xref: /freebsd/sys/vm/vm_object.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(vm_object_cache_is_empty(object),
182 	    ("object %p has cached pages",
183 	    object));
184 	KASSERT(object->paging_in_progress == 0,
185 	    ("object %p paging_in_progress = %d",
186 	    object, object->paging_in_progress));
187 	KASSERT(object->resident_page_count == 0,
188 	    ("object %p resident_page_count = %d",
189 	    object, object->resident_page_count));
190 	KASSERT(object->shadow_count == 0,
191 	    ("object %p shadow_count = %d",
192 	    object, object->shadow_count));
193 	KASSERT(object->type == OBJT_DEAD,
194 	    ("object %p has non-dead type %d",
195 	    object, object->type));
196 }
197 #endif
198 
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202 	vm_object_t object;
203 
204 	object = (vm_object_t)mem;
205 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206 
207 	/* These are true for any object that has been freed */
208 	object->type = OBJT_DEAD;
209 	object->ref_count = 0;
210 	object->rtree.rt_root = 0;
211 	object->rtree.rt_flags = 0;
212 	object->paging_in_progress = 0;
213 	object->resident_page_count = 0;
214 	object->shadow_count = 0;
215 	object->cache.rt_root = 0;
216 	object->cache.rt_flags = 0;
217 
218 	mtx_lock(&vm_object_list_mtx);
219 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220 	mtx_unlock(&vm_object_list_mtx);
221 	return (0);
222 }
223 
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227 
228 	TAILQ_INIT(&object->memq);
229 	LIST_INIT(&object->shadow_head);
230 
231 	object->type = type;
232 	switch (type) {
233 	case OBJT_DEAD:
234 		panic("_vm_object_allocate: can't create OBJT_DEAD");
235 	case OBJT_DEFAULT:
236 	case OBJT_SWAP:
237 		object->flags = OBJ_ONEMAPPING;
238 		break;
239 	case OBJT_DEVICE:
240 	case OBJT_SG:
241 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242 		break;
243 	case OBJT_MGTDEVICE:
244 		object->flags = OBJ_FICTITIOUS;
245 		break;
246 	case OBJT_PHYS:
247 		object->flags = OBJ_UNMANAGED;
248 		break;
249 	case OBJT_VNODE:
250 		object->flags = 0;
251 		break;
252 	default:
253 		panic("_vm_object_allocate: type %d is undefined", type);
254 	}
255 	object->size = size;
256 	object->generation = 1;
257 	object->ref_count = 1;
258 	object->memattr = VM_MEMATTR_DEFAULT;
259 	object->cred = NULL;
260 	object->charge = 0;
261 	object->handle = NULL;
262 	object->backing_object = NULL;
263 	object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265 	LIST_INIT(&object->rvq);
266 #endif
267 }
268 
269 /*
270  *	vm_object_init:
271  *
272  *	Initialize the VM objects module.
273  */
274 void
275 vm_object_init(void)
276 {
277 	TAILQ_INIT(&vm_object_list);
278 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
279 
280 	rw_init(&kernel_object->lock, "kernel vm object");
281 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282 	    kernel_object);
283 #if VM_NRESERVLEVEL > 0
284 	kernel_object->flags |= OBJ_COLORED;
285 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286 #endif
287 
288 	rw_init(&kmem_object->lock, "kmem vm object");
289 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
290 	    kmem_object);
291 #if VM_NRESERVLEVEL > 0
292 	kmem_object->flags |= OBJ_COLORED;
293 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295 
296 	/*
297 	 * The lock portion of struct vm_object must be type stable due
298 	 * to vm_pageout_fallback_object_lock locking a vm object
299 	 * without holding any references to it.
300 	 */
301 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302 #ifdef INVARIANTS
303 	    vm_object_zdtor,
304 #else
305 	    NULL,
306 #endif
307 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308 
309 	vm_radix_init();
310 }
311 
312 void
313 vm_object_clear_flag(vm_object_t object, u_short bits)
314 {
315 
316 	VM_OBJECT_ASSERT_WLOCKED(object);
317 	object->flags &= ~bits;
318 }
319 
320 /*
321  *	Sets the default memory attribute for the specified object.  Pages
322  *	that are allocated to this object are by default assigned this memory
323  *	attribute.
324  *
325  *	Presently, this function must be called before any pages are allocated
326  *	to the object.  In the future, this requirement may be relaxed for
327  *	"default" and "swap" objects.
328  */
329 int
330 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331 {
332 
333 	VM_OBJECT_ASSERT_WLOCKED(object);
334 	switch (object->type) {
335 	case OBJT_DEFAULT:
336 	case OBJT_DEVICE:
337 	case OBJT_MGTDEVICE:
338 	case OBJT_PHYS:
339 	case OBJT_SG:
340 	case OBJT_SWAP:
341 	case OBJT_VNODE:
342 		if (!TAILQ_EMPTY(&object->memq))
343 			return (KERN_FAILURE);
344 		break;
345 	case OBJT_DEAD:
346 		return (KERN_INVALID_ARGUMENT);
347 	default:
348 		panic("vm_object_set_memattr: object %p is of undefined type",
349 		    object);
350 	}
351 	object->memattr = memattr;
352 	return (KERN_SUCCESS);
353 }
354 
355 void
356 vm_object_pip_add(vm_object_t object, short i)
357 {
358 
359 	VM_OBJECT_ASSERT_WLOCKED(object);
360 	object->paging_in_progress += i;
361 }
362 
363 void
364 vm_object_pip_subtract(vm_object_t object, short i)
365 {
366 
367 	VM_OBJECT_ASSERT_WLOCKED(object);
368 	object->paging_in_progress -= i;
369 }
370 
371 void
372 vm_object_pip_wakeup(vm_object_t object)
373 {
374 
375 	VM_OBJECT_ASSERT_WLOCKED(object);
376 	object->paging_in_progress--;
377 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378 		vm_object_clear_flag(object, OBJ_PIPWNT);
379 		wakeup(object);
380 	}
381 }
382 
383 void
384 vm_object_pip_wakeupn(vm_object_t object, short i)
385 {
386 
387 	VM_OBJECT_ASSERT_WLOCKED(object);
388 	if (i)
389 		object->paging_in_progress -= i;
390 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
391 		vm_object_clear_flag(object, OBJ_PIPWNT);
392 		wakeup(object);
393 	}
394 }
395 
396 void
397 vm_object_pip_wait(vm_object_t object, char *waitid)
398 {
399 
400 	VM_OBJECT_ASSERT_WLOCKED(object);
401 	while (object->paging_in_progress) {
402 		object->flags |= OBJ_PIPWNT;
403 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
404 	}
405 }
406 
407 /*
408  *	vm_object_allocate:
409  *
410  *	Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415 	vm_object_t object;
416 
417 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
418 	_vm_object_allocate(type, size, object);
419 	return (object);
420 }
421 
422 
423 /*
424  *	vm_object_reference:
425  *
426  *	Gets another reference to the given object.  Note: OBJ_DEAD
427  *	objects can be referenced during final cleaning.
428  */
429 void
430 vm_object_reference(vm_object_t object)
431 {
432 	if (object == NULL)
433 		return;
434 	VM_OBJECT_WLOCK(object);
435 	vm_object_reference_locked(object);
436 	VM_OBJECT_WUNLOCK(object);
437 }
438 
439 /*
440  *	vm_object_reference_locked:
441  *
442  *	Gets another reference to the given object.
443  *
444  *	The object must be locked.
445  */
446 void
447 vm_object_reference_locked(vm_object_t object)
448 {
449 	struct vnode *vp;
450 
451 	VM_OBJECT_ASSERT_WLOCKED(object);
452 	object->ref_count++;
453 	if (object->type == OBJT_VNODE) {
454 		vp = object->handle;
455 		vref(vp);
456 	}
457 }
458 
459 /*
460  * Handle deallocating an object of type OBJT_VNODE.
461  */
462 static void
463 vm_object_vndeallocate(vm_object_t object)
464 {
465 	struct vnode *vp = (struct vnode *) object->handle;
466 
467 	VM_OBJECT_ASSERT_WLOCKED(object);
468 	KASSERT(object->type == OBJT_VNODE,
469 	    ("vm_object_vndeallocate: not a vnode object"));
470 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
471 #ifdef INVARIANTS
472 	if (object->ref_count == 0) {
473 		vprint("vm_object_vndeallocate", vp);
474 		panic("vm_object_vndeallocate: bad object reference count");
475 	}
476 #endif
477 
478 	/*
479 	 * The test for text of vp vnode does not need a bypass to
480 	 * reach right VV_TEXT there, since it is obtained from
481 	 * object->handle.
482 	 */
483 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
484 		object->ref_count--;
485 		VM_OBJECT_WUNLOCK(object);
486 		/* vrele may need the vnode lock. */
487 		vrele(vp);
488 	} else {
489 		vhold(vp);
490 		VM_OBJECT_WUNLOCK(object);
491 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
492 		vdrop(vp);
493 		VM_OBJECT_WLOCK(object);
494 		object->ref_count--;
495 		if (object->type == OBJT_DEAD) {
496 			VM_OBJECT_WUNLOCK(object);
497 			VOP_UNLOCK(vp, 0);
498 		} else {
499 			if (object->ref_count == 0)
500 				VOP_UNSET_TEXT(vp);
501 			VM_OBJECT_WUNLOCK(object);
502 			vput(vp);
503 		}
504 	}
505 }
506 
507 /*
508  *	vm_object_deallocate:
509  *
510  *	Release a reference to the specified object,
511  *	gained either through a vm_object_allocate
512  *	or a vm_object_reference call.  When all references
513  *	are gone, storage associated with this object
514  *	may be relinquished.
515  *
516  *	No object may be locked.
517  */
518 void
519 vm_object_deallocate(vm_object_t object)
520 {
521 	vm_object_t temp;
522 	struct vnode *vp;
523 
524 	while (object != NULL) {
525 		VM_OBJECT_WLOCK(object);
526 		if (object->type == OBJT_VNODE) {
527 			vm_object_vndeallocate(object);
528 			return;
529 		}
530 
531 		KASSERT(object->ref_count != 0,
532 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
533 
534 		/*
535 		 * If the reference count goes to 0 we start calling
536 		 * vm_object_terminate() on the object chain.
537 		 * A ref count of 1 may be a special case depending on the
538 		 * shadow count being 0 or 1.
539 		 */
540 		object->ref_count--;
541 		if (object->ref_count > 1) {
542 			VM_OBJECT_WUNLOCK(object);
543 			return;
544 		} else if (object->ref_count == 1) {
545 			if (object->type == OBJT_SWAP &&
546 			    (object->flags & OBJ_TMPFS) != 0) {
547 				vp = object->un_pager.swp.swp_tmpfs;
548 				vhold(vp);
549 				VM_OBJECT_WUNLOCK(object);
550 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
551 				VM_OBJECT_WLOCK(object);
552 				if (object->type == OBJT_DEAD ||
553 				    object->ref_count != 1) {
554 					VM_OBJECT_WUNLOCK(object);
555 					VOP_UNLOCK(vp, 0);
556 					vdrop(vp);
557 					return;
558 				}
559 				if ((object->flags & OBJ_TMPFS) != 0)
560 					VOP_UNSET_TEXT(vp);
561 				VOP_UNLOCK(vp, 0);
562 				vdrop(vp);
563 			}
564 			if (object->shadow_count == 0 &&
565 			    object->handle == NULL &&
566 			    (object->type == OBJT_DEFAULT ||
567 			    (object->type == OBJT_SWAP &&
568 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
569 				vm_object_set_flag(object, OBJ_ONEMAPPING);
570 			} else if ((object->shadow_count == 1) &&
571 			    (object->handle == NULL) &&
572 			    (object->type == OBJT_DEFAULT ||
573 			     object->type == OBJT_SWAP)) {
574 				vm_object_t robject;
575 
576 				robject = LIST_FIRST(&object->shadow_head);
577 				KASSERT(robject != NULL,
578 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
579 					 object->ref_count,
580 					 object->shadow_count));
581 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
582 				    ("shadowed tmpfs v_object %p", object));
583 				if (!VM_OBJECT_TRYWLOCK(robject)) {
584 					/*
585 					 * Avoid a potential deadlock.
586 					 */
587 					object->ref_count++;
588 					VM_OBJECT_WUNLOCK(object);
589 					/*
590 					 * More likely than not the thread
591 					 * holding robject's lock has lower
592 					 * priority than the current thread.
593 					 * Let the lower priority thread run.
594 					 */
595 					pause("vmo_de", 1);
596 					continue;
597 				}
598 				/*
599 				 * Collapse object into its shadow unless its
600 				 * shadow is dead.  In that case, object will
601 				 * be deallocated by the thread that is
602 				 * deallocating its shadow.
603 				 */
604 				if ((robject->flags & OBJ_DEAD) == 0 &&
605 				    (robject->handle == NULL) &&
606 				    (robject->type == OBJT_DEFAULT ||
607 				     robject->type == OBJT_SWAP)) {
608 
609 					robject->ref_count++;
610 retry:
611 					if (robject->paging_in_progress) {
612 						VM_OBJECT_WUNLOCK(object);
613 						vm_object_pip_wait(robject,
614 						    "objde1");
615 						temp = robject->backing_object;
616 						if (object == temp) {
617 							VM_OBJECT_WLOCK(object);
618 							goto retry;
619 						}
620 					} else if (object->paging_in_progress) {
621 						VM_OBJECT_WUNLOCK(robject);
622 						object->flags |= OBJ_PIPWNT;
623 						VM_OBJECT_SLEEP(object, object,
624 						    PDROP | PVM, "objde2", 0);
625 						VM_OBJECT_WLOCK(robject);
626 						temp = robject->backing_object;
627 						if (object == temp) {
628 							VM_OBJECT_WLOCK(object);
629 							goto retry;
630 						}
631 					} else
632 						VM_OBJECT_WUNLOCK(object);
633 
634 					if (robject->ref_count == 1) {
635 						robject->ref_count--;
636 						object = robject;
637 						goto doterm;
638 					}
639 					object = robject;
640 					vm_object_collapse(object);
641 					VM_OBJECT_WUNLOCK(object);
642 					continue;
643 				}
644 				VM_OBJECT_WUNLOCK(robject);
645 			}
646 			VM_OBJECT_WUNLOCK(object);
647 			return;
648 		}
649 doterm:
650 		temp = object->backing_object;
651 		if (temp != NULL) {
652 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653 			    ("shadowed tmpfs v_object 2 %p", object));
654 			VM_OBJECT_WLOCK(temp);
655 			LIST_REMOVE(object, shadow_list);
656 			temp->shadow_count--;
657 			VM_OBJECT_WUNLOCK(temp);
658 			object->backing_object = NULL;
659 		}
660 		/*
661 		 * Don't double-terminate, we could be in a termination
662 		 * recursion due to the terminate having to sync data
663 		 * to disk.
664 		 */
665 		if ((object->flags & OBJ_DEAD) == 0)
666 			vm_object_terminate(object);
667 		else
668 			VM_OBJECT_WUNLOCK(object);
669 		object = temp;
670 	}
671 }
672 
673 /*
674  *	vm_object_destroy removes the object from the global object list
675  *      and frees the space for the object.
676  */
677 void
678 vm_object_destroy(vm_object_t object)
679 {
680 
681 	/*
682 	 * Release the allocation charge.
683 	 */
684 	if (object->cred != NULL) {
685 		swap_release_by_cred(object->charge, object->cred);
686 		object->charge = 0;
687 		crfree(object->cred);
688 		object->cred = NULL;
689 	}
690 
691 	/*
692 	 * Free the space for the object.
693 	 */
694 	uma_zfree(obj_zone, object);
695 }
696 
697 /*
698  *	vm_object_terminate actually destroys the specified object, freeing
699  *	up all previously used resources.
700  *
701  *	The object must be locked.
702  *	This routine may block.
703  */
704 void
705 vm_object_terminate(vm_object_t object)
706 {
707 	vm_page_t p, p_next;
708 
709 	VM_OBJECT_ASSERT_WLOCKED(object);
710 
711 	/*
712 	 * Make sure no one uses us.
713 	 */
714 	vm_object_set_flag(object, OBJ_DEAD);
715 
716 	/*
717 	 * wait for the pageout daemon to be done with the object
718 	 */
719 	vm_object_pip_wait(object, "objtrm");
720 
721 	KASSERT(!object->paging_in_progress,
722 		("vm_object_terminate: pageout in progress"));
723 
724 	/*
725 	 * Clean and free the pages, as appropriate. All references to the
726 	 * object are gone, so we don't need to lock it.
727 	 */
728 	if (object->type == OBJT_VNODE) {
729 		struct vnode *vp = (struct vnode *)object->handle;
730 
731 		/*
732 		 * Clean pages and flush buffers.
733 		 */
734 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735 		VM_OBJECT_WUNLOCK(object);
736 
737 		vinvalbuf(vp, V_SAVE, 0, 0);
738 
739 		VM_OBJECT_WLOCK(object);
740 	}
741 
742 	KASSERT(object->ref_count == 0,
743 		("vm_object_terminate: object with references, ref_count=%d",
744 		object->ref_count));
745 
746 	/*
747 	 * Free any remaining pageable pages.  This also removes them from the
748 	 * paging queues.  However, don't free wired pages, just remove them
749 	 * from the object.  Rather than incrementally removing each page from
750 	 * the object, the page and object are reset to any empty state.
751 	 */
752 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
753 		vm_page_assert_unbusied(p);
754 		vm_page_lock(p);
755 		/*
756 		 * Optimize the page's removal from the object by resetting
757 		 * its "object" field.  Specifically, if the page is not
758 		 * wired, then the effect of this assignment is that
759 		 * vm_page_free()'s call to vm_page_remove() will return
760 		 * immediately without modifying the page or the object.
761 		 */
762 		p->object = NULL;
763 		if (p->wire_count == 0) {
764 			vm_page_free(p);
765 			PCPU_INC(cnt.v_pfree);
766 		}
767 		vm_page_unlock(p);
768 	}
769 	/*
770 	 * If the object contained any pages, then reset it to an empty state.
771 	 * None of the object's fields, including "resident_page_count", were
772 	 * modified by the preceding loop.
773 	 */
774 	if (object->resident_page_count != 0) {
775 		vm_radix_reclaim_allnodes(&object->rtree);
776 		TAILQ_INIT(&object->memq);
777 		object->resident_page_count = 0;
778 		if (object->type == OBJT_VNODE)
779 			vdrop(object->handle);
780 	}
781 
782 #if VM_NRESERVLEVEL > 0
783 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
784 		vm_reserv_break_all(object);
785 #endif
786 	if (__predict_false(!vm_object_cache_is_empty(object)))
787 		vm_page_cache_free(object, 0, 0);
788 
789 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
790 	    object->type == OBJT_SWAP,
791 	    ("%s: non-swap obj %p has cred", __func__, object));
792 
793 	/*
794 	 * Let the pager know object is dead.
795 	 */
796 	vm_pager_deallocate(object);
797 	VM_OBJECT_WUNLOCK(object);
798 
799 	vm_object_destroy(object);
800 }
801 
802 /*
803  * Make the page read-only so that we can clear the object flags.  However, if
804  * this is a nosync mmap then the object is likely to stay dirty so do not
805  * mess with the page and do not clear the object flags.  Returns TRUE if the
806  * page should be flushed, and FALSE otherwise.
807  */
808 static boolean_t
809 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
810 {
811 
812 	/*
813 	 * If we have been asked to skip nosync pages and this is a
814 	 * nosync page, skip it.  Note that the object flags were not
815 	 * cleared in this case so we do not have to set them.
816 	 */
817 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
818 		*clearobjflags = FALSE;
819 		return (FALSE);
820 	} else {
821 		pmap_remove_write(p);
822 		return (p->dirty != 0);
823 	}
824 }
825 
826 /*
827  *	vm_object_page_clean
828  *
829  *	Clean all dirty pages in the specified range of object.  Leaves page
830  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
831  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
832  *	leaving the object dirty.
833  *
834  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
835  *	synchronous clustering mode implementation.
836  *
837  *	Odd semantics: if start == end, we clean everything.
838  *
839  *	The object must be locked.
840  *
841  *	Returns FALSE if some page from the range was not written, as
842  *	reported by the pager, and TRUE otherwise.
843  */
844 boolean_t
845 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
846     int flags)
847 {
848 	vm_page_t np, p;
849 	vm_pindex_t pi, tend, tstart;
850 	int curgeneration, n, pagerflags;
851 	boolean_t clearobjflags, eio, res;
852 
853 	VM_OBJECT_ASSERT_WLOCKED(object);
854 
855 	/*
856 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
857 	 * objects.  The check below prevents the function from
858 	 * operating on non-vnode objects.
859 	 */
860 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
861 	    object->resident_page_count == 0)
862 		return (TRUE);
863 
864 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
865 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
866 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
867 
868 	tstart = OFF_TO_IDX(start);
869 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
870 	clearobjflags = tstart == 0 && tend >= object->size;
871 	res = TRUE;
872 
873 rescan:
874 	curgeneration = object->generation;
875 
876 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
877 		pi = p->pindex;
878 		if (pi >= tend)
879 			break;
880 		np = TAILQ_NEXT(p, listq);
881 		if (p->valid == 0)
882 			continue;
883 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
884 			if (object->generation != curgeneration) {
885 				if ((flags & OBJPC_SYNC) != 0)
886 					goto rescan;
887 				else
888 					clearobjflags = FALSE;
889 			}
890 			np = vm_page_find_least(object, pi);
891 			continue;
892 		}
893 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
894 			continue;
895 
896 		n = vm_object_page_collect_flush(object, p, pagerflags,
897 		    flags, &clearobjflags, &eio);
898 		if (eio) {
899 			res = FALSE;
900 			clearobjflags = FALSE;
901 		}
902 		if (object->generation != curgeneration) {
903 			if ((flags & OBJPC_SYNC) != 0)
904 				goto rescan;
905 			else
906 				clearobjflags = FALSE;
907 		}
908 
909 		/*
910 		 * If the VOP_PUTPAGES() did a truncated write, so
911 		 * that even the first page of the run is not fully
912 		 * written, vm_pageout_flush() returns 0 as the run
913 		 * length.  Since the condition that caused truncated
914 		 * write may be permanent, e.g. exhausted free space,
915 		 * accepting n == 0 would cause an infinite loop.
916 		 *
917 		 * Forwarding the iterator leaves the unwritten page
918 		 * behind, but there is not much we can do there if
919 		 * filesystem refuses to write it.
920 		 */
921 		if (n == 0) {
922 			n = 1;
923 			clearobjflags = FALSE;
924 		}
925 		np = vm_page_find_least(object, pi + n);
926 	}
927 #if 0
928 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
929 #endif
930 
931 	if (clearobjflags)
932 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
933 	return (res);
934 }
935 
936 static int
937 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
938     int flags, boolean_t *clearobjflags, boolean_t *eio)
939 {
940 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
941 	int count, i, mreq, runlen;
942 
943 	vm_page_lock_assert(p, MA_NOTOWNED);
944 	VM_OBJECT_ASSERT_WLOCKED(object);
945 
946 	count = 1;
947 	mreq = 0;
948 
949 	for (tp = p; count < vm_pageout_page_count; count++) {
950 		tp = vm_page_next(tp);
951 		if (tp == NULL || vm_page_busied(tp))
952 			break;
953 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954 			break;
955 	}
956 
957 	for (p_first = p; count < vm_pageout_page_count; count++) {
958 		tp = vm_page_prev(p_first);
959 		if (tp == NULL || vm_page_busied(tp))
960 			break;
961 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
962 			break;
963 		p_first = tp;
964 		mreq++;
965 	}
966 
967 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
968 		ma[i] = tp;
969 
970 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
971 	return (runlen);
972 }
973 
974 /*
975  * Note that there is absolutely no sense in writing out
976  * anonymous objects, so we track down the vnode object
977  * to write out.
978  * We invalidate (remove) all pages from the address space
979  * for semantic correctness.
980  *
981  * If the backing object is a device object with unmanaged pages, then any
982  * mappings to the specified range of pages must be removed before this
983  * function is called.
984  *
985  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
986  * may start out with a NULL object.
987  */
988 boolean_t
989 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
990     boolean_t syncio, boolean_t invalidate)
991 {
992 	vm_object_t backing_object;
993 	struct vnode *vp;
994 	struct mount *mp;
995 	int error, flags, fsync_after;
996 	boolean_t res;
997 
998 	if (object == NULL)
999 		return (TRUE);
1000 	res = TRUE;
1001 	error = 0;
1002 	VM_OBJECT_WLOCK(object);
1003 	while ((backing_object = object->backing_object) != NULL) {
1004 		VM_OBJECT_WLOCK(backing_object);
1005 		offset += object->backing_object_offset;
1006 		VM_OBJECT_WUNLOCK(object);
1007 		object = backing_object;
1008 		if (object->size < OFF_TO_IDX(offset + size))
1009 			size = IDX_TO_OFF(object->size) - offset;
1010 	}
1011 	/*
1012 	 * Flush pages if writing is allowed, invalidate them
1013 	 * if invalidation requested.  Pages undergoing I/O
1014 	 * will be ignored by vm_object_page_remove().
1015 	 *
1016 	 * We cannot lock the vnode and then wait for paging
1017 	 * to complete without deadlocking against vm_fault.
1018 	 * Instead we simply call vm_object_page_remove() and
1019 	 * allow it to block internally on a page-by-page
1020 	 * basis when it encounters pages undergoing async
1021 	 * I/O.
1022 	 */
1023 	if (object->type == OBJT_VNODE &&
1024 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1025 		vp = object->handle;
1026 		VM_OBJECT_WUNLOCK(object);
1027 		(void) vn_start_write(vp, &mp, V_WAIT);
1028 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1029 		if (syncio && !invalidate && offset == 0 &&
1030 		    OFF_TO_IDX(size) == object->size) {
1031 			/*
1032 			 * If syncing the whole mapping of the file,
1033 			 * it is faster to schedule all the writes in
1034 			 * async mode, also allowing the clustering,
1035 			 * and then wait for i/o to complete.
1036 			 */
1037 			flags = 0;
1038 			fsync_after = TRUE;
1039 		} else {
1040 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1042 			fsync_after = FALSE;
1043 		}
1044 		VM_OBJECT_WLOCK(object);
1045 		res = vm_object_page_clean(object, offset, offset + size,
1046 		    flags);
1047 		VM_OBJECT_WUNLOCK(object);
1048 		if (fsync_after)
1049 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1050 		VOP_UNLOCK(vp, 0);
1051 		vn_finished_write(mp);
1052 		if (error != 0)
1053 			res = FALSE;
1054 		VM_OBJECT_WLOCK(object);
1055 	}
1056 	if ((object->type == OBJT_VNODE ||
1057 	     object->type == OBJT_DEVICE) && invalidate) {
1058 		if (object->type == OBJT_DEVICE)
1059 			/*
1060 			 * The option OBJPR_NOTMAPPED must be passed here
1061 			 * because vm_object_page_remove() cannot remove
1062 			 * unmanaged mappings.
1063 			 */
1064 			flags = OBJPR_NOTMAPPED;
1065 		else if (old_msync)
1066 			flags = 0;
1067 		else
1068 			flags = OBJPR_CLEANONLY;
1069 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1070 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1071 	}
1072 	VM_OBJECT_WUNLOCK(object);
1073 	return (res);
1074 }
1075 
1076 /*
1077  *	vm_object_madvise:
1078  *
1079  *	Implements the madvise function at the object/page level.
1080  *
1081  *	MADV_WILLNEED	(any object)
1082  *
1083  *	    Activate the specified pages if they are resident.
1084  *
1085  *	MADV_DONTNEED	(any object)
1086  *
1087  *	    Deactivate the specified pages if they are resident.
1088  *
1089  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1090  *			 OBJ_ONEMAPPING only)
1091  *
1092  *	    Deactivate and clean the specified pages if they are
1093  *	    resident.  This permits the process to reuse the pages
1094  *	    without faulting or the kernel to reclaim the pages
1095  *	    without I/O.
1096  */
1097 void
1098 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1099     int advise)
1100 {
1101 	vm_pindex_t tpindex;
1102 	vm_object_t backing_object, tobject;
1103 	vm_page_t m;
1104 
1105 	if (object == NULL)
1106 		return;
1107 	VM_OBJECT_WLOCK(object);
1108 	/*
1109 	 * Locate and adjust resident pages
1110 	 */
1111 	for (; pindex < end; pindex += 1) {
1112 relookup:
1113 		tobject = object;
1114 		tpindex = pindex;
1115 shadowlookup:
1116 		/*
1117 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118 		 * and those pages must be OBJ_ONEMAPPING.
1119 		 */
1120 		if (advise == MADV_FREE) {
1121 			if ((tobject->type != OBJT_DEFAULT &&
1122 			     tobject->type != OBJT_SWAP) ||
1123 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124 				goto unlock_tobject;
1125 			}
1126 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1127 			goto unlock_tobject;
1128 		m = vm_page_lookup(tobject, tpindex);
1129 		if (m == NULL && advise == MADV_WILLNEED) {
1130 			/*
1131 			 * If the page is cached, reactivate it.
1132 			 */
1133 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1134 			    VM_ALLOC_NOBUSY);
1135 		}
1136 		if (m == NULL) {
1137 			/*
1138 			 * There may be swap even if there is no backing page
1139 			 */
1140 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1141 				swap_pager_freespace(tobject, tpindex, 1);
1142 			/*
1143 			 * next object
1144 			 */
1145 			backing_object = tobject->backing_object;
1146 			if (backing_object == NULL)
1147 				goto unlock_tobject;
1148 			VM_OBJECT_WLOCK(backing_object);
1149 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1150 			if (tobject != object)
1151 				VM_OBJECT_WUNLOCK(tobject);
1152 			tobject = backing_object;
1153 			goto shadowlookup;
1154 		} else if (m->valid != VM_PAGE_BITS_ALL)
1155 			goto unlock_tobject;
1156 		/*
1157 		 * If the page is not in a normal state, skip it.
1158 		 */
1159 		vm_page_lock(m);
1160 		if (m->hold_count != 0 || m->wire_count != 0) {
1161 			vm_page_unlock(m);
1162 			goto unlock_tobject;
1163 		}
1164 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1165 		    ("vm_object_madvise: page %p is fictitious", m));
1166 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1167 		    ("vm_object_madvise: page %p is not managed", m));
1168 		if (vm_page_busied(m)) {
1169 			if (advise == MADV_WILLNEED) {
1170 				/*
1171 				 * Reference the page before unlocking and
1172 				 * sleeping so that the page daemon is less
1173 				 * likely to reclaim it.
1174 				 */
1175 				vm_page_aflag_set(m, PGA_REFERENCED);
1176 			}
1177 			if (object != tobject)
1178 				VM_OBJECT_WUNLOCK(object);
1179 			VM_OBJECT_WUNLOCK(tobject);
1180 			vm_page_busy_sleep(m, "madvpo");
1181 			VM_OBJECT_WLOCK(object);
1182   			goto relookup;
1183 		}
1184 		if (advise == MADV_WILLNEED) {
1185 			vm_page_activate(m);
1186 		} else {
1187 			vm_page_advise(m, advise);
1188 		}
1189 		vm_page_unlock(m);
1190 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1191 			swap_pager_freespace(tobject, tpindex, 1);
1192 unlock_tobject:
1193 		if (tobject != object)
1194 			VM_OBJECT_WUNLOCK(tobject);
1195 	}
1196 	VM_OBJECT_WUNLOCK(object);
1197 }
1198 
1199 /*
1200  *	vm_object_shadow:
1201  *
1202  *	Create a new object which is backed by the
1203  *	specified existing object range.  The source
1204  *	object reference is deallocated.
1205  *
1206  *	The new object and offset into that object
1207  *	are returned in the source parameters.
1208  */
1209 void
1210 vm_object_shadow(
1211 	vm_object_t *object,	/* IN/OUT */
1212 	vm_ooffset_t *offset,	/* IN/OUT */
1213 	vm_size_t length)
1214 {
1215 	vm_object_t source;
1216 	vm_object_t result;
1217 
1218 	source = *object;
1219 
1220 	/*
1221 	 * Don't create the new object if the old object isn't shared.
1222 	 */
1223 	if (source != NULL) {
1224 		VM_OBJECT_WLOCK(source);
1225 		if (source->ref_count == 1 &&
1226 		    source->handle == NULL &&
1227 		    (source->type == OBJT_DEFAULT ||
1228 		     source->type == OBJT_SWAP)) {
1229 			VM_OBJECT_WUNLOCK(source);
1230 			return;
1231 		}
1232 		VM_OBJECT_WUNLOCK(source);
1233 	}
1234 
1235 	/*
1236 	 * Allocate a new object with the given length.
1237 	 */
1238 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1239 
1240 	/*
1241 	 * The new object shadows the source object, adding a reference to it.
1242 	 * Our caller changes his reference to point to the new object,
1243 	 * removing a reference to the source object.  Net result: no change
1244 	 * of reference count.
1245 	 *
1246 	 * Try to optimize the result object's page color when shadowing
1247 	 * in order to maintain page coloring consistency in the combined
1248 	 * shadowed object.
1249 	 */
1250 	result->backing_object = source;
1251 	/*
1252 	 * Store the offset into the source object, and fix up the offset into
1253 	 * the new object.
1254 	 */
1255 	result->backing_object_offset = *offset;
1256 	if (source != NULL) {
1257 		VM_OBJECT_WLOCK(source);
1258 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1259 		source->shadow_count++;
1260 #if VM_NRESERVLEVEL > 0
1261 		result->flags |= source->flags & OBJ_COLORED;
1262 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1263 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1264 #endif
1265 		VM_OBJECT_WUNLOCK(source);
1266 	}
1267 
1268 
1269 	/*
1270 	 * Return the new things
1271 	 */
1272 	*offset = 0;
1273 	*object = result;
1274 }
1275 
1276 /*
1277  *	vm_object_split:
1278  *
1279  * Split the pages in a map entry into a new object.  This affords
1280  * easier removal of unused pages, and keeps object inheritance from
1281  * being a negative impact on memory usage.
1282  */
1283 void
1284 vm_object_split(vm_map_entry_t entry)
1285 {
1286 	vm_page_t m, m_next;
1287 	vm_object_t orig_object, new_object, source;
1288 	vm_pindex_t idx, offidxstart;
1289 	vm_size_t size;
1290 
1291 	orig_object = entry->object.vm_object;
1292 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1293 		return;
1294 	if (orig_object->ref_count <= 1)
1295 		return;
1296 	VM_OBJECT_WUNLOCK(orig_object);
1297 
1298 	offidxstart = OFF_TO_IDX(entry->offset);
1299 	size = atop(entry->end - entry->start);
1300 
1301 	/*
1302 	 * If swap_pager_copy() is later called, it will convert new_object
1303 	 * into a swap object.
1304 	 */
1305 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1306 
1307 	/*
1308 	 * At this point, the new object is still private, so the order in
1309 	 * which the original and new objects are locked does not matter.
1310 	 */
1311 	VM_OBJECT_WLOCK(new_object);
1312 	VM_OBJECT_WLOCK(orig_object);
1313 	source = orig_object->backing_object;
1314 	if (source != NULL) {
1315 		VM_OBJECT_WLOCK(source);
1316 		if ((source->flags & OBJ_DEAD) != 0) {
1317 			VM_OBJECT_WUNLOCK(source);
1318 			VM_OBJECT_WUNLOCK(orig_object);
1319 			VM_OBJECT_WUNLOCK(new_object);
1320 			vm_object_deallocate(new_object);
1321 			VM_OBJECT_WLOCK(orig_object);
1322 			return;
1323 		}
1324 		LIST_INSERT_HEAD(&source->shadow_head,
1325 				  new_object, shadow_list);
1326 		source->shadow_count++;
1327 		vm_object_reference_locked(source);	/* for new_object */
1328 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1329 		VM_OBJECT_WUNLOCK(source);
1330 		new_object->backing_object_offset =
1331 			orig_object->backing_object_offset + entry->offset;
1332 		new_object->backing_object = source;
1333 	}
1334 	if (orig_object->cred != NULL) {
1335 		new_object->cred = orig_object->cred;
1336 		crhold(orig_object->cred);
1337 		new_object->charge = ptoa(size);
1338 		KASSERT(orig_object->charge >= ptoa(size),
1339 		    ("orig_object->charge < 0"));
1340 		orig_object->charge -= ptoa(size);
1341 	}
1342 retry:
1343 	m = vm_page_find_least(orig_object, offidxstart);
1344 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1345 	    m = m_next) {
1346 		m_next = TAILQ_NEXT(m, listq);
1347 
1348 		/*
1349 		 * We must wait for pending I/O to complete before we can
1350 		 * rename the page.
1351 		 *
1352 		 * We do not have to VM_PROT_NONE the page as mappings should
1353 		 * not be changed by this operation.
1354 		 */
1355 		if (vm_page_busied(m)) {
1356 			VM_OBJECT_WUNLOCK(new_object);
1357 			vm_page_lock(m);
1358 			VM_OBJECT_WUNLOCK(orig_object);
1359 			vm_page_busy_sleep(m, "spltwt");
1360 			VM_OBJECT_WLOCK(orig_object);
1361 			VM_OBJECT_WLOCK(new_object);
1362 			goto retry;
1363 		}
1364 
1365 		/* vm_page_rename() will handle dirty and cache. */
1366 		if (vm_page_rename(m, new_object, idx)) {
1367 			VM_OBJECT_WUNLOCK(new_object);
1368 			VM_OBJECT_WUNLOCK(orig_object);
1369 			VM_WAIT;
1370 			VM_OBJECT_WLOCK(orig_object);
1371 			VM_OBJECT_WLOCK(new_object);
1372 			goto retry;
1373 		}
1374 #if VM_NRESERVLEVEL > 0
1375 		/*
1376 		 * If some of the reservation's allocated pages remain with
1377 		 * the original object, then transferring the reservation to
1378 		 * the new object is neither particularly beneficial nor
1379 		 * particularly harmful as compared to leaving the reservation
1380 		 * with the original object.  If, however, all of the
1381 		 * reservation's allocated pages are transferred to the new
1382 		 * object, then transferring the reservation is typically
1383 		 * beneficial.  Determining which of these two cases applies
1384 		 * would be more costly than unconditionally renaming the
1385 		 * reservation.
1386 		 */
1387 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388 #endif
1389 		if (orig_object->type == OBJT_SWAP)
1390 			vm_page_xbusy(m);
1391 	}
1392 	if (orig_object->type == OBJT_SWAP) {
1393 		/*
1394 		 * swap_pager_copy() can sleep, in which case the orig_object's
1395 		 * and new_object's locks are released and reacquired.
1396 		 */
1397 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1398 		TAILQ_FOREACH(m, &new_object->memq, listq)
1399 			vm_page_xunbusy(m);
1400 
1401 		/*
1402 		 * Transfer any cached pages from orig_object to new_object.
1403 		 * If swap_pager_copy() found swapped out pages within the
1404 		 * specified range of orig_object, then it changed
1405 		 * new_object's type to OBJT_SWAP when it transferred those
1406 		 * pages to new_object.  Otherwise, new_object's type
1407 		 * should still be OBJT_DEFAULT and orig_object should not
1408 		 * contain any cached pages within the specified range.
1409 		 */
1410 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1411 			vm_page_cache_transfer(orig_object, offidxstart,
1412 			    new_object);
1413 	}
1414 	VM_OBJECT_WUNLOCK(orig_object);
1415 	VM_OBJECT_WUNLOCK(new_object);
1416 	entry->object.vm_object = new_object;
1417 	entry->offset = 0LL;
1418 	vm_object_deallocate(orig_object);
1419 	VM_OBJECT_WLOCK(new_object);
1420 }
1421 
1422 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1423 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1424 #define	OBSC_COLLAPSE_WAIT	0x0004
1425 
1426 static int
1427 vm_object_backing_scan(vm_object_t object, int op)
1428 {
1429 	int r = 1;
1430 	vm_page_t p;
1431 	vm_object_t backing_object;
1432 	vm_pindex_t backing_offset_index;
1433 
1434 	VM_OBJECT_ASSERT_WLOCKED(object);
1435 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1436 
1437 	backing_object = object->backing_object;
1438 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1439 
1440 	/*
1441 	 * Initial conditions
1442 	 */
1443 	if (op & OBSC_TEST_ALL_SHADOWED) {
1444 		/*
1445 		 * We do not want to have to test for the existence of cache
1446 		 * or swap pages in the backing object.  XXX but with the
1447 		 * new swapper this would be pretty easy to do.
1448 		 *
1449 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1450 		 * been ZFOD faulted yet?  If we do not test for this, the
1451 		 * shadow test may succeed! XXX
1452 		 */
1453 		if (backing_object->type != OBJT_DEFAULT) {
1454 			return (0);
1455 		}
1456 	}
1457 	if (op & OBSC_COLLAPSE_WAIT) {
1458 		vm_object_set_flag(backing_object, OBJ_DEAD);
1459 	}
1460 
1461 	/*
1462 	 * Our scan
1463 	 */
1464 	p = TAILQ_FIRST(&backing_object->memq);
1465 	while (p) {
1466 		vm_page_t next = TAILQ_NEXT(p, listq);
1467 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1468 
1469 		if (op & OBSC_TEST_ALL_SHADOWED) {
1470 			vm_page_t pp;
1471 
1472 			/*
1473 			 * Ignore pages outside the parent object's range
1474 			 * and outside the parent object's mapping of the
1475 			 * backing object.
1476 			 *
1477 			 * note that we do not busy the backing object's
1478 			 * page.
1479 			 */
1480 			if (
1481 			    p->pindex < backing_offset_index ||
1482 			    new_pindex >= object->size
1483 			) {
1484 				p = next;
1485 				continue;
1486 			}
1487 
1488 			/*
1489 			 * See if the parent has the page or if the parent's
1490 			 * object pager has the page.  If the parent has the
1491 			 * page but the page is not valid, the parent's
1492 			 * object pager must have the page.
1493 			 *
1494 			 * If this fails, the parent does not completely shadow
1495 			 * the object and we might as well give up now.
1496 			 */
1497 
1498 			pp = vm_page_lookup(object, new_pindex);
1499 			if (
1500 			    (pp == NULL || pp->valid == 0) &&
1501 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1502 			) {
1503 				r = 0;
1504 				break;
1505 			}
1506 		}
1507 
1508 		/*
1509 		 * Check for busy page
1510 		 */
1511 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1512 			vm_page_t pp;
1513 
1514 			if (op & OBSC_COLLAPSE_NOWAIT) {
1515 				if (!p->valid || vm_page_busied(p)) {
1516 					p = next;
1517 					continue;
1518 				}
1519 			} else if (op & OBSC_COLLAPSE_WAIT) {
1520 				if (vm_page_busied(p)) {
1521 					VM_OBJECT_WUNLOCK(object);
1522 					vm_page_lock(p);
1523 					VM_OBJECT_WUNLOCK(backing_object);
1524 					vm_page_busy_sleep(p, "vmocol");
1525 					VM_OBJECT_WLOCK(object);
1526 					VM_OBJECT_WLOCK(backing_object);
1527 					/*
1528 					 * If we slept, anything could have
1529 					 * happened.  Since the object is
1530 					 * marked dead, the backing offset
1531 					 * should not have changed so we
1532 					 * just restart our scan.
1533 					 */
1534 					p = TAILQ_FIRST(&backing_object->memq);
1535 					continue;
1536 				}
1537 			}
1538 
1539 			KASSERT(
1540 			    p->object == backing_object,
1541 			    ("vm_object_backing_scan: object mismatch")
1542 			);
1543 
1544 			if (
1545 			    p->pindex < backing_offset_index ||
1546 			    new_pindex >= object->size
1547 			) {
1548 				if (backing_object->type == OBJT_SWAP)
1549 					swap_pager_freespace(backing_object,
1550 					    p->pindex, 1);
1551 
1552 				/*
1553 				 * Page is out of the parent object's range, we
1554 				 * can simply destroy it.
1555 				 */
1556 				vm_page_lock(p);
1557 				KASSERT(!pmap_page_is_mapped(p),
1558 				    ("freeing mapped page %p", p));
1559 				if (p->wire_count == 0)
1560 					vm_page_free(p);
1561 				else
1562 					vm_page_remove(p);
1563 				vm_page_unlock(p);
1564 				p = next;
1565 				continue;
1566 			}
1567 
1568 			pp = vm_page_lookup(object, new_pindex);
1569 			if (
1570 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1571 			    (pp != NULL && pp->valid == 0)
1572 			) {
1573 				if (backing_object->type == OBJT_SWAP)
1574 					swap_pager_freespace(backing_object,
1575 					    p->pindex, 1);
1576 
1577 				/*
1578 				 * The page in the parent is not (yet) valid.
1579 				 * We don't know anything about the state of
1580 				 * the original page.  It might be mapped,
1581 				 * so we must avoid the next if here.
1582 				 *
1583 				 * This is due to a race in vm_fault() where
1584 				 * we must unbusy the original (backing_obj)
1585 				 * page before we can (re)lock the parent.
1586 				 * Hence we can get here.
1587 				 */
1588 				p = next;
1589 				continue;
1590 			}
1591 			if (
1592 			    pp != NULL ||
1593 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1594 			) {
1595 				if (backing_object->type == OBJT_SWAP)
1596 					swap_pager_freespace(backing_object,
1597 					    p->pindex, 1);
1598 
1599 				/*
1600 				 * page already exists in parent OR swap exists
1601 				 * for this location in the parent.  Destroy
1602 				 * the original page from the backing object.
1603 				 *
1604 				 * Leave the parent's page alone
1605 				 */
1606 				vm_page_lock(p);
1607 				KASSERT(!pmap_page_is_mapped(p),
1608 				    ("freeing mapped page %p", p));
1609 				if (p->wire_count == 0)
1610 					vm_page_free(p);
1611 				else
1612 					vm_page_remove(p);
1613 				vm_page_unlock(p);
1614 				p = next;
1615 				continue;
1616 			}
1617 
1618 			/*
1619 			 * Page does not exist in parent, rename the
1620 			 * page from the backing object to the main object.
1621 			 *
1622 			 * If the page was mapped to a process, it can remain
1623 			 * mapped through the rename.
1624 			 * vm_page_rename() will handle dirty and cache.
1625 			 */
1626 			if (vm_page_rename(p, object, new_pindex)) {
1627 				if (op & OBSC_COLLAPSE_NOWAIT) {
1628 					p = next;
1629 					continue;
1630 				}
1631 				VM_OBJECT_WUNLOCK(backing_object);
1632 				VM_OBJECT_WUNLOCK(object);
1633 				VM_WAIT;
1634 				VM_OBJECT_WLOCK(object);
1635 				VM_OBJECT_WLOCK(backing_object);
1636 				p = TAILQ_FIRST(&backing_object->memq);
1637 				continue;
1638 			}
1639 
1640 			/* Use the old pindex to free the right page. */
1641 			if (backing_object->type == OBJT_SWAP)
1642 				swap_pager_freespace(backing_object,
1643 				    new_pindex + backing_offset_index, 1);
1644 
1645 #if VM_NRESERVLEVEL > 0
1646 			/*
1647 			 * Rename the reservation.
1648 			 */
1649 			vm_reserv_rename(p, object, backing_object,
1650 			    backing_offset_index);
1651 #endif
1652 		}
1653 		p = next;
1654 	}
1655 	return (r);
1656 }
1657 
1658 
1659 /*
1660  * this version of collapse allows the operation to occur earlier and
1661  * when paging_in_progress is true for an object...  This is not a complete
1662  * operation, but should plug 99.9% of the rest of the leaks.
1663  */
1664 static void
1665 vm_object_qcollapse(vm_object_t object)
1666 {
1667 	vm_object_t backing_object = object->backing_object;
1668 
1669 	VM_OBJECT_ASSERT_WLOCKED(object);
1670 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1671 
1672 	if (backing_object->ref_count != 1)
1673 		return;
1674 
1675 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1676 }
1677 
1678 /*
1679  *	vm_object_collapse:
1680  *
1681  *	Collapse an object with the object backing it.
1682  *	Pages in the backing object are moved into the
1683  *	parent, and the backing object is deallocated.
1684  */
1685 void
1686 vm_object_collapse(vm_object_t object)
1687 {
1688 	VM_OBJECT_ASSERT_WLOCKED(object);
1689 
1690 	while (TRUE) {
1691 		vm_object_t backing_object;
1692 
1693 		/*
1694 		 * Verify that the conditions are right for collapse:
1695 		 *
1696 		 * The object exists and the backing object exists.
1697 		 */
1698 		if ((backing_object = object->backing_object) == NULL)
1699 			break;
1700 
1701 		/*
1702 		 * we check the backing object first, because it is most likely
1703 		 * not collapsable.
1704 		 */
1705 		VM_OBJECT_WLOCK(backing_object);
1706 		if (backing_object->handle != NULL ||
1707 		    (backing_object->type != OBJT_DEFAULT &&
1708 		     backing_object->type != OBJT_SWAP) ||
1709 		    (backing_object->flags & OBJ_DEAD) ||
1710 		    object->handle != NULL ||
1711 		    (object->type != OBJT_DEFAULT &&
1712 		     object->type != OBJT_SWAP) ||
1713 		    (object->flags & OBJ_DEAD)) {
1714 			VM_OBJECT_WUNLOCK(backing_object);
1715 			break;
1716 		}
1717 
1718 		if (
1719 		    object->paging_in_progress != 0 ||
1720 		    backing_object->paging_in_progress != 0
1721 		) {
1722 			vm_object_qcollapse(object);
1723 			VM_OBJECT_WUNLOCK(backing_object);
1724 			break;
1725 		}
1726 		/*
1727 		 * We know that we can either collapse the backing object (if
1728 		 * the parent is the only reference to it) or (perhaps) have
1729 		 * the parent bypass the object if the parent happens to shadow
1730 		 * all the resident pages in the entire backing object.
1731 		 *
1732 		 * This is ignoring pager-backed pages such as swap pages.
1733 		 * vm_object_backing_scan fails the shadowing test in this
1734 		 * case.
1735 		 */
1736 		if (backing_object->ref_count == 1) {
1737 			/*
1738 			 * If there is exactly one reference to the backing
1739 			 * object, we can collapse it into the parent.
1740 			 */
1741 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1742 
1743 #if VM_NRESERVLEVEL > 0
1744 			/*
1745 			 * Break any reservations from backing_object.
1746 			 */
1747 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1748 				vm_reserv_break_all(backing_object);
1749 #endif
1750 
1751 			/*
1752 			 * Move the pager from backing_object to object.
1753 			 */
1754 			if (backing_object->type == OBJT_SWAP) {
1755 				/*
1756 				 * swap_pager_copy() can sleep, in which case
1757 				 * the backing_object's and object's locks are
1758 				 * released and reacquired.
1759 				 * Since swap_pager_copy() is being asked to
1760 				 * destroy the source, it will change the
1761 				 * backing_object's type to OBJT_DEFAULT.
1762 				 */
1763 				swap_pager_copy(
1764 				    backing_object,
1765 				    object,
1766 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1767 
1768 				/*
1769 				 * Free any cached pages from backing_object.
1770 				 */
1771 				if (__predict_false(
1772 				    !vm_object_cache_is_empty(backing_object)))
1773 					vm_page_cache_free(backing_object, 0, 0);
1774 			}
1775 			/*
1776 			 * Object now shadows whatever backing_object did.
1777 			 * Note that the reference to
1778 			 * backing_object->backing_object moves from within
1779 			 * backing_object to within object.
1780 			 */
1781 			LIST_REMOVE(object, shadow_list);
1782 			backing_object->shadow_count--;
1783 			if (backing_object->backing_object) {
1784 				VM_OBJECT_WLOCK(backing_object->backing_object);
1785 				LIST_REMOVE(backing_object, shadow_list);
1786 				LIST_INSERT_HEAD(
1787 				    &backing_object->backing_object->shadow_head,
1788 				    object, shadow_list);
1789 				/*
1790 				 * The shadow_count has not changed.
1791 				 */
1792 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1793 			}
1794 			object->backing_object = backing_object->backing_object;
1795 			object->backing_object_offset +=
1796 			    backing_object->backing_object_offset;
1797 
1798 			/*
1799 			 * Discard backing_object.
1800 			 *
1801 			 * Since the backing object has no pages, no pager left,
1802 			 * and no object references within it, all that is
1803 			 * necessary is to dispose of it.
1804 			 */
1805 			KASSERT(backing_object->ref_count == 1, (
1806 "backing_object %p was somehow re-referenced during collapse!",
1807 			    backing_object));
1808 			backing_object->type = OBJT_DEAD;
1809 			backing_object->ref_count = 0;
1810 			VM_OBJECT_WUNLOCK(backing_object);
1811 			vm_object_destroy(backing_object);
1812 
1813 			object_collapses++;
1814 		} else {
1815 			vm_object_t new_backing_object;
1816 
1817 			/*
1818 			 * If we do not entirely shadow the backing object,
1819 			 * there is nothing we can do so we give up.
1820 			 */
1821 			if (object->resident_page_count != object->size &&
1822 			    vm_object_backing_scan(object,
1823 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1824 				VM_OBJECT_WUNLOCK(backing_object);
1825 				break;
1826 			}
1827 
1828 			/*
1829 			 * Make the parent shadow the next object in the
1830 			 * chain.  Deallocating backing_object will not remove
1831 			 * it, since its reference count is at least 2.
1832 			 */
1833 			LIST_REMOVE(object, shadow_list);
1834 			backing_object->shadow_count--;
1835 
1836 			new_backing_object = backing_object->backing_object;
1837 			if ((object->backing_object = new_backing_object) != NULL) {
1838 				VM_OBJECT_WLOCK(new_backing_object);
1839 				LIST_INSERT_HEAD(
1840 				    &new_backing_object->shadow_head,
1841 				    object,
1842 				    shadow_list
1843 				);
1844 				new_backing_object->shadow_count++;
1845 				vm_object_reference_locked(new_backing_object);
1846 				VM_OBJECT_WUNLOCK(new_backing_object);
1847 				object->backing_object_offset +=
1848 					backing_object->backing_object_offset;
1849 			}
1850 
1851 			/*
1852 			 * Drop the reference count on backing_object. Since
1853 			 * its ref_count was at least 2, it will not vanish.
1854 			 */
1855 			backing_object->ref_count--;
1856 			VM_OBJECT_WUNLOCK(backing_object);
1857 			object_bypasses++;
1858 		}
1859 
1860 		/*
1861 		 * Try again with this object's new backing object.
1862 		 */
1863 	}
1864 }
1865 
1866 /*
1867  *	vm_object_page_remove:
1868  *
1869  *	For the given object, either frees or invalidates each of the
1870  *	specified pages.  In general, a page is freed.  However, if a page is
1871  *	wired for any reason other than the existence of a managed, wired
1872  *	mapping, then it may be invalidated but not removed from the object.
1873  *	Pages are specified by the given range ["start", "end") and the option
1874  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1875  *	extends from "start" to the end of the object.  If the option
1876  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1877  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1878  *	specified, then the pages within the specified range must have no
1879  *	mappings.  Otherwise, if this option is not specified, any mappings to
1880  *	the specified pages are removed before the pages are freed or
1881  *	invalidated.
1882  *
1883  *	In general, this operation should only be performed on objects that
1884  *	contain managed pages.  There are, however, two exceptions.  First, it
1885  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1886  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1887  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1888  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1889  *
1890  *	The object must be locked.
1891  */
1892 void
1893 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1894     int options)
1895 {
1896 	vm_page_t p, next;
1897 
1898 	VM_OBJECT_ASSERT_WLOCKED(object);
1899 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1900 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1901 	    ("vm_object_page_remove: illegal options for object %p", object));
1902 	if (object->resident_page_count == 0)
1903 		goto skipmemq;
1904 	vm_object_pip_add(object, 1);
1905 again:
1906 	p = vm_page_find_least(object, start);
1907 
1908 	/*
1909 	 * Here, the variable "p" is either (1) the page with the least pindex
1910 	 * greater than or equal to the parameter "start" or (2) NULL.
1911 	 */
1912 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1913 		next = TAILQ_NEXT(p, listq);
1914 
1915 		/*
1916 		 * If the page is wired for any reason besides the existence
1917 		 * of managed, wired mappings, then it cannot be freed.  For
1918 		 * example, fictitious pages, which represent device memory,
1919 		 * are inherently wired and cannot be freed.  They can,
1920 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1921 		 * not specified.
1922 		 */
1923 		vm_page_lock(p);
1924 		if (vm_page_xbusied(p)) {
1925 			VM_OBJECT_WUNLOCK(object);
1926 			vm_page_busy_sleep(p, "vmopax");
1927 			VM_OBJECT_WLOCK(object);
1928 			goto again;
1929 		}
1930 		if (p->wire_count != 0) {
1931 			if ((options & OBJPR_NOTMAPPED) == 0)
1932 				pmap_remove_all(p);
1933 			if ((options & OBJPR_CLEANONLY) == 0) {
1934 				p->valid = 0;
1935 				vm_page_undirty(p);
1936 			}
1937 			goto next;
1938 		}
1939 		if (vm_page_busied(p)) {
1940 			VM_OBJECT_WUNLOCK(object);
1941 			vm_page_busy_sleep(p, "vmopar");
1942 			VM_OBJECT_WLOCK(object);
1943 			goto again;
1944 		}
1945 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1946 		    ("vm_object_page_remove: page %p is fictitious", p));
1947 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1948 			if ((options & OBJPR_NOTMAPPED) == 0)
1949 				pmap_remove_write(p);
1950 			if (p->dirty)
1951 				goto next;
1952 		}
1953 		if ((options & OBJPR_NOTMAPPED) == 0)
1954 			pmap_remove_all(p);
1955 		vm_page_free(p);
1956 next:
1957 		vm_page_unlock(p);
1958 	}
1959 	vm_object_pip_wakeup(object);
1960 skipmemq:
1961 	if (__predict_false(!vm_object_cache_is_empty(object)))
1962 		vm_page_cache_free(object, start, end);
1963 }
1964 
1965 /*
1966  *	vm_object_page_noreuse:
1967  *
1968  *	For the given object, attempt to move the specified pages to
1969  *	the head of the inactive queue.  This bypasses regular LRU
1970  *	operation and allows the pages to be reused quickly under memory
1971  *	pressure.  If a page is wired for any reason, then it will not
1972  *	be queued.  Pages are specified by the range ["start", "end").
1973  *	As a special case, if "end" is zero, then the range extends from
1974  *	"start" to the end of the object.
1975  *
1976  *	This operation should only be performed on objects that
1977  *	contain non-fictitious, managed pages.
1978  *
1979  *	The object must be locked.
1980  */
1981 void
1982 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1983 {
1984 	struct mtx *mtx, *new_mtx;
1985 	vm_page_t p, next;
1986 
1987 	VM_OBJECT_ASSERT_WLOCKED(object);
1988 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1989 	    ("vm_object_page_noreuse: illegal object %p", object));
1990 	if (object->resident_page_count == 0)
1991 		return;
1992 	p = vm_page_find_least(object, start);
1993 
1994 	/*
1995 	 * Here, the variable "p" is either (1) the page with the least pindex
1996 	 * greater than or equal to the parameter "start" or (2) NULL.
1997 	 */
1998 	mtx = NULL;
1999 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2000 		next = TAILQ_NEXT(p, listq);
2001 
2002 		/*
2003 		 * Avoid releasing and reacquiring the same page lock.
2004 		 */
2005 		new_mtx = vm_page_lockptr(p);
2006 		if (mtx != new_mtx) {
2007 			if (mtx != NULL)
2008 				mtx_unlock(mtx);
2009 			mtx = new_mtx;
2010 			mtx_lock(mtx);
2011 		}
2012 		vm_page_deactivate_noreuse(p);
2013 	}
2014 	if (mtx != NULL)
2015 		mtx_unlock(mtx);
2016 }
2017 
2018 /*
2019  *	Populate the specified range of the object with valid pages.  Returns
2020  *	TRUE if the range is successfully populated and FALSE otherwise.
2021  *
2022  *	Note: This function should be optimized to pass a larger array of
2023  *	pages to vm_pager_get_pages() before it is applied to a non-
2024  *	OBJT_DEVICE object.
2025  *
2026  *	The object must be locked.
2027  */
2028 boolean_t
2029 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2030 {
2031 	vm_page_t m;
2032 	vm_pindex_t pindex;
2033 	int rv;
2034 
2035 	VM_OBJECT_ASSERT_WLOCKED(object);
2036 	for (pindex = start; pindex < end; pindex++) {
2037 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2038 		if (m->valid != VM_PAGE_BITS_ALL) {
2039 			rv = vm_pager_get_pages(object, &m, 1, 0);
2040 			if (rv != VM_PAGER_OK) {
2041 				vm_page_lock(m);
2042 				vm_page_free(m);
2043 				vm_page_unlock(m);
2044 				break;
2045 			}
2046 		}
2047 		/*
2048 		 * Keep "m" busy because a subsequent iteration may unlock
2049 		 * the object.
2050 		 */
2051 	}
2052 	if (pindex > start) {
2053 		m = vm_page_lookup(object, start);
2054 		while (m != NULL && m->pindex < pindex) {
2055 			vm_page_xunbusy(m);
2056 			m = TAILQ_NEXT(m, listq);
2057 		}
2058 	}
2059 	return (pindex == end);
2060 }
2061 
2062 /*
2063  *	Routine:	vm_object_coalesce
2064  *	Function:	Coalesces two objects backing up adjoining
2065  *			regions of memory into a single object.
2066  *
2067  *	returns TRUE if objects were combined.
2068  *
2069  *	NOTE:	Only works at the moment if the second object is NULL -
2070  *		if it's not, which object do we lock first?
2071  *
2072  *	Parameters:
2073  *		prev_object	First object to coalesce
2074  *		prev_offset	Offset into prev_object
2075  *		prev_size	Size of reference to prev_object
2076  *		next_size	Size of reference to the second object
2077  *		reserved	Indicator that extension region has
2078  *				swap accounted for
2079  *
2080  *	Conditions:
2081  *	The object must *not* be locked.
2082  */
2083 boolean_t
2084 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2085     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2086 {
2087 	vm_pindex_t next_pindex;
2088 
2089 	if (prev_object == NULL)
2090 		return (TRUE);
2091 	VM_OBJECT_WLOCK(prev_object);
2092 	if ((prev_object->type != OBJT_DEFAULT &&
2093 	    prev_object->type != OBJT_SWAP) ||
2094 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2095 		VM_OBJECT_WUNLOCK(prev_object);
2096 		return (FALSE);
2097 	}
2098 
2099 	/*
2100 	 * Try to collapse the object first
2101 	 */
2102 	vm_object_collapse(prev_object);
2103 
2104 	/*
2105 	 * Can't coalesce if: . more than one reference . paged out . shadows
2106 	 * another object . has a copy elsewhere (any of which mean that the
2107 	 * pages not mapped to prev_entry may be in use anyway)
2108 	 */
2109 	if (prev_object->backing_object != NULL) {
2110 		VM_OBJECT_WUNLOCK(prev_object);
2111 		return (FALSE);
2112 	}
2113 
2114 	prev_size >>= PAGE_SHIFT;
2115 	next_size >>= PAGE_SHIFT;
2116 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2117 
2118 	if ((prev_object->ref_count > 1) &&
2119 	    (prev_object->size != next_pindex)) {
2120 		VM_OBJECT_WUNLOCK(prev_object);
2121 		return (FALSE);
2122 	}
2123 
2124 	/*
2125 	 * Account for the charge.
2126 	 */
2127 	if (prev_object->cred != NULL) {
2128 
2129 		/*
2130 		 * If prev_object was charged, then this mapping,
2131 		 * althought not charged now, may become writable
2132 		 * later. Non-NULL cred in the object would prevent
2133 		 * swap reservation during enabling of the write
2134 		 * access, so reserve swap now. Failed reservation
2135 		 * cause allocation of the separate object for the map
2136 		 * entry, and swap reservation for this entry is
2137 		 * managed in appropriate time.
2138 		 */
2139 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2140 		    prev_object->cred)) {
2141 			return (FALSE);
2142 		}
2143 		prev_object->charge += ptoa(next_size);
2144 	}
2145 
2146 	/*
2147 	 * Remove any pages that may still be in the object from a previous
2148 	 * deallocation.
2149 	 */
2150 	if (next_pindex < prev_object->size) {
2151 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2152 		    next_size, 0);
2153 		if (prev_object->type == OBJT_SWAP)
2154 			swap_pager_freespace(prev_object,
2155 					     next_pindex, next_size);
2156 #if 0
2157 		if (prev_object->cred != NULL) {
2158 			KASSERT(prev_object->charge >=
2159 			    ptoa(prev_object->size - next_pindex),
2160 			    ("object %p overcharged 1 %jx %jx", prev_object,
2161 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2162 			prev_object->charge -= ptoa(prev_object->size -
2163 			    next_pindex);
2164 		}
2165 #endif
2166 	}
2167 
2168 	/*
2169 	 * Extend the object if necessary.
2170 	 */
2171 	if (next_pindex + next_size > prev_object->size)
2172 		prev_object->size = next_pindex + next_size;
2173 
2174 	VM_OBJECT_WUNLOCK(prev_object);
2175 	return (TRUE);
2176 }
2177 
2178 void
2179 vm_object_set_writeable_dirty(vm_object_t object)
2180 {
2181 
2182 	VM_OBJECT_ASSERT_WLOCKED(object);
2183 	if (object->type != OBJT_VNODE) {
2184 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2185 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2186 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2187 		}
2188 		return;
2189 	}
2190 	object->generation++;
2191 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2192 		return;
2193 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2194 }
2195 
2196 /*
2197  *	vm_object_unwire:
2198  *
2199  *	For each page offset within the specified range of the given object,
2200  *	find the highest-level page in the shadow chain and unwire it.  A page
2201  *	must exist at every page offset, and the highest-level page must be
2202  *	wired.
2203  */
2204 void
2205 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2206     uint8_t queue)
2207 {
2208 	vm_object_t tobject;
2209 	vm_page_t m, tm;
2210 	vm_pindex_t end_pindex, pindex, tpindex;
2211 	int depth, locked_depth;
2212 
2213 	KASSERT((offset & PAGE_MASK) == 0,
2214 	    ("vm_object_unwire: offset is not page aligned"));
2215 	KASSERT((length & PAGE_MASK) == 0,
2216 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2217 	/* The wired count of a fictitious page never changes. */
2218 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2219 		return;
2220 	pindex = OFF_TO_IDX(offset);
2221 	end_pindex = pindex + atop(length);
2222 	locked_depth = 1;
2223 	VM_OBJECT_RLOCK(object);
2224 	m = vm_page_find_least(object, pindex);
2225 	while (pindex < end_pindex) {
2226 		if (m == NULL || pindex < m->pindex) {
2227 			/*
2228 			 * The first object in the shadow chain doesn't
2229 			 * contain a page at the current index.  Therefore,
2230 			 * the page must exist in a backing object.
2231 			 */
2232 			tobject = object;
2233 			tpindex = pindex;
2234 			depth = 0;
2235 			do {
2236 				tpindex +=
2237 				    OFF_TO_IDX(tobject->backing_object_offset);
2238 				tobject = tobject->backing_object;
2239 				KASSERT(tobject != NULL,
2240 				    ("vm_object_unwire: missing page"));
2241 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2242 					goto next_page;
2243 				depth++;
2244 				if (depth == locked_depth) {
2245 					locked_depth++;
2246 					VM_OBJECT_RLOCK(tobject);
2247 				}
2248 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2249 			    NULL);
2250 		} else {
2251 			tm = m;
2252 			m = TAILQ_NEXT(m, listq);
2253 		}
2254 		vm_page_lock(tm);
2255 		vm_page_unwire(tm, queue);
2256 		vm_page_unlock(tm);
2257 next_page:
2258 		pindex++;
2259 	}
2260 	/* Release the accumulated object locks. */
2261 	for (depth = 0; depth < locked_depth; depth++) {
2262 		tobject = object->backing_object;
2263 		VM_OBJECT_RUNLOCK(object);
2264 		object = tobject;
2265 	}
2266 }
2267 
2268 struct vnode *
2269 vm_object_vnode(vm_object_t object)
2270 {
2271 
2272 	VM_OBJECT_ASSERT_LOCKED(object);
2273 	if (object->type == OBJT_VNODE)
2274 		return (object->handle);
2275 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2276 		return (object->un_pager.swp.swp_tmpfs);
2277 	return (NULL);
2278 }
2279 
2280 static int
2281 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2282 {
2283 	struct kinfo_vmobject kvo;
2284 	char *fullpath, *freepath;
2285 	struct vnode *vp;
2286 	struct vattr va;
2287 	vm_object_t obj;
2288 	vm_page_t m;
2289 	int count, error;
2290 
2291 	if (req->oldptr == NULL) {
2292 		/*
2293 		 * If an old buffer has not been provided, generate an
2294 		 * estimate of the space needed for a subsequent call.
2295 		 */
2296 		mtx_lock(&vm_object_list_mtx);
2297 		count = 0;
2298 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2299 			if (obj->type == OBJT_DEAD)
2300 				continue;
2301 			count++;
2302 		}
2303 		mtx_unlock(&vm_object_list_mtx);
2304 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2305 		    count * 11 / 10));
2306 	}
2307 
2308 	error = 0;
2309 
2310 	/*
2311 	 * VM objects are type stable and are never removed from the
2312 	 * list once added.  This allows us to safely read obj->object_list
2313 	 * after reacquiring the VM object lock.
2314 	 */
2315 	mtx_lock(&vm_object_list_mtx);
2316 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2317 		if (obj->type == OBJT_DEAD)
2318 			continue;
2319 		VM_OBJECT_RLOCK(obj);
2320 		if (obj->type == OBJT_DEAD) {
2321 			VM_OBJECT_RUNLOCK(obj);
2322 			continue;
2323 		}
2324 		mtx_unlock(&vm_object_list_mtx);
2325 		kvo.kvo_size = ptoa(obj->size);
2326 		kvo.kvo_resident = obj->resident_page_count;
2327 		kvo.kvo_ref_count = obj->ref_count;
2328 		kvo.kvo_shadow_count = obj->shadow_count;
2329 		kvo.kvo_memattr = obj->memattr;
2330 		kvo.kvo_active = 0;
2331 		kvo.kvo_inactive = 0;
2332 		TAILQ_FOREACH(m, &obj->memq, listq) {
2333 			/*
2334 			 * A page may belong to the object but be
2335 			 * dequeued and set to PQ_NONE while the
2336 			 * object lock is not held.  This makes the
2337 			 * reads of m->queue below racy, and we do not
2338 			 * count pages set to PQ_NONE.  However, this
2339 			 * sysctl is only meant to give an
2340 			 * approximation of the system anyway.
2341 			 */
2342 			if (m->queue == PQ_ACTIVE)
2343 				kvo.kvo_active++;
2344 			else if (m->queue == PQ_INACTIVE)
2345 				kvo.kvo_inactive++;
2346 		}
2347 
2348 		kvo.kvo_vn_fileid = 0;
2349 		kvo.kvo_vn_fsid = 0;
2350 		freepath = NULL;
2351 		fullpath = "";
2352 		vp = NULL;
2353 		switch (obj->type) {
2354 		case OBJT_DEFAULT:
2355 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2356 			break;
2357 		case OBJT_VNODE:
2358 			kvo.kvo_type = KVME_TYPE_VNODE;
2359 			vp = obj->handle;
2360 			vref(vp);
2361 			break;
2362 		case OBJT_SWAP:
2363 			kvo.kvo_type = KVME_TYPE_SWAP;
2364 			break;
2365 		case OBJT_DEVICE:
2366 			kvo.kvo_type = KVME_TYPE_DEVICE;
2367 			break;
2368 		case OBJT_PHYS:
2369 			kvo.kvo_type = KVME_TYPE_PHYS;
2370 			break;
2371 		case OBJT_DEAD:
2372 			kvo.kvo_type = KVME_TYPE_DEAD;
2373 			break;
2374 		case OBJT_SG:
2375 			kvo.kvo_type = KVME_TYPE_SG;
2376 			break;
2377 		case OBJT_MGTDEVICE:
2378 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2379 			break;
2380 		default:
2381 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2382 			break;
2383 		}
2384 		VM_OBJECT_RUNLOCK(obj);
2385 		if (vp != NULL) {
2386 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2387 			vn_lock(vp, LK_SHARED | LK_RETRY);
2388 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2389 				kvo.kvo_vn_fileid = va.va_fileid;
2390 				kvo.kvo_vn_fsid = va.va_fsid;
2391 			}
2392 			vput(vp);
2393 		}
2394 
2395 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2396 		if (freepath != NULL)
2397 			free(freepath, M_TEMP);
2398 
2399 		/* Pack record size down */
2400 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2401 		    strlen(kvo.kvo_path) + 1;
2402 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2403 		    sizeof(uint64_t));
2404 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2405 		mtx_lock(&vm_object_list_mtx);
2406 		if (error)
2407 			break;
2408 	}
2409 	mtx_unlock(&vm_object_list_mtx);
2410 	return (error);
2411 }
2412 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2413     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2414     "List of VM objects");
2415 
2416 #include "opt_ddb.h"
2417 #ifdef DDB
2418 #include <sys/kernel.h>
2419 
2420 #include <sys/cons.h>
2421 
2422 #include <ddb/ddb.h>
2423 
2424 static int
2425 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2426 {
2427 	vm_map_t tmpm;
2428 	vm_map_entry_t tmpe;
2429 	vm_object_t obj;
2430 	int entcount;
2431 
2432 	if (map == 0)
2433 		return 0;
2434 
2435 	if (entry == 0) {
2436 		tmpe = map->header.next;
2437 		entcount = map->nentries;
2438 		while (entcount-- && (tmpe != &map->header)) {
2439 			if (_vm_object_in_map(map, object, tmpe)) {
2440 				return 1;
2441 			}
2442 			tmpe = tmpe->next;
2443 		}
2444 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2445 		tmpm = entry->object.sub_map;
2446 		tmpe = tmpm->header.next;
2447 		entcount = tmpm->nentries;
2448 		while (entcount-- && tmpe != &tmpm->header) {
2449 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2450 				return 1;
2451 			}
2452 			tmpe = tmpe->next;
2453 		}
2454 	} else if ((obj = entry->object.vm_object) != NULL) {
2455 		for (; obj; obj = obj->backing_object)
2456 			if (obj == object) {
2457 				return 1;
2458 			}
2459 	}
2460 	return 0;
2461 }
2462 
2463 static int
2464 vm_object_in_map(vm_object_t object)
2465 {
2466 	struct proc *p;
2467 
2468 	/* sx_slock(&allproc_lock); */
2469 	FOREACH_PROC_IN_SYSTEM(p) {
2470 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2471 			continue;
2472 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2473 			/* sx_sunlock(&allproc_lock); */
2474 			return 1;
2475 		}
2476 	}
2477 	/* sx_sunlock(&allproc_lock); */
2478 	if (_vm_object_in_map(kernel_map, object, 0))
2479 		return 1;
2480 	return 0;
2481 }
2482 
2483 DB_SHOW_COMMAND(vmochk, vm_object_check)
2484 {
2485 	vm_object_t object;
2486 
2487 	/*
2488 	 * make sure that internal objs are in a map somewhere
2489 	 * and none have zero ref counts.
2490 	 */
2491 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2492 		if (object->handle == NULL &&
2493 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2494 			if (object->ref_count == 0) {
2495 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2496 					(long)object->size);
2497 			}
2498 			if (!vm_object_in_map(object)) {
2499 				db_printf(
2500 			"vmochk: internal obj is not in a map: "
2501 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2502 				    object->ref_count, (u_long)object->size,
2503 				    (u_long)object->size,
2504 				    (void *)object->backing_object);
2505 			}
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  *	vm_object_print:	[ debug ]
2512  */
2513 DB_SHOW_COMMAND(object, vm_object_print_static)
2514 {
2515 	/* XXX convert args. */
2516 	vm_object_t object = (vm_object_t)addr;
2517 	boolean_t full = have_addr;
2518 
2519 	vm_page_t p;
2520 
2521 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2522 #define	count	was_count
2523 
2524 	int count;
2525 
2526 	if (object == NULL)
2527 		return;
2528 
2529 	db_iprintf(
2530 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2531 	    object, (int)object->type, (uintmax_t)object->size,
2532 	    object->resident_page_count, object->ref_count, object->flags,
2533 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2534 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2535 	    object->shadow_count,
2536 	    object->backing_object ? object->backing_object->ref_count : 0,
2537 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2538 
2539 	if (!full)
2540 		return;
2541 
2542 	db_indent += 2;
2543 	count = 0;
2544 	TAILQ_FOREACH(p, &object->memq, listq) {
2545 		if (count == 0)
2546 			db_iprintf("memory:=");
2547 		else if (count == 6) {
2548 			db_printf("\n");
2549 			db_iprintf(" ...");
2550 			count = 0;
2551 		} else
2552 			db_printf(",");
2553 		count++;
2554 
2555 		db_printf("(off=0x%jx,page=0x%jx)",
2556 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2557 	}
2558 	if (count != 0)
2559 		db_printf("\n");
2560 	db_indent -= 2;
2561 }
2562 
2563 /* XXX. */
2564 #undef count
2565 
2566 /* XXX need this non-static entry for calling from vm_map_print. */
2567 void
2568 vm_object_print(
2569         /* db_expr_t */ long addr,
2570 	boolean_t have_addr,
2571 	/* db_expr_t */ long count,
2572 	char *modif)
2573 {
2574 	vm_object_print_static(addr, have_addr, count, modif);
2575 }
2576 
2577 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2578 {
2579 	vm_object_t object;
2580 	vm_pindex_t fidx;
2581 	vm_paddr_t pa;
2582 	vm_page_t m, prev_m;
2583 	int rcount, nl, c;
2584 
2585 	nl = 0;
2586 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2587 		db_printf("new object: %p\n", (void *)object);
2588 		if (nl > 18) {
2589 			c = cngetc();
2590 			if (c != ' ')
2591 				return;
2592 			nl = 0;
2593 		}
2594 		nl++;
2595 		rcount = 0;
2596 		fidx = 0;
2597 		pa = -1;
2598 		TAILQ_FOREACH(m, &object->memq, listq) {
2599 			if (m->pindex > 128)
2600 				break;
2601 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2602 			    prev_m->pindex + 1 != m->pindex) {
2603 				if (rcount) {
2604 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2605 						(long)fidx, rcount, (long)pa);
2606 					if (nl > 18) {
2607 						c = cngetc();
2608 						if (c != ' ')
2609 							return;
2610 						nl = 0;
2611 					}
2612 					nl++;
2613 					rcount = 0;
2614 				}
2615 			}
2616 			if (rcount &&
2617 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2618 				++rcount;
2619 				continue;
2620 			}
2621 			if (rcount) {
2622 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2623 					(long)fidx, rcount, (long)pa);
2624 				if (nl > 18) {
2625 					c = cngetc();
2626 					if (c != ' ')
2627 						return;
2628 					nl = 0;
2629 				}
2630 				nl++;
2631 			}
2632 			fidx = m->pindex;
2633 			pa = VM_PAGE_TO_PHYS(m);
2634 			rcount = 1;
2635 		}
2636 		if (rcount) {
2637 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2638 				(long)fidx, rcount, (long)pa);
2639 			if (nl > 18) {
2640 				c = cngetc();
2641 				if (c != ' ')
2642 					return;
2643 				nl = 0;
2644 			}
2645 			nl++;
2646 		}
2647 	}
2648 }
2649 #endif /* DDB */
2650