
959 		tp = vm_page_prev(p_first);
960 		if (tp == NULL || vm_page_busied(tp))
961 			break;
962 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963 			break;
964 		p_first = tp;
965 		mreq++;
966 	}
967 
968 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969 		ma[i] = tp;
970 
971 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972 	return (runlen);
973 }
974 
975 /*
976  * Note that there is absolutely no sense in writing out
977  * anonymous objects, so we track down the vnode object
978  * to write out.
979  * We invalidate (remove) all pages from the address space
980  * for semantic correctness.
981  *
982  * If the backing object is a device object with unmanaged pages, then any
983  * mappings to the specified range of pages must be removed before this
984  * function is called.
985  *
986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987  * may start out with a NULL object.
988  */
989 boolean_t
990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991     boolean_t syncio, boolean_t invalidate)
992 {
993 	vm_object_t backing_object;
994 	struct vnode *vp;
995 	struct mount *mp;
996 	int error, flags, fsync_after;
997 	boolean_t res;
998 
999 	if (object == NULL)
1000 		return (TRUE);
1001 	res = TRUE;
1002 	error = 0;
1003 	VM_OBJECT_WLOCK(object);
1004 	while ((backing_object = object->backing_object) != NULL) {
1005 		VM_OBJECT_WLOCK(backing_object);
1006 		offset += object->backing_object_offset;
1007 		VM_OBJECT_WUNLOCK(object);
1008 		object = backing_object;
1009 		if (object->size < OFF_TO_IDX(offset + size))
1010 			size = IDX_TO_OFF(object->size) - offset;
1011 	}
1012 	/*
1013 	 * Flush pages if writing is allowed, invalidate them
1014 	 * if invalidation requested.  Pages undergoing I/O
1015 	 * will be ignored by vm_object_page_remove().
1016 	 *
1017 	 * We cannot lock the vnode and then wait for paging
1018 	 * to complete without deadlocking against vm_fault.
1019 	 * Instead we simply call vm_object_page_remove() and
1020 	 * allow it to block internally on a page-by-page
1021 	 * basis when it encounters pages undergoing async
1022 	 * I/O.
1023 	 */
1024 	if (object->type == OBJT_VNODE &&
1025 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026 		vp = object->handle;
1027 		VM_OBJECT_WUNLOCK(object);
1028 		(void) vn_start_write(vp, &mp, V_WAIT);
1029 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030 		if (syncio && !invalidate && offset == 0 &&
1031 		    OFF_TO_IDX(size) == object->size) {
1032 			/*
1033 			 * If syncing the whole mapping of the file,
1034 			 * it is faster to schedule all the writes in
1035 			 * async mode, also allowing the clustering,
1036 			 * and then wait for i/o to complete.
1037 			 */
1038 			flags = 0;
1039 			fsync_after = TRUE;
1040 		} else {
1041 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043 			fsync_after = FALSE;
1044 		}
1045 		VM_OBJECT_WLOCK(object);
1046 		res = vm_object_page_clean(object, offset, offset + size,
1047 		    flags);
1048 		VM_OBJECT_WUNLOCK(object);
1049 		if (fsync_after)
1050 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051 		VOP_UNLOCK(vp, 0);
1052 		vn_finished_write(mp);
1053 		if (error != 0)
1054 			res = FALSE;
1055 		VM_OBJECT_WLOCK(object);
1056 	}
1057 	if ((object->type == OBJT_VNODE ||
1058 	     object->type == OBJT_DEVICE) && invalidate) {
1059 		if (object->type == OBJT_DEVICE)
1060 			/*
1061 			 * The option OBJPR_NOTMAPPED must be passed here
1062 			 * because vm_object_page_remove() cannot remove
1063 			 * unmanaged mappings.
1064 			 */
1065 			flags = OBJPR_NOTMAPPED;
1066 		else if (old_msync)
1067 			flags = 0;
1068 		else
1069 			flags = OBJPR_CLEANONLY;
1070 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1071 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072 	}
1073 	VM_OBJECT_WUNLOCK(object);
1074 	return (res);
1075 }
1076 
1077 /*
1078  *	vm_object_madvise:
1079  *
1080  *	Implements the madvise function at the object/page level.
1081  *
1082  *	MADV_WILLNEED	(any object)
1083  *
1084  *	    Activate the specified pages if they are resident.
1085  *
1086  *	MADV_DONTNEED	(any object)
1087  *
1088  *	    Deactivate the specified pages if they are resident.
1089  *
1090  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1091  *			 OBJ_ONEMAPPING only)
1092  *
1093  *	    Deactivate and clean the specified pages if they are
1094  *	    resident.  This permits the process to reuse the pages
1095  *	    without faulting or the kernel to reclaim the pages
1096  *	    without I/O.
1097  */
1098 void
1099 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1100     int advice)
1101 {
1102 	vm_pindex_t tpindex;
1103 	vm_object_t backing_object, tobject;
1104 	vm_page_t m;
1105 
1106 	if (object == NULL)
1107 		return;
1108 
1109 	VM_OBJECT_WLOCK(object);
1110 	for (m = NULL; pindex < end; pindex++) {
1111 relookup:
1112 		tobject = object;
1113 		tpindex = pindex;
1114 shadowlookup:
1115 		/*
1116 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117 		 * and those pages must be OBJ_ONEMAPPING.
1118 		 */
1119 		if (advice == MADV_FREE) {
1120 			if ((tobject->type != OBJT_DEFAULT &&
1121 			     tobject->type != OBJT_SWAP) ||
1122 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123 				goto unlock_tobject;
1124 			}
1125 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1126 			goto unlock_tobject;
1127 
1128 		/*
1129 		 * In the common case where the object has no backing object, we
1130 		 * can avoid performing lookups at each pindex.  In either case,
1131 		 * when applying MADV_FREE we take care to release any swap
1132 		 * space used to store non-resident pages.
1133 		 */
1134 		if (object->backing_object == NULL) {
1135 			m = (m != NULL) ? TAILQ_NEXT(m, listq) :
1136 			    vm_page_find_least(object, pindex);
1137 			tpindex = (m != NULL && m->pindex < end) ?
1138 			    m->pindex : end;
1139 			if (advice == MADV_FREE && object->type == OBJT_SWAP &&
1140 			    tpindex > pindex)
1141 				swap_pager_freespace(object, pindex,
1142 				    tpindex - pindex);
1143 			if ((pindex = tpindex) == end)
1144 				break;
1145 		} else if ((m = vm_page_lookup(tobject, tpindex)) == NULL) {
1146 			if (advice == MADV_FREE && tobject->type == OBJT_SWAP)
1147 				swap_pager_freespace(tobject, tpindex, 1);
1148 			/*
1149 			 * Prepare to search the next object in the chain.
1150 			 */
1151 			backing_object = tobject->backing_object;
1152 			if (backing_object == NULL)
1153 				goto unlock_tobject;
1154 			VM_OBJECT_WLOCK(backing_object);
1155 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1156 			if (tobject != object)
1157 				VM_OBJECT_WUNLOCK(tobject);
1158 			tobject = backing_object;
1159 			goto shadowlookup;
1160 		}
1161 
1162 		/*
1163 		 * If the page is not in a normal state, skip it.
1164 		 */
1165 		if (m->valid != VM_PAGE_BITS_ALL)
1166 			goto unlock_tobject;
1167 		vm_page_lock(m);
1168 		if (m->hold_count != 0 || m->wire_count != 0) {
1169 			vm_page_unlock(m);
1170 			goto unlock_tobject;
1171 		}
1172 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1173 		    ("vm_object_madvise: page %p is fictitious", m));
1174 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1175 		    ("vm_object_madvise: page %p is not managed", m));
1176 		if (vm_page_busied(m)) {
1177 			if (advice == MADV_WILLNEED) {
1178 				/*
1179 				 * Reference the page before unlocking and
1180 				 * sleeping so that the page daemon is less
1181 				 * likely to reclaim it.
1182 				 */
1183 				vm_page_aflag_set(m, PGA_REFERENCED);
1184 			}
1185 			if (object != tobject)
1186 				VM_OBJECT_WUNLOCK(object);
1187 			VM_OBJECT_WUNLOCK(tobject);
1188 			vm_page_busy_sleep(m, "madvpo", false);
1189 			m = NULL;
1190 			VM_OBJECT_WLOCK(object);
1191   			goto relookup;
1192 		}
1193 		vm_page_advise(m, advice);
1194 		vm_page_unlock(m);
1195 		if (advice == MADV_FREE && tobject->type == OBJT_SWAP)
1196 			swap_pager_freespace(tobject, tpindex, 1);
1197 unlock_tobject:
1198 		if (tobject != object)
1199 			VM_OBJECT_WUNLOCK(tobject);
1200 	}
1201 	VM_OBJECT_WUNLOCK(object);
1202 }
1203 
1204 /*
1205  *	vm_object_shadow:
1206  *
1207  *	Create a new object which is backed by the
1208  *	specified existing object range.  The source
1209  *	object reference is deallocated.
1210  *
1211  *	The new object and offset into that object
1212  *	are returned in the source parameters.
1213  */
1214 void
1215 vm_object_shadow(
1216 	vm_object_t *object,	/* IN/OUT */
1217 	vm_ooffset_t *offset,	/* IN/OUT */
1218 	vm_size_t length)
1219 {
1220 	vm_object_t source;
1221 	vm_object_t result;
1222 
1223 	source = *object;
1224 
1225 	/*
1226 	 * Don't create the new object if the old object isn't shared.
1227 	 */
1228 	if (source != NULL) {
1229 		VM_OBJECT_WLOCK(source);
1230 		if (source->ref_count == 1 &&
1231 		    source->handle == NULL &&
1232 		    (source->type == OBJT_DEFAULT ||
1233 		     source->type == OBJT_SWAP)) {
1234 			VM_OBJECT_WUNLOCK(source);
1235 			return;
1236 		}
1237 		VM_OBJECT_WUNLOCK(source);
1238 	}
1239 
1240 	/*
1241 	 * Allocate a new object with the given length.
1242 	 */
1243 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1244 
1245 	/*
1246 	 * The new object shadows the source object, adding a reference to it.
1247 	 * Our caller changes his reference to point to the new object,
1248 	 * removing a reference to the source object.  Net result: no change
1249 	 * of reference count.
1250 	 *
1251 	 * Try to optimize the result object's page color when shadowing
1252 	 * in order to maintain page coloring consistency in the combined
1253 	 * shadowed object.
1254 	 */
1255 	result->backing_object = source;
1256 	/*
1257 	 * Store the offset into the source object, and fix up the offset into
1258 	 * the new object.
1259 	 */
1260 	result->backing_object_offset = *offset;
1261 	if (source != NULL) {
1262 		VM_OBJECT_WLOCK(source);
1263 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1264 		source->shadow_count++;
1265 #if VM_NRESERVLEVEL > 0
1266 		result->flags |= source->flags & OBJ_COLORED;
1267 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1268 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1269 #endif
1270 		VM_OBJECT_WUNLOCK(source);
1271 	}
1272 
1273 
1274 	/*
1275 	 * Return the new things
1276 	 */
1277 	*offset = 0;
1278 	*object = result;
1279 }
1280 
1281 /*
1282  *	vm_object_split:
1283  *
1284  * Split the pages in a map entry into a new object.  This affords
1285  * easier removal of unused pages, and keeps object inheritance from
1286  * being a negative impact on memory usage.
1287  */
1288 void
1289 vm_object_split(vm_map_entry_t entry)
1290 {
1291 	vm_page_t m, m_next;
1292 	vm_object_t orig_object, new_object, source;
1293 	vm_pindex_t idx, offidxstart;
1294 	vm_size_t size;
1295 
1296 	orig_object = entry->object.vm_object;
1297 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1298 		return;
1299 	if (orig_object->ref_count <= 1)
1300 		return;
1301 	VM_OBJECT_WUNLOCK(orig_object);
1302 
1303 	offidxstart = OFF_TO_IDX(entry->offset);
1304 	size = atop(entry->end - entry->start);
1305 
1306 	/*
1307 	 * If swap_pager_copy() is later called, it will convert new_object
1308 	 * into a swap object.
1309 	 */
1310 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1311 
1312 	/*
1313 	 * At this point, the new object is still private, so the order in
1314 	 * which the original and new objects are locked does not matter.
1315 	 */
1316 	VM_OBJECT_WLOCK(new_object);
1317 	VM_OBJECT_WLOCK(orig_object);
1318 	source = orig_object->backing_object;
1319 	if (source != NULL) {
1320 		VM_OBJECT_WLOCK(source);
1321 		if ((source->flags & OBJ_DEAD) != 0) {
1322 			VM_OBJECT_WUNLOCK(source);
1323 			VM_OBJECT_WUNLOCK(orig_object);
1324 			VM_OBJECT_WUNLOCK(new_object);
1325 			vm_object_deallocate(new_object);
1326 			VM_OBJECT_WLOCK(orig_object);
1327 			return;
1328 		}
1329 		LIST_INSERT_HEAD(&source->shadow_head,
1330 				  new_object, shadow_list);
1331 		source->shadow_count++;
1332 		vm_object_reference_locked(source);	/* for new_object */
1333 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1334 		VM_OBJECT_WUNLOCK(source);
1335 		new_object->backing_object_offset =
1336 			orig_object->backing_object_offset + entry->offset;
1337 		new_object->backing_object = source;
1338 	}
1339 	if (orig_object->cred != NULL) {
1340 		new_object->cred = orig_object->cred;
1341 		crhold(orig_object->cred);
1342 		new_object->charge = ptoa(size);
1343 		KASSERT(orig_object->charge >= ptoa(size),
1344 		    ("orig_object->charge < 0"));
1345 		orig_object->charge -= ptoa(size);
1346 	}
1347 retry:
1348 	m = vm_page_find_least(orig_object, offidxstart);
1349 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1350 	    m = m_next) {
1351 		m_next = TAILQ_NEXT(m, listq);
1352 
1353 		/*
1354 		 * We must wait for pending I/O to complete before we can
1355 		 * rename the page.
1356 		 *
1357 		 * We do not have to VM_PROT_NONE the page as mappings should
1358 		 * not be changed by this operation.
1359 		 */
1360 		if (vm_page_busied(m)) {
1361 			VM_OBJECT_WUNLOCK(new_object);
1362 			vm_page_lock(m);
1363 			VM_OBJECT_WUNLOCK(orig_object);
1364 			vm_page_busy_sleep(m, "spltwt", false);
1365 			VM_OBJECT_WLOCK(orig_object);
1366 			VM_OBJECT_WLOCK(new_object);
1367 			goto retry;
1368 		}
1369 
1370 		/* vm_page_rename() will dirty the page. */
1371 		if (vm_page_rename(m, new_object, idx)) {
1372 			VM_OBJECT_WUNLOCK(new_object);
1373 			VM_OBJECT_WUNLOCK(orig_object);
1374 			VM_WAIT;
1375 			VM_OBJECT_WLOCK(orig_object);
1376 			VM_OBJECT_WLOCK(new_object);
1377 			goto retry;
1378 		}
1379 #if VM_NRESERVLEVEL > 0
1380 		/*
1381 		 * If some of the reservation's allocated pages remain with
1382 		 * the original object, then transferring the reservation to
1383 		 * the new object is neither particularly beneficial nor
1384 		 * particularly harmful as compared to leaving the reservation
1385 		 * with the original object.  If, however, all of the
1386 		 * reservation's allocated pages are transferred to the new
1387 		 * object, then transferring the reservation is typically
1388 		 * beneficial.  Determining which of these two cases applies
1389 		 * would be more costly than unconditionally renaming the
1390 		 * reservation.
1391 		 */
1392 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1393 #endif
1394 		if (orig_object->type == OBJT_SWAP)
1395 			vm_page_xbusy(m);
1396 	}
1397 	if (orig_object->type == OBJT_SWAP) {
1398 		/*
1399 		 * swap_pager_copy() can sleep, in which case the orig_object's
1400 		 * and new_object's locks are released and reacquired.
1401 		 */
1402 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1403 		TAILQ_FOREACH(m, &new_object->memq, listq)
1404 			vm_page_xunbusy(m);
1405 	}
1406 	VM_OBJECT_WUNLOCK(orig_object);
1407 	VM_OBJECT_WUNLOCK(new_object);
1408 	entry->object.vm_object = new_object;
1409 	entry->offset = 0LL;
1410 	vm_object_deallocate(orig_object);
1411 	VM_OBJECT_WLOCK(new_object);
1412 }
1413 
1414 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1415 #define	OBSC_COLLAPSE_WAIT	0x0004
1416 
1417 static vm_page_t
1418 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1419     int op)
1420 {
1421 	vm_object_t backing_object;
1422 
1423 	VM_OBJECT_ASSERT_WLOCKED(object);
1424 	backing_object = object->backing_object;
1425 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1426 
1427 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1428 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1429 	    ("invalid ownership %p %p %p", p, object, backing_object));
1430 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1431 		return (next);
1432 	if (p != NULL)
1433 		vm_page_lock(p);
1434 	VM_OBJECT_WUNLOCK(object);
1435 	VM_OBJECT_WUNLOCK(backing_object);
1436 	if (p == NULL)
1437 		VM_WAIT;
1438 	else
1439 		vm_page_busy_sleep(p, "vmocol", false);
1440 	VM_OBJECT_WLOCK(object);
1441 	VM_OBJECT_WLOCK(backing_object);
1442 	return (TAILQ_FIRST(&backing_object->memq));
1443 }
1444 
1445 static bool
1446 vm_object_scan_all_shadowed(vm_object_t object)
1447 {
1448 	vm_object_t backing_object;
1449 	vm_page_t p, pp;
1450 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1451 
1452 	VM_OBJECT_ASSERT_WLOCKED(object);
1453 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1454 
1455 	backing_object = object->backing_object;
1456 
1457 	if (backing_object->type != OBJT_DEFAULT &&
1458 	    backing_object->type != OBJT_SWAP)
1459 		return (false);
1460 
1461 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1462 	p = vm_page_find_least(backing_object, pi);
1463 	ps = swap_pager_find_least(backing_object, pi);
1464 
1465 	/*
1466 	 * Only check pages inside the parent object's range and
1467 	 * inside the parent object's mapping of the backing object.
1468 	 */
1469 	for (;; pi++) {
1470 		if (p != NULL && p->pindex < pi)
1471 			p = TAILQ_NEXT(p, listq);
1472 		if (ps < pi)
1473 			ps = swap_pager_find_least(backing_object, pi);
1474 		if (p == NULL && ps >= backing_object->size)
1475 			break;
1476 		else if (p == NULL)
1477 			pi = ps;
1478 		else
1479 			pi = MIN(p->pindex, ps);
1480 
1481 		new_pindex = pi - backing_offset_index;
1482 		if (new_pindex >= object->size)
1483 			break;
1484 
1485 		/*
1486 		 * See if the parent has the page or if the parent's object
1487 		 * pager has the page.  If the parent has the page but the page
1488 		 * is not valid, the parent's object pager must have the page.
1489 		 *
1490 		 * If this fails, the parent does not completely shadow the
1491 		 * object and we might as well give up now.
1492 		 */
1493 		pp = vm_page_lookup(object, new_pindex);
1494 		if ((pp == NULL || pp->valid == 0) &&
1495 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1496 			return (false);
1497 	}
1498 	return (true);
1499 }
1500 
1501 static bool
1502 vm_object_collapse_scan(vm_object_t object, int op)
1503 {
1504 	vm_object_t backing_object;
1505 	vm_page_t next, p, pp;
1506 	vm_pindex_t backing_offset_index, new_pindex;
1507 
1508 	VM_OBJECT_ASSERT_WLOCKED(object);
1509 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1510 
1511 	backing_object = object->backing_object;
1512 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1513 
1514 	/*
1515 	 * Initial conditions
1516 	 */
1517 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1518 		vm_object_set_flag(backing_object, OBJ_DEAD);
1519 
1520 	/*
1521 	 * Our scan
1522 	 */
1523 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1524 		next = TAILQ_NEXT(p, listq);
1525 		new_pindex = p->pindex - backing_offset_index;
1526 
1527 		/*
1528 		 * Check for busy page
1529 		 */
1530 		if (vm_page_busied(p)) {
1531 			next = vm_object_collapse_scan_wait(object, p, next, op);
1532 			continue;
1533 		}
1534 
1535 		KASSERT(p->object == backing_object,
1536 		    ("vm_object_collapse_scan: object mismatch"));
1537 
1538 		if (p->pindex < backing_offset_index ||
1539 		    new_pindex >= object->size) {
1540 			if (backing_object->type == OBJT_SWAP)
1541 				swap_pager_freespace(backing_object, p->pindex,
1542 				    1);
1543 
1544 			/*
1545 			 * Page is out of the parent object's range, we can
1546 			 * simply destroy it.
1547 			 */
1548 			vm_page_lock(p);
1549 			KASSERT(!pmap_page_is_mapped(p),
1550 			    ("freeing mapped page %p", p));
1551 			if (p->wire_count == 0)
1552 				vm_page_free(p);
1553 			else
1554 				vm_page_remove(p);
1555 			vm_page_unlock(p);
1556 			continue;
1557 		}
1558 
1559 		pp = vm_page_lookup(object, new_pindex);
1560 		if (pp != NULL && vm_page_busied(pp)) {
1561 			/*
1562 			 * The page in the parent is busy and possibly not
1563 			 * (yet) valid.  Until its state is finalized by the
1564 			 * busy bit owner, we can't tell whether it shadows the
1565 			 * original page.  Therefore, we must either skip it
1566 			 * and the original (backing_object) page or wait for
1567 			 * its state to be finalized.
1568 			 *
1569 			 * This is due to a race with vm_fault() where we must
1570 			 * unbusy the original (backing_obj) page before we can
1571 			 * (re)lock the parent.  Hence we can get here.
1572 			 */
1573 			next = vm_object_collapse_scan_wait(object, pp, next,
1574 			    op);
1575 			continue;
1576 		}
1577 
1578 		KASSERT(pp == NULL || pp->valid != 0,
1579 		    ("unbusy invalid page %p", pp));
1580 
1581 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1582 			NULL)) {
1583 			/*
1584 			 * The page already exists in the parent OR swap exists
1585 			 * for this location in the parent.  Leave the parent's
1586 			 * page alone.  Destroy the original page from the
1587 			 * backing object.
1588 			 */
1589 			if (backing_object->type == OBJT_SWAP)
1590 				swap_pager_freespace(backing_object, p->pindex,
1591 				    1);
1592 			vm_page_lock(p);
1593 			KASSERT(!pmap_page_is_mapped(p),
1594 			    ("freeing mapped page %p", p));
1595 			if (p->wire_count == 0)
1596 				vm_page_free(p);
1597 			else
1598 				vm_page_remove(p);
1599 			vm_page_unlock(p);
1600 			continue;
1601 		}
1602 
1603 		/*
1604 		 * Page does not exist in parent, rename the page from the
1605 		 * backing object to the main object.
1606 		 *
1607 		 * If the page was mapped to a process, it can remain mapped
1608 		 * through the rename.  vm_page_rename() will dirty the page.
1609 		 */
1610 		if (vm_page_rename(p, object, new_pindex)) {
1611 			next = vm_object_collapse_scan_wait(object, NULL, next,
1612 			    op);
1613 			continue;
1614 		}
1615 
1616 		/* Use the old pindex to free the right page. */
1617 		if (backing_object->type == OBJT_SWAP)
1618 			swap_pager_freespace(backing_object,
1619 			    new_pindex + backing_offset_index, 1);
1620 
1621 #if VM_NRESERVLEVEL > 0
1622 		/*
1623 		 * Rename the reservation.
1624 		 */
1625 		vm_reserv_rename(p, object, backing_object,
1626 		    backing_offset_index);
1627 #endif
1628 	}
1629 	return (true);
1630 }
1631 
1632 
1633 /*
1634  * this version of collapse allows the operation to occur earlier and
1635  * when paging_in_progress is true for an object...  This is not a complete
1636  * operation, but should plug 99.9% of the rest of the leaks.
1637  */
1638 static void
1639 vm_object_qcollapse(vm_object_t object)
1640 {
1641 	vm_object_t backing_object = object->backing_object;
1642 
1643 	VM_OBJECT_ASSERT_WLOCKED(object);
1644 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1645 
1646 	if (backing_object->ref_count != 1)
1647 		return;
1648 
1649 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1650 }
1651 
1652 /*
1653  *	vm_object_collapse:
1654  *
1655  *	Collapse an object with the object backing it.
1656  *	Pages in the backing object are moved into the
1657  *	parent, and the backing object is deallocated.
1658  */
1659 void
1660 vm_object_collapse(vm_object_t object)
1661 {
1662 	vm_object_t backing_object, new_backing_object;
1663 
1664 	VM_OBJECT_ASSERT_WLOCKED(object);
1665 
1666 	while (TRUE) {
1667 		/*
1668 		 * Verify that the conditions are right for collapse:
1669 		 *
1670 		 * The object exists and the backing object exists.
1671 		 */
1672 		if ((backing_object = object->backing_object) == NULL)
1673 			break;
1674 
1675 		/*
1676 		 * we check the backing object first, because it is most likely
1677 		 * not collapsable.
1678 		 */
1679 		VM_OBJECT_WLOCK(backing_object);
1680 		if (backing_object->handle != NULL ||
1681 		    (backing_object->type != OBJT_DEFAULT &&
1682 		     backing_object->type != OBJT_SWAP) ||
1683 		    (backing_object->flags & OBJ_DEAD) ||
1684 		    object->handle != NULL ||
1685 		    (object->type != OBJT_DEFAULT &&
1686 		     object->type != OBJT_SWAP) ||
1687 		    (object->flags & OBJ_DEAD)) {
1688 			VM_OBJECT_WUNLOCK(backing_object);
1689 			break;
1690 		}
1691 
1692 		if (object->paging_in_progress != 0 ||
1693 		    backing_object->paging_in_progress != 0) {
1694 			vm_object_qcollapse(object);
1695 			VM_OBJECT_WUNLOCK(backing_object);
1696 			break;
1697 		}
1698 
1699 		/*
1700 		 * We know that we can either collapse the backing object (if
1701 		 * the parent is the only reference to it) or (perhaps) have
1702 		 * the parent bypass the object if the parent happens to shadow
1703 		 * all the resident pages in the entire backing object.
1704 		 *
1705 		 * This is ignoring pager-backed pages such as swap pages.
1706 		 * vm_object_collapse_scan fails the shadowing test in this
1707 		 * case.
1708 		 */
1709 		if (backing_object->ref_count == 1) {
1710 			vm_object_pip_add(object, 1);
1711 			vm_object_pip_add(backing_object, 1);
1712 
1713 			/*
1714 			 * If there is exactly one reference to the backing
1715 			 * object, we can collapse it into the parent.
1716 			 */
1717 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1718 
1719 #if VM_NRESERVLEVEL > 0
1720 			/*
1721 			 * Break any reservations from backing_object.
1722 			 */
1723 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1724 				vm_reserv_break_all(backing_object);
1725 #endif
1726 
1727 			/*
1728 			 * Move the pager from backing_object to object.
1729 			 */
1730 			if (backing_object->type == OBJT_SWAP) {
1731 				/*
1732 				 * swap_pager_copy() can sleep, in which case
1733 				 * the backing_object's and object's locks are
1734 				 * released and reacquired.
1735 				 * Since swap_pager_copy() is being asked to
1736 				 * destroy the source, it will change the
1737 				 * backing_object's type to OBJT_DEFAULT.
1738 				 */
1739 				swap_pager_copy(
1740 				    backing_object,
1741 				    object,
1742 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1743 			}
1744 			/*
1745 			 * Object now shadows whatever backing_object did.
1746 			 * Note that the reference to
1747 			 * backing_object->backing_object moves from within
1748 			 * backing_object to within object.
1749 			 */
1750 			LIST_REMOVE(object, shadow_list);
1751 			backing_object->shadow_count--;
1752 			if (backing_object->backing_object) {
1753 				VM_OBJECT_WLOCK(backing_object->backing_object);
1754 				LIST_REMOVE(backing_object, shadow_list);
1755 				LIST_INSERT_HEAD(
1756 				    &backing_object->backing_object->shadow_head,
1757 				    object, shadow_list);
1758 				/*
1759 				 * The shadow_count has not changed.
1760 				 */
1761 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1762 			}
1763 			object->backing_object = backing_object->backing_object;
1764 			object->backing_object_offset +=
1765 			    backing_object->backing_object_offset;
1766 
1767 			/*
1768 			 * Discard backing_object.
1769 			 *
1770 			 * Since the backing object has no pages, no pager left,
1771 			 * and no object references within it, all that is
1772 			 * necessary is to dispose of it.
1773 			 */
1774 			KASSERT(backing_object->ref_count == 1, (
1775 "backing_object %p was somehow re-referenced during collapse!",
1776 			    backing_object));
1777 			vm_object_pip_wakeup(backing_object);
1778 			backing_object->type = OBJT_DEAD;
1779 			backing_object->ref_count = 0;
1780 			VM_OBJECT_WUNLOCK(backing_object);
1781 			vm_object_destroy(backing_object);
1782 
1783 			vm_object_pip_wakeup(object);
1784 			object_collapses++;
1785 		} else {
1786 			/*
1787 			 * If we do not entirely shadow the backing object,
1788 			 * there is nothing we can do so we give up.
1789 			 */
1790 			if (object->resident_page_count != object->size &&
1791 			    !vm_object_scan_all_shadowed(object)) {
1792 				VM_OBJECT_WUNLOCK(backing_object);
1793 				break;
1794 			}
1795 
1796 			/*
1797 			 * Make the parent shadow the next object in the
1798 			 * chain.  Deallocating backing_object will not remove
1799 			 * it, since its reference count is at least 2.
1800 			 */
1801 			LIST_REMOVE(object, shadow_list);
1802 			backing_object->shadow_count--;
1803 
1804 			new_backing_object = backing_object->backing_object;
1805 			if ((object->backing_object = new_backing_object) != NULL) {
1806 				VM_OBJECT_WLOCK(new_backing_object);
1807 				LIST_INSERT_HEAD(
1808 				    &new_backing_object->shadow_head,
1809 				    object,
1810 				    shadow_list
1811 				);
1812 				new_backing_object->shadow_count++;
1813 				vm_object_reference_locked(new_backing_object);
1814 				VM_OBJECT_WUNLOCK(new_backing_object);
1815 				object->backing_object_offset +=
1816 					backing_object->backing_object_offset;
1817 			}
1818 
1819 			/*
1820 			 * Drop the reference count on backing_object. Since
1821 			 * its ref_count was at least 2, it will not vanish.
1822 			 */
1823 			backing_object->ref_count--;
1824 			VM_OBJECT_WUNLOCK(backing_object);
1825 			object_bypasses++;
1826 		}
1827 
1828 		/*
1829 		 * Try again with this object's new backing object.
1830 		 */
1831 	}
1832 }
1833 
1834 /*
1835  *	vm_object_page_remove:
1836  *
1837  *	For the given object, either frees or invalidates each of the
1838  *	specified pages.  In general, a page is freed.  However, if a page is
1839  *	wired for any reason other than the existence of a managed, wired
1840  *	mapping, then it may be invalidated but not removed from the object.
1841  *	Pages are specified by the given range ["start", "end") and the option
1842  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1843  *	extends from "start" to the end of the object.  If the option
1844  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1845  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1846  *	specified, then the pages within the specified range must have no
1847  *	mappings.  Otherwise, if this option is not specified, any mappings to
1848  *	the specified pages are removed before the pages are freed or
1849  *	invalidated.
1850  *
1851  *	In general, this operation should only be performed on objects that
1852  *	contain managed pages.  There are, however, two exceptions.  First, it
1853  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1854  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1855  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1856  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1857  *
1858  *	The object must be locked.
1859  */
1860 void
1861 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1862     int options)
1863 {
1864 	vm_page_t p, next;
1865 
1866 	VM_OBJECT_ASSERT_WLOCKED(object);
1867 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1868 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1869 	    ("vm_object_page_remove: illegal options for object %p", object));
1870 	if (object->resident_page_count == 0)
1871 		return;
1872 	vm_object_pip_add(object, 1);
1873 again:
1874 	p = vm_page_find_least(object, start);
1875 
1876 	/*
1877 	 * Here, the variable "p" is either (1) the page with the least pindex
1878 	 * greater than or equal to the parameter "start" or (2) NULL.
1879 	 */
1880 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1881 		next = TAILQ_NEXT(p, listq);
1882 
1883 		/*
1884 		 * If the page is wired for any reason besides the existence
1885 		 * of managed, wired mappings, then it cannot be freed.  For
1886 		 * example, fictitious pages, which represent device memory,
1887 		 * are inherently wired and cannot be freed.  They can,
1888 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1889 		 * not specified.
1890 		 */
1891 		vm_page_lock(p);
1892 		if (vm_page_xbusied(p)) {
1893 			VM_OBJECT_WUNLOCK(object);
1894 			vm_page_busy_sleep(p, "vmopax", true);
1895 			VM_OBJECT_WLOCK(object);
1896 			goto again;
1897 		}
1898 		if (p->wire_count != 0) {
1899 			if ((options & OBJPR_NOTMAPPED) == 0)
1900 				pmap_remove_all(p);
1901 			if ((options & OBJPR_CLEANONLY) == 0) {
1902 				p->valid = 0;
1903 				vm_page_undirty(p);
1904 			}
1905 			goto next;
1906 		}
1907 		if (vm_page_busied(p)) {
1908 			VM_OBJECT_WUNLOCK(object);
1909 			vm_page_busy_sleep(p, "vmopar", false);
1910 			VM_OBJECT_WLOCK(object);
1911 			goto again;
1912 		}
1913 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1914 		    ("vm_object_page_remove: page %p is fictitious", p));
1915 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1916 			if ((options & OBJPR_NOTMAPPED) == 0)
1917 				pmap_remove_write(p);
1918 			if (p->dirty)
1919 				goto next;
1920 		}
1921 		if ((options & OBJPR_NOTMAPPED) == 0)
1922 			pmap_remove_all(p);
1923 		vm_page_free(p);
1924 next:
1925 		vm_page_unlock(p);
1926 	}
1927 	vm_object_pip_wakeup(object);
1928 }
1929 
1930 /*
1931  *	vm_object_page_noreuse:
1932  *
1933  *	For the given object, attempt to move the specified pages to
1934  *	the head of the inactive queue.  This bypasses regular LRU
1935  *	operation and allows the pages to be reused quickly under memory
1936  *	pressure.  If a page is wired for any reason, then it will not
1937  *	be queued.  Pages are specified by the range ["start", "end").
1938  *	As a special case, if "end" is zero, then the range extends from
1939  *	"start" to the end of the object.
1940  *
1941  *	This operation should only be performed on objects that
1942  *	contain non-fictitious, managed pages.
1943  *
1944  *	The object must be locked.
1945  */
1946 void
1947 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1948 {
1949 	struct mtx *mtx, *new_mtx;
1950 	vm_page_t p, next;
1951 
1952 	VM_OBJECT_ASSERT_WLOCKED(object);
1953 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1954 	    ("vm_object_page_noreuse: illegal object %p", object));
1955 	if (object->resident_page_count == 0)
1956 		return;
1957 	p = vm_page_find_least(object, start);
1958 
1959 	/*
1960 	 * Here, the variable "p" is either (1) the page with the least pindex
1961 	 * greater than or equal to the parameter "start" or (2) NULL.
1962 	 */
1963 	mtx = NULL;
1964 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1965 		next = TAILQ_NEXT(p, listq);
1966 
1967 		/*
1968 		 * Avoid releasing and reacquiring the same page lock.
1969 		 */
1970 		new_mtx = vm_page_lockptr(p);
1971 		if (mtx != new_mtx) {
1972 			if (mtx != NULL)
1973 				mtx_unlock(mtx);
1974 			mtx = new_mtx;
1975 			mtx_lock(mtx);
1976 		}
1977 		vm_page_deactivate_noreuse(p);
1978 	}
1979 	if (mtx != NULL)
1980 		mtx_unlock(mtx);
1981 }
1982 
1983 /*
1984  *	Populate the specified range of the object with valid pages.  Returns
1985  *	TRUE if the range is successfully populated and FALSE otherwise.
1986  *
1987  *	Note: This function should be optimized to pass a larger array of
1988  *	pages to vm_pager_get_pages() before it is applied to a non-
1989  *	OBJT_DEVICE object.
1990  *
1991  *	The object must be locked.
1992  */
1993 boolean_t
1994 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1995 {
1996 	vm_page_t m;
1997 	vm_pindex_t pindex;
1998 	int rv;
1999 
2000 	VM_OBJECT_ASSERT_WLOCKED(object);
2001 	for (pindex = start; pindex < end; pindex++) {
2002 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2003 		if (m->valid != VM_PAGE_BITS_ALL) {
2004 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2005 			if (rv != VM_PAGER_OK) {
2006 				vm_page_lock(m);
2007 				vm_page_free(m);
2008 				vm_page_unlock(m);
2009 				break;
2010 			}
2011 		}
2012 		/*
2013 		 * Keep "m" busy because a subsequent iteration may unlock
2014 		 * the object.
2015 		 */
2016 	}
2017 	if (pindex > start) {
2018 		m = vm_page_lookup(object, start);
2019 		while (m != NULL && m->pindex < pindex) {
2020 			vm_page_xunbusy(m);
2021 			m = TAILQ_NEXT(m, listq);
2022 		}
2023 	}
2024 	return (pindex == end);
2025 }
2026 
2027 /*
2028  *	Routine:	vm_object_coalesce
2029  *	Function:	Coalesces two objects backing up adjoining
2030  *			regions of memory into a single object.
2031  *
2032  *	returns TRUE if objects were combined.
2033  *
2034  *	NOTE:	Only works at the moment if the second object is NULL -
2035  *		if it's not, which object do we lock first?
2036  *
2037  *	Parameters:
2038  *		prev_object	First object to coalesce
2039  *		prev_offset	Offset into prev_object
2040  *		prev_size	Size of reference to prev_object
2041  *		next_size	Size of reference to the second object
2042  *		reserved	Indicator that extension region has
2043  *				swap accounted for
2044  *
2045  *	Conditions:
2046  *	The object must *not* be locked.
2047  */
2048 boolean_t
2049 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2050     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2051 {
2052 	vm_pindex_t next_pindex;
2053 
2054 	if (prev_object == NULL)
2055 		return (TRUE);
2056 	VM_OBJECT_WLOCK(prev_object);
2057 	if ((prev_object->type != OBJT_DEFAULT &&
2058 	    prev_object->type != OBJT_SWAP) ||
2059 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2060 		VM_OBJECT_WUNLOCK(prev_object);
2061 		return (FALSE);
2062 	}
2063 
2064 	/*
2065 	 * Try to collapse the object first
2066 	 */
2067 	vm_object_collapse(prev_object);
2068 
2069 	/*
2070 	 * Can't coalesce if: . more than one reference . paged out . shadows
2071 	 * another object . has a copy elsewhere (any of which mean that the
2072 	 * pages not mapped to prev_entry may be in use anyway)
2073 	 */
2074 	if (prev_object->backing_object != NULL) {
2075 		VM_OBJECT_WUNLOCK(prev_object);
2076 		return (FALSE);
2077 	}
2078 
2079 	prev_size >>= PAGE_SHIFT;
2080 	next_size >>= PAGE_SHIFT;
2081 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2082 
2083 	if ((prev_object->ref_count > 1) &&
2084 	    (prev_object->size != next_pindex)) {
2085 		VM_OBJECT_WUNLOCK(prev_object);
2086 		return (FALSE);
2087 	}
2088 
2089 	/*
2090 	 * Account for the charge.
2091 	 */
2092 	if (prev_object->cred != NULL) {
2093 
2094 		/*
2095 		 * If prev_object was charged, then this mapping,
2096 		 * although not charged now, may become writable
2097 		 * later. Non-NULL cred in the object would prevent
2098 		 * swap reservation during enabling of the write
2099 		 * access, so reserve swap now. Failed reservation
2100 		 * cause allocation of the separate object for the map
2101 		 * entry, and swap reservation for this entry is
2102 		 * managed in appropriate time.
2103 		 */
2104 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2105 		    prev_object->cred)) {
2106 			VM_OBJECT_WUNLOCK(prev_object);
2107 			return (FALSE);
2108 		}
2109 		prev_object->charge += ptoa(next_size);
2110 	}
2111 
2112 	/*
2113 	 * Remove any pages that may still be in the object from a previous
2114 	 * deallocation.
2115 	 */
2116 	if (next_pindex < prev_object->size) {
2117 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2118 		    next_size, 0);
2119 		if (prev_object->type == OBJT_SWAP)
2120 			swap_pager_freespace(prev_object,
2121 					     next_pindex, next_size);
2122 #if 0
2123 		if (prev_object->cred != NULL) {
2124 			KASSERT(prev_object->charge >=
2125 			    ptoa(prev_object->size - next_pindex),
2126 			    ("object %p overcharged 1 %jx %jx", prev_object,
2127 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2128 			prev_object->charge -= ptoa(prev_object->size -
2129 			    next_pindex);
2130 		}
2131 #endif
2132 	}
2133 
2134 	/*
2135 	 * Extend the object if necessary.
2136 	 */
2137 	if (next_pindex + next_size > prev_object->size)
2138 		prev_object->size = next_pindex + next_size;
2139 
2140 	VM_OBJECT_WUNLOCK(prev_object);
2141 	return (TRUE);
2142 }
2143 
2144 void
2145 vm_object_set_writeable_dirty(vm_object_t object)
2146 {
2147 
2148 	VM_OBJECT_ASSERT_WLOCKED(object);
2149 	if (object->type != OBJT_VNODE) {
2150 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2151 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2152 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2153 		}
2154 		return;
2155 	}
2156 	object->generation++;
2157 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2158 		return;
2159 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2160 }
2161 
2162 /*
2163  *	vm_object_unwire:
2164  *
2165  *	For each page offset within the specified range of the given object,
2166  *	find the highest-level page in the shadow chain and unwire it.  A page
2167  *	must exist at every page offset, and the highest-level page must be
2168  *	wired.
2169  */
2170 void
2171 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2172     uint8_t queue)
2173 {
2174 	vm_object_t tobject;
2175 	vm_page_t m, tm;
2176 	vm_pindex_t end_pindex, pindex, tpindex;
2177 	int depth, locked_depth;
2178 
2179 	KASSERT((offset & PAGE_MASK) == 0,
2180 	    ("vm_object_unwire: offset is not page aligned"));
2181 	KASSERT((length & PAGE_MASK) == 0,
2182 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2183 	/* The wired count of a fictitious page never changes. */
2184 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2185 		return;
2186 	pindex = OFF_TO_IDX(offset);
2187 	end_pindex = pindex + atop(length);
2188 	locked_depth = 1;
2189 	VM_OBJECT_RLOCK(object);
2190 	m = vm_page_find_least(object, pindex);
2191 	while (pindex < end_pindex) {
2192 		if (m == NULL || pindex < m->pindex) {
2193 			/*
2194 			 * The first object in the shadow chain doesn't
2195 			 * contain a page at the current index.  Therefore,
2196 			 * the page must exist in a backing object.
2197 			 */
2198 			tobject = object;
2199 			tpindex = pindex;
2200 			depth = 0;
2201 			do {
2202 				tpindex +=
2203 				    OFF_TO_IDX(tobject->backing_object_offset);
2204 				tobject = tobject->backing_object;
2205 				KASSERT(tobject != NULL,
2206 				    ("vm_object_unwire: missing page"));
2207 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2208 					goto next_page;
2209 				depth++;
2210 				if (depth == locked_depth) {
2211 					locked_depth++;
2212 					VM_OBJECT_RLOCK(tobject);
2213 				}
2214 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2215 			    NULL);
2216 		} else {
2217 			tm = m;
2218 			m = TAILQ_NEXT(m, listq);
2219 		}
2220 		vm_page_lock(tm);
2221 		vm_page_unwire(tm, queue);
2222 		vm_page_unlock(tm);
2223 next_page:
2224 		pindex++;
2225 	}
2226 	/* Release the accumulated object locks. */
2227 	for (depth = 0; depth < locked_depth; depth++) {
2228 		tobject = object->backing_object;
2229 		VM_OBJECT_RUNLOCK(object);
2230 		object = tobject;
2231 	}
2232 }
2233 
2234 struct vnode *
2235 vm_object_vnode(vm_object_t object)
2236 {
2237 
2238 	VM_OBJECT_ASSERT_LOCKED(object);
2239 	if (object->type == OBJT_VNODE)
2240 		return (object->handle);
2241 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2242 		return (object->un_pager.swp.swp_tmpfs);
2243 	return (NULL);
2244 }
2245 
2246 static int
2247 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2248 {
2249 	struct kinfo_vmobject kvo;
2250 	char *fullpath, *freepath;
2251 	struct vnode *vp;
2252 	struct vattr va;
2253 	vm_object_t obj;
2254 	vm_page_t m;
2255 	int count, error;
2256 
2257 	if (req->oldptr == NULL) {
2258 		/*
2259 		 * If an old buffer has not been provided, generate an
2260 		 * estimate of the space needed for a subsequent call.
2261 		 */
2262 		mtx_lock(&vm_object_list_mtx);
2263 		count = 0;
2264 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2265 			if (obj->type == OBJT_DEAD)
2266 				continue;
2267 			count++;
2268 		}
2269 		mtx_unlock(&vm_object_list_mtx);
2270 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2271 		    count * 11 / 10));
2272 	}
2273 
2274 	error = 0;
2275 
2276 	/*
2277 	 * VM objects are type stable and are never removed from the
2278 	 * list once added.  This allows us to safely read obj->object_list
2279 	 * after reacquiring the VM object lock.
2280 	 */
2281 	mtx_lock(&vm_object_list_mtx);
2282 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2283 		if (obj->type == OBJT_DEAD)
2284 			continue;
2285 		VM_OBJECT_RLOCK(obj);
2286 		if (obj->type == OBJT_DEAD) {
2287 			VM_OBJECT_RUNLOCK(obj);
2288 			continue;
2289 		}
2290 		mtx_unlock(&vm_object_list_mtx);
2291 		kvo.kvo_size = ptoa(obj->size);
2292 		kvo.kvo_resident = obj->resident_page_count;
2293 		kvo.kvo_ref_count = obj->ref_count;
2294 		kvo.kvo_shadow_count = obj->shadow_count;
2295 		kvo.kvo_memattr = obj->memattr;
2296 		kvo.kvo_active = 0;
2297 		kvo.kvo_inactive = 0;
2298 		TAILQ_FOREACH(m, &obj->memq, listq) {
2299 			/*
2300 			 * A page may belong to the object but be
2301 			 * dequeued and set to PQ_NONE while the
2302 			 * object lock is not held.  This makes the
2303 			 * reads of m->queue below racy, and we do not
2304 			 * count pages set to PQ_NONE.  However, this
2305 			 * sysctl is only meant to give an
2306 			 * approximation of the system anyway.
2307 			 */
2308 			if (vm_page_active(m))
2309 				kvo.kvo_active++;
2310 			else if (vm_page_inactive(m))
2311 				kvo.kvo_inactive++;
2312 		}
2313 
2314 		kvo.kvo_vn_fileid = 0;
2315 		kvo.kvo_vn_fsid = 0;
2316 		freepath = NULL;
2317 		fullpath = "";
2318 		vp = NULL;
2319 		switch (obj->type) {
2320 		case OBJT_DEFAULT:
2321 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2322 			break;
2323 		case OBJT_VNODE:
2324 			kvo.kvo_type = KVME_TYPE_VNODE;
2325 			vp = obj->handle;
2326 			vref(vp);
2327 			break;
2328 		case OBJT_SWAP:
2329 			kvo.kvo_type = KVME_TYPE_SWAP;
2330 			break;
2331 		case OBJT_DEVICE:
2332 			kvo.kvo_type = KVME_TYPE_DEVICE;
2333 			break;
2334 		case OBJT_PHYS:
2335 			kvo.kvo_type = KVME_TYPE_PHYS;
2336 			break;
2337 		case OBJT_DEAD:
2338 			kvo.kvo_type = KVME_TYPE_DEAD;
2339 			break;
2340 		case OBJT_SG:
2341 			kvo.kvo_type = KVME_TYPE_SG;
2342 			break;
2343 		case OBJT_MGTDEVICE:
2344 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2345 			break;
2346 		default:
2347 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2348 			break;
2349 		}
2350 		VM_OBJECT_RUNLOCK(obj);
2351 		if (vp != NULL) {
2352 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2353 			vn_lock(vp, LK_SHARED | LK_RETRY);
2354 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2355 				kvo.kvo_vn_fileid = va.va_fileid;
2356 				kvo.kvo_vn_fsid = va.va_fsid;
2357 			}
2358 			vput(vp);
2359 		}
2360 
2361 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2362 		if (freepath != NULL)
2363 			free(freepath, M_TEMP);
2364 
2365 		/* Pack record size down */
2366 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2367 		    strlen(kvo.kvo_path) + 1;
2368 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2369 		    sizeof(uint64_t));
2370 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2371 		mtx_lock(&vm_object_list_mtx);
2372 		if (error)
2373 			break;
2374 	}
2375 	mtx_unlock(&vm_object_list_mtx);
2376 	return (error);
2377 }
2378 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2379     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2380     "List of VM objects");
2381 
2382 #include "opt_ddb.h"
2383 #ifdef DDB
2384 #include <sys/kernel.h>
2385 
2386 #include <sys/cons.h>
2387 
2388 #include <ddb/ddb.h>
2389 
2390 static int
2391 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2392 {
2393 	vm_map_t tmpm;
2394 	vm_map_entry_t tmpe;
2395 	vm_object_t obj;
2396 	int entcount;
2397 
2398 	if (map == 0)
2399 		return 0;
2400 
2401 	if (entry == 0) {
2402 		tmpe = map->header.next;
2403 		entcount = map->nentries;
2404 		while (entcount-- && (tmpe != &map->header)) {
2405 			if (_vm_object_in_map(map, object, tmpe)) {
2406 				return 1;
2407 			}
2408 			tmpe = tmpe->next;
2409 		}
2410 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2411 		tmpm = entry->object.sub_map;
2412 		tmpe = tmpm->header.next;
2413 		entcount = tmpm->nentries;
2414 		while (entcount-- && tmpe != &tmpm->header) {
2415 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2416 				return 1;
2417 			}
2418 			tmpe = tmpe->next;
2419 		}
2420 	} else if ((obj = entry->object.vm_object) != NULL) {
2421 		for (; obj; obj = obj->backing_object)
2422 			if (obj == object) {
2423 				return 1;
2424 			}
2425 	}
2426 	return 0;
2427 }
2428 
2429 static int
2430 vm_object_in_map(vm_object_t object)
2431 {
2432 	struct proc *p;
2433 
2434 	/* sx_slock(&allproc_lock); */
2435 	FOREACH_PROC_IN_SYSTEM(p) {
2436 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2437 			continue;
2438 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2439 			/* sx_sunlock(&allproc_lock); */
2440 			return 1;
2441 		}
2442 	}
2443 	/* sx_sunlock(&allproc_lock); */
2444 	if (_vm_object_in_map(kernel_map, object, 0))
2445 		return 1;
2446 	return 0;
2447 }
2448 
2449 DB_SHOW_COMMAND(vmochk, vm_object_check)
2450 {
2451 	vm_object_t object;
2452 
2453 	/*
2454 	 * make sure that internal objs are in a map somewhere
2455 	 * and none have zero ref counts.
2456 	 */
2457 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2458 		if (object->handle == NULL &&
2459 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2460 			if (object->ref_count == 0) {
2461 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2462 					(long)object->size);
2463 			}
2464 			if (!vm_object_in_map(object)) {
2465 				db_printf(
2466 			"vmochk: internal obj is not in a map: "
2467 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2468 				    object->ref_count, (u_long)object->size,
2469 				    (u_long)object->size,
2470 				    (void *)object->backing_object);
2471 			}
2472 		}
2473 	}
2474 }
2475 
2476 /*
2477  *	vm_object_print:	[ debug ]
2478  */
2479 DB_SHOW_COMMAND(object, vm_object_print_static)
2480 {
2481 	/* XXX convert args. */
2482 	vm_object_t object = (vm_object_t)addr;
2483 	boolean_t full = have_addr;
2484 
2485 	vm_page_t p;
2486 
2487 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2488 #define	count	was_count
2489 
2490 	int count;
2491 
2492 	if (object == NULL)
2493 		return;
2494 
2495 	db_iprintf(
2496 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2497 	    object, (int)object->type, (uintmax_t)object->size,
2498 	    object->resident_page_count, object->ref_count, object->flags,
2499 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2500 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2501 	    object->shadow_count,
2502 	    object->backing_object ? object->backing_object->ref_count : 0,
2503 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2504 
2505 	if (!full)
2506 		return;
2507 
2508 	db_indent += 2;
2509 	count = 0;
2510 	TAILQ_FOREACH(p, &object->memq, listq) {
2511 		if (count == 0)
2512 			db_iprintf("memory:=");
2513 		else if (count == 6) {
2514 			db_printf("\n");
2515 			db_iprintf(" ...");
2516 			count = 0;
2517 		} else
2518 			db_printf(",");
2519 		count++;
2520 
2521 		db_printf("(off=0x%jx,page=0x%jx)",
2522 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2523 	}
2524 	if (count != 0)
2525 		db_printf("\n");
2526 	db_indent -= 2;
2527 }
2528 
2529 /* XXX. */
2530 #undef count
2531 
2532 /* XXX need this non-static entry for calling from vm_map_print. */
2533 void
2534 vm_object_print(
2535         /* db_expr_t */ long addr,
2536 	boolean_t have_addr,
2537 	/* db_expr_t */ long count,
2538 	char *modif)
2539 {
2540 	vm_object_print_static(addr, have_addr, count, modif);
2541 }
2542 
2543 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2544 {
2545 	vm_object_t object;
2546 	vm_pindex_t fidx;
2547 	vm_paddr_t pa;
2548 	vm_page_t m, prev_m;
2549 	int rcount, nl, c;
2550 
2551 	nl = 0;
2552 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2553 		db_printf("new object: %p\n", (void *)object);
2554 		if (nl > 18) {
2555 			c = cngetc();
2556 			if (c != ' ')
2557 				return;
2558 			nl = 0;
2559 		}
2560 		nl++;
2561 		rcount = 0;
2562 		fidx = 0;
2563 		pa = -1;
2564 		TAILQ_FOREACH(m, &object->memq, listq) {
2565 			if (m->pindex > 128)
2566 				break;
2567 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2568 			    prev_m->pindex + 1 != m->pindex) {
2569 				if (rcount) {
2570 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2571 						(long)fidx, rcount, (long)pa);
2572 					if (nl > 18) {
2573 						c = cngetc();
2574 						if (c != ' ')
2575 							return;
2576 						nl = 0;
2577 					}
2578 					nl++;
2579 					rcount = 0;
2580 				}
2581 			}
2582 			if (rcount &&
2583 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2584 				++rcount;
2585 				continue;
2586 			}
2587 			if (rcount) {
2588 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2589 					(long)fidx, rcount, (long)pa);
2590 				if (nl > 18) {
2591 					c = cngetc();
2592 					if (c != ' ')
2593 						return;
2594 					nl = 0;
2595 				}
2596 				nl++;
2597 			}
2598 			fidx = m->pindex;
2599 			pa = VM_PAGE_TO_PHYS(m);
2600 			rcount = 1;
2601 		}
2602 		if (rcount) {
2603 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2604 				(long)fidx, rcount, (long)pa);
2605 			if (nl > 18) {
2606 				c = cngetc();
2607 				if (c != ' ')
2608 					return;
2609 				nl = 0;
2610 			}
2611 			nl++;
2612 		}
2613 	}
2614 }
2615 #endif /* DDB */
2616