xref: /freebsd/sys/vm/vm_object.c (revision 48c779cdecb5f803e5fe5d761987e976ca9609db)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109 
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113 
114 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115 		    int pagerflags, int flags, boolean_t *allclean,
116 		    boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118 		    boolean_t *allclean);
119 static void	vm_object_qcollapse(vm_object_t object);
120 static void	vm_object_vndeallocate(vm_object_t object);
121 
122 /*
123  *	Virtual memory objects maintain the actual data
124  *	associated with allocated virtual memory.  A given
125  *	page of memory exists within exactly one object.
126  *
127  *	An object is only deallocated when all "references"
128  *	are given up.  Only one "reference" to a given
129  *	region of an object should be writeable.
130  *
131  *	Associated with each object is a list of all resident
132  *	memory pages belonging to that object; this list is
133  *	maintained by the "vm_page" module, and locked by the object's
134  *	lock.
135  *
136  *	Each object also records a "pager" routine which is
137  *	used to retrieve (and store) pages to the proper backing
138  *	storage.  In addition, objects may be backed by other
139  *	objects from which they were virtual-copied.
140  *
141  *	The only items within the object structure which are
142  *	modified after time of creation are:
143  *		reference count		locked by object's lock
144  *		pager routine		locked by object's lock
145  *
146  */
147 
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;	/* lock for object list and count */
150 
151 struct vm_object kernel_object_store;
152 
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
154     "VM object stats");
155 
156 static counter_u64_t object_collapses = EARLY_COUNTER;
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160 
161 static counter_u64_t object_bypasses = EARLY_COUNTER;
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165 
166 static void
167 counter_startup(void)
168 {
169 
170 	object_collapses = counter_u64_alloc(M_WAITOK);
171 	object_bypasses = counter_u64_alloc(M_WAITOK);
172 }
173 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
174 
175 static uma_zone_t obj_zone;
176 
177 static int vm_object_zinit(void *mem, int size, int flags);
178 
179 #ifdef INVARIANTS
180 static void vm_object_zdtor(void *mem, int size, void *arg);
181 
182 static void
183 vm_object_zdtor(void *mem, int size, void *arg)
184 {
185 	vm_object_t object;
186 
187 	object = (vm_object_t)mem;
188 	KASSERT(object->ref_count == 0,
189 	    ("object %p ref_count = %d", object, object->ref_count));
190 	KASSERT(TAILQ_EMPTY(&object->memq),
191 	    ("object %p has resident pages in its memq", object));
192 	KASSERT(vm_radix_is_empty(&object->rtree),
193 	    ("object %p has resident pages in its trie", object));
194 #if VM_NRESERVLEVEL > 0
195 	KASSERT(LIST_EMPTY(&object->rvq),
196 	    ("object %p has reservations",
197 	    object));
198 #endif
199 	KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
200 	    ("object %p paging_in_progress = %d",
201 	    object, REFCOUNT_COUNT(object->paging_in_progress)));
202 	KASSERT(object->busy == 0,
203 	    ("object %p busy = %d",
204 	    object, object->busy));
205 	KASSERT(object->resident_page_count == 0,
206 	    ("object %p resident_page_count = %d",
207 	    object, object->resident_page_count));
208 	KASSERT(object->shadow_count == 0,
209 	    ("object %p shadow_count = %d",
210 	    object, object->shadow_count));
211 	KASSERT(object->type == OBJT_DEAD,
212 	    ("object %p has non-dead type %d",
213 	    object, object->type));
214 }
215 #endif
216 
217 static int
218 vm_object_zinit(void *mem, int size, int flags)
219 {
220 	vm_object_t object;
221 
222 	object = (vm_object_t)mem;
223 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
224 
225 	/* These are true for any object that has been freed */
226 	object->type = OBJT_DEAD;
227 	vm_radix_init(&object->rtree);
228 	refcount_init(&object->ref_count, 0);
229 	refcount_init(&object->paging_in_progress, 0);
230 	refcount_init(&object->busy, 0);
231 	object->resident_page_count = 0;
232 	object->shadow_count = 0;
233 	object->flags = OBJ_DEAD;
234 
235 	mtx_lock(&vm_object_list_mtx);
236 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
237 	mtx_unlock(&vm_object_list_mtx);
238 	return (0);
239 }
240 
241 static void
242 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
243 {
244 
245 	TAILQ_INIT(&object->memq);
246 	LIST_INIT(&object->shadow_head);
247 
248 	object->type = type;
249 	if (type == OBJT_SWAP)
250 		pctrie_init(&object->un_pager.swp.swp_blks);
251 
252 	/*
253 	 * Ensure that swap_pager_swapoff() iteration over object_list
254 	 * sees up to date type and pctrie head if it observed
255 	 * non-dead object.
256 	 */
257 	atomic_thread_fence_rel();
258 
259 	switch (type) {
260 	case OBJT_DEAD:
261 		panic("_vm_object_allocate: can't create OBJT_DEAD");
262 	case OBJT_DEFAULT:
263 	case OBJT_SWAP:
264 		object->flags = OBJ_ONEMAPPING;
265 		break;
266 	case OBJT_DEVICE:
267 	case OBJT_SG:
268 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
269 		break;
270 	case OBJT_MGTDEVICE:
271 		object->flags = OBJ_FICTITIOUS;
272 		break;
273 	case OBJT_PHYS:
274 		object->flags = OBJ_UNMANAGED;
275 		break;
276 	case OBJT_VNODE:
277 		object->flags = 0;
278 		break;
279 	default:
280 		panic("_vm_object_allocate: type %d is undefined", type);
281 	}
282 	object->size = size;
283 	object->domain.dr_policy = NULL;
284 	object->generation = 1;
285 	object->cleangeneration = 1;
286 	refcount_init(&object->ref_count, 1);
287 	object->memattr = VM_MEMATTR_DEFAULT;
288 	object->cred = NULL;
289 	object->charge = 0;
290 	object->handle = NULL;
291 	object->backing_object = NULL;
292 	object->backing_object_offset = (vm_ooffset_t) 0;
293 #if VM_NRESERVLEVEL > 0
294 	LIST_INIT(&object->rvq);
295 #endif
296 	umtx_shm_object_init(object);
297 }
298 
299 /*
300  *	vm_object_init:
301  *
302  *	Initialize the VM objects module.
303  */
304 void
305 vm_object_init(void)
306 {
307 	TAILQ_INIT(&vm_object_list);
308 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
309 
310 	rw_init(&kernel_object->lock, "kernel vm object");
311 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
312 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
313 #if VM_NRESERVLEVEL > 0
314 	kernel_object->flags |= OBJ_COLORED;
315 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
316 #endif
317 
318 	/*
319 	 * The lock portion of struct vm_object must be type stable due
320 	 * to vm_pageout_fallback_object_lock locking a vm object
321 	 * without holding any references to it.
322 	 */
323 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
324 #ifdef INVARIANTS
325 	    vm_object_zdtor,
326 #else
327 	    NULL,
328 #endif
329 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
330 
331 	vm_radix_zinit();
332 }
333 
334 void
335 vm_object_clear_flag(vm_object_t object, u_short bits)
336 {
337 
338 	VM_OBJECT_ASSERT_WLOCKED(object);
339 	object->flags &= ~bits;
340 }
341 
342 /*
343  *	Sets the default memory attribute for the specified object.  Pages
344  *	that are allocated to this object are by default assigned this memory
345  *	attribute.
346  *
347  *	Presently, this function must be called before any pages are allocated
348  *	to the object.  In the future, this requirement may be relaxed for
349  *	"default" and "swap" objects.
350  */
351 int
352 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
353 {
354 
355 	VM_OBJECT_ASSERT_WLOCKED(object);
356 	switch (object->type) {
357 	case OBJT_DEFAULT:
358 	case OBJT_DEVICE:
359 	case OBJT_MGTDEVICE:
360 	case OBJT_PHYS:
361 	case OBJT_SG:
362 	case OBJT_SWAP:
363 	case OBJT_VNODE:
364 		if (!TAILQ_EMPTY(&object->memq))
365 			return (KERN_FAILURE);
366 		break;
367 	case OBJT_DEAD:
368 		return (KERN_INVALID_ARGUMENT);
369 	default:
370 		panic("vm_object_set_memattr: object %p is of undefined type",
371 		    object);
372 	}
373 	object->memattr = memattr;
374 	return (KERN_SUCCESS);
375 }
376 
377 void
378 vm_object_pip_add(vm_object_t object, short i)
379 {
380 
381 	refcount_acquiren(&object->paging_in_progress, i);
382 }
383 
384 void
385 vm_object_pip_wakeup(vm_object_t object)
386 {
387 
388 	refcount_release(&object->paging_in_progress);
389 }
390 
391 void
392 vm_object_pip_wakeupn(vm_object_t object, short i)
393 {
394 
395 	refcount_releasen(&object->paging_in_progress, i);
396 }
397 
398 void
399 vm_object_pip_wait(vm_object_t object, char *waitid)
400 {
401 
402 	VM_OBJECT_ASSERT_WLOCKED(object);
403 
404 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
405 		VM_OBJECT_WUNLOCK(object);
406 		refcount_wait(&object->paging_in_progress, waitid, PVM);
407 		VM_OBJECT_WLOCK(object);
408 	}
409 }
410 
411 void
412 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
413 {
414 
415 	VM_OBJECT_ASSERT_UNLOCKED(object);
416 
417 	while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
418 		refcount_wait(&object->paging_in_progress, waitid, PVM);
419 }
420 
421 /*
422  *	vm_object_allocate:
423  *
424  *	Returns a new object with the given size.
425  */
426 vm_object_t
427 vm_object_allocate(objtype_t type, vm_pindex_t size)
428 {
429 	vm_object_t object;
430 
431 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
432 	_vm_object_allocate(type, size, object);
433 	return (object);
434 }
435 
436 
437 /*
438  *	vm_object_reference:
439  *
440  *	Gets another reference to the given object.  Note: OBJ_DEAD
441  *	objects can be referenced during final cleaning.
442  */
443 void
444 vm_object_reference(vm_object_t object)
445 {
446 	if (object == NULL)
447 		return;
448 	VM_OBJECT_RLOCK(object);
449 	vm_object_reference_locked(object);
450 	VM_OBJECT_RUNLOCK(object);
451 }
452 
453 /*
454  *	vm_object_reference_locked:
455  *
456  *	Gets another reference to the given object.
457  *
458  *	The object must be locked.
459  */
460 void
461 vm_object_reference_locked(vm_object_t object)
462 {
463 	struct vnode *vp;
464 
465 	VM_OBJECT_ASSERT_LOCKED(object);
466 	refcount_acquire(&object->ref_count);
467 	if (object->type == OBJT_VNODE) {
468 		vp = object->handle;
469 		vref(vp);
470 	}
471 }
472 
473 /*
474  * Handle deallocating an object of type OBJT_VNODE.
475  */
476 static void
477 vm_object_vndeallocate(vm_object_t object)
478 {
479 	struct vnode *vp = (struct vnode *) object->handle;
480 
481 	KASSERT(object->type == OBJT_VNODE,
482 	    ("vm_object_vndeallocate: not a vnode object"));
483 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
484 
485 	if (refcount_release(&object->ref_count) &&
486 	    !umtx_shm_vnobj_persistent)
487 		umtx_shm_object_terminated(object);
488 
489 	VM_OBJECT_RUNLOCK(object);
490 	/* vrele may need the vnode lock. */
491 	vrele(vp);
492 }
493 
494 /*
495  *	vm_object_deallocate:
496  *
497  *	Release a reference to the specified object,
498  *	gained either through a vm_object_allocate
499  *	or a vm_object_reference call.  When all references
500  *	are gone, storage associated with this object
501  *	may be relinquished.
502  *
503  *	No object may be locked.
504  */
505 void
506 vm_object_deallocate(vm_object_t object)
507 {
508 	vm_object_t temp;
509 	bool released;
510 
511 	while (object != NULL) {
512 		VM_OBJECT_RLOCK(object);
513 		if (object->type == OBJT_VNODE) {
514 			vm_object_vndeallocate(object);
515 			return;
516 		}
517 
518 		/*
519 		 * If the reference count goes to 0 we start calling
520 		 * vm_object_terminate() on the object chain.  A ref count
521 		 * of 1 may be a special case depending on the shadow count
522 		 * being 0 or 1.  These cases require a write lock on the
523 		 * object.
524 		 */
525 		released = refcount_release_if_gt(&object->ref_count, 2);
526 		VM_OBJECT_RUNLOCK(object);
527 		if (released)
528 			return;
529 
530 		VM_OBJECT_WLOCK(object);
531 		KASSERT(object->ref_count != 0,
532 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
533 
534 		refcount_release(&object->ref_count);
535 		if (object->ref_count > 1) {
536 			VM_OBJECT_WUNLOCK(object);
537 			return;
538 		} else if (object->ref_count == 1) {
539 			if (object->shadow_count == 0 &&
540 			    object->handle == NULL &&
541 			    (object->type == OBJT_DEFAULT ||
542 			    (object->type == OBJT_SWAP &&
543 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
544 				vm_object_set_flag(object, OBJ_ONEMAPPING);
545 			} else if ((object->shadow_count == 1) &&
546 			    (object->handle == NULL) &&
547 			    (object->type == OBJT_DEFAULT ||
548 			     object->type == OBJT_SWAP)) {
549 				vm_object_t robject;
550 
551 				robject = LIST_FIRST(&object->shadow_head);
552 				KASSERT(robject != NULL,
553 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
554 					 object->ref_count,
555 					 object->shadow_count));
556 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
557 				    ("shadowed tmpfs v_object %p", object));
558 				if (!VM_OBJECT_TRYWLOCK(robject)) {
559 					/*
560 					 * Avoid a potential deadlock.
561 					 */
562 					refcount_acquire(&object->ref_count);
563 					VM_OBJECT_WUNLOCK(object);
564 					/*
565 					 * More likely than not the thread
566 					 * holding robject's lock has lower
567 					 * priority than the current thread.
568 					 * Let the lower priority thread run.
569 					 */
570 					pause("vmo_de", 1);
571 					continue;
572 				}
573 				/*
574 				 * Collapse object into its shadow unless its
575 				 * shadow is dead.  In that case, object will
576 				 * be deallocated by the thread that is
577 				 * deallocating its shadow.
578 				 */
579 				if ((robject->flags & OBJ_DEAD) == 0 &&
580 				    (robject->handle == NULL) &&
581 				    (robject->type == OBJT_DEFAULT ||
582 				     robject->type == OBJT_SWAP)) {
583 
584 					refcount_acquire(&robject->ref_count);
585 retry:
586 					if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
587 						VM_OBJECT_WUNLOCK(object);
588 						vm_object_pip_wait(robject,
589 						    "objde1");
590 						temp = robject->backing_object;
591 						if (object == temp) {
592 							VM_OBJECT_WLOCK(object);
593 							goto retry;
594 						}
595 					} else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
596 						VM_OBJECT_WUNLOCK(robject);
597 						VM_OBJECT_WUNLOCK(object);
598 						refcount_wait(
599 						    &object->paging_in_progress,
600 						    "objde2", PVM);
601 						VM_OBJECT_WLOCK(robject);
602 						temp = robject->backing_object;
603 						if (object == temp) {
604 							VM_OBJECT_WLOCK(object);
605 							goto retry;
606 						}
607 					} else
608 						VM_OBJECT_WUNLOCK(object);
609 
610 					if (robject->ref_count == 1) {
611 						robject->ref_count--;
612 						object = robject;
613 						goto doterm;
614 					}
615 					object = robject;
616 					vm_object_collapse(object);
617 					VM_OBJECT_WUNLOCK(object);
618 					continue;
619 				}
620 				VM_OBJECT_WUNLOCK(robject);
621 			}
622 			VM_OBJECT_WUNLOCK(object);
623 			return;
624 		}
625 doterm:
626 		umtx_shm_object_terminated(object);
627 		temp = object->backing_object;
628 		if (temp != NULL) {
629 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
630 			    ("shadowed tmpfs v_object 2 %p", object));
631 			VM_OBJECT_WLOCK(temp);
632 			LIST_REMOVE(object, shadow_list);
633 			temp->shadow_count--;
634 			VM_OBJECT_WUNLOCK(temp);
635 			object->backing_object = NULL;
636 		}
637 		/*
638 		 * Don't double-terminate, we could be in a termination
639 		 * recursion due to the terminate having to sync data
640 		 * to disk.
641 		 */
642 		if ((object->flags & OBJ_DEAD) == 0) {
643 			vm_object_set_flag(object, OBJ_DEAD);
644 			vm_object_terminate(object);
645 		} else
646 			VM_OBJECT_WUNLOCK(object);
647 		object = temp;
648 	}
649 }
650 
651 /*
652  *	vm_object_destroy removes the object from the global object list
653  *      and frees the space for the object.
654  */
655 void
656 vm_object_destroy(vm_object_t object)
657 {
658 
659 	/*
660 	 * Release the allocation charge.
661 	 */
662 	if (object->cred != NULL) {
663 		swap_release_by_cred(object->charge, object->cred);
664 		object->charge = 0;
665 		crfree(object->cred);
666 		object->cred = NULL;
667 	}
668 
669 	/*
670 	 * Free the space for the object.
671 	 */
672 	uma_zfree(obj_zone, object);
673 }
674 
675 /*
676  *	vm_object_terminate_pages removes any remaining pageable pages
677  *	from the object and resets the object to an empty state.
678  */
679 static void
680 vm_object_terminate_pages(vm_object_t object)
681 {
682 	vm_page_t p, p_next;
683 
684 	VM_OBJECT_ASSERT_WLOCKED(object);
685 
686 	/*
687 	 * Free any remaining pageable pages.  This also removes them from the
688 	 * paging queues.  However, don't free wired pages, just remove them
689 	 * from the object.  Rather than incrementally removing each page from
690 	 * the object, the page and object are reset to any empty state.
691 	 */
692 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
693 		vm_page_assert_unbusied(p);
694 		KASSERT(p->object == object &&
695 		    (p->ref_count & VPRC_OBJREF) != 0,
696 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
697 
698 		p->object = NULL;
699 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
700 			VM_CNT_INC(v_pfree);
701 			vm_page_free(p);
702 		}
703 	}
704 
705 	/*
706 	 * If the object contained any pages, then reset it to an empty state.
707 	 * None of the object's fields, including "resident_page_count", were
708 	 * modified by the preceding loop.
709 	 */
710 	if (object->resident_page_count != 0) {
711 		vm_radix_reclaim_allnodes(&object->rtree);
712 		TAILQ_INIT(&object->memq);
713 		object->resident_page_count = 0;
714 		if (object->type == OBJT_VNODE)
715 			vdrop(object->handle);
716 	}
717 }
718 
719 /*
720  *	vm_object_terminate actually destroys the specified object, freeing
721  *	up all previously used resources.
722  *
723  *	The object must be locked.
724  *	This routine may block.
725  */
726 void
727 vm_object_terminate(vm_object_t object)
728 {
729 	VM_OBJECT_ASSERT_WLOCKED(object);
730 	KASSERT((object->flags & OBJ_DEAD) != 0,
731 	    ("terminating non-dead obj %p", object));
732 
733 	/*
734 	 * wait for the pageout daemon to be done with the object
735 	 */
736 	vm_object_pip_wait(object, "objtrm");
737 
738 	KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
739 		("vm_object_terminate: pageout in progress"));
740 
741 	KASSERT(object->ref_count == 0,
742 		("vm_object_terminate: object with references, ref_count=%d",
743 		object->ref_count));
744 
745 	if ((object->flags & OBJ_PG_DTOR) == 0)
746 		vm_object_terminate_pages(object);
747 
748 #if VM_NRESERVLEVEL > 0
749 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
750 		vm_reserv_break_all(object);
751 #endif
752 
753 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
754 	    object->type == OBJT_SWAP,
755 	    ("%s: non-swap obj %p has cred", __func__, object));
756 
757 	/*
758 	 * Let the pager know object is dead.
759 	 */
760 	vm_pager_deallocate(object);
761 	VM_OBJECT_WUNLOCK(object);
762 
763 	vm_object_destroy(object);
764 }
765 
766 /*
767  * Make the page read-only so that we can clear the object flags.  However, if
768  * this is a nosync mmap then the object is likely to stay dirty so do not
769  * mess with the page and do not clear the object flags.  Returns TRUE if the
770  * page should be flushed, and FALSE otherwise.
771  */
772 static boolean_t
773 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
774 {
775 
776 	vm_page_assert_busied(p);
777 
778 	/*
779 	 * If we have been asked to skip nosync pages and this is a
780 	 * nosync page, skip it.  Note that the object flags were not
781 	 * cleared in this case so we do not have to set them.
782 	 */
783 	if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) {
784 		*allclean = FALSE;
785 		return (FALSE);
786 	} else {
787 		pmap_remove_write(p);
788 		return (p->dirty != 0);
789 	}
790 }
791 
792 /*
793  *	vm_object_page_clean
794  *
795  *	Clean all dirty pages in the specified range of object.  Leaves page
796  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
797  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
798  *	leaving the object dirty.
799  *
800  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
801  *	synchronous clustering mode implementation.
802  *
803  *	Odd semantics: if start == end, we clean everything.
804  *
805  *	The object must be locked.
806  *
807  *	Returns FALSE if some page from the range was not written, as
808  *	reported by the pager, and TRUE otherwise.
809  */
810 boolean_t
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814 	vm_page_t np, p;
815 	vm_pindex_t pi, tend, tstart;
816 	int curgeneration, n, pagerflags;
817 	boolean_t eio, res, allclean;
818 
819 	VM_OBJECT_ASSERT_WLOCKED(object);
820 
821 	if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
822 	    object->resident_page_count == 0)
823 		return (TRUE);
824 
825 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828 
829 	tstart = OFF_TO_IDX(start);
830 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831 	allclean = tstart == 0 && tend >= object->size;
832 	res = TRUE;
833 
834 rescan:
835 	curgeneration = object->generation;
836 
837 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
838 		pi = p->pindex;
839 		if (pi >= tend)
840 			break;
841 		np = TAILQ_NEXT(p, listq);
842 		if (vm_page_none_valid(p))
843 			continue;
844 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
845 			if (object->generation != curgeneration &&
846 			    (flags & OBJPC_SYNC) != 0)
847 				goto rescan;
848 			np = vm_page_find_least(object, pi);
849 			continue;
850 		}
851 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
852 			vm_page_xunbusy(p);
853 			continue;
854 		}
855 
856 		n = vm_object_page_collect_flush(object, p, pagerflags,
857 		    flags, &allclean, &eio);
858 		if (eio) {
859 			res = FALSE;
860 			allclean = FALSE;
861 		}
862 		if (object->generation != curgeneration &&
863 		    (flags & OBJPC_SYNC) != 0)
864 			goto rescan;
865 
866 		/*
867 		 * If the VOP_PUTPAGES() did a truncated write, so
868 		 * that even the first page of the run is not fully
869 		 * written, vm_pageout_flush() returns 0 as the run
870 		 * length.  Since the condition that caused truncated
871 		 * write may be permanent, e.g. exhausted free space,
872 		 * accepting n == 0 would cause an infinite loop.
873 		 *
874 		 * Forwarding the iterator leaves the unwritten page
875 		 * behind, but there is not much we can do there if
876 		 * filesystem refuses to write it.
877 		 */
878 		if (n == 0) {
879 			n = 1;
880 			allclean = FALSE;
881 		}
882 		np = vm_page_find_least(object, pi + n);
883 	}
884 #if 0
885 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
886 #endif
887 
888 	if (allclean)
889 		object->cleangeneration = curgeneration;
890 	return (res);
891 }
892 
893 static int
894 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
895     int flags, boolean_t *allclean, boolean_t *eio)
896 {
897 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
898 	int count, i, mreq, runlen;
899 
900 	vm_page_lock_assert(p, MA_NOTOWNED);
901 	vm_page_assert_xbusied(p);
902 	VM_OBJECT_ASSERT_WLOCKED(object);
903 
904 	count = 1;
905 	mreq = 0;
906 
907 	for (tp = p; count < vm_pageout_page_count; count++) {
908 		tp = vm_page_next(tp);
909 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
910 			break;
911 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
912 			vm_page_xunbusy(tp);
913 			break;
914 		}
915 	}
916 
917 	for (p_first = p; count < vm_pageout_page_count; count++) {
918 		tp = vm_page_prev(p_first);
919 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
920 			break;
921 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
922 			vm_page_xunbusy(tp);
923 			break;
924 		}
925 		p_first = tp;
926 		mreq++;
927 	}
928 
929 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
930 		ma[i] = tp;
931 
932 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
933 	return (runlen);
934 }
935 
936 /*
937  * Note that there is absolutely no sense in writing out
938  * anonymous objects, so we track down the vnode object
939  * to write out.
940  * We invalidate (remove) all pages from the address space
941  * for semantic correctness.
942  *
943  * If the backing object is a device object with unmanaged pages, then any
944  * mappings to the specified range of pages must be removed before this
945  * function is called.
946  *
947  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
948  * may start out with a NULL object.
949  */
950 boolean_t
951 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
952     boolean_t syncio, boolean_t invalidate)
953 {
954 	vm_object_t backing_object;
955 	struct vnode *vp;
956 	struct mount *mp;
957 	int error, flags, fsync_after;
958 	boolean_t res;
959 
960 	if (object == NULL)
961 		return (TRUE);
962 	res = TRUE;
963 	error = 0;
964 	VM_OBJECT_WLOCK(object);
965 	while ((backing_object = object->backing_object) != NULL) {
966 		VM_OBJECT_WLOCK(backing_object);
967 		offset += object->backing_object_offset;
968 		VM_OBJECT_WUNLOCK(object);
969 		object = backing_object;
970 		if (object->size < OFF_TO_IDX(offset + size))
971 			size = IDX_TO_OFF(object->size) - offset;
972 	}
973 	/*
974 	 * Flush pages if writing is allowed, invalidate them
975 	 * if invalidation requested.  Pages undergoing I/O
976 	 * will be ignored by vm_object_page_remove().
977 	 *
978 	 * We cannot lock the vnode and then wait for paging
979 	 * to complete without deadlocking against vm_fault.
980 	 * Instead we simply call vm_object_page_remove() and
981 	 * allow it to block internally on a page-by-page
982 	 * basis when it encounters pages undergoing async
983 	 * I/O.
984 	 */
985 	if (object->type == OBJT_VNODE &&
986 	    vm_object_mightbedirty(object) != 0 &&
987 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
988 		VM_OBJECT_WUNLOCK(object);
989 		(void) vn_start_write(vp, &mp, V_WAIT);
990 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
991 		if (syncio && !invalidate && offset == 0 &&
992 		    atop(size) == object->size) {
993 			/*
994 			 * If syncing the whole mapping of the file,
995 			 * it is faster to schedule all the writes in
996 			 * async mode, also allowing the clustering,
997 			 * and then wait for i/o to complete.
998 			 */
999 			flags = 0;
1000 			fsync_after = TRUE;
1001 		} else {
1002 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1003 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1004 			fsync_after = FALSE;
1005 		}
1006 		VM_OBJECT_WLOCK(object);
1007 		res = vm_object_page_clean(object, offset, offset + size,
1008 		    flags);
1009 		VM_OBJECT_WUNLOCK(object);
1010 		if (fsync_after)
1011 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1012 		VOP_UNLOCK(vp, 0);
1013 		vn_finished_write(mp);
1014 		if (error != 0)
1015 			res = FALSE;
1016 		VM_OBJECT_WLOCK(object);
1017 	}
1018 	if ((object->type == OBJT_VNODE ||
1019 	     object->type == OBJT_DEVICE) && invalidate) {
1020 		if (object->type == OBJT_DEVICE)
1021 			/*
1022 			 * The option OBJPR_NOTMAPPED must be passed here
1023 			 * because vm_object_page_remove() cannot remove
1024 			 * unmanaged mappings.
1025 			 */
1026 			flags = OBJPR_NOTMAPPED;
1027 		else if (old_msync)
1028 			flags = 0;
1029 		else
1030 			flags = OBJPR_CLEANONLY;
1031 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1032 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1033 	}
1034 	VM_OBJECT_WUNLOCK(object);
1035 	return (res);
1036 }
1037 
1038 /*
1039  * Determine whether the given advice can be applied to the object.  Advice is
1040  * not applied to unmanaged pages since they never belong to page queues, and
1041  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1042  * have been mapped at most once.
1043  */
1044 static bool
1045 vm_object_advice_applies(vm_object_t object, int advice)
1046 {
1047 
1048 	if ((object->flags & OBJ_UNMANAGED) != 0)
1049 		return (false);
1050 	if (advice != MADV_FREE)
1051 		return (true);
1052 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1053 	    (object->flags & OBJ_ONEMAPPING) != 0);
1054 }
1055 
1056 static void
1057 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1058     vm_size_t size)
1059 {
1060 
1061 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1062 		swap_pager_freespace(object, pindex, size);
1063 }
1064 
1065 /*
1066  *	vm_object_madvise:
1067  *
1068  *	Implements the madvise function at the object/page level.
1069  *
1070  *	MADV_WILLNEED	(any object)
1071  *
1072  *	    Activate the specified pages if they are resident.
1073  *
1074  *	MADV_DONTNEED	(any object)
1075  *
1076  *	    Deactivate the specified pages if they are resident.
1077  *
1078  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1079  *			 OBJ_ONEMAPPING only)
1080  *
1081  *	    Deactivate and clean the specified pages if they are
1082  *	    resident.  This permits the process to reuse the pages
1083  *	    without faulting or the kernel to reclaim the pages
1084  *	    without I/O.
1085  */
1086 void
1087 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1088     int advice)
1089 {
1090 	vm_pindex_t tpindex;
1091 	vm_object_t backing_object, tobject;
1092 	vm_page_t m, tm;
1093 
1094 	if (object == NULL)
1095 		return;
1096 
1097 relookup:
1098 	VM_OBJECT_WLOCK(object);
1099 	if (!vm_object_advice_applies(object, advice)) {
1100 		VM_OBJECT_WUNLOCK(object);
1101 		return;
1102 	}
1103 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1104 		tobject = object;
1105 
1106 		/*
1107 		 * If the next page isn't resident in the top-level object, we
1108 		 * need to search the shadow chain.  When applying MADV_FREE, we
1109 		 * take care to release any swap space used to store
1110 		 * non-resident pages.
1111 		 */
1112 		if (m == NULL || pindex < m->pindex) {
1113 			/*
1114 			 * Optimize a common case: if the top-level object has
1115 			 * no backing object, we can skip over the non-resident
1116 			 * range in constant time.
1117 			 */
1118 			if (object->backing_object == NULL) {
1119 				tpindex = (m != NULL && m->pindex < end) ?
1120 				    m->pindex : end;
1121 				vm_object_madvise_freespace(object, advice,
1122 				    pindex, tpindex - pindex);
1123 				if ((pindex = tpindex) == end)
1124 					break;
1125 				goto next_page;
1126 			}
1127 
1128 			tpindex = pindex;
1129 			do {
1130 				vm_object_madvise_freespace(tobject, advice,
1131 				    tpindex, 1);
1132 				/*
1133 				 * Prepare to search the next object in the
1134 				 * chain.
1135 				 */
1136 				backing_object = tobject->backing_object;
1137 				if (backing_object == NULL)
1138 					goto next_pindex;
1139 				VM_OBJECT_WLOCK(backing_object);
1140 				tpindex +=
1141 				    OFF_TO_IDX(tobject->backing_object_offset);
1142 				if (tobject != object)
1143 					VM_OBJECT_WUNLOCK(tobject);
1144 				tobject = backing_object;
1145 				if (!vm_object_advice_applies(tobject, advice))
1146 					goto next_pindex;
1147 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1148 			    NULL);
1149 		} else {
1150 next_page:
1151 			tm = m;
1152 			m = TAILQ_NEXT(m, listq);
1153 		}
1154 
1155 		/*
1156 		 * If the page is not in a normal state, skip it.  The page
1157 		 * can not be invalidated while the object lock is held.
1158 		 */
1159 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1160 			goto next_pindex;
1161 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1162 		    ("vm_object_madvise: page %p is fictitious", tm));
1163 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1164 		    ("vm_object_madvise: page %p is not managed", tm));
1165 		if (vm_page_tryxbusy(tm) == 0) {
1166 			if (object != tobject)
1167 				VM_OBJECT_WUNLOCK(object);
1168 			if (advice == MADV_WILLNEED) {
1169 				/*
1170 				 * Reference the page before unlocking and
1171 				 * sleeping so that the page daemon is less
1172 				 * likely to reclaim it.
1173 				 */
1174 				vm_page_aflag_set(tm, PGA_REFERENCED);
1175 			}
1176 			vm_page_busy_sleep(tm, "madvpo", false);
1177   			goto relookup;
1178 		}
1179 		vm_page_lock(tm);
1180 		vm_page_advise(tm, advice);
1181 		vm_page_unlock(tm);
1182 		vm_page_xunbusy(tm);
1183 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1184 next_pindex:
1185 		if (tobject != object)
1186 			VM_OBJECT_WUNLOCK(tobject);
1187 	}
1188 	VM_OBJECT_WUNLOCK(object);
1189 }
1190 
1191 /*
1192  *	vm_object_shadow:
1193  *
1194  *	Create a new object which is backed by the
1195  *	specified existing object range.  The source
1196  *	object reference is deallocated.
1197  *
1198  *	The new object and offset into that object
1199  *	are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203 	vm_object_t *object,	/* IN/OUT */
1204 	vm_ooffset_t *offset,	/* IN/OUT */
1205 	vm_size_t length)
1206 {
1207 	vm_object_t source;
1208 	vm_object_t result;
1209 
1210 	source = *object;
1211 
1212 	/*
1213 	 * Don't create the new object if the old object isn't shared.
1214 	 */
1215 	if (source != NULL) {
1216 		VM_OBJECT_RLOCK(source);
1217 		if (source->ref_count == 1 &&
1218 		    source->handle == NULL &&
1219 		    (source->type == OBJT_DEFAULT ||
1220 		     source->type == OBJT_SWAP)) {
1221 			VM_OBJECT_RUNLOCK(source);
1222 			return;
1223 		}
1224 		VM_OBJECT_RUNLOCK(source);
1225 	}
1226 
1227 	/*
1228 	 * Allocate a new object with the given length.
1229 	 */
1230 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231 
1232 	/*
1233 	 * The new object shadows the source object, adding a reference to it.
1234 	 * Our caller changes his reference to point to the new object,
1235 	 * removing a reference to the source object.  Net result: no change
1236 	 * of reference count.
1237 	 *
1238 	 * Try to optimize the result object's page color when shadowing
1239 	 * in order to maintain page coloring consistency in the combined
1240 	 * shadowed object.
1241 	 */
1242 	result->backing_object = source;
1243 	/*
1244 	 * Store the offset into the source object, and fix up the offset into
1245 	 * the new object.
1246 	 */
1247 	result->backing_object_offset = *offset;
1248 	if (source != NULL) {
1249 		VM_OBJECT_WLOCK(source);
1250 		result->domain = source->domain;
1251 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1252 		source->shadow_count++;
1253 #if VM_NRESERVLEVEL > 0
1254 		result->flags |= source->flags & OBJ_COLORED;
1255 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1256 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1257 #endif
1258 		VM_OBJECT_WUNLOCK(source);
1259 	}
1260 
1261 
1262 	/*
1263 	 * Return the new things
1264 	 */
1265 	*offset = 0;
1266 	*object = result;
1267 }
1268 
1269 /*
1270  *	vm_object_split:
1271  *
1272  * Split the pages in a map entry into a new object.  This affords
1273  * easier removal of unused pages, and keeps object inheritance from
1274  * being a negative impact on memory usage.
1275  */
1276 void
1277 vm_object_split(vm_map_entry_t entry)
1278 {
1279 	vm_page_t m, m_next;
1280 	vm_object_t orig_object, new_object, source;
1281 	vm_pindex_t idx, offidxstart;
1282 	vm_size_t size;
1283 
1284 	orig_object = entry->object.vm_object;
1285 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1286 		return;
1287 	if (orig_object->ref_count <= 1)
1288 		return;
1289 	VM_OBJECT_WUNLOCK(orig_object);
1290 
1291 	offidxstart = OFF_TO_IDX(entry->offset);
1292 	size = atop(entry->end - entry->start);
1293 
1294 	/*
1295 	 * If swap_pager_copy() is later called, it will convert new_object
1296 	 * into a swap object.
1297 	 */
1298 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1299 
1300 	/*
1301 	 * At this point, the new object is still private, so the order in
1302 	 * which the original and new objects are locked does not matter.
1303 	 */
1304 	VM_OBJECT_WLOCK(new_object);
1305 	VM_OBJECT_WLOCK(orig_object);
1306 	new_object->domain = orig_object->domain;
1307 	source = orig_object->backing_object;
1308 	if (source != NULL) {
1309 		VM_OBJECT_WLOCK(source);
1310 		if ((source->flags & OBJ_DEAD) != 0) {
1311 			VM_OBJECT_WUNLOCK(source);
1312 			VM_OBJECT_WUNLOCK(orig_object);
1313 			VM_OBJECT_WUNLOCK(new_object);
1314 			vm_object_deallocate(new_object);
1315 			VM_OBJECT_WLOCK(orig_object);
1316 			return;
1317 		}
1318 		LIST_INSERT_HEAD(&source->shadow_head,
1319 				  new_object, shadow_list);
1320 		source->shadow_count++;
1321 		vm_object_reference_locked(source);	/* for new_object */
1322 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1323 		VM_OBJECT_WUNLOCK(source);
1324 		new_object->backing_object_offset =
1325 			orig_object->backing_object_offset + entry->offset;
1326 		new_object->backing_object = source;
1327 	}
1328 	if (orig_object->cred != NULL) {
1329 		new_object->cred = orig_object->cred;
1330 		crhold(orig_object->cred);
1331 		new_object->charge = ptoa(size);
1332 		KASSERT(orig_object->charge >= ptoa(size),
1333 		    ("orig_object->charge < 0"));
1334 		orig_object->charge -= ptoa(size);
1335 	}
1336 retry:
1337 	m = vm_page_find_least(orig_object, offidxstart);
1338 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1339 	    m = m_next) {
1340 		m_next = TAILQ_NEXT(m, listq);
1341 
1342 		/*
1343 		 * We must wait for pending I/O to complete before we can
1344 		 * rename the page.
1345 		 *
1346 		 * We do not have to VM_PROT_NONE the page as mappings should
1347 		 * not be changed by this operation.
1348 		 */
1349 		if (vm_page_tryxbusy(m) == 0) {
1350 			VM_OBJECT_WUNLOCK(new_object);
1351 			vm_page_sleep_if_busy(m, "spltwt");
1352 			VM_OBJECT_WLOCK(new_object);
1353 			goto retry;
1354 		}
1355 
1356 		/* vm_page_rename() will dirty the page. */
1357 		if (vm_page_rename(m, new_object, idx)) {
1358 			vm_page_xunbusy(m);
1359 			VM_OBJECT_WUNLOCK(new_object);
1360 			VM_OBJECT_WUNLOCK(orig_object);
1361 			vm_radix_wait();
1362 			VM_OBJECT_WLOCK(orig_object);
1363 			VM_OBJECT_WLOCK(new_object);
1364 			goto retry;
1365 		}
1366 
1367 #if VM_NRESERVLEVEL > 0
1368 		/*
1369 		 * If some of the reservation's allocated pages remain with
1370 		 * the original object, then transferring the reservation to
1371 		 * the new object is neither particularly beneficial nor
1372 		 * particularly harmful as compared to leaving the reservation
1373 		 * with the original object.  If, however, all of the
1374 		 * reservation's allocated pages are transferred to the new
1375 		 * object, then transferring the reservation is typically
1376 		 * beneficial.  Determining which of these two cases applies
1377 		 * would be more costly than unconditionally renaming the
1378 		 * reservation.
1379 		 */
1380 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1381 #endif
1382 		if (orig_object->type != OBJT_SWAP)
1383 			vm_page_xunbusy(m);
1384 	}
1385 	if (orig_object->type == OBJT_SWAP) {
1386 		/*
1387 		 * swap_pager_copy() can sleep, in which case the orig_object's
1388 		 * and new_object's locks are released and reacquired.
1389 		 */
1390 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1391 		TAILQ_FOREACH(m, &new_object->memq, listq)
1392 			vm_page_xunbusy(m);
1393 	}
1394 	VM_OBJECT_WUNLOCK(orig_object);
1395 	VM_OBJECT_WUNLOCK(new_object);
1396 	entry->object.vm_object = new_object;
1397 	entry->offset = 0LL;
1398 	vm_object_deallocate(orig_object);
1399 	VM_OBJECT_WLOCK(new_object);
1400 }
1401 
1402 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1403 #define	OBSC_COLLAPSE_WAIT	0x0004
1404 
1405 static vm_page_t
1406 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1407     int op)
1408 {
1409 	vm_object_t backing_object;
1410 
1411 	VM_OBJECT_ASSERT_WLOCKED(object);
1412 	backing_object = object->backing_object;
1413 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1414 
1415 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1416 	    ("invalid ownership %p %p %p", p, object, backing_object));
1417 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1418 		return (next);
1419 	/* The page is only NULL when rename fails. */
1420 	if (p == NULL) {
1421 		vm_radix_wait();
1422 	} else {
1423 		if (p->object == object)
1424 			VM_OBJECT_WUNLOCK(backing_object);
1425 		else
1426 			VM_OBJECT_WUNLOCK(object);
1427 		vm_page_busy_sleep(p, "vmocol", false);
1428 	}
1429 	VM_OBJECT_WLOCK(object);
1430 	VM_OBJECT_WLOCK(backing_object);
1431 	return (TAILQ_FIRST(&backing_object->memq));
1432 }
1433 
1434 static bool
1435 vm_object_scan_all_shadowed(vm_object_t object)
1436 {
1437 	vm_object_t backing_object;
1438 	vm_page_t p, pp;
1439 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1440 
1441 	VM_OBJECT_ASSERT_WLOCKED(object);
1442 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1443 
1444 	backing_object = object->backing_object;
1445 
1446 	if (backing_object->type != OBJT_DEFAULT &&
1447 	    backing_object->type != OBJT_SWAP)
1448 		return (false);
1449 
1450 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1451 	p = vm_page_find_least(backing_object, pi);
1452 	ps = swap_pager_find_least(backing_object, pi);
1453 
1454 	/*
1455 	 * Only check pages inside the parent object's range and
1456 	 * inside the parent object's mapping of the backing object.
1457 	 */
1458 	for (;; pi++) {
1459 		if (p != NULL && p->pindex < pi)
1460 			p = TAILQ_NEXT(p, listq);
1461 		if (ps < pi)
1462 			ps = swap_pager_find_least(backing_object, pi);
1463 		if (p == NULL && ps >= backing_object->size)
1464 			break;
1465 		else if (p == NULL)
1466 			pi = ps;
1467 		else
1468 			pi = MIN(p->pindex, ps);
1469 
1470 		new_pindex = pi - backing_offset_index;
1471 		if (new_pindex >= object->size)
1472 			break;
1473 
1474 		/*
1475 		 * See if the parent has the page or if the parent's object
1476 		 * pager has the page.  If the parent has the page but the page
1477 		 * is not valid, the parent's object pager must have the page.
1478 		 *
1479 		 * If this fails, the parent does not completely shadow the
1480 		 * object and we might as well give up now.
1481 		 */
1482 		pp = vm_page_lookup(object, new_pindex);
1483 		/*
1484 		 * The valid check here is stable due to object lock being
1485 		 * required to clear valid and initiate paging.
1486 		 */
1487 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1488 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1489 			return (false);
1490 	}
1491 	return (true);
1492 }
1493 
1494 static bool
1495 vm_object_collapse_scan(vm_object_t object, int op)
1496 {
1497 	vm_object_t backing_object;
1498 	vm_page_t next, p, pp;
1499 	vm_pindex_t backing_offset_index, new_pindex;
1500 
1501 	VM_OBJECT_ASSERT_WLOCKED(object);
1502 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1503 
1504 	backing_object = object->backing_object;
1505 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1506 
1507 	/*
1508 	 * Initial conditions
1509 	 */
1510 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1511 		vm_object_set_flag(backing_object, OBJ_DEAD);
1512 
1513 	/*
1514 	 * Our scan
1515 	 */
1516 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1517 		next = TAILQ_NEXT(p, listq);
1518 		new_pindex = p->pindex - backing_offset_index;
1519 
1520 		/*
1521 		 * Check for busy page
1522 		 */
1523 		if (vm_page_tryxbusy(p) == 0) {
1524 			next = vm_object_collapse_scan_wait(object, p, next, op);
1525 			continue;
1526 		}
1527 
1528 		KASSERT(p->object == backing_object,
1529 		    ("vm_object_collapse_scan: object mismatch"));
1530 
1531 		if (p->pindex < backing_offset_index ||
1532 		    new_pindex >= object->size) {
1533 			if (backing_object->type == OBJT_SWAP)
1534 				swap_pager_freespace(backing_object, p->pindex,
1535 				    1);
1536 
1537 			KASSERT(!pmap_page_is_mapped(p),
1538 			    ("freeing mapped page %p", p));
1539 			if (vm_page_remove(p))
1540 				vm_page_free(p);
1541 			else
1542 				vm_page_xunbusy(p);
1543 			continue;
1544 		}
1545 
1546 		pp = vm_page_lookup(object, new_pindex);
1547 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1548 			vm_page_xunbusy(p);
1549 			/*
1550 			 * The page in the parent is busy and possibly not
1551 			 * (yet) valid.  Until its state is finalized by the
1552 			 * busy bit owner, we can't tell whether it shadows the
1553 			 * original page.  Therefore, we must either skip it
1554 			 * and the original (backing_object) page or wait for
1555 			 * its state to be finalized.
1556 			 *
1557 			 * This is due to a race with vm_fault() where we must
1558 			 * unbusy the original (backing_obj) page before we can
1559 			 * (re)lock the parent.  Hence we can get here.
1560 			 */
1561 			next = vm_object_collapse_scan_wait(object, pp, next,
1562 			    op);
1563 			continue;
1564 		}
1565 
1566 		KASSERT(pp == NULL || !vm_page_none_valid(pp),
1567 		    ("unbusy invalid page %p", pp));
1568 
1569 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1570 			NULL)) {
1571 			/*
1572 			 * The page already exists in the parent OR swap exists
1573 			 * for this location in the parent.  Leave the parent's
1574 			 * page alone.  Destroy the original page from the
1575 			 * backing object.
1576 			 */
1577 			if (backing_object->type == OBJT_SWAP)
1578 				swap_pager_freespace(backing_object, p->pindex,
1579 				    1);
1580 			KASSERT(!pmap_page_is_mapped(p),
1581 			    ("freeing mapped page %p", p));
1582 			if (vm_page_remove(p))
1583 				vm_page_free(p);
1584 			else
1585 				vm_page_xunbusy(p);
1586 			if (pp != NULL)
1587 				vm_page_xunbusy(pp);
1588 			continue;
1589 		}
1590 
1591 		/*
1592 		 * Page does not exist in parent, rename the page from the
1593 		 * backing object to the main object.
1594 		 *
1595 		 * If the page was mapped to a process, it can remain mapped
1596 		 * through the rename.  vm_page_rename() will dirty the page.
1597 		 */
1598 		if (vm_page_rename(p, object, new_pindex)) {
1599 			vm_page_xunbusy(p);
1600 			if (pp != NULL)
1601 				vm_page_xunbusy(pp);
1602 			next = vm_object_collapse_scan_wait(object, NULL, next,
1603 			    op);
1604 			continue;
1605 		}
1606 
1607 		/* Use the old pindex to free the right page. */
1608 		if (backing_object->type == OBJT_SWAP)
1609 			swap_pager_freespace(backing_object,
1610 			    new_pindex + backing_offset_index, 1);
1611 
1612 #if VM_NRESERVLEVEL > 0
1613 		/*
1614 		 * Rename the reservation.
1615 		 */
1616 		vm_reserv_rename(p, object, backing_object,
1617 		    backing_offset_index);
1618 #endif
1619 		vm_page_xunbusy(p);
1620 	}
1621 	return (true);
1622 }
1623 
1624 
1625 /*
1626  * this version of collapse allows the operation to occur earlier and
1627  * when paging_in_progress is true for an object...  This is not a complete
1628  * operation, but should plug 99.9% of the rest of the leaks.
1629  */
1630 static void
1631 vm_object_qcollapse(vm_object_t object)
1632 {
1633 	vm_object_t backing_object = object->backing_object;
1634 
1635 	VM_OBJECT_ASSERT_WLOCKED(object);
1636 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1637 
1638 	if (backing_object->ref_count != 1)
1639 		return;
1640 
1641 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1642 }
1643 
1644 /*
1645  *	vm_object_collapse:
1646  *
1647  *	Collapse an object with the object backing it.
1648  *	Pages in the backing object are moved into the
1649  *	parent, and the backing object is deallocated.
1650  */
1651 void
1652 vm_object_collapse(vm_object_t object)
1653 {
1654 	vm_object_t backing_object, new_backing_object;
1655 
1656 	VM_OBJECT_ASSERT_WLOCKED(object);
1657 
1658 	while (TRUE) {
1659 		/*
1660 		 * Verify that the conditions are right for collapse:
1661 		 *
1662 		 * The object exists and the backing object exists.
1663 		 */
1664 		if ((backing_object = object->backing_object) == NULL)
1665 			break;
1666 
1667 		/*
1668 		 * we check the backing object first, because it is most likely
1669 		 * not collapsable.
1670 		 */
1671 		VM_OBJECT_WLOCK(backing_object);
1672 		if (backing_object->handle != NULL ||
1673 		    (backing_object->type != OBJT_DEFAULT &&
1674 		    backing_object->type != OBJT_SWAP) ||
1675 		    (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1676 		    object->handle != NULL ||
1677 		    (object->type != OBJT_DEFAULT &&
1678 		     object->type != OBJT_SWAP) ||
1679 		    (object->flags & OBJ_DEAD)) {
1680 			VM_OBJECT_WUNLOCK(backing_object);
1681 			break;
1682 		}
1683 
1684 		if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1685 		    REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1686 			vm_object_qcollapse(object);
1687 			VM_OBJECT_WUNLOCK(backing_object);
1688 			break;
1689 		}
1690 
1691 		/*
1692 		 * We know that we can either collapse the backing object (if
1693 		 * the parent is the only reference to it) or (perhaps) have
1694 		 * the parent bypass the object if the parent happens to shadow
1695 		 * all the resident pages in the entire backing object.
1696 		 *
1697 		 * This is ignoring pager-backed pages such as swap pages.
1698 		 * vm_object_collapse_scan fails the shadowing test in this
1699 		 * case.
1700 		 */
1701 		if (backing_object->ref_count == 1) {
1702 			vm_object_pip_add(object, 1);
1703 			vm_object_pip_add(backing_object, 1);
1704 
1705 			/*
1706 			 * If there is exactly one reference to the backing
1707 			 * object, we can collapse it into the parent.
1708 			 */
1709 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1710 
1711 #if VM_NRESERVLEVEL > 0
1712 			/*
1713 			 * Break any reservations from backing_object.
1714 			 */
1715 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1716 				vm_reserv_break_all(backing_object);
1717 #endif
1718 
1719 			/*
1720 			 * Move the pager from backing_object to object.
1721 			 */
1722 			if (backing_object->type == OBJT_SWAP) {
1723 				/*
1724 				 * swap_pager_copy() can sleep, in which case
1725 				 * the backing_object's and object's locks are
1726 				 * released and reacquired.
1727 				 * Since swap_pager_copy() is being asked to
1728 				 * destroy the source, it will change the
1729 				 * backing_object's type to OBJT_DEFAULT.
1730 				 */
1731 				swap_pager_copy(
1732 				    backing_object,
1733 				    object,
1734 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1735 			}
1736 			/*
1737 			 * Object now shadows whatever backing_object did.
1738 			 * Note that the reference to
1739 			 * backing_object->backing_object moves from within
1740 			 * backing_object to within object.
1741 			 */
1742 			LIST_REMOVE(object, shadow_list);
1743 			backing_object->shadow_count--;
1744 			if (backing_object->backing_object) {
1745 				VM_OBJECT_WLOCK(backing_object->backing_object);
1746 				LIST_REMOVE(backing_object, shadow_list);
1747 				LIST_INSERT_HEAD(
1748 				    &backing_object->backing_object->shadow_head,
1749 				    object, shadow_list);
1750 				/*
1751 				 * The shadow_count has not changed.
1752 				 */
1753 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1754 			}
1755 			object->backing_object = backing_object->backing_object;
1756 			object->backing_object_offset +=
1757 			    backing_object->backing_object_offset;
1758 
1759 			/*
1760 			 * Discard backing_object.
1761 			 *
1762 			 * Since the backing object has no pages, no pager left,
1763 			 * and no object references within it, all that is
1764 			 * necessary is to dispose of it.
1765 			 */
1766 			KASSERT(backing_object->ref_count == 1, (
1767 "backing_object %p was somehow re-referenced during collapse!",
1768 			    backing_object));
1769 			vm_object_pip_wakeup(backing_object);
1770 			backing_object->type = OBJT_DEAD;
1771 			backing_object->ref_count = 0;
1772 			VM_OBJECT_WUNLOCK(backing_object);
1773 			vm_object_destroy(backing_object);
1774 
1775 			vm_object_pip_wakeup(object);
1776 			counter_u64_add(object_collapses, 1);
1777 		} else {
1778 			/*
1779 			 * If we do not entirely shadow the backing object,
1780 			 * there is nothing we can do so we give up.
1781 			 */
1782 			if (object->resident_page_count != object->size &&
1783 			    !vm_object_scan_all_shadowed(object)) {
1784 				VM_OBJECT_WUNLOCK(backing_object);
1785 				break;
1786 			}
1787 
1788 			/*
1789 			 * Make the parent shadow the next object in the
1790 			 * chain.  Deallocating backing_object will not remove
1791 			 * it, since its reference count is at least 2.
1792 			 */
1793 			LIST_REMOVE(object, shadow_list);
1794 			backing_object->shadow_count--;
1795 
1796 			new_backing_object = backing_object->backing_object;
1797 			if ((object->backing_object = new_backing_object) != NULL) {
1798 				VM_OBJECT_WLOCK(new_backing_object);
1799 				LIST_INSERT_HEAD(
1800 				    &new_backing_object->shadow_head,
1801 				    object,
1802 				    shadow_list
1803 				);
1804 				new_backing_object->shadow_count++;
1805 				vm_object_reference_locked(new_backing_object);
1806 				VM_OBJECT_WUNLOCK(new_backing_object);
1807 				object->backing_object_offset +=
1808 					backing_object->backing_object_offset;
1809 			}
1810 
1811 			/*
1812 			 * Drop the reference count on backing_object. Since
1813 			 * its ref_count was at least 2, it will not vanish.
1814 			 */
1815 			refcount_release(&backing_object->ref_count);
1816 			VM_OBJECT_WUNLOCK(backing_object);
1817 			counter_u64_add(object_bypasses, 1);
1818 		}
1819 
1820 		/*
1821 		 * Try again with this object's new backing object.
1822 		 */
1823 	}
1824 }
1825 
1826 /*
1827  *	vm_object_page_remove:
1828  *
1829  *	For the given object, either frees or invalidates each of the
1830  *	specified pages.  In general, a page is freed.  However, if a page is
1831  *	wired for any reason other than the existence of a managed, wired
1832  *	mapping, then it may be invalidated but not removed from the object.
1833  *	Pages are specified by the given range ["start", "end") and the option
1834  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1835  *	extends from "start" to the end of the object.  If the option
1836  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1837  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1838  *	specified, then the pages within the specified range must have no
1839  *	mappings.  Otherwise, if this option is not specified, any mappings to
1840  *	the specified pages are removed before the pages are freed or
1841  *	invalidated.
1842  *
1843  *	In general, this operation should only be performed on objects that
1844  *	contain managed pages.  There are, however, two exceptions.  First, it
1845  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1846  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1847  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1848  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1849  *
1850  *	The object must be locked.
1851  */
1852 void
1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1854     int options)
1855 {
1856 	vm_page_t p, next;
1857 
1858 	VM_OBJECT_ASSERT_WLOCKED(object);
1859 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1860 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1861 	    ("vm_object_page_remove: illegal options for object %p", object));
1862 	if (object->resident_page_count == 0)
1863 		return;
1864 	vm_object_pip_add(object, 1);
1865 again:
1866 	p = vm_page_find_least(object, start);
1867 
1868 	/*
1869 	 * Here, the variable "p" is either (1) the page with the least pindex
1870 	 * greater than or equal to the parameter "start" or (2) NULL.
1871 	 */
1872 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1873 		next = TAILQ_NEXT(p, listq);
1874 
1875 		/*
1876 		 * If the page is wired for any reason besides the existence
1877 		 * of managed, wired mappings, then it cannot be freed.  For
1878 		 * example, fictitious pages, which represent device memory,
1879 		 * are inherently wired and cannot be freed.  They can,
1880 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1881 		 * not specified.
1882 		 */
1883 		if (vm_page_tryxbusy(p) == 0) {
1884 			vm_page_sleep_if_busy(p, "vmopar");
1885 			goto again;
1886 		}
1887 		if (vm_page_wired(p)) {
1888 wired:
1889 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1890 			    object->ref_count != 0)
1891 				pmap_remove_all(p);
1892 			if ((options & OBJPR_CLEANONLY) == 0) {
1893 				vm_page_invalid(p);
1894 				vm_page_undirty(p);
1895 			}
1896 			vm_page_xunbusy(p);
1897 			continue;
1898 		}
1899 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1900 		    ("vm_object_page_remove: page %p is fictitious", p));
1901 		if ((options & OBJPR_CLEANONLY) != 0 &&
1902 		    !vm_page_none_valid(p)) {
1903 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1904 			    object->ref_count != 0 &&
1905 			    !vm_page_try_remove_write(p))
1906 				goto wired;
1907 			if (p->dirty != 0) {
1908 				vm_page_xunbusy(p);
1909 				continue;
1910 			}
1911 		}
1912 		if ((options & OBJPR_NOTMAPPED) == 0 &&
1913 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
1914 			goto wired;
1915 		vm_page_free(p);
1916 	}
1917 	vm_object_pip_wakeup(object);
1918 }
1919 
1920 /*
1921  *	vm_object_page_noreuse:
1922  *
1923  *	For the given object, attempt to move the specified pages to
1924  *	the head of the inactive queue.  This bypasses regular LRU
1925  *	operation and allows the pages to be reused quickly under memory
1926  *	pressure.  If a page is wired for any reason, then it will not
1927  *	be queued.  Pages are specified by the range ["start", "end").
1928  *	As a special case, if "end" is zero, then the range extends from
1929  *	"start" to the end of the object.
1930  *
1931  *	This operation should only be performed on objects that
1932  *	contain non-fictitious, managed pages.
1933  *
1934  *	The object must be locked.
1935  */
1936 void
1937 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1938 {
1939 	struct mtx *mtx;
1940 	vm_page_t p, next;
1941 
1942 	VM_OBJECT_ASSERT_LOCKED(object);
1943 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1944 	    ("vm_object_page_noreuse: illegal object %p", object));
1945 	if (object->resident_page_count == 0)
1946 		return;
1947 	p = vm_page_find_least(object, start);
1948 
1949 	/*
1950 	 * Here, the variable "p" is either (1) the page with the least pindex
1951 	 * greater than or equal to the parameter "start" or (2) NULL.
1952 	 */
1953 	mtx = NULL;
1954 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1955 		next = TAILQ_NEXT(p, listq);
1956 		vm_page_change_lock(p, &mtx);
1957 		vm_page_deactivate_noreuse(p);
1958 	}
1959 	if (mtx != NULL)
1960 		mtx_unlock(mtx);
1961 }
1962 
1963 /*
1964  *	Populate the specified range of the object with valid pages.  Returns
1965  *	TRUE if the range is successfully populated and FALSE otherwise.
1966  *
1967  *	Note: This function should be optimized to pass a larger array of
1968  *	pages to vm_pager_get_pages() before it is applied to a non-
1969  *	OBJT_DEVICE object.
1970  *
1971  *	The object must be locked.
1972  */
1973 boolean_t
1974 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1975 {
1976 	vm_page_t m;
1977 	vm_pindex_t pindex;
1978 	int rv;
1979 
1980 	VM_OBJECT_ASSERT_WLOCKED(object);
1981 	for (pindex = start; pindex < end; pindex++) {
1982 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
1983 		if (rv != VM_PAGER_OK)
1984 			break;
1985 
1986 		/*
1987 		 * Keep "m" busy because a subsequent iteration may unlock
1988 		 * the object.
1989 		 */
1990 	}
1991 	if (pindex > start) {
1992 		m = vm_page_lookup(object, start);
1993 		while (m != NULL && m->pindex < pindex) {
1994 			vm_page_xunbusy(m);
1995 			m = TAILQ_NEXT(m, listq);
1996 		}
1997 	}
1998 	return (pindex == end);
1999 }
2000 
2001 /*
2002  *	Routine:	vm_object_coalesce
2003  *	Function:	Coalesces two objects backing up adjoining
2004  *			regions of memory into a single object.
2005  *
2006  *	returns TRUE if objects were combined.
2007  *
2008  *	NOTE:	Only works at the moment if the second object is NULL -
2009  *		if it's not, which object do we lock first?
2010  *
2011  *	Parameters:
2012  *		prev_object	First object to coalesce
2013  *		prev_offset	Offset into prev_object
2014  *		prev_size	Size of reference to prev_object
2015  *		next_size	Size of reference to the second object
2016  *		reserved	Indicator that extension region has
2017  *				swap accounted for
2018  *
2019  *	Conditions:
2020  *	The object must *not* be locked.
2021  */
2022 boolean_t
2023 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2024     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2025 {
2026 	vm_pindex_t next_pindex;
2027 
2028 	if (prev_object == NULL)
2029 		return (TRUE);
2030 	VM_OBJECT_WLOCK(prev_object);
2031 	if ((prev_object->type != OBJT_DEFAULT &&
2032 	    prev_object->type != OBJT_SWAP) ||
2033 	    (prev_object->flags & OBJ_NOSPLIT) != 0) {
2034 		VM_OBJECT_WUNLOCK(prev_object);
2035 		return (FALSE);
2036 	}
2037 
2038 	/*
2039 	 * Try to collapse the object first
2040 	 */
2041 	vm_object_collapse(prev_object);
2042 
2043 	/*
2044 	 * Can't coalesce if: . more than one reference . paged out . shadows
2045 	 * another object . has a copy elsewhere (any of which mean that the
2046 	 * pages not mapped to prev_entry may be in use anyway)
2047 	 */
2048 	if (prev_object->backing_object != NULL) {
2049 		VM_OBJECT_WUNLOCK(prev_object);
2050 		return (FALSE);
2051 	}
2052 
2053 	prev_size >>= PAGE_SHIFT;
2054 	next_size >>= PAGE_SHIFT;
2055 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2056 
2057 	if (prev_object->ref_count > 1 &&
2058 	    prev_object->size != next_pindex &&
2059 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2060 		VM_OBJECT_WUNLOCK(prev_object);
2061 		return (FALSE);
2062 	}
2063 
2064 	/*
2065 	 * Account for the charge.
2066 	 */
2067 	if (prev_object->cred != NULL) {
2068 
2069 		/*
2070 		 * If prev_object was charged, then this mapping,
2071 		 * although not charged now, may become writable
2072 		 * later. Non-NULL cred in the object would prevent
2073 		 * swap reservation during enabling of the write
2074 		 * access, so reserve swap now. Failed reservation
2075 		 * cause allocation of the separate object for the map
2076 		 * entry, and swap reservation for this entry is
2077 		 * managed in appropriate time.
2078 		 */
2079 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2080 		    prev_object->cred)) {
2081 			VM_OBJECT_WUNLOCK(prev_object);
2082 			return (FALSE);
2083 		}
2084 		prev_object->charge += ptoa(next_size);
2085 	}
2086 
2087 	/*
2088 	 * Remove any pages that may still be in the object from a previous
2089 	 * deallocation.
2090 	 */
2091 	if (next_pindex < prev_object->size) {
2092 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2093 		    next_size, 0);
2094 		if (prev_object->type == OBJT_SWAP)
2095 			swap_pager_freespace(prev_object,
2096 					     next_pindex, next_size);
2097 #if 0
2098 		if (prev_object->cred != NULL) {
2099 			KASSERT(prev_object->charge >=
2100 			    ptoa(prev_object->size - next_pindex),
2101 			    ("object %p overcharged 1 %jx %jx", prev_object,
2102 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2103 			prev_object->charge -= ptoa(prev_object->size -
2104 			    next_pindex);
2105 		}
2106 #endif
2107 	}
2108 
2109 	/*
2110 	 * Extend the object if necessary.
2111 	 */
2112 	if (next_pindex + next_size > prev_object->size)
2113 		prev_object->size = next_pindex + next_size;
2114 
2115 	VM_OBJECT_WUNLOCK(prev_object);
2116 	return (TRUE);
2117 }
2118 
2119 void
2120 vm_object_set_writeable_dirty(vm_object_t object)
2121 {
2122 
2123 	VM_OBJECT_ASSERT_LOCKED(object);
2124 
2125 	/* Only set for vnodes & tmpfs */
2126 	if (object->type != OBJT_VNODE &&
2127 	    (object->flags & OBJ_TMPFS_NODE) == 0)
2128 		return;
2129 	atomic_add_int(&object->generation, 1);
2130 }
2131 
2132 /*
2133  *	vm_object_unwire:
2134  *
2135  *	For each page offset within the specified range of the given object,
2136  *	find the highest-level page in the shadow chain and unwire it.  A page
2137  *	must exist at every page offset, and the highest-level page must be
2138  *	wired.
2139  */
2140 void
2141 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2142     uint8_t queue)
2143 {
2144 	vm_object_t tobject, t1object;
2145 	vm_page_t m, tm;
2146 	vm_pindex_t end_pindex, pindex, tpindex;
2147 	int depth, locked_depth;
2148 
2149 	KASSERT((offset & PAGE_MASK) == 0,
2150 	    ("vm_object_unwire: offset is not page aligned"));
2151 	KASSERT((length & PAGE_MASK) == 0,
2152 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2153 	/* The wired count of a fictitious page never changes. */
2154 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2155 		return;
2156 	pindex = OFF_TO_IDX(offset);
2157 	end_pindex = pindex + atop(length);
2158 again:
2159 	locked_depth = 1;
2160 	VM_OBJECT_RLOCK(object);
2161 	m = vm_page_find_least(object, pindex);
2162 	while (pindex < end_pindex) {
2163 		if (m == NULL || pindex < m->pindex) {
2164 			/*
2165 			 * The first object in the shadow chain doesn't
2166 			 * contain a page at the current index.  Therefore,
2167 			 * the page must exist in a backing object.
2168 			 */
2169 			tobject = object;
2170 			tpindex = pindex;
2171 			depth = 0;
2172 			do {
2173 				tpindex +=
2174 				    OFF_TO_IDX(tobject->backing_object_offset);
2175 				tobject = tobject->backing_object;
2176 				KASSERT(tobject != NULL,
2177 				    ("vm_object_unwire: missing page"));
2178 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2179 					goto next_page;
2180 				depth++;
2181 				if (depth == locked_depth) {
2182 					locked_depth++;
2183 					VM_OBJECT_RLOCK(tobject);
2184 				}
2185 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2186 			    NULL);
2187 		} else {
2188 			tm = m;
2189 			m = TAILQ_NEXT(m, listq);
2190 		}
2191 		if (vm_page_trysbusy(tm) == 0) {
2192 			for (tobject = object; locked_depth >= 1;
2193 			    locked_depth--) {
2194 				t1object = tobject->backing_object;
2195 				if (tm->object != tobject)
2196 					VM_OBJECT_RUNLOCK(tobject);
2197 				tobject = t1object;
2198 			}
2199 			vm_page_busy_sleep(tm, "unwbo", true);
2200 			goto again;
2201 		}
2202 		vm_page_unwire(tm, queue);
2203 		vm_page_sunbusy(tm);
2204 next_page:
2205 		pindex++;
2206 	}
2207 	/* Release the accumulated object locks. */
2208 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2209 		t1object = tobject->backing_object;
2210 		VM_OBJECT_RUNLOCK(tobject);
2211 		tobject = t1object;
2212 	}
2213 }
2214 
2215 /*
2216  * Return the vnode for the given object, or NULL if none exists.
2217  * For tmpfs objects, the function may return NULL if there is
2218  * no vnode allocated at the time of the call.
2219  */
2220 struct vnode *
2221 vm_object_vnode(vm_object_t object)
2222 {
2223 	struct vnode *vp;
2224 
2225 	VM_OBJECT_ASSERT_LOCKED(object);
2226 	if (object->type == OBJT_VNODE) {
2227 		vp = object->handle;
2228 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2229 	} else if (object->type == OBJT_SWAP &&
2230 	    (object->flags & OBJ_TMPFS) != 0) {
2231 		vp = object->un_pager.swp.swp_tmpfs;
2232 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2233 	} else {
2234 		vp = NULL;
2235 	}
2236 	return (vp);
2237 }
2238 
2239 
2240 /*
2241  * Busy the vm object.  This prevents new pages belonging to the object from
2242  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2243  * for checking page state before proceeding.
2244  */
2245 void
2246 vm_object_busy(vm_object_t obj)
2247 {
2248 
2249 	VM_OBJECT_ASSERT_LOCKED(obj);
2250 
2251 	refcount_acquire(&obj->busy);
2252 	/* The fence is required to order loads of page busy. */
2253 	atomic_thread_fence_acq_rel();
2254 }
2255 
2256 void
2257 vm_object_unbusy(vm_object_t obj)
2258 {
2259 
2260 
2261 	refcount_release(&obj->busy);
2262 }
2263 
2264 void
2265 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2266 {
2267 
2268 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2269 
2270 	if (obj->busy)
2271 		refcount_sleep(&obj->busy, wmesg, PVM);
2272 }
2273 
2274 /*
2275  * Return the kvme type of the given object.
2276  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2277  */
2278 int
2279 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2280 {
2281 
2282 	VM_OBJECT_ASSERT_LOCKED(object);
2283 	if (vpp != NULL)
2284 		*vpp = vm_object_vnode(object);
2285 	switch (object->type) {
2286 	case OBJT_DEFAULT:
2287 		return (KVME_TYPE_DEFAULT);
2288 	case OBJT_VNODE:
2289 		return (KVME_TYPE_VNODE);
2290 	case OBJT_SWAP:
2291 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2292 			return (KVME_TYPE_VNODE);
2293 		return (KVME_TYPE_SWAP);
2294 	case OBJT_DEVICE:
2295 		return (KVME_TYPE_DEVICE);
2296 	case OBJT_PHYS:
2297 		return (KVME_TYPE_PHYS);
2298 	case OBJT_DEAD:
2299 		return (KVME_TYPE_DEAD);
2300 	case OBJT_SG:
2301 		return (KVME_TYPE_SG);
2302 	case OBJT_MGTDEVICE:
2303 		return (KVME_TYPE_MGTDEVICE);
2304 	default:
2305 		return (KVME_TYPE_UNKNOWN);
2306 	}
2307 }
2308 
2309 static int
2310 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2311 {
2312 	struct kinfo_vmobject *kvo;
2313 	char *fullpath, *freepath;
2314 	struct vnode *vp;
2315 	struct vattr va;
2316 	vm_object_t obj;
2317 	vm_page_t m;
2318 	int count, error;
2319 
2320 	if (req->oldptr == NULL) {
2321 		/*
2322 		 * If an old buffer has not been provided, generate an
2323 		 * estimate of the space needed for a subsequent call.
2324 		 */
2325 		mtx_lock(&vm_object_list_mtx);
2326 		count = 0;
2327 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2328 			if (obj->type == OBJT_DEAD)
2329 				continue;
2330 			count++;
2331 		}
2332 		mtx_unlock(&vm_object_list_mtx);
2333 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2334 		    count * 11 / 10));
2335 	}
2336 
2337 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2338 	error = 0;
2339 
2340 	/*
2341 	 * VM objects are type stable and are never removed from the
2342 	 * list once added.  This allows us to safely read obj->object_list
2343 	 * after reacquiring the VM object lock.
2344 	 */
2345 	mtx_lock(&vm_object_list_mtx);
2346 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2347 		if (obj->type == OBJT_DEAD)
2348 			continue;
2349 		VM_OBJECT_RLOCK(obj);
2350 		if (obj->type == OBJT_DEAD) {
2351 			VM_OBJECT_RUNLOCK(obj);
2352 			continue;
2353 		}
2354 		mtx_unlock(&vm_object_list_mtx);
2355 		kvo->kvo_size = ptoa(obj->size);
2356 		kvo->kvo_resident = obj->resident_page_count;
2357 		kvo->kvo_ref_count = obj->ref_count;
2358 		kvo->kvo_shadow_count = obj->shadow_count;
2359 		kvo->kvo_memattr = obj->memattr;
2360 		kvo->kvo_active = 0;
2361 		kvo->kvo_inactive = 0;
2362 		TAILQ_FOREACH(m, &obj->memq, listq) {
2363 			/*
2364 			 * A page may belong to the object but be
2365 			 * dequeued and set to PQ_NONE while the
2366 			 * object lock is not held.  This makes the
2367 			 * reads of m->queue below racy, and we do not
2368 			 * count pages set to PQ_NONE.  However, this
2369 			 * sysctl is only meant to give an
2370 			 * approximation of the system anyway.
2371 			 */
2372 			if (m->queue == PQ_ACTIVE)
2373 				kvo->kvo_active++;
2374 			else if (m->queue == PQ_INACTIVE)
2375 				kvo->kvo_inactive++;
2376 		}
2377 
2378 		kvo->kvo_vn_fileid = 0;
2379 		kvo->kvo_vn_fsid = 0;
2380 		kvo->kvo_vn_fsid_freebsd11 = 0;
2381 		freepath = NULL;
2382 		fullpath = "";
2383 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2384 		if (vp != NULL)
2385 			vref(vp);
2386 		VM_OBJECT_RUNLOCK(obj);
2387 		if (vp != NULL) {
2388 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2389 			vn_lock(vp, LK_SHARED | LK_RETRY);
2390 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2391 				kvo->kvo_vn_fileid = va.va_fileid;
2392 				kvo->kvo_vn_fsid = va.va_fsid;
2393 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2394 								/* truncate */
2395 			}
2396 			vput(vp);
2397 		}
2398 
2399 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2400 		if (freepath != NULL)
2401 			free(freepath, M_TEMP);
2402 
2403 		/* Pack record size down */
2404 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2405 		    + strlen(kvo->kvo_path) + 1;
2406 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2407 		    sizeof(uint64_t));
2408 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2409 		mtx_lock(&vm_object_list_mtx);
2410 		if (error)
2411 			break;
2412 	}
2413 	mtx_unlock(&vm_object_list_mtx);
2414 	free(kvo, M_TEMP);
2415 	return (error);
2416 }
2417 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2418     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2419     "List of VM objects");
2420 
2421 #include "opt_ddb.h"
2422 #ifdef DDB
2423 #include <sys/kernel.h>
2424 
2425 #include <sys/cons.h>
2426 
2427 #include <ddb/ddb.h>
2428 
2429 static int
2430 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2431 {
2432 	vm_map_t tmpm;
2433 	vm_map_entry_t tmpe;
2434 	vm_object_t obj;
2435 
2436 	if (map == 0)
2437 		return 0;
2438 
2439 	if (entry == 0) {
2440 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2441 			if (_vm_object_in_map(map, object, tmpe)) {
2442 				return 1;
2443 			}
2444 		}
2445 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2446 		tmpm = entry->object.sub_map;
2447 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2448 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2449 				return 1;
2450 			}
2451 		}
2452 	} else if ((obj = entry->object.vm_object) != NULL) {
2453 		for (; obj; obj = obj->backing_object)
2454 			if (obj == object) {
2455 				return 1;
2456 			}
2457 	}
2458 	return 0;
2459 }
2460 
2461 static int
2462 vm_object_in_map(vm_object_t object)
2463 {
2464 	struct proc *p;
2465 
2466 	/* sx_slock(&allproc_lock); */
2467 	FOREACH_PROC_IN_SYSTEM(p) {
2468 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2469 			continue;
2470 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2471 			/* sx_sunlock(&allproc_lock); */
2472 			return 1;
2473 		}
2474 	}
2475 	/* sx_sunlock(&allproc_lock); */
2476 	if (_vm_object_in_map(kernel_map, object, 0))
2477 		return 1;
2478 	return 0;
2479 }
2480 
2481 DB_SHOW_COMMAND(vmochk, vm_object_check)
2482 {
2483 	vm_object_t object;
2484 
2485 	/*
2486 	 * make sure that internal objs are in a map somewhere
2487 	 * and none have zero ref counts.
2488 	 */
2489 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2490 		if (object->handle == NULL &&
2491 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2492 			if (object->ref_count == 0) {
2493 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2494 					(long)object->size);
2495 			}
2496 			if (!vm_object_in_map(object)) {
2497 				db_printf(
2498 			"vmochk: internal obj is not in a map: "
2499 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2500 				    object->ref_count, (u_long)object->size,
2501 				    (u_long)object->size,
2502 				    (void *)object->backing_object);
2503 			}
2504 		}
2505 	}
2506 }
2507 
2508 /*
2509  *	vm_object_print:	[ debug ]
2510  */
2511 DB_SHOW_COMMAND(object, vm_object_print_static)
2512 {
2513 	/* XXX convert args. */
2514 	vm_object_t object = (vm_object_t)addr;
2515 	boolean_t full = have_addr;
2516 
2517 	vm_page_t p;
2518 
2519 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2520 #define	count	was_count
2521 
2522 	int count;
2523 
2524 	if (object == NULL)
2525 		return;
2526 
2527 	db_iprintf(
2528 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2529 	    object, (int)object->type, (uintmax_t)object->size,
2530 	    object->resident_page_count, object->ref_count, object->flags,
2531 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2532 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2533 	    object->shadow_count,
2534 	    object->backing_object ? object->backing_object->ref_count : 0,
2535 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2536 
2537 	if (!full)
2538 		return;
2539 
2540 	db_indent += 2;
2541 	count = 0;
2542 	TAILQ_FOREACH(p, &object->memq, listq) {
2543 		if (count == 0)
2544 			db_iprintf("memory:=");
2545 		else if (count == 6) {
2546 			db_printf("\n");
2547 			db_iprintf(" ...");
2548 			count = 0;
2549 		} else
2550 			db_printf(",");
2551 		count++;
2552 
2553 		db_printf("(off=0x%jx,page=0x%jx)",
2554 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2555 	}
2556 	if (count != 0)
2557 		db_printf("\n");
2558 	db_indent -= 2;
2559 }
2560 
2561 /* XXX. */
2562 #undef count
2563 
2564 /* XXX need this non-static entry for calling from vm_map_print. */
2565 void
2566 vm_object_print(
2567         /* db_expr_t */ long addr,
2568 	boolean_t have_addr,
2569 	/* db_expr_t */ long count,
2570 	char *modif)
2571 {
2572 	vm_object_print_static(addr, have_addr, count, modif);
2573 }
2574 
2575 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2576 {
2577 	vm_object_t object;
2578 	vm_pindex_t fidx;
2579 	vm_paddr_t pa;
2580 	vm_page_t m, prev_m;
2581 	int rcount, nl, c;
2582 
2583 	nl = 0;
2584 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2585 		db_printf("new object: %p\n", (void *)object);
2586 		if (nl > 18) {
2587 			c = cngetc();
2588 			if (c != ' ')
2589 				return;
2590 			nl = 0;
2591 		}
2592 		nl++;
2593 		rcount = 0;
2594 		fidx = 0;
2595 		pa = -1;
2596 		TAILQ_FOREACH(m, &object->memq, listq) {
2597 			if (m->pindex > 128)
2598 				break;
2599 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2600 			    prev_m->pindex + 1 != m->pindex) {
2601 				if (rcount) {
2602 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2603 						(long)fidx, rcount, (long)pa);
2604 					if (nl > 18) {
2605 						c = cngetc();
2606 						if (c != ' ')
2607 							return;
2608 						nl = 0;
2609 					}
2610 					nl++;
2611 					rcount = 0;
2612 				}
2613 			}
2614 			if (rcount &&
2615 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2616 				++rcount;
2617 				continue;
2618 			}
2619 			if (rcount) {
2620 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2621 					(long)fidx, rcount, (long)pa);
2622 				if (nl > 18) {
2623 					c = cngetc();
2624 					if (c != ' ')
2625 						return;
2626 					nl = 0;
2627 				}
2628 				nl++;
2629 			}
2630 			fidx = m->pindex;
2631 			pa = VM_PAGE_TO_PHYS(m);
2632 			rcount = 1;
2633 		}
2634 		if (rcount) {
2635 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2636 				(long)fidx, rcount, (long)pa);
2637 			if (nl > 18) {
2638 				c = cngetc();
2639 				if (c != ' ')
2640 					return;
2641 				nl = 0;
2642 			}
2643 			nl++;
2644 		}
2645 	}
2646 }
2647 #endif /* DDB */
2648