1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/pctrie.h> 77 #include <sys/sysctl.h> 78 #include <sys/mutex.h> 79 #include <sys/proc.h> /* for curproc, pageproc */ 80 #include <sys/socket.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/user.h> 84 #include <sys/vnode.h> 85 #include <sys/vmmeter.h> 86 #include <sys/sx.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vm_radix.h> 100 #include <vm/vm_reserv.h> 101 #include <vm/uma.h> 102 103 static int old_msync; 104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 105 "Use old (insecure) msync behavior"); 106 107 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 108 int pagerflags, int flags, boolean_t *clearobjflags, 109 boolean_t *eio); 110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 111 boolean_t *clearobjflags); 112 static void vm_object_qcollapse(vm_object_t object); 113 static void vm_object_vndeallocate(vm_object_t object); 114 115 /* 116 * Virtual memory objects maintain the actual data 117 * associated with allocated virtual memory. A given 118 * page of memory exists within exactly one object. 119 * 120 * An object is only deallocated when all "references" 121 * are given up. Only one "reference" to a given 122 * region of an object should be writeable. 123 * 124 * Associated with each object is a list of all resident 125 * memory pages belonging to that object; this list is 126 * maintained by the "vm_page" module, and locked by the object's 127 * lock. 128 * 129 * Each object also records a "pager" routine which is 130 * used to retrieve (and store) pages to the proper backing 131 * storage. In addition, objects may be backed by other 132 * objects from which they were virtual-copied. 133 * 134 * The only items within the object structure which are 135 * modified after time of creation are: 136 * reference count locked by object's lock 137 * pager routine locked by object's lock 138 * 139 */ 140 141 struct object_q vm_object_list; 142 struct mtx vm_object_list_mtx; /* lock for object list and count */ 143 144 struct vm_object kernel_object_store; 145 struct vm_object kmem_object_store; 146 147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 148 "VM object stats"); 149 150 static long object_collapses; 151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 152 &object_collapses, 0, "VM object collapses"); 153 154 static long object_bypasses; 155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 156 &object_bypasses, 0, "VM object bypasses"); 157 158 static uma_zone_t obj_zone; 159 160 static int vm_object_zinit(void *mem, int size, int flags); 161 162 #ifdef INVARIANTS 163 static void vm_object_zdtor(void *mem, int size, void *arg); 164 165 static void 166 vm_object_zdtor(void *mem, int size, void *arg) 167 { 168 vm_object_t object; 169 170 object = (vm_object_t)mem; 171 KASSERT(object->ref_count == 0, 172 ("object %p ref_count = %d", object, object->ref_count)); 173 KASSERT(TAILQ_EMPTY(&object->memq), 174 ("object %p has resident pages in its memq", object)); 175 KASSERT(vm_radix_is_empty(&object->rtree), 176 ("object %p has resident pages in its trie", object)); 177 #if VM_NRESERVLEVEL > 0 178 KASSERT(LIST_EMPTY(&object->rvq), 179 ("object %p has reservations", 180 object)); 181 #endif 182 KASSERT(object->paging_in_progress == 0, 183 ("object %p paging_in_progress = %d", 184 object, object->paging_in_progress)); 185 KASSERT(object->resident_page_count == 0, 186 ("object %p resident_page_count = %d", 187 object, object->resident_page_count)); 188 KASSERT(object->shadow_count == 0, 189 ("object %p shadow_count = %d", 190 object, object->shadow_count)); 191 KASSERT(object->type == OBJT_DEAD, 192 ("object %p has non-dead type %d", 193 object, object->type)); 194 } 195 #endif 196 197 static int 198 vm_object_zinit(void *mem, int size, int flags) 199 { 200 vm_object_t object; 201 202 object = (vm_object_t)mem; 203 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 204 205 /* These are true for any object that has been freed */ 206 object->type = OBJT_DEAD; 207 object->ref_count = 0; 208 vm_radix_init(&object->rtree); 209 object->paging_in_progress = 0; 210 object->resident_page_count = 0; 211 object->shadow_count = 0; 212 object->flags = OBJ_DEAD; 213 214 mtx_lock(&vm_object_list_mtx); 215 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 216 mtx_unlock(&vm_object_list_mtx); 217 return (0); 218 } 219 220 static void 221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 222 { 223 224 TAILQ_INIT(&object->memq); 225 LIST_INIT(&object->shadow_head); 226 227 object->type = type; 228 if (type == OBJT_SWAP) 229 pctrie_init(&object->un_pager.swp.swp_blks); 230 231 /* 232 * Ensure that swap_pager_swapoff() iteration over object_list 233 * sees up to date type and pctrie head if it observed 234 * non-dead object. 235 */ 236 atomic_thread_fence_rel(); 237 238 switch (type) { 239 case OBJT_DEAD: 240 panic("_vm_object_allocate: can't create OBJT_DEAD"); 241 case OBJT_DEFAULT: 242 case OBJT_SWAP: 243 object->flags = OBJ_ONEMAPPING; 244 break; 245 case OBJT_DEVICE: 246 case OBJT_SG: 247 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 248 break; 249 case OBJT_MGTDEVICE: 250 object->flags = OBJ_FICTITIOUS; 251 break; 252 case OBJT_PHYS: 253 object->flags = OBJ_UNMANAGED; 254 break; 255 case OBJT_VNODE: 256 object->flags = 0; 257 break; 258 default: 259 panic("_vm_object_allocate: type %d is undefined", type); 260 } 261 object->size = size; 262 object->generation = 1; 263 object->ref_count = 1; 264 object->memattr = VM_MEMATTR_DEFAULT; 265 object->cred = NULL; 266 object->charge = 0; 267 object->handle = NULL; 268 object->backing_object = NULL; 269 object->backing_object_offset = (vm_ooffset_t) 0; 270 #if VM_NRESERVLEVEL > 0 271 LIST_INIT(&object->rvq); 272 #endif 273 umtx_shm_object_init(object); 274 } 275 276 /* 277 * vm_object_init: 278 * 279 * Initialize the VM objects module. 280 */ 281 void 282 vm_object_init(void) 283 { 284 TAILQ_INIT(&vm_object_list); 285 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 286 287 rw_init(&kernel_object->lock, "kernel vm object"); 288 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 289 VM_MIN_KERNEL_ADDRESS), kernel_object); 290 #if VM_NRESERVLEVEL > 0 291 kernel_object->flags |= OBJ_COLORED; 292 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 293 #endif 294 295 rw_init(&kmem_object->lock, "kmem vm object"); 296 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 297 VM_MIN_KERNEL_ADDRESS), kmem_object); 298 #if VM_NRESERVLEVEL > 0 299 kmem_object->flags |= OBJ_COLORED; 300 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 301 #endif 302 303 /* 304 * The lock portion of struct vm_object must be type stable due 305 * to vm_pageout_fallback_object_lock locking a vm object 306 * without holding any references to it. 307 */ 308 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 309 #ifdef INVARIANTS 310 vm_object_zdtor, 311 #else 312 NULL, 313 #endif 314 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 316 vm_radix_zinit(); 317 } 318 319 void 320 vm_object_clear_flag(vm_object_t object, u_short bits) 321 { 322 323 VM_OBJECT_ASSERT_WLOCKED(object); 324 object->flags &= ~bits; 325 } 326 327 /* 328 * Sets the default memory attribute for the specified object. Pages 329 * that are allocated to this object are by default assigned this memory 330 * attribute. 331 * 332 * Presently, this function must be called before any pages are allocated 333 * to the object. In the future, this requirement may be relaxed for 334 * "default" and "swap" objects. 335 */ 336 int 337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 338 { 339 340 VM_OBJECT_ASSERT_WLOCKED(object); 341 switch (object->type) { 342 case OBJT_DEFAULT: 343 case OBJT_DEVICE: 344 case OBJT_MGTDEVICE: 345 case OBJT_PHYS: 346 case OBJT_SG: 347 case OBJT_SWAP: 348 case OBJT_VNODE: 349 if (!TAILQ_EMPTY(&object->memq)) 350 return (KERN_FAILURE); 351 break; 352 case OBJT_DEAD: 353 return (KERN_INVALID_ARGUMENT); 354 default: 355 panic("vm_object_set_memattr: object %p is of undefined type", 356 object); 357 } 358 object->memattr = memattr; 359 return (KERN_SUCCESS); 360 } 361 362 void 363 vm_object_pip_add(vm_object_t object, short i) 364 { 365 366 VM_OBJECT_ASSERT_WLOCKED(object); 367 object->paging_in_progress += i; 368 } 369 370 void 371 vm_object_pip_subtract(vm_object_t object, short i) 372 { 373 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 object->paging_in_progress -= i; 376 } 377 378 void 379 vm_object_pip_wakeup(vm_object_t object) 380 { 381 382 VM_OBJECT_ASSERT_WLOCKED(object); 383 object->paging_in_progress--; 384 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 385 vm_object_clear_flag(object, OBJ_PIPWNT); 386 wakeup(object); 387 } 388 } 389 390 void 391 vm_object_pip_wakeupn(vm_object_t object, short i) 392 { 393 394 VM_OBJECT_ASSERT_WLOCKED(object); 395 if (i) 396 object->paging_in_progress -= i; 397 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 398 vm_object_clear_flag(object, OBJ_PIPWNT); 399 wakeup(object); 400 } 401 } 402 403 void 404 vm_object_pip_wait(vm_object_t object, char *waitid) 405 { 406 407 VM_OBJECT_ASSERT_WLOCKED(object); 408 while (object->paging_in_progress) { 409 object->flags |= OBJ_PIPWNT; 410 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 411 } 412 } 413 414 /* 415 * vm_object_allocate: 416 * 417 * Returns a new object with the given size. 418 */ 419 vm_object_t 420 vm_object_allocate(objtype_t type, vm_pindex_t size) 421 { 422 vm_object_t object; 423 424 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 425 _vm_object_allocate(type, size, object); 426 return (object); 427 } 428 429 430 /* 431 * vm_object_reference: 432 * 433 * Gets another reference to the given object. Note: OBJ_DEAD 434 * objects can be referenced during final cleaning. 435 */ 436 void 437 vm_object_reference(vm_object_t object) 438 { 439 if (object == NULL) 440 return; 441 VM_OBJECT_WLOCK(object); 442 vm_object_reference_locked(object); 443 VM_OBJECT_WUNLOCK(object); 444 } 445 446 /* 447 * vm_object_reference_locked: 448 * 449 * Gets another reference to the given object. 450 * 451 * The object must be locked. 452 */ 453 void 454 vm_object_reference_locked(vm_object_t object) 455 { 456 struct vnode *vp; 457 458 VM_OBJECT_ASSERT_WLOCKED(object); 459 object->ref_count++; 460 if (object->type == OBJT_VNODE) { 461 vp = object->handle; 462 vref(vp); 463 } 464 } 465 466 /* 467 * Handle deallocating an object of type OBJT_VNODE. 468 */ 469 static void 470 vm_object_vndeallocate(vm_object_t object) 471 { 472 struct vnode *vp = (struct vnode *) object->handle; 473 474 VM_OBJECT_ASSERT_WLOCKED(object); 475 KASSERT(object->type == OBJT_VNODE, 476 ("vm_object_vndeallocate: not a vnode object")); 477 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 478 #ifdef INVARIANTS 479 if (object->ref_count == 0) { 480 vn_printf(vp, "vm_object_vndeallocate "); 481 panic("vm_object_vndeallocate: bad object reference count"); 482 } 483 #endif 484 485 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 486 umtx_shm_object_terminated(object); 487 488 /* 489 * The test for text of vp vnode does not need a bypass to 490 * reach right VV_TEXT there, since it is obtained from 491 * object->handle. 492 */ 493 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 494 object->ref_count--; 495 VM_OBJECT_WUNLOCK(object); 496 /* vrele may need the vnode lock. */ 497 vrele(vp); 498 } else { 499 vhold(vp); 500 VM_OBJECT_WUNLOCK(object); 501 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 502 vdrop(vp); 503 VM_OBJECT_WLOCK(object); 504 object->ref_count--; 505 if (object->type == OBJT_DEAD) { 506 VM_OBJECT_WUNLOCK(object); 507 VOP_UNLOCK(vp, 0); 508 } else { 509 if (object->ref_count == 0) 510 VOP_UNSET_TEXT(vp); 511 VM_OBJECT_WUNLOCK(object); 512 vput(vp); 513 } 514 } 515 } 516 517 /* 518 * vm_object_deallocate: 519 * 520 * Release a reference to the specified object, 521 * gained either through a vm_object_allocate 522 * or a vm_object_reference call. When all references 523 * are gone, storage associated with this object 524 * may be relinquished. 525 * 526 * No object may be locked. 527 */ 528 void 529 vm_object_deallocate(vm_object_t object) 530 { 531 vm_object_t temp; 532 struct vnode *vp; 533 534 while (object != NULL) { 535 VM_OBJECT_WLOCK(object); 536 if (object->type == OBJT_VNODE) { 537 vm_object_vndeallocate(object); 538 return; 539 } 540 541 KASSERT(object->ref_count != 0, 542 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 543 544 /* 545 * If the reference count goes to 0 we start calling 546 * vm_object_terminate() on the object chain. 547 * A ref count of 1 may be a special case depending on the 548 * shadow count being 0 or 1. 549 */ 550 object->ref_count--; 551 if (object->ref_count > 1) { 552 VM_OBJECT_WUNLOCK(object); 553 return; 554 } else if (object->ref_count == 1) { 555 if (object->type == OBJT_SWAP && 556 (object->flags & OBJ_TMPFS) != 0) { 557 vp = object->un_pager.swp.swp_tmpfs; 558 vhold(vp); 559 VM_OBJECT_WUNLOCK(object); 560 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 561 VM_OBJECT_WLOCK(object); 562 if (object->type == OBJT_DEAD || 563 object->ref_count != 1) { 564 VM_OBJECT_WUNLOCK(object); 565 VOP_UNLOCK(vp, 0); 566 vdrop(vp); 567 return; 568 } 569 if ((object->flags & OBJ_TMPFS) != 0) 570 VOP_UNSET_TEXT(vp); 571 VOP_UNLOCK(vp, 0); 572 vdrop(vp); 573 } 574 if (object->shadow_count == 0 && 575 object->handle == NULL && 576 (object->type == OBJT_DEFAULT || 577 (object->type == OBJT_SWAP && 578 (object->flags & OBJ_TMPFS_NODE) == 0))) { 579 vm_object_set_flag(object, OBJ_ONEMAPPING); 580 } else if ((object->shadow_count == 1) && 581 (object->handle == NULL) && 582 (object->type == OBJT_DEFAULT || 583 object->type == OBJT_SWAP)) { 584 vm_object_t robject; 585 586 robject = LIST_FIRST(&object->shadow_head); 587 KASSERT(robject != NULL, 588 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 589 object->ref_count, 590 object->shadow_count)); 591 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 592 ("shadowed tmpfs v_object %p", object)); 593 if (!VM_OBJECT_TRYWLOCK(robject)) { 594 /* 595 * Avoid a potential deadlock. 596 */ 597 object->ref_count++; 598 VM_OBJECT_WUNLOCK(object); 599 /* 600 * More likely than not the thread 601 * holding robject's lock has lower 602 * priority than the current thread. 603 * Let the lower priority thread run. 604 */ 605 pause("vmo_de", 1); 606 continue; 607 } 608 /* 609 * Collapse object into its shadow unless its 610 * shadow is dead. In that case, object will 611 * be deallocated by the thread that is 612 * deallocating its shadow. 613 */ 614 if ((robject->flags & OBJ_DEAD) == 0 && 615 (robject->handle == NULL) && 616 (robject->type == OBJT_DEFAULT || 617 robject->type == OBJT_SWAP)) { 618 619 robject->ref_count++; 620 retry: 621 if (robject->paging_in_progress) { 622 VM_OBJECT_WUNLOCK(object); 623 vm_object_pip_wait(robject, 624 "objde1"); 625 temp = robject->backing_object; 626 if (object == temp) { 627 VM_OBJECT_WLOCK(object); 628 goto retry; 629 } 630 } else if (object->paging_in_progress) { 631 VM_OBJECT_WUNLOCK(robject); 632 object->flags |= OBJ_PIPWNT; 633 VM_OBJECT_SLEEP(object, object, 634 PDROP | PVM, "objde2", 0); 635 VM_OBJECT_WLOCK(robject); 636 temp = robject->backing_object; 637 if (object == temp) { 638 VM_OBJECT_WLOCK(object); 639 goto retry; 640 } 641 } else 642 VM_OBJECT_WUNLOCK(object); 643 644 if (robject->ref_count == 1) { 645 robject->ref_count--; 646 object = robject; 647 goto doterm; 648 } 649 object = robject; 650 vm_object_collapse(object); 651 VM_OBJECT_WUNLOCK(object); 652 continue; 653 } 654 VM_OBJECT_WUNLOCK(robject); 655 } 656 VM_OBJECT_WUNLOCK(object); 657 return; 658 } 659 doterm: 660 umtx_shm_object_terminated(object); 661 temp = object->backing_object; 662 if (temp != NULL) { 663 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 664 ("shadowed tmpfs v_object 2 %p", object)); 665 VM_OBJECT_WLOCK(temp); 666 LIST_REMOVE(object, shadow_list); 667 temp->shadow_count--; 668 VM_OBJECT_WUNLOCK(temp); 669 object->backing_object = NULL; 670 } 671 /* 672 * Don't double-terminate, we could be in a termination 673 * recursion due to the terminate having to sync data 674 * to disk. 675 */ 676 if ((object->flags & OBJ_DEAD) == 0) 677 vm_object_terminate(object); 678 else 679 VM_OBJECT_WUNLOCK(object); 680 object = temp; 681 } 682 } 683 684 /* 685 * vm_object_destroy removes the object from the global object list 686 * and frees the space for the object. 687 */ 688 void 689 vm_object_destroy(vm_object_t object) 690 { 691 692 /* 693 * Release the allocation charge. 694 */ 695 if (object->cred != NULL) { 696 swap_release_by_cred(object->charge, object->cred); 697 object->charge = 0; 698 crfree(object->cred); 699 object->cred = NULL; 700 } 701 702 /* 703 * Free the space for the object. 704 */ 705 uma_zfree(obj_zone, object); 706 } 707 708 /* 709 * vm_object_terminate_pages removes any remaining pageable pages 710 * from the object and resets the object to an empty state. 711 */ 712 static void 713 vm_object_terminate_pages(vm_object_t object) 714 { 715 vm_page_t p, p_next; 716 struct mtx *mtx, *mtx1; 717 struct vm_pagequeue *pq, *pq1; 718 719 VM_OBJECT_ASSERT_WLOCKED(object); 720 721 mtx = NULL; 722 pq = NULL; 723 724 /* 725 * Free any remaining pageable pages. This also removes them from the 726 * paging queues. However, don't free wired pages, just remove them 727 * from the object. Rather than incrementally removing each page from 728 * the object, the page and object are reset to any empty state. 729 */ 730 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 731 vm_page_assert_unbusied(p); 732 if ((object->flags & OBJ_UNMANAGED) == 0) { 733 /* 734 * vm_page_free_prep() only needs the page 735 * lock for managed pages. 736 */ 737 mtx1 = vm_page_lockptr(p); 738 if (mtx1 != mtx) { 739 if (mtx != NULL) 740 mtx_unlock(mtx); 741 if (pq != NULL) { 742 vm_pagequeue_unlock(pq); 743 pq = NULL; 744 } 745 mtx = mtx1; 746 mtx_lock(mtx); 747 } 748 } 749 p->object = NULL; 750 if (p->wire_count != 0) 751 goto unlist; 752 VM_CNT_INC(v_pfree); 753 p->flags &= ~PG_ZERO; 754 if (p->queue != PQ_NONE) { 755 KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: " 756 "page %p is not queued", p)); 757 pq1 = vm_page_pagequeue(p); 758 if (pq != pq1) { 759 if (pq != NULL) 760 vm_pagequeue_unlock(pq); 761 pq = pq1; 762 vm_pagequeue_lock(pq); 763 } 764 } 765 if (vm_page_free_prep(p, true)) 766 continue; 767 unlist: 768 TAILQ_REMOVE(&object->memq, p, listq); 769 } 770 if (pq != NULL) 771 vm_pagequeue_unlock(pq); 772 if (mtx != NULL) 773 mtx_unlock(mtx); 774 775 vm_page_free_phys_pglist(&object->memq); 776 777 /* 778 * If the object contained any pages, then reset it to an empty state. 779 * None of the object's fields, including "resident_page_count", were 780 * modified by the preceding loop. 781 */ 782 if (object->resident_page_count != 0) { 783 vm_radix_reclaim_allnodes(&object->rtree); 784 TAILQ_INIT(&object->memq); 785 object->resident_page_count = 0; 786 if (object->type == OBJT_VNODE) 787 vdrop(object->handle); 788 } 789 } 790 791 /* 792 * vm_object_terminate actually destroys the specified object, freeing 793 * up all previously used resources. 794 * 795 * The object must be locked. 796 * This routine may block. 797 */ 798 void 799 vm_object_terminate(vm_object_t object) 800 { 801 802 VM_OBJECT_ASSERT_WLOCKED(object); 803 804 /* 805 * Make sure no one uses us. 806 */ 807 vm_object_set_flag(object, OBJ_DEAD); 808 809 /* 810 * wait for the pageout daemon to be done with the object 811 */ 812 vm_object_pip_wait(object, "objtrm"); 813 814 KASSERT(!object->paging_in_progress, 815 ("vm_object_terminate: pageout in progress")); 816 817 /* 818 * Clean and free the pages, as appropriate. All references to the 819 * object are gone, so we don't need to lock it. 820 */ 821 if (object->type == OBJT_VNODE) { 822 struct vnode *vp = (struct vnode *)object->handle; 823 824 /* 825 * Clean pages and flush buffers. 826 */ 827 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 828 VM_OBJECT_WUNLOCK(object); 829 830 vinvalbuf(vp, V_SAVE, 0, 0); 831 832 BO_LOCK(&vp->v_bufobj); 833 vp->v_bufobj.bo_flag |= BO_DEAD; 834 BO_UNLOCK(&vp->v_bufobj); 835 836 VM_OBJECT_WLOCK(object); 837 } 838 839 KASSERT(object->ref_count == 0, 840 ("vm_object_terminate: object with references, ref_count=%d", 841 object->ref_count)); 842 843 if ((object->flags & OBJ_PG_DTOR) == 0) 844 vm_object_terminate_pages(object); 845 846 #if VM_NRESERVLEVEL > 0 847 if (__predict_false(!LIST_EMPTY(&object->rvq))) 848 vm_reserv_break_all(object); 849 #endif 850 851 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 852 object->type == OBJT_SWAP, 853 ("%s: non-swap obj %p has cred", __func__, object)); 854 855 /* 856 * Let the pager know object is dead. 857 */ 858 vm_pager_deallocate(object); 859 VM_OBJECT_WUNLOCK(object); 860 861 vm_object_destroy(object); 862 } 863 864 /* 865 * Make the page read-only so that we can clear the object flags. However, if 866 * this is a nosync mmap then the object is likely to stay dirty so do not 867 * mess with the page and do not clear the object flags. Returns TRUE if the 868 * page should be flushed, and FALSE otherwise. 869 */ 870 static boolean_t 871 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 872 { 873 874 /* 875 * If we have been asked to skip nosync pages and this is a 876 * nosync page, skip it. Note that the object flags were not 877 * cleared in this case so we do not have to set them. 878 */ 879 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 880 *clearobjflags = FALSE; 881 return (FALSE); 882 } else { 883 pmap_remove_write(p); 884 return (p->dirty != 0); 885 } 886 } 887 888 /* 889 * vm_object_page_clean 890 * 891 * Clean all dirty pages in the specified range of object. Leaves page 892 * on whatever queue it is currently on. If NOSYNC is set then do not 893 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 894 * leaving the object dirty. 895 * 896 * When stuffing pages asynchronously, allow clustering. XXX we need a 897 * synchronous clustering mode implementation. 898 * 899 * Odd semantics: if start == end, we clean everything. 900 * 901 * The object must be locked. 902 * 903 * Returns FALSE if some page from the range was not written, as 904 * reported by the pager, and TRUE otherwise. 905 */ 906 boolean_t 907 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 908 int flags) 909 { 910 vm_page_t np, p; 911 vm_pindex_t pi, tend, tstart; 912 int curgeneration, n, pagerflags; 913 boolean_t clearobjflags, eio, res; 914 915 VM_OBJECT_ASSERT_WLOCKED(object); 916 917 /* 918 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 919 * objects. The check below prevents the function from 920 * operating on non-vnode objects. 921 */ 922 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 923 object->resident_page_count == 0) 924 return (TRUE); 925 926 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 927 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 928 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 929 930 tstart = OFF_TO_IDX(start); 931 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 932 clearobjflags = tstart == 0 && tend >= object->size; 933 res = TRUE; 934 935 rescan: 936 curgeneration = object->generation; 937 938 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 939 pi = p->pindex; 940 if (pi >= tend) 941 break; 942 np = TAILQ_NEXT(p, listq); 943 if (p->valid == 0) 944 continue; 945 if (vm_page_sleep_if_busy(p, "vpcwai")) { 946 if (object->generation != curgeneration) { 947 if ((flags & OBJPC_SYNC) != 0) 948 goto rescan; 949 else 950 clearobjflags = FALSE; 951 } 952 np = vm_page_find_least(object, pi); 953 continue; 954 } 955 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 956 continue; 957 958 n = vm_object_page_collect_flush(object, p, pagerflags, 959 flags, &clearobjflags, &eio); 960 if (eio) { 961 res = FALSE; 962 clearobjflags = FALSE; 963 } 964 if (object->generation != curgeneration) { 965 if ((flags & OBJPC_SYNC) != 0) 966 goto rescan; 967 else 968 clearobjflags = FALSE; 969 } 970 971 /* 972 * If the VOP_PUTPAGES() did a truncated write, so 973 * that even the first page of the run is not fully 974 * written, vm_pageout_flush() returns 0 as the run 975 * length. Since the condition that caused truncated 976 * write may be permanent, e.g. exhausted free space, 977 * accepting n == 0 would cause an infinite loop. 978 * 979 * Forwarding the iterator leaves the unwritten page 980 * behind, but there is not much we can do there if 981 * filesystem refuses to write it. 982 */ 983 if (n == 0) { 984 n = 1; 985 clearobjflags = FALSE; 986 } 987 np = vm_page_find_least(object, pi + n); 988 } 989 #if 0 990 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 991 #endif 992 993 if (clearobjflags) 994 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 995 return (res); 996 } 997 998 static int 999 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1000 int flags, boolean_t *clearobjflags, boolean_t *eio) 1001 { 1002 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1003 int count, i, mreq, runlen; 1004 1005 vm_page_lock_assert(p, MA_NOTOWNED); 1006 VM_OBJECT_ASSERT_WLOCKED(object); 1007 1008 count = 1; 1009 mreq = 0; 1010 1011 for (tp = p; count < vm_pageout_page_count; count++) { 1012 tp = vm_page_next(tp); 1013 if (tp == NULL || vm_page_busied(tp)) 1014 break; 1015 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1016 break; 1017 } 1018 1019 for (p_first = p; count < vm_pageout_page_count; count++) { 1020 tp = vm_page_prev(p_first); 1021 if (tp == NULL || vm_page_busied(tp)) 1022 break; 1023 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 1024 break; 1025 p_first = tp; 1026 mreq++; 1027 } 1028 1029 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1030 ma[i] = tp; 1031 1032 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1033 return (runlen); 1034 } 1035 1036 /* 1037 * Note that there is absolutely no sense in writing out 1038 * anonymous objects, so we track down the vnode object 1039 * to write out. 1040 * We invalidate (remove) all pages from the address space 1041 * for semantic correctness. 1042 * 1043 * If the backing object is a device object with unmanaged pages, then any 1044 * mappings to the specified range of pages must be removed before this 1045 * function is called. 1046 * 1047 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1048 * may start out with a NULL object. 1049 */ 1050 boolean_t 1051 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1052 boolean_t syncio, boolean_t invalidate) 1053 { 1054 vm_object_t backing_object; 1055 struct vnode *vp; 1056 struct mount *mp; 1057 int error, flags, fsync_after; 1058 boolean_t res; 1059 1060 if (object == NULL) 1061 return (TRUE); 1062 res = TRUE; 1063 error = 0; 1064 VM_OBJECT_WLOCK(object); 1065 while ((backing_object = object->backing_object) != NULL) { 1066 VM_OBJECT_WLOCK(backing_object); 1067 offset += object->backing_object_offset; 1068 VM_OBJECT_WUNLOCK(object); 1069 object = backing_object; 1070 if (object->size < OFF_TO_IDX(offset + size)) 1071 size = IDX_TO_OFF(object->size) - offset; 1072 } 1073 /* 1074 * Flush pages if writing is allowed, invalidate them 1075 * if invalidation requested. Pages undergoing I/O 1076 * will be ignored by vm_object_page_remove(). 1077 * 1078 * We cannot lock the vnode and then wait for paging 1079 * to complete without deadlocking against vm_fault. 1080 * Instead we simply call vm_object_page_remove() and 1081 * allow it to block internally on a page-by-page 1082 * basis when it encounters pages undergoing async 1083 * I/O. 1084 */ 1085 if (object->type == OBJT_VNODE && 1086 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1087 vp = object->handle; 1088 VM_OBJECT_WUNLOCK(object); 1089 (void) vn_start_write(vp, &mp, V_WAIT); 1090 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1091 if (syncio && !invalidate && offset == 0 && 1092 atop(size) == object->size) { 1093 /* 1094 * If syncing the whole mapping of the file, 1095 * it is faster to schedule all the writes in 1096 * async mode, also allowing the clustering, 1097 * and then wait for i/o to complete. 1098 */ 1099 flags = 0; 1100 fsync_after = TRUE; 1101 } else { 1102 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1103 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1104 fsync_after = FALSE; 1105 } 1106 VM_OBJECT_WLOCK(object); 1107 res = vm_object_page_clean(object, offset, offset + size, 1108 flags); 1109 VM_OBJECT_WUNLOCK(object); 1110 if (fsync_after) 1111 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1112 VOP_UNLOCK(vp, 0); 1113 vn_finished_write(mp); 1114 if (error != 0) 1115 res = FALSE; 1116 VM_OBJECT_WLOCK(object); 1117 } 1118 if ((object->type == OBJT_VNODE || 1119 object->type == OBJT_DEVICE) && invalidate) { 1120 if (object->type == OBJT_DEVICE) 1121 /* 1122 * The option OBJPR_NOTMAPPED must be passed here 1123 * because vm_object_page_remove() cannot remove 1124 * unmanaged mappings. 1125 */ 1126 flags = OBJPR_NOTMAPPED; 1127 else if (old_msync) 1128 flags = 0; 1129 else 1130 flags = OBJPR_CLEANONLY; 1131 vm_object_page_remove(object, OFF_TO_IDX(offset), 1132 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1133 } 1134 VM_OBJECT_WUNLOCK(object); 1135 return (res); 1136 } 1137 1138 /* 1139 * Determine whether the given advice can be applied to the object. Advice is 1140 * not applied to unmanaged pages since they never belong to page queues, and 1141 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1142 * have been mapped at most once. 1143 */ 1144 static bool 1145 vm_object_advice_applies(vm_object_t object, int advice) 1146 { 1147 1148 if ((object->flags & OBJ_UNMANAGED) != 0) 1149 return (false); 1150 if (advice != MADV_FREE) 1151 return (true); 1152 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1153 (object->flags & OBJ_ONEMAPPING) != 0); 1154 } 1155 1156 static void 1157 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1158 vm_size_t size) 1159 { 1160 1161 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1162 swap_pager_freespace(object, pindex, size); 1163 } 1164 1165 /* 1166 * vm_object_madvise: 1167 * 1168 * Implements the madvise function at the object/page level. 1169 * 1170 * MADV_WILLNEED (any object) 1171 * 1172 * Activate the specified pages if they are resident. 1173 * 1174 * MADV_DONTNEED (any object) 1175 * 1176 * Deactivate the specified pages if they are resident. 1177 * 1178 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1179 * OBJ_ONEMAPPING only) 1180 * 1181 * Deactivate and clean the specified pages if they are 1182 * resident. This permits the process to reuse the pages 1183 * without faulting or the kernel to reclaim the pages 1184 * without I/O. 1185 */ 1186 void 1187 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1188 int advice) 1189 { 1190 vm_pindex_t tpindex; 1191 vm_object_t backing_object, tobject; 1192 vm_page_t m, tm; 1193 1194 if (object == NULL) 1195 return; 1196 1197 relookup: 1198 VM_OBJECT_WLOCK(object); 1199 if (!vm_object_advice_applies(object, advice)) { 1200 VM_OBJECT_WUNLOCK(object); 1201 return; 1202 } 1203 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1204 tobject = object; 1205 1206 /* 1207 * If the next page isn't resident in the top-level object, we 1208 * need to search the shadow chain. When applying MADV_FREE, we 1209 * take care to release any swap space used to store 1210 * non-resident pages. 1211 */ 1212 if (m == NULL || pindex < m->pindex) { 1213 /* 1214 * Optimize a common case: if the top-level object has 1215 * no backing object, we can skip over the non-resident 1216 * range in constant time. 1217 */ 1218 if (object->backing_object == NULL) { 1219 tpindex = (m != NULL && m->pindex < end) ? 1220 m->pindex : end; 1221 vm_object_madvise_freespace(object, advice, 1222 pindex, tpindex - pindex); 1223 if ((pindex = tpindex) == end) 1224 break; 1225 goto next_page; 1226 } 1227 1228 tpindex = pindex; 1229 do { 1230 vm_object_madvise_freespace(tobject, advice, 1231 tpindex, 1); 1232 /* 1233 * Prepare to search the next object in the 1234 * chain. 1235 */ 1236 backing_object = tobject->backing_object; 1237 if (backing_object == NULL) 1238 goto next_pindex; 1239 VM_OBJECT_WLOCK(backing_object); 1240 tpindex += 1241 OFF_TO_IDX(tobject->backing_object_offset); 1242 if (tobject != object) 1243 VM_OBJECT_WUNLOCK(tobject); 1244 tobject = backing_object; 1245 if (!vm_object_advice_applies(tobject, advice)) 1246 goto next_pindex; 1247 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1248 NULL); 1249 } else { 1250 next_page: 1251 tm = m; 1252 m = TAILQ_NEXT(m, listq); 1253 } 1254 1255 /* 1256 * If the page is not in a normal state, skip it. 1257 */ 1258 if (tm->valid != VM_PAGE_BITS_ALL) 1259 goto next_pindex; 1260 vm_page_lock(tm); 1261 if (tm->hold_count != 0 || tm->wire_count != 0) { 1262 vm_page_unlock(tm); 1263 goto next_pindex; 1264 } 1265 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1266 ("vm_object_madvise: page %p is fictitious", tm)); 1267 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1268 ("vm_object_madvise: page %p is not managed", tm)); 1269 if (vm_page_busied(tm)) { 1270 if (object != tobject) 1271 VM_OBJECT_WUNLOCK(tobject); 1272 VM_OBJECT_WUNLOCK(object); 1273 if (advice == MADV_WILLNEED) { 1274 /* 1275 * Reference the page before unlocking and 1276 * sleeping so that the page daemon is less 1277 * likely to reclaim it. 1278 */ 1279 vm_page_aflag_set(tm, PGA_REFERENCED); 1280 } 1281 vm_page_busy_sleep(tm, "madvpo", false); 1282 goto relookup; 1283 } 1284 vm_page_advise(tm, advice); 1285 vm_page_unlock(tm); 1286 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1287 next_pindex: 1288 if (tobject != object) 1289 VM_OBJECT_WUNLOCK(tobject); 1290 } 1291 VM_OBJECT_WUNLOCK(object); 1292 } 1293 1294 /* 1295 * vm_object_shadow: 1296 * 1297 * Create a new object which is backed by the 1298 * specified existing object range. The source 1299 * object reference is deallocated. 1300 * 1301 * The new object and offset into that object 1302 * are returned in the source parameters. 1303 */ 1304 void 1305 vm_object_shadow( 1306 vm_object_t *object, /* IN/OUT */ 1307 vm_ooffset_t *offset, /* IN/OUT */ 1308 vm_size_t length) 1309 { 1310 vm_object_t source; 1311 vm_object_t result; 1312 1313 source = *object; 1314 1315 /* 1316 * Don't create the new object if the old object isn't shared. 1317 */ 1318 if (source != NULL) { 1319 VM_OBJECT_WLOCK(source); 1320 if (source->ref_count == 1 && 1321 source->handle == NULL && 1322 (source->type == OBJT_DEFAULT || 1323 source->type == OBJT_SWAP)) { 1324 VM_OBJECT_WUNLOCK(source); 1325 return; 1326 } 1327 VM_OBJECT_WUNLOCK(source); 1328 } 1329 1330 /* 1331 * Allocate a new object with the given length. 1332 */ 1333 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1334 1335 /* 1336 * The new object shadows the source object, adding a reference to it. 1337 * Our caller changes his reference to point to the new object, 1338 * removing a reference to the source object. Net result: no change 1339 * of reference count. 1340 * 1341 * Try to optimize the result object's page color when shadowing 1342 * in order to maintain page coloring consistency in the combined 1343 * shadowed object. 1344 */ 1345 result->backing_object = source; 1346 /* 1347 * Store the offset into the source object, and fix up the offset into 1348 * the new object. 1349 */ 1350 result->backing_object_offset = *offset; 1351 if (source != NULL) { 1352 VM_OBJECT_WLOCK(source); 1353 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1354 source->shadow_count++; 1355 #if VM_NRESERVLEVEL > 0 1356 result->flags |= source->flags & OBJ_COLORED; 1357 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1358 ((1 << (VM_NFREEORDER - 1)) - 1); 1359 #endif 1360 VM_OBJECT_WUNLOCK(source); 1361 } 1362 1363 1364 /* 1365 * Return the new things 1366 */ 1367 *offset = 0; 1368 *object = result; 1369 } 1370 1371 /* 1372 * vm_object_split: 1373 * 1374 * Split the pages in a map entry into a new object. This affords 1375 * easier removal of unused pages, and keeps object inheritance from 1376 * being a negative impact on memory usage. 1377 */ 1378 void 1379 vm_object_split(vm_map_entry_t entry) 1380 { 1381 vm_page_t m, m_next; 1382 vm_object_t orig_object, new_object, source; 1383 vm_pindex_t idx, offidxstart; 1384 vm_size_t size; 1385 1386 orig_object = entry->object.vm_object; 1387 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1388 return; 1389 if (orig_object->ref_count <= 1) 1390 return; 1391 VM_OBJECT_WUNLOCK(orig_object); 1392 1393 offidxstart = OFF_TO_IDX(entry->offset); 1394 size = atop(entry->end - entry->start); 1395 1396 /* 1397 * If swap_pager_copy() is later called, it will convert new_object 1398 * into a swap object. 1399 */ 1400 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1401 1402 /* 1403 * At this point, the new object is still private, so the order in 1404 * which the original and new objects are locked does not matter. 1405 */ 1406 VM_OBJECT_WLOCK(new_object); 1407 VM_OBJECT_WLOCK(orig_object); 1408 source = orig_object->backing_object; 1409 if (source != NULL) { 1410 VM_OBJECT_WLOCK(source); 1411 if ((source->flags & OBJ_DEAD) != 0) { 1412 VM_OBJECT_WUNLOCK(source); 1413 VM_OBJECT_WUNLOCK(orig_object); 1414 VM_OBJECT_WUNLOCK(new_object); 1415 vm_object_deallocate(new_object); 1416 VM_OBJECT_WLOCK(orig_object); 1417 return; 1418 } 1419 LIST_INSERT_HEAD(&source->shadow_head, 1420 new_object, shadow_list); 1421 source->shadow_count++; 1422 vm_object_reference_locked(source); /* for new_object */ 1423 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1424 VM_OBJECT_WUNLOCK(source); 1425 new_object->backing_object_offset = 1426 orig_object->backing_object_offset + entry->offset; 1427 new_object->backing_object = source; 1428 } 1429 if (orig_object->cred != NULL) { 1430 new_object->cred = orig_object->cred; 1431 crhold(orig_object->cred); 1432 new_object->charge = ptoa(size); 1433 KASSERT(orig_object->charge >= ptoa(size), 1434 ("orig_object->charge < 0")); 1435 orig_object->charge -= ptoa(size); 1436 } 1437 retry: 1438 m = vm_page_find_least(orig_object, offidxstart); 1439 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1440 m = m_next) { 1441 m_next = TAILQ_NEXT(m, listq); 1442 1443 /* 1444 * We must wait for pending I/O to complete before we can 1445 * rename the page. 1446 * 1447 * We do not have to VM_PROT_NONE the page as mappings should 1448 * not be changed by this operation. 1449 */ 1450 if (vm_page_busied(m)) { 1451 VM_OBJECT_WUNLOCK(new_object); 1452 vm_page_lock(m); 1453 VM_OBJECT_WUNLOCK(orig_object); 1454 vm_page_busy_sleep(m, "spltwt", false); 1455 VM_OBJECT_WLOCK(orig_object); 1456 VM_OBJECT_WLOCK(new_object); 1457 goto retry; 1458 } 1459 1460 /* vm_page_rename() will dirty the page. */ 1461 if (vm_page_rename(m, new_object, idx)) { 1462 VM_OBJECT_WUNLOCK(new_object); 1463 VM_OBJECT_WUNLOCK(orig_object); 1464 VM_WAIT; 1465 VM_OBJECT_WLOCK(orig_object); 1466 VM_OBJECT_WLOCK(new_object); 1467 goto retry; 1468 } 1469 #if VM_NRESERVLEVEL > 0 1470 /* 1471 * If some of the reservation's allocated pages remain with 1472 * the original object, then transferring the reservation to 1473 * the new object is neither particularly beneficial nor 1474 * particularly harmful as compared to leaving the reservation 1475 * with the original object. If, however, all of the 1476 * reservation's allocated pages are transferred to the new 1477 * object, then transferring the reservation is typically 1478 * beneficial. Determining which of these two cases applies 1479 * would be more costly than unconditionally renaming the 1480 * reservation. 1481 */ 1482 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1483 #endif 1484 if (orig_object->type == OBJT_SWAP) 1485 vm_page_xbusy(m); 1486 } 1487 if (orig_object->type == OBJT_SWAP) { 1488 /* 1489 * swap_pager_copy() can sleep, in which case the orig_object's 1490 * and new_object's locks are released and reacquired. 1491 */ 1492 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1493 TAILQ_FOREACH(m, &new_object->memq, listq) 1494 vm_page_xunbusy(m); 1495 } 1496 VM_OBJECT_WUNLOCK(orig_object); 1497 VM_OBJECT_WUNLOCK(new_object); 1498 entry->object.vm_object = new_object; 1499 entry->offset = 0LL; 1500 vm_object_deallocate(orig_object); 1501 VM_OBJECT_WLOCK(new_object); 1502 } 1503 1504 #define OBSC_COLLAPSE_NOWAIT 0x0002 1505 #define OBSC_COLLAPSE_WAIT 0x0004 1506 1507 static vm_page_t 1508 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1509 int op) 1510 { 1511 vm_object_t backing_object; 1512 1513 VM_OBJECT_ASSERT_WLOCKED(object); 1514 backing_object = object->backing_object; 1515 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1516 1517 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1518 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1519 ("invalid ownership %p %p %p", p, object, backing_object)); 1520 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1521 return (next); 1522 if (p != NULL) 1523 vm_page_lock(p); 1524 VM_OBJECT_WUNLOCK(object); 1525 VM_OBJECT_WUNLOCK(backing_object); 1526 if (p == NULL) 1527 VM_WAIT; 1528 else 1529 vm_page_busy_sleep(p, "vmocol", false); 1530 VM_OBJECT_WLOCK(object); 1531 VM_OBJECT_WLOCK(backing_object); 1532 return (TAILQ_FIRST(&backing_object->memq)); 1533 } 1534 1535 static bool 1536 vm_object_scan_all_shadowed(vm_object_t object) 1537 { 1538 vm_object_t backing_object; 1539 vm_page_t p, pp; 1540 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1541 1542 VM_OBJECT_ASSERT_WLOCKED(object); 1543 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1544 1545 backing_object = object->backing_object; 1546 1547 if (backing_object->type != OBJT_DEFAULT && 1548 backing_object->type != OBJT_SWAP) 1549 return (false); 1550 1551 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1552 p = vm_page_find_least(backing_object, pi); 1553 ps = swap_pager_find_least(backing_object, pi); 1554 1555 /* 1556 * Only check pages inside the parent object's range and 1557 * inside the parent object's mapping of the backing object. 1558 */ 1559 for (;; pi++) { 1560 if (p != NULL && p->pindex < pi) 1561 p = TAILQ_NEXT(p, listq); 1562 if (ps < pi) 1563 ps = swap_pager_find_least(backing_object, pi); 1564 if (p == NULL && ps >= backing_object->size) 1565 break; 1566 else if (p == NULL) 1567 pi = ps; 1568 else 1569 pi = MIN(p->pindex, ps); 1570 1571 new_pindex = pi - backing_offset_index; 1572 if (new_pindex >= object->size) 1573 break; 1574 1575 /* 1576 * See if the parent has the page or if the parent's object 1577 * pager has the page. If the parent has the page but the page 1578 * is not valid, the parent's object pager must have the page. 1579 * 1580 * If this fails, the parent does not completely shadow the 1581 * object and we might as well give up now. 1582 */ 1583 pp = vm_page_lookup(object, new_pindex); 1584 if ((pp == NULL || pp->valid == 0) && 1585 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1586 return (false); 1587 } 1588 return (true); 1589 } 1590 1591 static bool 1592 vm_object_collapse_scan(vm_object_t object, int op) 1593 { 1594 vm_object_t backing_object; 1595 vm_page_t next, p, pp; 1596 vm_pindex_t backing_offset_index, new_pindex; 1597 1598 VM_OBJECT_ASSERT_WLOCKED(object); 1599 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1600 1601 backing_object = object->backing_object; 1602 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1603 1604 /* 1605 * Initial conditions 1606 */ 1607 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1608 vm_object_set_flag(backing_object, OBJ_DEAD); 1609 1610 /* 1611 * Our scan 1612 */ 1613 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1614 next = TAILQ_NEXT(p, listq); 1615 new_pindex = p->pindex - backing_offset_index; 1616 1617 /* 1618 * Check for busy page 1619 */ 1620 if (vm_page_busied(p)) { 1621 next = vm_object_collapse_scan_wait(object, p, next, op); 1622 continue; 1623 } 1624 1625 KASSERT(p->object == backing_object, 1626 ("vm_object_collapse_scan: object mismatch")); 1627 1628 if (p->pindex < backing_offset_index || 1629 new_pindex >= object->size) { 1630 if (backing_object->type == OBJT_SWAP) 1631 swap_pager_freespace(backing_object, p->pindex, 1632 1); 1633 1634 /* 1635 * Page is out of the parent object's range, we can 1636 * simply destroy it. 1637 */ 1638 vm_page_lock(p); 1639 KASSERT(!pmap_page_is_mapped(p), 1640 ("freeing mapped page %p", p)); 1641 if (p->wire_count == 0) 1642 vm_page_free(p); 1643 else 1644 vm_page_remove(p); 1645 vm_page_unlock(p); 1646 continue; 1647 } 1648 1649 pp = vm_page_lookup(object, new_pindex); 1650 if (pp != NULL && vm_page_busied(pp)) { 1651 /* 1652 * The page in the parent is busy and possibly not 1653 * (yet) valid. Until its state is finalized by the 1654 * busy bit owner, we can't tell whether it shadows the 1655 * original page. Therefore, we must either skip it 1656 * and the original (backing_object) page or wait for 1657 * its state to be finalized. 1658 * 1659 * This is due to a race with vm_fault() where we must 1660 * unbusy the original (backing_obj) page before we can 1661 * (re)lock the parent. Hence we can get here. 1662 */ 1663 next = vm_object_collapse_scan_wait(object, pp, next, 1664 op); 1665 continue; 1666 } 1667 1668 KASSERT(pp == NULL || pp->valid != 0, 1669 ("unbusy invalid page %p", pp)); 1670 1671 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1672 NULL)) { 1673 /* 1674 * The page already exists in the parent OR swap exists 1675 * for this location in the parent. Leave the parent's 1676 * page alone. Destroy the original page from the 1677 * backing object. 1678 */ 1679 if (backing_object->type == OBJT_SWAP) 1680 swap_pager_freespace(backing_object, p->pindex, 1681 1); 1682 vm_page_lock(p); 1683 KASSERT(!pmap_page_is_mapped(p), 1684 ("freeing mapped page %p", p)); 1685 if (p->wire_count == 0) 1686 vm_page_free(p); 1687 else 1688 vm_page_remove(p); 1689 vm_page_unlock(p); 1690 continue; 1691 } 1692 1693 /* 1694 * Page does not exist in parent, rename the page from the 1695 * backing object to the main object. 1696 * 1697 * If the page was mapped to a process, it can remain mapped 1698 * through the rename. vm_page_rename() will dirty the page. 1699 */ 1700 if (vm_page_rename(p, object, new_pindex)) { 1701 next = vm_object_collapse_scan_wait(object, NULL, next, 1702 op); 1703 continue; 1704 } 1705 1706 /* Use the old pindex to free the right page. */ 1707 if (backing_object->type == OBJT_SWAP) 1708 swap_pager_freespace(backing_object, 1709 new_pindex + backing_offset_index, 1); 1710 1711 #if VM_NRESERVLEVEL > 0 1712 /* 1713 * Rename the reservation. 1714 */ 1715 vm_reserv_rename(p, object, backing_object, 1716 backing_offset_index); 1717 #endif 1718 } 1719 return (true); 1720 } 1721 1722 1723 /* 1724 * this version of collapse allows the operation to occur earlier and 1725 * when paging_in_progress is true for an object... This is not a complete 1726 * operation, but should plug 99.9% of the rest of the leaks. 1727 */ 1728 static void 1729 vm_object_qcollapse(vm_object_t object) 1730 { 1731 vm_object_t backing_object = object->backing_object; 1732 1733 VM_OBJECT_ASSERT_WLOCKED(object); 1734 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1735 1736 if (backing_object->ref_count != 1) 1737 return; 1738 1739 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1740 } 1741 1742 /* 1743 * vm_object_collapse: 1744 * 1745 * Collapse an object with the object backing it. 1746 * Pages in the backing object are moved into the 1747 * parent, and the backing object is deallocated. 1748 */ 1749 void 1750 vm_object_collapse(vm_object_t object) 1751 { 1752 vm_object_t backing_object, new_backing_object; 1753 1754 VM_OBJECT_ASSERT_WLOCKED(object); 1755 1756 while (TRUE) { 1757 /* 1758 * Verify that the conditions are right for collapse: 1759 * 1760 * The object exists and the backing object exists. 1761 */ 1762 if ((backing_object = object->backing_object) == NULL) 1763 break; 1764 1765 /* 1766 * we check the backing object first, because it is most likely 1767 * not collapsable. 1768 */ 1769 VM_OBJECT_WLOCK(backing_object); 1770 if (backing_object->handle != NULL || 1771 (backing_object->type != OBJT_DEFAULT && 1772 backing_object->type != OBJT_SWAP) || 1773 (backing_object->flags & OBJ_DEAD) || 1774 object->handle != NULL || 1775 (object->type != OBJT_DEFAULT && 1776 object->type != OBJT_SWAP) || 1777 (object->flags & OBJ_DEAD)) { 1778 VM_OBJECT_WUNLOCK(backing_object); 1779 break; 1780 } 1781 1782 if (object->paging_in_progress != 0 || 1783 backing_object->paging_in_progress != 0) { 1784 vm_object_qcollapse(object); 1785 VM_OBJECT_WUNLOCK(backing_object); 1786 break; 1787 } 1788 1789 /* 1790 * We know that we can either collapse the backing object (if 1791 * the parent is the only reference to it) or (perhaps) have 1792 * the parent bypass the object if the parent happens to shadow 1793 * all the resident pages in the entire backing object. 1794 * 1795 * This is ignoring pager-backed pages such as swap pages. 1796 * vm_object_collapse_scan fails the shadowing test in this 1797 * case. 1798 */ 1799 if (backing_object->ref_count == 1) { 1800 vm_object_pip_add(object, 1); 1801 vm_object_pip_add(backing_object, 1); 1802 1803 /* 1804 * If there is exactly one reference to the backing 1805 * object, we can collapse it into the parent. 1806 */ 1807 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1808 1809 #if VM_NRESERVLEVEL > 0 1810 /* 1811 * Break any reservations from backing_object. 1812 */ 1813 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1814 vm_reserv_break_all(backing_object); 1815 #endif 1816 1817 /* 1818 * Move the pager from backing_object to object. 1819 */ 1820 if (backing_object->type == OBJT_SWAP) { 1821 /* 1822 * swap_pager_copy() can sleep, in which case 1823 * the backing_object's and object's locks are 1824 * released and reacquired. 1825 * Since swap_pager_copy() is being asked to 1826 * destroy the source, it will change the 1827 * backing_object's type to OBJT_DEFAULT. 1828 */ 1829 swap_pager_copy( 1830 backing_object, 1831 object, 1832 OFF_TO_IDX(object->backing_object_offset), TRUE); 1833 } 1834 /* 1835 * Object now shadows whatever backing_object did. 1836 * Note that the reference to 1837 * backing_object->backing_object moves from within 1838 * backing_object to within object. 1839 */ 1840 LIST_REMOVE(object, shadow_list); 1841 backing_object->shadow_count--; 1842 if (backing_object->backing_object) { 1843 VM_OBJECT_WLOCK(backing_object->backing_object); 1844 LIST_REMOVE(backing_object, shadow_list); 1845 LIST_INSERT_HEAD( 1846 &backing_object->backing_object->shadow_head, 1847 object, shadow_list); 1848 /* 1849 * The shadow_count has not changed. 1850 */ 1851 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1852 } 1853 object->backing_object = backing_object->backing_object; 1854 object->backing_object_offset += 1855 backing_object->backing_object_offset; 1856 1857 /* 1858 * Discard backing_object. 1859 * 1860 * Since the backing object has no pages, no pager left, 1861 * and no object references within it, all that is 1862 * necessary is to dispose of it. 1863 */ 1864 KASSERT(backing_object->ref_count == 1, ( 1865 "backing_object %p was somehow re-referenced during collapse!", 1866 backing_object)); 1867 vm_object_pip_wakeup(backing_object); 1868 backing_object->type = OBJT_DEAD; 1869 backing_object->ref_count = 0; 1870 VM_OBJECT_WUNLOCK(backing_object); 1871 vm_object_destroy(backing_object); 1872 1873 vm_object_pip_wakeup(object); 1874 object_collapses++; 1875 } else { 1876 /* 1877 * If we do not entirely shadow the backing object, 1878 * there is nothing we can do so we give up. 1879 */ 1880 if (object->resident_page_count != object->size && 1881 !vm_object_scan_all_shadowed(object)) { 1882 VM_OBJECT_WUNLOCK(backing_object); 1883 break; 1884 } 1885 1886 /* 1887 * Make the parent shadow the next object in the 1888 * chain. Deallocating backing_object will not remove 1889 * it, since its reference count is at least 2. 1890 */ 1891 LIST_REMOVE(object, shadow_list); 1892 backing_object->shadow_count--; 1893 1894 new_backing_object = backing_object->backing_object; 1895 if ((object->backing_object = new_backing_object) != NULL) { 1896 VM_OBJECT_WLOCK(new_backing_object); 1897 LIST_INSERT_HEAD( 1898 &new_backing_object->shadow_head, 1899 object, 1900 shadow_list 1901 ); 1902 new_backing_object->shadow_count++; 1903 vm_object_reference_locked(new_backing_object); 1904 VM_OBJECT_WUNLOCK(new_backing_object); 1905 object->backing_object_offset += 1906 backing_object->backing_object_offset; 1907 } 1908 1909 /* 1910 * Drop the reference count on backing_object. Since 1911 * its ref_count was at least 2, it will not vanish. 1912 */ 1913 backing_object->ref_count--; 1914 VM_OBJECT_WUNLOCK(backing_object); 1915 object_bypasses++; 1916 } 1917 1918 /* 1919 * Try again with this object's new backing object. 1920 */ 1921 } 1922 } 1923 1924 /* 1925 * vm_object_page_remove: 1926 * 1927 * For the given object, either frees or invalidates each of the 1928 * specified pages. In general, a page is freed. However, if a page is 1929 * wired for any reason other than the existence of a managed, wired 1930 * mapping, then it may be invalidated but not removed from the object. 1931 * Pages are specified by the given range ["start", "end") and the option 1932 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1933 * extends from "start" to the end of the object. If the option 1934 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1935 * specified range are affected. If the option OBJPR_NOTMAPPED is 1936 * specified, then the pages within the specified range must have no 1937 * mappings. Otherwise, if this option is not specified, any mappings to 1938 * the specified pages are removed before the pages are freed or 1939 * invalidated. 1940 * 1941 * In general, this operation should only be performed on objects that 1942 * contain managed pages. There are, however, two exceptions. First, it 1943 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1944 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1945 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1946 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1947 * 1948 * The object must be locked. 1949 */ 1950 void 1951 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1952 int options) 1953 { 1954 vm_page_t p, next; 1955 struct mtx *mtx; 1956 struct pglist pgl; 1957 1958 VM_OBJECT_ASSERT_WLOCKED(object); 1959 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1960 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1961 ("vm_object_page_remove: illegal options for object %p", object)); 1962 if (object->resident_page_count == 0) 1963 return; 1964 vm_object_pip_add(object, 1); 1965 TAILQ_INIT(&pgl); 1966 again: 1967 p = vm_page_find_least(object, start); 1968 mtx = NULL; 1969 1970 /* 1971 * Here, the variable "p" is either (1) the page with the least pindex 1972 * greater than or equal to the parameter "start" or (2) NULL. 1973 */ 1974 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1975 next = TAILQ_NEXT(p, listq); 1976 1977 /* 1978 * If the page is wired for any reason besides the existence 1979 * of managed, wired mappings, then it cannot be freed. For 1980 * example, fictitious pages, which represent device memory, 1981 * are inherently wired and cannot be freed. They can, 1982 * however, be invalidated if the option OBJPR_CLEANONLY is 1983 * not specified. 1984 */ 1985 vm_page_change_lock(p, &mtx); 1986 if (vm_page_xbusied(p)) { 1987 VM_OBJECT_WUNLOCK(object); 1988 vm_page_busy_sleep(p, "vmopax", true); 1989 VM_OBJECT_WLOCK(object); 1990 goto again; 1991 } 1992 if (p->wire_count != 0) { 1993 if ((options & OBJPR_NOTMAPPED) == 0) 1994 pmap_remove_all(p); 1995 if ((options & OBJPR_CLEANONLY) == 0) { 1996 p->valid = 0; 1997 vm_page_undirty(p); 1998 } 1999 continue; 2000 } 2001 if (vm_page_busied(p)) { 2002 VM_OBJECT_WUNLOCK(object); 2003 vm_page_busy_sleep(p, "vmopar", false); 2004 VM_OBJECT_WLOCK(object); 2005 goto again; 2006 } 2007 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2008 ("vm_object_page_remove: page %p is fictitious", p)); 2009 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 2010 if ((options & OBJPR_NOTMAPPED) == 0) 2011 pmap_remove_write(p); 2012 if (p->dirty) 2013 continue; 2014 } 2015 if ((options & OBJPR_NOTMAPPED) == 0) 2016 pmap_remove_all(p); 2017 p->flags &= ~PG_ZERO; 2018 if (vm_page_free_prep(p, false)) 2019 TAILQ_INSERT_TAIL(&pgl, p, listq); 2020 } 2021 if (mtx != NULL) 2022 mtx_unlock(mtx); 2023 vm_page_free_phys_pglist(&pgl); 2024 vm_object_pip_wakeup(object); 2025 } 2026 2027 /* 2028 * vm_object_page_noreuse: 2029 * 2030 * For the given object, attempt to move the specified pages to 2031 * the head of the inactive queue. This bypasses regular LRU 2032 * operation and allows the pages to be reused quickly under memory 2033 * pressure. If a page is wired for any reason, then it will not 2034 * be queued. Pages are specified by the range ["start", "end"). 2035 * As a special case, if "end" is zero, then the range extends from 2036 * "start" to the end of the object. 2037 * 2038 * This operation should only be performed on objects that 2039 * contain non-fictitious, managed pages. 2040 * 2041 * The object must be locked. 2042 */ 2043 void 2044 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2045 { 2046 struct mtx *mtx; 2047 vm_page_t p, next; 2048 2049 VM_OBJECT_ASSERT_LOCKED(object); 2050 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2051 ("vm_object_page_noreuse: illegal object %p", object)); 2052 if (object->resident_page_count == 0) 2053 return; 2054 p = vm_page_find_least(object, start); 2055 2056 /* 2057 * Here, the variable "p" is either (1) the page with the least pindex 2058 * greater than or equal to the parameter "start" or (2) NULL. 2059 */ 2060 mtx = NULL; 2061 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2062 next = TAILQ_NEXT(p, listq); 2063 vm_page_change_lock(p, &mtx); 2064 vm_page_deactivate_noreuse(p); 2065 } 2066 if (mtx != NULL) 2067 mtx_unlock(mtx); 2068 } 2069 2070 /* 2071 * Populate the specified range of the object with valid pages. Returns 2072 * TRUE if the range is successfully populated and FALSE otherwise. 2073 * 2074 * Note: This function should be optimized to pass a larger array of 2075 * pages to vm_pager_get_pages() before it is applied to a non- 2076 * OBJT_DEVICE object. 2077 * 2078 * The object must be locked. 2079 */ 2080 boolean_t 2081 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2082 { 2083 vm_page_t m; 2084 vm_pindex_t pindex; 2085 int rv; 2086 2087 VM_OBJECT_ASSERT_WLOCKED(object); 2088 for (pindex = start; pindex < end; pindex++) { 2089 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2090 if (m->valid != VM_PAGE_BITS_ALL) { 2091 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2092 if (rv != VM_PAGER_OK) { 2093 vm_page_lock(m); 2094 vm_page_free(m); 2095 vm_page_unlock(m); 2096 break; 2097 } 2098 } 2099 /* 2100 * Keep "m" busy because a subsequent iteration may unlock 2101 * the object. 2102 */ 2103 } 2104 if (pindex > start) { 2105 m = vm_page_lookup(object, start); 2106 while (m != NULL && m->pindex < pindex) { 2107 vm_page_xunbusy(m); 2108 m = TAILQ_NEXT(m, listq); 2109 } 2110 } 2111 return (pindex == end); 2112 } 2113 2114 /* 2115 * Routine: vm_object_coalesce 2116 * Function: Coalesces two objects backing up adjoining 2117 * regions of memory into a single object. 2118 * 2119 * returns TRUE if objects were combined. 2120 * 2121 * NOTE: Only works at the moment if the second object is NULL - 2122 * if it's not, which object do we lock first? 2123 * 2124 * Parameters: 2125 * prev_object First object to coalesce 2126 * prev_offset Offset into prev_object 2127 * prev_size Size of reference to prev_object 2128 * next_size Size of reference to the second object 2129 * reserved Indicator that extension region has 2130 * swap accounted for 2131 * 2132 * Conditions: 2133 * The object must *not* be locked. 2134 */ 2135 boolean_t 2136 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2137 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2138 { 2139 vm_pindex_t next_pindex; 2140 2141 if (prev_object == NULL) 2142 return (TRUE); 2143 VM_OBJECT_WLOCK(prev_object); 2144 if ((prev_object->type != OBJT_DEFAULT && 2145 prev_object->type != OBJT_SWAP) || 2146 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2147 VM_OBJECT_WUNLOCK(prev_object); 2148 return (FALSE); 2149 } 2150 2151 /* 2152 * Try to collapse the object first 2153 */ 2154 vm_object_collapse(prev_object); 2155 2156 /* 2157 * Can't coalesce if: . more than one reference . paged out . shadows 2158 * another object . has a copy elsewhere (any of which mean that the 2159 * pages not mapped to prev_entry may be in use anyway) 2160 */ 2161 if (prev_object->backing_object != NULL) { 2162 VM_OBJECT_WUNLOCK(prev_object); 2163 return (FALSE); 2164 } 2165 2166 prev_size >>= PAGE_SHIFT; 2167 next_size >>= PAGE_SHIFT; 2168 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2169 2170 if ((prev_object->ref_count > 1) && 2171 (prev_object->size != next_pindex)) { 2172 VM_OBJECT_WUNLOCK(prev_object); 2173 return (FALSE); 2174 } 2175 2176 /* 2177 * Account for the charge. 2178 */ 2179 if (prev_object->cred != NULL) { 2180 2181 /* 2182 * If prev_object was charged, then this mapping, 2183 * although not charged now, may become writable 2184 * later. Non-NULL cred in the object would prevent 2185 * swap reservation during enabling of the write 2186 * access, so reserve swap now. Failed reservation 2187 * cause allocation of the separate object for the map 2188 * entry, and swap reservation for this entry is 2189 * managed in appropriate time. 2190 */ 2191 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2192 prev_object->cred)) { 2193 VM_OBJECT_WUNLOCK(prev_object); 2194 return (FALSE); 2195 } 2196 prev_object->charge += ptoa(next_size); 2197 } 2198 2199 /* 2200 * Remove any pages that may still be in the object from a previous 2201 * deallocation. 2202 */ 2203 if (next_pindex < prev_object->size) { 2204 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2205 next_size, 0); 2206 if (prev_object->type == OBJT_SWAP) 2207 swap_pager_freespace(prev_object, 2208 next_pindex, next_size); 2209 #if 0 2210 if (prev_object->cred != NULL) { 2211 KASSERT(prev_object->charge >= 2212 ptoa(prev_object->size - next_pindex), 2213 ("object %p overcharged 1 %jx %jx", prev_object, 2214 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2215 prev_object->charge -= ptoa(prev_object->size - 2216 next_pindex); 2217 } 2218 #endif 2219 } 2220 2221 /* 2222 * Extend the object if necessary. 2223 */ 2224 if (next_pindex + next_size > prev_object->size) 2225 prev_object->size = next_pindex + next_size; 2226 2227 VM_OBJECT_WUNLOCK(prev_object); 2228 return (TRUE); 2229 } 2230 2231 void 2232 vm_object_set_writeable_dirty(vm_object_t object) 2233 { 2234 2235 VM_OBJECT_ASSERT_WLOCKED(object); 2236 if (object->type != OBJT_VNODE) { 2237 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2238 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2239 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2240 } 2241 return; 2242 } 2243 object->generation++; 2244 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2245 return; 2246 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2247 } 2248 2249 /* 2250 * vm_object_unwire: 2251 * 2252 * For each page offset within the specified range of the given object, 2253 * find the highest-level page in the shadow chain and unwire it. A page 2254 * must exist at every page offset, and the highest-level page must be 2255 * wired. 2256 */ 2257 void 2258 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2259 uint8_t queue) 2260 { 2261 vm_object_t tobject; 2262 vm_page_t m, tm; 2263 vm_pindex_t end_pindex, pindex, tpindex; 2264 int depth, locked_depth; 2265 2266 KASSERT((offset & PAGE_MASK) == 0, 2267 ("vm_object_unwire: offset is not page aligned")); 2268 KASSERT((length & PAGE_MASK) == 0, 2269 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2270 /* The wired count of a fictitious page never changes. */ 2271 if ((object->flags & OBJ_FICTITIOUS) != 0) 2272 return; 2273 pindex = OFF_TO_IDX(offset); 2274 end_pindex = pindex + atop(length); 2275 locked_depth = 1; 2276 VM_OBJECT_RLOCK(object); 2277 m = vm_page_find_least(object, pindex); 2278 while (pindex < end_pindex) { 2279 if (m == NULL || pindex < m->pindex) { 2280 /* 2281 * The first object in the shadow chain doesn't 2282 * contain a page at the current index. Therefore, 2283 * the page must exist in a backing object. 2284 */ 2285 tobject = object; 2286 tpindex = pindex; 2287 depth = 0; 2288 do { 2289 tpindex += 2290 OFF_TO_IDX(tobject->backing_object_offset); 2291 tobject = tobject->backing_object; 2292 KASSERT(tobject != NULL, 2293 ("vm_object_unwire: missing page")); 2294 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2295 goto next_page; 2296 depth++; 2297 if (depth == locked_depth) { 2298 locked_depth++; 2299 VM_OBJECT_RLOCK(tobject); 2300 } 2301 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2302 NULL); 2303 } else { 2304 tm = m; 2305 m = TAILQ_NEXT(m, listq); 2306 } 2307 vm_page_lock(tm); 2308 vm_page_unwire(tm, queue); 2309 vm_page_unlock(tm); 2310 next_page: 2311 pindex++; 2312 } 2313 /* Release the accumulated object locks. */ 2314 for (depth = 0; depth < locked_depth; depth++) { 2315 tobject = object->backing_object; 2316 VM_OBJECT_RUNLOCK(object); 2317 object = tobject; 2318 } 2319 } 2320 2321 struct vnode * 2322 vm_object_vnode(vm_object_t object) 2323 { 2324 2325 VM_OBJECT_ASSERT_LOCKED(object); 2326 if (object->type == OBJT_VNODE) 2327 return (object->handle); 2328 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2329 return (object->un_pager.swp.swp_tmpfs); 2330 return (NULL); 2331 } 2332 2333 static int 2334 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2335 { 2336 struct kinfo_vmobject *kvo; 2337 char *fullpath, *freepath; 2338 struct vnode *vp; 2339 struct vattr va; 2340 vm_object_t obj; 2341 vm_page_t m; 2342 int count, error; 2343 2344 if (req->oldptr == NULL) { 2345 /* 2346 * If an old buffer has not been provided, generate an 2347 * estimate of the space needed for a subsequent call. 2348 */ 2349 mtx_lock(&vm_object_list_mtx); 2350 count = 0; 2351 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2352 if (obj->type == OBJT_DEAD) 2353 continue; 2354 count++; 2355 } 2356 mtx_unlock(&vm_object_list_mtx); 2357 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2358 count * 11 / 10)); 2359 } 2360 2361 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2362 error = 0; 2363 2364 /* 2365 * VM objects are type stable and are never removed from the 2366 * list once added. This allows us to safely read obj->object_list 2367 * after reacquiring the VM object lock. 2368 */ 2369 mtx_lock(&vm_object_list_mtx); 2370 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2371 if (obj->type == OBJT_DEAD) 2372 continue; 2373 VM_OBJECT_RLOCK(obj); 2374 if (obj->type == OBJT_DEAD) { 2375 VM_OBJECT_RUNLOCK(obj); 2376 continue; 2377 } 2378 mtx_unlock(&vm_object_list_mtx); 2379 kvo->kvo_size = ptoa(obj->size); 2380 kvo->kvo_resident = obj->resident_page_count; 2381 kvo->kvo_ref_count = obj->ref_count; 2382 kvo->kvo_shadow_count = obj->shadow_count; 2383 kvo->kvo_memattr = obj->memattr; 2384 kvo->kvo_active = 0; 2385 kvo->kvo_inactive = 0; 2386 TAILQ_FOREACH(m, &obj->memq, listq) { 2387 /* 2388 * A page may belong to the object but be 2389 * dequeued and set to PQ_NONE while the 2390 * object lock is not held. This makes the 2391 * reads of m->queue below racy, and we do not 2392 * count pages set to PQ_NONE. However, this 2393 * sysctl is only meant to give an 2394 * approximation of the system anyway. 2395 */ 2396 if (vm_page_active(m)) 2397 kvo->kvo_active++; 2398 else if (vm_page_inactive(m)) 2399 kvo->kvo_inactive++; 2400 } 2401 2402 kvo->kvo_vn_fileid = 0; 2403 kvo->kvo_vn_fsid = 0; 2404 kvo->kvo_vn_fsid_freebsd11 = 0; 2405 freepath = NULL; 2406 fullpath = ""; 2407 vp = NULL; 2408 switch (obj->type) { 2409 case OBJT_DEFAULT: 2410 kvo->kvo_type = KVME_TYPE_DEFAULT; 2411 break; 2412 case OBJT_VNODE: 2413 kvo->kvo_type = KVME_TYPE_VNODE; 2414 vp = obj->handle; 2415 vref(vp); 2416 break; 2417 case OBJT_SWAP: 2418 kvo->kvo_type = KVME_TYPE_SWAP; 2419 break; 2420 case OBJT_DEVICE: 2421 kvo->kvo_type = KVME_TYPE_DEVICE; 2422 break; 2423 case OBJT_PHYS: 2424 kvo->kvo_type = KVME_TYPE_PHYS; 2425 break; 2426 case OBJT_DEAD: 2427 kvo->kvo_type = KVME_TYPE_DEAD; 2428 break; 2429 case OBJT_SG: 2430 kvo->kvo_type = KVME_TYPE_SG; 2431 break; 2432 case OBJT_MGTDEVICE: 2433 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2434 break; 2435 default: 2436 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2437 break; 2438 } 2439 VM_OBJECT_RUNLOCK(obj); 2440 if (vp != NULL) { 2441 vn_fullpath(curthread, vp, &fullpath, &freepath); 2442 vn_lock(vp, LK_SHARED | LK_RETRY); 2443 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2444 kvo->kvo_vn_fileid = va.va_fileid; 2445 kvo->kvo_vn_fsid = va.va_fsid; 2446 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2447 /* truncate */ 2448 } 2449 vput(vp); 2450 } 2451 2452 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2453 if (freepath != NULL) 2454 free(freepath, M_TEMP); 2455 2456 /* Pack record size down */ 2457 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2458 + strlen(kvo->kvo_path) + 1; 2459 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2460 sizeof(uint64_t)); 2461 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2462 mtx_lock(&vm_object_list_mtx); 2463 if (error) 2464 break; 2465 } 2466 mtx_unlock(&vm_object_list_mtx); 2467 free(kvo, M_TEMP); 2468 return (error); 2469 } 2470 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2471 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2472 "List of VM objects"); 2473 2474 #include "opt_ddb.h" 2475 #ifdef DDB 2476 #include <sys/kernel.h> 2477 2478 #include <sys/cons.h> 2479 2480 #include <ddb/ddb.h> 2481 2482 static int 2483 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2484 { 2485 vm_map_t tmpm; 2486 vm_map_entry_t tmpe; 2487 vm_object_t obj; 2488 int entcount; 2489 2490 if (map == 0) 2491 return 0; 2492 2493 if (entry == 0) { 2494 tmpe = map->header.next; 2495 entcount = map->nentries; 2496 while (entcount-- && (tmpe != &map->header)) { 2497 if (_vm_object_in_map(map, object, tmpe)) { 2498 return 1; 2499 } 2500 tmpe = tmpe->next; 2501 } 2502 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2503 tmpm = entry->object.sub_map; 2504 tmpe = tmpm->header.next; 2505 entcount = tmpm->nentries; 2506 while (entcount-- && tmpe != &tmpm->header) { 2507 if (_vm_object_in_map(tmpm, object, tmpe)) { 2508 return 1; 2509 } 2510 tmpe = tmpe->next; 2511 } 2512 } else if ((obj = entry->object.vm_object) != NULL) { 2513 for (; obj; obj = obj->backing_object) 2514 if (obj == object) { 2515 return 1; 2516 } 2517 } 2518 return 0; 2519 } 2520 2521 static int 2522 vm_object_in_map(vm_object_t object) 2523 { 2524 struct proc *p; 2525 2526 /* sx_slock(&allproc_lock); */ 2527 FOREACH_PROC_IN_SYSTEM(p) { 2528 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2529 continue; 2530 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2531 /* sx_sunlock(&allproc_lock); */ 2532 return 1; 2533 } 2534 } 2535 /* sx_sunlock(&allproc_lock); */ 2536 if (_vm_object_in_map(kernel_map, object, 0)) 2537 return 1; 2538 return 0; 2539 } 2540 2541 DB_SHOW_COMMAND(vmochk, vm_object_check) 2542 { 2543 vm_object_t object; 2544 2545 /* 2546 * make sure that internal objs are in a map somewhere 2547 * and none have zero ref counts. 2548 */ 2549 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2550 if (object->handle == NULL && 2551 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2552 if (object->ref_count == 0) { 2553 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2554 (long)object->size); 2555 } 2556 if (!vm_object_in_map(object)) { 2557 db_printf( 2558 "vmochk: internal obj is not in a map: " 2559 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2560 object->ref_count, (u_long)object->size, 2561 (u_long)object->size, 2562 (void *)object->backing_object); 2563 } 2564 } 2565 } 2566 } 2567 2568 /* 2569 * vm_object_print: [ debug ] 2570 */ 2571 DB_SHOW_COMMAND(object, vm_object_print_static) 2572 { 2573 /* XXX convert args. */ 2574 vm_object_t object = (vm_object_t)addr; 2575 boolean_t full = have_addr; 2576 2577 vm_page_t p; 2578 2579 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2580 #define count was_count 2581 2582 int count; 2583 2584 if (object == NULL) 2585 return; 2586 2587 db_iprintf( 2588 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2589 object, (int)object->type, (uintmax_t)object->size, 2590 object->resident_page_count, object->ref_count, object->flags, 2591 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2592 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2593 object->shadow_count, 2594 object->backing_object ? object->backing_object->ref_count : 0, 2595 object->backing_object, (uintmax_t)object->backing_object_offset); 2596 2597 if (!full) 2598 return; 2599 2600 db_indent += 2; 2601 count = 0; 2602 TAILQ_FOREACH(p, &object->memq, listq) { 2603 if (count == 0) 2604 db_iprintf("memory:="); 2605 else if (count == 6) { 2606 db_printf("\n"); 2607 db_iprintf(" ..."); 2608 count = 0; 2609 } else 2610 db_printf(","); 2611 count++; 2612 2613 db_printf("(off=0x%jx,page=0x%jx)", 2614 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2615 } 2616 if (count != 0) 2617 db_printf("\n"); 2618 db_indent -= 2; 2619 } 2620 2621 /* XXX. */ 2622 #undef count 2623 2624 /* XXX need this non-static entry for calling from vm_map_print. */ 2625 void 2626 vm_object_print( 2627 /* db_expr_t */ long addr, 2628 boolean_t have_addr, 2629 /* db_expr_t */ long count, 2630 char *modif) 2631 { 2632 vm_object_print_static(addr, have_addr, count, modif); 2633 } 2634 2635 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2636 { 2637 vm_object_t object; 2638 vm_pindex_t fidx; 2639 vm_paddr_t pa; 2640 vm_page_t m, prev_m; 2641 int rcount, nl, c; 2642 2643 nl = 0; 2644 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2645 db_printf("new object: %p\n", (void *)object); 2646 if (nl > 18) { 2647 c = cngetc(); 2648 if (c != ' ') 2649 return; 2650 nl = 0; 2651 } 2652 nl++; 2653 rcount = 0; 2654 fidx = 0; 2655 pa = -1; 2656 TAILQ_FOREACH(m, &object->memq, listq) { 2657 if (m->pindex > 128) 2658 break; 2659 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2660 prev_m->pindex + 1 != m->pindex) { 2661 if (rcount) { 2662 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2663 (long)fidx, rcount, (long)pa); 2664 if (nl > 18) { 2665 c = cngetc(); 2666 if (c != ' ') 2667 return; 2668 nl = 0; 2669 } 2670 nl++; 2671 rcount = 0; 2672 } 2673 } 2674 if (rcount && 2675 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2676 ++rcount; 2677 continue; 2678 } 2679 if (rcount) { 2680 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2681 (long)fidx, rcount, (long)pa); 2682 if (nl > 18) { 2683 c = cngetc(); 2684 if (c != ' ') 2685 return; 2686 nl = 0; 2687 } 2688 nl++; 2689 } 2690 fidx = m->pindex; 2691 pa = VM_PAGE_TO_PHYS(m); 2692 rcount = 1; 2693 } 2694 if (rcount) { 2695 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2696 (long)fidx, rcount, (long)pa); 2697 if (nl > 18) { 2698 c = cngetc(); 2699 if (c != ' ') 2700 return; 2701 nl = 0; 2702 } 2703 nl++; 2704 } 2705 } 2706 } 2707 #endif /* DDB */ 2708