1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/cpuset.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/refcount.h> 87 #include <sys/rwlock.h> 88 #include <sys/user.h> 89 #include <sys/vnode.h> 90 #include <sys/vmmeter.h> 91 #include <sys/sx.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_param.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/swap_pager.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/uma.h> 109 110 static int old_msync; 111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 112 "Use old (insecure) msync behavior"); 113 114 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 115 int pagerflags, int flags, boolean_t *allclean, 116 boolean_t *eio); 117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 118 boolean_t *allclean); 119 static void vm_object_qcollapse(vm_object_t object); 120 static void vm_object_vndeallocate(vm_object_t object); 121 122 /* 123 * Virtual memory objects maintain the actual data 124 * associated with allocated virtual memory. A given 125 * page of memory exists within exactly one object. 126 * 127 * An object is only deallocated when all "references" 128 * are given up. Only one "reference" to a given 129 * region of an object should be writeable. 130 * 131 * Associated with each object is a list of all resident 132 * memory pages belonging to that object; this list is 133 * maintained by the "vm_page" module, and locked by the object's 134 * lock. 135 * 136 * Each object also records a "pager" routine which is 137 * used to retrieve (and store) pages to the proper backing 138 * storage. In addition, objects may be backed by other 139 * objects from which they were virtual-copied. 140 * 141 * The only items within the object structure which are 142 * modified after time of creation are: 143 * reference count locked by object's lock 144 * pager routine locked by object's lock 145 * 146 */ 147 148 struct object_q vm_object_list; 149 struct mtx vm_object_list_mtx; /* lock for object list and count */ 150 151 struct vm_object kernel_object_store; 152 153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 154 "VM object stats"); 155 156 static counter_u64_t object_collapses = EARLY_COUNTER; 157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 158 &object_collapses, 159 "VM object collapses"); 160 161 static counter_u64_t object_bypasses = EARLY_COUNTER; 162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 163 &object_bypasses, 164 "VM object bypasses"); 165 166 static void 167 counter_startup(void) 168 { 169 170 object_collapses = counter_u64_alloc(M_WAITOK); 171 object_bypasses = counter_u64_alloc(M_WAITOK); 172 } 173 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 174 175 static uma_zone_t obj_zone; 176 177 static int vm_object_zinit(void *mem, int size, int flags); 178 179 #ifdef INVARIANTS 180 static void vm_object_zdtor(void *mem, int size, void *arg); 181 182 static void 183 vm_object_zdtor(void *mem, int size, void *arg) 184 { 185 vm_object_t object; 186 187 object = (vm_object_t)mem; 188 KASSERT(object->ref_count == 0, 189 ("object %p ref_count = %d", object, object->ref_count)); 190 KASSERT(TAILQ_EMPTY(&object->memq), 191 ("object %p has resident pages in its memq", object)); 192 KASSERT(vm_radix_is_empty(&object->rtree), 193 ("object %p has resident pages in its trie", object)); 194 #if VM_NRESERVLEVEL > 0 195 KASSERT(LIST_EMPTY(&object->rvq), 196 ("object %p has reservations", 197 object)); 198 #endif 199 KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0, 200 ("object %p paging_in_progress = %d", 201 object, REFCOUNT_COUNT(object->paging_in_progress))); 202 KASSERT(object->busy == 0, 203 ("object %p busy = %d", 204 object, object->busy)); 205 KASSERT(object->resident_page_count == 0, 206 ("object %p resident_page_count = %d", 207 object, object->resident_page_count)); 208 KASSERT(object->shadow_count == 0, 209 ("object %p shadow_count = %d", 210 object, object->shadow_count)); 211 KASSERT(object->type == OBJT_DEAD, 212 ("object %p has non-dead type %d", 213 object, object->type)); 214 } 215 #endif 216 217 static int 218 vm_object_zinit(void *mem, int size, int flags) 219 { 220 vm_object_t object; 221 222 object = (vm_object_t)mem; 223 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 224 225 /* These are true for any object that has been freed */ 226 object->type = OBJT_DEAD; 227 vm_radix_init(&object->rtree); 228 refcount_init(&object->ref_count, 0); 229 refcount_init(&object->paging_in_progress, 0); 230 refcount_init(&object->busy, 0); 231 object->resident_page_count = 0; 232 object->shadow_count = 0; 233 object->flags = OBJ_DEAD; 234 235 mtx_lock(&vm_object_list_mtx); 236 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 237 mtx_unlock(&vm_object_list_mtx); 238 return (0); 239 } 240 241 static void 242 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 243 { 244 245 TAILQ_INIT(&object->memq); 246 LIST_INIT(&object->shadow_head); 247 248 object->type = type; 249 if (type == OBJT_SWAP) 250 pctrie_init(&object->un_pager.swp.swp_blks); 251 252 /* 253 * Ensure that swap_pager_swapoff() iteration over object_list 254 * sees up to date type and pctrie head if it observed 255 * non-dead object. 256 */ 257 atomic_thread_fence_rel(); 258 259 switch (type) { 260 case OBJT_DEAD: 261 panic("_vm_object_allocate: can't create OBJT_DEAD"); 262 case OBJT_DEFAULT: 263 case OBJT_SWAP: 264 object->flags = OBJ_ONEMAPPING; 265 break; 266 case OBJT_DEVICE: 267 case OBJT_SG: 268 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 269 break; 270 case OBJT_MGTDEVICE: 271 object->flags = OBJ_FICTITIOUS; 272 break; 273 case OBJT_PHYS: 274 object->flags = OBJ_UNMANAGED; 275 break; 276 case OBJT_VNODE: 277 object->flags = 0; 278 break; 279 default: 280 panic("_vm_object_allocate: type %d is undefined", type); 281 } 282 object->size = size; 283 object->domain.dr_policy = NULL; 284 object->generation = 1; 285 object->cleangeneration = 1; 286 refcount_init(&object->ref_count, 1); 287 object->memattr = VM_MEMATTR_DEFAULT; 288 object->cred = NULL; 289 object->charge = 0; 290 object->handle = NULL; 291 object->backing_object = NULL; 292 object->backing_object_offset = (vm_ooffset_t) 0; 293 #if VM_NRESERVLEVEL > 0 294 LIST_INIT(&object->rvq); 295 #endif 296 umtx_shm_object_init(object); 297 } 298 299 /* 300 * vm_object_init: 301 * 302 * Initialize the VM objects module. 303 */ 304 void 305 vm_object_init(void) 306 { 307 TAILQ_INIT(&vm_object_list); 308 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 309 310 rw_init(&kernel_object->lock, "kernel vm object"); 311 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 312 VM_MIN_KERNEL_ADDRESS), kernel_object); 313 #if VM_NRESERVLEVEL > 0 314 kernel_object->flags |= OBJ_COLORED; 315 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 316 #endif 317 318 /* 319 * The lock portion of struct vm_object must be type stable due 320 * to vm_pageout_fallback_object_lock locking a vm object 321 * without holding any references to it. 322 */ 323 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 324 #ifdef INVARIANTS 325 vm_object_zdtor, 326 #else 327 NULL, 328 #endif 329 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 330 331 vm_radix_zinit(); 332 } 333 334 void 335 vm_object_clear_flag(vm_object_t object, u_short bits) 336 { 337 338 VM_OBJECT_ASSERT_WLOCKED(object); 339 object->flags &= ~bits; 340 } 341 342 /* 343 * Sets the default memory attribute for the specified object. Pages 344 * that are allocated to this object are by default assigned this memory 345 * attribute. 346 * 347 * Presently, this function must be called before any pages are allocated 348 * to the object. In the future, this requirement may be relaxed for 349 * "default" and "swap" objects. 350 */ 351 int 352 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 353 { 354 355 VM_OBJECT_ASSERT_WLOCKED(object); 356 switch (object->type) { 357 case OBJT_DEFAULT: 358 case OBJT_DEVICE: 359 case OBJT_MGTDEVICE: 360 case OBJT_PHYS: 361 case OBJT_SG: 362 case OBJT_SWAP: 363 case OBJT_VNODE: 364 if (!TAILQ_EMPTY(&object->memq)) 365 return (KERN_FAILURE); 366 break; 367 case OBJT_DEAD: 368 return (KERN_INVALID_ARGUMENT); 369 default: 370 panic("vm_object_set_memattr: object %p is of undefined type", 371 object); 372 } 373 object->memattr = memattr; 374 return (KERN_SUCCESS); 375 } 376 377 void 378 vm_object_pip_add(vm_object_t object, short i) 379 { 380 381 refcount_acquiren(&object->paging_in_progress, i); 382 } 383 384 void 385 vm_object_pip_wakeup(vm_object_t object) 386 { 387 388 refcount_release(&object->paging_in_progress); 389 } 390 391 void 392 vm_object_pip_wakeupn(vm_object_t object, short i) 393 { 394 395 refcount_releasen(&object->paging_in_progress, i); 396 } 397 398 void 399 vm_object_pip_wait(vm_object_t object, char *waitid) 400 { 401 402 VM_OBJECT_ASSERT_WLOCKED(object); 403 404 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 405 VM_OBJECT_WUNLOCK(object); 406 refcount_wait(&object->paging_in_progress, waitid, PVM); 407 VM_OBJECT_WLOCK(object); 408 } 409 } 410 411 void 412 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid) 413 { 414 415 VM_OBJECT_ASSERT_UNLOCKED(object); 416 417 while (REFCOUNT_COUNT(object->paging_in_progress) > 0) 418 refcount_wait(&object->paging_in_progress, waitid, PVM); 419 } 420 421 /* 422 * vm_object_allocate: 423 * 424 * Returns a new object with the given size. 425 */ 426 vm_object_t 427 vm_object_allocate(objtype_t type, vm_pindex_t size) 428 { 429 vm_object_t object; 430 431 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 432 _vm_object_allocate(type, size, object); 433 return (object); 434 } 435 436 437 /* 438 * vm_object_reference: 439 * 440 * Gets another reference to the given object. Note: OBJ_DEAD 441 * objects can be referenced during final cleaning. 442 */ 443 void 444 vm_object_reference(vm_object_t object) 445 { 446 if (object == NULL) 447 return; 448 VM_OBJECT_RLOCK(object); 449 vm_object_reference_locked(object); 450 VM_OBJECT_RUNLOCK(object); 451 } 452 453 /* 454 * vm_object_reference_locked: 455 * 456 * Gets another reference to the given object. 457 * 458 * The object must be locked. 459 */ 460 void 461 vm_object_reference_locked(vm_object_t object) 462 { 463 struct vnode *vp; 464 465 VM_OBJECT_ASSERT_LOCKED(object); 466 refcount_acquire(&object->ref_count); 467 if (object->type == OBJT_VNODE) { 468 vp = object->handle; 469 vref(vp); 470 } 471 } 472 473 /* 474 * Handle deallocating an object of type OBJT_VNODE. 475 */ 476 static void 477 vm_object_vndeallocate(vm_object_t object) 478 { 479 struct vnode *vp = (struct vnode *) object->handle; 480 481 KASSERT(object->type == OBJT_VNODE, 482 ("vm_object_vndeallocate: not a vnode object")); 483 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 484 485 if (refcount_release(&object->ref_count) && 486 !umtx_shm_vnobj_persistent) 487 umtx_shm_object_terminated(object); 488 489 VM_OBJECT_RUNLOCK(object); 490 /* vrele may need the vnode lock. */ 491 vrele(vp); 492 } 493 494 /* 495 * vm_object_deallocate: 496 * 497 * Release a reference to the specified object, 498 * gained either through a vm_object_allocate 499 * or a vm_object_reference call. When all references 500 * are gone, storage associated with this object 501 * may be relinquished. 502 * 503 * No object may be locked. 504 */ 505 void 506 vm_object_deallocate(vm_object_t object) 507 { 508 vm_object_t temp; 509 bool released; 510 511 while (object != NULL) { 512 VM_OBJECT_RLOCK(object); 513 if (object->type == OBJT_VNODE) { 514 vm_object_vndeallocate(object); 515 return; 516 } 517 518 /* 519 * If the reference count goes to 0 we start calling 520 * vm_object_terminate() on the object chain. A ref count 521 * of 1 may be a special case depending on the shadow count 522 * being 0 or 1. These cases require a write lock on the 523 * object. 524 */ 525 released = refcount_release_if_gt(&object->ref_count, 2); 526 VM_OBJECT_RUNLOCK(object); 527 if (released) 528 return; 529 530 VM_OBJECT_WLOCK(object); 531 KASSERT(object->ref_count != 0, 532 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 533 534 refcount_release(&object->ref_count); 535 if (object->ref_count > 1) { 536 VM_OBJECT_WUNLOCK(object); 537 return; 538 } else if (object->ref_count == 1) { 539 if (object->shadow_count == 0 && 540 object->handle == NULL && 541 (object->type == OBJT_DEFAULT || 542 (object->type == OBJT_SWAP && 543 (object->flags & OBJ_TMPFS_NODE) == 0))) { 544 vm_object_set_flag(object, OBJ_ONEMAPPING); 545 } else if ((object->shadow_count == 1) && 546 (object->handle == NULL) && 547 (object->type == OBJT_DEFAULT || 548 object->type == OBJT_SWAP)) { 549 vm_object_t robject; 550 551 robject = LIST_FIRST(&object->shadow_head); 552 KASSERT(robject != NULL, 553 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 554 object->ref_count, 555 object->shadow_count)); 556 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 557 ("shadowed tmpfs v_object %p", object)); 558 if (!VM_OBJECT_TRYWLOCK(robject)) { 559 /* 560 * Avoid a potential deadlock. 561 */ 562 refcount_acquire(&object->ref_count); 563 VM_OBJECT_WUNLOCK(object); 564 /* 565 * More likely than not the thread 566 * holding robject's lock has lower 567 * priority than the current thread. 568 * Let the lower priority thread run. 569 */ 570 pause("vmo_de", 1); 571 continue; 572 } 573 /* 574 * Collapse object into its shadow unless its 575 * shadow is dead. In that case, object will 576 * be deallocated by the thread that is 577 * deallocating its shadow. 578 */ 579 if ((robject->flags & OBJ_DEAD) == 0 && 580 (robject->handle == NULL) && 581 (robject->type == OBJT_DEFAULT || 582 robject->type == OBJT_SWAP)) { 583 584 refcount_acquire(&robject->ref_count); 585 retry: 586 if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) { 587 VM_OBJECT_WUNLOCK(object); 588 vm_object_pip_wait(robject, 589 "objde1"); 590 temp = robject->backing_object; 591 if (object == temp) { 592 VM_OBJECT_WLOCK(object); 593 goto retry; 594 } 595 } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) { 596 VM_OBJECT_WUNLOCK(robject); 597 VM_OBJECT_WUNLOCK(object); 598 refcount_wait( 599 &object->paging_in_progress, 600 "objde2", PVM); 601 VM_OBJECT_WLOCK(robject); 602 temp = robject->backing_object; 603 if (object == temp) { 604 VM_OBJECT_WLOCK(object); 605 goto retry; 606 } 607 } else 608 VM_OBJECT_WUNLOCK(object); 609 610 if (robject->ref_count == 1) { 611 robject->ref_count--; 612 object = robject; 613 goto doterm; 614 } 615 object = robject; 616 vm_object_collapse(object); 617 VM_OBJECT_WUNLOCK(object); 618 continue; 619 } 620 VM_OBJECT_WUNLOCK(robject); 621 } 622 VM_OBJECT_WUNLOCK(object); 623 return; 624 } 625 doterm: 626 umtx_shm_object_terminated(object); 627 temp = object->backing_object; 628 if (temp != NULL) { 629 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 630 ("shadowed tmpfs v_object 2 %p", object)); 631 VM_OBJECT_WLOCK(temp); 632 LIST_REMOVE(object, shadow_list); 633 temp->shadow_count--; 634 VM_OBJECT_WUNLOCK(temp); 635 object->backing_object = NULL; 636 } 637 /* 638 * Don't double-terminate, we could be in a termination 639 * recursion due to the terminate having to sync data 640 * to disk. 641 */ 642 if ((object->flags & OBJ_DEAD) == 0) { 643 vm_object_set_flag(object, OBJ_DEAD); 644 vm_object_terminate(object); 645 } else 646 VM_OBJECT_WUNLOCK(object); 647 object = temp; 648 } 649 } 650 651 /* 652 * vm_object_destroy removes the object from the global object list 653 * and frees the space for the object. 654 */ 655 void 656 vm_object_destroy(vm_object_t object) 657 { 658 659 /* 660 * Release the allocation charge. 661 */ 662 if (object->cred != NULL) { 663 swap_release_by_cred(object->charge, object->cred); 664 object->charge = 0; 665 crfree(object->cred); 666 object->cred = NULL; 667 } 668 669 /* 670 * Free the space for the object. 671 */ 672 uma_zfree(obj_zone, object); 673 } 674 675 /* 676 * vm_object_terminate_pages removes any remaining pageable pages 677 * from the object and resets the object to an empty state. 678 */ 679 static void 680 vm_object_terminate_pages(vm_object_t object) 681 { 682 vm_page_t p, p_next; 683 684 VM_OBJECT_ASSERT_WLOCKED(object); 685 686 /* 687 * Free any remaining pageable pages. This also removes them from the 688 * paging queues. However, don't free wired pages, just remove them 689 * from the object. Rather than incrementally removing each page from 690 * the object, the page and object are reset to any empty state. 691 */ 692 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 693 vm_page_assert_unbusied(p); 694 KASSERT(p->object == object && 695 (p->ref_count & VPRC_OBJREF) != 0, 696 ("vm_object_terminate_pages: page %p is inconsistent", p)); 697 698 p->object = NULL; 699 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 700 VM_CNT_INC(v_pfree); 701 vm_page_free(p); 702 } 703 } 704 705 /* 706 * If the object contained any pages, then reset it to an empty state. 707 * None of the object's fields, including "resident_page_count", were 708 * modified by the preceding loop. 709 */ 710 if (object->resident_page_count != 0) { 711 vm_radix_reclaim_allnodes(&object->rtree); 712 TAILQ_INIT(&object->memq); 713 object->resident_page_count = 0; 714 if (object->type == OBJT_VNODE) 715 vdrop(object->handle); 716 } 717 } 718 719 /* 720 * vm_object_terminate actually destroys the specified object, freeing 721 * up all previously used resources. 722 * 723 * The object must be locked. 724 * This routine may block. 725 */ 726 void 727 vm_object_terminate(vm_object_t object) 728 { 729 VM_OBJECT_ASSERT_WLOCKED(object); 730 KASSERT((object->flags & OBJ_DEAD) != 0, 731 ("terminating non-dead obj %p", object)); 732 733 /* 734 * wait for the pageout daemon to be done with the object 735 */ 736 vm_object_pip_wait(object, "objtrm"); 737 738 KASSERT(!REFCOUNT_COUNT(object->paging_in_progress), 739 ("vm_object_terminate: pageout in progress")); 740 741 KASSERT(object->ref_count == 0, 742 ("vm_object_terminate: object with references, ref_count=%d", 743 object->ref_count)); 744 745 if ((object->flags & OBJ_PG_DTOR) == 0) 746 vm_object_terminate_pages(object); 747 748 #if VM_NRESERVLEVEL > 0 749 if (__predict_false(!LIST_EMPTY(&object->rvq))) 750 vm_reserv_break_all(object); 751 #endif 752 753 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 754 object->type == OBJT_SWAP, 755 ("%s: non-swap obj %p has cred", __func__, object)); 756 757 /* 758 * Let the pager know object is dead. 759 */ 760 vm_pager_deallocate(object); 761 VM_OBJECT_WUNLOCK(object); 762 763 vm_object_destroy(object); 764 } 765 766 /* 767 * Make the page read-only so that we can clear the object flags. However, if 768 * this is a nosync mmap then the object is likely to stay dirty so do not 769 * mess with the page and do not clear the object flags. Returns TRUE if the 770 * page should be flushed, and FALSE otherwise. 771 */ 772 static boolean_t 773 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 774 { 775 776 vm_page_assert_busied(p); 777 778 /* 779 * If we have been asked to skip nosync pages and this is a 780 * nosync page, skip it. Note that the object flags were not 781 * cleared in this case so we do not have to set them. 782 */ 783 if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) { 784 *allclean = FALSE; 785 return (FALSE); 786 } else { 787 pmap_remove_write(p); 788 return (p->dirty != 0); 789 } 790 } 791 792 /* 793 * vm_object_page_clean 794 * 795 * Clean all dirty pages in the specified range of object. Leaves page 796 * on whatever queue it is currently on. If NOSYNC is set then do not 797 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 798 * leaving the object dirty. 799 * 800 * When stuffing pages asynchronously, allow clustering. XXX we need a 801 * synchronous clustering mode implementation. 802 * 803 * Odd semantics: if start == end, we clean everything. 804 * 805 * The object must be locked. 806 * 807 * Returns FALSE if some page from the range was not written, as 808 * reported by the pager, and TRUE otherwise. 809 */ 810 boolean_t 811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 812 int flags) 813 { 814 vm_page_t np, p; 815 vm_pindex_t pi, tend, tstart; 816 int curgeneration, n, pagerflags; 817 boolean_t eio, res, allclean; 818 819 VM_OBJECT_ASSERT_WLOCKED(object); 820 821 if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) || 822 object->resident_page_count == 0) 823 return (TRUE); 824 825 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 826 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 827 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 828 829 tstart = OFF_TO_IDX(start); 830 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 831 allclean = tstart == 0 && tend >= object->size; 832 res = TRUE; 833 834 rescan: 835 curgeneration = object->generation; 836 837 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 838 pi = p->pindex; 839 if (pi >= tend) 840 break; 841 np = TAILQ_NEXT(p, listq); 842 if (vm_page_none_valid(p)) 843 continue; 844 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 845 if (object->generation != curgeneration && 846 (flags & OBJPC_SYNC) != 0) 847 goto rescan; 848 np = vm_page_find_least(object, pi); 849 continue; 850 } 851 if (!vm_object_page_remove_write(p, flags, &allclean)) { 852 vm_page_xunbusy(p); 853 continue; 854 } 855 856 n = vm_object_page_collect_flush(object, p, pagerflags, 857 flags, &allclean, &eio); 858 if (eio) { 859 res = FALSE; 860 allclean = FALSE; 861 } 862 if (object->generation != curgeneration && 863 (flags & OBJPC_SYNC) != 0) 864 goto rescan; 865 866 /* 867 * If the VOP_PUTPAGES() did a truncated write, so 868 * that even the first page of the run is not fully 869 * written, vm_pageout_flush() returns 0 as the run 870 * length. Since the condition that caused truncated 871 * write may be permanent, e.g. exhausted free space, 872 * accepting n == 0 would cause an infinite loop. 873 * 874 * Forwarding the iterator leaves the unwritten page 875 * behind, but there is not much we can do there if 876 * filesystem refuses to write it. 877 */ 878 if (n == 0) { 879 n = 1; 880 allclean = FALSE; 881 } 882 np = vm_page_find_least(object, pi + n); 883 } 884 #if 0 885 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 886 #endif 887 888 if (allclean) 889 object->cleangeneration = curgeneration; 890 return (res); 891 } 892 893 static int 894 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 895 int flags, boolean_t *allclean, boolean_t *eio) 896 { 897 vm_page_t ma[vm_pageout_page_count], p_first, tp; 898 int count, i, mreq, runlen; 899 900 vm_page_lock_assert(p, MA_NOTOWNED); 901 vm_page_assert_xbusied(p); 902 VM_OBJECT_ASSERT_WLOCKED(object); 903 904 count = 1; 905 mreq = 0; 906 907 for (tp = p; count < vm_pageout_page_count; count++) { 908 tp = vm_page_next(tp); 909 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 910 break; 911 if (!vm_object_page_remove_write(tp, flags, allclean)) { 912 vm_page_xunbusy(tp); 913 break; 914 } 915 } 916 917 for (p_first = p; count < vm_pageout_page_count; count++) { 918 tp = vm_page_prev(p_first); 919 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 920 break; 921 if (!vm_object_page_remove_write(tp, flags, allclean)) { 922 vm_page_xunbusy(tp); 923 break; 924 } 925 p_first = tp; 926 mreq++; 927 } 928 929 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 930 ma[i] = tp; 931 932 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 933 return (runlen); 934 } 935 936 /* 937 * Note that there is absolutely no sense in writing out 938 * anonymous objects, so we track down the vnode object 939 * to write out. 940 * We invalidate (remove) all pages from the address space 941 * for semantic correctness. 942 * 943 * If the backing object is a device object with unmanaged pages, then any 944 * mappings to the specified range of pages must be removed before this 945 * function is called. 946 * 947 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 948 * may start out with a NULL object. 949 */ 950 boolean_t 951 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 952 boolean_t syncio, boolean_t invalidate) 953 { 954 vm_object_t backing_object; 955 struct vnode *vp; 956 struct mount *mp; 957 int error, flags, fsync_after; 958 boolean_t res; 959 960 if (object == NULL) 961 return (TRUE); 962 res = TRUE; 963 error = 0; 964 VM_OBJECT_WLOCK(object); 965 while ((backing_object = object->backing_object) != NULL) { 966 VM_OBJECT_WLOCK(backing_object); 967 offset += object->backing_object_offset; 968 VM_OBJECT_WUNLOCK(object); 969 object = backing_object; 970 if (object->size < OFF_TO_IDX(offset + size)) 971 size = IDX_TO_OFF(object->size) - offset; 972 } 973 /* 974 * Flush pages if writing is allowed, invalidate them 975 * if invalidation requested. Pages undergoing I/O 976 * will be ignored by vm_object_page_remove(). 977 * 978 * We cannot lock the vnode and then wait for paging 979 * to complete without deadlocking against vm_fault. 980 * Instead we simply call vm_object_page_remove() and 981 * allow it to block internally on a page-by-page 982 * basis when it encounters pages undergoing async 983 * I/O. 984 */ 985 if (object->type == OBJT_VNODE && 986 vm_object_mightbedirty(object) != 0 && 987 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 988 VM_OBJECT_WUNLOCK(object); 989 (void) vn_start_write(vp, &mp, V_WAIT); 990 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 991 if (syncio && !invalidate && offset == 0 && 992 atop(size) == object->size) { 993 /* 994 * If syncing the whole mapping of the file, 995 * it is faster to schedule all the writes in 996 * async mode, also allowing the clustering, 997 * and then wait for i/o to complete. 998 */ 999 flags = 0; 1000 fsync_after = TRUE; 1001 } else { 1002 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1003 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1004 fsync_after = FALSE; 1005 } 1006 VM_OBJECT_WLOCK(object); 1007 res = vm_object_page_clean(object, offset, offset + size, 1008 flags); 1009 VM_OBJECT_WUNLOCK(object); 1010 if (fsync_after) 1011 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1012 VOP_UNLOCK(vp, 0); 1013 vn_finished_write(mp); 1014 if (error != 0) 1015 res = FALSE; 1016 VM_OBJECT_WLOCK(object); 1017 } 1018 if ((object->type == OBJT_VNODE || 1019 object->type == OBJT_DEVICE) && invalidate) { 1020 if (object->type == OBJT_DEVICE) 1021 /* 1022 * The option OBJPR_NOTMAPPED must be passed here 1023 * because vm_object_page_remove() cannot remove 1024 * unmanaged mappings. 1025 */ 1026 flags = OBJPR_NOTMAPPED; 1027 else if (old_msync) 1028 flags = 0; 1029 else 1030 flags = OBJPR_CLEANONLY; 1031 vm_object_page_remove(object, OFF_TO_IDX(offset), 1032 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1033 } 1034 VM_OBJECT_WUNLOCK(object); 1035 return (res); 1036 } 1037 1038 /* 1039 * Determine whether the given advice can be applied to the object. Advice is 1040 * not applied to unmanaged pages since they never belong to page queues, and 1041 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1042 * have been mapped at most once. 1043 */ 1044 static bool 1045 vm_object_advice_applies(vm_object_t object, int advice) 1046 { 1047 1048 if ((object->flags & OBJ_UNMANAGED) != 0) 1049 return (false); 1050 if (advice != MADV_FREE) 1051 return (true); 1052 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1053 (object->flags & OBJ_ONEMAPPING) != 0); 1054 } 1055 1056 static void 1057 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1058 vm_size_t size) 1059 { 1060 1061 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1062 swap_pager_freespace(object, pindex, size); 1063 } 1064 1065 /* 1066 * vm_object_madvise: 1067 * 1068 * Implements the madvise function at the object/page level. 1069 * 1070 * MADV_WILLNEED (any object) 1071 * 1072 * Activate the specified pages if they are resident. 1073 * 1074 * MADV_DONTNEED (any object) 1075 * 1076 * Deactivate the specified pages if they are resident. 1077 * 1078 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1079 * OBJ_ONEMAPPING only) 1080 * 1081 * Deactivate and clean the specified pages if they are 1082 * resident. This permits the process to reuse the pages 1083 * without faulting or the kernel to reclaim the pages 1084 * without I/O. 1085 */ 1086 void 1087 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1088 int advice) 1089 { 1090 vm_pindex_t tpindex; 1091 vm_object_t backing_object, tobject; 1092 vm_page_t m, tm; 1093 1094 if (object == NULL) 1095 return; 1096 1097 relookup: 1098 VM_OBJECT_WLOCK(object); 1099 if (!vm_object_advice_applies(object, advice)) { 1100 VM_OBJECT_WUNLOCK(object); 1101 return; 1102 } 1103 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1104 tobject = object; 1105 1106 /* 1107 * If the next page isn't resident in the top-level object, we 1108 * need to search the shadow chain. When applying MADV_FREE, we 1109 * take care to release any swap space used to store 1110 * non-resident pages. 1111 */ 1112 if (m == NULL || pindex < m->pindex) { 1113 /* 1114 * Optimize a common case: if the top-level object has 1115 * no backing object, we can skip over the non-resident 1116 * range in constant time. 1117 */ 1118 if (object->backing_object == NULL) { 1119 tpindex = (m != NULL && m->pindex < end) ? 1120 m->pindex : end; 1121 vm_object_madvise_freespace(object, advice, 1122 pindex, tpindex - pindex); 1123 if ((pindex = tpindex) == end) 1124 break; 1125 goto next_page; 1126 } 1127 1128 tpindex = pindex; 1129 do { 1130 vm_object_madvise_freespace(tobject, advice, 1131 tpindex, 1); 1132 /* 1133 * Prepare to search the next object in the 1134 * chain. 1135 */ 1136 backing_object = tobject->backing_object; 1137 if (backing_object == NULL) 1138 goto next_pindex; 1139 VM_OBJECT_WLOCK(backing_object); 1140 tpindex += 1141 OFF_TO_IDX(tobject->backing_object_offset); 1142 if (tobject != object) 1143 VM_OBJECT_WUNLOCK(tobject); 1144 tobject = backing_object; 1145 if (!vm_object_advice_applies(tobject, advice)) 1146 goto next_pindex; 1147 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1148 NULL); 1149 } else { 1150 next_page: 1151 tm = m; 1152 m = TAILQ_NEXT(m, listq); 1153 } 1154 1155 /* 1156 * If the page is not in a normal state, skip it. The page 1157 * can not be invalidated while the object lock is held. 1158 */ 1159 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1160 goto next_pindex; 1161 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1162 ("vm_object_madvise: page %p is fictitious", tm)); 1163 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1164 ("vm_object_madvise: page %p is not managed", tm)); 1165 if (vm_page_tryxbusy(tm) == 0) { 1166 if (object != tobject) 1167 VM_OBJECT_WUNLOCK(object); 1168 if (advice == MADV_WILLNEED) { 1169 /* 1170 * Reference the page before unlocking and 1171 * sleeping so that the page daemon is less 1172 * likely to reclaim it. 1173 */ 1174 vm_page_aflag_set(tm, PGA_REFERENCED); 1175 } 1176 vm_page_busy_sleep(tm, "madvpo", false); 1177 goto relookup; 1178 } 1179 vm_page_lock(tm); 1180 vm_page_advise(tm, advice); 1181 vm_page_unlock(tm); 1182 vm_page_xunbusy(tm); 1183 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1184 next_pindex: 1185 if (tobject != object) 1186 VM_OBJECT_WUNLOCK(tobject); 1187 } 1188 VM_OBJECT_WUNLOCK(object); 1189 } 1190 1191 /* 1192 * vm_object_shadow: 1193 * 1194 * Create a new object which is backed by the 1195 * specified existing object range. The source 1196 * object reference is deallocated. 1197 * 1198 * The new object and offset into that object 1199 * are returned in the source parameters. 1200 */ 1201 void 1202 vm_object_shadow( 1203 vm_object_t *object, /* IN/OUT */ 1204 vm_ooffset_t *offset, /* IN/OUT */ 1205 vm_size_t length) 1206 { 1207 vm_object_t source; 1208 vm_object_t result; 1209 1210 source = *object; 1211 1212 /* 1213 * Don't create the new object if the old object isn't shared. 1214 */ 1215 if (source != NULL) { 1216 VM_OBJECT_RLOCK(source); 1217 if (source->ref_count == 1 && 1218 source->handle == NULL && 1219 (source->type == OBJT_DEFAULT || 1220 source->type == OBJT_SWAP)) { 1221 VM_OBJECT_RUNLOCK(source); 1222 return; 1223 } 1224 VM_OBJECT_RUNLOCK(source); 1225 } 1226 1227 /* 1228 * Allocate a new object with the given length. 1229 */ 1230 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1231 1232 /* 1233 * The new object shadows the source object, adding a reference to it. 1234 * Our caller changes his reference to point to the new object, 1235 * removing a reference to the source object. Net result: no change 1236 * of reference count. 1237 * 1238 * Try to optimize the result object's page color when shadowing 1239 * in order to maintain page coloring consistency in the combined 1240 * shadowed object. 1241 */ 1242 result->backing_object = source; 1243 /* 1244 * Store the offset into the source object, and fix up the offset into 1245 * the new object. 1246 */ 1247 result->backing_object_offset = *offset; 1248 if (source != NULL) { 1249 VM_OBJECT_WLOCK(source); 1250 result->domain = source->domain; 1251 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1252 source->shadow_count++; 1253 #if VM_NRESERVLEVEL > 0 1254 result->flags |= source->flags & OBJ_COLORED; 1255 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1256 ((1 << (VM_NFREEORDER - 1)) - 1); 1257 #endif 1258 VM_OBJECT_WUNLOCK(source); 1259 } 1260 1261 1262 /* 1263 * Return the new things 1264 */ 1265 *offset = 0; 1266 *object = result; 1267 } 1268 1269 /* 1270 * vm_object_split: 1271 * 1272 * Split the pages in a map entry into a new object. This affords 1273 * easier removal of unused pages, and keeps object inheritance from 1274 * being a negative impact on memory usage. 1275 */ 1276 void 1277 vm_object_split(vm_map_entry_t entry) 1278 { 1279 vm_page_t m, m_next; 1280 vm_object_t orig_object, new_object, source; 1281 vm_pindex_t idx, offidxstart; 1282 vm_size_t size; 1283 1284 orig_object = entry->object.vm_object; 1285 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1286 return; 1287 if (orig_object->ref_count <= 1) 1288 return; 1289 VM_OBJECT_WUNLOCK(orig_object); 1290 1291 offidxstart = OFF_TO_IDX(entry->offset); 1292 size = atop(entry->end - entry->start); 1293 1294 /* 1295 * If swap_pager_copy() is later called, it will convert new_object 1296 * into a swap object. 1297 */ 1298 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1299 1300 /* 1301 * At this point, the new object is still private, so the order in 1302 * which the original and new objects are locked does not matter. 1303 */ 1304 VM_OBJECT_WLOCK(new_object); 1305 VM_OBJECT_WLOCK(orig_object); 1306 new_object->domain = orig_object->domain; 1307 source = orig_object->backing_object; 1308 if (source != NULL) { 1309 VM_OBJECT_WLOCK(source); 1310 if ((source->flags & OBJ_DEAD) != 0) { 1311 VM_OBJECT_WUNLOCK(source); 1312 VM_OBJECT_WUNLOCK(orig_object); 1313 VM_OBJECT_WUNLOCK(new_object); 1314 vm_object_deallocate(new_object); 1315 VM_OBJECT_WLOCK(orig_object); 1316 return; 1317 } 1318 LIST_INSERT_HEAD(&source->shadow_head, 1319 new_object, shadow_list); 1320 source->shadow_count++; 1321 vm_object_reference_locked(source); /* for new_object */ 1322 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1323 VM_OBJECT_WUNLOCK(source); 1324 new_object->backing_object_offset = 1325 orig_object->backing_object_offset + entry->offset; 1326 new_object->backing_object = source; 1327 } 1328 if (orig_object->cred != NULL) { 1329 new_object->cred = orig_object->cred; 1330 crhold(orig_object->cred); 1331 new_object->charge = ptoa(size); 1332 KASSERT(orig_object->charge >= ptoa(size), 1333 ("orig_object->charge < 0")); 1334 orig_object->charge -= ptoa(size); 1335 } 1336 retry: 1337 m = vm_page_find_least(orig_object, offidxstart); 1338 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1339 m = m_next) { 1340 m_next = TAILQ_NEXT(m, listq); 1341 1342 /* 1343 * We must wait for pending I/O to complete before we can 1344 * rename the page. 1345 * 1346 * We do not have to VM_PROT_NONE the page as mappings should 1347 * not be changed by this operation. 1348 */ 1349 if (vm_page_tryxbusy(m) == 0) { 1350 VM_OBJECT_WUNLOCK(new_object); 1351 vm_page_sleep_if_busy(m, "spltwt"); 1352 VM_OBJECT_WLOCK(new_object); 1353 goto retry; 1354 } 1355 1356 /* vm_page_rename() will dirty the page. */ 1357 if (vm_page_rename(m, new_object, idx)) { 1358 vm_page_xunbusy(m); 1359 VM_OBJECT_WUNLOCK(new_object); 1360 VM_OBJECT_WUNLOCK(orig_object); 1361 vm_radix_wait(); 1362 VM_OBJECT_WLOCK(orig_object); 1363 VM_OBJECT_WLOCK(new_object); 1364 goto retry; 1365 } 1366 1367 #if VM_NRESERVLEVEL > 0 1368 /* 1369 * If some of the reservation's allocated pages remain with 1370 * the original object, then transferring the reservation to 1371 * the new object is neither particularly beneficial nor 1372 * particularly harmful as compared to leaving the reservation 1373 * with the original object. If, however, all of the 1374 * reservation's allocated pages are transferred to the new 1375 * object, then transferring the reservation is typically 1376 * beneficial. Determining which of these two cases applies 1377 * would be more costly than unconditionally renaming the 1378 * reservation. 1379 */ 1380 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1381 #endif 1382 if (orig_object->type != OBJT_SWAP) 1383 vm_page_xunbusy(m); 1384 } 1385 if (orig_object->type == OBJT_SWAP) { 1386 /* 1387 * swap_pager_copy() can sleep, in which case the orig_object's 1388 * and new_object's locks are released and reacquired. 1389 */ 1390 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1391 TAILQ_FOREACH(m, &new_object->memq, listq) 1392 vm_page_xunbusy(m); 1393 } 1394 VM_OBJECT_WUNLOCK(orig_object); 1395 VM_OBJECT_WUNLOCK(new_object); 1396 entry->object.vm_object = new_object; 1397 entry->offset = 0LL; 1398 vm_object_deallocate(orig_object); 1399 VM_OBJECT_WLOCK(new_object); 1400 } 1401 1402 #define OBSC_COLLAPSE_NOWAIT 0x0002 1403 #define OBSC_COLLAPSE_WAIT 0x0004 1404 1405 static vm_page_t 1406 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1407 int op) 1408 { 1409 vm_object_t backing_object; 1410 1411 VM_OBJECT_ASSERT_WLOCKED(object); 1412 backing_object = object->backing_object; 1413 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1414 1415 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1416 ("invalid ownership %p %p %p", p, object, backing_object)); 1417 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1418 return (next); 1419 /* The page is only NULL when rename fails. */ 1420 if (p == NULL) { 1421 vm_radix_wait(); 1422 } else { 1423 if (p->object == object) 1424 VM_OBJECT_WUNLOCK(backing_object); 1425 else 1426 VM_OBJECT_WUNLOCK(object); 1427 vm_page_busy_sleep(p, "vmocol", false); 1428 } 1429 VM_OBJECT_WLOCK(object); 1430 VM_OBJECT_WLOCK(backing_object); 1431 return (TAILQ_FIRST(&backing_object->memq)); 1432 } 1433 1434 static bool 1435 vm_object_scan_all_shadowed(vm_object_t object) 1436 { 1437 vm_object_t backing_object; 1438 vm_page_t p, pp; 1439 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1440 1441 VM_OBJECT_ASSERT_WLOCKED(object); 1442 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1443 1444 backing_object = object->backing_object; 1445 1446 if (backing_object->type != OBJT_DEFAULT && 1447 backing_object->type != OBJT_SWAP) 1448 return (false); 1449 1450 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1451 p = vm_page_find_least(backing_object, pi); 1452 ps = swap_pager_find_least(backing_object, pi); 1453 1454 /* 1455 * Only check pages inside the parent object's range and 1456 * inside the parent object's mapping of the backing object. 1457 */ 1458 for (;; pi++) { 1459 if (p != NULL && p->pindex < pi) 1460 p = TAILQ_NEXT(p, listq); 1461 if (ps < pi) 1462 ps = swap_pager_find_least(backing_object, pi); 1463 if (p == NULL && ps >= backing_object->size) 1464 break; 1465 else if (p == NULL) 1466 pi = ps; 1467 else 1468 pi = MIN(p->pindex, ps); 1469 1470 new_pindex = pi - backing_offset_index; 1471 if (new_pindex >= object->size) 1472 break; 1473 1474 /* 1475 * See if the parent has the page or if the parent's object 1476 * pager has the page. If the parent has the page but the page 1477 * is not valid, the parent's object pager must have the page. 1478 * 1479 * If this fails, the parent does not completely shadow the 1480 * object and we might as well give up now. 1481 */ 1482 pp = vm_page_lookup(object, new_pindex); 1483 /* 1484 * The valid check here is stable due to object lock being 1485 * required to clear valid and initiate paging. 1486 */ 1487 if ((pp == NULL || vm_page_none_valid(pp)) && 1488 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1489 return (false); 1490 } 1491 return (true); 1492 } 1493 1494 static bool 1495 vm_object_collapse_scan(vm_object_t object, int op) 1496 { 1497 vm_object_t backing_object; 1498 vm_page_t next, p, pp; 1499 vm_pindex_t backing_offset_index, new_pindex; 1500 1501 VM_OBJECT_ASSERT_WLOCKED(object); 1502 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1503 1504 backing_object = object->backing_object; 1505 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1506 1507 /* 1508 * Initial conditions 1509 */ 1510 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1511 vm_object_set_flag(backing_object, OBJ_DEAD); 1512 1513 /* 1514 * Our scan 1515 */ 1516 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1517 next = TAILQ_NEXT(p, listq); 1518 new_pindex = p->pindex - backing_offset_index; 1519 1520 /* 1521 * Check for busy page 1522 */ 1523 if (vm_page_tryxbusy(p) == 0) { 1524 next = vm_object_collapse_scan_wait(object, p, next, op); 1525 continue; 1526 } 1527 1528 KASSERT(p->object == backing_object, 1529 ("vm_object_collapse_scan: object mismatch")); 1530 1531 if (p->pindex < backing_offset_index || 1532 new_pindex >= object->size) { 1533 if (backing_object->type == OBJT_SWAP) 1534 swap_pager_freespace(backing_object, p->pindex, 1535 1); 1536 1537 KASSERT(!pmap_page_is_mapped(p), 1538 ("freeing mapped page %p", p)); 1539 if (vm_page_remove(p)) 1540 vm_page_free(p); 1541 else 1542 vm_page_xunbusy(p); 1543 continue; 1544 } 1545 1546 pp = vm_page_lookup(object, new_pindex); 1547 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1548 vm_page_xunbusy(p); 1549 /* 1550 * The page in the parent is busy and possibly not 1551 * (yet) valid. Until its state is finalized by the 1552 * busy bit owner, we can't tell whether it shadows the 1553 * original page. Therefore, we must either skip it 1554 * and the original (backing_object) page or wait for 1555 * its state to be finalized. 1556 * 1557 * This is due to a race with vm_fault() where we must 1558 * unbusy the original (backing_obj) page before we can 1559 * (re)lock the parent. Hence we can get here. 1560 */ 1561 next = vm_object_collapse_scan_wait(object, pp, next, 1562 op); 1563 continue; 1564 } 1565 1566 KASSERT(pp == NULL || !vm_page_none_valid(pp), 1567 ("unbusy invalid page %p", pp)); 1568 1569 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1570 NULL)) { 1571 /* 1572 * The page already exists in the parent OR swap exists 1573 * for this location in the parent. Leave the parent's 1574 * page alone. Destroy the original page from the 1575 * backing object. 1576 */ 1577 if (backing_object->type == OBJT_SWAP) 1578 swap_pager_freespace(backing_object, p->pindex, 1579 1); 1580 KASSERT(!pmap_page_is_mapped(p), 1581 ("freeing mapped page %p", p)); 1582 if (vm_page_remove(p)) 1583 vm_page_free(p); 1584 else 1585 vm_page_xunbusy(p); 1586 if (pp != NULL) 1587 vm_page_xunbusy(pp); 1588 continue; 1589 } 1590 1591 /* 1592 * Page does not exist in parent, rename the page from the 1593 * backing object to the main object. 1594 * 1595 * If the page was mapped to a process, it can remain mapped 1596 * through the rename. vm_page_rename() will dirty the page. 1597 */ 1598 if (vm_page_rename(p, object, new_pindex)) { 1599 vm_page_xunbusy(p); 1600 if (pp != NULL) 1601 vm_page_xunbusy(pp); 1602 next = vm_object_collapse_scan_wait(object, NULL, next, 1603 op); 1604 continue; 1605 } 1606 1607 /* Use the old pindex to free the right page. */ 1608 if (backing_object->type == OBJT_SWAP) 1609 swap_pager_freespace(backing_object, 1610 new_pindex + backing_offset_index, 1); 1611 1612 #if VM_NRESERVLEVEL > 0 1613 /* 1614 * Rename the reservation. 1615 */ 1616 vm_reserv_rename(p, object, backing_object, 1617 backing_offset_index); 1618 #endif 1619 vm_page_xunbusy(p); 1620 } 1621 return (true); 1622 } 1623 1624 1625 /* 1626 * this version of collapse allows the operation to occur earlier and 1627 * when paging_in_progress is true for an object... This is not a complete 1628 * operation, but should plug 99.9% of the rest of the leaks. 1629 */ 1630 static void 1631 vm_object_qcollapse(vm_object_t object) 1632 { 1633 vm_object_t backing_object = object->backing_object; 1634 1635 VM_OBJECT_ASSERT_WLOCKED(object); 1636 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1637 1638 if (backing_object->ref_count != 1) 1639 return; 1640 1641 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1642 } 1643 1644 /* 1645 * vm_object_collapse: 1646 * 1647 * Collapse an object with the object backing it. 1648 * Pages in the backing object are moved into the 1649 * parent, and the backing object is deallocated. 1650 */ 1651 void 1652 vm_object_collapse(vm_object_t object) 1653 { 1654 vm_object_t backing_object, new_backing_object; 1655 1656 VM_OBJECT_ASSERT_WLOCKED(object); 1657 1658 while (TRUE) { 1659 /* 1660 * Verify that the conditions are right for collapse: 1661 * 1662 * The object exists and the backing object exists. 1663 */ 1664 if ((backing_object = object->backing_object) == NULL) 1665 break; 1666 1667 /* 1668 * we check the backing object first, because it is most likely 1669 * not collapsable. 1670 */ 1671 VM_OBJECT_WLOCK(backing_object); 1672 if (backing_object->handle != NULL || 1673 (backing_object->type != OBJT_DEFAULT && 1674 backing_object->type != OBJT_SWAP) || 1675 (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 || 1676 object->handle != NULL || 1677 (object->type != OBJT_DEFAULT && 1678 object->type != OBJT_SWAP) || 1679 (object->flags & OBJ_DEAD)) { 1680 VM_OBJECT_WUNLOCK(backing_object); 1681 break; 1682 } 1683 1684 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 || 1685 REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) { 1686 vm_object_qcollapse(object); 1687 VM_OBJECT_WUNLOCK(backing_object); 1688 break; 1689 } 1690 1691 /* 1692 * We know that we can either collapse the backing object (if 1693 * the parent is the only reference to it) or (perhaps) have 1694 * the parent bypass the object if the parent happens to shadow 1695 * all the resident pages in the entire backing object. 1696 * 1697 * This is ignoring pager-backed pages such as swap pages. 1698 * vm_object_collapse_scan fails the shadowing test in this 1699 * case. 1700 */ 1701 if (backing_object->ref_count == 1) { 1702 vm_object_pip_add(object, 1); 1703 vm_object_pip_add(backing_object, 1); 1704 1705 /* 1706 * If there is exactly one reference to the backing 1707 * object, we can collapse it into the parent. 1708 */ 1709 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1710 1711 #if VM_NRESERVLEVEL > 0 1712 /* 1713 * Break any reservations from backing_object. 1714 */ 1715 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1716 vm_reserv_break_all(backing_object); 1717 #endif 1718 1719 /* 1720 * Move the pager from backing_object to object. 1721 */ 1722 if (backing_object->type == OBJT_SWAP) { 1723 /* 1724 * swap_pager_copy() can sleep, in which case 1725 * the backing_object's and object's locks are 1726 * released and reacquired. 1727 * Since swap_pager_copy() is being asked to 1728 * destroy the source, it will change the 1729 * backing_object's type to OBJT_DEFAULT. 1730 */ 1731 swap_pager_copy( 1732 backing_object, 1733 object, 1734 OFF_TO_IDX(object->backing_object_offset), TRUE); 1735 } 1736 /* 1737 * Object now shadows whatever backing_object did. 1738 * Note that the reference to 1739 * backing_object->backing_object moves from within 1740 * backing_object to within object. 1741 */ 1742 LIST_REMOVE(object, shadow_list); 1743 backing_object->shadow_count--; 1744 if (backing_object->backing_object) { 1745 VM_OBJECT_WLOCK(backing_object->backing_object); 1746 LIST_REMOVE(backing_object, shadow_list); 1747 LIST_INSERT_HEAD( 1748 &backing_object->backing_object->shadow_head, 1749 object, shadow_list); 1750 /* 1751 * The shadow_count has not changed. 1752 */ 1753 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1754 } 1755 object->backing_object = backing_object->backing_object; 1756 object->backing_object_offset += 1757 backing_object->backing_object_offset; 1758 1759 /* 1760 * Discard backing_object. 1761 * 1762 * Since the backing object has no pages, no pager left, 1763 * and no object references within it, all that is 1764 * necessary is to dispose of it. 1765 */ 1766 KASSERT(backing_object->ref_count == 1, ( 1767 "backing_object %p was somehow re-referenced during collapse!", 1768 backing_object)); 1769 vm_object_pip_wakeup(backing_object); 1770 backing_object->type = OBJT_DEAD; 1771 backing_object->ref_count = 0; 1772 VM_OBJECT_WUNLOCK(backing_object); 1773 vm_object_destroy(backing_object); 1774 1775 vm_object_pip_wakeup(object); 1776 counter_u64_add(object_collapses, 1); 1777 } else { 1778 /* 1779 * If we do not entirely shadow the backing object, 1780 * there is nothing we can do so we give up. 1781 */ 1782 if (object->resident_page_count != object->size && 1783 !vm_object_scan_all_shadowed(object)) { 1784 VM_OBJECT_WUNLOCK(backing_object); 1785 break; 1786 } 1787 1788 /* 1789 * Make the parent shadow the next object in the 1790 * chain. Deallocating backing_object will not remove 1791 * it, since its reference count is at least 2. 1792 */ 1793 LIST_REMOVE(object, shadow_list); 1794 backing_object->shadow_count--; 1795 1796 new_backing_object = backing_object->backing_object; 1797 if ((object->backing_object = new_backing_object) != NULL) { 1798 VM_OBJECT_WLOCK(new_backing_object); 1799 LIST_INSERT_HEAD( 1800 &new_backing_object->shadow_head, 1801 object, 1802 shadow_list 1803 ); 1804 new_backing_object->shadow_count++; 1805 vm_object_reference_locked(new_backing_object); 1806 VM_OBJECT_WUNLOCK(new_backing_object); 1807 object->backing_object_offset += 1808 backing_object->backing_object_offset; 1809 } 1810 1811 /* 1812 * Drop the reference count on backing_object. Since 1813 * its ref_count was at least 2, it will not vanish. 1814 */ 1815 refcount_release(&backing_object->ref_count); 1816 VM_OBJECT_WUNLOCK(backing_object); 1817 counter_u64_add(object_bypasses, 1); 1818 } 1819 1820 /* 1821 * Try again with this object's new backing object. 1822 */ 1823 } 1824 } 1825 1826 /* 1827 * vm_object_page_remove: 1828 * 1829 * For the given object, either frees or invalidates each of the 1830 * specified pages. In general, a page is freed. However, if a page is 1831 * wired for any reason other than the existence of a managed, wired 1832 * mapping, then it may be invalidated but not removed from the object. 1833 * Pages are specified by the given range ["start", "end") and the option 1834 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1835 * extends from "start" to the end of the object. If the option 1836 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1837 * specified range are affected. If the option OBJPR_NOTMAPPED is 1838 * specified, then the pages within the specified range must have no 1839 * mappings. Otherwise, if this option is not specified, any mappings to 1840 * the specified pages are removed before the pages are freed or 1841 * invalidated. 1842 * 1843 * In general, this operation should only be performed on objects that 1844 * contain managed pages. There are, however, two exceptions. First, it 1845 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1846 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1847 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1848 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1849 * 1850 * The object must be locked. 1851 */ 1852 void 1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1854 int options) 1855 { 1856 vm_page_t p, next; 1857 1858 VM_OBJECT_ASSERT_WLOCKED(object); 1859 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1860 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1861 ("vm_object_page_remove: illegal options for object %p", object)); 1862 if (object->resident_page_count == 0) 1863 return; 1864 vm_object_pip_add(object, 1); 1865 again: 1866 p = vm_page_find_least(object, start); 1867 1868 /* 1869 * Here, the variable "p" is either (1) the page with the least pindex 1870 * greater than or equal to the parameter "start" or (2) NULL. 1871 */ 1872 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1873 next = TAILQ_NEXT(p, listq); 1874 1875 /* 1876 * If the page is wired for any reason besides the existence 1877 * of managed, wired mappings, then it cannot be freed. For 1878 * example, fictitious pages, which represent device memory, 1879 * are inherently wired and cannot be freed. They can, 1880 * however, be invalidated if the option OBJPR_CLEANONLY is 1881 * not specified. 1882 */ 1883 if (vm_page_tryxbusy(p) == 0) { 1884 vm_page_sleep_if_busy(p, "vmopar"); 1885 goto again; 1886 } 1887 if (vm_page_wired(p)) { 1888 wired: 1889 if ((options & OBJPR_NOTMAPPED) == 0 && 1890 object->ref_count != 0) 1891 pmap_remove_all(p); 1892 if ((options & OBJPR_CLEANONLY) == 0) { 1893 vm_page_invalid(p); 1894 vm_page_undirty(p); 1895 } 1896 vm_page_xunbusy(p); 1897 continue; 1898 } 1899 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1900 ("vm_object_page_remove: page %p is fictitious", p)); 1901 if ((options & OBJPR_CLEANONLY) != 0 && 1902 !vm_page_none_valid(p)) { 1903 if ((options & OBJPR_NOTMAPPED) == 0 && 1904 object->ref_count != 0 && 1905 !vm_page_try_remove_write(p)) 1906 goto wired; 1907 if (p->dirty != 0) { 1908 vm_page_xunbusy(p); 1909 continue; 1910 } 1911 } 1912 if ((options & OBJPR_NOTMAPPED) == 0 && 1913 object->ref_count != 0 && !vm_page_try_remove_all(p)) 1914 goto wired; 1915 vm_page_free(p); 1916 } 1917 vm_object_pip_wakeup(object); 1918 } 1919 1920 /* 1921 * vm_object_page_noreuse: 1922 * 1923 * For the given object, attempt to move the specified pages to 1924 * the head of the inactive queue. This bypasses regular LRU 1925 * operation and allows the pages to be reused quickly under memory 1926 * pressure. If a page is wired for any reason, then it will not 1927 * be queued. Pages are specified by the range ["start", "end"). 1928 * As a special case, if "end" is zero, then the range extends from 1929 * "start" to the end of the object. 1930 * 1931 * This operation should only be performed on objects that 1932 * contain non-fictitious, managed pages. 1933 * 1934 * The object must be locked. 1935 */ 1936 void 1937 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1938 { 1939 struct mtx *mtx; 1940 vm_page_t p, next; 1941 1942 VM_OBJECT_ASSERT_LOCKED(object); 1943 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1944 ("vm_object_page_noreuse: illegal object %p", object)); 1945 if (object->resident_page_count == 0) 1946 return; 1947 p = vm_page_find_least(object, start); 1948 1949 /* 1950 * Here, the variable "p" is either (1) the page with the least pindex 1951 * greater than or equal to the parameter "start" or (2) NULL. 1952 */ 1953 mtx = NULL; 1954 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1955 next = TAILQ_NEXT(p, listq); 1956 vm_page_change_lock(p, &mtx); 1957 vm_page_deactivate_noreuse(p); 1958 } 1959 if (mtx != NULL) 1960 mtx_unlock(mtx); 1961 } 1962 1963 /* 1964 * Populate the specified range of the object with valid pages. Returns 1965 * TRUE if the range is successfully populated and FALSE otherwise. 1966 * 1967 * Note: This function should be optimized to pass a larger array of 1968 * pages to vm_pager_get_pages() before it is applied to a non- 1969 * OBJT_DEVICE object. 1970 * 1971 * The object must be locked. 1972 */ 1973 boolean_t 1974 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1975 { 1976 vm_page_t m; 1977 vm_pindex_t pindex; 1978 int rv; 1979 1980 VM_OBJECT_ASSERT_WLOCKED(object); 1981 for (pindex = start; pindex < end; pindex++) { 1982 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 1983 if (rv != VM_PAGER_OK) 1984 break; 1985 1986 /* 1987 * Keep "m" busy because a subsequent iteration may unlock 1988 * the object. 1989 */ 1990 } 1991 if (pindex > start) { 1992 m = vm_page_lookup(object, start); 1993 while (m != NULL && m->pindex < pindex) { 1994 vm_page_xunbusy(m); 1995 m = TAILQ_NEXT(m, listq); 1996 } 1997 } 1998 return (pindex == end); 1999 } 2000 2001 /* 2002 * Routine: vm_object_coalesce 2003 * Function: Coalesces two objects backing up adjoining 2004 * regions of memory into a single object. 2005 * 2006 * returns TRUE if objects were combined. 2007 * 2008 * NOTE: Only works at the moment if the second object is NULL - 2009 * if it's not, which object do we lock first? 2010 * 2011 * Parameters: 2012 * prev_object First object to coalesce 2013 * prev_offset Offset into prev_object 2014 * prev_size Size of reference to prev_object 2015 * next_size Size of reference to the second object 2016 * reserved Indicator that extension region has 2017 * swap accounted for 2018 * 2019 * Conditions: 2020 * The object must *not* be locked. 2021 */ 2022 boolean_t 2023 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2024 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2025 { 2026 vm_pindex_t next_pindex; 2027 2028 if (prev_object == NULL) 2029 return (TRUE); 2030 VM_OBJECT_WLOCK(prev_object); 2031 if ((prev_object->type != OBJT_DEFAULT && 2032 prev_object->type != OBJT_SWAP) || 2033 (prev_object->flags & OBJ_NOSPLIT) != 0) { 2034 VM_OBJECT_WUNLOCK(prev_object); 2035 return (FALSE); 2036 } 2037 2038 /* 2039 * Try to collapse the object first 2040 */ 2041 vm_object_collapse(prev_object); 2042 2043 /* 2044 * Can't coalesce if: . more than one reference . paged out . shadows 2045 * another object . has a copy elsewhere (any of which mean that the 2046 * pages not mapped to prev_entry may be in use anyway) 2047 */ 2048 if (prev_object->backing_object != NULL) { 2049 VM_OBJECT_WUNLOCK(prev_object); 2050 return (FALSE); 2051 } 2052 2053 prev_size >>= PAGE_SHIFT; 2054 next_size >>= PAGE_SHIFT; 2055 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2056 2057 if (prev_object->ref_count > 1 && 2058 prev_object->size != next_pindex && 2059 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2060 VM_OBJECT_WUNLOCK(prev_object); 2061 return (FALSE); 2062 } 2063 2064 /* 2065 * Account for the charge. 2066 */ 2067 if (prev_object->cred != NULL) { 2068 2069 /* 2070 * If prev_object was charged, then this mapping, 2071 * although not charged now, may become writable 2072 * later. Non-NULL cred in the object would prevent 2073 * swap reservation during enabling of the write 2074 * access, so reserve swap now. Failed reservation 2075 * cause allocation of the separate object for the map 2076 * entry, and swap reservation for this entry is 2077 * managed in appropriate time. 2078 */ 2079 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2080 prev_object->cred)) { 2081 VM_OBJECT_WUNLOCK(prev_object); 2082 return (FALSE); 2083 } 2084 prev_object->charge += ptoa(next_size); 2085 } 2086 2087 /* 2088 * Remove any pages that may still be in the object from a previous 2089 * deallocation. 2090 */ 2091 if (next_pindex < prev_object->size) { 2092 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2093 next_size, 0); 2094 if (prev_object->type == OBJT_SWAP) 2095 swap_pager_freespace(prev_object, 2096 next_pindex, next_size); 2097 #if 0 2098 if (prev_object->cred != NULL) { 2099 KASSERT(prev_object->charge >= 2100 ptoa(prev_object->size - next_pindex), 2101 ("object %p overcharged 1 %jx %jx", prev_object, 2102 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2103 prev_object->charge -= ptoa(prev_object->size - 2104 next_pindex); 2105 } 2106 #endif 2107 } 2108 2109 /* 2110 * Extend the object if necessary. 2111 */ 2112 if (next_pindex + next_size > prev_object->size) 2113 prev_object->size = next_pindex + next_size; 2114 2115 VM_OBJECT_WUNLOCK(prev_object); 2116 return (TRUE); 2117 } 2118 2119 void 2120 vm_object_set_writeable_dirty(vm_object_t object) 2121 { 2122 2123 VM_OBJECT_ASSERT_LOCKED(object); 2124 2125 /* Only set for vnodes & tmpfs */ 2126 if (object->type != OBJT_VNODE && 2127 (object->flags & OBJ_TMPFS_NODE) == 0) 2128 return; 2129 atomic_add_int(&object->generation, 1); 2130 } 2131 2132 /* 2133 * vm_object_unwire: 2134 * 2135 * For each page offset within the specified range of the given object, 2136 * find the highest-level page in the shadow chain and unwire it. A page 2137 * must exist at every page offset, and the highest-level page must be 2138 * wired. 2139 */ 2140 void 2141 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2142 uint8_t queue) 2143 { 2144 vm_object_t tobject, t1object; 2145 vm_page_t m, tm; 2146 vm_pindex_t end_pindex, pindex, tpindex; 2147 int depth, locked_depth; 2148 2149 KASSERT((offset & PAGE_MASK) == 0, 2150 ("vm_object_unwire: offset is not page aligned")); 2151 KASSERT((length & PAGE_MASK) == 0, 2152 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2153 /* The wired count of a fictitious page never changes. */ 2154 if ((object->flags & OBJ_FICTITIOUS) != 0) 2155 return; 2156 pindex = OFF_TO_IDX(offset); 2157 end_pindex = pindex + atop(length); 2158 again: 2159 locked_depth = 1; 2160 VM_OBJECT_RLOCK(object); 2161 m = vm_page_find_least(object, pindex); 2162 while (pindex < end_pindex) { 2163 if (m == NULL || pindex < m->pindex) { 2164 /* 2165 * The first object in the shadow chain doesn't 2166 * contain a page at the current index. Therefore, 2167 * the page must exist in a backing object. 2168 */ 2169 tobject = object; 2170 tpindex = pindex; 2171 depth = 0; 2172 do { 2173 tpindex += 2174 OFF_TO_IDX(tobject->backing_object_offset); 2175 tobject = tobject->backing_object; 2176 KASSERT(tobject != NULL, 2177 ("vm_object_unwire: missing page")); 2178 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2179 goto next_page; 2180 depth++; 2181 if (depth == locked_depth) { 2182 locked_depth++; 2183 VM_OBJECT_RLOCK(tobject); 2184 } 2185 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2186 NULL); 2187 } else { 2188 tm = m; 2189 m = TAILQ_NEXT(m, listq); 2190 } 2191 if (vm_page_trysbusy(tm) == 0) { 2192 for (tobject = object; locked_depth >= 1; 2193 locked_depth--) { 2194 t1object = tobject->backing_object; 2195 if (tm->object != tobject) 2196 VM_OBJECT_RUNLOCK(tobject); 2197 tobject = t1object; 2198 } 2199 vm_page_busy_sleep(tm, "unwbo", true); 2200 goto again; 2201 } 2202 vm_page_unwire(tm, queue); 2203 vm_page_sunbusy(tm); 2204 next_page: 2205 pindex++; 2206 } 2207 /* Release the accumulated object locks. */ 2208 for (tobject = object; locked_depth >= 1; locked_depth--) { 2209 t1object = tobject->backing_object; 2210 VM_OBJECT_RUNLOCK(tobject); 2211 tobject = t1object; 2212 } 2213 } 2214 2215 /* 2216 * Return the vnode for the given object, or NULL if none exists. 2217 * For tmpfs objects, the function may return NULL if there is 2218 * no vnode allocated at the time of the call. 2219 */ 2220 struct vnode * 2221 vm_object_vnode(vm_object_t object) 2222 { 2223 struct vnode *vp; 2224 2225 VM_OBJECT_ASSERT_LOCKED(object); 2226 if (object->type == OBJT_VNODE) { 2227 vp = object->handle; 2228 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__)); 2229 } else if (object->type == OBJT_SWAP && 2230 (object->flags & OBJ_TMPFS) != 0) { 2231 vp = object->un_pager.swp.swp_tmpfs; 2232 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__)); 2233 } else { 2234 vp = NULL; 2235 } 2236 return (vp); 2237 } 2238 2239 2240 /* 2241 * Busy the vm object. This prevents new pages belonging to the object from 2242 * becoming busy. Existing pages persist as busy. Callers are responsible 2243 * for checking page state before proceeding. 2244 */ 2245 void 2246 vm_object_busy(vm_object_t obj) 2247 { 2248 2249 VM_OBJECT_ASSERT_LOCKED(obj); 2250 2251 refcount_acquire(&obj->busy); 2252 /* The fence is required to order loads of page busy. */ 2253 atomic_thread_fence_acq_rel(); 2254 } 2255 2256 void 2257 vm_object_unbusy(vm_object_t obj) 2258 { 2259 2260 2261 refcount_release(&obj->busy); 2262 } 2263 2264 void 2265 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2266 { 2267 2268 VM_OBJECT_ASSERT_UNLOCKED(obj); 2269 2270 if (obj->busy) 2271 refcount_sleep(&obj->busy, wmesg, PVM); 2272 } 2273 2274 /* 2275 * Return the kvme type of the given object. 2276 * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL. 2277 */ 2278 int 2279 vm_object_kvme_type(vm_object_t object, struct vnode **vpp) 2280 { 2281 2282 VM_OBJECT_ASSERT_LOCKED(object); 2283 if (vpp != NULL) 2284 *vpp = vm_object_vnode(object); 2285 switch (object->type) { 2286 case OBJT_DEFAULT: 2287 return (KVME_TYPE_DEFAULT); 2288 case OBJT_VNODE: 2289 return (KVME_TYPE_VNODE); 2290 case OBJT_SWAP: 2291 if ((object->flags & OBJ_TMPFS_NODE) != 0) 2292 return (KVME_TYPE_VNODE); 2293 return (KVME_TYPE_SWAP); 2294 case OBJT_DEVICE: 2295 return (KVME_TYPE_DEVICE); 2296 case OBJT_PHYS: 2297 return (KVME_TYPE_PHYS); 2298 case OBJT_DEAD: 2299 return (KVME_TYPE_DEAD); 2300 case OBJT_SG: 2301 return (KVME_TYPE_SG); 2302 case OBJT_MGTDEVICE: 2303 return (KVME_TYPE_MGTDEVICE); 2304 default: 2305 return (KVME_TYPE_UNKNOWN); 2306 } 2307 } 2308 2309 static int 2310 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2311 { 2312 struct kinfo_vmobject *kvo; 2313 char *fullpath, *freepath; 2314 struct vnode *vp; 2315 struct vattr va; 2316 vm_object_t obj; 2317 vm_page_t m; 2318 int count, error; 2319 2320 if (req->oldptr == NULL) { 2321 /* 2322 * If an old buffer has not been provided, generate an 2323 * estimate of the space needed for a subsequent call. 2324 */ 2325 mtx_lock(&vm_object_list_mtx); 2326 count = 0; 2327 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2328 if (obj->type == OBJT_DEAD) 2329 continue; 2330 count++; 2331 } 2332 mtx_unlock(&vm_object_list_mtx); 2333 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2334 count * 11 / 10)); 2335 } 2336 2337 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2338 error = 0; 2339 2340 /* 2341 * VM objects are type stable and are never removed from the 2342 * list once added. This allows us to safely read obj->object_list 2343 * after reacquiring the VM object lock. 2344 */ 2345 mtx_lock(&vm_object_list_mtx); 2346 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2347 if (obj->type == OBJT_DEAD) 2348 continue; 2349 VM_OBJECT_RLOCK(obj); 2350 if (obj->type == OBJT_DEAD) { 2351 VM_OBJECT_RUNLOCK(obj); 2352 continue; 2353 } 2354 mtx_unlock(&vm_object_list_mtx); 2355 kvo->kvo_size = ptoa(obj->size); 2356 kvo->kvo_resident = obj->resident_page_count; 2357 kvo->kvo_ref_count = obj->ref_count; 2358 kvo->kvo_shadow_count = obj->shadow_count; 2359 kvo->kvo_memattr = obj->memattr; 2360 kvo->kvo_active = 0; 2361 kvo->kvo_inactive = 0; 2362 TAILQ_FOREACH(m, &obj->memq, listq) { 2363 /* 2364 * A page may belong to the object but be 2365 * dequeued and set to PQ_NONE while the 2366 * object lock is not held. This makes the 2367 * reads of m->queue below racy, and we do not 2368 * count pages set to PQ_NONE. However, this 2369 * sysctl is only meant to give an 2370 * approximation of the system anyway. 2371 */ 2372 if (m->queue == PQ_ACTIVE) 2373 kvo->kvo_active++; 2374 else if (m->queue == PQ_INACTIVE) 2375 kvo->kvo_inactive++; 2376 } 2377 2378 kvo->kvo_vn_fileid = 0; 2379 kvo->kvo_vn_fsid = 0; 2380 kvo->kvo_vn_fsid_freebsd11 = 0; 2381 freepath = NULL; 2382 fullpath = ""; 2383 kvo->kvo_type = vm_object_kvme_type(obj, &vp); 2384 if (vp != NULL) 2385 vref(vp); 2386 VM_OBJECT_RUNLOCK(obj); 2387 if (vp != NULL) { 2388 vn_fullpath(curthread, vp, &fullpath, &freepath); 2389 vn_lock(vp, LK_SHARED | LK_RETRY); 2390 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2391 kvo->kvo_vn_fileid = va.va_fileid; 2392 kvo->kvo_vn_fsid = va.va_fsid; 2393 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2394 /* truncate */ 2395 } 2396 vput(vp); 2397 } 2398 2399 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2400 if (freepath != NULL) 2401 free(freepath, M_TEMP); 2402 2403 /* Pack record size down */ 2404 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2405 + strlen(kvo->kvo_path) + 1; 2406 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2407 sizeof(uint64_t)); 2408 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2409 mtx_lock(&vm_object_list_mtx); 2410 if (error) 2411 break; 2412 } 2413 mtx_unlock(&vm_object_list_mtx); 2414 free(kvo, M_TEMP); 2415 return (error); 2416 } 2417 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2418 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2419 "List of VM objects"); 2420 2421 #include "opt_ddb.h" 2422 #ifdef DDB 2423 #include <sys/kernel.h> 2424 2425 #include <sys/cons.h> 2426 2427 #include <ddb/ddb.h> 2428 2429 static int 2430 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2431 { 2432 vm_map_t tmpm; 2433 vm_map_entry_t tmpe; 2434 vm_object_t obj; 2435 2436 if (map == 0) 2437 return 0; 2438 2439 if (entry == 0) { 2440 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2441 if (_vm_object_in_map(map, object, tmpe)) { 2442 return 1; 2443 } 2444 } 2445 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2446 tmpm = entry->object.sub_map; 2447 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2448 if (_vm_object_in_map(tmpm, object, tmpe)) { 2449 return 1; 2450 } 2451 } 2452 } else if ((obj = entry->object.vm_object) != NULL) { 2453 for (; obj; obj = obj->backing_object) 2454 if (obj == object) { 2455 return 1; 2456 } 2457 } 2458 return 0; 2459 } 2460 2461 static int 2462 vm_object_in_map(vm_object_t object) 2463 { 2464 struct proc *p; 2465 2466 /* sx_slock(&allproc_lock); */ 2467 FOREACH_PROC_IN_SYSTEM(p) { 2468 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2469 continue; 2470 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2471 /* sx_sunlock(&allproc_lock); */ 2472 return 1; 2473 } 2474 } 2475 /* sx_sunlock(&allproc_lock); */ 2476 if (_vm_object_in_map(kernel_map, object, 0)) 2477 return 1; 2478 return 0; 2479 } 2480 2481 DB_SHOW_COMMAND(vmochk, vm_object_check) 2482 { 2483 vm_object_t object; 2484 2485 /* 2486 * make sure that internal objs are in a map somewhere 2487 * and none have zero ref counts. 2488 */ 2489 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2490 if (object->handle == NULL && 2491 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2492 if (object->ref_count == 0) { 2493 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2494 (long)object->size); 2495 } 2496 if (!vm_object_in_map(object)) { 2497 db_printf( 2498 "vmochk: internal obj is not in a map: " 2499 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2500 object->ref_count, (u_long)object->size, 2501 (u_long)object->size, 2502 (void *)object->backing_object); 2503 } 2504 } 2505 } 2506 } 2507 2508 /* 2509 * vm_object_print: [ debug ] 2510 */ 2511 DB_SHOW_COMMAND(object, vm_object_print_static) 2512 { 2513 /* XXX convert args. */ 2514 vm_object_t object = (vm_object_t)addr; 2515 boolean_t full = have_addr; 2516 2517 vm_page_t p; 2518 2519 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2520 #define count was_count 2521 2522 int count; 2523 2524 if (object == NULL) 2525 return; 2526 2527 db_iprintf( 2528 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2529 object, (int)object->type, (uintmax_t)object->size, 2530 object->resident_page_count, object->ref_count, object->flags, 2531 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2532 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2533 object->shadow_count, 2534 object->backing_object ? object->backing_object->ref_count : 0, 2535 object->backing_object, (uintmax_t)object->backing_object_offset); 2536 2537 if (!full) 2538 return; 2539 2540 db_indent += 2; 2541 count = 0; 2542 TAILQ_FOREACH(p, &object->memq, listq) { 2543 if (count == 0) 2544 db_iprintf("memory:="); 2545 else if (count == 6) { 2546 db_printf("\n"); 2547 db_iprintf(" ..."); 2548 count = 0; 2549 } else 2550 db_printf(","); 2551 count++; 2552 2553 db_printf("(off=0x%jx,page=0x%jx)", 2554 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2555 } 2556 if (count != 0) 2557 db_printf("\n"); 2558 db_indent -= 2; 2559 } 2560 2561 /* XXX. */ 2562 #undef count 2563 2564 /* XXX need this non-static entry for calling from vm_map_print. */ 2565 void 2566 vm_object_print( 2567 /* db_expr_t */ long addr, 2568 boolean_t have_addr, 2569 /* db_expr_t */ long count, 2570 char *modif) 2571 { 2572 vm_object_print_static(addr, have_addr, count, modif); 2573 } 2574 2575 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2576 { 2577 vm_object_t object; 2578 vm_pindex_t fidx; 2579 vm_paddr_t pa; 2580 vm_page_t m, prev_m; 2581 int rcount, nl, c; 2582 2583 nl = 0; 2584 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2585 db_printf("new object: %p\n", (void *)object); 2586 if (nl > 18) { 2587 c = cngetc(); 2588 if (c != ' ') 2589 return; 2590 nl = 0; 2591 } 2592 nl++; 2593 rcount = 0; 2594 fidx = 0; 2595 pa = -1; 2596 TAILQ_FOREACH(m, &object->memq, listq) { 2597 if (m->pindex > 128) 2598 break; 2599 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2600 prev_m->pindex + 1 != m->pindex) { 2601 if (rcount) { 2602 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2603 (long)fidx, rcount, (long)pa); 2604 if (nl > 18) { 2605 c = cngetc(); 2606 if (c != ' ') 2607 return; 2608 nl = 0; 2609 } 2610 nl++; 2611 rcount = 0; 2612 } 2613 } 2614 if (rcount && 2615 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2616 ++rcount; 2617 continue; 2618 } 2619 if (rcount) { 2620 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2621 (long)fidx, rcount, (long)pa); 2622 if (nl > 18) { 2623 c = cngetc(); 2624 if (c != ' ') 2625 return; 2626 nl = 0; 2627 } 2628 nl++; 2629 } 2630 fidx = m->pindex; 2631 pa = VM_PAGE_TO_PHYS(m); 2632 rcount = 1; 2633 } 2634 if (rcount) { 2635 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2636 (long)fidx, rcount, (long)pa); 2637 if (nl > 18) { 2638 c = cngetc(); 2639 if (c != ' ') 2640 return; 2641 nl = 0; 2642 } 2643 nl++; 2644 } 2645 } 2646 } 2647 #endif /* DDB */ 2648