1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include "opt_vm.h" 66 67 #include <sys/systm.h> 68 #include <sys/blockcount.h> 69 #include <sys/cpuset.h> 70 #include <sys/jail.h> 71 #include <sys/limits.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/mutex.h> 77 #include <sys/pctrie.h> 78 #include <sys/proc.h> 79 #include <sys/refcount.h> 80 #include <sys/sx.h> 81 #include <sys/sysctl.h> 82 #include <sys/resourcevar.h> 83 #include <sys/refcount.h> 84 #include <sys/rwlock.h> 85 #include <sys/user.h> 86 #include <sys/vnode.h> 87 #include <sys/vmmeter.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_page.h> 95 #include <vm/vm_pageout.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_phys.h> 98 #include <vm/vm_pagequeue.h> 99 #include <vm/swap_pager.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_extern.h> 102 #include <vm/vm_radix.h> 103 #include <vm/vm_reserv.h> 104 #include <vm/uma.h> 105 106 static int old_msync; 107 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 108 "Use old (insecure) msync behavior"); 109 110 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 111 int pagerflags, int flags, boolean_t *allclean, 112 boolean_t *eio); 113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 114 boolean_t *allclean); 115 static void vm_object_backing_remove(vm_object_t object); 116 117 /* 118 * Virtual memory objects maintain the actual data 119 * associated with allocated virtual memory. A given 120 * page of memory exists within exactly one object. 121 * 122 * An object is only deallocated when all "references" 123 * are given up. Only one "reference" to a given 124 * region of an object should be writeable. 125 * 126 * Associated with each object is a list of all resident 127 * memory pages belonging to that object; this list is 128 * maintained by the "vm_page" module, and locked by the object's 129 * lock. 130 * 131 * Each object also records a "pager" routine which is 132 * used to retrieve (and store) pages to the proper backing 133 * storage. In addition, objects may be backed by other 134 * objects from which they were virtual-copied. 135 * 136 * The only items within the object structure which are 137 * modified after time of creation are: 138 * reference count locked by object's lock 139 * pager routine locked by object's lock 140 * 141 */ 142 143 struct object_q vm_object_list; 144 struct mtx vm_object_list_mtx; /* lock for object list and count */ 145 146 struct vm_object kernel_object_store; 147 148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 149 "VM object stats"); 150 151 static COUNTER_U64_DEFINE_EARLY(object_collapses); 152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 153 &object_collapses, 154 "VM object collapses"); 155 156 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 158 &object_bypasses, 159 "VM object bypasses"); 160 161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 163 &object_collapse_waits, 164 "Number of sleeps for collapse"); 165 166 static uma_zone_t obj_zone; 167 168 static int vm_object_zinit(void *mem, int size, int flags); 169 170 #ifdef INVARIANTS 171 static void vm_object_zdtor(void *mem, int size, void *arg); 172 173 static void 174 vm_object_zdtor(void *mem, int size, void *arg) 175 { 176 vm_object_t object; 177 178 object = (vm_object_t)mem; 179 KASSERT(object->ref_count == 0, 180 ("object %p ref_count = %d", object, object->ref_count)); 181 KASSERT(TAILQ_EMPTY(&object->memq), 182 ("object %p has resident pages in its memq", object)); 183 KASSERT(vm_radix_is_empty(&object->rtree), 184 ("object %p has resident pages in its trie", object)); 185 #if VM_NRESERVLEVEL > 0 186 KASSERT(LIST_EMPTY(&object->rvq), 187 ("object %p has reservations", 188 object)); 189 #endif 190 KASSERT(!vm_object_busied(object), 191 ("object %p busy = %d", object, blockcount_read(&object->busy))); 192 KASSERT(object->resident_page_count == 0, 193 ("object %p resident_page_count = %d", 194 object, object->resident_page_count)); 195 KASSERT(atomic_load_int(&object->shadow_count) == 0, 196 ("object %p shadow_count = %d", 197 object, atomic_load_int(&object->shadow_count))); 198 KASSERT(object->type == OBJT_DEAD, 199 ("object %p has non-dead type %d", 200 object, object->type)); 201 KASSERT(object->charge == 0 && object->cred == NULL, 202 ("object %p has non-zero charge %ju (%p)", 203 object, (uintmax_t)object->charge, object->cred)); 204 } 205 #endif 206 207 static int 208 vm_object_zinit(void *mem, int size, int flags) 209 { 210 vm_object_t object; 211 212 object = (vm_object_t)mem; 213 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW); 214 215 /* These are true for any object that has been freed */ 216 object->type = OBJT_DEAD; 217 vm_radix_init(&object->rtree); 218 refcount_init(&object->ref_count, 0); 219 blockcount_init(&object->paging_in_progress); 220 blockcount_init(&object->busy); 221 object->resident_page_count = 0; 222 atomic_store_int(&object->shadow_count, 0); 223 object->flags = OBJ_DEAD; 224 225 mtx_lock(&vm_object_list_mtx); 226 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 227 mtx_unlock(&vm_object_list_mtx); 228 return (0); 229 } 230 231 static void 232 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 233 vm_object_t object, void *handle) 234 { 235 236 TAILQ_INIT(&object->memq); 237 LIST_INIT(&object->shadow_head); 238 239 object->type = type; 240 object->flags = flags; 241 if ((flags & OBJ_SWAP) != 0) { 242 pctrie_init(&object->un_pager.swp.swp_blks); 243 object->un_pager.swp.writemappings = 0; 244 } 245 246 /* 247 * Ensure that swap_pager_swapoff() iteration over object_list 248 * sees up to date type and pctrie head if it observed 249 * non-dead object. 250 */ 251 atomic_thread_fence_rel(); 252 253 object->pg_color = 0; 254 object->size = size; 255 object->domain.dr_policy = NULL; 256 object->generation = 1; 257 object->cleangeneration = 1; 258 refcount_init(&object->ref_count, 1); 259 object->memattr = VM_MEMATTR_DEFAULT; 260 object->cred = NULL; 261 object->charge = 0; 262 object->handle = handle; 263 object->backing_object = NULL; 264 object->backing_object_offset = (vm_ooffset_t) 0; 265 #if VM_NRESERVLEVEL > 0 266 LIST_INIT(&object->rvq); 267 #endif 268 umtx_shm_object_init(object); 269 } 270 271 /* 272 * vm_object_init: 273 * 274 * Initialize the VM objects module. 275 */ 276 void 277 vm_object_init(void) 278 { 279 TAILQ_INIT(&vm_object_list); 280 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 281 282 rw_init(&kernel_object->lock, "kernel vm object"); 283 vm_radix_init(&kernel_object->rtree); 284 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 285 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 286 #if VM_NRESERVLEVEL > 0 287 kernel_object->flags |= OBJ_COLORED; 288 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 289 #endif 290 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 291 292 /* 293 * The lock portion of struct vm_object must be type stable due 294 * to vm_pageout_fallback_object_lock locking a vm object 295 * without holding any references to it. 296 * 297 * paging_in_progress is valid always. Lockless references to 298 * the objects may acquire pip and then check OBJ_DEAD. 299 */ 300 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 301 #ifdef INVARIANTS 302 vm_object_zdtor, 303 #else 304 NULL, 305 #endif 306 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 307 308 vm_radix_zinit(); 309 } 310 311 void 312 vm_object_clear_flag(vm_object_t object, u_short bits) 313 { 314 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 object->flags &= ~bits; 317 } 318 319 /* 320 * Sets the default memory attribute for the specified object. Pages 321 * that are allocated to this object are by default assigned this memory 322 * attribute. 323 * 324 * Presently, this function must be called before any pages are allocated 325 * to the object. In the future, this requirement may be relaxed for 326 * "default" and "swap" objects. 327 */ 328 int 329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(object); 333 334 if (object->type == OBJT_DEAD) 335 return (KERN_INVALID_ARGUMENT); 336 if (!TAILQ_EMPTY(&object->memq)) 337 return (KERN_FAILURE); 338 339 object->memattr = memattr; 340 return (KERN_SUCCESS); 341 } 342 343 void 344 vm_object_pip_add(vm_object_t object, short i) 345 { 346 347 if (i > 0) 348 blockcount_acquire(&object->paging_in_progress, i); 349 } 350 351 void 352 vm_object_pip_wakeup(vm_object_t object) 353 { 354 355 vm_object_pip_wakeupn(object, 1); 356 } 357 358 void 359 vm_object_pip_wakeupn(vm_object_t object, short i) 360 { 361 362 if (i > 0) 363 blockcount_release(&object->paging_in_progress, i); 364 } 365 366 /* 367 * Atomically drop the object lock and wait for pip to drain. This protects 368 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 369 * on return. 370 */ 371 static void 372 vm_object_pip_sleep(vm_object_t object, const char *waitid) 373 { 374 375 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 376 waitid, PVM | PDROP); 377 } 378 379 void 380 vm_object_pip_wait(vm_object_t object, const char *waitid) 381 { 382 383 VM_OBJECT_ASSERT_WLOCKED(object); 384 385 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 386 PVM); 387 } 388 389 void 390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 391 { 392 393 VM_OBJECT_ASSERT_UNLOCKED(object); 394 395 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 396 } 397 398 /* 399 * vm_object_allocate: 400 * 401 * Returns a new object with the given size. 402 */ 403 vm_object_t 404 vm_object_allocate(objtype_t type, vm_pindex_t size) 405 { 406 vm_object_t object; 407 u_short flags; 408 409 switch (type) { 410 case OBJT_DEAD: 411 panic("vm_object_allocate: can't create OBJT_DEAD"); 412 case OBJT_SWAP: 413 flags = OBJ_COLORED | OBJ_SWAP; 414 break; 415 case OBJT_DEVICE: 416 case OBJT_SG: 417 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 418 break; 419 case OBJT_MGTDEVICE: 420 flags = OBJ_FICTITIOUS; 421 break; 422 case OBJT_PHYS: 423 flags = OBJ_UNMANAGED; 424 break; 425 case OBJT_VNODE: 426 flags = 0; 427 break; 428 default: 429 panic("vm_object_allocate: type %d is undefined or dynamic", 430 type); 431 } 432 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 433 _vm_object_allocate(type, size, flags, object, NULL); 434 435 return (object); 436 } 437 438 vm_object_t 439 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) 440 { 441 vm_object_t object; 442 443 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); 444 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 445 _vm_object_allocate(dyntype, size, flags, object, NULL); 446 447 return (object); 448 } 449 450 /* 451 * vm_object_allocate_anon: 452 * 453 * Returns a new default object of the given size and marked as 454 * anonymous memory for special split/collapse handling. Color 455 * to be initialized by the caller. 456 */ 457 vm_object_t 458 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 459 struct ucred *cred, vm_size_t charge) 460 { 461 vm_object_t handle, object; 462 463 if (backing_object == NULL) 464 handle = NULL; 465 else if ((backing_object->flags & OBJ_ANON) != 0) 466 handle = backing_object->handle; 467 else 468 handle = backing_object; 469 object = uma_zalloc(obj_zone, M_WAITOK); 470 _vm_object_allocate(OBJT_SWAP, size, 471 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); 472 object->cred = cred; 473 object->charge = cred != NULL ? charge : 0; 474 return (object); 475 } 476 477 static void 478 vm_object_reference_vnode(vm_object_t object) 479 { 480 u_int old; 481 482 /* 483 * vnode objects need the lock for the first reference 484 * to serialize with vnode_object_deallocate(). 485 */ 486 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 487 VM_OBJECT_RLOCK(object); 488 old = refcount_acquire(&object->ref_count); 489 if (object->type == OBJT_VNODE && old == 0) 490 vref(object->handle); 491 VM_OBJECT_RUNLOCK(object); 492 } 493 } 494 495 /* 496 * vm_object_reference: 497 * 498 * Acquires a reference to the given object. 499 */ 500 void 501 vm_object_reference(vm_object_t object) 502 { 503 504 if (object == NULL) 505 return; 506 507 if (object->type == OBJT_VNODE) 508 vm_object_reference_vnode(object); 509 else 510 refcount_acquire(&object->ref_count); 511 KASSERT((object->flags & OBJ_DEAD) == 0, 512 ("vm_object_reference: Referenced dead object.")); 513 } 514 515 /* 516 * vm_object_reference_locked: 517 * 518 * Gets another reference to the given object. 519 * 520 * The object must be locked. 521 */ 522 void 523 vm_object_reference_locked(vm_object_t object) 524 { 525 u_int old; 526 527 VM_OBJECT_ASSERT_LOCKED(object); 528 old = refcount_acquire(&object->ref_count); 529 if (object->type == OBJT_VNODE && old == 0) 530 vref(object->handle); 531 KASSERT((object->flags & OBJ_DEAD) == 0, 532 ("vm_object_reference: Referenced dead object.")); 533 } 534 535 /* 536 * Handle deallocating an object of type OBJT_VNODE. 537 */ 538 static void 539 vm_object_deallocate_vnode(vm_object_t object) 540 { 541 struct vnode *vp = (struct vnode *) object->handle; 542 bool last; 543 544 KASSERT(object->type == OBJT_VNODE, 545 ("vm_object_deallocate_vnode: not a vnode object")); 546 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 547 548 /* Object lock to protect handle lookup. */ 549 last = refcount_release(&object->ref_count); 550 VM_OBJECT_RUNLOCK(object); 551 552 if (!last) 553 return; 554 555 if (!umtx_shm_vnobj_persistent) 556 umtx_shm_object_terminated(object); 557 558 /* vrele may need the vnode lock. */ 559 vrele(vp); 560 } 561 562 /* 563 * We dropped a reference on an object and discovered that it had a 564 * single remaining shadow. This is a sibling of the reference we 565 * dropped. Attempt to collapse the sibling and backing object. 566 */ 567 static vm_object_t 568 vm_object_deallocate_anon(vm_object_t backing_object) 569 { 570 vm_object_t object; 571 572 /* Fetch the final shadow. */ 573 object = LIST_FIRST(&backing_object->shadow_head); 574 KASSERT(object != NULL && 575 atomic_load_int(&backing_object->shadow_count) == 1, 576 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 577 backing_object->ref_count, 578 atomic_load_int(&backing_object->shadow_count))); 579 KASSERT((object->flags & OBJ_ANON) != 0, 580 ("invalid shadow object %p", object)); 581 582 if (!VM_OBJECT_TRYWLOCK(object)) { 583 /* 584 * Prevent object from disappearing since we do not have a 585 * reference. 586 */ 587 vm_object_pip_add(object, 1); 588 VM_OBJECT_WUNLOCK(backing_object); 589 VM_OBJECT_WLOCK(object); 590 vm_object_pip_wakeup(object); 591 } else 592 VM_OBJECT_WUNLOCK(backing_object); 593 594 /* 595 * Check for a collapse/terminate race with the last reference holder. 596 */ 597 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 598 !refcount_acquire_if_not_zero(&object->ref_count)) { 599 VM_OBJECT_WUNLOCK(object); 600 return (NULL); 601 } 602 backing_object = object->backing_object; 603 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 604 vm_object_collapse(object); 605 VM_OBJECT_WUNLOCK(object); 606 607 return (object); 608 } 609 610 /* 611 * vm_object_deallocate: 612 * 613 * Release a reference to the specified object, 614 * gained either through a vm_object_allocate 615 * or a vm_object_reference call. When all references 616 * are gone, storage associated with this object 617 * may be relinquished. 618 * 619 * No object may be locked. 620 */ 621 void 622 vm_object_deallocate(vm_object_t object) 623 { 624 vm_object_t temp; 625 bool released; 626 627 while (object != NULL) { 628 /* 629 * If the reference count goes to 0 we start calling 630 * vm_object_terminate() on the object chain. A ref count 631 * of 1 may be a special case depending on the shadow count 632 * being 0 or 1. These cases require a write lock on the 633 * object. 634 */ 635 if ((object->flags & OBJ_ANON) == 0) 636 released = refcount_release_if_gt(&object->ref_count, 1); 637 else 638 released = refcount_release_if_gt(&object->ref_count, 2); 639 if (released) 640 return; 641 642 if (object->type == OBJT_VNODE) { 643 VM_OBJECT_RLOCK(object); 644 if (object->type == OBJT_VNODE) { 645 vm_object_deallocate_vnode(object); 646 return; 647 } 648 VM_OBJECT_RUNLOCK(object); 649 } 650 651 VM_OBJECT_WLOCK(object); 652 KASSERT(object->ref_count > 0, 653 ("vm_object_deallocate: object deallocated too many times: %d", 654 object->type)); 655 656 /* 657 * If this is not the final reference to an anonymous 658 * object we may need to collapse the shadow chain. 659 */ 660 if (!refcount_release(&object->ref_count)) { 661 if (object->ref_count > 1 || 662 atomic_load_int(&object->shadow_count) == 0) { 663 if ((object->flags & OBJ_ANON) != 0 && 664 object->ref_count == 1) 665 vm_object_set_flag(object, 666 OBJ_ONEMAPPING); 667 VM_OBJECT_WUNLOCK(object); 668 return; 669 } 670 671 /* Handle collapsing last ref on anonymous objects. */ 672 object = vm_object_deallocate_anon(object); 673 continue; 674 } 675 676 /* 677 * Handle the final reference to an object. We restart 678 * the loop with the backing object to avoid recursion. 679 */ 680 umtx_shm_object_terminated(object); 681 temp = object->backing_object; 682 if (temp != NULL) { 683 KASSERT(object->type == OBJT_SWAP, 684 ("shadowed tmpfs v_object 2 %p", object)); 685 vm_object_backing_remove(object); 686 } 687 688 KASSERT((object->flags & OBJ_DEAD) == 0, 689 ("vm_object_deallocate: Terminating dead object.")); 690 vm_object_set_flag(object, OBJ_DEAD); 691 vm_object_terminate(object); 692 object = temp; 693 } 694 } 695 696 void 697 vm_object_destroy(vm_object_t object) 698 { 699 uma_zfree(obj_zone, object); 700 } 701 702 static void 703 vm_object_sub_shadow(vm_object_t object) 704 { 705 KASSERT(object->shadow_count >= 1, 706 ("object %p sub_shadow count zero", object)); 707 atomic_subtract_int(&object->shadow_count, 1); 708 } 709 710 static void 711 vm_object_backing_remove_locked(vm_object_t object) 712 { 713 vm_object_t backing_object; 714 715 backing_object = object->backing_object; 716 VM_OBJECT_ASSERT_WLOCKED(object); 717 VM_OBJECT_ASSERT_WLOCKED(backing_object); 718 719 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 720 ("vm_object_backing_remove: Removing collapsing object.")); 721 722 vm_object_sub_shadow(backing_object); 723 if ((object->flags & OBJ_SHADOWLIST) != 0) { 724 LIST_REMOVE(object, shadow_list); 725 vm_object_clear_flag(object, OBJ_SHADOWLIST); 726 } 727 object->backing_object = NULL; 728 } 729 730 static void 731 vm_object_backing_remove(vm_object_t object) 732 { 733 vm_object_t backing_object; 734 735 VM_OBJECT_ASSERT_WLOCKED(object); 736 737 backing_object = object->backing_object; 738 if ((object->flags & OBJ_SHADOWLIST) != 0) { 739 VM_OBJECT_WLOCK(backing_object); 740 vm_object_backing_remove_locked(object); 741 VM_OBJECT_WUNLOCK(backing_object); 742 } else { 743 object->backing_object = NULL; 744 vm_object_sub_shadow(backing_object); 745 } 746 } 747 748 static void 749 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 750 { 751 752 VM_OBJECT_ASSERT_WLOCKED(object); 753 754 atomic_add_int(&backing_object->shadow_count, 1); 755 if ((backing_object->flags & OBJ_ANON) != 0) { 756 VM_OBJECT_ASSERT_WLOCKED(backing_object); 757 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 758 shadow_list); 759 vm_object_set_flag(object, OBJ_SHADOWLIST); 760 } 761 object->backing_object = backing_object; 762 } 763 764 static void 765 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 766 { 767 768 VM_OBJECT_ASSERT_WLOCKED(object); 769 770 if ((backing_object->flags & OBJ_ANON) != 0) { 771 VM_OBJECT_WLOCK(backing_object); 772 vm_object_backing_insert_locked(object, backing_object); 773 VM_OBJECT_WUNLOCK(backing_object); 774 } else { 775 object->backing_object = backing_object; 776 atomic_add_int(&backing_object->shadow_count, 1); 777 } 778 } 779 780 /* 781 * Insert an object into a backing_object's shadow list with an additional 782 * reference to the backing_object added. 783 */ 784 static void 785 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 786 { 787 788 VM_OBJECT_ASSERT_WLOCKED(object); 789 790 if ((backing_object->flags & OBJ_ANON) != 0) { 791 VM_OBJECT_WLOCK(backing_object); 792 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 793 ("shadowing dead anonymous object")); 794 vm_object_reference_locked(backing_object); 795 vm_object_backing_insert_locked(object, backing_object); 796 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 797 VM_OBJECT_WUNLOCK(backing_object); 798 } else { 799 vm_object_reference(backing_object); 800 atomic_add_int(&backing_object->shadow_count, 1); 801 object->backing_object = backing_object; 802 } 803 } 804 805 /* 806 * Transfer a backing reference from backing_object to object. 807 */ 808 static void 809 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 810 { 811 vm_object_t new_backing_object; 812 813 /* 814 * Note that the reference to backing_object->backing_object 815 * moves from within backing_object to within object. 816 */ 817 vm_object_backing_remove_locked(object); 818 new_backing_object = backing_object->backing_object; 819 if (new_backing_object == NULL) 820 return; 821 if ((new_backing_object->flags & OBJ_ANON) != 0) { 822 VM_OBJECT_WLOCK(new_backing_object); 823 vm_object_backing_remove_locked(backing_object); 824 vm_object_backing_insert_locked(object, new_backing_object); 825 VM_OBJECT_WUNLOCK(new_backing_object); 826 } else { 827 /* 828 * shadow_count for new_backing_object is left 829 * unchanged, its reference provided by backing_object 830 * is replaced by object. 831 */ 832 object->backing_object = new_backing_object; 833 backing_object->backing_object = NULL; 834 } 835 } 836 837 /* 838 * Wait for a concurrent collapse to settle. 839 */ 840 static void 841 vm_object_collapse_wait(vm_object_t object) 842 { 843 844 VM_OBJECT_ASSERT_WLOCKED(object); 845 846 while ((object->flags & OBJ_COLLAPSING) != 0) { 847 vm_object_pip_wait(object, "vmcolwait"); 848 counter_u64_add(object_collapse_waits, 1); 849 } 850 } 851 852 /* 853 * Waits for a backing object to clear a pending collapse and returns 854 * it locked if it is an ANON object. 855 */ 856 static vm_object_t 857 vm_object_backing_collapse_wait(vm_object_t object) 858 { 859 vm_object_t backing_object; 860 861 VM_OBJECT_ASSERT_WLOCKED(object); 862 863 for (;;) { 864 backing_object = object->backing_object; 865 if (backing_object == NULL || 866 (backing_object->flags & OBJ_ANON) == 0) 867 return (NULL); 868 VM_OBJECT_WLOCK(backing_object); 869 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 870 break; 871 VM_OBJECT_WUNLOCK(object); 872 vm_object_pip_sleep(backing_object, "vmbckwait"); 873 counter_u64_add(object_collapse_waits, 1); 874 VM_OBJECT_WLOCK(object); 875 } 876 return (backing_object); 877 } 878 879 /* 880 * vm_object_terminate_pages removes any remaining pageable pages 881 * from the object and resets the object to an empty state. 882 */ 883 static void 884 vm_object_terminate_pages(vm_object_t object) 885 { 886 vm_page_t p, p_next; 887 888 VM_OBJECT_ASSERT_WLOCKED(object); 889 890 /* 891 * Free any remaining pageable pages. This also removes them from the 892 * paging queues. However, don't free wired pages, just remove them 893 * from the object. Rather than incrementally removing each page from 894 * the object, the page and object are reset to any empty state. 895 */ 896 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 897 vm_page_assert_unbusied(p); 898 KASSERT(p->object == object && 899 (p->ref_count & VPRC_OBJREF) != 0, 900 ("vm_object_terminate_pages: page %p is inconsistent", p)); 901 902 p->object = NULL; 903 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 904 VM_CNT_INC(v_pfree); 905 vm_page_free(p); 906 } 907 } 908 909 /* 910 * If the object contained any pages, then reset it to an empty state. 911 * None of the object's fields, including "resident_page_count", were 912 * modified by the preceding loop. 913 */ 914 if (object->resident_page_count != 0) { 915 vm_radix_reclaim_allnodes(&object->rtree); 916 TAILQ_INIT(&object->memq); 917 object->resident_page_count = 0; 918 if (object->type == OBJT_VNODE) 919 vdrop(object->handle); 920 } 921 } 922 923 /* 924 * vm_object_terminate actually destroys the specified object, freeing 925 * up all previously used resources. 926 * 927 * The object must be locked. 928 * This routine may block. 929 */ 930 void 931 vm_object_terminate(vm_object_t object) 932 { 933 934 VM_OBJECT_ASSERT_WLOCKED(object); 935 KASSERT((object->flags & OBJ_DEAD) != 0, 936 ("terminating non-dead obj %p", object)); 937 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 938 ("terminating collapsing obj %p", object)); 939 KASSERT(object->backing_object == NULL, 940 ("terminating shadow obj %p", object)); 941 942 /* 943 * Wait for the pageout daemon and other current users to be 944 * done with the object. Note that new paging_in_progress 945 * users can come after this wait, but they must check 946 * OBJ_DEAD flag set (without unlocking the object), and avoid 947 * the object being terminated. 948 */ 949 vm_object_pip_wait(object, "objtrm"); 950 951 KASSERT(object->ref_count == 0, 952 ("vm_object_terminate: object with references, ref_count=%d", 953 object->ref_count)); 954 955 if ((object->flags & OBJ_PG_DTOR) == 0) 956 vm_object_terminate_pages(object); 957 958 #if VM_NRESERVLEVEL > 0 959 if (__predict_false(!LIST_EMPTY(&object->rvq))) 960 vm_reserv_break_all(object); 961 #endif 962 963 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, 964 ("%s: non-swap obj %p has cred", __func__, object)); 965 966 /* 967 * Let the pager know object is dead. 968 */ 969 vm_pager_deallocate(object); 970 VM_OBJECT_WUNLOCK(object); 971 972 vm_object_destroy(object); 973 } 974 975 /* 976 * Make the page read-only so that we can clear the object flags. However, if 977 * this is a nosync mmap then the object is likely to stay dirty so do not 978 * mess with the page and do not clear the object flags. Returns TRUE if the 979 * page should be flushed, and FALSE otherwise. 980 */ 981 static boolean_t 982 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 983 { 984 985 vm_page_assert_busied(p); 986 987 /* 988 * If we have been asked to skip nosync pages and this is a 989 * nosync page, skip it. Note that the object flags were not 990 * cleared in this case so we do not have to set them. 991 */ 992 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 993 *allclean = FALSE; 994 return (FALSE); 995 } else { 996 pmap_remove_write(p); 997 return (p->dirty != 0); 998 } 999 } 1000 1001 /* 1002 * vm_object_page_clean 1003 * 1004 * Clean all dirty pages in the specified range of object. Leaves page 1005 * on whatever queue it is currently on. If NOSYNC is set then do not 1006 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1007 * leaving the object dirty. 1008 * 1009 * For swap objects backing tmpfs regular files, do not flush anything, 1010 * but remove write protection on the mapped pages to update mtime through 1011 * mmaped writes. 1012 * 1013 * When stuffing pages asynchronously, allow clustering. XXX we need a 1014 * synchronous clustering mode implementation. 1015 * 1016 * Odd semantics: if start == end, we clean everything. 1017 * 1018 * The object must be locked. 1019 * 1020 * Returns FALSE if some page from the range was not written, as 1021 * reported by the pager, and TRUE otherwise. 1022 */ 1023 boolean_t 1024 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1025 int flags) 1026 { 1027 vm_page_t np, p; 1028 vm_pindex_t pi, tend, tstart; 1029 int curgeneration, n, pagerflags; 1030 boolean_t eio, res, allclean; 1031 1032 VM_OBJECT_ASSERT_WLOCKED(object); 1033 1034 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1035 return (TRUE); 1036 1037 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1038 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1039 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1040 1041 tstart = OFF_TO_IDX(start); 1042 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1043 allclean = tstart == 0 && tend >= object->size; 1044 res = TRUE; 1045 1046 rescan: 1047 curgeneration = object->generation; 1048 1049 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 1050 pi = p->pindex; 1051 if (pi >= tend) 1052 break; 1053 np = TAILQ_NEXT(p, listq); 1054 if (vm_page_none_valid(p)) 1055 continue; 1056 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 1057 if (object->generation != curgeneration && 1058 (flags & OBJPC_SYNC) != 0) 1059 goto rescan; 1060 np = vm_page_find_least(object, pi); 1061 continue; 1062 } 1063 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1064 vm_page_xunbusy(p); 1065 continue; 1066 } 1067 if (object->type == OBJT_VNODE) { 1068 n = vm_object_page_collect_flush(object, p, pagerflags, 1069 flags, &allclean, &eio); 1070 if (eio) { 1071 res = FALSE; 1072 allclean = FALSE; 1073 } 1074 if (object->generation != curgeneration && 1075 (flags & OBJPC_SYNC) != 0) 1076 goto rescan; 1077 1078 /* 1079 * If the VOP_PUTPAGES() did a truncated write, so 1080 * that even the first page of the run is not fully 1081 * written, vm_pageout_flush() returns 0 as the run 1082 * length. Since the condition that caused truncated 1083 * write may be permanent, e.g. exhausted free space, 1084 * accepting n == 0 would cause an infinite loop. 1085 * 1086 * Forwarding the iterator leaves the unwritten page 1087 * behind, but there is not much we can do there if 1088 * filesystem refuses to write it. 1089 */ 1090 if (n == 0) { 1091 n = 1; 1092 allclean = FALSE; 1093 } 1094 } else { 1095 n = 1; 1096 vm_page_xunbusy(p); 1097 } 1098 np = vm_page_find_least(object, pi + n); 1099 } 1100 #if 0 1101 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1102 #endif 1103 1104 /* 1105 * Leave updating cleangeneration for tmpfs objects to tmpfs 1106 * scan. It needs to update mtime, which happens for other 1107 * filesystems during page writeouts. 1108 */ 1109 if (allclean && object->type == OBJT_VNODE) 1110 object->cleangeneration = curgeneration; 1111 return (res); 1112 } 1113 1114 static int 1115 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1116 int flags, boolean_t *allclean, boolean_t *eio) 1117 { 1118 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1119 int count, i, mreq, runlen; 1120 1121 vm_page_lock_assert(p, MA_NOTOWNED); 1122 vm_page_assert_xbusied(p); 1123 VM_OBJECT_ASSERT_WLOCKED(object); 1124 1125 count = 1; 1126 mreq = 0; 1127 1128 for (tp = p; count < vm_pageout_page_count; count++) { 1129 tp = vm_page_next(tp); 1130 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1131 break; 1132 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1133 vm_page_xunbusy(tp); 1134 break; 1135 } 1136 } 1137 1138 for (p_first = p; count < vm_pageout_page_count; count++) { 1139 tp = vm_page_prev(p_first); 1140 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1141 break; 1142 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1143 vm_page_xunbusy(tp); 1144 break; 1145 } 1146 p_first = tp; 1147 mreq++; 1148 } 1149 1150 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1151 ma[i] = tp; 1152 1153 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1154 return (runlen); 1155 } 1156 1157 /* 1158 * Note that there is absolutely no sense in writing out 1159 * anonymous objects, so we track down the vnode object 1160 * to write out. 1161 * We invalidate (remove) all pages from the address space 1162 * for semantic correctness. 1163 * 1164 * If the backing object is a device object with unmanaged pages, then any 1165 * mappings to the specified range of pages must be removed before this 1166 * function is called. 1167 * 1168 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1169 * may start out with a NULL object. 1170 */ 1171 boolean_t 1172 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1173 boolean_t syncio, boolean_t invalidate) 1174 { 1175 vm_object_t backing_object; 1176 struct vnode *vp; 1177 struct mount *mp; 1178 int error, flags, fsync_after; 1179 boolean_t res; 1180 1181 if (object == NULL) 1182 return (TRUE); 1183 res = TRUE; 1184 error = 0; 1185 VM_OBJECT_WLOCK(object); 1186 while ((backing_object = object->backing_object) != NULL) { 1187 VM_OBJECT_WLOCK(backing_object); 1188 offset += object->backing_object_offset; 1189 VM_OBJECT_WUNLOCK(object); 1190 object = backing_object; 1191 if (object->size < OFF_TO_IDX(offset + size)) 1192 size = IDX_TO_OFF(object->size) - offset; 1193 } 1194 /* 1195 * Flush pages if writing is allowed, invalidate them 1196 * if invalidation requested. Pages undergoing I/O 1197 * will be ignored by vm_object_page_remove(). 1198 * 1199 * We cannot lock the vnode and then wait for paging 1200 * to complete without deadlocking against vm_fault. 1201 * Instead we simply call vm_object_page_remove() and 1202 * allow it to block internally on a page-by-page 1203 * basis when it encounters pages undergoing async 1204 * I/O. 1205 */ 1206 if (object->type == OBJT_VNODE && 1207 vm_object_mightbedirty(object) != 0 && 1208 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1209 VM_OBJECT_WUNLOCK(object); 1210 (void)vn_start_write(vp, &mp, V_WAIT); 1211 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1212 if (syncio && !invalidate && offset == 0 && 1213 atop(size) == object->size) { 1214 /* 1215 * If syncing the whole mapping of the file, 1216 * it is faster to schedule all the writes in 1217 * async mode, also allowing the clustering, 1218 * and then wait for i/o to complete. 1219 */ 1220 flags = 0; 1221 fsync_after = TRUE; 1222 } else { 1223 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1224 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1225 fsync_after = FALSE; 1226 } 1227 VM_OBJECT_WLOCK(object); 1228 res = vm_object_page_clean(object, offset, offset + size, 1229 flags); 1230 VM_OBJECT_WUNLOCK(object); 1231 if (fsync_after) { 1232 for (;;) { 1233 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1234 if (error != ERELOOKUP) 1235 break; 1236 1237 /* 1238 * Allow SU/bufdaemon to handle more 1239 * dependencies in the meantime. 1240 */ 1241 VOP_UNLOCK(vp); 1242 vn_finished_write(mp); 1243 1244 (void)vn_start_write(vp, &mp, V_WAIT); 1245 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1246 } 1247 } 1248 VOP_UNLOCK(vp); 1249 vn_finished_write(mp); 1250 if (error != 0) 1251 res = FALSE; 1252 VM_OBJECT_WLOCK(object); 1253 } 1254 if ((object->type == OBJT_VNODE || 1255 object->type == OBJT_DEVICE) && invalidate) { 1256 if (object->type == OBJT_DEVICE) 1257 /* 1258 * The option OBJPR_NOTMAPPED must be passed here 1259 * because vm_object_page_remove() cannot remove 1260 * unmanaged mappings. 1261 */ 1262 flags = OBJPR_NOTMAPPED; 1263 else if (old_msync) 1264 flags = 0; 1265 else 1266 flags = OBJPR_CLEANONLY; 1267 vm_object_page_remove(object, OFF_TO_IDX(offset), 1268 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1269 } 1270 VM_OBJECT_WUNLOCK(object); 1271 return (res); 1272 } 1273 1274 /* 1275 * Determine whether the given advice can be applied to the object. Advice is 1276 * not applied to unmanaged pages since they never belong to page queues, and 1277 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1278 * have been mapped at most once. 1279 */ 1280 static bool 1281 vm_object_advice_applies(vm_object_t object, int advice) 1282 { 1283 1284 if ((object->flags & OBJ_UNMANAGED) != 0) 1285 return (false); 1286 if (advice != MADV_FREE) 1287 return (true); 1288 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1289 (OBJ_ONEMAPPING | OBJ_ANON)); 1290 } 1291 1292 static void 1293 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1294 vm_size_t size) 1295 { 1296 1297 if (advice == MADV_FREE) 1298 vm_pager_freespace(object, pindex, size); 1299 } 1300 1301 /* 1302 * vm_object_madvise: 1303 * 1304 * Implements the madvise function at the object/page level. 1305 * 1306 * MADV_WILLNEED (any object) 1307 * 1308 * Activate the specified pages if they are resident. 1309 * 1310 * MADV_DONTNEED (any object) 1311 * 1312 * Deactivate the specified pages if they are resident. 1313 * 1314 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) 1315 * 1316 * Deactivate and clean the specified pages if they are 1317 * resident. This permits the process to reuse the pages 1318 * without faulting or the kernel to reclaim the pages 1319 * without I/O. 1320 */ 1321 void 1322 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1323 int advice) 1324 { 1325 vm_pindex_t tpindex; 1326 vm_object_t backing_object, tobject; 1327 vm_page_t m, tm; 1328 1329 if (object == NULL) 1330 return; 1331 1332 relookup: 1333 VM_OBJECT_WLOCK(object); 1334 if (!vm_object_advice_applies(object, advice)) { 1335 VM_OBJECT_WUNLOCK(object); 1336 return; 1337 } 1338 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1339 tobject = object; 1340 1341 /* 1342 * If the next page isn't resident in the top-level object, we 1343 * need to search the shadow chain. When applying MADV_FREE, we 1344 * take care to release any swap space used to store 1345 * non-resident pages. 1346 */ 1347 if (m == NULL || pindex < m->pindex) { 1348 /* 1349 * Optimize a common case: if the top-level object has 1350 * no backing object, we can skip over the non-resident 1351 * range in constant time. 1352 */ 1353 if (object->backing_object == NULL) { 1354 tpindex = (m != NULL && m->pindex < end) ? 1355 m->pindex : end; 1356 vm_object_madvise_freespace(object, advice, 1357 pindex, tpindex - pindex); 1358 if ((pindex = tpindex) == end) 1359 break; 1360 goto next_page; 1361 } 1362 1363 tpindex = pindex; 1364 do { 1365 vm_object_madvise_freespace(tobject, advice, 1366 tpindex, 1); 1367 /* 1368 * Prepare to search the next object in the 1369 * chain. 1370 */ 1371 backing_object = tobject->backing_object; 1372 if (backing_object == NULL) 1373 goto next_pindex; 1374 VM_OBJECT_WLOCK(backing_object); 1375 tpindex += 1376 OFF_TO_IDX(tobject->backing_object_offset); 1377 if (tobject != object) 1378 VM_OBJECT_WUNLOCK(tobject); 1379 tobject = backing_object; 1380 if (!vm_object_advice_applies(tobject, advice)) 1381 goto next_pindex; 1382 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1383 NULL); 1384 } else { 1385 next_page: 1386 tm = m; 1387 m = TAILQ_NEXT(m, listq); 1388 } 1389 1390 /* 1391 * If the page is not in a normal state, skip it. The page 1392 * can not be invalidated while the object lock is held. 1393 */ 1394 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1395 goto next_pindex; 1396 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1397 ("vm_object_madvise: page %p is fictitious", tm)); 1398 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1399 ("vm_object_madvise: page %p is not managed", tm)); 1400 if (vm_page_tryxbusy(tm) == 0) { 1401 if (object != tobject) 1402 VM_OBJECT_WUNLOCK(object); 1403 if (advice == MADV_WILLNEED) { 1404 /* 1405 * Reference the page before unlocking and 1406 * sleeping so that the page daemon is less 1407 * likely to reclaim it. 1408 */ 1409 vm_page_aflag_set(tm, PGA_REFERENCED); 1410 } 1411 if (!vm_page_busy_sleep(tm, "madvpo", 0)) 1412 VM_OBJECT_WUNLOCK(tobject); 1413 goto relookup; 1414 } 1415 vm_page_advise(tm, advice); 1416 vm_page_xunbusy(tm); 1417 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1418 next_pindex: 1419 if (tobject != object) 1420 VM_OBJECT_WUNLOCK(tobject); 1421 } 1422 VM_OBJECT_WUNLOCK(object); 1423 } 1424 1425 /* 1426 * vm_object_shadow: 1427 * 1428 * Create a new object which is backed by the 1429 * specified existing object range. The source 1430 * object reference is deallocated. 1431 * 1432 * The new object and offset into that object 1433 * are returned in the source parameters. 1434 */ 1435 void 1436 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1437 struct ucred *cred, bool shared) 1438 { 1439 vm_object_t source; 1440 vm_object_t result; 1441 1442 source = *object; 1443 1444 /* 1445 * Don't create the new object if the old object isn't shared. 1446 * 1447 * If we hold the only reference we can guarantee that it won't 1448 * increase while we have the map locked. Otherwise the race is 1449 * harmless and we will end up with an extra shadow object that 1450 * will be collapsed later. 1451 */ 1452 if (source != NULL && source->ref_count == 1 && 1453 (source->flags & OBJ_ANON) != 0) 1454 return; 1455 1456 /* 1457 * Allocate a new object with the given length. 1458 */ 1459 result = vm_object_allocate_anon(atop(length), source, cred, length); 1460 1461 /* 1462 * Store the offset into the source object, and fix up the offset into 1463 * the new object. 1464 */ 1465 result->backing_object_offset = *offset; 1466 1467 if (shared || source != NULL) { 1468 VM_OBJECT_WLOCK(result); 1469 1470 /* 1471 * The new object shadows the source object, adding a 1472 * reference to it. Our caller changes his reference 1473 * to point to the new object, removing a reference to 1474 * the source object. Net result: no change of 1475 * reference count, unless the caller needs to add one 1476 * more reference due to forking a shared map entry. 1477 */ 1478 if (shared) { 1479 vm_object_reference_locked(result); 1480 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1481 } 1482 1483 /* 1484 * Try to optimize the result object's page color when 1485 * shadowing in order to maintain page coloring 1486 * consistency in the combined shadowed object. 1487 */ 1488 if (source != NULL) { 1489 vm_object_backing_insert(result, source); 1490 result->domain = source->domain; 1491 #if VM_NRESERVLEVEL > 0 1492 vm_object_set_flag(result, 1493 (source->flags & OBJ_COLORED)); 1494 result->pg_color = (source->pg_color + 1495 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1496 1)) - 1); 1497 #endif 1498 } 1499 VM_OBJECT_WUNLOCK(result); 1500 } 1501 1502 /* 1503 * Return the new things 1504 */ 1505 *offset = 0; 1506 *object = result; 1507 } 1508 1509 /* 1510 * vm_object_split: 1511 * 1512 * Split the pages in a map entry into a new object. This affords 1513 * easier removal of unused pages, and keeps object inheritance from 1514 * being a negative impact on memory usage. 1515 */ 1516 void 1517 vm_object_split(vm_map_entry_t entry) 1518 { 1519 vm_page_t m, m_next; 1520 vm_object_t orig_object, new_object, backing_object; 1521 vm_pindex_t idx, offidxstart; 1522 vm_size_t size; 1523 1524 orig_object = entry->object.vm_object; 1525 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1526 ("vm_object_split: Splitting object with multiple mappings.")); 1527 if ((orig_object->flags & OBJ_ANON) == 0) 1528 return; 1529 if (orig_object->ref_count <= 1) 1530 return; 1531 VM_OBJECT_WUNLOCK(orig_object); 1532 1533 offidxstart = OFF_TO_IDX(entry->offset); 1534 size = atop(entry->end - entry->start); 1535 1536 new_object = vm_object_allocate_anon(size, orig_object, 1537 orig_object->cred, ptoa(size)); 1538 1539 /* 1540 * We must wait for the orig_object to complete any in-progress 1541 * collapse so that the swap blocks are stable below. The 1542 * additional reference on backing_object by new object will 1543 * prevent further collapse operations until split completes. 1544 */ 1545 VM_OBJECT_WLOCK(orig_object); 1546 vm_object_collapse_wait(orig_object); 1547 1548 /* 1549 * At this point, the new object is still private, so the order in 1550 * which the original and new objects are locked does not matter. 1551 */ 1552 VM_OBJECT_WLOCK(new_object); 1553 new_object->domain = orig_object->domain; 1554 backing_object = orig_object->backing_object; 1555 if (backing_object != NULL) { 1556 vm_object_backing_insert_ref(new_object, backing_object); 1557 new_object->backing_object_offset = 1558 orig_object->backing_object_offset + entry->offset; 1559 } 1560 if (orig_object->cred != NULL) { 1561 crhold(orig_object->cred); 1562 KASSERT(orig_object->charge >= ptoa(size), 1563 ("orig_object->charge < 0")); 1564 orig_object->charge -= ptoa(size); 1565 } 1566 1567 /* 1568 * Mark the split operation so that swap_pager_getpages() knows 1569 * that the object is in transition. 1570 */ 1571 vm_object_set_flag(orig_object, OBJ_SPLIT); 1572 #ifdef INVARIANTS 1573 idx = 0; 1574 #endif 1575 retry: 1576 m = vm_page_find_least(orig_object, offidxstart); 1577 KASSERT(m == NULL || idx <= m->pindex - offidxstart, 1578 ("%s: object %p was repopulated", __func__, orig_object)); 1579 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1580 m = m_next) { 1581 m_next = TAILQ_NEXT(m, listq); 1582 1583 /* 1584 * We must wait for pending I/O to complete before we can 1585 * rename the page. 1586 * 1587 * We do not have to VM_PROT_NONE the page as mappings should 1588 * not be changed by this operation. 1589 */ 1590 if (vm_page_tryxbusy(m) == 0) { 1591 VM_OBJECT_WUNLOCK(new_object); 1592 if (vm_page_busy_sleep(m, "spltwt", 0)) 1593 VM_OBJECT_WLOCK(orig_object); 1594 VM_OBJECT_WLOCK(new_object); 1595 goto retry; 1596 } 1597 1598 /* 1599 * The page was left invalid. Likely placed there by 1600 * an incomplete fault. Just remove and ignore. 1601 */ 1602 if (vm_page_none_valid(m)) { 1603 if (vm_page_remove(m)) 1604 vm_page_free(m); 1605 continue; 1606 } 1607 1608 /* vm_page_rename() will dirty the page. */ 1609 if (vm_page_rename(m, new_object, idx)) { 1610 vm_page_xunbusy(m); 1611 VM_OBJECT_WUNLOCK(new_object); 1612 VM_OBJECT_WUNLOCK(orig_object); 1613 vm_radix_wait(); 1614 VM_OBJECT_WLOCK(orig_object); 1615 VM_OBJECT_WLOCK(new_object); 1616 goto retry; 1617 } 1618 1619 #if VM_NRESERVLEVEL > 0 1620 /* 1621 * If some of the reservation's allocated pages remain with 1622 * the original object, then transferring the reservation to 1623 * the new object is neither particularly beneficial nor 1624 * particularly harmful as compared to leaving the reservation 1625 * with the original object. If, however, all of the 1626 * reservation's allocated pages are transferred to the new 1627 * object, then transferring the reservation is typically 1628 * beneficial. Determining which of these two cases applies 1629 * would be more costly than unconditionally renaming the 1630 * reservation. 1631 */ 1632 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1633 #endif 1634 } 1635 1636 /* 1637 * swap_pager_copy() can sleep, in which case the orig_object's 1638 * and new_object's locks are released and reacquired. 1639 */ 1640 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1641 1642 TAILQ_FOREACH(m, &new_object->memq, listq) 1643 vm_page_xunbusy(m); 1644 1645 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1646 VM_OBJECT_WUNLOCK(orig_object); 1647 VM_OBJECT_WUNLOCK(new_object); 1648 entry->object.vm_object = new_object; 1649 entry->offset = 0LL; 1650 vm_object_deallocate(orig_object); 1651 VM_OBJECT_WLOCK(new_object); 1652 } 1653 1654 static vm_page_t 1655 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) 1656 { 1657 vm_object_t backing_object; 1658 1659 VM_OBJECT_ASSERT_WLOCKED(object); 1660 backing_object = object->backing_object; 1661 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1662 1663 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1664 ("invalid ownership %p %p %p", p, object, backing_object)); 1665 /* The page is only NULL when rename fails. */ 1666 if (p == NULL) { 1667 VM_OBJECT_WUNLOCK(object); 1668 VM_OBJECT_WUNLOCK(backing_object); 1669 vm_radix_wait(); 1670 VM_OBJECT_WLOCK(object); 1671 } else if (p->object == object) { 1672 VM_OBJECT_WUNLOCK(backing_object); 1673 if (vm_page_busy_sleep(p, "vmocol", 0)) 1674 VM_OBJECT_WLOCK(object); 1675 } else { 1676 VM_OBJECT_WUNLOCK(object); 1677 if (!vm_page_busy_sleep(p, "vmocol", 0)) 1678 VM_OBJECT_WUNLOCK(backing_object); 1679 VM_OBJECT_WLOCK(object); 1680 } 1681 VM_OBJECT_WLOCK(backing_object); 1682 return (TAILQ_FIRST(&backing_object->memq)); 1683 } 1684 1685 static bool 1686 vm_object_scan_all_shadowed(vm_object_t object) 1687 { 1688 vm_object_t backing_object; 1689 vm_page_t p, pp; 1690 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1691 1692 VM_OBJECT_ASSERT_WLOCKED(object); 1693 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1694 1695 backing_object = object->backing_object; 1696 1697 if ((backing_object->flags & OBJ_ANON) == 0) 1698 return (false); 1699 1700 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1701 p = vm_page_find_least(backing_object, pi); 1702 ps = swap_pager_find_least(backing_object, pi); 1703 1704 /* 1705 * Only check pages inside the parent object's range and 1706 * inside the parent object's mapping of the backing object. 1707 */ 1708 for (;; pi++) { 1709 if (p != NULL && p->pindex < pi) 1710 p = TAILQ_NEXT(p, listq); 1711 if (ps < pi) 1712 ps = swap_pager_find_least(backing_object, pi); 1713 if (p == NULL && ps >= backing_object->size) 1714 break; 1715 else if (p == NULL) 1716 pi = ps; 1717 else 1718 pi = MIN(p->pindex, ps); 1719 1720 new_pindex = pi - backing_offset_index; 1721 if (new_pindex >= object->size) 1722 break; 1723 1724 if (p != NULL) { 1725 /* 1726 * If the backing object page is busy a 1727 * grandparent or older page may still be 1728 * undergoing CoW. It is not safe to collapse 1729 * the backing object until it is quiesced. 1730 */ 1731 if (vm_page_tryxbusy(p) == 0) 1732 return (false); 1733 1734 /* 1735 * We raced with the fault handler that left 1736 * newly allocated invalid page on the object 1737 * queue and retried. 1738 */ 1739 if (!vm_page_all_valid(p)) 1740 goto unbusy_ret; 1741 } 1742 1743 /* 1744 * See if the parent has the page or if the parent's object 1745 * pager has the page. If the parent has the page but the page 1746 * is not valid, the parent's object pager must have the page. 1747 * 1748 * If this fails, the parent does not completely shadow the 1749 * object and we might as well give up now. 1750 */ 1751 pp = vm_page_lookup(object, new_pindex); 1752 1753 /* 1754 * The valid check here is stable due to object lock 1755 * being required to clear valid and initiate paging. 1756 * Busy of p disallows fault handler to validate pp. 1757 */ 1758 if ((pp == NULL || vm_page_none_valid(pp)) && 1759 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1760 goto unbusy_ret; 1761 if (p != NULL) 1762 vm_page_xunbusy(p); 1763 } 1764 return (true); 1765 1766 unbusy_ret: 1767 if (p != NULL) 1768 vm_page_xunbusy(p); 1769 return (false); 1770 } 1771 1772 static void 1773 vm_object_collapse_scan(vm_object_t object) 1774 { 1775 vm_object_t backing_object; 1776 vm_page_t next, p, pp; 1777 vm_pindex_t backing_offset_index, new_pindex; 1778 1779 VM_OBJECT_ASSERT_WLOCKED(object); 1780 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1781 1782 backing_object = object->backing_object; 1783 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1784 1785 /* 1786 * Our scan 1787 */ 1788 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1789 next = TAILQ_NEXT(p, listq); 1790 new_pindex = p->pindex - backing_offset_index; 1791 1792 /* 1793 * Check for busy page 1794 */ 1795 if (vm_page_tryxbusy(p) == 0) { 1796 next = vm_object_collapse_scan_wait(object, p); 1797 continue; 1798 } 1799 1800 KASSERT(object->backing_object == backing_object, 1801 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1802 object->backing_object, backing_object)); 1803 KASSERT(p->object == backing_object, 1804 ("vm_object_collapse_scan: object mismatch %p != %p", 1805 p->object, backing_object)); 1806 1807 if (p->pindex < backing_offset_index || 1808 new_pindex >= object->size) { 1809 vm_pager_freespace(backing_object, p->pindex, 1); 1810 1811 KASSERT(!pmap_page_is_mapped(p), 1812 ("freeing mapped page %p", p)); 1813 if (vm_page_remove(p)) 1814 vm_page_free(p); 1815 continue; 1816 } 1817 1818 if (!vm_page_all_valid(p)) { 1819 KASSERT(!pmap_page_is_mapped(p), 1820 ("freeing mapped page %p", p)); 1821 if (vm_page_remove(p)) 1822 vm_page_free(p); 1823 continue; 1824 } 1825 1826 pp = vm_page_lookup(object, new_pindex); 1827 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1828 vm_page_xunbusy(p); 1829 /* 1830 * The page in the parent is busy and possibly not 1831 * (yet) valid. Until its state is finalized by the 1832 * busy bit owner, we can't tell whether it shadows the 1833 * original page. 1834 */ 1835 next = vm_object_collapse_scan_wait(object, pp); 1836 continue; 1837 } 1838 1839 if (pp != NULL && vm_page_none_valid(pp)) { 1840 /* 1841 * The page was invalid in the parent. Likely placed 1842 * there by an incomplete fault. Just remove and 1843 * ignore. p can replace it. 1844 */ 1845 if (vm_page_remove(pp)) 1846 vm_page_free(pp); 1847 pp = NULL; 1848 } 1849 1850 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1851 NULL)) { 1852 /* 1853 * The page already exists in the parent OR swap exists 1854 * for this location in the parent. Leave the parent's 1855 * page alone. Destroy the original page from the 1856 * backing object. 1857 */ 1858 vm_pager_freespace(backing_object, p->pindex, 1); 1859 KASSERT(!pmap_page_is_mapped(p), 1860 ("freeing mapped page %p", p)); 1861 if (vm_page_remove(p)) 1862 vm_page_free(p); 1863 if (pp != NULL) 1864 vm_page_xunbusy(pp); 1865 continue; 1866 } 1867 1868 /* 1869 * Page does not exist in parent, rename the page from the 1870 * backing object to the main object. 1871 * 1872 * If the page was mapped to a process, it can remain mapped 1873 * through the rename. vm_page_rename() will dirty the page. 1874 */ 1875 if (vm_page_rename(p, object, new_pindex)) { 1876 vm_page_xunbusy(p); 1877 next = vm_object_collapse_scan_wait(object, NULL); 1878 continue; 1879 } 1880 1881 /* Use the old pindex to free the right page. */ 1882 vm_pager_freespace(backing_object, new_pindex + 1883 backing_offset_index, 1); 1884 1885 #if VM_NRESERVLEVEL > 0 1886 /* 1887 * Rename the reservation. 1888 */ 1889 vm_reserv_rename(p, object, backing_object, 1890 backing_offset_index); 1891 #endif 1892 vm_page_xunbusy(p); 1893 } 1894 return; 1895 } 1896 1897 /* 1898 * vm_object_collapse: 1899 * 1900 * Collapse an object with the object backing it. 1901 * Pages in the backing object are moved into the 1902 * parent, and the backing object is deallocated. 1903 */ 1904 void 1905 vm_object_collapse(vm_object_t object) 1906 { 1907 vm_object_t backing_object, new_backing_object; 1908 1909 VM_OBJECT_ASSERT_WLOCKED(object); 1910 1911 while (TRUE) { 1912 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1913 ("collapsing invalid object")); 1914 1915 /* 1916 * Wait for the backing_object to finish any pending 1917 * collapse so that the caller sees the shortest possible 1918 * shadow chain. 1919 */ 1920 backing_object = vm_object_backing_collapse_wait(object); 1921 if (backing_object == NULL) 1922 return; 1923 1924 KASSERT(object->ref_count > 0 && 1925 object->ref_count > atomic_load_int(&object->shadow_count), 1926 ("collapse with invalid ref %d or shadow %d count.", 1927 object->ref_count, atomic_load_int(&object->shadow_count))); 1928 KASSERT((backing_object->flags & 1929 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1930 ("vm_object_collapse: Backing object already collapsing.")); 1931 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1932 ("vm_object_collapse: object is already collapsing.")); 1933 1934 /* 1935 * We know that we can either collapse the backing object if 1936 * the parent is the only reference to it, or (perhaps) have 1937 * the parent bypass the object if the parent happens to shadow 1938 * all the resident pages in the entire backing object. 1939 */ 1940 if (backing_object->ref_count == 1) { 1941 KASSERT(atomic_load_int(&backing_object->shadow_count) 1942 == 1, 1943 ("vm_object_collapse: shadow_count: %d", 1944 atomic_load_int(&backing_object->shadow_count))); 1945 vm_object_pip_add(object, 1); 1946 vm_object_set_flag(object, OBJ_COLLAPSING); 1947 vm_object_pip_add(backing_object, 1); 1948 vm_object_set_flag(backing_object, OBJ_DEAD); 1949 1950 /* 1951 * If there is exactly one reference to the backing 1952 * object, we can collapse it into the parent. 1953 */ 1954 vm_object_collapse_scan(object); 1955 1956 #if VM_NRESERVLEVEL > 0 1957 /* 1958 * Break any reservations from backing_object. 1959 */ 1960 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1961 vm_reserv_break_all(backing_object); 1962 #endif 1963 1964 /* 1965 * Move the pager from backing_object to object. 1966 * 1967 * swap_pager_copy() can sleep, in which case the 1968 * backing_object's and object's locks are released and 1969 * reacquired. 1970 */ 1971 swap_pager_copy(backing_object, object, 1972 OFF_TO_IDX(object->backing_object_offset), TRUE); 1973 1974 /* 1975 * Object now shadows whatever backing_object did. 1976 */ 1977 vm_object_clear_flag(object, OBJ_COLLAPSING); 1978 vm_object_backing_transfer(object, backing_object); 1979 object->backing_object_offset += 1980 backing_object->backing_object_offset; 1981 VM_OBJECT_WUNLOCK(object); 1982 vm_object_pip_wakeup(object); 1983 1984 /* 1985 * Discard backing_object. 1986 * 1987 * Since the backing object has no pages, no pager left, 1988 * and no object references within it, all that is 1989 * necessary is to dispose of it. 1990 */ 1991 KASSERT(backing_object->ref_count == 1, ( 1992 "backing_object %p was somehow re-referenced during collapse!", 1993 backing_object)); 1994 vm_object_pip_wakeup(backing_object); 1995 (void)refcount_release(&backing_object->ref_count); 1996 umtx_shm_object_terminated(backing_object); 1997 vm_object_terminate(backing_object); 1998 counter_u64_add(object_collapses, 1); 1999 VM_OBJECT_WLOCK(object); 2000 } else { 2001 /* 2002 * If we do not entirely shadow the backing object, 2003 * there is nothing we can do so we give up. 2004 * 2005 * The object lock and backing_object lock must not 2006 * be dropped during this sequence. 2007 */ 2008 if (!vm_object_scan_all_shadowed(object)) { 2009 VM_OBJECT_WUNLOCK(backing_object); 2010 break; 2011 } 2012 2013 /* 2014 * Make the parent shadow the next object in the 2015 * chain. Deallocating backing_object will not remove 2016 * it, since its reference count is at least 2. 2017 */ 2018 vm_object_backing_remove_locked(object); 2019 new_backing_object = backing_object->backing_object; 2020 if (new_backing_object != NULL) { 2021 vm_object_backing_insert_ref(object, 2022 new_backing_object); 2023 object->backing_object_offset += 2024 backing_object->backing_object_offset; 2025 } 2026 2027 /* 2028 * Drop the reference count on backing_object. Since 2029 * its ref_count was at least 2, it will not vanish. 2030 */ 2031 (void)refcount_release(&backing_object->ref_count); 2032 KASSERT(backing_object->ref_count >= 1, ( 2033 "backing_object %p was somehow dereferenced during collapse!", 2034 backing_object)); 2035 VM_OBJECT_WUNLOCK(backing_object); 2036 counter_u64_add(object_bypasses, 1); 2037 } 2038 2039 /* 2040 * Try again with this object's new backing object. 2041 */ 2042 } 2043 } 2044 2045 /* 2046 * vm_object_page_remove: 2047 * 2048 * For the given object, either frees or invalidates each of the 2049 * specified pages. In general, a page is freed. However, if a page is 2050 * wired for any reason other than the existence of a managed, wired 2051 * mapping, then it may be invalidated but not removed from the object. 2052 * Pages are specified by the given range ["start", "end") and the option 2053 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 2054 * extends from "start" to the end of the object. If the option 2055 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 2056 * specified range are affected. If the option OBJPR_NOTMAPPED is 2057 * specified, then the pages within the specified range must have no 2058 * mappings. Otherwise, if this option is not specified, any mappings to 2059 * the specified pages are removed before the pages are freed or 2060 * invalidated. 2061 * 2062 * In general, this operation should only be performed on objects that 2063 * contain managed pages. There are, however, two exceptions. First, it 2064 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 2065 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 2066 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 2067 * not be specified and the option OBJPR_NOTMAPPED must be specified. 2068 * 2069 * The object must be locked. 2070 */ 2071 void 2072 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2073 int options) 2074 { 2075 vm_page_t p, next; 2076 2077 VM_OBJECT_ASSERT_WLOCKED(object); 2078 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 2079 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 2080 ("vm_object_page_remove: illegal options for object %p", object)); 2081 if (object->resident_page_count == 0) 2082 return; 2083 vm_object_pip_add(object, 1); 2084 again: 2085 p = vm_page_find_least(object, start); 2086 2087 /* 2088 * Here, the variable "p" is either (1) the page with the least pindex 2089 * greater than or equal to the parameter "start" or (2) NULL. 2090 */ 2091 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2092 next = TAILQ_NEXT(p, listq); 2093 2094 /* 2095 * Skip invalid pages if asked to do so. Try to avoid acquiring 2096 * the busy lock, as some consumers rely on this to avoid 2097 * deadlocks. 2098 * 2099 * A thread may concurrently transition the page from invalid to 2100 * valid using only the busy lock, so the result of this check 2101 * is immediately stale. It is up to consumers to handle this, 2102 * for instance by ensuring that all invalid->valid transitions 2103 * happen with a mutex held, as may be possible for a 2104 * filesystem. 2105 */ 2106 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) 2107 continue; 2108 2109 /* 2110 * If the page is wired for any reason besides the existence 2111 * of managed, wired mappings, then it cannot be freed. For 2112 * example, fictitious pages, which represent device memory, 2113 * are inherently wired and cannot be freed. They can, 2114 * however, be invalidated if the option OBJPR_CLEANONLY is 2115 * not specified. 2116 */ 2117 if (vm_page_tryxbusy(p) == 0) { 2118 if (vm_page_busy_sleep(p, "vmopar", 0)) 2119 VM_OBJECT_WLOCK(object); 2120 goto again; 2121 } 2122 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { 2123 vm_page_xunbusy(p); 2124 continue; 2125 } 2126 if (vm_page_wired(p)) { 2127 wired: 2128 if ((options & OBJPR_NOTMAPPED) == 0 && 2129 object->ref_count != 0) 2130 pmap_remove_all(p); 2131 if ((options & OBJPR_CLEANONLY) == 0) { 2132 vm_page_invalid(p); 2133 vm_page_undirty(p); 2134 } 2135 vm_page_xunbusy(p); 2136 continue; 2137 } 2138 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2139 ("vm_object_page_remove: page %p is fictitious", p)); 2140 if ((options & OBJPR_CLEANONLY) != 0 && 2141 !vm_page_none_valid(p)) { 2142 if ((options & OBJPR_NOTMAPPED) == 0 && 2143 object->ref_count != 0 && 2144 !vm_page_try_remove_write(p)) 2145 goto wired; 2146 if (p->dirty != 0) { 2147 vm_page_xunbusy(p); 2148 continue; 2149 } 2150 } 2151 if ((options & OBJPR_NOTMAPPED) == 0 && 2152 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2153 goto wired; 2154 vm_page_free(p); 2155 } 2156 vm_object_pip_wakeup(object); 2157 2158 vm_pager_freespace(object, start, (end == 0 ? object->size : end) - 2159 start); 2160 } 2161 2162 /* 2163 * vm_object_page_noreuse: 2164 * 2165 * For the given object, attempt to move the specified pages to 2166 * the head of the inactive queue. This bypasses regular LRU 2167 * operation and allows the pages to be reused quickly under memory 2168 * pressure. If a page is wired for any reason, then it will not 2169 * be queued. Pages are specified by the range ["start", "end"). 2170 * As a special case, if "end" is zero, then the range extends from 2171 * "start" to the end of the object. 2172 * 2173 * This operation should only be performed on objects that 2174 * contain non-fictitious, managed pages. 2175 * 2176 * The object must be locked. 2177 */ 2178 void 2179 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2180 { 2181 vm_page_t p, next; 2182 2183 VM_OBJECT_ASSERT_LOCKED(object); 2184 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2185 ("vm_object_page_noreuse: illegal object %p", object)); 2186 if (object->resident_page_count == 0) 2187 return; 2188 p = vm_page_find_least(object, start); 2189 2190 /* 2191 * Here, the variable "p" is either (1) the page with the least pindex 2192 * greater than or equal to the parameter "start" or (2) NULL. 2193 */ 2194 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2195 next = TAILQ_NEXT(p, listq); 2196 vm_page_deactivate_noreuse(p); 2197 } 2198 } 2199 2200 /* 2201 * Populate the specified range of the object with valid pages. Returns 2202 * TRUE if the range is successfully populated and FALSE otherwise. 2203 * 2204 * Note: This function should be optimized to pass a larger array of 2205 * pages to vm_pager_get_pages() before it is applied to a non- 2206 * OBJT_DEVICE object. 2207 * 2208 * The object must be locked. 2209 */ 2210 boolean_t 2211 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2212 { 2213 vm_page_t m; 2214 vm_pindex_t pindex; 2215 int rv; 2216 2217 VM_OBJECT_ASSERT_WLOCKED(object); 2218 for (pindex = start; pindex < end; pindex++) { 2219 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2220 if (rv != VM_PAGER_OK) 2221 break; 2222 2223 /* 2224 * Keep "m" busy because a subsequent iteration may unlock 2225 * the object. 2226 */ 2227 } 2228 if (pindex > start) { 2229 m = vm_page_lookup(object, start); 2230 while (m != NULL && m->pindex < pindex) { 2231 vm_page_xunbusy(m); 2232 m = TAILQ_NEXT(m, listq); 2233 } 2234 } 2235 return (pindex == end); 2236 } 2237 2238 /* 2239 * Routine: vm_object_coalesce 2240 * Function: Coalesces two objects backing up adjoining 2241 * regions of memory into a single object. 2242 * 2243 * returns TRUE if objects were combined. 2244 * 2245 * NOTE: Only works at the moment if the second object is NULL - 2246 * if it's not, which object do we lock first? 2247 * 2248 * Parameters: 2249 * prev_object First object to coalesce 2250 * prev_offset Offset into prev_object 2251 * prev_size Size of reference to prev_object 2252 * next_size Size of reference to the second object 2253 * reserved Indicator that extension region has 2254 * swap accounted for 2255 * 2256 * Conditions: 2257 * The object must *not* be locked. 2258 */ 2259 boolean_t 2260 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2261 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2262 { 2263 vm_pindex_t next_pindex; 2264 2265 if (prev_object == NULL) 2266 return (TRUE); 2267 if ((prev_object->flags & OBJ_ANON) == 0) 2268 return (FALSE); 2269 2270 VM_OBJECT_WLOCK(prev_object); 2271 /* 2272 * Try to collapse the object first. 2273 */ 2274 vm_object_collapse(prev_object); 2275 2276 /* 2277 * Can't coalesce if: . more than one reference . paged out . shadows 2278 * another object . has a copy elsewhere (any of which mean that the 2279 * pages not mapped to prev_entry may be in use anyway) 2280 */ 2281 if (prev_object->backing_object != NULL) { 2282 VM_OBJECT_WUNLOCK(prev_object); 2283 return (FALSE); 2284 } 2285 2286 prev_size >>= PAGE_SHIFT; 2287 next_size >>= PAGE_SHIFT; 2288 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2289 2290 if (prev_object->ref_count > 1 && 2291 prev_object->size != next_pindex && 2292 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2293 VM_OBJECT_WUNLOCK(prev_object); 2294 return (FALSE); 2295 } 2296 2297 /* 2298 * Account for the charge. 2299 */ 2300 if (prev_object->cred != NULL) { 2301 /* 2302 * If prev_object was charged, then this mapping, 2303 * although not charged now, may become writable 2304 * later. Non-NULL cred in the object would prevent 2305 * swap reservation during enabling of the write 2306 * access, so reserve swap now. Failed reservation 2307 * cause allocation of the separate object for the map 2308 * entry, and swap reservation for this entry is 2309 * managed in appropriate time. 2310 */ 2311 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2312 prev_object->cred)) { 2313 VM_OBJECT_WUNLOCK(prev_object); 2314 return (FALSE); 2315 } 2316 prev_object->charge += ptoa(next_size); 2317 } 2318 2319 /* 2320 * Remove any pages that may still be in the object from a previous 2321 * deallocation. 2322 */ 2323 if (next_pindex < prev_object->size) { 2324 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2325 next_size, 0); 2326 #if 0 2327 if (prev_object->cred != NULL) { 2328 KASSERT(prev_object->charge >= 2329 ptoa(prev_object->size - next_pindex), 2330 ("object %p overcharged 1 %jx %jx", prev_object, 2331 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2332 prev_object->charge -= ptoa(prev_object->size - 2333 next_pindex); 2334 } 2335 #endif 2336 } 2337 2338 /* 2339 * Extend the object if necessary. 2340 */ 2341 if (next_pindex + next_size > prev_object->size) 2342 prev_object->size = next_pindex + next_size; 2343 2344 VM_OBJECT_WUNLOCK(prev_object); 2345 return (TRUE); 2346 } 2347 2348 void 2349 vm_object_set_writeable_dirty_(vm_object_t object) 2350 { 2351 atomic_add_int(&object->generation, 1); 2352 } 2353 2354 bool 2355 vm_object_mightbedirty_(vm_object_t object) 2356 { 2357 return (object->generation != object->cleangeneration); 2358 } 2359 2360 /* 2361 * vm_object_unwire: 2362 * 2363 * For each page offset within the specified range of the given object, 2364 * find the highest-level page in the shadow chain and unwire it. A page 2365 * must exist at every page offset, and the highest-level page must be 2366 * wired. 2367 */ 2368 void 2369 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2370 uint8_t queue) 2371 { 2372 vm_object_t tobject, t1object; 2373 vm_page_t m, tm; 2374 vm_pindex_t end_pindex, pindex, tpindex; 2375 int depth, locked_depth; 2376 2377 KASSERT((offset & PAGE_MASK) == 0, 2378 ("vm_object_unwire: offset is not page aligned")); 2379 KASSERT((length & PAGE_MASK) == 0, 2380 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2381 /* The wired count of a fictitious page never changes. */ 2382 if ((object->flags & OBJ_FICTITIOUS) != 0) 2383 return; 2384 pindex = OFF_TO_IDX(offset); 2385 end_pindex = pindex + atop(length); 2386 again: 2387 locked_depth = 1; 2388 VM_OBJECT_RLOCK(object); 2389 m = vm_page_find_least(object, pindex); 2390 while (pindex < end_pindex) { 2391 if (m == NULL || pindex < m->pindex) { 2392 /* 2393 * The first object in the shadow chain doesn't 2394 * contain a page at the current index. Therefore, 2395 * the page must exist in a backing object. 2396 */ 2397 tobject = object; 2398 tpindex = pindex; 2399 depth = 0; 2400 do { 2401 tpindex += 2402 OFF_TO_IDX(tobject->backing_object_offset); 2403 tobject = tobject->backing_object; 2404 KASSERT(tobject != NULL, 2405 ("vm_object_unwire: missing page")); 2406 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2407 goto next_page; 2408 depth++; 2409 if (depth == locked_depth) { 2410 locked_depth++; 2411 VM_OBJECT_RLOCK(tobject); 2412 } 2413 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2414 NULL); 2415 } else { 2416 tm = m; 2417 m = TAILQ_NEXT(m, listq); 2418 } 2419 if (vm_page_trysbusy(tm) == 0) { 2420 for (tobject = object; locked_depth >= 1; 2421 locked_depth--) { 2422 t1object = tobject->backing_object; 2423 if (tm->object != tobject) 2424 VM_OBJECT_RUNLOCK(tobject); 2425 tobject = t1object; 2426 } 2427 tobject = tm->object; 2428 if (!vm_page_busy_sleep(tm, "unwbo", 2429 VM_ALLOC_IGN_SBUSY)) 2430 VM_OBJECT_RUNLOCK(tobject); 2431 goto again; 2432 } 2433 vm_page_unwire(tm, queue); 2434 vm_page_sunbusy(tm); 2435 next_page: 2436 pindex++; 2437 } 2438 /* Release the accumulated object locks. */ 2439 for (tobject = object; locked_depth >= 1; locked_depth--) { 2440 t1object = tobject->backing_object; 2441 VM_OBJECT_RUNLOCK(tobject); 2442 tobject = t1object; 2443 } 2444 } 2445 2446 /* 2447 * Return the vnode for the given object, or NULL if none exists. 2448 * For tmpfs objects, the function may return NULL if there is 2449 * no vnode allocated at the time of the call. 2450 */ 2451 struct vnode * 2452 vm_object_vnode(vm_object_t object) 2453 { 2454 struct vnode *vp; 2455 2456 VM_OBJECT_ASSERT_LOCKED(object); 2457 vm_pager_getvp(object, &vp, NULL); 2458 return (vp); 2459 } 2460 2461 /* 2462 * Busy the vm object. This prevents new pages belonging to the object from 2463 * becoming busy. Existing pages persist as busy. Callers are responsible 2464 * for checking page state before proceeding. 2465 */ 2466 void 2467 vm_object_busy(vm_object_t obj) 2468 { 2469 2470 VM_OBJECT_ASSERT_LOCKED(obj); 2471 2472 blockcount_acquire(&obj->busy, 1); 2473 /* The fence is required to order loads of page busy. */ 2474 atomic_thread_fence_acq_rel(); 2475 } 2476 2477 void 2478 vm_object_unbusy(vm_object_t obj) 2479 { 2480 2481 blockcount_release(&obj->busy, 1); 2482 } 2483 2484 void 2485 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2486 { 2487 2488 VM_OBJECT_ASSERT_UNLOCKED(obj); 2489 2490 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2491 } 2492 2493 /* 2494 * This function aims to determine if the object is mapped, 2495 * specifically, if it is referenced by a vm_map_entry. Because 2496 * objects occasionally acquire transient references that do not 2497 * represent a mapping, the method used here is inexact. However, it 2498 * has very low overhead and is good enough for the advisory 2499 * vm.vmtotal sysctl. 2500 */ 2501 bool 2502 vm_object_is_active(vm_object_t obj) 2503 { 2504 2505 return (obj->ref_count > atomic_load_int(&obj->shadow_count)); 2506 } 2507 2508 static int 2509 vm_object_list_handler(struct sysctl_req *req, bool swap_only) 2510 { 2511 struct kinfo_vmobject *kvo; 2512 char *fullpath, *freepath; 2513 struct vnode *vp; 2514 struct vattr va; 2515 vm_object_t obj; 2516 vm_page_t m; 2517 u_long sp; 2518 int count, error; 2519 bool want_path; 2520 2521 if (req->oldptr == NULL) { 2522 /* 2523 * If an old buffer has not been provided, generate an 2524 * estimate of the space needed for a subsequent call. 2525 */ 2526 mtx_lock(&vm_object_list_mtx); 2527 count = 0; 2528 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2529 if (obj->type == OBJT_DEAD) 2530 continue; 2531 count++; 2532 } 2533 mtx_unlock(&vm_object_list_mtx); 2534 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2535 count * 11 / 10)); 2536 } 2537 2538 want_path = !(swap_only || jailed(curthread->td_ucred)); 2539 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO); 2540 error = 0; 2541 2542 /* 2543 * VM objects are type stable and are never removed from the 2544 * list once added. This allows us to safely read obj->object_list 2545 * after reacquiring the VM object lock. 2546 */ 2547 mtx_lock(&vm_object_list_mtx); 2548 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2549 if (obj->type == OBJT_DEAD || 2550 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) 2551 continue; 2552 VM_OBJECT_RLOCK(obj); 2553 if (obj->type == OBJT_DEAD || 2554 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { 2555 VM_OBJECT_RUNLOCK(obj); 2556 continue; 2557 } 2558 mtx_unlock(&vm_object_list_mtx); 2559 kvo->kvo_size = ptoa(obj->size); 2560 kvo->kvo_resident = obj->resident_page_count; 2561 kvo->kvo_ref_count = obj->ref_count; 2562 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); 2563 kvo->kvo_memattr = obj->memattr; 2564 kvo->kvo_active = 0; 2565 kvo->kvo_inactive = 0; 2566 if (!swap_only) { 2567 TAILQ_FOREACH(m, &obj->memq, listq) { 2568 /* 2569 * A page may belong to the object but be 2570 * dequeued and set to PQ_NONE while the 2571 * object lock is not held. This makes the 2572 * reads of m->queue below racy, and we do not 2573 * count pages set to PQ_NONE. However, this 2574 * sysctl is only meant to give an 2575 * approximation of the system anyway. 2576 */ 2577 if (m->a.queue == PQ_ACTIVE) 2578 kvo->kvo_active++; 2579 else if (m->a.queue == PQ_INACTIVE) 2580 kvo->kvo_inactive++; 2581 } 2582 } 2583 2584 kvo->kvo_vn_fileid = 0; 2585 kvo->kvo_vn_fsid = 0; 2586 kvo->kvo_vn_fsid_freebsd11 = 0; 2587 freepath = NULL; 2588 fullpath = ""; 2589 vp = NULL; 2590 kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp : 2591 NULL); 2592 if (vp != NULL) { 2593 vref(vp); 2594 } else if ((obj->flags & OBJ_ANON) != 0) { 2595 MPASS(kvo->kvo_type == KVME_TYPE_SWAP); 2596 kvo->kvo_me = (uintptr_t)obj; 2597 /* tmpfs objs are reported as vnodes */ 2598 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2599 sp = swap_pager_swapped_pages(obj); 2600 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2601 } 2602 VM_OBJECT_RUNLOCK(obj); 2603 if (vp != NULL) { 2604 vn_fullpath(vp, &fullpath, &freepath); 2605 vn_lock(vp, LK_SHARED | LK_RETRY); 2606 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2607 kvo->kvo_vn_fileid = va.va_fileid; 2608 kvo->kvo_vn_fsid = va.va_fsid; 2609 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2610 /* truncate */ 2611 } 2612 vput(vp); 2613 } 2614 2615 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2616 free(freepath, M_TEMP); 2617 2618 /* Pack record size down */ 2619 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2620 + strlen(kvo->kvo_path) + 1; 2621 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2622 sizeof(uint64_t)); 2623 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2624 maybe_yield(); 2625 mtx_lock(&vm_object_list_mtx); 2626 if (error) 2627 break; 2628 } 2629 mtx_unlock(&vm_object_list_mtx); 2630 free(kvo, M_TEMP); 2631 return (error); 2632 } 2633 2634 static int 2635 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2636 { 2637 return (vm_object_list_handler(req, false)); 2638 } 2639 2640 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2641 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2642 "List of VM objects"); 2643 2644 static int 2645 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) 2646 { 2647 return (vm_object_list_handler(req, true)); 2648 } 2649 2650 /* 2651 * This sysctl returns list of the anonymous or swap objects. Intent 2652 * is to provide stripped optimized list useful to analyze swap use. 2653 * Since technically non-swap (default) objects participate in the 2654 * shadow chains, and are converted to swap type as needed by swap 2655 * pager, we must report them. 2656 */ 2657 SYSCTL_PROC(_vm, OID_AUTO, swap_objects, 2658 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, 2659 sysctl_vm_object_list_swap, "S,kinfo_vmobject", 2660 "List of swap VM objects"); 2661 2662 #include "opt_ddb.h" 2663 #ifdef DDB 2664 #include <sys/kernel.h> 2665 2666 #include <sys/cons.h> 2667 2668 #include <ddb/ddb.h> 2669 2670 static int 2671 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2672 { 2673 vm_map_t tmpm; 2674 vm_map_entry_t tmpe; 2675 vm_object_t obj; 2676 2677 if (map == 0) 2678 return 0; 2679 2680 if (entry == 0) { 2681 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2682 if (_vm_object_in_map(map, object, tmpe)) { 2683 return 1; 2684 } 2685 } 2686 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2687 tmpm = entry->object.sub_map; 2688 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2689 if (_vm_object_in_map(tmpm, object, tmpe)) { 2690 return 1; 2691 } 2692 } 2693 } else if ((obj = entry->object.vm_object) != NULL) { 2694 for (; obj; obj = obj->backing_object) 2695 if (obj == object) { 2696 return 1; 2697 } 2698 } 2699 return 0; 2700 } 2701 2702 static int 2703 vm_object_in_map(vm_object_t object) 2704 { 2705 struct proc *p; 2706 2707 /* sx_slock(&allproc_lock); */ 2708 FOREACH_PROC_IN_SYSTEM(p) { 2709 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2710 continue; 2711 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2712 /* sx_sunlock(&allproc_lock); */ 2713 return 1; 2714 } 2715 } 2716 /* sx_sunlock(&allproc_lock); */ 2717 if (_vm_object_in_map(kernel_map, object, 0)) 2718 return 1; 2719 return 0; 2720 } 2721 2722 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) 2723 { 2724 vm_object_t object; 2725 2726 /* 2727 * make sure that internal objs are in a map somewhere 2728 * and none have zero ref counts. 2729 */ 2730 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2731 if ((object->flags & OBJ_ANON) != 0) { 2732 if (object->ref_count == 0) { 2733 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2734 (long)object->size); 2735 } 2736 if (!vm_object_in_map(object)) { 2737 db_printf( 2738 "vmochk: internal obj is not in a map: " 2739 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2740 object->ref_count, (u_long)object->size, 2741 (u_long)object->size, 2742 (void *)object->backing_object); 2743 } 2744 } 2745 if (db_pager_quit) 2746 return; 2747 } 2748 } 2749 2750 /* 2751 * vm_object_print: [ debug ] 2752 */ 2753 DB_SHOW_COMMAND(object, vm_object_print_static) 2754 { 2755 /* XXX convert args. */ 2756 vm_object_t object = (vm_object_t)addr; 2757 boolean_t full = have_addr; 2758 2759 vm_page_t p; 2760 2761 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2762 #define count was_count 2763 2764 int count; 2765 2766 if (object == NULL) 2767 return; 2768 2769 db_iprintf( 2770 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2771 object, (int)object->type, (uintmax_t)object->size, 2772 object->resident_page_count, object->ref_count, object->flags, 2773 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2774 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2775 atomic_load_int(&object->shadow_count), 2776 object->backing_object ? object->backing_object->ref_count : 0, 2777 object->backing_object, (uintmax_t)object->backing_object_offset); 2778 2779 if (!full) 2780 return; 2781 2782 db_indent += 2; 2783 count = 0; 2784 TAILQ_FOREACH(p, &object->memq, listq) { 2785 if (count == 0) 2786 db_iprintf("memory:="); 2787 else if (count == 6) { 2788 db_printf("\n"); 2789 db_iprintf(" ..."); 2790 count = 0; 2791 } else 2792 db_printf(","); 2793 count++; 2794 2795 db_printf("(off=0x%jx,page=0x%jx)", 2796 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2797 2798 if (db_pager_quit) 2799 break; 2800 } 2801 if (count != 0) 2802 db_printf("\n"); 2803 db_indent -= 2; 2804 } 2805 2806 /* XXX. */ 2807 #undef count 2808 2809 /* XXX need this non-static entry for calling from vm_map_print. */ 2810 void 2811 vm_object_print( 2812 /* db_expr_t */ long addr, 2813 boolean_t have_addr, 2814 /* db_expr_t */ long count, 2815 char *modif) 2816 { 2817 vm_object_print_static(addr, have_addr, count, modif); 2818 } 2819 2820 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) 2821 { 2822 vm_object_t object; 2823 vm_pindex_t fidx; 2824 vm_paddr_t pa; 2825 vm_page_t m, prev_m; 2826 int rcount; 2827 2828 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2829 db_printf("new object: %p\n", (void *)object); 2830 if (db_pager_quit) 2831 return; 2832 2833 rcount = 0; 2834 fidx = 0; 2835 pa = -1; 2836 TAILQ_FOREACH(m, &object->memq, listq) { 2837 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2838 prev_m->pindex + 1 != m->pindex) { 2839 if (rcount) { 2840 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2841 (long)fidx, rcount, (long)pa); 2842 if (db_pager_quit) 2843 return; 2844 rcount = 0; 2845 } 2846 } 2847 if (rcount && 2848 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2849 ++rcount; 2850 continue; 2851 } 2852 if (rcount) { 2853 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2854 (long)fidx, rcount, (long)pa); 2855 if (db_pager_quit) 2856 return; 2857 } 2858 fidx = m->pindex; 2859 pa = VM_PAGE_TO_PHYS(m); 2860 rcount = 1; 2861 } 2862 if (rcount) { 2863 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2864 (long)fidx, rcount, (long)pa); 2865 if (db_pager_quit) 2866 return; 2867 } 2868 } 2869 } 2870 #endif /* DDB */ 2871