xref: /freebsd/sys/vm/vm_object.c (revision 42821a2fc9aa8656e89d0353ece77c4799e940bb)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98 
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102 
103 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104 		    int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106 		    int *clearobjflags);
107 static void	vm_object_qcollapse(vm_object_t object);
108 static void	vm_object_vndeallocate(vm_object_t object);
109 
110 /*
111  *	Virtual memory objects maintain the actual data
112  *	associated with allocated virtual memory.  A given
113  *	page of memory exists within exactly one object.
114  *
115  *	An object is only deallocated when all "references"
116  *	are given up.  Only one "reference" to a given
117  *	region of an object should be writeable.
118  *
119  *	Associated with each object is a list of all resident
120  *	memory pages belonging to that object; this list is
121  *	maintained by the "vm_page" module, and locked by the object's
122  *	lock.
123  *
124  *	Each object also records a "pager" routine which is
125  *	used to retrieve (and store) pages to the proper backing
126  *	storage.  In addition, objects may be backed by other
127  *	objects from which they were virtual-copied.
128  *
129  *	The only items within the object structure which are
130  *	modified after time of creation are:
131  *		reference count		locked by object's lock
132  *		pager routine		locked by object's lock
133  *
134  */
135 
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;	/* lock for object list and count */
138 
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141 
142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
143     "VM object stats");
144 
145 static long object_collapses;
146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
147     &object_collapses, 0, "VM object collapses");
148 
149 static long object_bypasses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
151     &object_bypasses, 0, "VM object bypasses");
152 
153 static uma_zone_t obj_zone;
154 
155 static int vm_object_zinit(void *mem, int size, int flags);
156 
157 #ifdef INVARIANTS
158 static void vm_object_zdtor(void *mem, int size, void *arg);
159 
160 static void
161 vm_object_zdtor(void *mem, int size, void *arg)
162 {
163 	vm_object_t object;
164 
165 	object = (vm_object_t)mem;
166 	KASSERT(TAILQ_EMPTY(&object->memq),
167 	    ("object %p has resident pages",
168 	    object));
169 #if VM_NRESERVLEVEL > 0
170 	KASSERT(LIST_EMPTY(&object->rvq),
171 	    ("object %p has reservations",
172 	    object));
173 #endif
174 	KASSERT(object->cache == NULL,
175 	    ("object %p has cached pages",
176 	    object));
177 	KASSERT(object->paging_in_progress == 0,
178 	    ("object %p paging_in_progress = %d",
179 	    object, object->paging_in_progress));
180 	KASSERT(object->resident_page_count == 0,
181 	    ("object %p resident_page_count = %d",
182 	    object, object->resident_page_count));
183 	KASSERT(object->shadow_count == 0,
184 	    ("object %p shadow_count = %d",
185 	    object, object->shadow_count));
186 }
187 #endif
188 
189 static int
190 vm_object_zinit(void *mem, int size, int flags)
191 {
192 	vm_object_t object;
193 
194 	object = (vm_object_t)mem;
195 	bzero(&object->mtx, sizeof(object->mtx));
196 	VM_OBJECT_LOCK_INIT(object, "standard object");
197 
198 	/* These are true for any object that has been freed */
199 	object->paging_in_progress = 0;
200 	object->resident_page_count = 0;
201 	object->shadow_count = 0;
202 	return (0);
203 }
204 
205 void
206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
207 {
208 
209 	TAILQ_INIT(&object->memq);
210 	LIST_INIT(&object->shadow_head);
211 
212 	object->root = NULL;
213 	object->type = type;
214 	object->size = size;
215 	object->generation = 1;
216 	object->ref_count = 1;
217 	object->memattr = VM_MEMATTR_DEFAULT;
218 	object->flags = 0;
219 	object->cred = NULL;
220 	object->charge = 0;
221 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
222 		object->flags = OBJ_ONEMAPPING;
223 	object->pg_color = 0;
224 	object->handle = NULL;
225 	object->backing_object = NULL;
226 	object->backing_object_offset = (vm_ooffset_t) 0;
227 #if VM_NRESERVLEVEL > 0
228 	LIST_INIT(&object->rvq);
229 #endif
230 	object->cache = NULL;
231 
232 	mtx_lock(&vm_object_list_mtx);
233 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
234 	mtx_unlock(&vm_object_list_mtx);
235 }
236 
237 /*
238  *	vm_object_init:
239  *
240  *	Initialize the VM objects module.
241  */
242 void
243 vm_object_init(void)
244 {
245 	TAILQ_INIT(&vm_object_list);
246 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
247 
248 	VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
249 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250 	    kernel_object);
251 #if VM_NRESERVLEVEL > 0
252 	kernel_object->flags |= OBJ_COLORED;
253 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
254 #endif
255 
256 	VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
257 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258 	    kmem_object);
259 #if VM_NRESERVLEVEL > 0
260 	kmem_object->flags |= OBJ_COLORED;
261 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263 
264 	/*
265 	 * The lock portion of struct vm_object must be type stable due
266 	 * to vm_pageout_fallback_object_lock locking a vm object
267 	 * without holding any references to it.
268 	 */
269 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
270 #ifdef INVARIANTS
271 	    vm_object_zdtor,
272 #else
273 	    NULL,
274 #endif
275 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
276 }
277 
278 void
279 vm_object_clear_flag(vm_object_t object, u_short bits)
280 {
281 
282 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
283 	object->flags &= ~bits;
284 }
285 
286 /*
287  *	Sets the default memory attribute for the specified object.  Pages
288  *	that are allocated to this object are by default assigned this memory
289  *	attribute.
290  *
291  *	Presently, this function must be called before any pages are allocated
292  *	to the object.  In the future, this requirement may be relaxed for
293  *	"default" and "swap" objects.
294  */
295 int
296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
297 {
298 
299 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
300 	switch (object->type) {
301 	case OBJT_DEFAULT:
302 	case OBJT_DEVICE:
303 	case OBJT_PHYS:
304 	case OBJT_SG:
305 	case OBJT_SWAP:
306 	case OBJT_VNODE:
307 		if (!TAILQ_EMPTY(&object->memq))
308 			return (KERN_FAILURE);
309 		break;
310 	case OBJT_DEAD:
311 		return (KERN_INVALID_ARGUMENT);
312 	}
313 	object->memattr = memattr;
314 	return (KERN_SUCCESS);
315 }
316 
317 void
318 vm_object_pip_add(vm_object_t object, short i)
319 {
320 
321 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322 	object->paging_in_progress += i;
323 }
324 
325 void
326 vm_object_pip_subtract(vm_object_t object, short i)
327 {
328 
329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330 	object->paging_in_progress -= i;
331 }
332 
333 void
334 vm_object_pip_wakeup(vm_object_t object)
335 {
336 
337 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338 	object->paging_in_progress--;
339 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
340 		vm_object_clear_flag(object, OBJ_PIPWNT);
341 		wakeup(object);
342 	}
343 }
344 
345 void
346 vm_object_pip_wakeupn(vm_object_t object, short i)
347 {
348 
349 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
350 	if (i)
351 		object->paging_in_progress -= i;
352 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
353 		vm_object_clear_flag(object, OBJ_PIPWNT);
354 		wakeup(object);
355 	}
356 }
357 
358 void
359 vm_object_pip_wait(vm_object_t object, char *waitid)
360 {
361 
362 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
363 	while (object->paging_in_progress) {
364 		object->flags |= OBJ_PIPWNT;
365 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
366 	}
367 }
368 
369 /*
370  *	vm_object_allocate:
371  *
372  *	Returns a new object with the given size.
373  */
374 vm_object_t
375 vm_object_allocate(objtype_t type, vm_pindex_t size)
376 {
377 	vm_object_t object;
378 
379 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
380 	_vm_object_allocate(type, size, object);
381 	return (object);
382 }
383 
384 
385 /*
386  *	vm_object_reference:
387  *
388  *	Gets another reference to the given object.  Note: OBJ_DEAD
389  *	objects can be referenced during final cleaning.
390  */
391 void
392 vm_object_reference(vm_object_t object)
393 {
394 	if (object == NULL)
395 		return;
396 	VM_OBJECT_LOCK(object);
397 	vm_object_reference_locked(object);
398 	VM_OBJECT_UNLOCK(object);
399 }
400 
401 /*
402  *	vm_object_reference_locked:
403  *
404  *	Gets another reference to the given object.
405  *
406  *	The object must be locked.
407  */
408 void
409 vm_object_reference_locked(vm_object_t object)
410 {
411 	struct vnode *vp;
412 
413 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
414 	object->ref_count++;
415 	if (object->type == OBJT_VNODE) {
416 		vp = object->handle;
417 		vref(vp);
418 	}
419 }
420 
421 /*
422  * Handle deallocating an object of type OBJT_VNODE.
423  */
424 static void
425 vm_object_vndeallocate(vm_object_t object)
426 {
427 	struct vnode *vp = (struct vnode *) object->handle;
428 
429 	VFS_ASSERT_GIANT(vp->v_mount);
430 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
431 	KASSERT(object->type == OBJT_VNODE,
432 	    ("vm_object_vndeallocate: not a vnode object"));
433 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
434 #ifdef INVARIANTS
435 	if (object->ref_count == 0) {
436 		vprint("vm_object_vndeallocate", vp);
437 		panic("vm_object_vndeallocate: bad object reference count");
438 	}
439 #endif
440 
441 	if (object->ref_count > 1) {
442 		object->ref_count--;
443 		VM_OBJECT_UNLOCK(object);
444 		/* vrele may need the vnode lock. */
445 		vrele(vp);
446 	} else {
447 		vhold(vp);
448 		VM_OBJECT_UNLOCK(object);
449 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
450 		vdrop(vp);
451 		VM_OBJECT_LOCK(object);
452 		object->ref_count--;
453 		if (object->type == OBJT_DEAD) {
454 			VM_OBJECT_UNLOCK(object);
455 			VOP_UNLOCK(vp, 0);
456 		} else {
457 			if (object->ref_count == 0)
458 				vp->v_vflag &= ~VV_TEXT;
459 			VM_OBJECT_UNLOCK(object);
460 			vput(vp);
461 		}
462 	}
463 }
464 
465 /*
466  *	vm_object_deallocate:
467  *
468  *	Release a reference to the specified object,
469  *	gained either through a vm_object_allocate
470  *	or a vm_object_reference call.  When all references
471  *	are gone, storage associated with this object
472  *	may be relinquished.
473  *
474  *	No object may be locked.
475  */
476 void
477 vm_object_deallocate(vm_object_t object)
478 {
479 	vm_object_t temp;
480 
481 	while (object != NULL) {
482 		int vfslocked;
483 
484 		vfslocked = 0;
485 	restart:
486 		VM_OBJECT_LOCK(object);
487 		if (object->type == OBJT_VNODE) {
488 			struct vnode *vp = (struct vnode *) object->handle;
489 
490 			/*
491 			 * Conditionally acquire Giant for a vnode-backed
492 			 * object.  We have to be careful since the type of
493 			 * a vnode object can change while the object is
494 			 * unlocked.
495 			 */
496 			if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
497 				vfslocked = 1;
498 				if (!mtx_trylock(&Giant)) {
499 					VM_OBJECT_UNLOCK(object);
500 					mtx_lock(&Giant);
501 					goto restart;
502 				}
503 			}
504 			vm_object_vndeallocate(object);
505 			VFS_UNLOCK_GIANT(vfslocked);
506 			return;
507 		} else
508 			/*
509 			 * This is to handle the case that the object
510 			 * changed type while we dropped its lock to
511 			 * obtain Giant.
512 			 */
513 			VFS_UNLOCK_GIANT(vfslocked);
514 
515 		KASSERT(object->ref_count != 0,
516 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
517 
518 		/*
519 		 * If the reference count goes to 0 we start calling
520 		 * vm_object_terminate() on the object chain.
521 		 * A ref count of 1 may be a special case depending on the
522 		 * shadow count being 0 or 1.
523 		 */
524 		object->ref_count--;
525 		if (object->ref_count > 1) {
526 			VM_OBJECT_UNLOCK(object);
527 			return;
528 		} else if (object->ref_count == 1) {
529 			if (object->shadow_count == 0 &&
530 			    object->handle == NULL &&
531 			    (object->type == OBJT_DEFAULT ||
532 			     object->type == OBJT_SWAP)) {
533 				vm_object_set_flag(object, OBJ_ONEMAPPING);
534 			} else if ((object->shadow_count == 1) &&
535 			    (object->handle == NULL) &&
536 			    (object->type == OBJT_DEFAULT ||
537 			     object->type == OBJT_SWAP)) {
538 				vm_object_t robject;
539 
540 				robject = LIST_FIRST(&object->shadow_head);
541 				KASSERT(robject != NULL,
542 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
543 					 object->ref_count,
544 					 object->shadow_count));
545 				if (!VM_OBJECT_TRYLOCK(robject)) {
546 					/*
547 					 * Avoid a potential deadlock.
548 					 */
549 					object->ref_count++;
550 					VM_OBJECT_UNLOCK(object);
551 					/*
552 					 * More likely than not the thread
553 					 * holding robject's lock has lower
554 					 * priority than the current thread.
555 					 * Let the lower priority thread run.
556 					 */
557 					pause("vmo_de", 1);
558 					continue;
559 				}
560 				/*
561 				 * Collapse object into its shadow unless its
562 				 * shadow is dead.  In that case, object will
563 				 * be deallocated by the thread that is
564 				 * deallocating its shadow.
565 				 */
566 				if ((robject->flags & OBJ_DEAD) == 0 &&
567 				    (robject->handle == NULL) &&
568 				    (robject->type == OBJT_DEFAULT ||
569 				     robject->type == OBJT_SWAP)) {
570 
571 					robject->ref_count++;
572 retry:
573 					if (robject->paging_in_progress) {
574 						VM_OBJECT_UNLOCK(object);
575 						vm_object_pip_wait(robject,
576 						    "objde1");
577 						temp = robject->backing_object;
578 						if (object == temp) {
579 							VM_OBJECT_LOCK(object);
580 							goto retry;
581 						}
582 					} else if (object->paging_in_progress) {
583 						VM_OBJECT_UNLOCK(robject);
584 						object->flags |= OBJ_PIPWNT;
585 						msleep(object,
586 						    VM_OBJECT_MTX(object),
587 						    PDROP | PVM, "objde2", 0);
588 						VM_OBJECT_LOCK(robject);
589 						temp = robject->backing_object;
590 						if (object == temp) {
591 							VM_OBJECT_LOCK(object);
592 							goto retry;
593 						}
594 					} else
595 						VM_OBJECT_UNLOCK(object);
596 
597 					if (robject->ref_count == 1) {
598 						robject->ref_count--;
599 						object = robject;
600 						goto doterm;
601 					}
602 					object = robject;
603 					vm_object_collapse(object);
604 					VM_OBJECT_UNLOCK(object);
605 					continue;
606 				}
607 				VM_OBJECT_UNLOCK(robject);
608 			}
609 			VM_OBJECT_UNLOCK(object);
610 			return;
611 		}
612 doterm:
613 		temp = object->backing_object;
614 		if (temp != NULL) {
615 			VM_OBJECT_LOCK(temp);
616 			LIST_REMOVE(object, shadow_list);
617 			temp->shadow_count--;
618 			VM_OBJECT_UNLOCK(temp);
619 			object->backing_object = NULL;
620 		}
621 		/*
622 		 * Don't double-terminate, we could be in a termination
623 		 * recursion due to the terminate having to sync data
624 		 * to disk.
625 		 */
626 		if ((object->flags & OBJ_DEAD) == 0)
627 			vm_object_terminate(object);
628 		else
629 			VM_OBJECT_UNLOCK(object);
630 		object = temp;
631 	}
632 }
633 
634 /*
635  *	vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641 
642 	/*
643 	 * Remove the object from the global object list.
644 	 */
645 	mtx_lock(&vm_object_list_mtx);
646 	TAILQ_REMOVE(&vm_object_list, object, object_list);
647 	mtx_unlock(&vm_object_list_mtx);
648 
649 	/*
650 	 * Release the allocation charge.
651 	 */
652 	if (object->cred != NULL) {
653 		KASSERT(object->type == OBJT_DEFAULT ||
654 		    object->type == OBJT_SWAP,
655 		    ("vm_object_terminate: non-swap obj %p has cred",
656 		     object));
657 		swap_release_by_cred(object->charge, object->cred);
658 		object->charge = 0;
659 		crfree(object->cred);
660 		object->cred = NULL;
661 	}
662 
663 	/*
664 	 * Free the space for the object.
665 	 */
666 	uma_zfree(obj_zone, object);
667 }
668 
669 /*
670  *	vm_object_terminate actually destroys the specified object, freeing
671  *	up all previously used resources.
672  *
673  *	The object must be locked.
674  *	This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679 	vm_page_t p, p_next;
680 
681 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
682 
683 	/*
684 	 * Make sure no one uses us.
685 	 */
686 	vm_object_set_flag(object, OBJ_DEAD);
687 
688 	/*
689 	 * wait for the pageout daemon to be done with the object
690 	 */
691 	vm_object_pip_wait(object, "objtrm");
692 
693 	KASSERT(!object->paging_in_progress,
694 		("vm_object_terminate: pageout in progress"));
695 
696 	/*
697 	 * Clean and free the pages, as appropriate. All references to the
698 	 * object are gone, so we don't need to lock it.
699 	 */
700 	if (object->type == OBJT_VNODE) {
701 		struct vnode *vp = (struct vnode *)object->handle;
702 
703 		/*
704 		 * Clean pages and flush buffers.
705 		 */
706 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707 		VM_OBJECT_UNLOCK(object);
708 
709 		vinvalbuf(vp, V_SAVE, 0, 0);
710 
711 		VM_OBJECT_LOCK(object);
712 	}
713 
714 	KASSERT(object->ref_count == 0,
715 		("vm_object_terminate: object with references, ref_count=%d",
716 		object->ref_count));
717 
718 	/*
719 	 * Free any remaining pageable pages.  This also removes them from the
720 	 * paging queues.  However, don't free wired pages, just remove them
721 	 * from the object.  Rather than incrementally removing each page from
722 	 * the object, the page and object are reset to any empty state.
723 	 */
724 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726 		    ("vm_object_terminate: freeing busy page %p", p));
727 		vm_page_lock(p);
728 		/*
729 		 * Optimize the page's removal from the object by resetting
730 		 * its "object" field.  Specifically, if the page is not
731 		 * wired, then the effect of this assignment is that
732 		 * vm_page_free()'s call to vm_page_remove() will return
733 		 * immediately without modifying the page or the object.
734 		 */
735 		p->object = NULL;
736 		if (p->wire_count == 0) {
737 			vm_page_free(p);
738 			PCPU_INC(cnt.v_pfree);
739 		}
740 		vm_page_unlock(p);
741 	}
742 	/*
743 	 * If the object contained any pages, then reset it to an empty state.
744 	 * None of the object's fields, including "resident_page_count", were
745 	 * modified by the preceding loop.
746 	 */
747 	if (object->resident_page_count != 0) {
748 		object->root = NULL;
749 		TAILQ_INIT(&object->memq);
750 		object->resident_page_count = 0;
751 		if (object->type == OBJT_VNODE)
752 			vdrop(object->handle);
753 	}
754 
755 #if VM_NRESERVLEVEL > 0
756 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
757 		vm_reserv_break_all(object);
758 #endif
759 	if (__predict_false(object->cache != NULL))
760 		vm_page_cache_free(object, 0, 0);
761 
762 	/*
763 	 * Let the pager know object is dead.
764 	 */
765 	vm_pager_deallocate(object);
766 	VM_OBJECT_UNLOCK(object);
767 
768 	vm_object_destroy(object);
769 }
770 
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
779 {
780 
781 	/*
782 	 * If we have been asked to skip nosync pages and this is a
783 	 * nosync page, skip it.  Note that the object flags were not
784 	 * cleared in this case so we do not have to set them.
785 	 */
786 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787 		*clearobjflags = 0;
788 		return (FALSE);
789 	} else {
790 		pmap_remove_write(p);
791 		return (p->dirty != 0);
792 	}
793 }
794 
795 /*
796  *	vm_object_page_clean
797  *
798  *	Clean all dirty pages in the specified range of object.  Leaves page
799  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
800  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *	leaving the object dirty.
802  *
803  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *	synchronous clustering mode implementation.
805  *
806  *	Odd semantics: if start == end, we clean everything.
807  *
808  *	The object must be locked.
809  */
810 void
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814 	vm_page_t np, p;
815 	vm_pindex_t pi, tend, tstart;
816 	int clearobjflags, curgeneration, n, pagerflags;
817 
818 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
819 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
820 	KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
821 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
822 	    object->resident_page_count == 0)
823 		return;
824 
825 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828 
829 	tstart = OFF_TO_IDX(start);
830 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831 	clearobjflags = tstart == 0 && tend >= object->size;
832 
833 rescan:
834 	curgeneration = object->generation;
835 
836 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
837 		pi = p->pindex;
838 		if (pi >= tend)
839 			break;
840 		np = TAILQ_NEXT(p, listq);
841 		if (p->valid == 0)
842 			continue;
843 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
844 			if (object->generation != curgeneration)
845 				goto rescan;
846 			np = vm_page_find_least(object, pi);
847 			continue;
848 		}
849 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
850 			continue;
851 
852 		n = vm_object_page_collect_flush(object, p, pagerflags,
853 		    flags, &clearobjflags);
854 		if (object->generation != curgeneration)
855 			goto rescan;
856 
857 		/*
858 		 * If the VOP_PUTPAGES() did a truncated write, so
859 		 * that even the first page of the run is not fully
860 		 * written, vm_pageout_flush() returns 0 as the run
861 		 * length.  Since the condition that caused truncated
862 		 * write may be permanent, e.g. exhausted free space,
863 		 * accepting n == 0 would cause an infinite loop.
864 		 *
865 		 * Forwarding the iterator leaves the unwritten page
866 		 * behind, but there is not much we can do there if
867 		 * filesystem refuses to write it.
868 		 */
869 		if (n == 0)
870 			n = 1;
871 		np = vm_page_find_least(object, pi + n);
872 	}
873 #if 0
874 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
875 #endif
876 
877 	if (clearobjflags)
878 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
879 }
880 
881 static int
882 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
883     int flags, int *clearobjflags)
884 {
885 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
886 	int count, i, mreq, runlen;
887 
888 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
889 	vm_page_lock_assert(p, MA_NOTOWNED);
890 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
891 
892 	count = 1;
893 	mreq = 0;
894 
895 	for (tp = p; count < vm_pageout_page_count; count++) {
896 		tp = vm_page_next(tp);
897 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
898 			break;
899 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
900 			break;
901 	}
902 
903 	for (p_first = p; count < vm_pageout_page_count; count++) {
904 		tp = vm_page_prev(p_first);
905 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906 			break;
907 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908 			break;
909 		p_first = tp;
910 		mreq++;
911 	}
912 
913 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
914 		ma[i] = tp;
915 
916 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
917 	return (runlen);
918 }
919 
920 /*
921  * Note that there is absolutely no sense in writing out
922  * anonymous objects, so we track down the vnode object
923  * to write out.
924  * We invalidate (remove) all pages from the address space
925  * for semantic correctness.
926  *
927  * If the backing object is a device object with unmanaged pages, then any
928  * mappings to the specified range of pages must be removed before this
929  * function is called.
930  *
931  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
932  * may start out with a NULL object.
933  */
934 void
935 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
936     boolean_t syncio, boolean_t invalidate)
937 {
938 	vm_object_t backing_object;
939 	struct vnode *vp;
940 	struct mount *mp;
941 	int flags, fsync_after;
942 
943 	if (object == NULL)
944 		return;
945 	VM_OBJECT_LOCK(object);
946 	while ((backing_object = object->backing_object) != NULL) {
947 		VM_OBJECT_LOCK(backing_object);
948 		offset += object->backing_object_offset;
949 		VM_OBJECT_UNLOCK(object);
950 		object = backing_object;
951 		if (object->size < OFF_TO_IDX(offset + size))
952 			size = IDX_TO_OFF(object->size) - offset;
953 	}
954 	/*
955 	 * Flush pages if writing is allowed, invalidate them
956 	 * if invalidation requested.  Pages undergoing I/O
957 	 * will be ignored by vm_object_page_remove().
958 	 *
959 	 * We cannot lock the vnode and then wait for paging
960 	 * to complete without deadlocking against vm_fault.
961 	 * Instead we simply call vm_object_page_remove() and
962 	 * allow it to block internally on a page-by-page
963 	 * basis when it encounters pages undergoing async
964 	 * I/O.
965 	 */
966 	if (object->type == OBJT_VNODE &&
967 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
968 		int vfslocked;
969 		vp = object->handle;
970 		VM_OBJECT_UNLOCK(object);
971 		(void) vn_start_write(vp, &mp, V_WAIT);
972 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
973 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
974 		if (syncio && !invalidate && offset == 0 &&
975 		    OFF_TO_IDX(size) == object->size) {
976 			/*
977 			 * If syncing the whole mapping of the file,
978 			 * it is faster to schedule all the writes in
979 			 * async mode, also allowing the clustering,
980 			 * and then wait for i/o to complete.
981 			 */
982 			flags = 0;
983 			fsync_after = TRUE;
984 		} else {
985 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
986 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
987 			fsync_after = FALSE;
988 		}
989 		VM_OBJECT_LOCK(object);
990 		vm_object_page_clean(object, offset, offset + size, flags);
991 		VM_OBJECT_UNLOCK(object);
992 		if (fsync_after)
993 			(void) VOP_FSYNC(vp, MNT_WAIT, curthread);
994 		VOP_UNLOCK(vp, 0);
995 		VFS_UNLOCK_GIANT(vfslocked);
996 		vn_finished_write(mp);
997 		VM_OBJECT_LOCK(object);
998 	}
999 	if ((object->type == OBJT_VNODE ||
1000 	     object->type == OBJT_DEVICE) && invalidate) {
1001 		if (object->type == OBJT_DEVICE)
1002 			/*
1003 			 * The option OBJPR_NOTMAPPED must be passed here
1004 			 * because vm_object_page_remove() cannot remove
1005 			 * unmanaged mappings.
1006 			 */
1007 			flags = OBJPR_NOTMAPPED;
1008 		else if (old_msync)
1009 			flags = 0;
1010 		else
1011 			flags = OBJPR_CLEANONLY;
1012 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1013 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1014 	}
1015 	VM_OBJECT_UNLOCK(object);
1016 }
1017 
1018 /*
1019  *	vm_object_madvise:
1020  *
1021  *	Implements the madvise function at the object/page level.
1022  *
1023  *	MADV_WILLNEED	(any object)
1024  *
1025  *	    Activate the specified pages if they are resident.
1026  *
1027  *	MADV_DONTNEED	(any object)
1028  *
1029  *	    Deactivate the specified pages if they are resident.
1030  *
1031  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1032  *			 OBJ_ONEMAPPING only)
1033  *
1034  *	    Deactivate and clean the specified pages if they are
1035  *	    resident.  This permits the process to reuse the pages
1036  *	    without faulting or the kernel to reclaim the pages
1037  *	    without I/O.
1038  */
1039 void
1040 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1041 {
1042 	vm_pindex_t end, tpindex;
1043 	vm_object_t backing_object, tobject;
1044 	vm_page_t m;
1045 
1046 	if (object == NULL)
1047 		return;
1048 	VM_OBJECT_LOCK(object);
1049 	end = pindex + count;
1050 	/*
1051 	 * Locate and adjust resident pages
1052 	 */
1053 	for (; pindex < end; pindex += 1) {
1054 relookup:
1055 		tobject = object;
1056 		tpindex = pindex;
1057 shadowlookup:
1058 		/*
1059 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1060 		 * and those pages must be OBJ_ONEMAPPING.
1061 		 */
1062 		if (advise == MADV_FREE) {
1063 			if ((tobject->type != OBJT_DEFAULT &&
1064 			     tobject->type != OBJT_SWAP) ||
1065 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1066 				goto unlock_tobject;
1067 			}
1068 		} else if (tobject->type == OBJT_PHYS)
1069 			goto unlock_tobject;
1070 		m = vm_page_lookup(tobject, tpindex);
1071 		if (m == NULL && advise == MADV_WILLNEED) {
1072 			/*
1073 			 * If the page is cached, reactivate it.
1074 			 */
1075 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1076 			    VM_ALLOC_NOBUSY);
1077 		}
1078 		if (m == NULL) {
1079 			/*
1080 			 * There may be swap even if there is no backing page
1081 			 */
1082 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1083 				swap_pager_freespace(tobject, tpindex, 1);
1084 			/*
1085 			 * next object
1086 			 */
1087 			backing_object = tobject->backing_object;
1088 			if (backing_object == NULL)
1089 				goto unlock_tobject;
1090 			VM_OBJECT_LOCK(backing_object);
1091 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1092 			if (tobject != object)
1093 				VM_OBJECT_UNLOCK(tobject);
1094 			tobject = backing_object;
1095 			goto shadowlookup;
1096 		} else if (m->valid != VM_PAGE_BITS_ALL)
1097 			goto unlock_tobject;
1098 		/*
1099 		 * If the page is not in a normal state, skip it.
1100 		 */
1101 		vm_page_lock(m);
1102 		if (m->hold_count != 0 || m->wire_count != 0) {
1103 			vm_page_unlock(m);
1104 			goto unlock_tobject;
1105 		}
1106 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1107 		    ("vm_object_madvise: page %p is fictitious", m));
1108 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1109 		    ("vm_object_madvise: page %p is not managed", m));
1110 		if ((m->oflags & VPO_BUSY) || m->busy) {
1111 			if (advise == MADV_WILLNEED) {
1112 				/*
1113 				 * Reference the page before unlocking and
1114 				 * sleeping so that the page daemon is less
1115 				 * likely to reclaim it.
1116 				 */
1117 				vm_page_aflag_set(m, PGA_REFERENCED);
1118 			}
1119 			vm_page_unlock(m);
1120 			if (object != tobject)
1121 				VM_OBJECT_UNLOCK(object);
1122 			m->oflags |= VPO_WANTED;
1123 			msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1124 			    0);
1125 			VM_OBJECT_LOCK(object);
1126   			goto relookup;
1127 		}
1128 		if (advise == MADV_WILLNEED) {
1129 			vm_page_activate(m);
1130 		} else if (advise == MADV_DONTNEED) {
1131 			vm_page_dontneed(m);
1132 		} else if (advise == MADV_FREE) {
1133 			/*
1134 			 * Mark the page clean.  This will allow the page
1135 			 * to be freed up by the system.  However, such pages
1136 			 * are often reused quickly by malloc()/free()
1137 			 * so we do not do anything that would cause
1138 			 * a page fault if we can help it.
1139 			 *
1140 			 * Specifically, we do not try to actually free
1141 			 * the page now nor do we try to put it in the
1142 			 * cache (which would cause a page fault on reuse).
1143 			 *
1144 			 * But we do make the page is freeable as we
1145 			 * can without actually taking the step of unmapping
1146 			 * it.
1147 			 */
1148 			pmap_clear_modify(m);
1149 			m->dirty = 0;
1150 			m->act_count = 0;
1151 			vm_page_dontneed(m);
1152 		}
1153 		vm_page_unlock(m);
1154 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1155 			swap_pager_freespace(tobject, tpindex, 1);
1156 unlock_tobject:
1157 		if (tobject != object)
1158 			VM_OBJECT_UNLOCK(tobject);
1159 	}
1160 	VM_OBJECT_UNLOCK(object);
1161 }
1162 
1163 /*
1164  *	vm_object_shadow:
1165  *
1166  *	Create a new object which is backed by the
1167  *	specified existing object range.  The source
1168  *	object reference is deallocated.
1169  *
1170  *	The new object and offset into that object
1171  *	are returned in the source parameters.
1172  */
1173 void
1174 vm_object_shadow(
1175 	vm_object_t *object,	/* IN/OUT */
1176 	vm_ooffset_t *offset,	/* IN/OUT */
1177 	vm_size_t length)
1178 {
1179 	vm_object_t source;
1180 	vm_object_t result;
1181 
1182 	source = *object;
1183 
1184 	/*
1185 	 * Don't create the new object if the old object isn't shared.
1186 	 */
1187 	if (source != NULL) {
1188 		VM_OBJECT_LOCK(source);
1189 		if (source->ref_count == 1 &&
1190 		    source->handle == NULL &&
1191 		    (source->type == OBJT_DEFAULT ||
1192 		     source->type == OBJT_SWAP)) {
1193 			VM_OBJECT_UNLOCK(source);
1194 			return;
1195 		}
1196 		VM_OBJECT_UNLOCK(source);
1197 	}
1198 
1199 	/*
1200 	 * Allocate a new object with the given length.
1201 	 */
1202 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1203 
1204 	/*
1205 	 * The new object shadows the source object, adding a reference to it.
1206 	 * Our caller changes his reference to point to the new object,
1207 	 * removing a reference to the source object.  Net result: no change
1208 	 * of reference count.
1209 	 *
1210 	 * Try to optimize the result object's page color when shadowing
1211 	 * in order to maintain page coloring consistency in the combined
1212 	 * shadowed object.
1213 	 */
1214 	result->backing_object = source;
1215 	/*
1216 	 * Store the offset into the source object, and fix up the offset into
1217 	 * the new object.
1218 	 */
1219 	result->backing_object_offset = *offset;
1220 	if (source != NULL) {
1221 		VM_OBJECT_LOCK(source);
1222 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1223 		source->shadow_count++;
1224 #if VM_NRESERVLEVEL > 0
1225 		result->flags |= source->flags & OBJ_COLORED;
1226 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1227 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1228 #endif
1229 		VM_OBJECT_UNLOCK(source);
1230 	}
1231 
1232 
1233 	/*
1234 	 * Return the new things
1235 	 */
1236 	*offset = 0;
1237 	*object = result;
1238 }
1239 
1240 /*
1241  *	vm_object_split:
1242  *
1243  * Split the pages in a map entry into a new object.  This affords
1244  * easier removal of unused pages, and keeps object inheritance from
1245  * being a negative impact on memory usage.
1246  */
1247 void
1248 vm_object_split(vm_map_entry_t entry)
1249 {
1250 	vm_page_t m, m_next;
1251 	vm_object_t orig_object, new_object, source;
1252 	vm_pindex_t idx, offidxstart;
1253 	vm_size_t size;
1254 
1255 	orig_object = entry->object.vm_object;
1256 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1257 		return;
1258 	if (orig_object->ref_count <= 1)
1259 		return;
1260 	VM_OBJECT_UNLOCK(orig_object);
1261 
1262 	offidxstart = OFF_TO_IDX(entry->offset);
1263 	size = atop(entry->end - entry->start);
1264 
1265 	/*
1266 	 * If swap_pager_copy() is later called, it will convert new_object
1267 	 * into a swap object.
1268 	 */
1269 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1270 
1271 	/*
1272 	 * At this point, the new object is still private, so the order in
1273 	 * which the original and new objects are locked does not matter.
1274 	 */
1275 	VM_OBJECT_LOCK(new_object);
1276 	VM_OBJECT_LOCK(orig_object);
1277 	source = orig_object->backing_object;
1278 	if (source != NULL) {
1279 		VM_OBJECT_LOCK(source);
1280 		if ((source->flags & OBJ_DEAD) != 0) {
1281 			VM_OBJECT_UNLOCK(source);
1282 			VM_OBJECT_UNLOCK(orig_object);
1283 			VM_OBJECT_UNLOCK(new_object);
1284 			vm_object_deallocate(new_object);
1285 			VM_OBJECT_LOCK(orig_object);
1286 			return;
1287 		}
1288 		LIST_INSERT_HEAD(&source->shadow_head,
1289 				  new_object, shadow_list);
1290 		source->shadow_count++;
1291 		vm_object_reference_locked(source);	/* for new_object */
1292 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1293 		VM_OBJECT_UNLOCK(source);
1294 		new_object->backing_object_offset =
1295 			orig_object->backing_object_offset + entry->offset;
1296 		new_object->backing_object = source;
1297 	}
1298 	if (orig_object->cred != NULL) {
1299 		new_object->cred = orig_object->cred;
1300 		crhold(orig_object->cred);
1301 		new_object->charge = ptoa(size);
1302 		KASSERT(orig_object->charge >= ptoa(size),
1303 		    ("orig_object->charge < 0"));
1304 		orig_object->charge -= ptoa(size);
1305 	}
1306 retry:
1307 	m = vm_page_find_least(orig_object, offidxstart);
1308 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1309 	    m = m_next) {
1310 		m_next = TAILQ_NEXT(m, listq);
1311 
1312 		/*
1313 		 * We must wait for pending I/O to complete before we can
1314 		 * rename the page.
1315 		 *
1316 		 * We do not have to VM_PROT_NONE the page as mappings should
1317 		 * not be changed by this operation.
1318 		 */
1319 		if ((m->oflags & VPO_BUSY) || m->busy) {
1320 			VM_OBJECT_UNLOCK(new_object);
1321 			m->oflags |= VPO_WANTED;
1322 			msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1323 			VM_OBJECT_LOCK(new_object);
1324 			goto retry;
1325 		}
1326 		vm_page_lock(m);
1327 		vm_page_rename(m, new_object, idx);
1328 		vm_page_unlock(m);
1329 		/* page automatically made dirty by rename and cache handled */
1330 		vm_page_busy(m);
1331 	}
1332 	if (orig_object->type == OBJT_SWAP) {
1333 		/*
1334 		 * swap_pager_copy() can sleep, in which case the orig_object's
1335 		 * and new_object's locks are released and reacquired.
1336 		 */
1337 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1338 
1339 		/*
1340 		 * Transfer any cached pages from orig_object to new_object.
1341 		 */
1342 		if (__predict_false(orig_object->cache != NULL))
1343 			vm_page_cache_transfer(orig_object, offidxstart,
1344 			    new_object);
1345 	}
1346 	VM_OBJECT_UNLOCK(orig_object);
1347 	TAILQ_FOREACH(m, &new_object->memq, listq)
1348 		vm_page_wakeup(m);
1349 	VM_OBJECT_UNLOCK(new_object);
1350 	entry->object.vm_object = new_object;
1351 	entry->offset = 0LL;
1352 	vm_object_deallocate(orig_object);
1353 	VM_OBJECT_LOCK(new_object);
1354 }
1355 
1356 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1357 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1358 #define	OBSC_COLLAPSE_WAIT	0x0004
1359 
1360 static int
1361 vm_object_backing_scan(vm_object_t object, int op)
1362 {
1363 	int r = 1;
1364 	vm_page_t p;
1365 	vm_object_t backing_object;
1366 	vm_pindex_t backing_offset_index;
1367 
1368 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1369 	VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1370 
1371 	backing_object = object->backing_object;
1372 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1373 
1374 	/*
1375 	 * Initial conditions
1376 	 */
1377 	if (op & OBSC_TEST_ALL_SHADOWED) {
1378 		/*
1379 		 * We do not want to have to test for the existence of cache
1380 		 * or swap pages in the backing object.  XXX but with the
1381 		 * new swapper this would be pretty easy to do.
1382 		 *
1383 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1384 		 * been ZFOD faulted yet?  If we do not test for this, the
1385 		 * shadow test may succeed! XXX
1386 		 */
1387 		if (backing_object->type != OBJT_DEFAULT) {
1388 			return (0);
1389 		}
1390 	}
1391 	if (op & OBSC_COLLAPSE_WAIT) {
1392 		vm_object_set_flag(backing_object, OBJ_DEAD);
1393 	}
1394 
1395 	/*
1396 	 * Our scan
1397 	 */
1398 	p = TAILQ_FIRST(&backing_object->memq);
1399 	while (p) {
1400 		vm_page_t next = TAILQ_NEXT(p, listq);
1401 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1402 
1403 		if (op & OBSC_TEST_ALL_SHADOWED) {
1404 			vm_page_t pp;
1405 
1406 			/*
1407 			 * Ignore pages outside the parent object's range
1408 			 * and outside the parent object's mapping of the
1409 			 * backing object.
1410 			 *
1411 			 * note that we do not busy the backing object's
1412 			 * page.
1413 			 */
1414 			if (
1415 			    p->pindex < backing_offset_index ||
1416 			    new_pindex >= object->size
1417 			) {
1418 				p = next;
1419 				continue;
1420 			}
1421 
1422 			/*
1423 			 * See if the parent has the page or if the parent's
1424 			 * object pager has the page.  If the parent has the
1425 			 * page but the page is not valid, the parent's
1426 			 * object pager must have the page.
1427 			 *
1428 			 * If this fails, the parent does not completely shadow
1429 			 * the object and we might as well give up now.
1430 			 */
1431 
1432 			pp = vm_page_lookup(object, new_pindex);
1433 			if (
1434 			    (pp == NULL || pp->valid == 0) &&
1435 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1436 			) {
1437 				r = 0;
1438 				break;
1439 			}
1440 		}
1441 
1442 		/*
1443 		 * Check for busy page
1444 		 */
1445 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1446 			vm_page_t pp;
1447 
1448 			if (op & OBSC_COLLAPSE_NOWAIT) {
1449 				if ((p->oflags & VPO_BUSY) ||
1450 				    !p->valid ||
1451 				    p->busy) {
1452 					p = next;
1453 					continue;
1454 				}
1455 			} else if (op & OBSC_COLLAPSE_WAIT) {
1456 				if ((p->oflags & VPO_BUSY) || p->busy) {
1457 					VM_OBJECT_UNLOCK(object);
1458 					p->oflags |= VPO_WANTED;
1459 					msleep(p, VM_OBJECT_MTX(backing_object),
1460 					    PDROP | PVM, "vmocol", 0);
1461 					VM_OBJECT_LOCK(object);
1462 					VM_OBJECT_LOCK(backing_object);
1463 					/*
1464 					 * If we slept, anything could have
1465 					 * happened.  Since the object is
1466 					 * marked dead, the backing offset
1467 					 * should not have changed so we
1468 					 * just restart our scan.
1469 					 */
1470 					p = TAILQ_FIRST(&backing_object->memq);
1471 					continue;
1472 				}
1473 			}
1474 
1475 			KASSERT(
1476 			    p->object == backing_object,
1477 			    ("vm_object_backing_scan: object mismatch")
1478 			);
1479 
1480 			/*
1481 			 * Destroy any associated swap
1482 			 */
1483 			if (backing_object->type == OBJT_SWAP) {
1484 				swap_pager_freespace(
1485 				    backing_object,
1486 				    p->pindex,
1487 				    1
1488 				);
1489 			}
1490 
1491 			if (
1492 			    p->pindex < backing_offset_index ||
1493 			    new_pindex >= object->size
1494 			) {
1495 				/*
1496 				 * Page is out of the parent object's range, we
1497 				 * can simply destroy it.
1498 				 */
1499 				vm_page_lock(p);
1500 				KASSERT(!pmap_page_is_mapped(p),
1501 				    ("freeing mapped page %p", p));
1502 				if (p->wire_count == 0)
1503 					vm_page_free(p);
1504 				else
1505 					vm_page_remove(p);
1506 				vm_page_unlock(p);
1507 				p = next;
1508 				continue;
1509 			}
1510 
1511 			pp = vm_page_lookup(object, new_pindex);
1512 			if (
1513 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1514 			    (pp != NULL && pp->valid == 0)
1515 			) {
1516 				/*
1517 				 * The page in the parent is not (yet) valid.
1518 				 * We don't know anything about the state of
1519 				 * the original page.  It might be mapped,
1520 				 * so we must avoid the next if here.
1521 				 *
1522 				 * This is due to a race in vm_fault() where
1523 				 * we must unbusy the original (backing_obj)
1524 				 * page before we can (re)lock the parent.
1525 				 * Hence we can get here.
1526 				 */
1527 				p = next;
1528 				continue;
1529 			}
1530 			if (
1531 			    pp != NULL ||
1532 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1533 			) {
1534 				/*
1535 				 * page already exists in parent OR swap exists
1536 				 * for this location in the parent.  Destroy
1537 				 * the original page from the backing object.
1538 				 *
1539 				 * Leave the parent's page alone
1540 				 */
1541 				vm_page_lock(p);
1542 				KASSERT(!pmap_page_is_mapped(p),
1543 				    ("freeing mapped page %p", p));
1544 				if (p->wire_count == 0)
1545 					vm_page_free(p);
1546 				else
1547 					vm_page_remove(p);
1548 				vm_page_unlock(p);
1549 				p = next;
1550 				continue;
1551 			}
1552 
1553 #if VM_NRESERVLEVEL > 0
1554 			/*
1555 			 * Rename the reservation.
1556 			 */
1557 			vm_reserv_rename(p, object, backing_object,
1558 			    backing_offset_index);
1559 #endif
1560 
1561 			/*
1562 			 * Page does not exist in parent, rename the
1563 			 * page from the backing object to the main object.
1564 			 *
1565 			 * If the page was mapped to a process, it can remain
1566 			 * mapped through the rename.
1567 			 */
1568 			vm_page_lock(p);
1569 			vm_page_rename(p, object, new_pindex);
1570 			vm_page_unlock(p);
1571 			/* page automatically made dirty by rename */
1572 		}
1573 		p = next;
1574 	}
1575 	return (r);
1576 }
1577 
1578 
1579 /*
1580  * this version of collapse allows the operation to occur earlier and
1581  * when paging_in_progress is true for an object...  This is not a complete
1582  * operation, but should plug 99.9% of the rest of the leaks.
1583  */
1584 static void
1585 vm_object_qcollapse(vm_object_t object)
1586 {
1587 	vm_object_t backing_object = object->backing_object;
1588 
1589 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1590 	VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1591 
1592 	if (backing_object->ref_count != 1)
1593 		return;
1594 
1595 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1596 }
1597 
1598 /*
1599  *	vm_object_collapse:
1600  *
1601  *	Collapse an object with the object backing it.
1602  *	Pages in the backing object are moved into the
1603  *	parent, and the backing object is deallocated.
1604  */
1605 void
1606 vm_object_collapse(vm_object_t object)
1607 {
1608 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1609 
1610 	while (TRUE) {
1611 		vm_object_t backing_object;
1612 
1613 		/*
1614 		 * Verify that the conditions are right for collapse:
1615 		 *
1616 		 * The object exists and the backing object exists.
1617 		 */
1618 		if ((backing_object = object->backing_object) == NULL)
1619 			break;
1620 
1621 		/*
1622 		 * we check the backing object first, because it is most likely
1623 		 * not collapsable.
1624 		 */
1625 		VM_OBJECT_LOCK(backing_object);
1626 		if (backing_object->handle != NULL ||
1627 		    (backing_object->type != OBJT_DEFAULT &&
1628 		     backing_object->type != OBJT_SWAP) ||
1629 		    (backing_object->flags & OBJ_DEAD) ||
1630 		    object->handle != NULL ||
1631 		    (object->type != OBJT_DEFAULT &&
1632 		     object->type != OBJT_SWAP) ||
1633 		    (object->flags & OBJ_DEAD)) {
1634 			VM_OBJECT_UNLOCK(backing_object);
1635 			break;
1636 		}
1637 
1638 		if (
1639 		    object->paging_in_progress != 0 ||
1640 		    backing_object->paging_in_progress != 0
1641 		) {
1642 			vm_object_qcollapse(object);
1643 			VM_OBJECT_UNLOCK(backing_object);
1644 			break;
1645 		}
1646 		/*
1647 		 * We know that we can either collapse the backing object (if
1648 		 * the parent is the only reference to it) or (perhaps) have
1649 		 * the parent bypass the object if the parent happens to shadow
1650 		 * all the resident pages in the entire backing object.
1651 		 *
1652 		 * This is ignoring pager-backed pages such as swap pages.
1653 		 * vm_object_backing_scan fails the shadowing test in this
1654 		 * case.
1655 		 */
1656 		if (backing_object->ref_count == 1) {
1657 			/*
1658 			 * If there is exactly one reference to the backing
1659 			 * object, we can collapse it into the parent.
1660 			 */
1661 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1662 
1663 #if VM_NRESERVLEVEL > 0
1664 			/*
1665 			 * Break any reservations from backing_object.
1666 			 */
1667 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1668 				vm_reserv_break_all(backing_object);
1669 #endif
1670 
1671 			/*
1672 			 * Move the pager from backing_object to object.
1673 			 */
1674 			if (backing_object->type == OBJT_SWAP) {
1675 				/*
1676 				 * swap_pager_copy() can sleep, in which case
1677 				 * the backing_object's and object's locks are
1678 				 * released and reacquired.
1679 				 */
1680 				swap_pager_copy(
1681 				    backing_object,
1682 				    object,
1683 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1684 
1685 				/*
1686 				 * Free any cached pages from backing_object.
1687 				 */
1688 				if (__predict_false(backing_object->cache != NULL))
1689 					vm_page_cache_free(backing_object, 0, 0);
1690 			}
1691 			/*
1692 			 * Object now shadows whatever backing_object did.
1693 			 * Note that the reference to
1694 			 * backing_object->backing_object moves from within
1695 			 * backing_object to within object.
1696 			 */
1697 			LIST_REMOVE(object, shadow_list);
1698 			backing_object->shadow_count--;
1699 			if (backing_object->backing_object) {
1700 				VM_OBJECT_LOCK(backing_object->backing_object);
1701 				LIST_REMOVE(backing_object, shadow_list);
1702 				LIST_INSERT_HEAD(
1703 				    &backing_object->backing_object->shadow_head,
1704 				    object, shadow_list);
1705 				/*
1706 				 * The shadow_count has not changed.
1707 				 */
1708 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1709 			}
1710 			object->backing_object = backing_object->backing_object;
1711 			object->backing_object_offset +=
1712 			    backing_object->backing_object_offset;
1713 
1714 			/*
1715 			 * Discard backing_object.
1716 			 *
1717 			 * Since the backing object has no pages, no pager left,
1718 			 * and no object references within it, all that is
1719 			 * necessary is to dispose of it.
1720 			 */
1721 			KASSERT(backing_object->ref_count == 1, (
1722 "backing_object %p was somehow re-referenced during collapse!",
1723 			    backing_object));
1724 			VM_OBJECT_UNLOCK(backing_object);
1725 			vm_object_destroy(backing_object);
1726 
1727 			object_collapses++;
1728 		} else {
1729 			vm_object_t new_backing_object;
1730 
1731 			/*
1732 			 * If we do not entirely shadow the backing object,
1733 			 * there is nothing we can do so we give up.
1734 			 */
1735 			if (object->resident_page_count != object->size &&
1736 			    vm_object_backing_scan(object,
1737 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1738 				VM_OBJECT_UNLOCK(backing_object);
1739 				break;
1740 			}
1741 
1742 			/*
1743 			 * Make the parent shadow the next object in the
1744 			 * chain.  Deallocating backing_object will not remove
1745 			 * it, since its reference count is at least 2.
1746 			 */
1747 			LIST_REMOVE(object, shadow_list);
1748 			backing_object->shadow_count--;
1749 
1750 			new_backing_object = backing_object->backing_object;
1751 			if ((object->backing_object = new_backing_object) != NULL) {
1752 				VM_OBJECT_LOCK(new_backing_object);
1753 				LIST_INSERT_HEAD(
1754 				    &new_backing_object->shadow_head,
1755 				    object,
1756 				    shadow_list
1757 				);
1758 				new_backing_object->shadow_count++;
1759 				vm_object_reference_locked(new_backing_object);
1760 				VM_OBJECT_UNLOCK(new_backing_object);
1761 				object->backing_object_offset +=
1762 					backing_object->backing_object_offset;
1763 			}
1764 
1765 			/*
1766 			 * Drop the reference count on backing_object. Since
1767 			 * its ref_count was at least 2, it will not vanish.
1768 			 */
1769 			backing_object->ref_count--;
1770 			VM_OBJECT_UNLOCK(backing_object);
1771 			object_bypasses++;
1772 		}
1773 
1774 		/*
1775 		 * Try again with this object's new backing object.
1776 		 */
1777 	}
1778 }
1779 
1780 /*
1781  *	vm_object_page_remove:
1782  *
1783  *	For the given object, either frees or invalidates each of the
1784  *	specified pages.  In general, a page is freed.  However, if a page is
1785  *	wired for any reason other than the existence of a managed, wired
1786  *	mapping, then it may be invalidated but not removed from the object.
1787  *	Pages are specified by the given range ["start", "end") and the option
1788  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1789  *	extends from "start" to the end of the object.  If the option
1790  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1791  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1792  *	specified, then the pages within the specified range must have no
1793  *	mappings.  Otherwise, if this option is not specified, any mappings to
1794  *	the specified pages are removed before the pages are freed or
1795  *	invalidated.
1796  *
1797  *	In general, this operation should only be performed on objects that
1798  *	contain managed pages.  There are, however, two exceptions.  First, it
1799  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1800  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1801  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1802  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1803  *
1804  *	The object must be locked.
1805  */
1806 void
1807 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1808     int options)
1809 {
1810 	vm_page_t p, next;
1811 	int wirings;
1812 
1813 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1814 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1815 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1816 	    ("vm_object_page_remove: illegal options for object %p", object));
1817 	if (object->resident_page_count == 0)
1818 		goto skipmemq;
1819 	vm_object_pip_add(object, 1);
1820 again:
1821 	p = vm_page_find_least(object, start);
1822 
1823 	/*
1824 	 * Here, the variable "p" is either (1) the page with the least pindex
1825 	 * greater than or equal to the parameter "start" or (2) NULL.
1826 	 */
1827 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1828 		next = TAILQ_NEXT(p, listq);
1829 
1830 		/*
1831 		 * If the page is wired for any reason besides the existence
1832 		 * of managed, wired mappings, then it cannot be freed.  For
1833 		 * example, fictitious pages, which represent device memory,
1834 		 * are inherently wired and cannot be freed.  They can,
1835 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1836 		 * not specified.
1837 		 */
1838 		vm_page_lock(p);
1839 		if ((wirings = p->wire_count) != 0 &&
1840 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1841 			if ((options & OBJPR_NOTMAPPED) == 0) {
1842 				pmap_remove_all(p);
1843 				/* Account for removal of wired mappings. */
1844 				if (wirings != 0)
1845 					p->wire_count -= wirings;
1846 			}
1847 			if ((options & OBJPR_CLEANONLY) == 0) {
1848 				p->valid = 0;
1849 				vm_page_undirty(p);
1850 			}
1851 			vm_page_unlock(p);
1852 			continue;
1853 		}
1854 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1855 			goto again;
1856 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1857 		    ("vm_object_page_remove: page %p is fictitious", p));
1858 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1859 			if ((options & OBJPR_NOTMAPPED) == 0)
1860 				pmap_remove_write(p);
1861 			if (p->dirty) {
1862 				vm_page_unlock(p);
1863 				continue;
1864 			}
1865 		}
1866 		if ((options & OBJPR_NOTMAPPED) == 0) {
1867 			pmap_remove_all(p);
1868 			/* Account for removal of wired mappings. */
1869 			if (wirings != 0)
1870 				p->wire_count -= wirings;
1871 		}
1872 		vm_page_free(p);
1873 		vm_page_unlock(p);
1874 	}
1875 	vm_object_pip_wakeup(object);
1876 skipmemq:
1877 	if (__predict_false(object->cache != NULL))
1878 		vm_page_cache_free(object, start, end);
1879 }
1880 
1881 /*
1882  *	vm_object_page_cache:
1883  *
1884  *	For the given object, attempt to move the specified clean
1885  *	pages to the cache queue.  If a page is wired for any reason,
1886  *	then it will not be changed.  Pages are specified by the given
1887  *	range ["start", "end").  As a special case, if "end" is zero,
1888  *	then the range extends from "start" to the end of the object.
1889  *	Any mappings to the specified pages are removed before the
1890  *	pages are moved to the cache queue.
1891  *
1892  *	This operation should only be performed on objects that
1893  *	contain managed pages.
1894  *
1895  *	The object must be locked.
1896  */
1897 void
1898 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1899 {
1900 	struct mtx *mtx, *new_mtx;
1901 	vm_page_t p, next;
1902 
1903 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1904 	KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1905 	    object->type != OBJT_PHYS),
1906 	    ("vm_object_page_cache: illegal object %p", object));
1907 	if (object->resident_page_count == 0)
1908 		return;
1909 	p = vm_page_find_least(object, start);
1910 
1911 	/*
1912 	 * Here, the variable "p" is either (1) the page with the least pindex
1913 	 * greater than or equal to the parameter "start" or (2) NULL.
1914 	 */
1915 	mtx = NULL;
1916 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1917 		next = TAILQ_NEXT(p, listq);
1918 
1919 		/*
1920 		 * Avoid releasing and reacquiring the same page lock.
1921 		 */
1922 		new_mtx = vm_page_lockptr(p);
1923 		if (mtx != new_mtx) {
1924 			if (mtx != NULL)
1925 				mtx_unlock(mtx);
1926 			mtx = new_mtx;
1927 			mtx_lock(mtx);
1928 		}
1929 		vm_page_try_to_cache(p);
1930 	}
1931 	if (mtx != NULL)
1932 		mtx_unlock(mtx);
1933 }
1934 
1935 /*
1936  *	Populate the specified range of the object with valid pages.  Returns
1937  *	TRUE if the range is successfully populated and FALSE otherwise.
1938  *
1939  *	Note: This function should be optimized to pass a larger array of
1940  *	pages to vm_pager_get_pages() before it is applied to a non-
1941  *	OBJT_DEVICE object.
1942  *
1943  *	The object must be locked.
1944  */
1945 boolean_t
1946 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1947 {
1948 	vm_page_t m, ma[1];
1949 	vm_pindex_t pindex;
1950 	int rv;
1951 
1952 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1953 	for (pindex = start; pindex < end; pindex++) {
1954 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1955 		    VM_ALLOC_RETRY);
1956 		if (m->valid != VM_PAGE_BITS_ALL) {
1957 			ma[0] = m;
1958 			rv = vm_pager_get_pages(object, ma, 1, 0);
1959 			m = vm_page_lookup(object, pindex);
1960 			if (m == NULL)
1961 				break;
1962 			if (rv != VM_PAGER_OK) {
1963 				vm_page_lock(m);
1964 				vm_page_free(m);
1965 				vm_page_unlock(m);
1966 				break;
1967 			}
1968 		}
1969 		/*
1970 		 * Keep "m" busy because a subsequent iteration may unlock
1971 		 * the object.
1972 		 */
1973 	}
1974 	if (pindex > start) {
1975 		m = vm_page_lookup(object, start);
1976 		while (m != NULL && m->pindex < pindex) {
1977 			vm_page_wakeup(m);
1978 			m = TAILQ_NEXT(m, listq);
1979 		}
1980 	}
1981 	return (pindex == end);
1982 }
1983 
1984 /*
1985  *	Routine:	vm_object_coalesce
1986  *	Function:	Coalesces two objects backing up adjoining
1987  *			regions of memory into a single object.
1988  *
1989  *	returns TRUE if objects were combined.
1990  *
1991  *	NOTE:	Only works at the moment if the second object is NULL -
1992  *		if it's not, which object do we lock first?
1993  *
1994  *	Parameters:
1995  *		prev_object	First object to coalesce
1996  *		prev_offset	Offset into prev_object
1997  *		prev_size	Size of reference to prev_object
1998  *		next_size	Size of reference to the second object
1999  *		reserved	Indicator that extension region has
2000  *				swap accounted for
2001  *
2002  *	Conditions:
2003  *	The object must *not* be locked.
2004  */
2005 boolean_t
2006 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2007     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2008 {
2009 	vm_pindex_t next_pindex;
2010 
2011 	if (prev_object == NULL)
2012 		return (TRUE);
2013 	VM_OBJECT_LOCK(prev_object);
2014 	if (prev_object->type != OBJT_DEFAULT &&
2015 	    prev_object->type != OBJT_SWAP) {
2016 		VM_OBJECT_UNLOCK(prev_object);
2017 		return (FALSE);
2018 	}
2019 
2020 	/*
2021 	 * Try to collapse the object first
2022 	 */
2023 	vm_object_collapse(prev_object);
2024 
2025 	/*
2026 	 * Can't coalesce if: . more than one reference . paged out . shadows
2027 	 * another object . has a copy elsewhere (any of which mean that the
2028 	 * pages not mapped to prev_entry may be in use anyway)
2029 	 */
2030 	if (prev_object->backing_object != NULL) {
2031 		VM_OBJECT_UNLOCK(prev_object);
2032 		return (FALSE);
2033 	}
2034 
2035 	prev_size >>= PAGE_SHIFT;
2036 	next_size >>= PAGE_SHIFT;
2037 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2038 
2039 	if ((prev_object->ref_count > 1) &&
2040 	    (prev_object->size != next_pindex)) {
2041 		VM_OBJECT_UNLOCK(prev_object);
2042 		return (FALSE);
2043 	}
2044 
2045 	/*
2046 	 * Account for the charge.
2047 	 */
2048 	if (prev_object->cred != NULL) {
2049 
2050 		/*
2051 		 * If prev_object was charged, then this mapping,
2052 		 * althought not charged now, may become writable
2053 		 * later. Non-NULL cred in the object would prevent
2054 		 * swap reservation during enabling of the write
2055 		 * access, so reserve swap now. Failed reservation
2056 		 * cause allocation of the separate object for the map
2057 		 * entry, and swap reservation for this entry is
2058 		 * managed in appropriate time.
2059 		 */
2060 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2061 		    prev_object->cred)) {
2062 			return (FALSE);
2063 		}
2064 		prev_object->charge += ptoa(next_size);
2065 	}
2066 
2067 	/*
2068 	 * Remove any pages that may still be in the object from a previous
2069 	 * deallocation.
2070 	 */
2071 	if (next_pindex < prev_object->size) {
2072 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2073 		    next_size, 0);
2074 		if (prev_object->type == OBJT_SWAP)
2075 			swap_pager_freespace(prev_object,
2076 					     next_pindex, next_size);
2077 #if 0
2078 		if (prev_object->cred != NULL) {
2079 			KASSERT(prev_object->charge >=
2080 			    ptoa(prev_object->size - next_pindex),
2081 			    ("object %p overcharged 1 %jx %jx", prev_object,
2082 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2083 			prev_object->charge -= ptoa(prev_object->size -
2084 			    next_pindex);
2085 		}
2086 #endif
2087 	}
2088 
2089 	/*
2090 	 * Extend the object if necessary.
2091 	 */
2092 	if (next_pindex + next_size > prev_object->size)
2093 		prev_object->size = next_pindex + next_size;
2094 
2095 	VM_OBJECT_UNLOCK(prev_object);
2096 	return (TRUE);
2097 }
2098 
2099 void
2100 vm_object_set_writeable_dirty(vm_object_t object)
2101 {
2102 
2103 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2104 	if (object->type != OBJT_VNODE)
2105 		return;
2106 	object->generation++;
2107 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2108 		return;
2109 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2110 }
2111 
2112 #include "opt_ddb.h"
2113 #ifdef DDB
2114 #include <sys/kernel.h>
2115 
2116 #include <sys/cons.h>
2117 
2118 #include <ddb/ddb.h>
2119 
2120 static int
2121 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2122 {
2123 	vm_map_t tmpm;
2124 	vm_map_entry_t tmpe;
2125 	vm_object_t obj;
2126 	int entcount;
2127 
2128 	if (map == 0)
2129 		return 0;
2130 
2131 	if (entry == 0) {
2132 		tmpe = map->header.next;
2133 		entcount = map->nentries;
2134 		while (entcount-- && (tmpe != &map->header)) {
2135 			if (_vm_object_in_map(map, object, tmpe)) {
2136 				return 1;
2137 			}
2138 			tmpe = tmpe->next;
2139 		}
2140 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2141 		tmpm = entry->object.sub_map;
2142 		tmpe = tmpm->header.next;
2143 		entcount = tmpm->nentries;
2144 		while (entcount-- && tmpe != &tmpm->header) {
2145 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2146 				return 1;
2147 			}
2148 			tmpe = tmpe->next;
2149 		}
2150 	} else if ((obj = entry->object.vm_object) != NULL) {
2151 		for (; obj; obj = obj->backing_object)
2152 			if (obj == object) {
2153 				return 1;
2154 			}
2155 	}
2156 	return 0;
2157 }
2158 
2159 static int
2160 vm_object_in_map(vm_object_t object)
2161 {
2162 	struct proc *p;
2163 
2164 	/* sx_slock(&allproc_lock); */
2165 	FOREACH_PROC_IN_SYSTEM(p) {
2166 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2167 			continue;
2168 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2169 			/* sx_sunlock(&allproc_lock); */
2170 			return 1;
2171 		}
2172 	}
2173 	/* sx_sunlock(&allproc_lock); */
2174 	if (_vm_object_in_map(kernel_map, object, 0))
2175 		return 1;
2176 	if (_vm_object_in_map(kmem_map, object, 0))
2177 		return 1;
2178 	if (_vm_object_in_map(pager_map, object, 0))
2179 		return 1;
2180 	if (_vm_object_in_map(buffer_map, object, 0))
2181 		return 1;
2182 	return 0;
2183 }
2184 
2185 DB_SHOW_COMMAND(vmochk, vm_object_check)
2186 {
2187 	vm_object_t object;
2188 
2189 	/*
2190 	 * make sure that internal objs are in a map somewhere
2191 	 * and none have zero ref counts.
2192 	 */
2193 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2194 		if (object->handle == NULL &&
2195 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2196 			if (object->ref_count == 0) {
2197 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2198 					(long)object->size);
2199 			}
2200 			if (!vm_object_in_map(object)) {
2201 				db_printf(
2202 			"vmochk: internal obj is not in a map: "
2203 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2204 				    object->ref_count, (u_long)object->size,
2205 				    (u_long)object->size,
2206 				    (void *)object->backing_object);
2207 			}
2208 		}
2209 	}
2210 }
2211 
2212 /*
2213  *	vm_object_print:	[ debug ]
2214  */
2215 DB_SHOW_COMMAND(object, vm_object_print_static)
2216 {
2217 	/* XXX convert args. */
2218 	vm_object_t object = (vm_object_t)addr;
2219 	boolean_t full = have_addr;
2220 
2221 	vm_page_t p;
2222 
2223 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2224 #define	count	was_count
2225 
2226 	int count;
2227 
2228 	if (object == NULL)
2229 		return;
2230 
2231 	db_iprintf(
2232 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2233 	    object, (int)object->type, (uintmax_t)object->size,
2234 	    object->resident_page_count, object->ref_count, object->flags,
2235 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2236 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2237 	    object->shadow_count,
2238 	    object->backing_object ? object->backing_object->ref_count : 0,
2239 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2240 
2241 	if (!full)
2242 		return;
2243 
2244 	db_indent += 2;
2245 	count = 0;
2246 	TAILQ_FOREACH(p, &object->memq, listq) {
2247 		if (count == 0)
2248 			db_iprintf("memory:=");
2249 		else if (count == 6) {
2250 			db_printf("\n");
2251 			db_iprintf(" ...");
2252 			count = 0;
2253 		} else
2254 			db_printf(",");
2255 		count++;
2256 
2257 		db_printf("(off=0x%jx,page=0x%jx)",
2258 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2259 	}
2260 	if (count != 0)
2261 		db_printf("\n");
2262 	db_indent -= 2;
2263 }
2264 
2265 /* XXX. */
2266 #undef count
2267 
2268 /* XXX need this non-static entry for calling from vm_map_print. */
2269 void
2270 vm_object_print(
2271         /* db_expr_t */ long addr,
2272 	boolean_t have_addr,
2273 	/* db_expr_t */ long count,
2274 	char *modif)
2275 {
2276 	vm_object_print_static(addr, have_addr, count, modif);
2277 }
2278 
2279 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2280 {
2281 	vm_object_t object;
2282 	vm_pindex_t fidx;
2283 	vm_paddr_t pa;
2284 	vm_page_t m, prev_m;
2285 	int rcount, nl, c;
2286 
2287 	nl = 0;
2288 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2289 		db_printf("new object: %p\n", (void *)object);
2290 		if (nl > 18) {
2291 			c = cngetc();
2292 			if (c != ' ')
2293 				return;
2294 			nl = 0;
2295 		}
2296 		nl++;
2297 		rcount = 0;
2298 		fidx = 0;
2299 		pa = -1;
2300 		TAILQ_FOREACH(m, &object->memq, listq) {
2301 			if (m->pindex > 128)
2302 				break;
2303 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2304 			    prev_m->pindex + 1 != m->pindex) {
2305 				if (rcount) {
2306 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2307 						(long)fidx, rcount, (long)pa);
2308 					if (nl > 18) {
2309 						c = cngetc();
2310 						if (c != ' ')
2311 							return;
2312 						nl = 0;
2313 					}
2314 					nl++;
2315 					rcount = 0;
2316 				}
2317 			}
2318 			if (rcount &&
2319 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2320 				++rcount;
2321 				continue;
2322 			}
2323 			if (rcount) {
2324 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2325 					(long)fidx, rcount, (long)pa);
2326 				if (nl > 18) {
2327 					c = cngetc();
2328 					if (c != ' ')
2329 						return;
2330 					nl = 0;
2331 				}
2332 				nl++;
2333 			}
2334 			fidx = m->pindex;
2335 			pa = VM_PAGE_TO_PHYS(m);
2336 			rcount = 1;
2337 		}
2338 		if (rcount) {
2339 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2340 				(long)fidx, rcount, (long)pa);
2341 			if (nl > 18) {
2342 				c = cngetc();
2343 				if (c != ' ')
2344 					return;
2345 				nl = 0;
2346 			}
2347 			nl++;
2348 		}
2349 	}
2350 }
2351 #endif /* DDB */
2352