1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, int *clearobjflags); 105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 106 int *clearobjflags); 107 static void vm_object_qcollapse(vm_object_t object); 108 static void vm_object_vndeallocate(vm_object_t object); 109 110 /* 111 * Virtual memory objects maintain the actual data 112 * associated with allocated virtual memory. A given 113 * page of memory exists within exactly one object. 114 * 115 * An object is only deallocated when all "references" 116 * are given up. Only one "reference" to a given 117 * region of an object should be writeable. 118 * 119 * Associated with each object is a list of all resident 120 * memory pages belonging to that object; this list is 121 * maintained by the "vm_page" module, and locked by the object's 122 * lock. 123 * 124 * Each object also records a "pager" routine which is 125 * used to retrieve (and store) pages to the proper backing 126 * storage. In addition, objects may be backed by other 127 * objects from which they were virtual-copied. 128 * 129 * The only items within the object structure which are 130 * modified after time of creation are: 131 * reference count locked by object's lock 132 * pager routine locked by object's lock 133 * 134 */ 135 136 struct object_q vm_object_list; 137 struct mtx vm_object_list_mtx; /* lock for object list and count */ 138 139 struct vm_object kernel_object_store; 140 struct vm_object kmem_object_store; 141 142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 143 "VM object stats"); 144 145 static long object_collapses; 146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 147 &object_collapses, 0, "VM object collapses"); 148 149 static long object_bypasses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 151 &object_bypasses, 0, "VM object bypasses"); 152 153 static uma_zone_t obj_zone; 154 155 static int vm_object_zinit(void *mem, int size, int flags); 156 157 #ifdef INVARIANTS 158 static void vm_object_zdtor(void *mem, int size, void *arg); 159 160 static void 161 vm_object_zdtor(void *mem, int size, void *arg) 162 { 163 vm_object_t object; 164 165 object = (vm_object_t)mem; 166 KASSERT(TAILQ_EMPTY(&object->memq), 167 ("object %p has resident pages", 168 object)); 169 #if VM_NRESERVLEVEL > 0 170 KASSERT(LIST_EMPTY(&object->rvq), 171 ("object %p has reservations", 172 object)); 173 #endif 174 KASSERT(object->cache == NULL, 175 ("object %p has cached pages", 176 object)); 177 KASSERT(object->paging_in_progress == 0, 178 ("object %p paging_in_progress = %d", 179 object, object->paging_in_progress)); 180 KASSERT(object->resident_page_count == 0, 181 ("object %p resident_page_count = %d", 182 object, object->resident_page_count)); 183 KASSERT(object->shadow_count == 0, 184 ("object %p shadow_count = %d", 185 object, object->shadow_count)); 186 } 187 #endif 188 189 static int 190 vm_object_zinit(void *mem, int size, int flags) 191 { 192 vm_object_t object; 193 194 object = (vm_object_t)mem; 195 bzero(&object->mtx, sizeof(object->mtx)); 196 VM_OBJECT_LOCK_INIT(object, "standard object"); 197 198 /* These are true for any object that has been freed */ 199 object->paging_in_progress = 0; 200 object->resident_page_count = 0; 201 object->shadow_count = 0; 202 return (0); 203 } 204 205 void 206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 207 { 208 209 TAILQ_INIT(&object->memq); 210 LIST_INIT(&object->shadow_head); 211 212 object->root = NULL; 213 object->type = type; 214 object->size = size; 215 object->generation = 1; 216 object->ref_count = 1; 217 object->memattr = VM_MEMATTR_DEFAULT; 218 object->flags = 0; 219 object->cred = NULL; 220 object->charge = 0; 221 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 222 object->flags = OBJ_ONEMAPPING; 223 object->pg_color = 0; 224 object->handle = NULL; 225 object->backing_object = NULL; 226 object->backing_object_offset = (vm_ooffset_t) 0; 227 #if VM_NRESERVLEVEL > 0 228 LIST_INIT(&object->rvq); 229 #endif 230 object->cache = NULL; 231 232 mtx_lock(&vm_object_list_mtx); 233 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 234 mtx_unlock(&vm_object_list_mtx); 235 } 236 237 /* 238 * vm_object_init: 239 * 240 * Initialize the VM objects module. 241 */ 242 void 243 vm_object_init(void) 244 { 245 TAILQ_INIT(&vm_object_list); 246 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 247 248 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 249 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 250 kernel_object); 251 #if VM_NRESERVLEVEL > 0 252 kernel_object->flags |= OBJ_COLORED; 253 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 254 #endif 255 256 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 257 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 258 kmem_object); 259 #if VM_NRESERVLEVEL > 0 260 kmem_object->flags |= OBJ_COLORED; 261 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 262 #endif 263 264 /* 265 * The lock portion of struct vm_object must be type stable due 266 * to vm_pageout_fallback_object_lock locking a vm object 267 * without holding any references to it. 268 */ 269 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 270 #ifdef INVARIANTS 271 vm_object_zdtor, 272 #else 273 NULL, 274 #endif 275 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 276 } 277 278 void 279 vm_object_clear_flag(vm_object_t object, u_short bits) 280 { 281 282 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 283 object->flags &= ~bits; 284 } 285 286 /* 287 * Sets the default memory attribute for the specified object. Pages 288 * that are allocated to this object are by default assigned this memory 289 * attribute. 290 * 291 * Presently, this function must be called before any pages are allocated 292 * to the object. In the future, this requirement may be relaxed for 293 * "default" and "swap" objects. 294 */ 295 int 296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 297 { 298 299 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 300 switch (object->type) { 301 case OBJT_DEFAULT: 302 case OBJT_DEVICE: 303 case OBJT_PHYS: 304 case OBJT_SG: 305 case OBJT_SWAP: 306 case OBJT_VNODE: 307 if (!TAILQ_EMPTY(&object->memq)) 308 return (KERN_FAILURE); 309 break; 310 case OBJT_DEAD: 311 return (KERN_INVALID_ARGUMENT); 312 } 313 object->memattr = memattr; 314 return (KERN_SUCCESS); 315 } 316 317 void 318 vm_object_pip_add(vm_object_t object, short i) 319 { 320 321 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 322 object->paging_in_progress += i; 323 } 324 325 void 326 vm_object_pip_subtract(vm_object_t object, short i) 327 { 328 329 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 330 object->paging_in_progress -= i; 331 } 332 333 void 334 vm_object_pip_wakeup(vm_object_t object) 335 { 336 337 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 338 object->paging_in_progress--; 339 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 340 vm_object_clear_flag(object, OBJ_PIPWNT); 341 wakeup(object); 342 } 343 } 344 345 void 346 vm_object_pip_wakeupn(vm_object_t object, short i) 347 { 348 349 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 350 if (i) 351 object->paging_in_progress -= i; 352 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 353 vm_object_clear_flag(object, OBJ_PIPWNT); 354 wakeup(object); 355 } 356 } 357 358 void 359 vm_object_pip_wait(vm_object_t object, char *waitid) 360 { 361 362 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 363 while (object->paging_in_progress) { 364 object->flags |= OBJ_PIPWNT; 365 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 366 } 367 } 368 369 /* 370 * vm_object_allocate: 371 * 372 * Returns a new object with the given size. 373 */ 374 vm_object_t 375 vm_object_allocate(objtype_t type, vm_pindex_t size) 376 { 377 vm_object_t object; 378 379 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 380 _vm_object_allocate(type, size, object); 381 return (object); 382 } 383 384 385 /* 386 * vm_object_reference: 387 * 388 * Gets another reference to the given object. Note: OBJ_DEAD 389 * objects can be referenced during final cleaning. 390 */ 391 void 392 vm_object_reference(vm_object_t object) 393 { 394 if (object == NULL) 395 return; 396 VM_OBJECT_LOCK(object); 397 vm_object_reference_locked(object); 398 VM_OBJECT_UNLOCK(object); 399 } 400 401 /* 402 * vm_object_reference_locked: 403 * 404 * Gets another reference to the given object. 405 * 406 * The object must be locked. 407 */ 408 void 409 vm_object_reference_locked(vm_object_t object) 410 { 411 struct vnode *vp; 412 413 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 414 object->ref_count++; 415 if (object->type == OBJT_VNODE) { 416 vp = object->handle; 417 vref(vp); 418 } 419 } 420 421 /* 422 * Handle deallocating an object of type OBJT_VNODE. 423 */ 424 static void 425 vm_object_vndeallocate(vm_object_t object) 426 { 427 struct vnode *vp = (struct vnode *) object->handle; 428 429 VFS_ASSERT_GIANT(vp->v_mount); 430 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 431 KASSERT(object->type == OBJT_VNODE, 432 ("vm_object_vndeallocate: not a vnode object")); 433 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 434 #ifdef INVARIANTS 435 if (object->ref_count == 0) { 436 vprint("vm_object_vndeallocate", vp); 437 panic("vm_object_vndeallocate: bad object reference count"); 438 } 439 #endif 440 441 if (object->ref_count > 1) { 442 object->ref_count--; 443 VM_OBJECT_UNLOCK(object); 444 /* vrele may need the vnode lock. */ 445 vrele(vp); 446 } else { 447 vhold(vp); 448 VM_OBJECT_UNLOCK(object); 449 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 450 vdrop(vp); 451 VM_OBJECT_LOCK(object); 452 object->ref_count--; 453 if (object->type == OBJT_DEAD) { 454 VM_OBJECT_UNLOCK(object); 455 VOP_UNLOCK(vp, 0); 456 } else { 457 if (object->ref_count == 0) 458 vp->v_vflag &= ~VV_TEXT; 459 VM_OBJECT_UNLOCK(object); 460 vput(vp); 461 } 462 } 463 } 464 465 /* 466 * vm_object_deallocate: 467 * 468 * Release a reference to the specified object, 469 * gained either through a vm_object_allocate 470 * or a vm_object_reference call. When all references 471 * are gone, storage associated with this object 472 * may be relinquished. 473 * 474 * No object may be locked. 475 */ 476 void 477 vm_object_deallocate(vm_object_t object) 478 { 479 vm_object_t temp; 480 481 while (object != NULL) { 482 int vfslocked; 483 484 vfslocked = 0; 485 restart: 486 VM_OBJECT_LOCK(object); 487 if (object->type == OBJT_VNODE) { 488 struct vnode *vp = (struct vnode *) object->handle; 489 490 /* 491 * Conditionally acquire Giant for a vnode-backed 492 * object. We have to be careful since the type of 493 * a vnode object can change while the object is 494 * unlocked. 495 */ 496 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 497 vfslocked = 1; 498 if (!mtx_trylock(&Giant)) { 499 VM_OBJECT_UNLOCK(object); 500 mtx_lock(&Giant); 501 goto restart; 502 } 503 } 504 vm_object_vndeallocate(object); 505 VFS_UNLOCK_GIANT(vfslocked); 506 return; 507 } else 508 /* 509 * This is to handle the case that the object 510 * changed type while we dropped its lock to 511 * obtain Giant. 512 */ 513 VFS_UNLOCK_GIANT(vfslocked); 514 515 KASSERT(object->ref_count != 0, 516 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 517 518 /* 519 * If the reference count goes to 0 we start calling 520 * vm_object_terminate() on the object chain. 521 * A ref count of 1 may be a special case depending on the 522 * shadow count being 0 or 1. 523 */ 524 object->ref_count--; 525 if (object->ref_count > 1) { 526 VM_OBJECT_UNLOCK(object); 527 return; 528 } else if (object->ref_count == 1) { 529 if (object->shadow_count == 0 && 530 object->handle == NULL && 531 (object->type == OBJT_DEFAULT || 532 object->type == OBJT_SWAP)) { 533 vm_object_set_flag(object, OBJ_ONEMAPPING); 534 } else if ((object->shadow_count == 1) && 535 (object->handle == NULL) && 536 (object->type == OBJT_DEFAULT || 537 object->type == OBJT_SWAP)) { 538 vm_object_t robject; 539 540 robject = LIST_FIRST(&object->shadow_head); 541 KASSERT(robject != NULL, 542 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 543 object->ref_count, 544 object->shadow_count)); 545 if (!VM_OBJECT_TRYLOCK(robject)) { 546 /* 547 * Avoid a potential deadlock. 548 */ 549 object->ref_count++; 550 VM_OBJECT_UNLOCK(object); 551 /* 552 * More likely than not the thread 553 * holding robject's lock has lower 554 * priority than the current thread. 555 * Let the lower priority thread run. 556 */ 557 pause("vmo_de", 1); 558 continue; 559 } 560 /* 561 * Collapse object into its shadow unless its 562 * shadow is dead. In that case, object will 563 * be deallocated by the thread that is 564 * deallocating its shadow. 565 */ 566 if ((robject->flags & OBJ_DEAD) == 0 && 567 (robject->handle == NULL) && 568 (robject->type == OBJT_DEFAULT || 569 robject->type == OBJT_SWAP)) { 570 571 robject->ref_count++; 572 retry: 573 if (robject->paging_in_progress) { 574 VM_OBJECT_UNLOCK(object); 575 vm_object_pip_wait(robject, 576 "objde1"); 577 temp = robject->backing_object; 578 if (object == temp) { 579 VM_OBJECT_LOCK(object); 580 goto retry; 581 } 582 } else if (object->paging_in_progress) { 583 VM_OBJECT_UNLOCK(robject); 584 object->flags |= OBJ_PIPWNT; 585 msleep(object, 586 VM_OBJECT_MTX(object), 587 PDROP | PVM, "objde2", 0); 588 VM_OBJECT_LOCK(robject); 589 temp = robject->backing_object; 590 if (object == temp) { 591 VM_OBJECT_LOCK(object); 592 goto retry; 593 } 594 } else 595 VM_OBJECT_UNLOCK(object); 596 597 if (robject->ref_count == 1) { 598 robject->ref_count--; 599 object = robject; 600 goto doterm; 601 } 602 object = robject; 603 vm_object_collapse(object); 604 VM_OBJECT_UNLOCK(object); 605 continue; 606 } 607 VM_OBJECT_UNLOCK(robject); 608 } 609 VM_OBJECT_UNLOCK(object); 610 return; 611 } 612 doterm: 613 temp = object->backing_object; 614 if (temp != NULL) { 615 VM_OBJECT_LOCK(temp); 616 LIST_REMOVE(object, shadow_list); 617 temp->shadow_count--; 618 VM_OBJECT_UNLOCK(temp); 619 object->backing_object = NULL; 620 } 621 /* 622 * Don't double-terminate, we could be in a termination 623 * recursion due to the terminate having to sync data 624 * to disk. 625 */ 626 if ((object->flags & OBJ_DEAD) == 0) 627 vm_object_terminate(object); 628 else 629 VM_OBJECT_UNLOCK(object); 630 object = temp; 631 } 632 } 633 634 /* 635 * vm_object_destroy removes the object from the global object list 636 * and frees the space for the object. 637 */ 638 void 639 vm_object_destroy(vm_object_t object) 640 { 641 642 /* 643 * Remove the object from the global object list. 644 */ 645 mtx_lock(&vm_object_list_mtx); 646 TAILQ_REMOVE(&vm_object_list, object, object_list); 647 mtx_unlock(&vm_object_list_mtx); 648 649 /* 650 * Release the allocation charge. 651 */ 652 if (object->cred != NULL) { 653 KASSERT(object->type == OBJT_DEFAULT || 654 object->type == OBJT_SWAP, 655 ("vm_object_terminate: non-swap obj %p has cred", 656 object)); 657 swap_release_by_cred(object->charge, object->cred); 658 object->charge = 0; 659 crfree(object->cred); 660 object->cred = NULL; 661 } 662 663 /* 664 * Free the space for the object. 665 */ 666 uma_zfree(obj_zone, object); 667 } 668 669 /* 670 * vm_object_terminate actually destroys the specified object, freeing 671 * up all previously used resources. 672 * 673 * The object must be locked. 674 * This routine may block. 675 */ 676 void 677 vm_object_terminate(vm_object_t object) 678 { 679 vm_page_t p, p_next; 680 681 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 682 683 /* 684 * Make sure no one uses us. 685 */ 686 vm_object_set_flag(object, OBJ_DEAD); 687 688 /* 689 * wait for the pageout daemon to be done with the object 690 */ 691 vm_object_pip_wait(object, "objtrm"); 692 693 KASSERT(!object->paging_in_progress, 694 ("vm_object_terminate: pageout in progress")); 695 696 /* 697 * Clean and free the pages, as appropriate. All references to the 698 * object are gone, so we don't need to lock it. 699 */ 700 if (object->type == OBJT_VNODE) { 701 struct vnode *vp = (struct vnode *)object->handle; 702 703 /* 704 * Clean pages and flush buffers. 705 */ 706 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 707 VM_OBJECT_UNLOCK(object); 708 709 vinvalbuf(vp, V_SAVE, 0, 0); 710 711 VM_OBJECT_LOCK(object); 712 } 713 714 KASSERT(object->ref_count == 0, 715 ("vm_object_terminate: object with references, ref_count=%d", 716 object->ref_count)); 717 718 /* 719 * Free any remaining pageable pages. This also removes them from the 720 * paging queues. However, don't free wired pages, just remove them 721 * from the object. Rather than incrementally removing each page from 722 * the object, the page and object are reset to any empty state. 723 */ 724 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 725 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 726 ("vm_object_terminate: freeing busy page %p", p)); 727 vm_page_lock(p); 728 /* 729 * Optimize the page's removal from the object by resetting 730 * its "object" field. Specifically, if the page is not 731 * wired, then the effect of this assignment is that 732 * vm_page_free()'s call to vm_page_remove() will return 733 * immediately without modifying the page or the object. 734 */ 735 p->object = NULL; 736 if (p->wire_count == 0) { 737 vm_page_free(p); 738 PCPU_INC(cnt.v_pfree); 739 } 740 vm_page_unlock(p); 741 } 742 /* 743 * If the object contained any pages, then reset it to an empty state. 744 * None of the object's fields, including "resident_page_count", were 745 * modified by the preceding loop. 746 */ 747 if (object->resident_page_count != 0) { 748 object->root = NULL; 749 TAILQ_INIT(&object->memq); 750 object->resident_page_count = 0; 751 if (object->type == OBJT_VNODE) 752 vdrop(object->handle); 753 } 754 755 #if VM_NRESERVLEVEL > 0 756 if (__predict_false(!LIST_EMPTY(&object->rvq))) 757 vm_reserv_break_all(object); 758 #endif 759 if (__predict_false(object->cache != NULL)) 760 vm_page_cache_free(object, 0, 0); 761 762 /* 763 * Let the pager know object is dead. 764 */ 765 vm_pager_deallocate(object); 766 VM_OBJECT_UNLOCK(object); 767 768 vm_object_destroy(object); 769 } 770 771 /* 772 * Make the page read-only so that we can clear the object flags. However, if 773 * this is a nosync mmap then the object is likely to stay dirty so do not 774 * mess with the page and do not clear the object flags. Returns TRUE if the 775 * page should be flushed, and FALSE otherwise. 776 */ 777 static boolean_t 778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags) 779 { 780 781 /* 782 * If we have been asked to skip nosync pages and this is a 783 * nosync page, skip it. Note that the object flags were not 784 * cleared in this case so we do not have to set them. 785 */ 786 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 787 *clearobjflags = 0; 788 return (FALSE); 789 } else { 790 pmap_remove_write(p); 791 return (p->dirty != 0); 792 } 793 } 794 795 /* 796 * vm_object_page_clean 797 * 798 * Clean all dirty pages in the specified range of object. Leaves page 799 * on whatever queue it is currently on. If NOSYNC is set then do not 800 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 801 * leaving the object dirty. 802 * 803 * When stuffing pages asynchronously, allow clustering. XXX we need a 804 * synchronous clustering mode implementation. 805 * 806 * Odd semantics: if start == end, we clean everything. 807 * 808 * The object must be locked. 809 */ 810 void 811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 812 int flags) 813 { 814 vm_page_t np, p; 815 vm_pindex_t pi, tend, tstart; 816 int clearobjflags, curgeneration, n, pagerflags; 817 818 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 819 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 820 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 821 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 822 object->resident_page_count == 0) 823 return; 824 825 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 826 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 827 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 828 829 tstart = OFF_TO_IDX(start); 830 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 831 clearobjflags = tstart == 0 && tend >= object->size; 832 833 rescan: 834 curgeneration = object->generation; 835 836 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 837 pi = p->pindex; 838 if (pi >= tend) 839 break; 840 np = TAILQ_NEXT(p, listq); 841 if (p->valid == 0) 842 continue; 843 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 844 if (object->generation != curgeneration) 845 goto rescan; 846 np = vm_page_find_least(object, pi); 847 continue; 848 } 849 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 850 continue; 851 852 n = vm_object_page_collect_flush(object, p, pagerflags, 853 flags, &clearobjflags); 854 if (object->generation != curgeneration) 855 goto rescan; 856 857 /* 858 * If the VOP_PUTPAGES() did a truncated write, so 859 * that even the first page of the run is not fully 860 * written, vm_pageout_flush() returns 0 as the run 861 * length. Since the condition that caused truncated 862 * write may be permanent, e.g. exhausted free space, 863 * accepting n == 0 would cause an infinite loop. 864 * 865 * Forwarding the iterator leaves the unwritten page 866 * behind, but there is not much we can do there if 867 * filesystem refuses to write it. 868 */ 869 if (n == 0) 870 n = 1; 871 np = vm_page_find_least(object, pi + n); 872 } 873 #if 0 874 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 875 #endif 876 877 if (clearobjflags) 878 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 879 } 880 881 static int 882 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 883 int flags, int *clearobjflags) 884 { 885 vm_page_t ma[vm_pageout_page_count], p_first, tp; 886 int count, i, mreq, runlen; 887 888 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 889 vm_page_lock_assert(p, MA_NOTOWNED); 890 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 891 892 count = 1; 893 mreq = 0; 894 895 for (tp = p; count < vm_pageout_page_count; count++) { 896 tp = vm_page_next(tp); 897 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 898 break; 899 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 900 break; 901 } 902 903 for (p_first = p; count < vm_pageout_page_count; count++) { 904 tp = vm_page_prev(p_first); 905 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 906 break; 907 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 908 break; 909 p_first = tp; 910 mreq++; 911 } 912 913 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 914 ma[i] = tp; 915 916 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen); 917 return (runlen); 918 } 919 920 /* 921 * Note that there is absolutely no sense in writing out 922 * anonymous objects, so we track down the vnode object 923 * to write out. 924 * We invalidate (remove) all pages from the address space 925 * for semantic correctness. 926 * 927 * If the backing object is a device object with unmanaged pages, then any 928 * mappings to the specified range of pages must be removed before this 929 * function is called. 930 * 931 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 932 * may start out with a NULL object. 933 */ 934 void 935 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 936 boolean_t syncio, boolean_t invalidate) 937 { 938 vm_object_t backing_object; 939 struct vnode *vp; 940 struct mount *mp; 941 int flags, fsync_after; 942 943 if (object == NULL) 944 return; 945 VM_OBJECT_LOCK(object); 946 while ((backing_object = object->backing_object) != NULL) { 947 VM_OBJECT_LOCK(backing_object); 948 offset += object->backing_object_offset; 949 VM_OBJECT_UNLOCK(object); 950 object = backing_object; 951 if (object->size < OFF_TO_IDX(offset + size)) 952 size = IDX_TO_OFF(object->size) - offset; 953 } 954 /* 955 * Flush pages if writing is allowed, invalidate them 956 * if invalidation requested. Pages undergoing I/O 957 * will be ignored by vm_object_page_remove(). 958 * 959 * We cannot lock the vnode and then wait for paging 960 * to complete without deadlocking against vm_fault. 961 * Instead we simply call vm_object_page_remove() and 962 * allow it to block internally on a page-by-page 963 * basis when it encounters pages undergoing async 964 * I/O. 965 */ 966 if (object->type == OBJT_VNODE && 967 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 968 int vfslocked; 969 vp = object->handle; 970 VM_OBJECT_UNLOCK(object); 971 (void) vn_start_write(vp, &mp, V_WAIT); 972 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 973 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 974 if (syncio && !invalidate && offset == 0 && 975 OFF_TO_IDX(size) == object->size) { 976 /* 977 * If syncing the whole mapping of the file, 978 * it is faster to schedule all the writes in 979 * async mode, also allowing the clustering, 980 * and then wait for i/o to complete. 981 */ 982 flags = 0; 983 fsync_after = TRUE; 984 } else { 985 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 986 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 987 fsync_after = FALSE; 988 } 989 VM_OBJECT_LOCK(object); 990 vm_object_page_clean(object, offset, offset + size, flags); 991 VM_OBJECT_UNLOCK(object); 992 if (fsync_after) 993 (void) VOP_FSYNC(vp, MNT_WAIT, curthread); 994 VOP_UNLOCK(vp, 0); 995 VFS_UNLOCK_GIANT(vfslocked); 996 vn_finished_write(mp); 997 VM_OBJECT_LOCK(object); 998 } 999 if ((object->type == OBJT_VNODE || 1000 object->type == OBJT_DEVICE) && invalidate) { 1001 if (object->type == OBJT_DEVICE) 1002 /* 1003 * The option OBJPR_NOTMAPPED must be passed here 1004 * because vm_object_page_remove() cannot remove 1005 * unmanaged mappings. 1006 */ 1007 flags = OBJPR_NOTMAPPED; 1008 else if (old_msync) 1009 flags = 0; 1010 else 1011 flags = OBJPR_CLEANONLY; 1012 vm_object_page_remove(object, OFF_TO_IDX(offset), 1013 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1014 } 1015 VM_OBJECT_UNLOCK(object); 1016 } 1017 1018 /* 1019 * vm_object_madvise: 1020 * 1021 * Implements the madvise function at the object/page level. 1022 * 1023 * MADV_WILLNEED (any object) 1024 * 1025 * Activate the specified pages if they are resident. 1026 * 1027 * MADV_DONTNEED (any object) 1028 * 1029 * Deactivate the specified pages if they are resident. 1030 * 1031 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1032 * OBJ_ONEMAPPING only) 1033 * 1034 * Deactivate and clean the specified pages if they are 1035 * resident. This permits the process to reuse the pages 1036 * without faulting or the kernel to reclaim the pages 1037 * without I/O. 1038 */ 1039 void 1040 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1041 { 1042 vm_pindex_t end, tpindex; 1043 vm_object_t backing_object, tobject; 1044 vm_page_t m; 1045 1046 if (object == NULL) 1047 return; 1048 VM_OBJECT_LOCK(object); 1049 end = pindex + count; 1050 /* 1051 * Locate and adjust resident pages 1052 */ 1053 for (; pindex < end; pindex += 1) { 1054 relookup: 1055 tobject = object; 1056 tpindex = pindex; 1057 shadowlookup: 1058 /* 1059 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1060 * and those pages must be OBJ_ONEMAPPING. 1061 */ 1062 if (advise == MADV_FREE) { 1063 if ((tobject->type != OBJT_DEFAULT && 1064 tobject->type != OBJT_SWAP) || 1065 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1066 goto unlock_tobject; 1067 } 1068 } else if (tobject->type == OBJT_PHYS) 1069 goto unlock_tobject; 1070 m = vm_page_lookup(tobject, tpindex); 1071 if (m == NULL && advise == MADV_WILLNEED) { 1072 /* 1073 * If the page is cached, reactivate it. 1074 */ 1075 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1076 VM_ALLOC_NOBUSY); 1077 } 1078 if (m == NULL) { 1079 /* 1080 * There may be swap even if there is no backing page 1081 */ 1082 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1083 swap_pager_freespace(tobject, tpindex, 1); 1084 /* 1085 * next object 1086 */ 1087 backing_object = tobject->backing_object; 1088 if (backing_object == NULL) 1089 goto unlock_tobject; 1090 VM_OBJECT_LOCK(backing_object); 1091 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1092 if (tobject != object) 1093 VM_OBJECT_UNLOCK(tobject); 1094 tobject = backing_object; 1095 goto shadowlookup; 1096 } else if (m->valid != VM_PAGE_BITS_ALL) 1097 goto unlock_tobject; 1098 /* 1099 * If the page is not in a normal state, skip it. 1100 */ 1101 vm_page_lock(m); 1102 if (m->hold_count != 0 || m->wire_count != 0) { 1103 vm_page_unlock(m); 1104 goto unlock_tobject; 1105 } 1106 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1107 ("vm_object_madvise: page %p is fictitious", m)); 1108 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1109 ("vm_object_madvise: page %p is not managed", m)); 1110 if ((m->oflags & VPO_BUSY) || m->busy) { 1111 if (advise == MADV_WILLNEED) { 1112 /* 1113 * Reference the page before unlocking and 1114 * sleeping so that the page daemon is less 1115 * likely to reclaim it. 1116 */ 1117 vm_page_aflag_set(m, PGA_REFERENCED); 1118 } 1119 vm_page_unlock(m); 1120 if (object != tobject) 1121 VM_OBJECT_UNLOCK(object); 1122 m->oflags |= VPO_WANTED; 1123 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1124 0); 1125 VM_OBJECT_LOCK(object); 1126 goto relookup; 1127 } 1128 if (advise == MADV_WILLNEED) { 1129 vm_page_activate(m); 1130 } else if (advise == MADV_DONTNEED) { 1131 vm_page_dontneed(m); 1132 } else if (advise == MADV_FREE) { 1133 /* 1134 * Mark the page clean. This will allow the page 1135 * to be freed up by the system. However, such pages 1136 * are often reused quickly by malloc()/free() 1137 * so we do not do anything that would cause 1138 * a page fault if we can help it. 1139 * 1140 * Specifically, we do not try to actually free 1141 * the page now nor do we try to put it in the 1142 * cache (which would cause a page fault on reuse). 1143 * 1144 * But we do make the page is freeable as we 1145 * can without actually taking the step of unmapping 1146 * it. 1147 */ 1148 pmap_clear_modify(m); 1149 m->dirty = 0; 1150 m->act_count = 0; 1151 vm_page_dontneed(m); 1152 } 1153 vm_page_unlock(m); 1154 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1155 swap_pager_freespace(tobject, tpindex, 1); 1156 unlock_tobject: 1157 if (tobject != object) 1158 VM_OBJECT_UNLOCK(tobject); 1159 } 1160 VM_OBJECT_UNLOCK(object); 1161 } 1162 1163 /* 1164 * vm_object_shadow: 1165 * 1166 * Create a new object which is backed by the 1167 * specified existing object range. The source 1168 * object reference is deallocated. 1169 * 1170 * The new object and offset into that object 1171 * are returned in the source parameters. 1172 */ 1173 void 1174 vm_object_shadow( 1175 vm_object_t *object, /* IN/OUT */ 1176 vm_ooffset_t *offset, /* IN/OUT */ 1177 vm_size_t length) 1178 { 1179 vm_object_t source; 1180 vm_object_t result; 1181 1182 source = *object; 1183 1184 /* 1185 * Don't create the new object if the old object isn't shared. 1186 */ 1187 if (source != NULL) { 1188 VM_OBJECT_LOCK(source); 1189 if (source->ref_count == 1 && 1190 source->handle == NULL && 1191 (source->type == OBJT_DEFAULT || 1192 source->type == OBJT_SWAP)) { 1193 VM_OBJECT_UNLOCK(source); 1194 return; 1195 } 1196 VM_OBJECT_UNLOCK(source); 1197 } 1198 1199 /* 1200 * Allocate a new object with the given length. 1201 */ 1202 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1203 1204 /* 1205 * The new object shadows the source object, adding a reference to it. 1206 * Our caller changes his reference to point to the new object, 1207 * removing a reference to the source object. Net result: no change 1208 * of reference count. 1209 * 1210 * Try to optimize the result object's page color when shadowing 1211 * in order to maintain page coloring consistency in the combined 1212 * shadowed object. 1213 */ 1214 result->backing_object = source; 1215 /* 1216 * Store the offset into the source object, and fix up the offset into 1217 * the new object. 1218 */ 1219 result->backing_object_offset = *offset; 1220 if (source != NULL) { 1221 VM_OBJECT_LOCK(source); 1222 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1223 source->shadow_count++; 1224 #if VM_NRESERVLEVEL > 0 1225 result->flags |= source->flags & OBJ_COLORED; 1226 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1227 ((1 << (VM_NFREEORDER - 1)) - 1); 1228 #endif 1229 VM_OBJECT_UNLOCK(source); 1230 } 1231 1232 1233 /* 1234 * Return the new things 1235 */ 1236 *offset = 0; 1237 *object = result; 1238 } 1239 1240 /* 1241 * vm_object_split: 1242 * 1243 * Split the pages in a map entry into a new object. This affords 1244 * easier removal of unused pages, and keeps object inheritance from 1245 * being a negative impact on memory usage. 1246 */ 1247 void 1248 vm_object_split(vm_map_entry_t entry) 1249 { 1250 vm_page_t m, m_next; 1251 vm_object_t orig_object, new_object, source; 1252 vm_pindex_t idx, offidxstart; 1253 vm_size_t size; 1254 1255 orig_object = entry->object.vm_object; 1256 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1257 return; 1258 if (orig_object->ref_count <= 1) 1259 return; 1260 VM_OBJECT_UNLOCK(orig_object); 1261 1262 offidxstart = OFF_TO_IDX(entry->offset); 1263 size = atop(entry->end - entry->start); 1264 1265 /* 1266 * If swap_pager_copy() is later called, it will convert new_object 1267 * into a swap object. 1268 */ 1269 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1270 1271 /* 1272 * At this point, the new object is still private, so the order in 1273 * which the original and new objects are locked does not matter. 1274 */ 1275 VM_OBJECT_LOCK(new_object); 1276 VM_OBJECT_LOCK(orig_object); 1277 source = orig_object->backing_object; 1278 if (source != NULL) { 1279 VM_OBJECT_LOCK(source); 1280 if ((source->flags & OBJ_DEAD) != 0) { 1281 VM_OBJECT_UNLOCK(source); 1282 VM_OBJECT_UNLOCK(orig_object); 1283 VM_OBJECT_UNLOCK(new_object); 1284 vm_object_deallocate(new_object); 1285 VM_OBJECT_LOCK(orig_object); 1286 return; 1287 } 1288 LIST_INSERT_HEAD(&source->shadow_head, 1289 new_object, shadow_list); 1290 source->shadow_count++; 1291 vm_object_reference_locked(source); /* for new_object */ 1292 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1293 VM_OBJECT_UNLOCK(source); 1294 new_object->backing_object_offset = 1295 orig_object->backing_object_offset + entry->offset; 1296 new_object->backing_object = source; 1297 } 1298 if (orig_object->cred != NULL) { 1299 new_object->cred = orig_object->cred; 1300 crhold(orig_object->cred); 1301 new_object->charge = ptoa(size); 1302 KASSERT(orig_object->charge >= ptoa(size), 1303 ("orig_object->charge < 0")); 1304 orig_object->charge -= ptoa(size); 1305 } 1306 retry: 1307 m = vm_page_find_least(orig_object, offidxstart); 1308 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1309 m = m_next) { 1310 m_next = TAILQ_NEXT(m, listq); 1311 1312 /* 1313 * We must wait for pending I/O to complete before we can 1314 * rename the page. 1315 * 1316 * We do not have to VM_PROT_NONE the page as mappings should 1317 * not be changed by this operation. 1318 */ 1319 if ((m->oflags & VPO_BUSY) || m->busy) { 1320 VM_OBJECT_UNLOCK(new_object); 1321 m->oflags |= VPO_WANTED; 1322 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1323 VM_OBJECT_LOCK(new_object); 1324 goto retry; 1325 } 1326 vm_page_lock(m); 1327 vm_page_rename(m, new_object, idx); 1328 vm_page_unlock(m); 1329 /* page automatically made dirty by rename and cache handled */ 1330 vm_page_busy(m); 1331 } 1332 if (orig_object->type == OBJT_SWAP) { 1333 /* 1334 * swap_pager_copy() can sleep, in which case the orig_object's 1335 * and new_object's locks are released and reacquired. 1336 */ 1337 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1338 1339 /* 1340 * Transfer any cached pages from orig_object to new_object. 1341 */ 1342 if (__predict_false(orig_object->cache != NULL)) 1343 vm_page_cache_transfer(orig_object, offidxstart, 1344 new_object); 1345 } 1346 VM_OBJECT_UNLOCK(orig_object); 1347 TAILQ_FOREACH(m, &new_object->memq, listq) 1348 vm_page_wakeup(m); 1349 VM_OBJECT_UNLOCK(new_object); 1350 entry->object.vm_object = new_object; 1351 entry->offset = 0LL; 1352 vm_object_deallocate(orig_object); 1353 VM_OBJECT_LOCK(new_object); 1354 } 1355 1356 #define OBSC_TEST_ALL_SHADOWED 0x0001 1357 #define OBSC_COLLAPSE_NOWAIT 0x0002 1358 #define OBSC_COLLAPSE_WAIT 0x0004 1359 1360 static int 1361 vm_object_backing_scan(vm_object_t object, int op) 1362 { 1363 int r = 1; 1364 vm_page_t p; 1365 vm_object_t backing_object; 1366 vm_pindex_t backing_offset_index; 1367 1368 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1369 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1370 1371 backing_object = object->backing_object; 1372 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1373 1374 /* 1375 * Initial conditions 1376 */ 1377 if (op & OBSC_TEST_ALL_SHADOWED) { 1378 /* 1379 * We do not want to have to test for the existence of cache 1380 * or swap pages in the backing object. XXX but with the 1381 * new swapper this would be pretty easy to do. 1382 * 1383 * XXX what about anonymous MAP_SHARED memory that hasn't 1384 * been ZFOD faulted yet? If we do not test for this, the 1385 * shadow test may succeed! XXX 1386 */ 1387 if (backing_object->type != OBJT_DEFAULT) { 1388 return (0); 1389 } 1390 } 1391 if (op & OBSC_COLLAPSE_WAIT) { 1392 vm_object_set_flag(backing_object, OBJ_DEAD); 1393 } 1394 1395 /* 1396 * Our scan 1397 */ 1398 p = TAILQ_FIRST(&backing_object->memq); 1399 while (p) { 1400 vm_page_t next = TAILQ_NEXT(p, listq); 1401 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1402 1403 if (op & OBSC_TEST_ALL_SHADOWED) { 1404 vm_page_t pp; 1405 1406 /* 1407 * Ignore pages outside the parent object's range 1408 * and outside the parent object's mapping of the 1409 * backing object. 1410 * 1411 * note that we do not busy the backing object's 1412 * page. 1413 */ 1414 if ( 1415 p->pindex < backing_offset_index || 1416 new_pindex >= object->size 1417 ) { 1418 p = next; 1419 continue; 1420 } 1421 1422 /* 1423 * See if the parent has the page or if the parent's 1424 * object pager has the page. If the parent has the 1425 * page but the page is not valid, the parent's 1426 * object pager must have the page. 1427 * 1428 * If this fails, the parent does not completely shadow 1429 * the object and we might as well give up now. 1430 */ 1431 1432 pp = vm_page_lookup(object, new_pindex); 1433 if ( 1434 (pp == NULL || pp->valid == 0) && 1435 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1436 ) { 1437 r = 0; 1438 break; 1439 } 1440 } 1441 1442 /* 1443 * Check for busy page 1444 */ 1445 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1446 vm_page_t pp; 1447 1448 if (op & OBSC_COLLAPSE_NOWAIT) { 1449 if ((p->oflags & VPO_BUSY) || 1450 !p->valid || 1451 p->busy) { 1452 p = next; 1453 continue; 1454 } 1455 } else if (op & OBSC_COLLAPSE_WAIT) { 1456 if ((p->oflags & VPO_BUSY) || p->busy) { 1457 VM_OBJECT_UNLOCK(object); 1458 p->oflags |= VPO_WANTED; 1459 msleep(p, VM_OBJECT_MTX(backing_object), 1460 PDROP | PVM, "vmocol", 0); 1461 VM_OBJECT_LOCK(object); 1462 VM_OBJECT_LOCK(backing_object); 1463 /* 1464 * If we slept, anything could have 1465 * happened. Since the object is 1466 * marked dead, the backing offset 1467 * should not have changed so we 1468 * just restart our scan. 1469 */ 1470 p = TAILQ_FIRST(&backing_object->memq); 1471 continue; 1472 } 1473 } 1474 1475 KASSERT( 1476 p->object == backing_object, 1477 ("vm_object_backing_scan: object mismatch") 1478 ); 1479 1480 /* 1481 * Destroy any associated swap 1482 */ 1483 if (backing_object->type == OBJT_SWAP) { 1484 swap_pager_freespace( 1485 backing_object, 1486 p->pindex, 1487 1 1488 ); 1489 } 1490 1491 if ( 1492 p->pindex < backing_offset_index || 1493 new_pindex >= object->size 1494 ) { 1495 /* 1496 * Page is out of the parent object's range, we 1497 * can simply destroy it. 1498 */ 1499 vm_page_lock(p); 1500 KASSERT(!pmap_page_is_mapped(p), 1501 ("freeing mapped page %p", p)); 1502 if (p->wire_count == 0) 1503 vm_page_free(p); 1504 else 1505 vm_page_remove(p); 1506 vm_page_unlock(p); 1507 p = next; 1508 continue; 1509 } 1510 1511 pp = vm_page_lookup(object, new_pindex); 1512 if ( 1513 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1514 (pp != NULL && pp->valid == 0) 1515 ) { 1516 /* 1517 * The page in the parent is not (yet) valid. 1518 * We don't know anything about the state of 1519 * the original page. It might be mapped, 1520 * so we must avoid the next if here. 1521 * 1522 * This is due to a race in vm_fault() where 1523 * we must unbusy the original (backing_obj) 1524 * page before we can (re)lock the parent. 1525 * Hence we can get here. 1526 */ 1527 p = next; 1528 continue; 1529 } 1530 if ( 1531 pp != NULL || 1532 vm_pager_has_page(object, new_pindex, NULL, NULL) 1533 ) { 1534 /* 1535 * page already exists in parent OR swap exists 1536 * for this location in the parent. Destroy 1537 * the original page from the backing object. 1538 * 1539 * Leave the parent's page alone 1540 */ 1541 vm_page_lock(p); 1542 KASSERT(!pmap_page_is_mapped(p), 1543 ("freeing mapped page %p", p)); 1544 if (p->wire_count == 0) 1545 vm_page_free(p); 1546 else 1547 vm_page_remove(p); 1548 vm_page_unlock(p); 1549 p = next; 1550 continue; 1551 } 1552 1553 #if VM_NRESERVLEVEL > 0 1554 /* 1555 * Rename the reservation. 1556 */ 1557 vm_reserv_rename(p, object, backing_object, 1558 backing_offset_index); 1559 #endif 1560 1561 /* 1562 * Page does not exist in parent, rename the 1563 * page from the backing object to the main object. 1564 * 1565 * If the page was mapped to a process, it can remain 1566 * mapped through the rename. 1567 */ 1568 vm_page_lock(p); 1569 vm_page_rename(p, object, new_pindex); 1570 vm_page_unlock(p); 1571 /* page automatically made dirty by rename */ 1572 } 1573 p = next; 1574 } 1575 return (r); 1576 } 1577 1578 1579 /* 1580 * this version of collapse allows the operation to occur earlier and 1581 * when paging_in_progress is true for an object... This is not a complete 1582 * operation, but should plug 99.9% of the rest of the leaks. 1583 */ 1584 static void 1585 vm_object_qcollapse(vm_object_t object) 1586 { 1587 vm_object_t backing_object = object->backing_object; 1588 1589 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1590 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1591 1592 if (backing_object->ref_count != 1) 1593 return; 1594 1595 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1596 } 1597 1598 /* 1599 * vm_object_collapse: 1600 * 1601 * Collapse an object with the object backing it. 1602 * Pages in the backing object are moved into the 1603 * parent, and the backing object is deallocated. 1604 */ 1605 void 1606 vm_object_collapse(vm_object_t object) 1607 { 1608 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1609 1610 while (TRUE) { 1611 vm_object_t backing_object; 1612 1613 /* 1614 * Verify that the conditions are right for collapse: 1615 * 1616 * The object exists and the backing object exists. 1617 */ 1618 if ((backing_object = object->backing_object) == NULL) 1619 break; 1620 1621 /* 1622 * we check the backing object first, because it is most likely 1623 * not collapsable. 1624 */ 1625 VM_OBJECT_LOCK(backing_object); 1626 if (backing_object->handle != NULL || 1627 (backing_object->type != OBJT_DEFAULT && 1628 backing_object->type != OBJT_SWAP) || 1629 (backing_object->flags & OBJ_DEAD) || 1630 object->handle != NULL || 1631 (object->type != OBJT_DEFAULT && 1632 object->type != OBJT_SWAP) || 1633 (object->flags & OBJ_DEAD)) { 1634 VM_OBJECT_UNLOCK(backing_object); 1635 break; 1636 } 1637 1638 if ( 1639 object->paging_in_progress != 0 || 1640 backing_object->paging_in_progress != 0 1641 ) { 1642 vm_object_qcollapse(object); 1643 VM_OBJECT_UNLOCK(backing_object); 1644 break; 1645 } 1646 /* 1647 * We know that we can either collapse the backing object (if 1648 * the parent is the only reference to it) or (perhaps) have 1649 * the parent bypass the object if the parent happens to shadow 1650 * all the resident pages in the entire backing object. 1651 * 1652 * This is ignoring pager-backed pages such as swap pages. 1653 * vm_object_backing_scan fails the shadowing test in this 1654 * case. 1655 */ 1656 if (backing_object->ref_count == 1) { 1657 /* 1658 * If there is exactly one reference to the backing 1659 * object, we can collapse it into the parent. 1660 */ 1661 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1662 1663 #if VM_NRESERVLEVEL > 0 1664 /* 1665 * Break any reservations from backing_object. 1666 */ 1667 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1668 vm_reserv_break_all(backing_object); 1669 #endif 1670 1671 /* 1672 * Move the pager from backing_object to object. 1673 */ 1674 if (backing_object->type == OBJT_SWAP) { 1675 /* 1676 * swap_pager_copy() can sleep, in which case 1677 * the backing_object's and object's locks are 1678 * released and reacquired. 1679 */ 1680 swap_pager_copy( 1681 backing_object, 1682 object, 1683 OFF_TO_IDX(object->backing_object_offset), TRUE); 1684 1685 /* 1686 * Free any cached pages from backing_object. 1687 */ 1688 if (__predict_false(backing_object->cache != NULL)) 1689 vm_page_cache_free(backing_object, 0, 0); 1690 } 1691 /* 1692 * Object now shadows whatever backing_object did. 1693 * Note that the reference to 1694 * backing_object->backing_object moves from within 1695 * backing_object to within object. 1696 */ 1697 LIST_REMOVE(object, shadow_list); 1698 backing_object->shadow_count--; 1699 if (backing_object->backing_object) { 1700 VM_OBJECT_LOCK(backing_object->backing_object); 1701 LIST_REMOVE(backing_object, shadow_list); 1702 LIST_INSERT_HEAD( 1703 &backing_object->backing_object->shadow_head, 1704 object, shadow_list); 1705 /* 1706 * The shadow_count has not changed. 1707 */ 1708 VM_OBJECT_UNLOCK(backing_object->backing_object); 1709 } 1710 object->backing_object = backing_object->backing_object; 1711 object->backing_object_offset += 1712 backing_object->backing_object_offset; 1713 1714 /* 1715 * Discard backing_object. 1716 * 1717 * Since the backing object has no pages, no pager left, 1718 * and no object references within it, all that is 1719 * necessary is to dispose of it. 1720 */ 1721 KASSERT(backing_object->ref_count == 1, ( 1722 "backing_object %p was somehow re-referenced during collapse!", 1723 backing_object)); 1724 VM_OBJECT_UNLOCK(backing_object); 1725 vm_object_destroy(backing_object); 1726 1727 object_collapses++; 1728 } else { 1729 vm_object_t new_backing_object; 1730 1731 /* 1732 * If we do not entirely shadow the backing object, 1733 * there is nothing we can do so we give up. 1734 */ 1735 if (object->resident_page_count != object->size && 1736 vm_object_backing_scan(object, 1737 OBSC_TEST_ALL_SHADOWED) == 0) { 1738 VM_OBJECT_UNLOCK(backing_object); 1739 break; 1740 } 1741 1742 /* 1743 * Make the parent shadow the next object in the 1744 * chain. Deallocating backing_object will not remove 1745 * it, since its reference count is at least 2. 1746 */ 1747 LIST_REMOVE(object, shadow_list); 1748 backing_object->shadow_count--; 1749 1750 new_backing_object = backing_object->backing_object; 1751 if ((object->backing_object = new_backing_object) != NULL) { 1752 VM_OBJECT_LOCK(new_backing_object); 1753 LIST_INSERT_HEAD( 1754 &new_backing_object->shadow_head, 1755 object, 1756 shadow_list 1757 ); 1758 new_backing_object->shadow_count++; 1759 vm_object_reference_locked(new_backing_object); 1760 VM_OBJECT_UNLOCK(new_backing_object); 1761 object->backing_object_offset += 1762 backing_object->backing_object_offset; 1763 } 1764 1765 /* 1766 * Drop the reference count on backing_object. Since 1767 * its ref_count was at least 2, it will not vanish. 1768 */ 1769 backing_object->ref_count--; 1770 VM_OBJECT_UNLOCK(backing_object); 1771 object_bypasses++; 1772 } 1773 1774 /* 1775 * Try again with this object's new backing object. 1776 */ 1777 } 1778 } 1779 1780 /* 1781 * vm_object_page_remove: 1782 * 1783 * For the given object, either frees or invalidates each of the 1784 * specified pages. In general, a page is freed. However, if a page is 1785 * wired for any reason other than the existence of a managed, wired 1786 * mapping, then it may be invalidated but not removed from the object. 1787 * Pages are specified by the given range ["start", "end") and the option 1788 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1789 * extends from "start" to the end of the object. If the option 1790 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1791 * specified range are affected. If the option OBJPR_NOTMAPPED is 1792 * specified, then the pages within the specified range must have no 1793 * mappings. Otherwise, if this option is not specified, any mappings to 1794 * the specified pages are removed before the pages are freed or 1795 * invalidated. 1796 * 1797 * In general, this operation should only be performed on objects that 1798 * contain managed pages. There are, however, two exceptions. First, it 1799 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1800 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1801 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1802 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1803 * 1804 * The object must be locked. 1805 */ 1806 void 1807 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1808 int options) 1809 { 1810 vm_page_t p, next; 1811 int wirings; 1812 1813 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1814 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) || 1815 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1816 ("vm_object_page_remove: illegal options for object %p", object)); 1817 if (object->resident_page_count == 0) 1818 goto skipmemq; 1819 vm_object_pip_add(object, 1); 1820 again: 1821 p = vm_page_find_least(object, start); 1822 1823 /* 1824 * Here, the variable "p" is either (1) the page with the least pindex 1825 * greater than or equal to the parameter "start" or (2) NULL. 1826 */ 1827 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1828 next = TAILQ_NEXT(p, listq); 1829 1830 /* 1831 * If the page is wired for any reason besides the existence 1832 * of managed, wired mappings, then it cannot be freed. For 1833 * example, fictitious pages, which represent device memory, 1834 * are inherently wired and cannot be freed. They can, 1835 * however, be invalidated if the option OBJPR_CLEANONLY is 1836 * not specified. 1837 */ 1838 vm_page_lock(p); 1839 if ((wirings = p->wire_count) != 0 && 1840 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1841 if ((options & OBJPR_NOTMAPPED) == 0) { 1842 pmap_remove_all(p); 1843 /* Account for removal of wired mappings. */ 1844 if (wirings != 0) 1845 p->wire_count -= wirings; 1846 } 1847 if ((options & OBJPR_CLEANONLY) == 0) { 1848 p->valid = 0; 1849 vm_page_undirty(p); 1850 } 1851 vm_page_unlock(p); 1852 continue; 1853 } 1854 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1855 goto again; 1856 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1857 ("vm_object_page_remove: page %p is fictitious", p)); 1858 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1859 if ((options & OBJPR_NOTMAPPED) == 0) 1860 pmap_remove_write(p); 1861 if (p->dirty) { 1862 vm_page_unlock(p); 1863 continue; 1864 } 1865 } 1866 if ((options & OBJPR_NOTMAPPED) == 0) { 1867 pmap_remove_all(p); 1868 /* Account for removal of wired mappings. */ 1869 if (wirings != 0) 1870 p->wire_count -= wirings; 1871 } 1872 vm_page_free(p); 1873 vm_page_unlock(p); 1874 } 1875 vm_object_pip_wakeup(object); 1876 skipmemq: 1877 if (__predict_false(object->cache != NULL)) 1878 vm_page_cache_free(object, start, end); 1879 } 1880 1881 /* 1882 * vm_object_page_cache: 1883 * 1884 * For the given object, attempt to move the specified clean 1885 * pages to the cache queue. If a page is wired for any reason, 1886 * then it will not be changed. Pages are specified by the given 1887 * range ["start", "end"). As a special case, if "end" is zero, 1888 * then the range extends from "start" to the end of the object. 1889 * Any mappings to the specified pages are removed before the 1890 * pages are moved to the cache queue. 1891 * 1892 * This operation should only be performed on objects that 1893 * contain managed pages. 1894 * 1895 * The object must be locked. 1896 */ 1897 void 1898 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1899 { 1900 struct mtx *mtx, *new_mtx; 1901 vm_page_t p, next; 1902 1903 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1904 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG && 1905 object->type != OBJT_PHYS), 1906 ("vm_object_page_cache: illegal object %p", object)); 1907 if (object->resident_page_count == 0) 1908 return; 1909 p = vm_page_find_least(object, start); 1910 1911 /* 1912 * Here, the variable "p" is either (1) the page with the least pindex 1913 * greater than or equal to the parameter "start" or (2) NULL. 1914 */ 1915 mtx = NULL; 1916 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1917 next = TAILQ_NEXT(p, listq); 1918 1919 /* 1920 * Avoid releasing and reacquiring the same page lock. 1921 */ 1922 new_mtx = vm_page_lockptr(p); 1923 if (mtx != new_mtx) { 1924 if (mtx != NULL) 1925 mtx_unlock(mtx); 1926 mtx = new_mtx; 1927 mtx_lock(mtx); 1928 } 1929 vm_page_try_to_cache(p); 1930 } 1931 if (mtx != NULL) 1932 mtx_unlock(mtx); 1933 } 1934 1935 /* 1936 * Populate the specified range of the object with valid pages. Returns 1937 * TRUE if the range is successfully populated and FALSE otherwise. 1938 * 1939 * Note: This function should be optimized to pass a larger array of 1940 * pages to vm_pager_get_pages() before it is applied to a non- 1941 * OBJT_DEVICE object. 1942 * 1943 * The object must be locked. 1944 */ 1945 boolean_t 1946 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1947 { 1948 vm_page_t m, ma[1]; 1949 vm_pindex_t pindex; 1950 int rv; 1951 1952 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1953 for (pindex = start; pindex < end; pindex++) { 1954 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1955 VM_ALLOC_RETRY); 1956 if (m->valid != VM_PAGE_BITS_ALL) { 1957 ma[0] = m; 1958 rv = vm_pager_get_pages(object, ma, 1, 0); 1959 m = vm_page_lookup(object, pindex); 1960 if (m == NULL) 1961 break; 1962 if (rv != VM_PAGER_OK) { 1963 vm_page_lock(m); 1964 vm_page_free(m); 1965 vm_page_unlock(m); 1966 break; 1967 } 1968 } 1969 /* 1970 * Keep "m" busy because a subsequent iteration may unlock 1971 * the object. 1972 */ 1973 } 1974 if (pindex > start) { 1975 m = vm_page_lookup(object, start); 1976 while (m != NULL && m->pindex < pindex) { 1977 vm_page_wakeup(m); 1978 m = TAILQ_NEXT(m, listq); 1979 } 1980 } 1981 return (pindex == end); 1982 } 1983 1984 /* 1985 * Routine: vm_object_coalesce 1986 * Function: Coalesces two objects backing up adjoining 1987 * regions of memory into a single object. 1988 * 1989 * returns TRUE if objects were combined. 1990 * 1991 * NOTE: Only works at the moment if the second object is NULL - 1992 * if it's not, which object do we lock first? 1993 * 1994 * Parameters: 1995 * prev_object First object to coalesce 1996 * prev_offset Offset into prev_object 1997 * prev_size Size of reference to prev_object 1998 * next_size Size of reference to the second object 1999 * reserved Indicator that extension region has 2000 * swap accounted for 2001 * 2002 * Conditions: 2003 * The object must *not* be locked. 2004 */ 2005 boolean_t 2006 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2007 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2008 { 2009 vm_pindex_t next_pindex; 2010 2011 if (prev_object == NULL) 2012 return (TRUE); 2013 VM_OBJECT_LOCK(prev_object); 2014 if (prev_object->type != OBJT_DEFAULT && 2015 prev_object->type != OBJT_SWAP) { 2016 VM_OBJECT_UNLOCK(prev_object); 2017 return (FALSE); 2018 } 2019 2020 /* 2021 * Try to collapse the object first 2022 */ 2023 vm_object_collapse(prev_object); 2024 2025 /* 2026 * Can't coalesce if: . more than one reference . paged out . shadows 2027 * another object . has a copy elsewhere (any of which mean that the 2028 * pages not mapped to prev_entry may be in use anyway) 2029 */ 2030 if (prev_object->backing_object != NULL) { 2031 VM_OBJECT_UNLOCK(prev_object); 2032 return (FALSE); 2033 } 2034 2035 prev_size >>= PAGE_SHIFT; 2036 next_size >>= PAGE_SHIFT; 2037 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2038 2039 if ((prev_object->ref_count > 1) && 2040 (prev_object->size != next_pindex)) { 2041 VM_OBJECT_UNLOCK(prev_object); 2042 return (FALSE); 2043 } 2044 2045 /* 2046 * Account for the charge. 2047 */ 2048 if (prev_object->cred != NULL) { 2049 2050 /* 2051 * If prev_object was charged, then this mapping, 2052 * althought not charged now, may become writable 2053 * later. Non-NULL cred in the object would prevent 2054 * swap reservation during enabling of the write 2055 * access, so reserve swap now. Failed reservation 2056 * cause allocation of the separate object for the map 2057 * entry, and swap reservation for this entry is 2058 * managed in appropriate time. 2059 */ 2060 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2061 prev_object->cred)) { 2062 return (FALSE); 2063 } 2064 prev_object->charge += ptoa(next_size); 2065 } 2066 2067 /* 2068 * Remove any pages that may still be in the object from a previous 2069 * deallocation. 2070 */ 2071 if (next_pindex < prev_object->size) { 2072 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2073 next_size, 0); 2074 if (prev_object->type == OBJT_SWAP) 2075 swap_pager_freespace(prev_object, 2076 next_pindex, next_size); 2077 #if 0 2078 if (prev_object->cred != NULL) { 2079 KASSERT(prev_object->charge >= 2080 ptoa(prev_object->size - next_pindex), 2081 ("object %p overcharged 1 %jx %jx", prev_object, 2082 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2083 prev_object->charge -= ptoa(prev_object->size - 2084 next_pindex); 2085 } 2086 #endif 2087 } 2088 2089 /* 2090 * Extend the object if necessary. 2091 */ 2092 if (next_pindex + next_size > prev_object->size) 2093 prev_object->size = next_pindex + next_size; 2094 2095 VM_OBJECT_UNLOCK(prev_object); 2096 return (TRUE); 2097 } 2098 2099 void 2100 vm_object_set_writeable_dirty(vm_object_t object) 2101 { 2102 2103 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2104 if (object->type != OBJT_VNODE) 2105 return; 2106 object->generation++; 2107 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2108 return; 2109 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2110 } 2111 2112 #include "opt_ddb.h" 2113 #ifdef DDB 2114 #include <sys/kernel.h> 2115 2116 #include <sys/cons.h> 2117 2118 #include <ddb/ddb.h> 2119 2120 static int 2121 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2122 { 2123 vm_map_t tmpm; 2124 vm_map_entry_t tmpe; 2125 vm_object_t obj; 2126 int entcount; 2127 2128 if (map == 0) 2129 return 0; 2130 2131 if (entry == 0) { 2132 tmpe = map->header.next; 2133 entcount = map->nentries; 2134 while (entcount-- && (tmpe != &map->header)) { 2135 if (_vm_object_in_map(map, object, tmpe)) { 2136 return 1; 2137 } 2138 tmpe = tmpe->next; 2139 } 2140 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2141 tmpm = entry->object.sub_map; 2142 tmpe = tmpm->header.next; 2143 entcount = tmpm->nentries; 2144 while (entcount-- && tmpe != &tmpm->header) { 2145 if (_vm_object_in_map(tmpm, object, tmpe)) { 2146 return 1; 2147 } 2148 tmpe = tmpe->next; 2149 } 2150 } else if ((obj = entry->object.vm_object) != NULL) { 2151 for (; obj; obj = obj->backing_object) 2152 if (obj == object) { 2153 return 1; 2154 } 2155 } 2156 return 0; 2157 } 2158 2159 static int 2160 vm_object_in_map(vm_object_t object) 2161 { 2162 struct proc *p; 2163 2164 /* sx_slock(&allproc_lock); */ 2165 FOREACH_PROC_IN_SYSTEM(p) { 2166 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2167 continue; 2168 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2169 /* sx_sunlock(&allproc_lock); */ 2170 return 1; 2171 } 2172 } 2173 /* sx_sunlock(&allproc_lock); */ 2174 if (_vm_object_in_map(kernel_map, object, 0)) 2175 return 1; 2176 if (_vm_object_in_map(kmem_map, object, 0)) 2177 return 1; 2178 if (_vm_object_in_map(pager_map, object, 0)) 2179 return 1; 2180 if (_vm_object_in_map(buffer_map, object, 0)) 2181 return 1; 2182 return 0; 2183 } 2184 2185 DB_SHOW_COMMAND(vmochk, vm_object_check) 2186 { 2187 vm_object_t object; 2188 2189 /* 2190 * make sure that internal objs are in a map somewhere 2191 * and none have zero ref counts. 2192 */ 2193 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2194 if (object->handle == NULL && 2195 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2196 if (object->ref_count == 0) { 2197 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2198 (long)object->size); 2199 } 2200 if (!vm_object_in_map(object)) { 2201 db_printf( 2202 "vmochk: internal obj is not in a map: " 2203 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2204 object->ref_count, (u_long)object->size, 2205 (u_long)object->size, 2206 (void *)object->backing_object); 2207 } 2208 } 2209 } 2210 } 2211 2212 /* 2213 * vm_object_print: [ debug ] 2214 */ 2215 DB_SHOW_COMMAND(object, vm_object_print_static) 2216 { 2217 /* XXX convert args. */ 2218 vm_object_t object = (vm_object_t)addr; 2219 boolean_t full = have_addr; 2220 2221 vm_page_t p; 2222 2223 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2224 #define count was_count 2225 2226 int count; 2227 2228 if (object == NULL) 2229 return; 2230 2231 db_iprintf( 2232 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2233 object, (int)object->type, (uintmax_t)object->size, 2234 object->resident_page_count, object->ref_count, object->flags, 2235 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2236 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2237 object->shadow_count, 2238 object->backing_object ? object->backing_object->ref_count : 0, 2239 object->backing_object, (uintmax_t)object->backing_object_offset); 2240 2241 if (!full) 2242 return; 2243 2244 db_indent += 2; 2245 count = 0; 2246 TAILQ_FOREACH(p, &object->memq, listq) { 2247 if (count == 0) 2248 db_iprintf("memory:="); 2249 else if (count == 6) { 2250 db_printf("\n"); 2251 db_iprintf(" ..."); 2252 count = 0; 2253 } else 2254 db_printf(","); 2255 count++; 2256 2257 db_printf("(off=0x%jx,page=0x%jx)", 2258 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2259 } 2260 if (count != 0) 2261 db_printf("\n"); 2262 db_indent -= 2; 2263 } 2264 2265 /* XXX. */ 2266 #undef count 2267 2268 /* XXX need this non-static entry for calling from vm_map_print. */ 2269 void 2270 vm_object_print( 2271 /* db_expr_t */ long addr, 2272 boolean_t have_addr, 2273 /* db_expr_t */ long count, 2274 char *modif) 2275 { 2276 vm_object_print_static(addr, have_addr, count, modif); 2277 } 2278 2279 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2280 { 2281 vm_object_t object; 2282 vm_pindex_t fidx; 2283 vm_paddr_t pa; 2284 vm_page_t m, prev_m; 2285 int rcount, nl, c; 2286 2287 nl = 0; 2288 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2289 db_printf("new object: %p\n", (void *)object); 2290 if (nl > 18) { 2291 c = cngetc(); 2292 if (c != ' ') 2293 return; 2294 nl = 0; 2295 } 2296 nl++; 2297 rcount = 0; 2298 fidx = 0; 2299 pa = -1; 2300 TAILQ_FOREACH(m, &object->memq, listq) { 2301 if (m->pindex > 128) 2302 break; 2303 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2304 prev_m->pindex + 1 != m->pindex) { 2305 if (rcount) { 2306 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2307 (long)fidx, rcount, (long)pa); 2308 if (nl > 18) { 2309 c = cngetc(); 2310 if (c != ' ') 2311 return; 2312 nl = 0; 2313 } 2314 nl++; 2315 rcount = 0; 2316 } 2317 } 2318 if (rcount && 2319 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2320 ++rcount; 2321 continue; 2322 } 2323 if (rcount) { 2324 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2325 (long)fidx, rcount, (long)pa); 2326 if (nl > 18) { 2327 c = cngetc(); 2328 if (c != ' ') 2329 return; 2330 nl = 0; 2331 } 2332 nl++; 2333 } 2334 fidx = m->pindex; 2335 pa = VM_PAGE_TO_PHYS(m); 2336 rcount = 1; 2337 } 2338 if (rcount) { 2339 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2340 (long)fidx, rcount, (long)pa); 2341 if (nl > 18) { 2342 c = cngetc(); 2343 if (c != ' ') 2344 return; 2345 nl = 0; 2346 } 2347 nl++; 2348 } 2349 } 2350 } 2351 #endif /* DDB */ 2352