xref: /freebsd/sys/vm/vm_object.c (revision 40427cca7a9ae77b095936fb1954417c290cfb17)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/pctrie.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/user.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sx.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_radix.h>
100 #include <vm/vm_reserv.h>
101 #include <vm/uma.h>
102 
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106 
107 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108 		    int pagerflags, int flags, boolean_t *clearobjflags,
109 		    boolean_t *eio);
110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
111 		    boolean_t *clearobjflags);
112 static void	vm_object_qcollapse(vm_object_t object);
113 static void	vm_object_vndeallocate(vm_object_t object);
114 
115 /*
116  *	Virtual memory objects maintain the actual data
117  *	associated with allocated virtual memory.  A given
118  *	page of memory exists within exactly one object.
119  *
120  *	An object is only deallocated when all "references"
121  *	are given up.  Only one "reference" to a given
122  *	region of an object should be writeable.
123  *
124  *	Associated with each object is a list of all resident
125  *	memory pages belonging to that object; this list is
126  *	maintained by the "vm_page" module, and locked by the object's
127  *	lock.
128  *
129  *	Each object also records a "pager" routine which is
130  *	used to retrieve (and store) pages to the proper backing
131  *	storage.  In addition, objects may be backed by other
132  *	objects from which they were virtual-copied.
133  *
134  *	The only items within the object structure which are
135  *	modified after time of creation are:
136  *		reference count		locked by object's lock
137  *		pager routine		locked by object's lock
138  *
139  */
140 
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx;	/* lock for object list and count */
143 
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146 
147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
148     "VM object stats");
149 
150 static long object_collapses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
152     &object_collapses, 0, "VM object collapses");
153 
154 static long object_bypasses;
155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
156     &object_bypasses, 0, "VM object bypasses");
157 
158 static uma_zone_t obj_zone;
159 
160 static int vm_object_zinit(void *mem, int size, int flags);
161 
162 #ifdef INVARIANTS
163 static void vm_object_zdtor(void *mem, int size, void *arg);
164 
165 static void
166 vm_object_zdtor(void *mem, int size, void *arg)
167 {
168 	vm_object_t object;
169 
170 	object = (vm_object_t)mem;
171 	KASSERT(object->ref_count == 0,
172 	    ("object %p ref_count = %d", object, object->ref_count));
173 	KASSERT(TAILQ_EMPTY(&object->memq),
174 	    ("object %p has resident pages in its memq", object));
175 	KASSERT(vm_radix_is_empty(&object->rtree),
176 	    ("object %p has resident pages in its trie", object));
177 #if VM_NRESERVLEVEL > 0
178 	KASSERT(LIST_EMPTY(&object->rvq),
179 	    ("object %p has reservations",
180 	    object));
181 #endif
182 	KASSERT(object->paging_in_progress == 0,
183 	    ("object %p paging_in_progress = %d",
184 	    object, object->paging_in_progress));
185 	KASSERT(object->resident_page_count == 0,
186 	    ("object %p resident_page_count = %d",
187 	    object, object->resident_page_count));
188 	KASSERT(object->shadow_count == 0,
189 	    ("object %p shadow_count = %d",
190 	    object, object->shadow_count));
191 	KASSERT(object->type == OBJT_DEAD,
192 	    ("object %p has non-dead type %d",
193 	    object, object->type));
194 }
195 #endif
196 
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200 	vm_object_t object;
201 
202 	object = (vm_object_t)mem;
203 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
204 
205 	/* These are true for any object that has been freed */
206 	object->type = OBJT_DEAD;
207 	object->ref_count = 0;
208 	vm_radix_init(&object->rtree);
209 	object->paging_in_progress = 0;
210 	object->resident_page_count = 0;
211 	object->shadow_count = 0;
212 	object->flags = OBJ_DEAD;
213 
214 	mtx_lock(&vm_object_list_mtx);
215 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
216 	mtx_unlock(&vm_object_list_mtx);
217 	return (0);
218 }
219 
220 static void
221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
222 {
223 
224 	TAILQ_INIT(&object->memq);
225 	LIST_INIT(&object->shadow_head);
226 
227 	object->type = type;
228 	if (type == OBJT_SWAP)
229 		pctrie_init(&object->un_pager.swp.swp_blks);
230 
231 	/*
232 	 * Ensure that swap_pager_swapoff() iteration over object_list
233 	 * sees up to date type and pctrie head if it observed
234 	 * non-dead object.
235 	 */
236 	atomic_thread_fence_rel();
237 
238 	switch (type) {
239 	case OBJT_DEAD:
240 		panic("_vm_object_allocate: can't create OBJT_DEAD");
241 	case OBJT_DEFAULT:
242 	case OBJT_SWAP:
243 		object->flags = OBJ_ONEMAPPING;
244 		break;
245 	case OBJT_DEVICE:
246 	case OBJT_SG:
247 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
248 		break;
249 	case OBJT_MGTDEVICE:
250 		object->flags = OBJ_FICTITIOUS;
251 		break;
252 	case OBJT_PHYS:
253 		object->flags = OBJ_UNMANAGED;
254 		break;
255 	case OBJT_VNODE:
256 		object->flags = 0;
257 		break;
258 	default:
259 		panic("_vm_object_allocate: type %d is undefined", type);
260 	}
261 	object->size = size;
262 	object->generation = 1;
263 	object->ref_count = 1;
264 	object->memattr = VM_MEMATTR_DEFAULT;
265 	object->cred = NULL;
266 	object->charge = 0;
267 	object->handle = NULL;
268 	object->backing_object = NULL;
269 	object->backing_object_offset = (vm_ooffset_t) 0;
270 #if VM_NRESERVLEVEL > 0
271 	LIST_INIT(&object->rvq);
272 #endif
273 	umtx_shm_object_init(object);
274 }
275 
276 /*
277  *	vm_object_init:
278  *
279  *	Initialize the VM objects module.
280  */
281 void
282 vm_object_init(void)
283 {
284 	TAILQ_INIT(&vm_object_list);
285 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
286 
287 	rw_init(&kernel_object->lock, "kernel vm object");
288 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
290 #if VM_NRESERVLEVEL > 0
291 	kernel_object->flags |= OBJ_COLORED;
292 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294 
295 	rw_init(&kmem_object->lock, "kmem vm object");
296 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297 	    VM_MIN_KERNEL_ADDRESS), kmem_object);
298 #if VM_NRESERVLEVEL > 0
299 	kmem_object->flags |= OBJ_COLORED;
300 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302 
303 	/*
304 	 * The lock portion of struct vm_object must be type stable due
305 	 * to vm_pageout_fallback_object_lock locking a vm object
306 	 * without holding any references to it.
307 	 */
308 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310 	    vm_object_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 
316 	vm_radix_zinit();
317 }
318 
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322 
323 	VM_OBJECT_ASSERT_WLOCKED(object);
324 	object->flags &= ~bits;
325 }
326 
327 /*
328  *	Sets the default memory attribute for the specified object.  Pages
329  *	that are allocated to this object are by default assigned this memory
330  *	attribute.
331  *
332  *	Presently, this function must be called before any pages are allocated
333  *	to the object.  In the future, this requirement may be relaxed for
334  *	"default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339 
340 	VM_OBJECT_ASSERT_WLOCKED(object);
341 	switch (object->type) {
342 	case OBJT_DEFAULT:
343 	case OBJT_DEVICE:
344 	case OBJT_MGTDEVICE:
345 	case OBJT_PHYS:
346 	case OBJT_SG:
347 	case OBJT_SWAP:
348 	case OBJT_VNODE:
349 		if (!TAILQ_EMPTY(&object->memq))
350 			return (KERN_FAILURE);
351 		break;
352 	case OBJT_DEAD:
353 		return (KERN_INVALID_ARGUMENT);
354 	default:
355 		panic("vm_object_set_memattr: object %p is of undefined type",
356 		    object);
357 	}
358 	object->memattr = memattr;
359 	return (KERN_SUCCESS);
360 }
361 
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress += i;
368 }
369 
370 void
371 vm_object_pip_subtract(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress -= i;
376 }
377 
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress--;
384 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
385 		vm_object_clear_flag(object, OBJ_PIPWNT);
386 		wakeup(object);
387 	}
388 }
389 
390 void
391 vm_object_pip_wakeupn(vm_object_t object, short i)
392 {
393 
394 	VM_OBJECT_ASSERT_WLOCKED(object);
395 	if (i)
396 		object->paging_in_progress -= i;
397 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
398 		vm_object_clear_flag(object, OBJ_PIPWNT);
399 		wakeup(object);
400 	}
401 }
402 
403 void
404 vm_object_pip_wait(vm_object_t object, char *waitid)
405 {
406 
407 	VM_OBJECT_ASSERT_WLOCKED(object);
408 	while (object->paging_in_progress) {
409 		object->flags |= OBJ_PIPWNT;
410 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
411 	}
412 }
413 
414 /*
415  *	vm_object_allocate:
416  *
417  *	Returns a new object with the given size.
418  */
419 vm_object_t
420 vm_object_allocate(objtype_t type, vm_pindex_t size)
421 {
422 	vm_object_t object;
423 
424 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
425 	_vm_object_allocate(type, size, object);
426 	return (object);
427 }
428 
429 
430 /*
431  *	vm_object_reference:
432  *
433  *	Gets another reference to the given object.  Note: OBJ_DEAD
434  *	objects can be referenced during final cleaning.
435  */
436 void
437 vm_object_reference(vm_object_t object)
438 {
439 	if (object == NULL)
440 		return;
441 	VM_OBJECT_WLOCK(object);
442 	vm_object_reference_locked(object);
443 	VM_OBJECT_WUNLOCK(object);
444 }
445 
446 /*
447  *	vm_object_reference_locked:
448  *
449  *	Gets another reference to the given object.
450  *
451  *	The object must be locked.
452  */
453 void
454 vm_object_reference_locked(vm_object_t object)
455 {
456 	struct vnode *vp;
457 
458 	VM_OBJECT_ASSERT_WLOCKED(object);
459 	object->ref_count++;
460 	if (object->type == OBJT_VNODE) {
461 		vp = object->handle;
462 		vref(vp);
463 	}
464 }
465 
466 /*
467  * Handle deallocating an object of type OBJT_VNODE.
468  */
469 static void
470 vm_object_vndeallocate(vm_object_t object)
471 {
472 	struct vnode *vp = (struct vnode *) object->handle;
473 
474 	VM_OBJECT_ASSERT_WLOCKED(object);
475 	KASSERT(object->type == OBJT_VNODE,
476 	    ("vm_object_vndeallocate: not a vnode object"));
477 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
478 #ifdef INVARIANTS
479 	if (object->ref_count == 0) {
480 		vn_printf(vp, "vm_object_vndeallocate ");
481 		panic("vm_object_vndeallocate: bad object reference count");
482 	}
483 #endif
484 
485 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
486 		umtx_shm_object_terminated(object);
487 
488 	/*
489 	 * The test for text of vp vnode does not need a bypass to
490 	 * reach right VV_TEXT there, since it is obtained from
491 	 * object->handle.
492 	 */
493 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
494 		object->ref_count--;
495 		VM_OBJECT_WUNLOCK(object);
496 		/* vrele may need the vnode lock. */
497 		vrele(vp);
498 	} else {
499 		vhold(vp);
500 		VM_OBJECT_WUNLOCK(object);
501 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502 		vdrop(vp);
503 		VM_OBJECT_WLOCK(object);
504 		object->ref_count--;
505 		if (object->type == OBJT_DEAD) {
506 			VM_OBJECT_WUNLOCK(object);
507 			VOP_UNLOCK(vp, 0);
508 		} else {
509 			if (object->ref_count == 0)
510 				VOP_UNSET_TEXT(vp);
511 			VM_OBJECT_WUNLOCK(object);
512 			vput(vp);
513 		}
514 	}
515 }
516 
517 /*
518  *	vm_object_deallocate:
519  *
520  *	Release a reference to the specified object,
521  *	gained either through a vm_object_allocate
522  *	or a vm_object_reference call.  When all references
523  *	are gone, storage associated with this object
524  *	may be relinquished.
525  *
526  *	No object may be locked.
527  */
528 void
529 vm_object_deallocate(vm_object_t object)
530 {
531 	vm_object_t temp;
532 	struct vnode *vp;
533 
534 	while (object != NULL) {
535 		VM_OBJECT_WLOCK(object);
536 		if (object->type == OBJT_VNODE) {
537 			vm_object_vndeallocate(object);
538 			return;
539 		}
540 
541 		KASSERT(object->ref_count != 0,
542 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
543 
544 		/*
545 		 * If the reference count goes to 0 we start calling
546 		 * vm_object_terminate() on the object chain.
547 		 * A ref count of 1 may be a special case depending on the
548 		 * shadow count being 0 or 1.
549 		 */
550 		object->ref_count--;
551 		if (object->ref_count > 1) {
552 			VM_OBJECT_WUNLOCK(object);
553 			return;
554 		} else if (object->ref_count == 1) {
555 			if (object->type == OBJT_SWAP &&
556 			    (object->flags & OBJ_TMPFS) != 0) {
557 				vp = object->un_pager.swp.swp_tmpfs;
558 				vhold(vp);
559 				VM_OBJECT_WUNLOCK(object);
560 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
561 				VM_OBJECT_WLOCK(object);
562 				if (object->type == OBJT_DEAD ||
563 				    object->ref_count != 1) {
564 					VM_OBJECT_WUNLOCK(object);
565 					VOP_UNLOCK(vp, 0);
566 					vdrop(vp);
567 					return;
568 				}
569 				if ((object->flags & OBJ_TMPFS) != 0)
570 					VOP_UNSET_TEXT(vp);
571 				VOP_UNLOCK(vp, 0);
572 				vdrop(vp);
573 			}
574 			if (object->shadow_count == 0 &&
575 			    object->handle == NULL &&
576 			    (object->type == OBJT_DEFAULT ||
577 			    (object->type == OBJT_SWAP &&
578 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
579 				vm_object_set_flag(object, OBJ_ONEMAPPING);
580 			} else if ((object->shadow_count == 1) &&
581 			    (object->handle == NULL) &&
582 			    (object->type == OBJT_DEFAULT ||
583 			     object->type == OBJT_SWAP)) {
584 				vm_object_t robject;
585 
586 				robject = LIST_FIRST(&object->shadow_head);
587 				KASSERT(robject != NULL,
588 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
589 					 object->ref_count,
590 					 object->shadow_count));
591 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
592 				    ("shadowed tmpfs v_object %p", object));
593 				if (!VM_OBJECT_TRYWLOCK(robject)) {
594 					/*
595 					 * Avoid a potential deadlock.
596 					 */
597 					object->ref_count++;
598 					VM_OBJECT_WUNLOCK(object);
599 					/*
600 					 * More likely than not the thread
601 					 * holding robject's lock has lower
602 					 * priority than the current thread.
603 					 * Let the lower priority thread run.
604 					 */
605 					pause("vmo_de", 1);
606 					continue;
607 				}
608 				/*
609 				 * Collapse object into its shadow unless its
610 				 * shadow is dead.  In that case, object will
611 				 * be deallocated by the thread that is
612 				 * deallocating its shadow.
613 				 */
614 				if ((robject->flags & OBJ_DEAD) == 0 &&
615 				    (robject->handle == NULL) &&
616 				    (robject->type == OBJT_DEFAULT ||
617 				     robject->type == OBJT_SWAP)) {
618 
619 					robject->ref_count++;
620 retry:
621 					if (robject->paging_in_progress) {
622 						VM_OBJECT_WUNLOCK(object);
623 						vm_object_pip_wait(robject,
624 						    "objde1");
625 						temp = robject->backing_object;
626 						if (object == temp) {
627 							VM_OBJECT_WLOCK(object);
628 							goto retry;
629 						}
630 					} else if (object->paging_in_progress) {
631 						VM_OBJECT_WUNLOCK(robject);
632 						object->flags |= OBJ_PIPWNT;
633 						VM_OBJECT_SLEEP(object, object,
634 						    PDROP | PVM, "objde2", 0);
635 						VM_OBJECT_WLOCK(robject);
636 						temp = robject->backing_object;
637 						if (object == temp) {
638 							VM_OBJECT_WLOCK(object);
639 							goto retry;
640 						}
641 					} else
642 						VM_OBJECT_WUNLOCK(object);
643 
644 					if (robject->ref_count == 1) {
645 						robject->ref_count--;
646 						object = robject;
647 						goto doterm;
648 					}
649 					object = robject;
650 					vm_object_collapse(object);
651 					VM_OBJECT_WUNLOCK(object);
652 					continue;
653 				}
654 				VM_OBJECT_WUNLOCK(robject);
655 			}
656 			VM_OBJECT_WUNLOCK(object);
657 			return;
658 		}
659 doterm:
660 		umtx_shm_object_terminated(object);
661 		temp = object->backing_object;
662 		if (temp != NULL) {
663 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
664 			    ("shadowed tmpfs v_object 2 %p", object));
665 			VM_OBJECT_WLOCK(temp);
666 			LIST_REMOVE(object, shadow_list);
667 			temp->shadow_count--;
668 			VM_OBJECT_WUNLOCK(temp);
669 			object->backing_object = NULL;
670 		}
671 		/*
672 		 * Don't double-terminate, we could be in a termination
673 		 * recursion due to the terminate having to sync data
674 		 * to disk.
675 		 */
676 		if ((object->flags & OBJ_DEAD) == 0)
677 			vm_object_terminate(object);
678 		else
679 			VM_OBJECT_WUNLOCK(object);
680 		object = temp;
681 	}
682 }
683 
684 /*
685  *	vm_object_destroy removes the object from the global object list
686  *      and frees the space for the object.
687  */
688 void
689 vm_object_destroy(vm_object_t object)
690 {
691 
692 	/*
693 	 * Release the allocation charge.
694 	 */
695 	if (object->cred != NULL) {
696 		swap_release_by_cred(object->charge, object->cred);
697 		object->charge = 0;
698 		crfree(object->cred);
699 		object->cred = NULL;
700 	}
701 
702 	/*
703 	 * Free the space for the object.
704 	 */
705 	uma_zfree(obj_zone, object);
706 }
707 
708 /*
709  *	vm_object_terminate_pages removes any remaining pageable pages
710  *	from the object and resets the object to an empty state.
711  */
712 static void
713 vm_object_terminate_pages(vm_object_t object)
714 {
715 	vm_page_t p, p_next;
716 	struct mtx *mtx, *mtx1;
717 	struct vm_pagequeue *pq, *pq1;
718 
719 	VM_OBJECT_ASSERT_WLOCKED(object);
720 
721 	mtx = NULL;
722 	pq = NULL;
723 
724 	/*
725 	 * Free any remaining pageable pages.  This also removes them from the
726 	 * paging queues.  However, don't free wired pages, just remove them
727 	 * from the object.  Rather than incrementally removing each page from
728 	 * the object, the page and object are reset to any empty state.
729 	 */
730 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
731 		vm_page_assert_unbusied(p);
732 		if ((object->flags & OBJ_UNMANAGED) == 0) {
733 			/*
734 			 * vm_page_free_prep() only needs the page
735 			 * lock for managed pages.
736 			 */
737 			mtx1 = vm_page_lockptr(p);
738 			if (mtx1 != mtx) {
739 				if (mtx != NULL)
740 					mtx_unlock(mtx);
741 				if (pq != NULL) {
742 					vm_pagequeue_unlock(pq);
743 					pq = NULL;
744 				}
745 				mtx = mtx1;
746 				mtx_lock(mtx);
747 			}
748 		}
749 		p->object = NULL;
750 		if (p->wire_count != 0)
751 			goto unlist;
752 		VM_CNT_INC(v_pfree);
753 		p->flags &= ~PG_ZERO;
754 		if (p->queue != PQ_NONE) {
755 			KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
756 			    "page %p is not queued", p));
757 			pq1 = vm_page_pagequeue(p);
758 			if (pq != pq1) {
759 				if (pq != NULL)
760 					vm_pagequeue_unlock(pq);
761 				pq = pq1;
762 				vm_pagequeue_lock(pq);
763 			}
764 		}
765 		if (vm_page_free_prep(p, true))
766 			continue;
767 unlist:
768 		TAILQ_REMOVE(&object->memq, p, listq);
769 	}
770 	if (pq != NULL)
771 		vm_pagequeue_unlock(pq);
772 	if (mtx != NULL)
773 		mtx_unlock(mtx);
774 
775 	vm_page_free_phys_pglist(&object->memq);
776 
777 	/*
778 	 * If the object contained any pages, then reset it to an empty state.
779 	 * None of the object's fields, including "resident_page_count", were
780 	 * modified by the preceding loop.
781 	 */
782 	if (object->resident_page_count != 0) {
783 		vm_radix_reclaim_allnodes(&object->rtree);
784 		TAILQ_INIT(&object->memq);
785 		object->resident_page_count = 0;
786 		if (object->type == OBJT_VNODE)
787 			vdrop(object->handle);
788 	}
789 }
790 
791 /*
792  *	vm_object_terminate actually destroys the specified object, freeing
793  *	up all previously used resources.
794  *
795  *	The object must be locked.
796  *	This routine may block.
797  */
798 void
799 vm_object_terminate(vm_object_t object)
800 {
801 
802 	VM_OBJECT_ASSERT_WLOCKED(object);
803 
804 	/*
805 	 * Make sure no one uses us.
806 	 */
807 	vm_object_set_flag(object, OBJ_DEAD);
808 
809 	/*
810 	 * wait for the pageout daemon to be done with the object
811 	 */
812 	vm_object_pip_wait(object, "objtrm");
813 
814 	KASSERT(!object->paging_in_progress,
815 		("vm_object_terminate: pageout in progress"));
816 
817 	/*
818 	 * Clean and free the pages, as appropriate. All references to the
819 	 * object are gone, so we don't need to lock it.
820 	 */
821 	if (object->type == OBJT_VNODE) {
822 		struct vnode *vp = (struct vnode *)object->handle;
823 
824 		/*
825 		 * Clean pages and flush buffers.
826 		 */
827 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
828 		VM_OBJECT_WUNLOCK(object);
829 
830 		vinvalbuf(vp, V_SAVE, 0, 0);
831 
832 		BO_LOCK(&vp->v_bufobj);
833 		vp->v_bufobj.bo_flag |= BO_DEAD;
834 		BO_UNLOCK(&vp->v_bufobj);
835 
836 		VM_OBJECT_WLOCK(object);
837 	}
838 
839 	KASSERT(object->ref_count == 0,
840 		("vm_object_terminate: object with references, ref_count=%d",
841 		object->ref_count));
842 
843 	if ((object->flags & OBJ_PG_DTOR) == 0)
844 		vm_object_terminate_pages(object);
845 
846 #if VM_NRESERVLEVEL > 0
847 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
848 		vm_reserv_break_all(object);
849 #endif
850 
851 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
852 	    object->type == OBJT_SWAP,
853 	    ("%s: non-swap obj %p has cred", __func__, object));
854 
855 	/*
856 	 * Let the pager know object is dead.
857 	 */
858 	vm_pager_deallocate(object);
859 	VM_OBJECT_WUNLOCK(object);
860 
861 	vm_object_destroy(object);
862 }
863 
864 /*
865  * Make the page read-only so that we can clear the object flags.  However, if
866  * this is a nosync mmap then the object is likely to stay dirty so do not
867  * mess with the page and do not clear the object flags.  Returns TRUE if the
868  * page should be flushed, and FALSE otherwise.
869  */
870 static boolean_t
871 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
872 {
873 
874 	/*
875 	 * If we have been asked to skip nosync pages and this is a
876 	 * nosync page, skip it.  Note that the object flags were not
877 	 * cleared in this case so we do not have to set them.
878 	 */
879 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
880 		*clearobjflags = FALSE;
881 		return (FALSE);
882 	} else {
883 		pmap_remove_write(p);
884 		return (p->dirty != 0);
885 	}
886 }
887 
888 /*
889  *	vm_object_page_clean
890  *
891  *	Clean all dirty pages in the specified range of object.  Leaves page
892  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
893  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
894  *	leaving the object dirty.
895  *
896  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
897  *	synchronous clustering mode implementation.
898  *
899  *	Odd semantics: if start == end, we clean everything.
900  *
901  *	The object must be locked.
902  *
903  *	Returns FALSE if some page from the range was not written, as
904  *	reported by the pager, and TRUE otherwise.
905  */
906 boolean_t
907 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
908     int flags)
909 {
910 	vm_page_t np, p;
911 	vm_pindex_t pi, tend, tstart;
912 	int curgeneration, n, pagerflags;
913 	boolean_t clearobjflags, eio, res;
914 
915 	VM_OBJECT_ASSERT_WLOCKED(object);
916 
917 	/*
918 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
919 	 * objects.  The check below prevents the function from
920 	 * operating on non-vnode objects.
921 	 */
922 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
923 	    object->resident_page_count == 0)
924 		return (TRUE);
925 
926 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
927 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
928 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
929 
930 	tstart = OFF_TO_IDX(start);
931 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
932 	clearobjflags = tstart == 0 && tend >= object->size;
933 	res = TRUE;
934 
935 rescan:
936 	curgeneration = object->generation;
937 
938 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
939 		pi = p->pindex;
940 		if (pi >= tend)
941 			break;
942 		np = TAILQ_NEXT(p, listq);
943 		if (p->valid == 0)
944 			continue;
945 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
946 			if (object->generation != curgeneration) {
947 				if ((flags & OBJPC_SYNC) != 0)
948 					goto rescan;
949 				else
950 					clearobjflags = FALSE;
951 			}
952 			np = vm_page_find_least(object, pi);
953 			continue;
954 		}
955 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
956 			continue;
957 
958 		n = vm_object_page_collect_flush(object, p, pagerflags,
959 		    flags, &clearobjflags, &eio);
960 		if (eio) {
961 			res = FALSE;
962 			clearobjflags = FALSE;
963 		}
964 		if (object->generation != curgeneration) {
965 			if ((flags & OBJPC_SYNC) != 0)
966 				goto rescan;
967 			else
968 				clearobjflags = FALSE;
969 		}
970 
971 		/*
972 		 * If the VOP_PUTPAGES() did a truncated write, so
973 		 * that even the first page of the run is not fully
974 		 * written, vm_pageout_flush() returns 0 as the run
975 		 * length.  Since the condition that caused truncated
976 		 * write may be permanent, e.g. exhausted free space,
977 		 * accepting n == 0 would cause an infinite loop.
978 		 *
979 		 * Forwarding the iterator leaves the unwritten page
980 		 * behind, but there is not much we can do there if
981 		 * filesystem refuses to write it.
982 		 */
983 		if (n == 0) {
984 			n = 1;
985 			clearobjflags = FALSE;
986 		}
987 		np = vm_page_find_least(object, pi + n);
988 	}
989 #if 0
990 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
991 #endif
992 
993 	if (clearobjflags)
994 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
995 	return (res);
996 }
997 
998 static int
999 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1000     int flags, boolean_t *clearobjflags, boolean_t *eio)
1001 {
1002 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1003 	int count, i, mreq, runlen;
1004 
1005 	vm_page_lock_assert(p, MA_NOTOWNED);
1006 	VM_OBJECT_ASSERT_WLOCKED(object);
1007 
1008 	count = 1;
1009 	mreq = 0;
1010 
1011 	for (tp = p; count < vm_pageout_page_count; count++) {
1012 		tp = vm_page_next(tp);
1013 		if (tp == NULL || vm_page_busied(tp))
1014 			break;
1015 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1016 			break;
1017 	}
1018 
1019 	for (p_first = p; count < vm_pageout_page_count; count++) {
1020 		tp = vm_page_prev(p_first);
1021 		if (tp == NULL || vm_page_busied(tp))
1022 			break;
1023 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1024 			break;
1025 		p_first = tp;
1026 		mreq++;
1027 	}
1028 
1029 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1030 		ma[i] = tp;
1031 
1032 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1033 	return (runlen);
1034 }
1035 
1036 /*
1037  * Note that there is absolutely no sense in writing out
1038  * anonymous objects, so we track down the vnode object
1039  * to write out.
1040  * We invalidate (remove) all pages from the address space
1041  * for semantic correctness.
1042  *
1043  * If the backing object is a device object with unmanaged pages, then any
1044  * mappings to the specified range of pages must be removed before this
1045  * function is called.
1046  *
1047  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1048  * may start out with a NULL object.
1049  */
1050 boolean_t
1051 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1052     boolean_t syncio, boolean_t invalidate)
1053 {
1054 	vm_object_t backing_object;
1055 	struct vnode *vp;
1056 	struct mount *mp;
1057 	int error, flags, fsync_after;
1058 	boolean_t res;
1059 
1060 	if (object == NULL)
1061 		return (TRUE);
1062 	res = TRUE;
1063 	error = 0;
1064 	VM_OBJECT_WLOCK(object);
1065 	while ((backing_object = object->backing_object) != NULL) {
1066 		VM_OBJECT_WLOCK(backing_object);
1067 		offset += object->backing_object_offset;
1068 		VM_OBJECT_WUNLOCK(object);
1069 		object = backing_object;
1070 		if (object->size < OFF_TO_IDX(offset + size))
1071 			size = IDX_TO_OFF(object->size) - offset;
1072 	}
1073 	/*
1074 	 * Flush pages if writing is allowed, invalidate them
1075 	 * if invalidation requested.  Pages undergoing I/O
1076 	 * will be ignored by vm_object_page_remove().
1077 	 *
1078 	 * We cannot lock the vnode and then wait for paging
1079 	 * to complete without deadlocking against vm_fault.
1080 	 * Instead we simply call vm_object_page_remove() and
1081 	 * allow it to block internally on a page-by-page
1082 	 * basis when it encounters pages undergoing async
1083 	 * I/O.
1084 	 */
1085 	if (object->type == OBJT_VNODE &&
1086 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1087 		vp = object->handle;
1088 		VM_OBJECT_WUNLOCK(object);
1089 		(void) vn_start_write(vp, &mp, V_WAIT);
1090 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1091 		if (syncio && !invalidate && offset == 0 &&
1092 		    atop(size) == object->size) {
1093 			/*
1094 			 * If syncing the whole mapping of the file,
1095 			 * it is faster to schedule all the writes in
1096 			 * async mode, also allowing the clustering,
1097 			 * and then wait for i/o to complete.
1098 			 */
1099 			flags = 0;
1100 			fsync_after = TRUE;
1101 		} else {
1102 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1103 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1104 			fsync_after = FALSE;
1105 		}
1106 		VM_OBJECT_WLOCK(object);
1107 		res = vm_object_page_clean(object, offset, offset + size,
1108 		    flags);
1109 		VM_OBJECT_WUNLOCK(object);
1110 		if (fsync_after)
1111 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1112 		VOP_UNLOCK(vp, 0);
1113 		vn_finished_write(mp);
1114 		if (error != 0)
1115 			res = FALSE;
1116 		VM_OBJECT_WLOCK(object);
1117 	}
1118 	if ((object->type == OBJT_VNODE ||
1119 	     object->type == OBJT_DEVICE) && invalidate) {
1120 		if (object->type == OBJT_DEVICE)
1121 			/*
1122 			 * The option OBJPR_NOTMAPPED must be passed here
1123 			 * because vm_object_page_remove() cannot remove
1124 			 * unmanaged mappings.
1125 			 */
1126 			flags = OBJPR_NOTMAPPED;
1127 		else if (old_msync)
1128 			flags = 0;
1129 		else
1130 			flags = OBJPR_CLEANONLY;
1131 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1132 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1133 	}
1134 	VM_OBJECT_WUNLOCK(object);
1135 	return (res);
1136 }
1137 
1138 /*
1139  * Determine whether the given advice can be applied to the object.  Advice is
1140  * not applied to unmanaged pages since they never belong to page queues, and
1141  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1142  * have been mapped at most once.
1143  */
1144 static bool
1145 vm_object_advice_applies(vm_object_t object, int advice)
1146 {
1147 
1148 	if ((object->flags & OBJ_UNMANAGED) != 0)
1149 		return (false);
1150 	if (advice != MADV_FREE)
1151 		return (true);
1152 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1153 	    (object->flags & OBJ_ONEMAPPING) != 0);
1154 }
1155 
1156 static void
1157 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1158     vm_size_t size)
1159 {
1160 
1161 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1162 		swap_pager_freespace(object, pindex, size);
1163 }
1164 
1165 /*
1166  *	vm_object_madvise:
1167  *
1168  *	Implements the madvise function at the object/page level.
1169  *
1170  *	MADV_WILLNEED	(any object)
1171  *
1172  *	    Activate the specified pages if they are resident.
1173  *
1174  *	MADV_DONTNEED	(any object)
1175  *
1176  *	    Deactivate the specified pages if they are resident.
1177  *
1178  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1179  *			 OBJ_ONEMAPPING only)
1180  *
1181  *	    Deactivate and clean the specified pages if they are
1182  *	    resident.  This permits the process to reuse the pages
1183  *	    without faulting or the kernel to reclaim the pages
1184  *	    without I/O.
1185  */
1186 void
1187 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1188     int advice)
1189 {
1190 	vm_pindex_t tpindex;
1191 	vm_object_t backing_object, tobject;
1192 	vm_page_t m, tm;
1193 
1194 	if (object == NULL)
1195 		return;
1196 
1197 relookup:
1198 	VM_OBJECT_WLOCK(object);
1199 	if (!vm_object_advice_applies(object, advice)) {
1200 		VM_OBJECT_WUNLOCK(object);
1201 		return;
1202 	}
1203 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1204 		tobject = object;
1205 
1206 		/*
1207 		 * If the next page isn't resident in the top-level object, we
1208 		 * need to search the shadow chain.  When applying MADV_FREE, we
1209 		 * take care to release any swap space used to store
1210 		 * non-resident pages.
1211 		 */
1212 		if (m == NULL || pindex < m->pindex) {
1213 			/*
1214 			 * Optimize a common case: if the top-level object has
1215 			 * no backing object, we can skip over the non-resident
1216 			 * range in constant time.
1217 			 */
1218 			if (object->backing_object == NULL) {
1219 				tpindex = (m != NULL && m->pindex < end) ?
1220 				    m->pindex : end;
1221 				vm_object_madvise_freespace(object, advice,
1222 				    pindex, tpindex - pindex);
1223 				if ((pindex = tpindex) == end)
1224 					break;
1225 				goto next_page;
1226 			}
1227 
1228 			tpindex = pindex;
1229 			do {
1230 				vm_object_madvise_freespace(tobject, advice,
1231 				    tpindex, 1);
1232 				/*
1233 				 * Prepare to search the next object in the
1234 				 * chain.
1235 				 */
1236 				backing_object = tobject->backing_object;
1237 				if (backing_object == NULL)
1238 					goto next_pindex;
1239 				VM_OBJECT_WLOCK(backing_object);
1240 				tpindex +=
1241 				    OFF_TO_IDX(tobject->backing_object_offset);
1242 				if (tobject != object)
1243 					VM_OBJECT_WUNLOCK(tobject);
1244 				tobject = backing_object;
1245 				if (!vm_object_advice_applies(tobject, advice))
1246 					goto next_pindex;
1247 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1248 			    NULL);
1249 		} else {
1250 next_page:
1251 			tm = m;
1252 			m = TAILQ_NEXT(m, listq);
1253 		}
1254 
1255 		/*
1256 		 * If the page is not in a normal state, skip it.
1257 		 */
1258 		if (tm->valid != VM_PAGE_BITS_ALL)
1259 			goto next_pindex;
1260 		vm_page_lock(tm);
1261 		if (tm->hold_count != 0 || tm->wire_count != 0) {
1262 			vm_page_unlock(tm);
1263 			goto next_pindex;
1264 		}
1265 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1266 		    ("vm_object_madvise: page %p is fictitious", tm));
1267 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1268 		    ("vm_object_madvise: page %p is not managed", tm));
1269 		if (vm_page_busied(tm)) {
1270 			if (object != tobject)
1271 				VM_OBJECT_WUNLOCK(tobject);
1272 			VM_OBJECT_WUNLOCK(object);
1273 			if (advice == MADV_WILLNEED) {
1274 				/*
1275 				 * Reference the page before unlocking and
1276 				 * sleeping so that the page daemon is less
1277 				 * likely to reclaim it.
1278 				 */
1279 				vm_page_aflag_set(tm, PGA_REFERENCED);
1280 			}
1281 			vm_page_busy_sleep(tm, "madvpo", false);
1282   			goto relookup;
1283 		}
1284 		vm_page_advise(tm, advice);
1285 		vm_page_unlock(tm);
1286 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1287 next_pindex:
1288 		if (tobject != object)
1289 			VM_OBJECT_WUNLOCK(tobject);
1290 	}
1291 	VM_OBJECT_WUNLOCK(object);
1292 }
1293 
1294 /*
1295  *	vm_object_shadow:
1296  *
1297  *	Create a new object which is backed by the
1298  *	specified existing object range.  The source
1299  *	object reference is deallocated.
1300  *
1301  *	The new object and offset into that object
1302  *	are returned in the source parameters.
1303  */
1304 void
1305 vm_object_shadow(
1306 	vm_object_t *object,	/* IN/OUT */
1307 	vm_ooffset_t *offset,	/* IN/OUT */
1308 	vm_size_t length)
1309 {
1310 	vm_object_t source;
1311 	vm_object_t result;
1312 
1313 	source = *object;
1314 
1315 	/*
1316 	 * Don't create the new object if the old object isn't shared.
1317 	 */
1318 	if (source != NULL) {
1319 		VM_OBJECT_WLOCK(source);
1320 		if (source->ref_count == 1 &&
1321 		    source->handle == NULL &&
1322 		    (source->type == OBJT_DEFAULT ||
1323 		     source->type == OBJT_SWAP)) {
1324 			VM_OBJECT_WUNLOCK(source);
1325 			return;
1326 		}
1327 		VM_OBJECT_WUNLOCK(source);
1328 	}
1329 
1330 	/*
1331 	 * Allocate a new object with the given length.
1332 	 */
1333 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1334 
1335 	/*
1336 	 * The new object shadows the source object, adding a reference to it.
1337 	 * Our caller changes his reference to point to the new object,
1338 	 * removing a reference to the source object.  Net result: no change
1339 	 * of reference count.
1340 	 *
1341 	 * Try to optimize the result object's page color when shadowing
1342 	 * in order to maintain page coloring consistency in the combined
1343 	 * shadowed object.
1344 	 */
1345 	result->backing_object = source;
1346 	/*
1347 	 * Store the offset into the source object, and fix up the offset into
1348 	 * the new object.
1349 	 */
1350 	result->backing_object_offset = *offset;
1351 	if (source != NULL) {
1352 		VM_OBJECT_WLOCK(source);
1353 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1354 		source->shadow_count++;
1355 #if VM_NRESERVLEVEL > 0
1356 		result->flags |= source->flags & OBJ_COLORED;
1357 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1358 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1359 #endif
1360 		VM_OBJECT_WUNLOCK(source);
1361 	}
1362 
1363 
1364 	/*
1365 	 * Return the new things
1366 	 */
1367 	*offset = 0;
1368 	*object = result;
1369 }
1370 
1371 /*
1372  *	vm_object_split:
1373  *
1374  * Split the pages in a map entry into a new object.  This affords
1375  * easier removal of unused pages, and keeps object inheritance from
1376  * being a negative impact on memory usage.
1377  */
1378 void
1379 vm_object_split(vm_map_entry_t entry)
1380 {
1381 	vm_page_t m, m_next;
1382 	vm_object_t orig_object, new_object, source;
1383 	vm_pindex_t idx, offidxstart;
1384 	vm_size_t size;
1385 
1386 	orig_object = entry->object.vm_object;
1387 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1388 		return;
1389 	if (orig_object->ref_count <= 1)
1390 		return;
1391 	VM_OBJECT_WUNLOCK(orig_object);
1392 
1393 	offidxstart = OFF_TO_IDX(entry->offset);
1394 	size = atop(entry->end - entry->start);
1395 
1396 	/*
1397 	 * If swap_pager_copy() is later called, it will convert new_object
1398 	 * into a swap object.
1399 	 */
1400 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1401 
1402 	/*
1403 	 * At this point, the new object is still private, so the order in
1404 	 * which the original and new objects are locked does not matter.
1405 	 */
1406 	VM_OBJECT_WLOCK(new_object);
1407 	VM_OBJECT_WLOCK(orig_object);
1408 	source = orig_object->backing_object;
1409 	if (source != NULL) {
1410 		VM_OBJECT_WLOCK(source);
1411 		if ((source->flags & OBJ_DEAD) != 0) {
1412 			VM_OBJECT_WUNLOCK(source);
1413 			VM_OBJECT_WUNLOCK(orig_object);
1414 			VM_OBJECT_WUNLOCK(new_object);
1415 			vm_object_deallocate(new_object);
1416 			VM_OBJECT_WLOCK(orig_object);
1417 			return;
1418 		}
1419 		LIST_INSERT_HEAD(&source->shadow_head,
1420 				  new_object, shadow_list);
1421 		source->shadow_count++;
1422 		vm_object_reference_locked(source);	/* for new_object */
1423 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1424 		VM_OBJECT_WUNLOCK(source);
1425 		new_object->backing_object_offset =
1426 			orig_object->backing_object_offset + entry->offset;
1427 		new_object->backing_object = source;
1428 	}
1429 	if (orig_object->cred != NULL) {
1430 		new_object->cred = orig_object->cred;
1431 		crhold(orig_object->cred);
1432 		new_object->charge = ptoa(size);
1433 		KASSERT(orig_object->charge >= ptoa(size),
1434 		    ("orig_object->charge < 0"));
1435 		orig_object->charge -= ptoa(size);
1436 	}
1437 retry:
1438 	m = vm_page_find_least(orig_object, offidxstart);
1439 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1440 	    m = m_next) {
1441 		m_next = TAILQ_NEXT(m, listq);
1442 
1443 		/*
1444 		 * We must wait for pending I/O to complete before we can
1445 		 * rename the page.
1446 		 *
1447 		 * We do not have to VM_PROT_NONE the page as mappings should
1448 		 * not be changed by this operation.
1449 		 */
1450 		if (vm_page_busied(m)) {
1451 			VM_OBJECT_WUNLOCK(new_object);
1452 			vm_page_lock(m);
1453 			VM_OBJECT_WUNLOCK(orig_object);
1454 			vm_page_busy_sleep(m, "spltwt", false);
1455 			VM_OBJECT_WLOCK(orig_object);
1456 			VM_OBJECT_WLOCK(new_object);
1457 			goto retry;
1458 		}
1459 
1460 		/* vm_page_rename() will dirty the page. */
1461 		if (vm_page_rename(m, new_object, idx)) {
1462 			VM_OBJECT_WUNLOCK(new_object);
1463 			VM_OBJECT_WUNLOCK(orig_object);
1464 			VM_WAIT;
1465 			VM_OBJECT_WLOCK(orig_object);
1466 			VM_OBJECT_WLOCK(new_object);
1467 			goto retry;
1468 		}
1469 #if VM_NRESERVLEVEL > 0
1470 		/*
1471 		 * If some of the reservation's allocated pages remain with
1472 		 * the original object, then transferring the reservation to
1473 		 * the new object is neither particularly beneficial nor
1474 		 * particularly harmful as compared to leaving the reservation
1475 		 * with the original object.  If, however, all of the
1476 		 * reservation's allocated pages are transferred to the new
1477 		 * object, then transferring the reservation is typically
1478 		 * beneficial.  Determining which of these two cases applies
1479 		 * would be more costly than unconditionally renaming the
1480 		 * reservation.
1481 		 */
1482 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1483 #endif
1484 		if (orig_object->type == OBJT_SWAP)
1485 			vm_page_xbusy(m);
1486 	}
1487 	if (orig_object->type == OBJT_SWAP) {
1488 		/*
1489 		 * swap_pager_copy() can sleep, in which case the orig_object's
1490 		 * and new_object's locks are released and reacquired.
1491 		 */
1492 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1493 		TAILQ_FOREACH(m, &new_object->memq, listq)
1494 			vm_page_xunbusy(m);
1495 	}
1496 	VM_OBJECT_WUNLOCK(orig_object);
1497 	VM_OBJECT_WUNLOCK(new_object);
1498 	entry->object.vm_object = new_object;
1499 	entry->offset = 0LL;
1500 	vm_object_deallocate(orig_object);
1501 	VM_OBJECT_WLOCK(new_object);
1502 }
1503 
1504 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1505 #define	OBSC_COLLAPSE_WAIT	0x0004
1506 
1507 static vm_page_t
1508 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1509     int op)
1510 {
1511 	vm_object_t backing_object;
1512 
1513 	VM_OBJECT_ASSERT_WLOCKED(object);
1514 	backing_object = object->backing_object;
1515 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1516 
1517 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1518 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1519 	    ("invalid ownership %p %p %p", p, object, backing_object));
1520 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1521 		return (next);
1522 	if (p != NULL)
1523 		vm_page_lock(p);
1524 	VM_OBJECT_WUNLOCK(object);
1525 	VM_OBJECT_WUNLOCK(backing_object);
1526 	if (p == NULL)
1527 		VM_WAIT;
1528 	else
1529 		vm_page_busy_sleep(p, "vmocol", false);
1530 	VM_OBJECT_WLOCK(object);
1531 	VM_OBJECT_WLOCK(backing_object);
1532 	return (TAILQ_FIRST(&backing_object->memq));
1533 }
1534 
1535 static bool
1536 vm_object_scan_all_shadowed(vm_object_t object)
1537 {
1538 	vm_object_t backing_object;
1539 	vm_page_t p, pp;
1540 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1541 
1542 	VM_OBJECT_ASSERT_WLOCKED(object);
1543 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1544 
1545 	backing_object = object->backing_object;
1546 
1547 	if (backing_object->type != OBJT_DEFAULT &&
1548 	    backing_object->type != OBJT_SWAP)
1549 		return (false);
1550 
1551 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1552 	p = vm_page_find_least(backing_object, pi);
1553 	ps = swap_pager_find_least(backing_object, pi);
1554 
1555 	/*
1556 	 * Only check pages inside the parent object's range and
1557 	 * inside the parent object's mapping of the backing object.
1558 	 */
1559 	for (;; pi++) {
1560 		if (p != NULL && p->pindex < pi)
1561 			p = TAILQ_NEXT(p, listq);
1562 		if (ps < pi)
1563 			ps = swap_pager_find_least(backing_object, pi);
1564 		if (p == NULL && ps >= backing_object->size)
1565 			break;
1566 		else if (p == NULL)
1567 			pi = ps;
1568 		else
1569 			pi = MIN(p->pindex, ps);
1570 
1571 		new_pindex = pi - backing_offset_index;
1572 		if (new_pindex >= object->size)
1573 			break;
1574 
1575 		/*
1576 		 * See if the parent has the page or if the parent's object
1577 		 * pager has the page.  If the parent has the page but the page
1578 		 * is not valid, the parent's object pager must have the page.
1579 		 *
1580 		 * If this fails, the parent does not completely shadow the
1581 		 * object and we might as well give up now.
1582 		 */
1583 		pp = vm_page_lookup(object, new_pindex);
1584 		if ((pp == NULL || pp->valid == 0) &&
1585 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1586 			return (false);
1587 	}
1588 	return (true);
1589 }
1590 
1591 static bool
1592 vm_object_collapse_scan(vm_object_t object, int op)
1593 {
1594 	vm_object_t backing_object;
1595 	vm_page_t next, p, pp;
1596 	vm_pindex_t backing_offset_index, new_pindex;
1597 
1598 	VM_OBJECT_ASSERT_WLOCKED(object);
1599 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1600 
1601 	backing_object = object->backing_object;
1602 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1603 
1604 	/*
1605 	 * Initial conditions
1606 	 */
1607 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1608 		vm_object_set_flag(backing_object, OBJ_DEAD);
1609 
1610 	/*
1611 	 * Our scan
1612 	 */
1613 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1614 		next = TAILQ_NEXT(p, listq);
1615 		new_pindex = p->pindex - backing_offset_index;
1616 
1617 		/*
1618 		 * Check for busy page
1619 		 */
1620 		if (vm_page_busied(p)) {
1621 			next = vm_object_collapse_scan_wait(object, p, next, op);
1622 			continue;
1623 		}
1624 
1625 		KASSERT(p->object == backing_object,
1626 		    ("vm_object_collapse_scan: object mismatch"));
1627 
1628 		if (p->pindex < backing_offset_index ||
1629 		    new_pindex >= object->size) {
1630 			if (backing_object->type == OBJT_SWAP)
1631 				swap_pager_freespace(backing_object, p->pindex,
1632 				    1);
1633 
1634 			/*
1635 			 * Page is out of the parent object's range, we can
1636 			 * simply destroy it.
1637 			 */
1638 			vm_page_lock(p);
1639 			KASSERT(!pmap_page_is_mapped(p),
1640 			    ("freeing mapped page %p", p));
1641 			if (p->wire_count == 0)
1642 				vm_page_free(p);
1643 			else
1644 				vm_page_remove(p);
1645 			vm_page_unlock(p);
1646 			continue;
1647 		}
1648 
1649 		pp = vm_page_lookup(object, new_pindex);
1650 		if (pp != NULL && vm_page_busied(pp)) {
1651 			/*
1652 			 * The page in the parent is busy and possibly not
1653 			 * (yet) valid.  Until its state is finalized by the
1654 			 * busy bit owner, we can't tell whether it shadows the
1655 			 * original page.  Therefore, we must either skip it
1656 			 * and the original (backing_object) page or wait for
1657 			 * its state to be finalized.
1658 			 *
1659 			 * This is due to a race with vm_fault() where we must
1660 			 * unbusy the original (backing_obj) page before we can
1661 			 * (re)lock the parent.  Hence we can get here.
1662 			 */
1663 			next = vm_object_collapse_scan_wait(object, pp, next,
1664 			    op);
1665 			continue;
1666 		}
1667 
1668 		KASSERT(pp == NULL || pp->valid != 0,
1669 		    ("unbusy invalid page %p", pp));
1670 
1671 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1672 			NULL)) {
1673 			/*
1674 			 * The page already exists in the parent OR swap exists
1675 			 * for this location in the parent.  Leave the parent's
1676 			 * page alone.  Destroy the original page from the
1677 			 * backing object.
1678 			 */
1679 			if (backing_object->type == OBJT_SWAP)
1680 				swap_pager_freespace(backing_object, p->pindex,
1681 				    1);
1682 			vm_page_lock(p);
1683 			KASSERT(!pmap_page_is_mapped(p),
1684 			    ("freeing mapped page %p", p));
1685 			if (p->wire_count == 0)
1686 				vm_page_free(p);
1687 			else
1688 				vm_page_remove(p);
1689 			vm_page_unlock(p);
1690 			continue;
1691 		}
1692 
1693 		/*
1694 		 * Page does not exist in parent, rename the page from the
1695 		 * backing object to the main object.
1696 		 *
1697 		 * If the page was mapped to a process, it can remain mapped
1698 		 * through the rename.  vm_page_rename() will dirty the page.
1699 		 */
1700 		if (vm_page_rename(p, object, new_pindex)) {
1701 			next = vm_object_collapse_scan_wait(object, NULL, next,
1702 			    op);
1703 			continue;
1704 		}
1705 
1706 		/* Use the old pindex to free the right page. */
1707 		if (backing_object->type == OBJT_SWAP)
1708 			swap_pager_freespace(backing_object,
1709 			    new_pindex + backing_offset_index, 1);
1710 
1711 #if VM_NRESERVLEVEL > 0
1712 		/*
1713 		 * Rename the reservation.
1714 		 */
1715 		vm_reserv_rename(p, object, backing_object,
1716 		    backing_offset_index);
1717 #endif
1718 	}
1719 	return (true);
1720 }
1721 
1722 
1723 /*
1724  * this version of collapse allows the operation to occur earlier and
1725  * when paging_in_progress is true for an object...  This is not a complete
1726  * operation, but should plug 99.9% of the rest of the leaks.
1727  */
1728 static void
1729 vm_object_qcollapse(vm_object_t object)
1730 {
1731 	vm_object_t backing_object = object->backing_object;
1732 
1733 	VM_OBJECT_ASSERT_WLOCKED(object);
1734 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1735 
1736 	if (backing_object->ref_count != 1)
1737 		return;
1738 
1739 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1740 }
1741 
1742 /*
1743  *	vm_object_collapse:
1744  *
1745  *	Collapse an object with the object backing it.
1746  *	Pages in the backing object are moved into the
1747  *	parent, and the backing object is deallocated.
1748  */
1749 void
1750 vm_object_collapse(vm_object_t object)
1751 {
1752 	vm_object_t backing_object, new_backing_object;
1753 
1754 	VM_OBJECT_ASSERT_WLOCKED(object);
1755 
1756 	while (TRUE) {
1757 		/*
1758 		 * Verify that the conditions are right for collapse:
1759 		 *
1760 		 * The object exists and the backing object exists.
1761 		 */
1762 		if ((backing_object = object->backing_object) == NULL)
1763 			break;
1764 
1765 		/*
1766 		 * we check the backing object first, because it is most likely
1767 		 * not collapsable.
1768 		 */
1769 		VM_OBJECT_WLOCK(backing_object);
1770 		if (backing_object->handle != NULL ||
1771 		    (backing_object->type != OBJT_DEFAULT &&
1772 		     backing_object->type != OBJT_SWAP) ||
1773 		    (backing_object->flags & OBJ_DEAD) ||
1774 		    object->handle != NULL ||
1775 		    (object->type != OBJT_DEFAULT &&
1776 		     object->type != OBJT_SWAP) ||
1777 		    (object->flags & OBJ_DEAD)) {
1778 			VM_OBJECT_WUNLOCK(backing_object);
1779 			break;
1780 		}
1781 
1782 		if (object->paging_in_progress != 0 ||
1783 		    backing_object->paging_in_progress != 0) {
1784 			vm_object_qcollapse(object);
1785 			VM_OBJECT_WUNLOCK(backing_object);
1786 			break;
1787 		}
1788 
1789 		/*
1790 		 * We know that we can either collapse the backing object (if
1791 		 * the parent is the only reference to it) or (perhaps) have
1792 		 * the parent bypass the object if the parent happens to shadow
1793 		 * all the resident pages in the entire backing object.
1794 		 *
1795 		 * This is ignoring pager-backed pages such as swap pages.
1796 		 * vm_object_collapse_scan fails the shadowing test in this
1797 		 * case.
1798 		 */
1799 		if (backing_object->ref_count == 1) {
1800 			vm_object_pip_add(object, 1);
1801 			vm_object_pip_add(backing_object, 1);
1802 
1803 			/*
1804 			 * If there is exactly one reference to the backing
1805 			 * object, we can collapse it into the parent.
1806 			 */
1807 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1808 
1809 #if VM_NRESERVLEVEL > 0
1810 			/*
1811 			 * Break any reservations from backing_object.
1812 			 */
1813 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1814 				vm_reserv_break_all(backing_object);
1815 #endif
1816 
1817 			/*
1818 			 * Move the pager from backing_object to object.
1819 			 */
1820 			if (backing_object->type == OBJT_SWAP) {
1821 				/*
1822 				 * swap_pager_copy() can sleep, in which case
1823 				 * the backing_object's and object's locks are
1824 				 * released and reacquired.
1825 				 * Since swap_pager_copy() is being asked to
1826 				 * destroy the source, it will change the
1827 				 * backing_object's type to OBJT_DEFAULT.
1828 				 */
1829 				swap_pager_copy(
1830 				    backing_object,
1831 				    object,
1832 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1833 			}
1834 			/*
1835 			 * Object now shadows whatever backing_object did.
1836 			 * Note that the reference to
1837 			 * backing_object->backing_object moves from within
1838 			 * backing_object to within object.
1839 			 */
1840 			LIST_REMOVE(object, shadow_list);
1841 			backing_object->shadow_count--;
1842 			if (backing_object->backing_object) {
1843 				VM_OBJECT_WLOCK(backing_object->backing_object);
1844 				LIST_REMOVE(backing_object, shadow_list);
1845 				LIST_INSERT_HEAD(
1846 				    &backing_object->backing_object->shadow_head,
1847 				    object, shadow_list);
1848 				/*
1849 				 * The shadow_count has not changed.
1850 				 */
1851 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1852 			}
1853 			object->backing_object = backing_object->backing_object;
1854 			object->backing_object_offset +=
1855 			    backing_object->backing_object_offset;
1856 
1857 			/*
1858 			 * Discard backing_object.
1859 			 *
1860 			 * Since the backing object has no pages, no pager left,
1861 			 * and no object references within it, all that is
1862 			 * necessary is to dispose of it.
1863 			 */
1864 			KASSERT(backing_object->ref_count == 1, (
1865 "backing_object %p was somehow re-referenced during collapse!",
1866 			    backing_object));
1867 			vm_object_pip_wakeup(backing_object);
1868 			backing_object->type = OBJT_DEAD;
1869 			backing_object->ref_count = 0;
1870 			VM_OBJECT_WUNLOCK(backing_object);
1871 			vm_object_destroy(backing_object);
1872 
1873 			vm_object_pip_wakeup(object);
1874 			object_collapses++;
1875 		} else {
1876 			/*
1877 			 * If we do not entirely shadow the backing object,
1878 			 * there is nothing we can do so we give up.
1879 			 */
1880 			if (object->resident_page_count != object->size &&
1881 			    !vm_object_scan_all_shadowed(object)) {
1882 				VM_OBJECT_WUNLOCK(backing_object);
1883 				break;
1884 			}
1885 
1886 			/*
1887 			 * Make the parent shadow the next object in the
1888 			 * chain.  Deallocating backing_object will not remove
1889 			 * it, since its reference count is at least 2.
1890 			 */
1891 			LIST_REMOVE(object, shadow_list);
1892 			backing_object->shadow_count--;
1893 
1894 			new_backing_object = backing_object->backing_object;
1895 			if ((object->backing_object = new_backing_object) != NULL) {
1896 				VM_OBJECT_WLOCK(new_backing_object);
1897 				LIST_INSERT_HEAD(
1898 				    &new_backing_object->shadow_head,
1899 				    object,
1900 				    shadow_list
1901 				);
1902 				new_backing_object->shadow_count++;
1903 				vm_object_reference_locked(new_backing_object);
1904 				VM_OBJECT_WUNLOCK(new_backing_object);
1905 				object->backing_object_offset +=
1906 					backing_object->backing_object_offset;
1907 			}
1908 
1909 			/*
1910 			 * Drop the reference count on backing_object. Since
1911 			 * its ref_count was at least 2, it will not vanish.
1912 			 */
1913 			backing_object->ref_count--;
1914 			VM_OBJECT_WUNLOCK(backing_object);
1915 			object_bypasses++;
1916 		}
1917 
1918 		/*
1919 		 * Try again with this object's new backing object.
1920 		 */
1921 	}
1922 }
1923 
1924 /*
1925  *	vm_object_page_remove:
1926  *
1927  *	For the given object, either frees or invalidates each of the
1928  *	specified pages.  In general, a page is freed.  However, if a page is
1929  *	wired for any reason other than the existence of a managed, wired
1930  *	mapping, then it may be invalidated but not removed from the object.
1931  *	Pages are specified by the given range ["start", "end") and the option
1932  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1933  *	extends from "start" to the end of the object.  If the option
1934  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1935  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1936  *	specified, then the pages within the specified range must have no
1937  *	mappings.  Otherwise, if this option is not specified, any mappings to
1938  *	the specified pages are removed before the pages are freed or
1939  *	invalidated.
1940  *
1941  *	In general, this operation should only be performed on objects that
1942  *	contain managed pages.  There are, however, two exceptions.  First, it
1943  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1944  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1945  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1946  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1947  *
1948  *	The object must be locked.
1949  */
1950 void
1951 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1952     int options)
1953 {
1954 	vm_page_t p, next;
1955 	struct mtx *mtx;
1956 	struct pglist pgl;
1957 
1958 	VM_OBJECT_ASSERT_WLOCKED(object);
1959 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1960 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1961 	    ("vm_object_page_remove: illegal options for object %p", object));
1962 	if (object->resident_page_count == 0)
1963 		return;
1964 	vm_object_pip_add(object, 1);
1965 	TAILQ_INIT(&pgl);
1966 again:
1967 	p = vm_page_find_least(object, start);
1968 	mtx = NULL;
1969 
1970 	/*
1971 	 * Here, the variable "p" is either (1) the page with the least pindex
1972 	 * greater than or equal to the parameter "start" or (2) NULL.
1973 	 */
1974 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1975 		next = TAILQ_NEXT(p, listq);
1976 
1977 		/*
1978 		 * If the page is wired for any reason besides the existence
1979 		 * of managed, wired mappings, then it cannot be freed.  For
1980 		 * example, fictitious pages, which represent device memory,
1981 		 * are inherently wired and cannot be freed.  They can,
1982 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1983 		 * not specified.
1984 		 */
1985 		vm_page_change_lock(p, &mtx);
1986 		if (vm_page_xbusied(p)) {
1987 			VM_OBJECT_WUNLOCK(object);
1988 			vm_page_busy_sleep(p, "vmopax", true);
1989 			VM_OBJECT_WLOCK(object);
1990 			goto again;
1991 		}
1992 		if (p->wire_count != 0) {
1993 			if ((options & OBJPR_NOTMAPPED) == 0)
1994 				pmap_remove_all(p);
1995 			if ((options & OBJPR_CLEANONLY) == 0) {
1996 				p->valid = 0;
1997 				vm_page_undirty(p);
1998 			}
1999 			continue;
2000 		}
2001 		if (vm_page_busied(p)) {
2002 			VM_OBJECT_WUNLOCK(object);
2003 			vm_page_busy_sleep(p, "vmopar", false);
2004 			VM_OBJECT_WLOCK(object);
2005 			goto again;
2006 		}
2007 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2008 		    ("vm_object_page_remove: page %p is fictitious", p));
2009 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2010 			if ((options & OBJPR_NOTMAPPED) == 0)
2011 				pmap_remove_write(p);
2012 			if (p->dirty)
2013 				continue;
2014 		}
2015 		if ((options & OBJPR_NOTMAPPED) == 0)
2016 			pmap_remove_all(p);
2017 		p->flags &= ~PG_ZERO;
2018 		if (vm_page_free_prep(p, false))
2019 			TAILQ_INSERT_TAIL(&pgl, p, listq);
2020 	}
2021 	if (mtx != NULL)
2022 		mtx_unlock(mtx);
2023 	vm_page_free_phys_pglist(&pgl);
2024 	vm_object_pip_wakeup(object);
2025 }
2026 
2027 /*
2028  *	vm_object_page_noreuse:
2029  *
2030  *	For the given object, attempt to move the specified pages to
2031  *	the head of the inactive queue.  This bypasses regular LRU
2032  *	operation and allows the pages to be reused quickly under memory
2033  *	pressure.  If a page is wired for any reason, then it will not
2034  *	be queued.  Pages are specified by the range ["start", "end").
2035  *	As a special case, if "end" is zero, then the range extends from
2036  *	"start" to the end of the object.
2037  *
2038  *	This operation should only be performed on objects that
2039  *	contain non-fictitious, managed pages.
2040  *
2041  *	The object must be locked.
2042  */
2043 void
2044 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2045 {
2046 	struct mtx *mtx;
2047 	vm_page_t p, next;
2048 
2049 	VM_OBJECT_ASSERT_LOCKED(object);
2050 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2051 	    ("vm_object_page_noreuse: illegal object %p", object));
2052 	if (object->resident_page_count == 0)
2053 		return;
2054 	p = vm_page_find_least(object, start);
2055 
2056 	/*
2057 	 * Here, the variable "p" is either (1) the page with the least pindex
2058 	 * greater than or equal to the parameter "start" or (2) NULL.
2059 	 */
2060 	mtx = NULL;
2061 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2062 		next = TAILQ_NEXT(p, listq);
2063 		vm_page_change_lock(p, &mtx);
2064 		vm_page_deactivate_noreuse(p);
2065 	}
2066 	if (mtx != NULL)
2067 		mtx_unlock(mtx);
2068 }
2069 
2070 /*
2071  *	Populate the specified range of the object with valid pages.  Returns
2072  *	TRUE if the range is successfully populated and FALSE otherwise.
2073  *
2074  *	Note: This function should be optimized to pass a larger array of
2075  *	pages to vm_pager_get_pages() before it is applied to a non-
2076  *	OBJT_DEVICE object.
2077  *
2078  *	The object must be locked.
2079  */
2080 boolean_t
2081 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2082 {
2083 	vm_page_t m;
2084 	vm_pindex_t pindex;
2085 	int rv;
2086 
2087 	VM_OBJECT_ASSERT_WLOCKED(object);
2088 	for (pindex = start; pindex < end; pindex++) {
2089 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2090 		if (m->valid != VM_PAGE_BITS_ALL) {
2091 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2092 			if (rv != VM_PAGER_OK) {
2093 				vm_page_lock(m);
2094 				vm_page_free(m);
2095 				vm_page_unlock(m);
2096 				break;
2097 			}
2098 		}
2099 		/*
2100 		 * Keep "m" busy because a subsequent iteration may unlock
2101 		 * the object.
2102 		 */
2103 	}
2104 	if (pindex > start) {
2105 		m = vm_page_lookup(object, start);
2106 		while (m != NULL && m->pindex < pindex) {
2107 			vm_page_xunbusy(m);
2108 			m = TAILQ_NEXT(m, listq);
2109 		}
2110 	}
2111 	return (pindex == end);
2112 }
2113 
2114 /*
2115  *	Routine:	vm_object_coalesce
2116  *	Function:	Coalesces two objects backing up adjoining
2117  *			regions of memory into a single object.
2118  *
2119  *	returns TRUE if objects were combined.
2120  *
2121  *	NOTE:	Only works at the moment if the second object is NULL -
2122  *		if it's not, which object do we lock first?
2123  *
2124  *	Parameters:
2125  *		prev_object	First object to coalesce
2126  *		prev_offset	Offset into prev_object
2127  *		prev_size	Size of reference to prev_object
2128  *		next_size	Size of reference to the second object
2129  *		reserved	Indicator that extension region has
2130  *				swap accounted for
2131  *
2132  *	Conditions:
2133  *	The object must *not* be locked.
2134  */
2135 boolean_t
2136 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2137     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2138 {
2139 	vm_pindex_t next_pindex;
2140 
2141 	if (prev_object == NULL)
2142 		return (TRUE);
2143 	VM_OBJECT_WLOCK(prev_object);
2144 	if ((prev_object->type != OBJT_DEFAULT &&
2145 	    prev_object->type != OBJT_SWAP) ||
2146 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2147 		VM_OBJECT_WUNLOCK(prev_object);
2148 		return (FALSE);
2149 	}
2150 
2151 	/*
2152 	 * Try to collapse the object first
2153 	 */
2154 	vm_object_collapse(prev_object);
2155 
2156 	/*
2157 	 * Can't coalesce if: . more than one reference . paged out . shadows
2158 	 * another object . has a copy elsewhere (any of which mean that the
2159 	 * pages not mapped to prev_entry may be in use anyway)
2160 	 */
2161 	if (prev_object->backing_object != NULL) {
2162 		VM_OBJECT_WUNLOCK(prev_object);
2163 		return (FALSE);
2164 	}
2165 
2166 	prev_size >>= PAGE_SHIFT;
2167 	next_size >>= PAGE_SHIFT;
2168 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2169 
2170 	if ((prev_object->ref_count > 1) &&
2171 	    (prev_object->size != next_pindex)) {
2172 		VM_OBJECT_WUNLOCK(prev_object);
2173 		return (FALSE);
2174 	}
2175 
2176 	/*
2177 	 * Account for the charge.
2178 	 */
2179 	if (prev_object->cred != NULL) {
2180 
2181 		/*
2182 		 * If prev_object was charged, then this mapping,
2183 		 * although not charged now, may become writable
2184 		 * later. Non-NULL cred in the object would prevent
2185 		 * swap reservation during enabling of the write
2186 		 * access, so reserve swap now. Failed reservation
2187 		 * cause allocation of the separate object for the map
2188 		 * entry, and swap reservation for this entry is
2189 		 * managed in appropriate time.
2190 		 */
2191 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2192 		    prev_object->cred)) {
2193 			VM_OBJECT_WUNLOCK(prev_object);
2194 			return (FALSE);
2195 		}
2196 		prev_object->charge += ptoa(next_size);
2197 	}
2198 
2199 	/*
2200 	 * Remove any pages that may still be in the object from a previous
2201 	 * deallocation.
2202 	 */
2203 	if (next_pindex < prev_object->size) {
2204 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2205 		    next_size, 0);
2206 		if (prev_object->type == OBJT_SWAP)
2207 			swap_pager_freespace(prev_object,
2208 					     next_pindex, next_size);
2209 #if 0
2210 		if (prev_object->cred != NULL) {
2211 			KASSERT(prev_object->charge >=
2212 			    ptoa(prev_object->size - next_pindex),
2213 			    ("object %p overcharged 1 %jx %jx", prev_object,
2214 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2215 			prev_object->charge -= ptoa(prev_object->size -
2216 			    next_pindex);
2217 		}
2218 #endif
2219 	}
2220 
2221 	/*
2222 	 * Extend the object if necessary.
2223 	 */
2224 	if (next_pindex + next_size > prev_object->size)
2225 		prev_object->size = next_pindex + next_size;
2226 
2227 	VM_OBJECT_WUNLOCK(prev_object);
2228 	return (TRUE);
2229 }
2230 
2231 void
2232 vm_object_set_writeable_dirty(vm_object_t object)
2233 {
2234 
2235 	VM_OBJECT_ASSERT_WLOCKED(object);
2236 	if (object->type != OBJT_VNODE) {
2237 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2238 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2239 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2240 		}
2241 		return;
2242 	}
2243 	object->generation++;
2244 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2245 		return;
2246 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2247 }
2248 
2249 /*
2250  *	vm_object_unwire:
2251  *
2252  *	For each page offset within the specified range of the given object,
2253  *	find the highest-level page in the shadow chain and unwire it.  A page
2254  *	must exist at every page offset, and the highest-level page must be
2255  *	wired.
2256  */
2257 void
2258 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2259     uint8_t queue)
2260 {
2261 	vm_object_t tobject;
2262 	vm_page_t m, tm;
2263 	vm_pindex_t end_pindex, pindex, tpindex;
2264 	int depth, locked_depth;
2265 
2266 	KASSERT((offset & PAGE_MASK) == 0,
2267 	    ("vm_object_unwire: offset is not page aligned"));
2268 	KASSERT((length & PAGE_MASK) == 0,
2269 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2270 	/* The wired count of a fictitious page never changes. */
2271 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2272 		return;
2273 	pindex = OFF_TO_IDX(offset);
2274 	end_pindex = pindex + atop(length);
2275 	locked_depth = 1;
2276 	VM_OBJECT_RLOCK(object);
2277 	m = vm_page_find_least(object, pindex);
2278 	while (pindex < end_pindex) {
2279 		if (m == NULL || pindex < m->pindex) {
2280 			/*
2281 			 * The first object in the shadow chain doesn't
2282 			 * contain a page at the current index.  Therefore,
2283 			 * the page must exist in a backing object.
2284 			 */
2285 			tobject = object;
2286 			tpindex = pindex;
2287 			depth = 0;
2288 			do {
2289 				tpindex +=
2290 				    OFF_TO_IDX(tobject->backing_object_offset);
2291 				tobject = tobject->backing_object;
2292 				KASSERT(tobject != NULL,
2293 				    ("vm_object_unwire: missing page"));
2294 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2295 					goto next_page;
2296 				depth++;
2297 				if (depth == locked_depth) {
2298 					locked_depth++;
2299 					VM_OBJECT_RLOCK(tobject);
2300 				}
2301 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2302 			    NULL);
2303 		} else {
2304 			tm = m;
2305 			m = TAILQ_NEXT(m, listq);
2306 		}
2307 		vm_page_lock(tm);
2308 		vm_page_unwire(tm, queue);
2309 		vm_page_unlock(tm);
2310 next_page:
2311 		pindex++;
2312 	}
2313 	/* Release the accumulated object locks. */
2314 	for (depth = 0; depth < locked_depth; depth++) {
2315 		tobject = object->backing_object;
2316 		VM_OBJECT_RUNLOCK(object);
2317 		object = tobject;
2318 	}
2319 }
2320 
2321 struct vnode *
2322 vm_object_vnode(vm_object_t object)
2323 {
2324 
2325 	VM_OBJECT_ASSERT_LOCKED(object);
2326 	if (object->type == OBJT_VNODE)
2327 		return (object->handle);
2328 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2329 		return (object->un_pager.swp.swp_tmpfs);
2330 	return (NULL);
2331 }
2332 
2333 static int
2334 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2335 {
2336 	struct kinfo_vmobject *kvo;
2337 	char *fullpath, *freepath;
2338 	struct vnode *vp;
2339 	struct vattr va;
2340 	vm_object_t obj;
2341 	vm_page_t m;
2342 	int count, error;
2343 
2344 	if (req->oldptr == NULL) {
2345 		/*
2346 		 * If an old buffer has not been provided, generate an
2347 		 * estimate of the space needed for a subsequent call.
2348 		 */
2349 		mtx_lock(&vm_object_list_mtx);
2350 		count = 0;
2351 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2352 			if (obj->type == OBJT_DEAD)
2353 				continue;
2354 			count++;
2355 		}
2356 		mtx_unlock(&vm_object_list_mtx);
2357 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2358 		    count * 11 / 10));
2359 	}
2360 
2361 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2362 	error = 0;
2363 
2364 	/*
2365 	 * VM objects are type stable and are never removed from the
2366 	 * list once added.  This allows us to safely read obj->object_list
2367 	 * after reacquiring the VM object lock.
2368 	 */
2369 	mtx_lock(&vm_object_list_mtx);
2370 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2371 		if (obj->type == OBJT_DEAD)
2372 			continue;
2373 		VM_OBJECT_RLOCK(obj);
2374 		if (obj->type == OBJT_DEAD) {
2375 			VM_OBJECT_RUNLOCK(obj);
2376 			continue;
2377 		}
2378 		mtx_unlock(&vm_object_list_mtx);
2379 		kvo->kvo_size = ptoa(obj->size);
2380 		kvo->kvo_resident = obj->resident_page_count;
2381 		kvo->kvo_ref_count = obj->ref_count;
2382 		kvo->kvo_shadow_count = obj->shadow_count;
2383 		kvo->kvo_memattr = obj->memattr;
2384 		kvo->kvo_active = 0;
2385 		kvo->kvo_inactive = 0;
2386 		TAILQ_FOREACH(m, &obj->memq, listq) {
2387 			/*
2388 			 * A page may belong to the object but be
2389 			 * dequeued and set to PQ_NONE while the
2390 			 * object lock is not held.  This makes the
2391 			 * reads of m->queue below racy, and we do not
2392 			 * count pages set to PQ_NONE.  However, this
2393 			 * sysctl is only meant to give an
2394 			 * approximation of the system anyway.
2395 			 */
2396 			if (vm_page_active(m))
2397 				kvo->kvo_active++;
2398 			else if (vm_page_inactive(m))
2399 				kvo->kvo_inactive++;
2400 		}
2401 
2402 		kvo->kvo_vn_fileid = 0;
2403 		kvo->kvo_vn_fsid = 0;
2404 		kvo->kvo_vn_fsid_freebsd11 = 0;
2405 		freepath = NULL;
2406 		fullpath = "";
2407 		vp = NULL;
2408 		switch (obj->type) {
2409 		case OBJT_DEFAULT:
2410 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2411 			break;
2412 		case OBJT_VNODE:
2413 			kvo->kvo_type = KVME_TYPE_VNODE;
2414 			vp = obj->handle;
2415 			vref(vp);
2416 			break;
2417 		case OBJT_SWAP:
2418 			kvo->kvo_type = KVME_TYPE_SWAP;
2419 			break;
2420 		case OBJT_DEVICE:
2421 			kvo->kvo_type = KVME_TYPE_DEVICE;
2422 			break;
2423 		case OBJT_PHYS:
2424 			kvo->kvo_type = KVME_TYPE_PHYS;
2425 			break;
2426 		case OBJT_DEAD:
2427 			kvo->kvo_type = KVME_TYPE_DEAD;
2428 			break;
2429 		case OBJT_SG:
2430 			kvo->kvo_type = KVME_TYPE_SG;
2431 			break;
2432 		case OBJT_MGTDEVICE:
2433 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2434 			break;
2435 		default:
2436 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2437 			break;
2438 		}
2439 		VM_OBJECT_RUNLOCK(obj);
2440 		if (vp != NULL) {
2441 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2442 			vn_lock(vp, LK_SHARED | LK_RETRY);
2443 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2444 				kvo->kvo_vn_fileid = va.va_fileid;
2445 				kvo->kvo_vn_fsid = va.va_fsid;
2446 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2447 								/* truncate */
2448 			}
2449 			vput(vp);
2450 		}
2451 
2452 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2453 		if (freepath != NULL)
2454 			free(freepath, M_TEMP);
2455 
2456 		/* Pack record size down */
2457 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2458 		    + strlen(kvo->kvo_path) + 1;
2459 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2460 		    sizeof(uint64_t));
2461 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2462 		mtx_lock(&vm_object_list_mtx);
2463 		if (error)
2464 			break;
2465 	}
2466 	mtx_unlock(&vm_object_list_mtx);
2467 	free(kvo, M_TEMP);
2468 	return (error);
2469 }
2470 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2471     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2472     "List of VM objects");
2473 
2474 #include "opt_ddb.h"
2475 #ifdef DDB
2476 #include <sys/kernel.h>
2477 
2478 #include <sys/cons.h>
2479 
2480 #include <ddb/ddb.h>
2481 
2482 static int
2483 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2484 {
2485 	vm_map_t tmpm;
2486 	vm_map_entry_t tmpe;
2487 	vm_object_t obj;
2488 	int entcount;
2489 
2490 	if (map == 0)
2491 		return 0;
2492 
2493 	if (entry == 0) {
2494 		tmpe = map->header.next;
2495 		entcount = map->nentries;
2496 		while (entcount-- && (tmpe != &map->header)) {
2497 			if (_vm_object_in_map(map, object, tmpe)) {
2498 				return 1;
2499 			}
2500 			tmpe = tmpe->next;
2501 		}
2502 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2503 		tmpm = entry->object.sub_map;
2504 		tmpe = tmpm->header.next;
2505 		entcount = tmpm->nentries;
2506 		while (entcount-- && tmpe != &tmpm->header) {
2507 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2508 				return 1;
2509 			}
2510 			tmpe = tmpe->next;
2511 		}
2512 	} else if ((obj = entry->object.vm_object) != NULL) {
2513 		for (; obj; obj = obj->backing_object)
2514 			if (obj == object) {
2515 				return 1;
2516 			}
2517 	}
2518 	return 0;
2519 }
2520 
2521 static int
2522 vm_object_in_map(vm_object_t object)
2523 {
2524 	struct proc *p;
2525 
2526 	/* sx_slock(&allproc_lock); */
2527 	FOREACH_PROC_IN_SYSTEM(p) {
2528 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2529 			continue;
2530 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2531 			/* sx_sunlock(&allproc_lock); */
2532 			return 1;
2533 		}
2534 	}
2535 	/* sx_sunlock(&allproc_lock); */
2536 	if (_vm_object_in_map(kernel_map, object, 0))
2537 		return 1;
2538 	return 0;
2539 }
2540 
2541 DB_SHOW_COMMAND(vmochk, vm_object_check)
2542 {
2543 	vm_object_t object;
2544 
2545 	/*
2546 	 * make sure that internal objs are in a map somewhere
2547 	 * and none have zero ref counts.
2548 	 */
2549 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2550 		if (object->handle == NULL &&
2551 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2552 			if (object->ref_count == 0) {
2553 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2554 					(long)object->size);
2555 			}
2556 			if (!vm_object_in_map(object)) {
2557 				db_printf(
2558 			"vmochk: internal obj is not in a map: "
2559 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2560 				    object->ref_count, (u_long)object->size,
2561 				    (u_long)object->size,
2562 				    (void *)object->backing_object);
2563 			}
2564 		}
2565 	}
2566 }
2567 
2568 /*
2569  *	vm_object_print:	[ debug ]
2570  */
2571 DB_SHOW_COMMAND(object, vm_object_print_static)
2572 {
2573 	/* XXX convert args. */
2574 	vm_object_t object = (vm_object_t)addr;
2575 	boolean_t full = have_addr;
2576 
2577 	vm_page_t p;
2578 
2579 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2580 #define	count	was_count
2581 
2582 	int count;
2583 
2584 	if (object == NULL)
2585 		return;
2586 
2587 	db_iprintf(
2588 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2589 	    object, (int)object->type, (uintmax_t)object->size,
2590 	    object->resident_page_count, object->ref_count, object->flags,
2591 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2592 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2593 	    object->shadow_count,
2594 	    object->backing_object ? object->backing_object->ref_count : 0,
2595 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2596 
2597 	if (!full)
2598 		return;
2599 
2600 	db_indent += 2;
2601 	count = 0;
2602 	TAILQ_FOREACH(p, &object->memq, listq) {
2603 		if (count == 0)
2604 			db_iprintf("memory:=");
2605 		else if (count == 6) {
2606 			db_printf("\n");
2607 			db_iprintf(" ...");
2608 			count = 0;
2609 		} else
2610 			db_printf(",");
2611 		count++;
2612 
2613 		db_printf("(off=0x%jx,page=0x%jx)",
2614 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2615 	}
2616 	if (count != 0)
2617 		db_printf("\n");
2618 	db_indent -= 2;
2619 }
2620 
2621 /* XXX. */
2622 #undef count
2623 
2624 /* XXX need this non-static entry for calling from vm_map_print. */
2625 void
2626 vm_object_print(
2627         /* db_expr_t */ long addr,
2628 	boolean_t have_addr,
2629 	/* db_expr_t */ long count,
2630 	char *modif)
2631 {
2632 	vm_object_print_static(addr, have_addr, count, modif);
2633 }
2634 
2635 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2636 {
2637 	vm_object_t object;
2638 	vm_pindex_t fidx;
2639 	vm_paddr_t pa;
2640 	vm_page_t m, prev_m;
2641 	int rcount, nl, c;
2642 
2643 	nl = 0;
2644 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2645 		db_printf("new object: %p\n", (void *)object);
2646 		if (nl > 18) {
2647 			c = cngetc();
2648 			if (c != ' ')
2649 				return;
2650 			nl = 0;
2651 		}
2652 		nl++;
2653 		rcount = 0;
2654 		fidx = 0;
2655 		pa = -1;
2656 		TAILQ_FOREACH(m, &object->memq, listq) {
2657 			if (m->pindex > 128)
2658 				break;
2659 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2660 			    prev_m->pindex + 1 != m->pindex) {
2661 				if (rcount) {
2662 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2663 						(long)fidx, rcount, (long)pa);
2664 					if (nl > 18) {
2665 						c = cngetc();
2666 						if (c != ' ')
2667 							return;
2668 						nl = 0;
2669 					}
2670 					nl++;
2671 					rcount = 0;
2672 				}
2673 			}
2674 			if (rcount &&
2675 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2676 				++rcount;
2677 				continue;
2678 			}
2679 			if (rcount) {
2680 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2681 					(long)fidx, rcount, (long)pa);
2682 				if (nl > 18) {
2683 					c = cngetc();
2684 					if (c != ' ')
2685 						return;
2686 					nl = 0;
2687 				}
2688 				nl++;
2689 			}
2690 			fidx = m->pindex;
2691 			pa = VM_PAGE_TO_PHYS(m);
2692 			rcount = 1;
2693 		}
2694 		if (rcount) {
2695 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2696 				(long)fidx, rcount, (long)pa);
2697 			if (nl > 18) {
2698 				c = cngetc();
2699 				if (c != ' ')
2700 					return;
2701 				nl = 0;
2702 			}
2703 			nl++;
2704 		}
2705 	}
2706 }
2707 #endif /* DDB */
2708