xref: /freebsd/sys/vm/vm_object.c (revision 3b1f7d9e5d6f44b50ff07fde6fd0e1135f213762)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100 
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104 
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106 		    int pagerflags, int flags, boolean_t *clearobjflags,
107 		    boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109 		    boolean_t *clearobjflags);
110 static void	vm_object_qcollapse(vm_object_t object);
111 static void	vm_object_vndeallocate(vm_object_t object);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144 
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147 
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151 
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155 
156 static uma_zone_t obj_zone;
157 
158 static int vm_object_zinit(void *mem, int size, int flags);
159 
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162 
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166 	vm_object_t object;
167 
168 	object = (vm_object_t)mem;
169 	KASSERT(TAILQ_EMPTY(&object->memq),
170 	    ("object %p has resident pages in its memq", object));
171 	KASSERT(vm_radix_is_empty(&object->rtree),
172 	    ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174 	KASSERT(LIST_EMPTY(&object->rvq),
175 	    ("object %p has reservations",
176 	    object));
177 #endif
178 	KASSERT(vm_object_cache_is_empty(object),
179 	    ("object %p has cached pages",
180 	    object));
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 }
191 #endif
192 
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196 	vm_object_t object;
197 
198 	object = (vm_object_t)mem;
199 	bzero(&object->lock, sizeof(object->lock));
200 	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201 
202 	/* These are true for any object that has been freed */
203 	object->rtree.rt_root = 0;
204 	object->paging_in_progress = 0;
205 	object->resident_page_count = 0;
206 	object->shadow_count = 0;
207 	object->cache.rt_root = 0;
208 	return (0);
209 }
210 
211 static void
212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213 {
214 
215 	TAILQ_INIT(&object->memq);
216 	LIST_INIT(&object->shadow_head);
217 
218 	object->type = type;
219 	switch (type) {
220 	case OBJT_DEAD:
221 		panic("_vm_object_allocate: can't create OBJT_DEAD");
222 	case OBJT_DEFAULT:
223 	case OBJT_SWAP:
224 		object->flags = OBJ_ONEMAPPING;
225 		break;
226 	case OBJT_DEVICE:
227 	case OBJT_SG:
228 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229 		break;
230 	case OBJT_MGTDEVICE:
231 		object->flags = OBJ_FICTITIOUS;
232 		break;
233 	case OBJT_PHYS:
234 		object->flags = OBJ_UNMANAGED;
235 		break;
236 	case OBJT_VNODE:
237 		object->flags = 0;
238 		break;
239 	default:
240 		panic("_vm_object_allocate: type %d is undefined", type);
241 	}
242 	object->size = size;
243 	object->generation = 1;
244 	object->ref_count = 1;
245 	object->memattr = VM_MEMATTR_DEFAULT;
246 	object->cred = NULL;
247 	object->charge = 0;
248 	object->handle = NULL;
249 	object->backing_object = NULL;
250 	object->backing_object_offset = (vm_ooffset_t) 0;
251 #if VM_NRESERVLEVEL > 0
252 	LIST_INIT(&object->rvq);
253 #endif
254 
255 	mtx_lock(&vm_object_list_mtx);
256 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257 	mtx_unlock(&vm_object_list_mtx);
258 }
259 
260 /*
261  *	vm_object_init:
262  *
263  *	Initialize the VM objects module.
264  */
265 void
266 vm_object_init(void)
267 {
268 	TAILQ_INIT(&vm_object_list);
269 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270 
271 	rw_init(&kernel_object->lock, "kernel vm object");
272 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273 	    kernel_object);
274 #if VM_NRESERVLEVEL > 0
275 	kernel_object->flags |= OBJ_COLORED;
276 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277 #endif
278 
279 	rw_init(&kmem_object->lock, "kmem vm object");
280 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281 	    kmem_object);
282 #if VM_NRESERVLEVEL > 0
283 	kmem_object->flags |= OBJ_COLORED;
284 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286 
287 	/*
288 	 * The lock portion of struct vm_object must be type stable due
289 	 * to vm_pageout_fallback_object_lock locking a vm object
290 	 * without holding any references to it.
291 	 */
292 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293 #ifdef INVARIANTS
294 	    vm_object_zdtor,
295 #else
296 	    NULL,
297 #endif
298 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
299 
300 	vm_radix_init();
301 }
302 
303 void
304 vm_object_clear_flag(vm_object_t object, u_short bits)
305 {
306 
307 	VM_OBJECT_ASSERT_WLOCKED(object);
308 	object->flags &= ~bits;
309 }
310 
311 /*
312  *	Sets the default memory attribute for the specified object.  Pages
313  *	that are allocated to this object are by default assigned this memory
314  *	attribute.
315  *
316  *	Presently, this function must be called before any pages are allocated
317  *	to the object.  In the future, this requirement may be relaxed for
318  *	"default" and "swap" objects.
319  */
320 int
321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322 {
323 
324 	VM_OBJECT_ASSERT_WLOCKED(object);
325 	switch (object->type) {
326 	case OBJT_DEFAULT:
327 	case OBJT_DEVICE:
328 	case OBJT_MGTDEVICE:
329 	case OBJT_PHYS:
330 	case OBJT_SG:
331 	case OBJT_SWAP:
332 	case OBJT_VNODE:
333 		if (!TAILQ_EMPTY(&object->memq))
334 			return (KERN_FAILURE);
335 		break;
336 	case OBJT_DEAD:
337 		return (KERN_INVALID_ARGUMENT);
338 	default:
339 		panic("vm_object_set_memattr: object %p is of undefined type",
340 		    object);
341 	}
342 	object->memattr = memattr;
343 	return (KERN_SUCCESS);
344 }
345 
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349 
350 	VM_OBJECT_ASSERT_WLOCKED(object);
351 	object->paging_in_progress += i;
352 }
353 
354 void
355 vm_object_pip_subtract(vm_object_t object, short i)
356 {
357 
358 	VM_OBJECT_ASSERT_WLOCKED(object);
359 	object->paging_in_progress -= i;
360 }
361 
362 void
363 vm_object_pip_wakeup(vm_object_t object)
364 {
365 
366 	VM_OBJECT_ASSERT_WLOCKED(object);
367 	object->paging_in_progress--;
368 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369 		vm_object_clear_flag(object, OBJ_PIPWNT);
370 		wakeup(object);
371 	}
372 }
373 
374 void
375 vm_object_pip_wakeupn(vm_object_t object, short i)
376 {
377 
378 	VM_OBJECT_ASSERT_WLOCKED(object);
379 	if (i)
380 		object->paging_in_progress -= i;
381 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382 		vm_object_clear_flag(object, OBJ_PIPWNT);
383 		wakeup(object);
384 	}
385 }
386 
387 void
388 vm_object_pip_wait(vm_object_t object, char *waitid)
389 {
390 
391 	VM_OBJECT_ASSERT_WLOCKED(object);
392 	while (object->paging_in_progress) {
393 		object->flags |= OBJ_PIPWNT;
394 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395 	}
396 }
397 
398 /*
399  *	vm_object_allocate:
400  *
401  *	Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406 	vm_object_t object;
407 
408 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409 	_vm_object_allocate(type, size, object);
410 	return (object);
411 }
412 
413 
414 /*
415  *	vm_object_reference:
416  *
417  *	Gets another reference to the given object.  Note: OBJ_DEAD
418  *	objects can be referenced during final cleaning.
419  */
420 void
421 vm_object_reference(vm_object_t object)
422 {
423 	if (object == NULL)
424 		return;
425 	VM_OBJECT_WLOCK(object);
426 	vm_object_reference_locked(object);
427 	VM_OBJECT_WUNLOCK(object);
428 }
429 
430 /*
431  *	vm_object_reference_locked:
432  *
433  *	Gets another reference to the given object.
434  *
435  *	The object must be locked.
436  */
437 void
438 vm_object_reference_locked(vm_object_t object)
439 {
440 	struct vnode *vp;
441 
442 	VM_OBJECT_ASSERT_WLOCKED(object);
443 	object->ref_count++;
444 	if (object->type == OBJT_VNODE) {
445 		vp = object->handle;
446 		vref(vp);
447 	}
448 }
449 
450 /*
451  * Handle deallocating an object of type OBJT_VNODE.
452  */
453 static void
454 vm_object_vndeallocate(vm_object_t object)
455 {
456 	struct vnode *vp = (struct vnode *) object->handle;
457 
458 	VM_OBJECT_ASSERT_WLOCKED(object);
459 	KASSERT(object->type == OBJT_VNODE,
460 	    ("vm_object_vndeallocate: not a vnode object"));
461 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462 #ifdef INVARIANTS
463 	if (object->ref_count == 0) {
464 		vprint("vm_object_vndeallocate", vp);
465 		panic("vm_object_vndeallocate: bad object reference count");
466 	}
467 #endif
468 
469 	if (object->ref_count > 1) {
470 		object->ref_count--;
471 		VM_OBJECT_WUNLOCK(object);
472 		/* vrele may need the vnode lock. */
473 		vrele(vp);
474 	} else {
475 		vhold(vp);
476 		VM_OBJECT_WUNLOCK(object);
477 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478 		vdrop(vp);
479 		VM_OBJECT_WLOCK(object);
480 		object->ref_count--;
481 		if (object->type == OBJT_DEAD) {
482 			VM_OBJECT_WUNLOCK(object);
483 			VOP_UNLOCK(vp, 0);
484 		} else {
485 			if (object->ref_count == 0)
486 				VOP_UNSET_TEXT(vp);
487 			VM_OBJECT_WUNLOCK(object);
488 			vput(vp);
489 		}
490 	}
491 }
492 
493 /*
494  *	vm_object_deallocate:
495  *
496  *	Release a reference to the specified object,
497  *	gained either through a vm_object_allocate
498  *	or a vm_object_reference call.  When all references
499  *	are gone, storage associated with this object
500  *	may be relinquished.
501  *
502  *	No object may be locked.
503  */
504 void
505 vm_object_deallocate(vm_object_t object)
506 {
507 	vm_object_t temp;
508 	struct vnode *vp;
509 
510 	while (object != NULL) {
511 		VM_OBJECT_WLOCK(object);
512 		if (object->type == OBJT_VNODE) {
513 			vm_object_vndeallocate(object);
514 			return;
515 		}
516 
517 		KASSERT(object->ref_count != 0,
518 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
519 
520 		/*
521 		 * If the reference count goes to 0 we start calling
522 		 * vm_object_terminate() on the object chain.
523 		 * A ref count of 1 may be a special case depending on the
524 		 * shadow count being 0 or 1.
525 		 */
526 		object->ref_count--;
527 		if (object->ref_count > 1) {
528 			VM_OBJECT_WUNLOCK(object);
529 			return;
530 		} else if (object->ref_count == 1) {
531 			if (object->type == OBJT_SWAP &&
532 			    (object->flags & OBJ_TMPFS) != 0) {
533 				vp = object->un_pager.swp.swp_tmpfs;
534 				vhold(vp);
535 				VM_OBJECT_WUNLOCK(object);
536 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
537 				vdrop(vp);
538 				VM_OBJECT_WLOCK(object);
539 				if (object->type == OBJT_DEAD ||
540 				    object->ref_count != 1) {
541 					VM_OBJECT_WUNLOCK(object);
542 					VOP_UNLOCK(vp, 0);
543 					return;
544 				}
545 				if ((object->flags & OBJ_TMPFS) != 0)
546 					VOP_UNSET_TEXT(vp);
547 				VOP_UNLOCK(vp, 0);
548 			}
549 			if (object->shadow_count == 0 &&
550 			    object->handle == NULL &&
551 			    (object->type == OBJT_DEFAULT ||
552 			    (object->type == OBJT_SWAP &&
553 			    (object->flags & OBJ_TMPFS) == 0))) {
554 				vm_object_set_flag(object, OBJ_ONEMAPPING);
555 			} else if ((object->shadow_count == 1) &&
556 			    (object->handle == NULL) &&
557 			    (object->type == OBJT_DEFAULT ||
558 			     object->type == OBJT_SWAP)) {
559 				KASSERT((object->flags & OBJ_TMPFS) == 0,
560 				    ("shadowed tmpfs v_object %p", object));
561 				vm_object_t robject;
562 
563 				robject = LIST_FIRST(&object->shadow_head);
564 				KASSERT(robject != NULL,
565 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
566 					 object->ref_count,
567 					 object->shadow_count));
568 				if (!VM_OBJECT_TRYWLOCK(robject)) {
569 					/*
570 					 * Avoid a potential deadlock.
571 					 */
572 					object->ref_count++;
573 					VM_OBJECT_WUNLOCK(object);
574 					/*
575 					 * More likely than not the thread
576 					 * holding robject's lock has lower
577 					 * priority than the current thread.
578 					 * Let the lower priority thread run.
579 					 */
580 					pause("vmo_de", 1);
581 					continue;
582 				}
583 				/*
584 				 * Collapse object into its shadow unless its
585 				 * shadow is dead.  In that case, object will
586 				 * be deallocated by the thread that is
587 				 * deallocating its shadow.
588 				 */
589 				if ((robject->flags & OBJ_DEAD) == 0 &&
590 				    (robject->handle == NULL) &&
591 				    (robject->type == OBJT_DEFAULT ||
592 				     robject->type == OBJT_SWAP)) {
593 
594 					robject->ref_count++;
595 retry:
596 					if (robject->paging_in_progress) {
597 						VM_OBJECT_WUNLOCK(object);
598 						vm_object_pip_wait(robject,
599 						    "objde1");
600 						temp = robject->backing_object;
601 						if (object == temp) {
602 							VM_OBJECT_WLOCK(object);
603 							goto retry;
604 						}
605 					} else if (object->paging_in_progress) {
606 						VM_OBJECT_WUNLOCK(robject);
607 						object->flags |= OBJ_PIPWNT;
608 						VM_OBJECT_SLEEP(object, object,
609 						    PDROP | PVM, "objde2", 0);
610 						VM_OBJECT_WLOCK(robject);
611 						temp = robject->backing_object;
612 						if (object == temp) {
613 							VM_OBJECT_WLOCK(object);
614 							goto retry;
615 						}
616 					} else
617 						VM_OBJECT_WUNLOCK(object);
618 
619 					if (robject->ref_count == 1) {
620 						robject->ref_count--;
621 						object = robject;
622 						goto doterm;
623 					}
624 					object = robject;
625 					vm_object_collapse(object);
626 					VM_OBJECT_WUNLOCK(object);
627 					continue;
628 				}
629 				VM_OBJECT_WUNLOCK(robject);
630 			}
631 			VM_OBJECT_WUNLOCK(object);
632 			return;
633 		}
634 doterm:
635 		temp = object->backing_object;
636 		if (temp != NULL) {
637 			VM_OBJECT_WLOCK(temp);
638 			LIST_REMOVE(object, shadow_list);
639 			temp->shadow_count--;
640 			VM_OBJECT_WUNLOCK(temp);
641 			object->backing_object = NULL;
642 		}
643 		/*
644 		 * Don't double-terminate, we could be in a termination
645 		 * recursion due to the terminate having to sync data
646 		 * to disk.
647 		 */
648 		if ((object->flags & OBJ_DEAD) == 0)
649 			vm_object_terminate(object);
650 		else
651 			VM_OBJECT_WUNLOCK(object);
652 		object = temp;
653 	}
654 }
655 
656 /*
657  *	vm_object_destroy removes the object from the global object list
658  *      and frees the space for the object.
659  */
660 void
661 vm_object_destroy(vm_object_t object)
662 {
663 
664 	/*
665 	 * Remove the object from the global object list.
666 	 */
667 	mtx_lock(&vm_object_list_mtx);
668 	TAILQ_REMOVE(&vm_object_list, object, object_list);
669 	mtx_unlock(&vm_object_list_mtx);
670 
671 	/*
672 	 * Release the allocation charge.
673 	 */
674 	if (object->cred != NULL) {
675 		KASSERT(object->type == OBJT_DEFAULT ||
676 		    object->type == OBJT_SWAP,
677 		    ("vm_object_terminate: non-swap obj %p has cred",
678 		     object));
679 		swap_release_by_cred(object->charge, object->cred);
680 		object->charge = 0;
681 		crfree(object->cred);
682 		object->cred = NULL;
683 	}
684 
685 	/*
686 	 * Free the space for the object.
687 	 */
688 	uma_zfree(obj_zone, object);
689 }
690 
691 /*
692  *	vm_object_terminate actually destroys the specified object, freeing
693  *	up all previously used resources.
694  *
695  *	The object must be locked.
696  *	This routine may block.
697  */
698 void
699 vm_object_terminate(vm_object_t object)
700 {
701 	vm_page_t p, p_next;
702 
703 	VM_OBJECT_ASSERT_WLOCKED(object);
704 
705 	/*
706 	 * Make sure no one uses us.
707 	 */
708 	vm_object_set_flag(object, OBJ_DEAD);
709 
710 	/*
711 	 * wait for the pageout daemon to be done with the object
712 	 */
713 	vm_object_pip_wait(object, "objtrm");
714 
715 	KASSERT(!object->paging_in_progress,
716 		("vm_object_terminate: pageout in progress"));
717 
718 	/*
719 	 * Clean and free the pages, as appropriate. All references to the
720 	 * object are gone, so we don't need to lock it.
721 	 */
722 	if (object->type == OBJT_VNODE) {
723 		struct vnode *vp = (struct vnode *)object->handle;
724 
725 		/*
726 		 * Clean pages and flush buffers.
727 		 */
728 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
729 		VM_OBJECT_WUNLOCK(object);
730 
731 		vinvalbuf(vp, V_SAVE, 0, 0);
732 
733 		VM_OBJECT_WLOCK(object);
734 	}
735 
736 	KASSERT(object->ref_count == 0,
737 		("vm_object_terminate: object with references, ref_count=%d",
738 		object->ref_count));
739 
740 	/*
741 	 * Free any remaining pageable pages.  This also removes them from the
742 	 * paging queues.  However, don't free wired pages, just remove them
743 	 * from the object.  Rather than incrementally removing each page from
744 	 * the object, the page and object are reset to any empty state.
745 	 */
746 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
747 		KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
748 		    ("vm_object_terminate: freeing busy page %p", p));
749 		vm_page_lock(p);
750 		/*
751 		 * Optimize the page's removal from the object by resetting
752 		 * its "object" field.  Specifically, if the page is not
753 		 * wired, then the effect of this assignment is that
754 		 * vm_page_free()'s call to vm_page_remove() will return
755 		 * immediately without modifying the page or the object.
756 		 */
757 		p->object = NULL;
758 		if (p->wire_count == 0) {
759 			vm_page_free(p);
760 			PCPU_INC(cnt.v_pfree);
761 		}
762 		vm_page_unlock(p);
763 	}
764 	/*
765 	 * If the object contained any pages, then reset it to an empty state.
766 	 * None of the object's fields, including "resident_page_count", were
767 	 * modified by the preceding loop.
768 	 */
769 	if (object->resident_page_count != 0) {
770 		vm_radix_reclaim_allnodes(&object->rtree);
771 		TAILQ_INIT(&object->memq);
772 		object->resident_page_count = 0;
773 		if (object->type == OBJT_VNODE)
774 			vdrop(object->handle);
775 	}
776 
777 #if VM_NRESERVLEVEL > 0
778 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
779 		vm_reserv_break_all(object);
780 #endif
781 	if (__predict_false(!vm_object_cache_is_empty(object)))
782 		vm_page_cache_free(object, 0, 0);
783 
784 	/*
785 	 * Let the pager know object is dead.
786 	 */
787 	vm_pager_deallocate(object);
788 	VM_OBJECT_WUNLOCK(object);
789 
790 	vm_object_destroy(object);
791 }
792 
793 /*
794  * Make the page read-only so that we can clear the object flags.  However, if
795  * this is a nosync mmap then the object is likely to stay dirty so do not
796  * mess with the page and do not clear the object flags.  Returns TRUE if the
797  * page should be flushed, and FALSE otherwise.
798  */
799 static boolean_t
800 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
801 {
802 
803 	/*
804 	 * If we have been asked to skip nosync pages and this is a
805 	 * nosync page, skip it.  Note that the object flags were not
806 	 * cleared in this case so we do not have to set them.
807 	 */
808 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
809 		*clearobjflags = FALSE;
810 		return (FALSE);
811 	} else {
812 		pmap_remove_write(p);
813 		return (p->dirty != 0);
814 	}
815 }
816 
817 /*
818  *	vm_object_page_clean
819  *
820  *	Clean all dirty pages in the specified range of object.  Leaves page
821  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
822  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
823  *	leaving the object dirty.
824  *
825  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
826  *	synchronous clustering mode implementation.
827  *
828  *	Odd semantics: if start == end, we clean everything.
829  *
830  *	The object must be locked.
831  *
832  *	Returns FALSE if some page from the range was not written, as
833  *	reported by the pager, and TRUE otherwise.
834  */
835 boolean_t
836 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
837     int flags)
838 {
839 	vm_page_t np, p;
840 	vm_pindex_t pi, tend, tstart;
841 	int curgeneration, n, pagerflags;
842 	boolean_t clearobjflags, eio, res;
843 
844 	VM_OBJECT_ASSERT_WLOCKED(object);
845 
846 	/*
847 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
848 	 * objects.  The check below prevents the function from
849 	 * operating on non-vnode objects.
850 	 */
851 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
852 	    object->resident_page_count == 0)
853 		return (TRUE);
854 
855 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
856 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
857 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
858 
859 	tstart = OFF_TO_IDX(start);
860 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
861 	clearobjflags = tstart == 0 && tend >= object->size;
862 	res = TRUE;
863 
864 rescan:
865 	curgeneration = object->generation;
866 
867 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
868 		pi = p->pindex;
869 		if (pi >= tend)
870 			break;
871 		np = TAILQ_NEXT(p, listq);
872 		if (p->valid == 0)
873 			continue;
874 		if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
875 			if (object->generation != curgeneration) {
876 				if ((flags & OBJPC_SYNC) != 0)
877 					goto rescan;
878 				else
879 					clearobjflags = FALSE;
880 			}
881 			np = vm_page_find_least(object, pi);
882 			continue;
883 		}
884 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
885 			continue;
886 
887 		n = vm_object_page_collect_flush(object, p, pagerflags,
888 		    flags, &clearobjflags, &eio);
889 		if (eio) {
890 			res = FALSE;
891 			clearobjflags = FALSE;
892 		}
893 		if (object->generation != curgeneration) {
894 			if ((flags & OBJPC_SYNC) != 0)
895 				goto rescan;
896 			else
897 				clearobjflags = FALSE;
898 		}
899 
900 		/*
901 		 * If the VOP_PUTPAGES() did a truncated write, so
902 		 * that even the first page of the run is not fully
903 		 * written, vm_pageout_flush() returns 0 as the run
904 		 * length.  Since the condition that caused truncated
905 		 * write may be permanent, e.g. exhausted free space,
906 		 * accepting n == 0 would cause an infinite loop.
907 		 *
908 		 * Forwarding the iterator leaves the unwritten page
909 		 * behind, but there is not much we can do there if
910 		 * filesystem refuses to write it.
911 		 */
912 		if (n == 0) {
913 			n = 1;
914 			clearobjflags = FALSE;
915 		}
916 		np = vm_page_find_least(object, pi + n);
917 	}
918 #if 0
919 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
920 #endif
921 
922 	if (clearobjflags)
923 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
924 	return (res);
925 }
926 
927 static int
928 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
929     int flags, boolean_t *clearobjflags, boolean_t *eio)
930 {
931 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
932 	int count, i, mreq, runlen;
933 
934 	vm_page_lock_assert(p, MA_NOTOWNED);
935 	VM_OBJECT_ASSERT_WLOCKED(object);
936 
937 	count = 1;
938 	mreq = 0;
939 
940 	for (tp = p; count < vm_pageout_page_count; count++) {
941 		tp = vm_page_next(tp);
942 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
943 			break;
944 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
945 			break;
946 	}
947 
948 	for (p_first = p; count < vm_pageout_page_count; count++) {
949 		tp = vm_page_prev(p_first);
950 		if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
951 			break;
952 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953 			break;
954 		p_first = tp;
955 		mreq++;
956 	}
957 
958 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
959 		ma[i] = tp;
960 
961 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
962 	return (runlen);
963 }
964 
965 /*
966  * Note that there is absolutely no sense in writing out
967  * anonymous objects, so we track down the vnode object
968  * to write out.
969  * We invalidate (remove) all pages from the address space
970  * for semantic correctness.
971  *
972  * If the backing object is a device object with unmanaged pages, then any
973  * mappings to the specified range of pages must be removed before this
974  * function is called.
975  *
976  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
977  * may start out with a NULL object.
978  */
979 boolean_t
980 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
981     boolean_t syncio, boolean_t invalidate)
982 {
983 	vm_object_t backing_object;
984 	struct vnode *vp;
985 	struct mount *mp;
986 	int error, flags, fsync_after;
987 	boolean_t res;
988 
989 	if (object == NULL)
990 		return (TRUE);
991 	res = TRUE;
992 	error = 0;
993 	VM_OBJECT_WLOCK(object);
994 	while ((backing_object = object->backing_object) != NULL) {
995 		VM_OBJECT_WLOCK(backing_object);
996 		offset += object->backing_object_offset;
997 		VM_OBJECT_WUNLOCK(object);
998 		object = backing_object;
999 		if (object->size < OFF_TO_IDX(offset + size))
1000 			size = IDX_TO_OFF(object->size) - offset;
1001 	}
1002 	/*
1003 	 * Flush pages if writing is allowed, invalidate them
1004 	 * if invalidation requested.  Pages undergoing I/O
1005 	 * will be ignored by vm_object_page_remove().
1006 	 *
1007 	 * We cannot lock the vnode and then wait for paging
1008 	 * to complete without deadlocking against vm_fault.
1009 	 * Instead we simply call vm_object_page_remove() and
1010 	 * allow it to block internally on a page-by-page
1011 	 * basis when it encounters pages undergoing async
1012 	 * I/O.
1013 	 */
1014 	if (object->type == OBJT_VNODE &&
1015 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1016 		vp = object->handle;
1017 		VM_OBJECT_WUNLOCK(object);
1018 		(void) vn_start_write(vp, &mp, V_WAIT);
1019 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1020 		if (syncio && !invalidate && offset == 0 &&
1021 		    OFF_TO_IDX(size) == object->size) {
1022 			/*
1023 			 * If syncing the whole mapping of the file,
1024 			 * it is faster to schedule all the writes in
1025 			 * async mode, also allowing the clustering,
1026 			 * and then wait for i/o to complete.
1027 			 */
1028 			flags = 0;
1029 			fsync_after = TRUE;
1030 		} else {
1031 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1032 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1033 			fsync_after = FALSE;
1034 		}
1035 		VM_OBJECT_WLOCK(object);
1036 		res = vm_object_page_clean(object, offset, offset + size,
1037 		    flags);
1038 		VM_OBJECT_WUNLOCK(object);
1039 		if (fsync_after)
1040 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1041 		VOP_UNLOCK(vp, 0);
1042 		vn_finished_write(mp);
1043 		if (error != 0)
1044 			res = FALSE;
1045 		VM_OBJECT_WLOCK(object);
1046 	}
1047 	if ((object->type == OBJT_VNODE ||
1048 	     object->type == OBJT_DEVICE) && invalidate) {
1049 		if (object->type == OBJT_DEVICE)
1050 			/*
1051 			 * The option OBJPR_NOTMAPPED must be passed here
1052 			 * because vm_object_page_remove() cannot remove
1053 			 * unmanaged mappings.
1054 			 */
1055 			flags = OBJPR_NOTMAPPED;
1056 		else if (old_msync)
1057 			flags = 0;
1058 		else
1059 			flags = OBJPR_CLEANONLY;
1060 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1061 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1062 	}
1063 	VM_OBJECT_WUNLOCK(object);
1064 	return (res);
1065 }
1066 
1067 /*
1068  *	vm_object_madvise:
1069  *
1070  *	Implements the madvise function at the object/page level.
1071  *
1072  *	MADV_WILLNEED	(any object)
1073  *
1074  *	    Activate the specified pages if they are resident.
1075  *
1076  *	MADV_DONTNEED	(any object)
1077  *
1078  *	    Deactivate the specified pages if they are resident.
1079  *
1080  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1081  *			 OBJ_ONEMAPPING only)
1082  *
1083  *	    Deactivate and clean the specified pages if they are
1084  *	    resident.  This permits the process to reuse the pages
1085  *	    without faulting or the kernel to reclaim the pages
1086  *	    without I/O.
1087  */
1088 void
1089 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1090     int advise)
1091 {
1092 	vm_pindex_t tpindex;
1093 	vm_object_t backing_object, tobject;
1094 	vm_page_t m;
1095 
1096 	if (object == NULL)
1097 		return;
1098 	VM_OBJECT_WLOCK(object);
1099 	/*
1100 	 * Locate and adjust resident pages
1101 	 */
1102 	for (; pindex < end; pindex += 1) {
1103 relookup:
1104 		tobject = object;
1105 		tpindex = pindex;
1106 shadowlookup:
1107 		/*
1108 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1109 		 * and those pages must be OBJ_ONEMAPPING.
1110 		 */
1111 		if (advise == MADV_FREE) {
1112 			if ((tobject->type != OBJT_DEFAULT &&
1113 			     tobject->type != OBJT_SWAP) ||
1114 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1115 				goto unlock_tobject;
1116 			}
1117 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1118 			goto unlock_tobject;
1119 		m = vm_page_lookup(tobject, tpindex);
1120 		if (m == NULL && advise == MADV_WILLNEED) {
1121 			/*
1122 			 * If the page is cached, reactivate it.
1123 			 */
1124 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1125 			    VM_ALLOC_NOBUSY);
1126 		}
1127 		if (m == NULL) {
1128 			/*
1129 			 * There may be swap even if there is no backing page
1130 			 */
1131 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1132 				swap_pager_freespace(tobject, tpindex, 1);
1133 			/*
1134 			 * next object
1135 			 */
1136 			backing_object = tobject->backing_object;
1137 			if (backing_object == NULL)
1138 				goto unlock_tobject;
1139 			VM_OBJECT_WLOCK(backing_object);
1140 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1141 			if (tobject != object)
1142 				VM_OBJECT_WUNLOCK(tobject);
1143 			tobject = backing_object;
1144 			goto shadowlookup;
1145 		} else if (m->valid != VM_PAGE_BITS_ALL)
1146 			goto unlock_tobject;
1147 		/*
1148 		 * If the page is not in a normal state, skip it.
1149 		 */
1150 		vm_page_lock(m);
1151 		if (m->hold_count != 0 || m->wire_count != 0) {
1152 			vm_page_unlock(m);
1153 			goto unlock_tobject;
1154 		}
1155 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1156 		    ("vm_object_madvise: page %p is fictitious", m));
1157 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1158 		    ("vm_object_madvise: page %p is not managed", m));
1159 		if ((m->oflags & VPO_BUSY) || m->busy) {
1160 			if (advise == MADV_WILLNEED) {
1161 				/*
1162 				 * Reference the page before unlocking and
1163 				 * sleeping so that the page daemon is less
1164 				 * likely to reclaim it.
1165 				 */
1166 				vm_page_aflag_set(m, PGA_REFERENCED);
1167 			}
1168 			vm_page_unlock(m);
1169 			if (object != tobject)
1170 				VM_OBJECT_WUNLOCK(object);
1171 			m->oflags |= VPO_WANTED;
1172 			VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1173 			VM_OBJECT_WLOCK(object);
1174   			goto relookup;
1175 		}
1176 		if (advise == MADV_WILLNEED) {
1177 			vm_page_activate(m);
1178 		} else {
1179 			vm_page_advise(m, advise);
1180 		}
1181 		vm_page_unlock(m);
1182 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1183 			swap_pager_freespace(tobject, tpindex, 1);
1184 unlock_tobject:
1185 		if (tobject != object)
1186 			VM_OBJECT_WUNLOCK(tobject);
1187 	}
1188 	VM_OBJECT_WUNLOCK(object);
1189 }
1190 
1191 /*
1192  *	vm_object_shadow:
1193  *
1194  *	Create a new object which is backed by the
1195  *	specified existing object range.  The source
1196  *	object reference is deallocated.
1197  *
1198  *	The new object and offset into that object
1199  *	are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203 	vm_object_t *object,	/* IN/OUT */
1204 	vm_ooffset_t *offset,	/* IN/OUT */
1205 	vm_size_t length)
1206 {
1207 	vm_object_t source;
1208 	vm_object_t result;
1209 
1210 	source = *object;
1211 
1212 	/*
1213 	 * Don't create the new object if the old object isn't shared.
1214 	 */
1215 	if (source != NULL) {
1216 		VM_OBJECT_WLOCK(source);
1217 		if (source->ref_count == 1 &&
1218 		    source->handle == NULL &&
1219 		    (source->type == OBJT_DEFAULT ||
1220 		     source->type == OBJT_SWAP)) {
1221 			VM_OBJECT_WUNLOCK(source);
1222 			return;
1223 		}
1224 		VM_OBJECT_WUNLOCK(source);
1225 	}
1226 
1227 	/*
1228 	 * Allocate a new object with the given length.
1229 	 */
1230 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231 
1232 	/*
1233 	 * The new object shadows the source object, adding a reference to it.
1234 	 * Our caller changes his reference to point to the new object,
1235 	 * removing a reference to the source object.  Net result: no change
1236 	 * of reference count.
1237 	 *
1238 	 * Try to optimize the result object's page color when shadowing
1239 	 * in order to maintain page coloring consistency in the combined
1240 	 * shadowed object.
1241 	 */
1242 	result->backing_object = source;
1243 	/*
1244 	 * Store the offset into the source object, and fix up the offset into
1245 	 * the new object.
1246 	 */
1247 	result->backing_object_offset = *offset;
1248 	if (source != NULL) {
1249 		VM_OBJECT_WLOCK(source);
1250 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1251 		source->shadow_count++;
1252 #if VM_NRESERVLEVEL > 0
1253 		result->flags |= source->flags & OBJ_COLORED;
1254 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1255 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1256 #endif
1257 		VM_OBJECT_WUNLOCK(source);
1258 	}
1259 
1260 
1261 	/*
1262 	 * Return the new things
1263 	 */
1264 	*offset = 0;
1265 	*object = result;
1266 }
1267 
1268 /*
1269  *	vm_object_split:
1270  *
1271  * Split the pages in a map entry into a new object.  This affords
1272  * easier removal of unused pages, and keeps object inheritance from
1273  * being a negative impact on memory usage.
1274  */
1275 void
1276 vm_object_split(vm_map_entry_t entry)
1277 {
1278 	vm_page_t m, m_next;
1279 	vm_object_t orig_object, new_object, source;
1280 	vm_pindex_t idx, offidxstart;
1281 	vm_size_t size;
1282 
1283 	orig_object = entry->object.vm_object;
1284 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1285 		return;
1286 	if (orig_object->ref_count <= 1)
1287 		return;
1288 	VM_OBJECT_WUNLOCK(orig_object);
1289 
1290 	offidxstart = OFF_TO_IDX(entry->offset);
1291 	size = atop(entry->end - entry->start);
1292 
1293 	/*
1294 	 * If swap_pager_copy() is later called, it will convert new_object
1295 	 * into a swap object.
1296 	 */
1297 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1298 
1299 	/*
1300 	 * At this point, the new object is still private, so the order in
1301 	 * which the original and new objects are locked does not matter.
1302 	 */
1303 	VM_OBJECT_WLOCK(new_object);
1304 	VM_OBJECT_WLOCK(orig_object);
1305 	source = orig_object->backing_object;
1306 	if (source != NULL) {
1307 		VM_OBJECT_WLOCK(source);
1308 		if ((source->flags & OBJ_DEAD) != 0) {
1309 			VM_OBJECT_WUNLOCK(source);
1310 			VM_OBJECT_WUNLOCK(orig_object);
1311 			VM_OBJECT_WUNLOCK(new_object);
1312 			vm_object_deallocate(new_object);
1313 			VM_OBJECT_WLOCK(orig_object);
1314 			return;
1315 		}
1316 		LIST_INSERT_HEAD(&source->shadow_head,
1317 				  new_object, shadow_list);
1318 		source->shadow_count++;
1319 		vm_object_reference_locked(source);	/* for new_object */
1320 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1321 		VM_OBJECT_WUNLOCK(source);
1322 		new_object->backing_object_offset =
1323 			orig_object->backing_object_offset + entry->offset;
1324 		new_object->backing_object = source;
1325 	}
1326 	if (orig_object->cred != NULL) {
1327 		new_object->cred = orig_object->cred;
1328 		crhold(orig_object->cred);
1329 		new_object->charge = ptoa(size);
1330 		KASSERT(orig_object->charge >= ptoa(size),
1331 		    ("orig_object->charge < 0"));
1332 		orig_object->charge -= ptoa(size);
1333 	}
1334 retry:
1335 	m = vm_page_find_least(orig_object, offidxstart);
1336 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1337 	    m = m_next) {
1338 		m_next = TAILQ_NEXT(m, listq);
1339 
1340 		/*
1341 		 * We must wait for pending I/O to complete before we can
1342 		 * rename the page.
1343 		 *
1344 		 * We do not have to VM_PROT_NONE the page as mappings should
1345 		 * not be changed by this operation.
1346 		 */
1347 		if ((m->oflags & VPO_BUSY) || m->busy) {
1348 			VM_OBJECT_WUNLOCK(new_object);
1349 			m->oflags |= VPO_WANTED;
1350 			VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1351 			VM_OBJECT_WLOCK(new_object);
1352 			goto retry;
1353 		}
1354 #if VM_NRESERVLEVEL > 0
1355 		/*
1356 		 * If some of the reservation's allocated pages remain with
1357 		 * the original object, then transferring the reservation to
1358 		 * the new object is neither particularly beneficial nor
1359 		 * particularly harmful as compared to leaving the reservation
1360 		 * with the original object.  If, however, all of the
1361 		 * reservation's allocated pages are transferred to the new
1362 		 * object, then transferring the reservation is typically
1363 		 * beneficial.  Determining which of these two cases applies
1364 		 * would be more costly than unconditionally renaming the
1365 		 * reservation.
1366 		 */
1367 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1368 #endif
1369 		vm_page_lock(m);
1370 		vm_page_rename(m, new_object, idx);
1371 		vm_page_unlock(m);
1372 		/* page automatically made dirty by rename and cache handled */
1373 		if (orig_object->type == OBJT_SWAP)
1374 			vm_page_busy(m);
1375 	}
1376 	if (orig_object->type == OBJT_SWAP) {
1377 		/*
1378 		 * swap_pager_copy() can sleep, in which case the orig_object's
1379 		 * and new_object's locks are released and reacquired.
1380 		 */
1381 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1382 		TAILQ_FOREACH(m, &new_object->memq, listq)
1383 			vm_page_wakeup(m);
1384 
1385 		/*
1386 		 * Transfer any cached pages from orig_object to new_object.
1387 		 * If swap_pager_copy() found swapped out pages within the
1388 		 * specified range of orig_object, then it changed
1389 		 * new_object's type to OBJT_SWAP when it transferred those
1390 		 * pages to new_object.  Otherwise, new_object's type
1391 		 * should still be OBJT_DEFAULT and orig_object should not
1392 		 * contain any cached pages within the specified range.
1393 		 */
1394 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1395 			vm_page_cache_transfer(orig_object, offidxstart,
1396 			    new_object);
1397 	}
1398 	VM_OBJECT_WUNLOCK(orig_object);
1399 	VM_OBJECT_WUNLOCK(new_object);
1400 	entry->object.vm_object = new_object;
1401 	entry->offset = 0LL;
1402 	vm_object_deallocate(orig_object);
1403 	VM_OBJECT_WLOCK(new_object);
1404 }
1405 
1406 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1407 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1408 #define	OBSC_COLLAPSE_WAIT	0x0004
1409 
1410 static int
1411 vm_object_backing_scan(vm_object_t object, int op)
1412 {
1413 	int r = 1;
1414 	vm_page_t p;
1415 	vm_object_t backing_object;
1416 	vm_pindex_t backing_offset_index;
1417 
1418 	VM_OBJECT_ASSERT_WLOCKED(object);
1419 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1420 
1421 	backing_object = object->backing_object;
1422 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1423 
1424 	/*
1425 	 * Initial conditions
1426 	 */
1427 	if (op & OBSC_TEST_ALL_SHADOWED) {
1428 		/*
1429 		 * We do not want to have to test for the existence of cache
1430 		 * or swap pages in the backing object.  XXX but with the
1431 		 * new swapper this would be pretty easy to do.
1432 		 *
1433 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1434 		 * been ZFOD faulted yet?  If we do not test for this, the
1435 		 * shadow test may succeed! XXX
1436 		 */
1437 		if (backing_object->type != OBJT_DEFAULT) {
1438 			return (0);
1439 		}
1440 	}
1441 	if (op & OBSC_COLLAPSE_WAIT) {
1442 		vm_object_set_flag(backing_object, OBJ_DEAD);
1443 	}
1444 
1445 	/*
1446 	 * Our scan
1447 	 */
1448 	p = TAILQ_FIRST(&backing_object->memq);
1449 	while (p) {
1450 		vm_page_t next = TAILQ_NEXT(p, listq);
1451 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1452 
1453 		if (op & OBSC_TEST_ALL_SHADOWED) {
1454 			vm_page_t pp;
1455 
1456 			/*
1457 			 * Ignore pages outside the parent object's range
1458 			 * and outside the parent object's mapping of the
1459 			 * backing object.
1460 			 *
1461 			 * note that we do not busy the backing object's
1462 			 * page.
1463 			 */
1464 			if (
1465 			    p->pindex < backing_offset_index ||
1466 			    new_pindex >= object->size
1467 			) {
1468 				p = next;
1469 				continue;
1470 			}
1471 
1472 			/*
1473 			 * See if the parent has the page or if the parent's
1474 			 * object pager has the page.  If the parent has the
1475 			 * page but the page is not valid, the parent's
1476 			 * object pager must have the page.
1477 			 *
1478 			 * If this fails, the parent does not completely shadow
1479 			 * the object and we might as well give up now.
1480 			 */
1481 
1482 			pp = vm_page_lookup(object, new_pindex);
1483 			if (
1484 			    (pp == NULL || pp->valid == 0) &&
1485 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1486 			) {
1487 				r = 0;
1488 				break;
1489 			}
1490 		}
1491 
1492 		/*
1493 		 * Check for busy page
1494 		 */
1495 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1496 			vm_page_t pp;
1497 
1498 			if (op & OBSC_COLLAPSE_NOWAIT) {
1499 				if ((p->oflags & VPO_BUSY) ||
1500 				    !p->valid ||
1501 				    p->busy) {
1502 					p = next;
1503 					continue;
1504 				}
1505 			} else if (op & OBSC_COLLAPSE_WAIT) {
1506 				if ((p->oflags & VPO_BUSY) || p->busy) {
1507 					VM_OBJECT_WUNLOCK(object);
1508 					p->oflags |= VPO_WANTED;
1509 					VM_OBJECT_SLEEP(backing_object, p,
1510 					    PDROP | PVM, "vmocol", 0);
1511 					VM_OBJECT_WLOCK(object);
1512 					VM_OBJECT_WLOCK(backing_object);
1513 					/*
1514 					 * If we slept, anything could have
1515 					 * happened.  Since the object is
1516 					 * marked dead, the backing offset
1517 					 * should not have changed so we
1518 					 * just restart our scan.
1519 					 */
1520 					p = TAILQ_FIRST(&backing_object->memq);
1521 					continue;
1522 				}
1523 			}
1524 
1525 			KASSERT(
1526 			    p->object == backing_object,
1527 			    ("vm_object_backing_scan: object mismatch")
1528 			);
1529 
1530 			/*
1531 			 * Destroy any associated swap
1532 			 */
1533 			if (backing_object->type == OBJT_SWAP) {
1534 				swap_pager_freespace(
1535 				    backing_object,
1536 				    p->pindex,
1537 				    1
1538 				);
1539 			}
1540 
1541 			if (
1542 			    p->pindex < backing_offset_index ||
1543 			    new_pindex >= object->size
1544 			) {
1545 				/*
1546 				 * Page is out of the parent object's range, we
1547 				 * can simply destroy it.
1548 				 */
1549 				vm_page_lock(p);
1550 				KASSERT(!pmap_page_is_mapped(p),
1551 				    ("freeing mapped page %p", p));
1552 				if (p->wire_count == 0)
1553 					vm_page_free(p);
1554 				else
1555 					vm_page_remove(p);
1556 				vm_page_unlock(p);
1557 				p = next;
1558 				continue;
1559 			}
1560 
1561 			pp = vm_page_lookup(object, new_pindex);
1562 			if (
1563 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1564 			    (pp != NULL && pp->valid == 0)
1565 			) {
1566 				/*
1567 				 * The page in the parent is not (yet) valid.
1568 				 * We don't know anything about the state of
1569 				 * the original page.  It might be mapped,
1570 				 * so we must avoid the next if here.
1571 				 *
1572 				 * This is due to a race in vm_fault() where
1573 				 * we must unbusy the original (backing_obj)
1574 				 * page before we can (re)lock the parent.
1575 				 * Hence we can get here.
1576 				 */
1577 				p = next;
1578 				continue;
1579 			}
1580 			if (
1581 			    pp != NULL ||
1582 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1583 			) {
1584 				/*
1585 				 * page already exists in parent OR swap exists
1586 				 * for this location in the parent.  Destroy
1587 				 * the original page from the backing object.
1588 				 *
1589 				 * Leave the parent's page alone
1590 				 */
1591 				vm_page_lock(p);
1592 				KASSERT(!pmap_page_is_mapped(p),
1593 				    ("freeing mapped page %p", p));
1594 				if (p->wire_count == 0)
1595 					vm_page_free(p);
1596 				else
1597 					vm_page_remove(p);
1598 				vm_page_unlock(p);
1599 				p = next;
1600 				continue;
1601 			}
1602 
1603 #if VM_NRESERVLEVEL > 0
1604 			/*
1605 			 * Rename the reservation.
1606 			 */
1607 			vm_reserv_rename(p, object, backing_object,
1608 			    backing_offset_index);
1609 #endif
1610 
1611 			/*
1612 			 * Page does not exist in parent, rename the
1613 			 * page from the backing object to the main object.
1614 			 *
1615 			 * If the page was mapped to a process, it can remain
1616 			 * mapped through the rename.
1617 			 */
1618 			vm_page_lock(p);
1619 			vm_page_rename(p, object, new_pindex);
1620 			vm_page_unlock(p);
1621 			/* page automatically made dirty by rename */
1622 		}
1623 		p = next;
1624 	}
1625 	return (r);
1626 }
1627 
1628 
1629 /*
1630  * this version of collapse allows the operation to occur earlier and
1631  * when paging_in_progress is true for an object...  This is not a complete
1632  * operation, but should plug 99.9% of the rest of the leaks.
1633  */
1634 static void
1635 vm_object_qcollapse(vm_object_t object)
1636 {
1637 	vm_object_t backing_object = object->backing_object;
1638 
1639 	VM_OBJECT_ASSERT_WLOCKED(object);
1640 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1641 
1642 	if (backing_object->ref_count != 1)
1643 		return;
1644 
1645 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1646 }
1647 
1648 /*
1649  *	vm_object_collapse:
1650  *
1651  *	Collapse an object with the object backing it.
1652  *	Pages in the backing object are moved into the
1653  *	parent, and the backing object is deallocated.
1654  */
1655 void
1656 vm_object_collapse(vm_object_t object)
1657 {
1658 	VM_OBJECT_ASSERT_WLOCKED(object);
1659 
1660 	while (TRUE) {
1661 		vm_object_t backing_object;
1662 
1663 		/*
1664 		 * Verify that the conditions are right for collapse:
1665 		 *
1666 		 * The object exists and the backing object exists.
1667 		 */
1668 		if ((backing_object = object->backing_object) == NULL)
1669 			break;
1670 
1671 		/*
1672 		 * we check the backing object first, because it is most likely
1673 		 * not collapsable.
1674 		 */
1675 		VM_OBJECT_WLOCK(backing_object);
1676 		if (backing_object->handle != NULL ||
1677 		    (backing_object->type != OBJT_DEFAULT &&
1678 		     backing_object->type != OBJT_SWAP) ||
1679 		    (backing_object->flags & OBJ_DEAD) ||
1680 		    object->handle != NULL ||
1681 		    (object->type != OBJT_DEFAULT &&
1682 		     object->type != OBJT_SWAP) ||
1683 		    (object->flags & OBJ_DEAD)) {
1684 			VM_OBJECT_WUNLOCK(backing_object);
1685 			break;
1686 		}
1687 
1688 		if (
1689 		    object->paging_in_progress != 0 ||
1690 		    backing_object->paging_in_progress != 0
1691 		) {
1692 			vm_object_qcollapse(object);
1693 			VM_OBJECT_WUNLOCK(backing_object);
1694 			break;
1695 		}
1696 		/*
1697 		 * We know that we can either collapse the backing object (if
1698 		 * the parent is the only reference to it) or (perhaps) have
1699 		 * the parent bypass the object if the parent happens to shadow
1700 		 * all the resident pages in the entire backing object.
1701 		 *
1702 		 * This is ignoring pager-backed pages such as swap pages.
1703 		 * vm_object_backing_scan fails the shadowing test in this
1704 		 * case.
1705 		 */
1706 		if (backing_object->ref_count == 1) {
1707 			/*
1708 			 * If there is exactly one reference to the backing
1709 			 * object, we can collapse it into the parent.
1710 			 */
1711 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1712 
1713 #if VM_NRESERVLEVEL > 0
1714 			/*
1715 			 * Break any reservations from backing_object.
1716 			 */
1717 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1718 				vm_reserv_break_all(backing_object);
1719 #endif
1720 
1721 			/*
1722 			 * Move the pager from backing_object to object.
1723 			 */
1724 			if (backing_object->type == OBJT_SWAP) {
1725 				/*
1726 				 * swap_pager_copy() can sleep, in which case
1727 				 * the backing_object's and object's locks are
1728 				 * released and reacquired.
1729 				 * Since swap_pager_copy() is being asked to
1730 				 * destroy the source, it will change the
1731 				 * backing_object's type to OBJT_DEFAULT.
1732 				 */
1733 				swap_pager_copy(
1734 				    backing_object,
1735 				    object,
1736 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1737 
1738 				/*
1739 				 * Free any cached pages from backing_object.
1740 				 */
1741 				if (__predict_false(
1742 				    !vm_object_cache_is_empty(backing_object)))
1743 					vm_page_cache_free(backing_object, 0, 0);
1744 			}
1745 			/*
1746 			 * Object now shadows whatever backing_object did.
1747 			 * Note that the reference to
1748 			 * backing_object->backing_object moves from within
1749 			 * backing_object to within object.
1750 			 */
1751 			LIST_REMOVE(object, shadow_list);
1752 			backing_object->shadow_count--;
1753 			if (backing_object->backing_object) {
1754 				VM_OBJECT_WLOCK(backing_object->backing_object);
1755 				LIST_REMOVE(backing_object, shadow_list);
1756 				LIST_INSERT_HEAD(
1757 				    &backing_object->backing_object->shadow_head,
1758 				    object, shadow_list);
1759 				/*
1760 				 * The shadow_count has not changed.
1761 				 */
1762 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1763 			}
1764 			object->backing_object = backing_object->backing_object;
1765 			object->backing_object_offset +=
1766 			    backing_object->backing_object_offset;
1767 
1768 			/*
1769 			 * Discard backing_object.
1770 			 *
1771 			 * Since the backing object has no pages, no pager left,
1772 			 * and no object references within it, all that is
1773 			 * necessary is to dispose of it.
1774 			 */
1775 			KASSERT(backing_object->ref_count == 1, (
1776 "backing_object %p was somehow re-referenced during collapse!",
1777 			    backing_object));
1778 			VM_OBJECT_WUNLOCK(backing_object);
1779 			vm_object_destroy(backing_object);
1780 
1781 			object_collapses++;
1782 		} else {
1783 			vm_object_t new_backing_object;
1784 
1785 			/*
1786 			 * If we do not entirely shadow the backing object,
1787 			 * there is nothing we can do so we give up.
1788 			 */
1789 			if (object->resident_page_count != object->size &&
1790 			    vm_object_backing_scan(object,
1791 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1792 				VM_OBJECT_WUNLOCK(backing_object);
1793 				break;
1794 			}
1795 
1796 			/*
1797 			 * Make the parent shadow the next object in the
1798 			 * chain.  Deallocating backing_object will not remove
1799 			 * it, since its reference count is at least 2.
1800 			 */
1801 			LIST_REMOVE(object, shadow_list);
1802 			backing_object->shadow_count--;
1803 
1804 			new_backing_object = backing_object->backing_object;
1805 			if ((object->backing_object = new_backing_object) != NULL) {
1806 				VM_OBJECT_WLOCK(new_backing_object);
1807 				LIST_INSERT_HEAD(
1808 				    &new_backing_object->shadow_head,
1809 				    object,
1810 				    shadow_list
1811 				);
1812 				new_backing_object->shadow_count++;
1813 				vm_object_reference_locked(new_backing_object);
1814 				VM_OBJECT_WUNLOCK(new_backing_object);
1815 				object->backing_object_offset +=
1816 					backing_object->backing_object_offset;
1817 			}
1818 
1819 			/*
1820 			 * Drop the reference count on backing_object. Since
1821 			 * its ref_count was at least 2, it will not vanish.
1822 			 */
1823 			backing_object->ref_count--;
1824 			VM_OBJECT_WUNLOCK(backing_object);
1825 			object_bypasses++;
1826 		}
1827 
1828 		/*
1829 		 * Try again with this object's new backing object.
1830 		 */
1831 	}
1832 }
1833 
1834 /*
1835  *	vm_object_page_remove:
1836  *
1837  *	For the given object, either frees or invalidates each of the
1838  *	specified pages.  In general, a page is freed.  However, if a page is
1839  *	wired for any reason other than the existence of a managed, wired
1840  *	mapping, then it may be invalidated but not removed from the object.
1841  *	Pages are specified by the given range ["start", "end") and the option
1842  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1843  *	extends from "start" to the end of the object.  If the option
1844  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1845  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1846  *	specified, then the pages within the specified range must have no
1847  *	mappings.  Otherwise, if this option is not specified, any mappings to
1848  *	the specified pages are removed before the pages are freed or
1849  *	invalidated.
1850  *
1851  *	In general, this operation should only be performed on objects that
1852  *	contain managed pages.  There are, however, two exceptions.  First, it
1853  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1854  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1855  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1856  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1857  *
1858  *	The object must be locked.
1859  */
1860 void
1861 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1862     int options)
1863 {
1864 	vm_page_t p, next;
1865 	int wirings;
1866 
1867 	VM_OBJECT_ASSERT_WLOCKED(object);
1868 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1869 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1870 	    ("vm_object_page_remove: illegal options for object %p", object));
1871 	if (object->resident_page_count == 0)
1872 		goto skipmemq;
1873 	vm_object_pip_add(object, 1);
1874 again:
1875 	p = vm_page_find_least(object, start);
1876 
1877 	/*
1878 	 * Here, the variable "p" is either (1) the page with the least pindex
1879 	 * greater than or equal to the parameter "start" or (2) NULL.
1880 	 */
1881 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1882 		next = TAILQ_NEXT(p, listq);
1883 
1884 		/*
1885 		 * If the page is wired for any reason besides the existence
1886 		 * of managed, wired mappings, then it cannot be freed.  For
1887 		 * example, fictitious pages, which represent device memory,
1888 		 * are inherently wired and cannot be freed.  They can,
1889 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1890 		 * not specified.
1891 		 */
1892 		vm_page_lock(p);
1893 		if ((wirings = p->wire_count) != 0 &&
1894 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1895 			if ((options & OBJPR_NOTMAPPED) == 0) {
1896 				pmap_remove_all(p);
1897 				/* Account for removal of wired mappings. */
1898 				if (wirings != 0)
1899 					p->wire_count -= wirings;
1900 			}
1901 			if ((options & OBJPR_CLEANONLY) == 0) {
1902 				p->valid = 0;
1903 				vm_page_undirty(p);
1904 			}
1905 			vm_page_unlock(p);
1906 			continue;
1907 		}
1908 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1909 			goto again;
1910 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1911 		    ("vm_object_page_remove: page %p is fictitious", p));
1912 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1913 			if ((options & OBJPR_NOTMAPPED) == 0)
1914 				pmap_remove_write(p);
1915 			if (p->dirty) {
1916 				vm_page_unlock(p);
1917 				continue;
1918 			}
1919 		}
1920 		if ((options & OBJPR_NOTMAPPED) == 0) {
1921 			pmap_remove_all(p);
1922 			/* Account for removal of wired mappings. */
1923 			if (wirings != 0) {
1924 				KASSERT(p->wire_count == wirings,
1925 				    ("inconsistent wire count %d %d %p",
1926 				    p->wire_count, wirings, p));
1927 				p->wire_count = 0;
1928 				atomic_subtract_int(&cnt.v_wire_count, 1);
1929 			}
1930 		}
1931 		vm_page_free(p);
1932 		vm_page_unlock(p);
1933 	}
1934 	vm_object_pip_wakeup(object);
1935 skipmemq:
1936 	if (__predict_false(!vm_object_cache_is_empty(object)))
1937 		vm_page_cache_free(object, start, end);
1938 }
1939 
1940 /*
1941  *	vm_object_page_cache:
1942  *
1943  *	For the given object, attempt to move the specified clean
1944  *	pages to the cache queue.  If a page is wired for any reason,
1945  *	then it will not be changed.  Pages are specified by the given
1946  *	range ["start", "end").  As a special case, if "end" is zero,
1947  *	then the range extends from "start" to the end of the object.
1948  *	Any mappings to the specified pages are removed before the
1949  *	pages are moved to the cache queue.
1950  *
1951  *	This operation should only be performed on objects that
1952  *	contain non-fictitious, managed pages.
1953  *
1954  *	The object must be locked.
1955  */
1956 void
1957 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1958 {
1959 	struct mtx *mtx, *new_mtx;
1960 	vm_page_t p, next;
1961 
1962 	VM_OBJECT_ASSERT_WLOCKED(object);
1963 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1964 	    ("vm_object_page_cache: illegal object %p", object));
1965 	if (object->resident_page_count == 0)
1966 		return;
1967 	p = vm_page_find_least(object, start);
1968 
1969 	/*
1970 	 * Here, the variable "p" is either (1) the page with the least pindex
1971 	 * greater than or equal to the parameter "start" or (2) NULL.
1972 	 */
1973 	mtx = NULL;
1974 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1975 		next = TAILQ_NEXT(p, listq);
1976 
1977 		/*
1978 		 * Avoid releasing and reacquiring the same page lock.
1979 		 */
1980 		new_mtx = vm_page_lockptr(p);
1981 		if (mtx != new_mtx) {
1982 			if (mtx != NULL)
1983 				mtx_unlock(mtx);
1984 			mtx = new_mtx;
1985 			mtx_lock(mtx);
1986 		}
1987 		vm_page_try_to_cache(p);
1988 	}
1989 	if (mtx != NULL)
1990 		mtx_unlock(mtx);
1991 }
1992 
1993 /*
1994  *	Populate the specified range of the object with valid pages.  Returns
1995  *	TRUE if the range is successfully populated and FALSE otherwise.
1996  *
1997  *	Note: This function should be optimized to pass a larger array of
1998  *	pages to vm_pager_get_pages() before it is applied to a non-
1999  *	OBJT_DEVICE object.
2000  *
2001  *	The object must be locked.
2002  */
2003 boolean_t
2004 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2005 {
2006 	vm_page_t m, ma[1];
2007 	vm_pindex_t pindex;
2008 	int rv;
2009 
2010 	VM_OBJECT_ASSERT_WLOCKED(object);
2011 	for (pindex = start; pindex < end; pindex++) {
2012 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2013 		    VM_ALLOC_RETRY);
2014 		if (m->valid != VM_PAGE_BITS_ALL) {
2015 			ma[0] = m;
2016 			rv = vm_pager_get_pages(object, ma, 1, 0);
2017 			m = vm_page_lookup(object, pindex);
2018 			if (m == NULL)
2019 				break;
2020 			if (rv != VM_PAGER_OK) {
2021 				vm_page_lock(m);
2022 				vm_page_free(m);
2023 				vm_page_unlock(m);
2024 				break;
2025 			}
2026 		}
2027 		/*
2028 		 * Keep "m" busy because a subsequent iteration may unlock
2029 		 * the object.
2030 		 */
2031 	}
2032 	if (pindex > start) {
2033 		m = vm_page_lookup(object, start);
2034 		while (m != NULL && m->pindex < pindex) {
2035 			vm_page_wakeup(m);
2036 			m = TAILQ_NEXT(m, listq);
2037 		}
2038 	}
2039 	return (pindex == end);
2040 }
2041 
2042 /*
2043  *	Routine:	vm_object_coalesce
2044  *	Function:	Coalesces two objects backing up adjoining
2045  *			regions of memory into a single object.
2046  *
2047  *	returns TRUE if objects were combined.
2048  *
2049  *	NOTE:	Only works at the moment if the second object is NULL -
2050  *		if it's not, which object do we lock first?
2051  *
2052  *	Parameters:
2053  *		prev_object	First object to coalesce
2054  *		prev_offset	Offset into prev_object
2055  *		prev_size	Size of reference to prev_object
2056  *		next_size	Size of reference to the second object
2057  *		reserved	Indicator that extension region has
2058  *				swap accounted for
2059  *
2060  *	Conditions:
2061  *	The object must *not* be locked.
2062  */
2063 boolean_t
2064 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2065     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2066 {
2067 	vm_pindex_t next_pindex;
2068 
2069 	if (prev_object == NULL)
2070 		return (TRUE);
2071 	VM_OBJECT_WLOCK(prev_object);
2072 	if (prev_object->type != OBJT_DEFAULT &&
2073 	    prev_object->type != OBJT_SWAP) {
2074 		VM_OBJECT_WUNLOCK(prev_object);
2075 		return (FALSE);
2076 	}
2077 
2078 	/*
2079 	 * Try to collapse the object first
2080 	 */
2081 	vm_object_collapse(prev_object);
2082 
2083 	/*
2084 	 * Can't coalesce if: . more than one reference . paged out . shadows
2085 	 * another object . has a copy elsewhere (any of which mean that the
2086 	 * pages not mapped to prev_entry may be in use anyway)
2087 	 */
2088 	if (prev_object->backing_object != NULL) {
2089 		VM_OBJECT_WUNLOCK(prev_object);
2090 		return (FALSE);
2091 	}
2092 
2093 	prev_size >>= PAGE_SHIFT;
2094 	next_size >>= PAGE_SHIFT;
2095 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2096 
2097 	if ((prev_object->ref_count > 1) &&
2098 	    (prev_object->size != next_pindex)) {
2099 		VM_OBJECT_WUNLOCK(prev_object);
2100 		return (FALSE);
2101 	}
2102 
2103 	/*
2104 	 * Account for the charge.
2105 	 */
2106 	if (prev_object->cred != NULL) {
2107 
2108 		/*
2109 		 * If prev_object was charged, then this mapping,
2110 		 * althought not charged now, may become writable
2111 		 * later. Non-NULL cred in the object would prevent
2112 		 * swap reservation during enabling of the write
2113 		 * access, so reserve swap now. Failed reservation
2114 		 * cause allocation of the separate object for the map
2115 		 * entry, and swap reservation for this entry is
2116 		 * managed in appropriate time.
2117 		 */
2118 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2119 		    prev_object->cred)) {
2120 			return (FALSE);
2121 		}
2122 		prev_object->charge += ptoa(next_size);
2123 	}
2124 
2125 	/*
2126 	 * Remove any pages that may still be in the object from a previous
2127 	 * deallocation.
2128 	 */
2129 	if (next_pindex < prev_object->size) {
2130 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2131 		    next_size, 0);
2132 		if (prev_object->type == OBJT_SWAP)
2133 			swap_pager_freespace(prev_object,
2134 					     next_pindex, next_size);
2135 #if 0
2136 		if (prev_object->cred != NULL) {
2137 			KASSERT(prev_object->charge >=
2138 			    ptoa(prev_object->size - next_pindex),
2139 			    ("object %p overcharged 1 %jx %jx", prev_object,
2140 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2141 			prev_object->charge -= ptoa(prev_object->size -
2142 			    next_pindex);
2143 		}
2144 #endif
2145 	}
2146 
2147 	/*
2148 	 * Extend the object if necessary.
2149 	 */
2150 	if (next_pindex + next_size > prev_object->size)
2151 		prev_object->size = next_pindex + next_size;
2152 
2153 	VM_OBJECT_WUNLOCK(prev_object);
2154 	return (TRUE);
2155 }
2156 
2157 void
2158 vm_object_set_writeable_dirty(vm_object_t object)
2159 {
2160 
2161 	VM_OBJECT_ASSERT_WLOCKED(object);
2162 	if (object->type != OBJT_VNODE)
2163 		return;
2164 	object->generation++;
2165 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2166 		return;
2167 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2168 }
2169 
2170 #include "opt_ddb.h"
2171 #ifdef DDB
2172 #include <sys/kernel.h>
2173 
2174 #include <sys/cons.h>
2175 
2176 #include <ddb/ddb.h>
2177 
2178 static int
2179 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2180 {
2181 	vm_map_t tmpm;
2182 	vm_map_entry_t tmpe;
2183 	vm_object_t obj;
2184 	int entcount;
2185 
2186 	if (map == 0)
2187 		return 0;
2188 
2189 	if (entry == 0) {
2190 		tmpe = map->header.next;
2191 		entcount = map->nentries;
2192 		while (entcount-- && (tmpe != &map->header)) {
2193 			if (_vm_object_in_map(map, object, tmpe)) {
2194 				return 1;
2195 			}
2196 			tmpe = tmpe->next;
2197 		}
2198 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2199 		tmpm = entry->object.sub_map;
2200 		tmpe = tmpm->header.next;
2201 		entcount = tmpm->nentries;
2202 		while (entcount-- && tmpe != &tmpm->header) {
2203 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2204 				return 1;
2205 			}
2206 			tmpe = tmpe->next;
2207 		}
2208 	} else if ((obj = entry->object.vm_object) != NULL) {
2209 		for (; obj; obj = obj->backing_object)
2210 			if (obj == object) {
2211 				return 1;
2212 			}
2213 	}
2214 	return 0;
2215 }
2216 
2217 static int
2218 vm_object_in_map(vm_object_t object)
2219 {
2220 	struct proc *p;
2221 
2222 	/* sx_slock(&allproc_lock); */
2223 	FOREACH_PROC_IN_SYSTEM(p) {
2224 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2225 			continue;
2226 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2227 			/* sx_sunlock(&allproc_lock); */
2228 			return 1;
2229 		}
2230 	}
2231 	/* sx_sunlock(&allproc_lock); */
2232 	if (_vm_object_in_map(kernel_map, object, 0))
2233 		return 1;
2234 	if (_vm_object_in_map(kmem_map, object, 0))
2235 		return 1;
2236 	if (_vm_object_in_map(pager_map, object, 0))
2237 		return 1;
2238 	if (_vm_object_in_map(buffer_map, object, 0))
2239 		return 1;
2240 	return 0;
2241 }
2242 
2243 DB_SHOW_COMMAND(vmochk, vm_object_check)
2244 {
2245 	vm_object_t object;
2246 
2247 	/*
2248 	 * make sure that internal objs are in a map somewhere
2249 	 * and none have zero ref counts.
2250 	 */
2251 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2252 		if (object->handle == NULL &&
2253 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2254 			if (object->ref_count == 0) {
2255 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2256 					(long)object->size);
2257 			}
2258 			if (!vm_object_in_map(object)) {
2259 				db_printf(
2260 			"vmochk: internal obj is not in a map: "
2261 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2262 				    object->ref_count, (u_long)object->size,
2263 				    (u_long)object->size,
2264 				    (void *)object->backing_object);
2265 			}
2266 		}
2267 	}
2268 }
2269 
2270 /*
2271  *	vm_object_print:	[ debug ]
2272  */
2273 DB_SHOW_COMMAND(object, vm_object_print_static)
2274 {
2275 	/* XXX convert args. */
2276 	vm_object_t object = (vm_object_t)addr;
2277 	boolean_t full = have_addr;
2278 
2279 	vm_page_t p;
2280 
2281 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2282 #define	count	was_count
2283 
2284 	int count;
2285 
2286 	if (object == NULL)
2287 		return;
2288 
2289 	db_iprintf(
2290 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2291 	    object, (int)object->type, (uintmax_t)object->size,
2292 	    object->resident_page_count, object->ref_count, object->flags,
2293 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2294 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2295 	    object->shadow_count,
2296 	    object->backing_object ? object->backing_object->ref_count : 0,
2297 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2298 
2299 	if (!full)
2300 		return;
2301 
2302 	db_indent += 2;
2303 	count = 0;
2304 	TAILQ_FOREACH(p, &object->memq, listq) {
2305 		if (count == 0)
2306 			db_iprintf("memory:=");
2307 		else if (count == 6) {
2308 			db_printf("\n");
2309 			db_iprintf(" ...");
2310 			count = 0;
2311 		} else
2312 			db_printf(",");
2313 		count++;
2314 
2315 		db_printf("(off=0x%jx,page=0x%jx)",
2316 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2317 	}
2318 	if (count != 0)
2319 		db_printf("\n");
2320 	db_indent -= 2;
2321 }
2322 
2323 /* XXX. */
2324 #undef count
2325 
2326 /* XXX need this non-static entry for calling from vm_map_print. */
2327 void
2328 vm_object_print(
2329         /* db_expr_t */ long addr,
2330 	boolean_t have_addr,
2331 	/* db_expr_t */ long count,
2332 	char *modif)
2333 {
2334 	vm_object_print_static(addr, have_addr, count, modif);
2335 }
2336 
2337 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2338 {
2339 	vm_object_t object;
2340 	vm_pindex_t fidx;
2341 	vm_paddr_t pa;
2342 	vm_page_t m, prev_m;
2343 	int rcount, nl, c;
2344 
2345 	nl = 0;
2346 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2347 		db_printf("new object: %p\n", (void *)object);
2348 		if (nl > 18) {
2349 			c = cngetc();
2350 			if (c != ' ')
2351 				return;
2352 			nl = 0;
2353 		}
2354 		nl++;
2355 		rcount = 0;
2356 		fidx = 0;
2357 		pa = -1;
2358 		TAILQ_FOREACH(m, &object->memq, listq) {
2359 			if (m->pindex > 128)
2360 				break;
2361 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2362 			    prev_m->pindex + 1 != m->pindex) {
2363 				if (rcount) {
2364 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2365 						(long)fidx, rcount, (long)pa);
2366 					if (nl > 18) {
2367 						c = cngetc();
2368 						if (c != ' ')
2369 							return;
2370 						nl = 0;
2371 					}
2372 					nl++;
2373 					rcount = 0;
2374 				}
2375 			}
2376 			if (rcount &&
2377 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2378 				++rcount;
2379 				continue;
2380 			}
2381 			if (rcount) {
2382 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2383 					(long)fidx, rcount, (long)pa);
2384 				if (nl > 18) {
2385 					c = cngetc();
2386 					if (c != ' ')
2387 						return;
2388 					nl = 0;
2389 				}
2390 				nl++;
2391 			}
2392 			fidx = m->pindex;
2393 			pa = VM_PAGE_TO_PHYS(m);
2394 			rcount = 1;
2395 		}
2396 		if (rcount) {
2397 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2398 				(long)fidx, rcount, (long)pa);
2399 			if (nl > 18) {
2400 				c = cngetc();
2401 				if (c != ' ')
2402 					return;
2403 				nl = 0;
2404 			}
2405 			nl++;
2406 		}
2407 	}
2408 }
2409 #endif /* DDB */
2410