xref: /freebsd/sys/vm/vm_object.c (revision 390e8cc2974df1888369c06339ef8e0e92b312b6)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>		/* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97 
98 #define EASY_SCAN_FACTOR       8
99 
100 #define MSYNC_FLUSH_HARDSEQ	0x01
101 #define MSYNC_FLUSH_SOFTSEQ	0x02
102 
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109 
110 static void	vm_object_qcollapse(vm_object_t object);
111 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112 static void	vm_object_pip_sleep(vm_object_t object, char *waitid);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static long object_collapses;
147 static long object_bypasses;
148 static int next_index;
149 static uma_zone_t obj_zone;
150 #define VM_OBJECTS_INIT 256
151 
152 static void vm_object_zinit(void *mem, int size);
153 
154 #ifdef INVARIANTS
155 static void vm_object_zdtor(void *mem, int size, void *arg);
156 
157 static void
158 vm_object_zdtor(void *mem, int size, void *arg)
159 {
160 	vm_object_t object;
161 
162 	object = (vm_object_t)mem;
163 	KASSERT(object->paging_in_progress == 0,
164 	    ("object %p paging_in_progress = %d",
165 	    object, object->paging_in_progress));
166 	KASSERT(object->resident_page_count == 0,
167 	    ("object %p resident_page_count = %d",
168 	    object, object->resident_page_count));
169 	KASSERT(object->shadow_count == 0,
170 	    ("object %p shadow_count = %d",
171 	    object, object->shadow_count));
172 }
173 #endif
174 
175 static void
176 vm_object_zinit(void *mem, int size)
177 {
178 	vm_object_t object;
179 
180 	object = (vm_object_t)mem;
181 	bzero(&object->mtx, sizeof(object->mtx));
182 	VM_OBJECT_LOCK_INIT(object);
183 
184 	/* These are true for any object that has been freed */
185 	object->paging_in_progress = 0;
186 	object->resident_page_count = 0;
187 	object->shadow_count = 0;
188 }
189 
190 void
191 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
192 {
193 	int incr;
194 
195 	TAILQ_INIT(&object->memq);
196 	LIST_INIT(&object->shadow_head);
197 
198 	object->root = NULL;
199 	object->type = type;
200 	object->size = size;
201 	object->ref_count = 1;
202 	object->flags = 0;
203 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
204 		vm_object_set_flag(object, OBJ_ONEMAPPING);
205 	if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
206 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
207 	else
208 		incr = size;
209 	do
210 		object->pg_color = next_index;
211 	while (!atomic_cmpset_int(&next_index, object->pg_color,
212 				  (object->pg_color + incr) & PQ_L2_MASK));
213 	object->handle = NULL;
214 	object->backing_object = NULL;
215 	object->backing_object_offset = (vm_ooffset_t) 0;
216 
217 	atomic_add_int(&object->generation, 1);
218 
219 	mtx_lock(&vm_object_list_mtx);
220 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
221 	mtx_unlock(&vm_object_list_mtx);
222 }
223 
224 /*
225  *	vm_object_init:
226  *
227  *	Initialize the VM objects module.
228  */
229 void
230 vm_object_init(void)
231 {
232 	TAILQ_INIT(&vm_object_list);
233 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
234 
235 	VM_OBJECT_LOCK_INIT(&kernel_object_store);
236 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
237 	    kernel_object);
238 
239 	/*
240 	 * The kmem object's mutex is given a unique name, instead of
241 	 * "vm object", to avoid false reports of lock-order reversal
242 	 * with a system map mutex.
243 	 */
244 	mtx_init(VM_OBJECT_MTX(kmem_object), "kmem object", NULL, MTX_DEF);
245 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
246 	    kmem_object);
247 
248 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
249 #ifdef INVARIANTS
250 	    vm_object_zdtor,
251 #else
252 	    NULL,
253 #endif
254 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
255 	uma_prealloc(obj_zone, VM_OBJECTS_INIT);
256 }
257 
258 void
259 vm_object_set_flag(vm_object_t object, u_short bits)
260 {
261 	object->flags |= bits;
262 }
263 
264 void
265 vm_object_clear_flag(vm_object_t object, u_short bits)
266 {
267 
268 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
269 	object->flags &= ~bits;
270 }
271 
272 void
273 vm_object_pip_add(vm_object_t object, short i)
274 {
275 
276 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
277 	object->paging_in_progress += i;
278 }
279 
280 void
281 vm_object_pip_subtract(vm_object_t object, short i)
282 {
283 
284 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
285 	object->paging_in_progress -= i;
286 }
287 
288 void
289 vm_object_pip_wakeup(vm_object_t object)
290 {
291 
292 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
293 	object->paging_in_progress--;
294 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
295 		vm_object_clear_flag(object, OBJ_PIPWNT);
296 		wakeup(object);
297 	}
298 }
299 
300 void
301 vm_object_pip_wakeupn(vm_object_t object, short i)
302 {
303 
304 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
305 	if (i)
306 		object->paging_in_progress -= i;
307 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
308 		vm_object_clear_flag(object, OBJ_PIPWNT);
309 		wakeup(object);
310 	}
311 }
312 
313 static void
314 vm_object_pip_sleep(vm_object_t object, char *waitid)
315 {
316 	GIANT_REQUIRED;
317 	if (object->paging_in_progress) {
318 		int s = splvm();
319 		if (object->paging_in_progress) {
320 			vm_object_set_flag(object, OBJ_PIPWNT);
321 			tsleep(object, PVM, waitid, 0);
322 		}
323 		splx(s);
324 	}
325 }
326 
327 void
328 vm_object_pip_wait(vm_object_t object, char *waitid)
329 {
330 
331 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
332 	while (object->paging_in_progress) {
333 		object->flags |= OBJ_PIPWNT;
334 		msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
335 	}
336 }
337 
338 /*
339  *	vm_object_allocate_wait
340  *
341  *	Return a new object with the given size, and give the user the
342  *	option of waiting for it to complete or failing if the needed
343  *	memory isn't available.
344  */
345 vm_object_t
346 vm_object_allocate_wait(objtype_t type, vm_pindex_t size, int flags)
347 {
348 	vm_object_t result;
349 
350 	result = (vm_object_t) uma_zalloc(obj_zone, flags);
351 
352 	if (result != NULL)
353 		_vm_object_allocate(type, size, result);
354 
355 	return (result);
356 }
357 
358 /*
359  *	vm_object_allocate:
360  *
361  *	Returns a new object with the given size.
362  */
363 vm_object_t
364 vm_object_allocate(objtype_t type, vm_pindex_t size)
365 {
366 	return(vm_object_allocate_wait(type, size, M_WAITOK));
367 }
368 
369 
370 /*
371  *	vm_object_reference:
372  *
373  *	Gets another reference to the given object.  Note: OBJ_DEAD
374  *	objects can be referenced during final cleaning.
375  */
376 void
377 vm_object_reference(vm_object_t object)
378 {
379 	if (object == NULL)
380 		return;
381 	if (object != kmem_object)
382 		mtx_lock(&Giant);
383 	VM_OBJECT_LOCK(object);
384 	object->ref_count++;
385 	VM_OBJECT_UNLOCK(object);
386 	if (object->type == OBJT_VNODE) {
387 		while (vget((struct vnode *) object->handle, LK_RETRY, curthread)) {
388 			printf("vm_object_reference: delay in getting object\n");
389 		}
390 	}
391 	if (object != kmem_object)
392 		mtx_unlock(&Giant);
393 }
394 
395 /*
396  * Handle deallocating an object of type OBJT_VNODE.
397  */
398 void
399 vm_object_vndeallocate(vm_object_t object)
400 {
401 	struct vnode *vp = (struct vnode *) object->handle;
402 
403 	GIANT_REQUIRED;
404 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
405 	KASSERT(object->type == OBJT_VNODE,
406 	    ("vm_object_vndeallocate: not a vnode object"));
407 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
408 #ifdef INVARIANTS
409 	if (object->ref_count == 0) {
410 		vprint("vm_object_vndeallocate", vp);
411 		panic("vm_object_vndeallocate: bad object reference count");
412 	}
413 #endif
414 
415 	object->ref_count--;
416 	if (object->ref_count == 0) {
417 		mp_fixme("Unlocked vflag access.");
418 		vp->v_vflag &= ~VV_TEXT;
419 	}
420 	VM_OBJECT_UNLOCK(object);
421 	/*
422 	 * vrele may need a vop lock
423 	 */
424 	vrele(vp);
425 }
426 
427 /*
428  *	vm_object_deallocate:
429  *
430  *	Release a reference to the specified object,
431  *	gained either through a vm_object_allocate
432  *	or a vm_object_reference call.  When all references
433  *	are gone, storage associated with this object
434  *	may be relinquished.
435  *
436  *	No object may be locked.
437  */
438 void
439 vm_object_deallocate(vm_object_t object)
440 {
441 	vm_object_t temp;
442 
443 	if (object != kmem_object)
444 		mtx_lock(&Giant);
445 	while (object != NULL) {
446 		VM_OBJECT_LOCK(object);
447 		if (object->type == OBJT_VNODE) {
448 			vm_object_vndeallocate(object);
449 			goto done;
450 		}
451 
452 		KASSERT(object->ref_count != 0,
453 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
454 
455 		/*
456 		 * If the reference count goes to 0 we start calling
457 		 * vm_object_terminate() on the object chain.
458 		 * A ref count of 1 may be a special case depending on the
459 		 * shadow count being 0 or 1.
460 		 */
461 		object->ref_count--;
462 		if (object->ref_count > 1) {
463 			VM_OBJECT_UNLOCK(object);
464 			goto done;
465 		} else if (object->ref_count == 1) {
466 			if (object->shadow_count == 0) {
467 				vm_object_set_flag(object, OBJ_ONEMAPPING);
468 			} else if ((object->shadow_count == 1) &&
469 			    (object->handle == NULL) &&
470 			    (object->type == OBJT_DEFAULT ||
471 			     object->type == OBJT_SWAP)) {
472 				vm_object_t robject;
473 
474 				robject = LIST_FIRST(&object->shadow_head);
475 				KASSERT(robject != NULL,
476 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
477 					 object->ref_count,
478 					 object->shadow_count));
479 				if ((robject->handle == NULL) &&
480 				    (robject->type == OBJT_DEFAULT ||
481 				     robject->type == OBJT_SWAP)) {
482 
483 					robject->ref_count++;
484 
485 					while (
486 						robject->paging_in_progress ||
487 						object->paging_in_progress
488 					) {
489 	/* XXX */				VM_OBJECT_UNLOCK(object);
490 						vm_object_pip_sleep(robject, "objde1");
491 						vm_object_pip_sleep(object, "objde2");
492 	/* XXX */				VM_OBJECT_LOCK(object);
493 					}
494 					VM_OBJECT_UNLOCK(object);
495 					if (robject->ref_count == 1) {
496 	/* XXX */				VM_OBJECT_LOCK(robject);
497 						robject->ref_count--;
498 						object = robject;
499 						goto doterm;
500 					}
501 
502 					object = robject;
503 					vm_object_collapse(object);
504 					continue;
505 				}
506 			}
507 			VM_OBJECT_UNLOCK(object);
508 			goto done;
509 		}
510 doterm:
511 		temp = object->backing_object;
512 		if (temp != NULL) {
513 			VM_OBJECT_LOCK(temp);
514 			LIST_REMOVE(object, shadow_list);
515 			temp->shadow_count--;
516 			temp->generation++;
517 			VM_OBJECT_UNLOCK(temp);
518 			object->backing_object = NULL;
519 		}
520 		/*
521 		 * Don't double-terminate, we could be in a termination
522 		 * recursion due to the terminate having to sync data
523 		 * to disk.
524 		 */
525 		if ((object->flags & OBJ_DEAD) == 0)
526 			vm_object_terminate(object);
527 		else
528 			VM_OBJECT_UNLOCK(object);
529 		object = temp;
530 	}
531 done:
532 	if (object != kmem_object)
533 		mtx_unlock(&Giant);
534 }
535 
536 /*
537  *	vm_object_terminate actually destroys the specified object, freeing
538  *	up all previously used resources.
539  *
540  *	The object must be locked.
541  *	This routine may block.
542  */
543 void
544 vm_object_terminate(vm_object_t object)
545 {
546 	vm_page_t p;
547 	int s;
548 
549 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
550 
551 	/*
552 	 * Make sure no one uses us.
553 	 */
554 	vm_object_set_flag(object, OBJ_DEAD);
555 
556 	/*
557 	 * wait for the pageout daemon to be done with the object
558 	 */
559 	vm_object_pip_wait(object, "objtrm");
560 
561 	KASSERT(!object->paging_in_progress,
562 		("vm_object_terminate: pageout in progress"));
563 
564 	/*
565 	 * Clean and free the pages, as appropriate. All references to the
566 	 * object are gone, so we don't need to lock it.
567 	 */
568 	if (object->type == OBJT_VNODE) {
569 		struct vnode *vp = (struct vnode *)object->handle;
570 
571 		/*
572 		 * Clean pages and flush buffers.
573 		 */
574 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
575 		VM_OBJECT_UNLOCK(object);
576 
577 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
578 
579 		VM_OBJECT_LOCK(object);
580 	}
581 
582 	KASSERT(object->ref_count == 0,
583 		("vm_object_terminate: object with references, ref_count=%d",
584 		object->ref_count));
585 
586 	/*
587 	 * Now free any remaining pages. For internal objects, this also
588 	 * removes them from paging queues. Don't free wired pages, just
589 	 * remove them from the object.
590 	 */
591 	s = splvm();
592 	vm_page_lock_queues();
593 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
594 		KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
595 			("vm_object_terminate: freeing busy page %p "
596 			"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
597 		if (p->wire_count == 0) {
598 			vm_page_busy(p);
599 			vm_page_free(p);
600 			cnt.v_pfree++;
601 		} else {
602 			vm_page_busy(p);
603 			vm_page_remove(p);
604 		}
605 	}
606 	vm_page_unlock_queues();
607 	splx(s);
608 
609 	/*
610 	 * Let the pager know object is dead.
611 	 */
612 	vm_pager_deallocate(object);
613 	VM_OBJECT_UNLOCK(object);
614 
615 	/*
616 	 * Remove the object from the global object list.
617 	 */
618 	mtx_lock(&vm_object_list_mtx);
619 	TAILQ_REMOVE(&vm_object_list, object, object_list);
620 	mtx_unlock(&vm_object_list_mtx);
621 
622 	wakeup(object);
623 
624 	/*
625 	 * Free the space for the object.
626 	 */
627 	uma_zfree(obj_zone, object);
628 }
629 
630 /*
631  *	vm_object_page_clean
632  *
633  *	Clean all dirty pages in the specified range of object.  Leaves page
634  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
635  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
636  *	leaving the object dirty.
637  *
638  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
639  *	synchronous clustering mode implementation.
640  *
641  *	Odd semantics: if start == end, we clean everything.
642  *
643  *	The object must be locked.
644  */
645 void
646 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
647 {
648 	vm_page_t p, np;
649 	vm_pindex_t tstart, tend;
650 	vm_pindex_t pi;
651 	struct vnode *vp;
652 	int clearobjflags;
653 	int pagerflags;
654 	int curgeneration;
655 
656 	GIANT_REQUIRED;
657 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
658 	if (object->type != OBJT_VNODE ||
659 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
660 		return;
661 
662 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
663 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
664 
665 	vp = object->handle;
666 
667 	vm_object_set_flag(object, OBJ_CLEANING);
668 
669 	tstart = start;
670 	if (end == 0) {
671 		tend = object->size;
672 	} else {
673 		tend = end;
674 	}
675 
676 	vm_page_lock_queues();
677 	/*
678 	 * If the caller is smart and only msync()s a range he knows is
679 	 * dirty, we may be able to avoid an object scan.  This results in
680 	 * a phenominal improvement in performance.  We cannot do this
681 	 * as a matter of course because the object may be huge - e.g.
682 	 * the size might be in the gigabytes or terrabytes.
683 	 */
684 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
685 		vm_pindex_t tscan;
686 		int scanlimit;
687 		int scanreset;
688 
689 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
690 		if (scanreset < 16)
691 			scanreset = 16;
692 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
693 
694 		scanlimit = scanreset;
695 		tscan = tstart;
696 		while (tscan < tend) {
697 			curgeneration = object->generation;
698 			p = vm_page_lookup(object, tscan);
699 			if (p == NULL || p->valid == 0 ||
700 			    (p->queue - p->pc) == PQ_CACHE) {
701 				if (--scanlimit == 0)
702 					break;
703 				++tscan;
704 				continue;
705 			}
706 			vm_page_test_dirty(p);
707 			if ((p->dirty & p->valid) == 0) {
708 				if (--scanlimit == 0)
709 					break;
710 				++tscan;
711 				continue;
712 			}
713 			/*
714 			 * If we have been asked to skip nosync pages and
715 			 * this is a nosync page, we can't continue.
716 			 */
717 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
718 				if (--scanlimit == 0)
719 					break;
720 				++tscan;
721 				continue;
722 			}
723 			scanlimit = scanreset;
724 
725 			/*
726 			 * This returns 0 if it was unable to busy the first
727 			 * page (i.e. had to sleep).
728 			 */
729 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
730 		}
731 
732 		/*
733 		 * If everything was dirty and we flushed it successfully,
734 		 * and the requested range is not the entire object, we
735 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
736 		 * return immediately.
737 		 */
738 		if (tscan >= tend && (tstart || tend < object->size)) {
739 			vm_page_unlock_queues();
740 			vm_object_clear_flag(object, OBJ_CLEANING);
741 			return;
742 		}
743 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
744 	}
745 
746 	/*
747 	 * Generally set CLEANCHK interlock and make the page read-only so
748 	 * we can then clear the object flags.
749 	 *
750 	 * However, if this is a nosync mmap then the object is likely to
751 	 * stay dirty so do not mess with the page and do not clear the
752 	 * object flags.
753 	 */
754 	clearobjflags = 1;
755 	TAILQ_FOREACH(p, &object->memq, listq) {
756 		vm_page_flag_set(p, PG_CLEANCHK);
757 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
758 			clearobjflags = 0;
759 		else
760 			pmap_page_protect(p, VM_PROT_READ);
761 	}
762 
763 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
764 		struct vnode *vp;
765 
766 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
767 		if (object->type == OBJT_VNODE &&
768 		    (vp = (struct vnode *)object->handle) != NULL) {
769 			VI_LOCK(vp);
770 			if (vp->v_iflag & VI_OBJDIRTY)
771 				vp->v_iflag &= ~VI_OBJDIRTY;
772 			VI_UNLOCK(vp);
773 		}
774 	}
775 
776 rescan:
777 	curgeneration = object->generation;
778 
779 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
780 		int n;
781 
782 		np = TAILQ_NEXT(p, listq);
783 
784 again:
785 		pi = p->pindex;
786 		if (((p->flags & PG_CLEANCHK) == 0) ||
787 			(pi < tstart) || (pi >= tend) ||
788 			(p->valid == 0) ||
789 			((p->queue - p->pc) == PQ_CACHE)) {
790 			vm_page_flag_clear(p, PG_CLEANCHK);
791 			continue;
792 		}
793 
794 		vm_page_test_dirty(p);
795 		if ((p->dirty & p->valid) == 0) {
796 			vm_page_flag_clear(p, PG_CLEANCHK);
797 			continue;
798 		}
799 
800 		/*
801 		 * If we have been asked to skip nosync pages and this is a
802 		 * nosync page, skip it.  Note that the object flags were
803 		 * not cleared in this case so we do not have to set them.
804 		 */
805 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
806 			vm_page_flag_clear(p, PG_CLEANCHK);
807 			continue;
808 		}
809 
810 		n = vm_object_page_collect_flush(object, p,
811 			curgeneration, pagerflags);
812 		if (n == 0)
813 			goto rescan;
814 
815 		if (object->generation != curgeneration)
816 			goto rescan;
817 
818 		/*
819 		 * Try to optimize the next page.  If we can't we pick up
820 		 * our (random) scan where we left off.
821 		 */
822 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
823 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
824 				goto again;
825 		}
826 	}
827 	vm_page_unlock_queues();
828 #if 0
829 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
830 #endif
831 
832 	vm_object_clear_flag(object, OBJ_CLEANING);
833 	return;
834 }
835 
836 static int
837 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
838 {
839 	int runlen;
840 	int s;
841 	int maxf;
842 	int chkb;
843 	int maxb;
844 	int i;
845 	vm_pindex_t pi;
846 	vm_page_t maf[vm_pageout_page_count];
847 	vm_page_t mab[vm_pageout_page_count];
848 	vm_page_t ma[vm_pageout_page_count];
849 
850 	s = splvm();
851 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
852 	pi = p->pindex;
853 	while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
854 		vm_page_lock_queues();
855 		if (object->generation != curgeneration) {
856 			splx(s);
857 			return(0);
858 		}
859 	}
860 	maxf = 0;
861 	for(i = 1; i < vm_pageout_page_count; i++) {
862 		vm_page_t tp;
863 
864 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
865 			if ((tp->flags & PG_BUSY) ||
866 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
867 				 (tp->flags & PG_CLEANCHK) == 0) ||
868 				(tp->busy != 0))
869 				break;
870 			if((tp->queue - tp->pc) == PQ_CACHE) {
871 				vm_page_flag_clear(tp, PG_CLEANCHK);
872 				break;
873 			}
874 			vm_page_test_dirty(tp);
875 			if ((tp->dirty & tp->valid) == 0) {
876 				vm_page_flag_clear(tp, PG_CLEANCHK);
877 				break;
878 			}
879 			maf[ i - 1 ] = tp;
880 			maxf++;
881 			continue;
882 		}
883 		break;
884 	}
885 
886 	maxb = 0;
887 	chkb = vm_pageout_page_count -  maxf;
888 	if (chkb) {
889 		for(i = 1; i < chkb;i++) {
890 			vm_page_t tp;
891 
892 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
893 				if ((tp->flags & PG_BUSY) ||
894 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
895 					 (tp->flags & PG_CLEANCHK) == 0) ||
896 					(tp->busy != 0))
897 					break;
898 				if ((tp->queue - tp->pc) == PQ_CACHE) {
899 					vm_page_flag_clear(tp, PG_CLEANCHK);
900 					break;
901 				}
902 				vm_page_test_dirty(tp);
903 				if ((tp->dirty & tp->valid) == 0) {
904 					vm_page_flag_clear(tp, PG_CLEANCHK);
905 					break;
906 				}
907 				mab[ i - 1 ] = tp;
908 				maxb++;
909 				continue;
910 			}
911 			break;
912 		}
913 	}
914 
915 	for(i = 0; i < maxb; i++) {
916 		int index = (maxb - i) - 1;
917 		ma[index] = mab[i];
918 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
919 	}
920 	vm_page_flag_clear(p, PG_CLEANCHK);
921 	ma[maxb] = p;
922 	for(i = 0; i < maxf; i++) {
923 		int index = (maxb + i) + 1;
924 		ma[index] = maf[i];
925 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
926 	}
927 	runlen = maxb + maxf + 1;
928 
929 	splx(s);
930 	vm_pageout_flush(ma, runlen, pagerflags, TRUE);
931 	for (i = 0; i < runlen; i++) {
932 		if (ma[i]->valid & ma[i]->dirty) {
933 			pmap_page_protect(ma[i], VM_PROT_READ);
934 			vm_page_flag_set(ma[i], PG_CLEANCHK);
935 
936 			/*
937 			 * maxf will end up being the actual number of pages
938 			 * we wrote out contiguously, non-inclusive of the
939 			 * first page.  We do not count look-behind pages.
940 			 */
941 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
942 				maxf = i - maxb - 1;
943 		}
944 	}
945 	return(maxf + 1);
946 }
947 
948 /*
949  *	vm_object_madvise:
950  *
951  *	Implements the madvise function at the object/page level.
952  *
953  *	MADV_WILLNEED	(any object)
954  *
955  *	    Activate the specified pages if they are resident.
956  *
957  *	MADV_DONTNEED	(any object)
958  *
959  *	    Deactivate the specified pages if they are resident.
960  *
961  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
962  *			 OBJ_ONEMAPPING only)
963  *
964  *	    Deactivate and clean the specified pages if they are
965  *	    resident.  This permits the process to reuse the pages
966  *	    without faulting or the kernel to reclaim the pages
967  *	    without I/O.
968  */
969 void
970 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
971 {
972 	vm_pindex_t end, tpindex;
973 	vm_object_t backing_object, tobject;
974 	vm_page_t m;
975 
976 	if (object == NULL)
977 		return;
978 
979 	mtx_lock(&Giant);
980 
981 	end = pindex + count;
982 
983 	/*
984 	 * Locate and adjust resident pages
985 	 */
986 	for (; pindex < end; pindex += 1) {
987 relookup:
988 		tobject = object;
989 		tpindex = pindex;
990 		VM_OBJECT_LOCK(tobject);
991 shadowlookup:
992 		/*
993 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
994 		 * and those pages must be OBJ_ONEMAPPING.
995 		 */
996 		if (advise == MADV_FREE) {
997 			if ((tobject->type != OBJT_DEFAULT &&
998 			     tobject->type != OBJT_SWAP) ||
999 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1000 				goto unlock_tobject;
1001 			}
1002 		}
1003 
1004 		m = vm_page_lookup(tobject, tpindex);
1005 
1006 		if (m == NULL) {
1007 			/*
1008 			 * There may be swap even if there is no backing page
1009 			 */
1010 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1011 				swap_pager_freespace(tobject, tpindex, 1);
1012 
1013 			/*
1014 			 * next object
1015 			 */
1016 			backing_object = tobject->backing_object;
1017 			if (backing_object == NULL)
1018 				goto unlock_tobject;
1019 			VM_OBJECT_LOCK(backing_object);
1020 			VM_OBJECT_UNLOCK(tobject);
1021 			tobject = backing_object;
1022 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1023 			goto shadowlookup;
1024 		}
1025 
1026 		/*
1027 		 * If the page is busy or not in a normal active state,
1028 		 * we skip it.  If the page is not managed there are no
1029 		 * page queues to mess with.  Things can break if we mess
1030 		 * with pages in any of the below states.
1031 		 */
1032 		vm_page_lock_queues();
1033 		if (m->hold_count ||
1034 		    m->wire_count ||
1035 		    (m->flags & PG_UNMANAGED) ||
1036 		    m->valid != VM_PAGE_BITS_ALL) {
1037 			vm_page_unlock_queues();
1038 			goto unlock_tobject;
1039 		}
1040  		if (vm_page_sleep_if_busy(m, TRUE, "madvpo")) {
1041 			VM_OBJECT_UNLOCK(tobject);
1042   			goto relookup;
1043 		}
1044 		if (advise == MADV_WILLNEED) {
1045 			vm_page_activate(m);
1046 		} else if (advise == MADV_DONTNEED) {
1047 			vm_page_dontneed(m);
1048 		} else if (advise == MADV_FREE) {
1049 			/*
1050 			 * Mark the page clean.  This will allow the page
1051 			 * to be freed up by the system.  However, such pages
1052 			 * are often reused quickly by malloc()/free()
1053 			 * so we do not do anything that would cause
1054 			 * a page fault if we can help it.
1055 			 *
1056 			 * Specifically, we do not try to actually free
1057 			 * the page now nor do we try to put it in the
1058 			 * cache (which would cause a page fault on reuse).
1059 			 *
1060 			 * But we do make the page is freeable as we
1061 			 * can without actually taking the step of unmapping
1062 			 * it.
1063 			 */
1064 			pmap_clear_modify(m);
1065 			m->dirty = 0;
1066 			m->act_count = 0;
1067 			vm_page_dontneed(m);
1068 		}
1069 		vm_page_unlock_queues();
1070 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1071 			swap_pager_freespace(tobject, tpindex, 1);
1072 unlock_tobject:
1073 		VM_OBJECT_UNLOCK(tobject);
1074 	}
1075 	mtx_unlock(&Giant);
1076 }
1077 
1078 /*
1079  *	vm_object_shadow:
1080  *
1081  *	Create a new object which is backed by the
1082  *	specified existing object range.  The source
1083  *	object reference is deallocated.
1084  *
1085  *	The new object and offset into that object
1086  *	are returned in the source parameters.
1087  */
1088 void
1089 vm_object_shadow(
1090 	vm_object_t *object,	/* IN/OUT */
1091 	vm_ooffset_t *offset,	/* IN/OUT */
1092 	vm_size_t length)
1093 {
1094 	vm_object_t source;
1095 	vm_object_t result;
1096 
1097 	GIANT_REQUIRED;
1098 
1099 	source = *object;
1100 
1101 	/*
1102 	 * Don't create the new object if the old object isn't shared.
1103 	 */
1104 	if (source != NULL) {
1105 		VM_OBJECT_LOCK(source);
1106 		if (source->ref_count == 1 &&
1107 		    source->handle == NULL &&
1108 		    (source->type == OBJT_DEFAULT ||
1109 		     source->type == OBJT_SWAP)) {
1110 			VM_OBJECT_UNLOCK(source);
1111 			return;
1112 		}
1113 		VM_OBJECT_UNLOCK(source);
1114 	}
1115 
1116 	/*
1117 	 * Allocate a new object with the given length.
1118 	 */
1119 	result = vm_object_allocate(OBJT_DEFAULT, length);
1120 
1121 	/*
1122 	 * The new object shadows the source object, adding a reference to it.
1123 	 * Our caller changes his reference to point to the new object,
1124 	 * removing a reference to the source object.  Net result: no change
1125 	 * of reference count.
1126 	 *
1127 	 * Try to optimize the result object's page color when shadowing
1128 	 * in order to maintain page coloring consistency in the combined
1129 	 * shadowed object.
1130 	 */
1131 	result->backing_object = source;
1132 	if (source != NULL) {
1133 		VM_OBJECT_LOCK(source);
1134 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1135 		source->shadow_count++;
1136 		source->generation++;
1137 		if (length < source->size)
1138 			length = source->size;
1139 		if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1140 		    source->generation > 1)
1141 			length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1142 		result->pg_color = (source->pg_color +
1143 		    length * source->generation) & PQ_L2_MASK;
1144 		VM_OBJECT_UNLOCK(source);
1145 		next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1146 		    PQ_L2_MASK;
1147 	}
1148 
1149 	/*
1150 	 * Store the offset into the source object, and fix up the offset into
1151 	 * the new object.
1152 	 */
1153 	result->backing_object_offset = *offset;
1154 
1155 	/*
1156 	 * Return the new things
1157 	 */
1158 	*offset = 0;
1159 	*object = result;
1160 }
1161 
1162 /*
1163  *	vm_object_split:
1164  *
1165  * Split the pages in a map entry into a new object.  This affords
1166  * easier removal of unused pages, and keeps object inheritance from
1167  * being a negative impact on memory usage.
1168  */
1169 void
1170 vm_object_split(vm_map_entry_t entry)
1171 {
1172 	vm_page_t m;
1173 	vm_object_t orig_object, new_object, source;
1174 	vm_offset_t s, e;
1175 	vm_pindex_t offidxstart, offidxend;
1176 	vm_size_t idx, size;
1177 	vm_ooffset_t offset;
1178 
1179 	GIANT_REQUIRED;
1180 
1181 	orig_object = entry->object.vm_object;
1182 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1183 		return;
1184 	if (orig_object->ref_count <= 1)
1185 		return;
1186 
1187 	offset = entry->offset;
1188 	s = entry->start;
1189 	e = entry->end;
1190 
1191 	offidxstart = OFF_TO_IDX(offset);
1192 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1193 	size = offidxend - offidxstart;
1194 
1195 	new_object = vm_pager_allocate(orig_object->type,
1196 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1197 	if (new_object == NULL)
1198 		return;
1199 
1200 	source = orig_object->backing_object;
1201 	if (source != NULL) {
1202 		vm_object_reference(source);	/* Referenced by new_object */
1203 		VM_OBJECT_LOCK(source);
1204 		LIST_INSERT_HEAD(&source->shadow_head,
1205 				  new_object, shadow_list);
1206 		source->shadow_count++;
1207 		source->generation++;
1208 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1209 		VM_OBJECT_UNLOCK(source);
1210 		new_object->backing_object_offset =
1211 			orig_object->backing_object_offset + offset;
1212 		new_object->backing_object = source;
1213 	}
1214 	VM_OBJECT_LOCK(orig_object);
1215 	for (idx = 0; idx < size; idx++) {
1216 	retry:
1217 		m = vm_page_lookup(orig_object, offidxstart + idx);
1218 		if (m == NULL)
1219 			continue;
1220 
1221 		/*
1222 		 * We must wait for pending I/O to complete before we can
1223 		 * rename the page.
1224 		 *
1225 		 * We do not have to VM_PROT_NONE the page as mappings should
1226 		 * not be changed by this operation.
1227 		 */
1228 		vm_page_lock_queues();
1229 		if (vm_page_sleep_if_busy(m, TRUE, "spltwt"))
1230 			goto retry;
1231 
1232 		vm_page_busy(m);
1233 		vm_page_rename(m, new_object, idx);
1234 		/* page automatically made dirty by rename and cache handled */
1235 		vm_page_busy(m);
1236 		vm_page_unlock_queues();
1237 	}
1238 	if (orig_object->type == OBJT_SWAP) {
1239 		vm_object_pip_add(orig_object, 1);
1240 		VM_OBJECT_UNLOCK(orig_object);
1241 		/*
1242 		 * copy orig_object pages into new_object
1243 		 * and destroy unneeded pages in
1244 		 * shadow object.
1245 		 */
1246 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1247 		VM_OBJECT_LOCK(orig_object);
1248 		vm_object_pip_wakeup(orig_object);
1249 	}
1250 	VM_OBJECT_UNLOCK(orig_object);
1251 	vm_page_lock_queues();
1252 	TAILQ_FOREACH(m, &new_object->memq, listq)
1253 		vm_page_wakeup(m);
1254 	vm_page_unlock_queues();
1255 	entry->object.vm_object = new_object;
1256 	entry->offset = 0LL;
1257 	vm_object_deallocate(orig_object);
1258 }
1259 
1260 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1261 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1262 #define	OBSC_COLLAPSE_WAIT	0x0004
1263 
1264 static __inline int
1265 vm_object_backing_scan(vm_object_t object, int op)
1266 {
1267 	int s;
1268 	int r = 1;
1269 	vm_page_t p;
1270 	vm_object_t backing_object;
1271 	vm_pindex_t backing_offset_index;
1272 
1273 	s = splvm();
1274 	GIANT_REQUIRED;
1275 
1276 	backing_object = object->backing_object;
1277 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1278 
1279 	/*
1280 	 * Initial conditions
1281 	 */
1282 	if (op & OBSC_TEST_ALL_SHADOWED) {
1283 		/*
1284 		 * We do not want to have to test for the existence of
1285 		 * swap pages in the backing object.  XXX but with the
1286 		 * new swapper this would be pretty easy to do.
1287 		 *
1288 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1289 		 * been ZFOD faulted yet?  If we do not test for this, the
1290 		 * shadow test may succeed! XXX
1291 		 */
1292 		if (backing_object->type != OBJT_DEFAULT) {
1293 			splx(s);
1294 			return (0);
1295 		}
1296 	}
1297 	if (op & OBSC_COLLAPSE_WAIT) {
1298 		vm_object_set_flag(backing_object, OBJ_DEAD);
1299 	}
1300 
1301 	/*
1302 	 * Our scan
1303 	 */
1304 	p = TAILQ_FIRST(&backing_object->memq);
1305 	while (p) {
1306 		vm_page_t next = TAILQ_NEXT(p, listq);
1307 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1308 
1309 		if (op & OBSC_TEST_ALL_SHADOWED) {
1310 			vm_page_t pp;
1311 
1312 			/*
1313 			 * Ignore pages outside the parent object's range
1314 			 * and outside the parent object's mapping of the
1315 			 * backing object.
1316 			 *
1317 			 * note that we do not busy the backing object's
1318 			 * page.
1319 			 */
1320 			if (
1321 			    p->pindex < backing_offset_index ||
1322 			    new_pindex >= object->size
1323 			) {
1324 				p = next;
1325 				continue;
1326 			}
1327 
1328 			/*
1329 			 * See if the parent has the page or if the parent's
1330 			 * object pager has the page.  If the parent has the
1331 			 * page but the page is not valid, the parent's
1332 			 * object pager must have the page.
1333 			 *
1334 			 * If this fails, the parent does not completely shadow
1335 			 * the object and we might as well give up now.
1336 			 */
1337 
1338 			pp = vm_page_lookup(object, new_pindex);
1339 			if (
1340 			    (pp == NULL || pp->valid == 0) &&
1341 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1342 			) {
1343 				r = 0;
1344 				break;
1345 			}
1346 		}
1347 
1348 		/*
1349 		 * Check for busy page
1350 		 */
1351 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1352 			vm_page_t pp;
1353 
1354 			vm_page_lock_queues();
1355 			if (op & OBSC_COLLAPSE_NOWAIT) {
1356 				if ((p->flags & PG_BUSY) ||
1357 				    !p->valid ||
1358 				    p->hold_count ||
1359 				    p->wire_count ||
1360 				    p->busy) {
1361 					vm_page_unlock_queues();
1362 					p = next;
1363 					continue;
1364 				}
1365 			} else if (op & OBSC_COLLAPSE_WAIT) {
1366 				if (vm_page_sleep_if_busy(p, TRUE, "vmocol")) {
1367 					/*
1368 					 * If we slept, anything could have
1369 					 * happened.  Since the object is
1370 					 * marked dead, the backing offset
1371 					 * should not have changed so we
1372 					 * just restart our scan.
1373 					 */
1374 					p = TAILQ_FIRST(&backing_object->memq);
1375 					continue;
1376 				}
1377 			}
1378 
1379 			/*
1380 			 * Busy the page
1381 			 */
1382 			vm_page_busy(p);
1383 			vm_page_unlock_queues();
1384 
1385 			KASSERT(
1386 			    p->object == backing_object,
1387 			    ("vm_object_qcollapse(): object mismatch")
1388 			);
1389 
1390 			/*
1391 			 * Destroy any associated swap
1392 			 */
1393 			if (backing_object->type == OBJT_SWAP) {
1394 				swap_pager_freespace(
1395 				    backing_object,
1396 				    p->pindex,
1397 				    1
1398 				);
1399 			}
1400 
1401 			if (
1402 			    p->pindex < backing_offset_index ||
1403 			    new_pindex >= object->size
1404 			) {
1405 				/*
1406 				 * Page is out of the parent object's range, we
1407 				 * can simply destroy it.
1408 				 */
1409 				vm_page_lock_queues();
1410 				pmap_remove_all(p);
1411 				vm_page_free(p);
1412 				vm_page_unlock_queues();
1413 				p = next;
1414 				continue;
1415 			}
1416 
1417 			pp = vm_page_lookup(object, new_pindex);
1418 			if (
1419 			    pp != NULL ||
1420 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1421 			) {
1422 				/*
1423 				 * page already exists in parent OR swap exists
1424 				 * for this location in the parent.  Destroy
1425 				 * the original page from the backing object.
1426 				 *
1427 				 * Leave the parent's page alone
1428 				 */
1429 				vm_page_lock_queues();
1430 				pmap_remove_all(p);
1431 				vm_page_free(p);
1432 				vm_page_unlock_queues();
1433 				p = next;
1434 				continue;
1435 			}
1436 
1437 			/*
1438 			 * Page does not exist in parent, rename the
1439 			 * page from the backing object to the main object.
1440 			 *
1441 			 * If the page was mapped to a process, it can remain
1442 			 * mapped through the rename.
1443 			 */
1444 			vm_page_lock_queues();
1445 			vm_page_rename(p, object, new_pindex);
1446 			vm_page_unlock_queues();
1447 			/* page automatically made dirty by rename */
1448 		}
1449 		p = next;
1450 	}
1451 	splx(s);
1452 	return (r);
1453 }
1454 
1455 
1456 /*
1457  * this version of collapse allows the operation to occur earlier and
1458  * when paging_in_progress is true for an object...  This is not a complete
1459  * operation, but should plug 99.9% of the rest of the leaks.
1460  */
1461 static void
1462 vm_object_qcollapse(vm_object_t object)
1463 {
1464 	vm_object_t backing_object = object->backing_object;
1465 
1466 	GIANT_REQUIRED;
1467 
1468 	if (backing_object->ref_count != 1)
1469 		return;
1470 
1471 	backing_object->ref_count += 2;
1472 
1473 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1474 
1475 	backing_object->ref_count -= 2;
1476 }
1477 
1478 /*
1479  *	vm_object_collapse:
1480  *
1481  *	Collapse an object with the object backing it.
1482  *	Pages in the backing object are moved into the
1483  *	parent, and the backing object is deallocated.
1484  */
1485 void
1486 vm_object_collapse(vm_object_t object)
1487 {
1488 	GIANT_REQUIRED;
1489 
1490 	while (TRUE) {
1491 		vm_object_t backing_object;
1492 
1493 		/*
1494 		 * Verify that the conditions are right for collapse:
1495 		 *
1496 		 * The object exists and the backing object exists.
1497 		 */
1498 		if (object == NULL)
1499 			break;
1500 
1501 		if ((backing_object = object->backing_object) == NULL)
1502 			break;
1503 
1504 		/*
1505 		 * we check the backing object first, because it is most likely
1506 		 * not collapsable.
1507 		 */
1508 		if (backing_object->handle != NULL ||
1509 		    (backing_object->type != OBJT_DEFAULT &&
1510 		     backing_object->type != OBJT_SWAP) ||
1511 		    (backing_object->flags & OBJ_DEAD) ||
1512 		    object->handle != NULL ||
1513 		    (object->type != OBJT_DEFAULT &&
1514 		     object->type != OBJT_SWAP) ||
1515 		    (object->flags & OBJ_DEAD)) {
1516 			break;
1517 		}
1518 
1519 		if (
1520 		    object->paging_in_progress != 0 ||
1521 		    backing_object->paging_in_progress != 0
1522 		) {
1523 			vm_object_qcollapse(object);
1524 			break;
1525 		}
1526 
1527 		/*
1528 		 * We know that we can either collapse the backing object (if
1529 		 * the parent is the only reference to it) or (perhaps) have
1530 		 * the parent bypass the object if the parent happens to shadow
1531 		 * all the resident pages in the entire backing object.
1532 		 *
1533 		 * This is ignoring pager-backed pages such as swap pages.
1534 		 * vm_object_backing_scan fails the shadowing test in this
1535 		 * case.
1536 		 */
1537 		if (backing_object->ref_count == 1) {
1538 			/*
1539 			 * If there is exactly one reference to the backing
1540 			 * object, we can collapse it into the parent.
1541 			 */
1542 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1543 
1544 			/*
1545 			 * Move the pager from backing_object to object.
1546 			 */
1547 			VM_OBJECT_LOCK(backing_object);
1548 			if (backing_object->type == OBJT_SWAP) {
1549 				vm_object_pip_add(backing_object, 1);
1550 				VM_OBJECT_UNLOCK(backing_object);
1551 				/*
1552 				 * scrap the paging_offset junk and do a
1553 				 * discrete copy.  This also removes major
1554 				 * assumptions about how the swap-pager
1555 				 * works from where it doesn't belong.  The
1556 				 * new swapper is able to optimize the
1557 				 * destroy-source case.
1558 				 */
1559 				VM_OBJECT_LOCK(object);
1560 				vm_object_pip_add(object, 1);
1561 				VM_OBJECT_UNLOCK(object);
1562 				swap_pager_copy(
1563 				    backing_object,
1564 				    object,
1565 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1566 				VM_OBJECT_LOCK(object);
1567 				vm_object_pip_wakeup(object);
1568 				VM_OBJECT_UNLOCK(object);
1569 
1570 				VM_OBJECT_LOCK(backing_object);
1571 				vm_object_pip_wakeup(backing_object);
1572 			}
1573 			/*
1574 			 * Object now shadows whatever backing_object did.
1575 			 * Note that the reference to
1576 			 * backing_object->backing_object moves from within
1577 			 * backing_object to within object.
1578 			 */
1579 			LIST_REMOVE(object, shadow_list);
1580 			backing_object->shadow_count--;
1581 			backing_object->generation++;
1582 			if (backing_object->backing_object) {
1583 				VM_OBJECT_LOCK(backing_object->backing_object);
1584 				LIST_REMOVE(backing_object, shadow_list);
1585 				backing_object->backing_object->shadow_count--;
1586 				backing_object->backing_object->generation++;
1587 				VM_OBJECT_UNLOCK(backing_object->backing_object);
1588 			}
1589 			object->backing_object = backing_object->backing_object;
1590 			if (object->backing_object) {
1591 				VM_OBJECT_LOCK(object->backing_object);
1592 				LIST_INSERT_HEAD(
1593 				    &object->backing_object->shadow_head,
1594 				    object,
1595 				    shadow_list
1596 				);
1597 				object->backing_object->shadow_count++;
1598 				object->backing_object->generation++;
1599 				VM_OBJECT_UNLOCK(object->backing_object);
1600 			}
1601 
1602 			object->backing_object_offset +=
1603 			    backing_object->backing_object_offset;
1604 
1605 			/*
1606 			 * Discard backing_object.
1607 			 *
1608 			 * Since the backing object has no pages, no pager left,
1609 			 * and no object references within it, all that is
1610 			 * necessary is to dispose of it.
1611 			 */
1612 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1613 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1614 			VM_OBJECT_UNLOCK(backing_object);
1615 
1616 			mtx_lock(&vm_object_list_mtx);
1617 			TAILQ_REMOVE(
1618 			    &vm_object_list,
1619 			    backing_object,
1620 			    object_list
1621 			);
1622 			mtx_unlock(&vm_object_list_mtx);
1623 
1624 			uma_zfree(obj_zone, backing_object);
1625 
1626 			object_collapses++;
1627 		} else {
1628 			vm_object_t new_backing_object;
1629 
1630 			/*
1631 			 * If we do not entirely shadow the backing object,
1632 			 * there is nothing we can do so we give up.
1633 			 */
1634 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1635 				break;
1636 			}
1637 
1638 			/*
1639 			 * Make the parent shadow the next object in the
1640 			 * chain.  Deallocating backing_object will not remove
1641 			 * it, since its reference count is at least 2.
1642 			 */
1643 			VM_OBJECT_LOCK(backing_object);
1644 			LIST_REMOVE(object, shadow_list);
1645 			backing_object->shadow_count--;
1646 			backing_object->generation++;
1647 			VM_OBJECT_UNLOCK(backing_object);
1648 
1649 			new_backing_object = backing_object->backing_object;
1650 			if ((object->backing_object = new_backing_object) != NULL) {
1651 				vm_object_reference(new_backing_object);
1652 				VM_OBJECT_LOCK(new_backing_object);
1653 				LIST_INSERT_HEAD(
1654 				    &new_backing_object->shadow_head,
1655 				    object,
1656 				    shadow_list
1657 				);
1658 				new_backing_object->shadow_count++;
1659 				new_backing_object->generation++;
1660 				VM_OBJECT_UNLOCK(new_backing_object);
1661 				object->backing_object_offset +=
1662 					backing_object->backing_object_offset;
1663 			}
1664 
1665 			/*
1666 			 * Drop the reference count on backing_object. Since
1667 			 * its ref_count was at least 2, it will not vanish;
1668 			 * so we don't need to call vm_object_deallocate, but
1669 			 * we do anyway.
1670 			 */
1671 			vm_object_deallocate(backing_object);
1672 			object_bypasses++;
1673 		}
1674 
1675 		/*
1676 		 * Try again with this object's new backing object.
1677 		 */
1678 	}
1679 }
1680 
1681 /*
1682  *	vm_object_page_remove:
1683  *
1684  *	Removes all physical pages in the given range from the
1685  *	object's list of pages.  If the range's end is zero, all
1686  *	physical pages from the range's start to the end of the object
1687  *	are deleted.
1688  *
1689  *	The object must be locked.
1690  */
1691 void
1692 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1693     boolean_t clean_only)
1694 {
1695 	vm_page_t p, next;
1696 
1697 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1698 	if (object->resident_page_count == 0)
1699 		return;
1700 
1701 	/*
1702 	 * Since physically-backed objects do not use managed pages, we can't
1703 	 * remove pages from the object (we must instead remove the page
1704 	 * references, and then destroy the object).
1705 	 */
1706 	KASSERT(object->type != OBJT_PHYS,
1707 	    ("attempt to remove pages from a physical object"));
1708 
1709 	vm_object_pip_add(object, 1);
1710 again:
1711 	vm_page_lock_queues();
1712 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1713 		if (p->pindex < start) {
1714 			p = vm_page_splay(start, object->root);
1715 			if ((object->root = p)->pindex < start)
1716 				p = TAILQ_NEXT(p, listq);
1717 		}
1718 	}
1719 	/*
1720 	 * Assert: the variable p is either (1) the page with the
1721 	 * least pindex greater than or equal to the parameter pindex
1722 	 * or (2) NULL.
1723 	 */
1724 	for (;
1725 	     p != NULL && (p->pindex < end || end == 0);
1726 	     p = next) {
1727 		next = TAILQ_NEXT(p, listq);
1728 
1729 		if (p->wire_count != 0) {
1730 			pmap_remove_all(p);
1731 			if (!clean_only)
1732 				p->valid = 0;
1733 			continue;
1734 		}
1735 		if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1736 			goto again;
1737 		if (clean_only && p->valid) {
1738 			vm_page_test_dirty(p);
1739 			if (p->valid & p->dirty)
1740 				continue;
1741 		}
1742 		vm_page_busy(p);
1743 		pmap_remove_all(p);
1744 		vm_page_free(p);
1745 	}
1746 	vm_page_unlock_queues();
1747 	vm_object_pip_wakeup(object);
1748 }
1749 
1750 /*
1751  *	Routine:	vm_object_coalesce
1752  *	Function:	Coalesces two objects backing up adjoining
1753  *			regions of memory into a single object.
1754  *
1755  *	returns TRUE if objects were combined.
1756  *
1757  *	NOTE:	Only works at the moment if the second object is NULL -
1758  *		if it's not, which object do we lock first?
1759  *
1760  *	Parameters:
1761  *		prev_object	First object to coalesce
1762  *		prev_offset	Offset into prev_object
1763  *		next_object	Second object into coalesce
1764  *		next_offset	Offset into next_object
1765  *
1766  *		prev_size	Size of reference to prev_object
1767  *		next_size	Size of reference to next_object
1768  *
1769  *	Conditions:
1770  *	The object must *not* be locked.
1771  */
1772 boolean_t
1773 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1774 	vm_size_t prev_size, vm_size_t next_size)
1775 {
1776 	vm_pindex_t next_pindex;
1777 
1778 	if (prev_object == NULL)
1779 		return (TRUE);
1780 	mtx_lock(&Giant);
1781 	VM_OBJECT_LOCK(prev_object);
1782 	if (prev_object->type != OBJT_DEFAULT &&
1783 	    prev_object->type != OBJT_SWAP) {
1784 		VM_OBJECT_UNLOCK(prev_object);
1785 		mtx_unlock(&Giant);
1786 		return (FALSE);
1787 	}
1788 
1789 	/*
1790 	 * Try to collapse the object first
1791 	 */
1792 	VM_OBJECT_UNLOCK(prev_object);
1793 	vm_object_collapse(prev_object);
1794 	VM_OBJECT_LOCK(prev_object);
1795 
1796 	/*
1797 	 * Can't coalesce if: . more than one reference . paged out . shadows
1798 	 * another object . has a copy elsewhere (any of which mean that the
1799 	 * pages not mapped to prev_entry may be in use anyway)
1800 	 */
1801 	if (prev_object->backing_object != NULL) {
1802 		VM_OBJECT_UNLOCK(prev_object);
1803 		mtx_unlock(&Giant);
1804 		return (FALSE);
1805 	}
1806 
1807 	prev_size >>= PAGE_SHIFT;
1808 	next_size >>= PAGE_SHIFT;
1809 	next_pindex = prev_pindex + prev_size;
1810 
1811 	if ((prev_object->ref_count > 1) &&
1812 	    (prev_object->size != next_pindex)) {
1813 		VM_OBJECT_UNLOCK(prev_object);
1814 		mtx_unlock(&Giant);
1815 		return (FALSE);
1816 	}
1817 
1818 	/*
1819 	 * Remove any pages that may still be in the object from a previous
1820 	 * deallocation.
1821 	 */
1822 	if (next_pindex < prev_object->size) {
1823 		vm_object_page_remove(prev_object,
1824 				      next_pindex,
1825 				      next_pindex + next_size, FALSE);
1826 		if (prev_object->type == OBJT_SWAP)
1827 			swap_pager_freespace(prev_object,
1828 					     next_pindex, next_size);
1829 	}
1830 
1831 	/*
1832 	 * Extend the object if necessary.
1833 	 */
1834 	if (next_pindex + next_size > prev_object->size)
1835 		prev_object->size = next_pindex + next_size;
1836 
1837 	VM_OBJECT_UNLOCK(prev_object);
1838 	mtx_unlock(&Giant);
1839 	return (TRUE);
1840 }
1841 
1842 void
1843 vm_object_set_writeable_dirty(vm_object_t object)
1844 {
1845 	struct vnode *vp;
1846 
1847 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1848 	if (object->type == OBJT_VNODE &&
1849 	    (vp = (struct vnode *)object->handle) != NULL) {
1850 		VI_LOCK(vp);
1851 		if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1852 			vp->v_iflag |= VI_OBJDIRTY;
1853 		VI_UNLOCK(vp);
1854 	}
1855 }
1856 
1857 #include "opt_ddb.h"
1858 #ifdef DDB
1859 #include <sys/kernel.h>
1860 
1861 #include <sys/cons.h>
1862 
1863 #include <ddb/ddb.h>
1864 
1865 static int
1866 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1867 {
1868 	vm_map_t tmpm;
1869 	vm_map_entry_t tmpe;
1870 	vm_object_t obj;
1871 	int entcount;
1872 
1873 	if (map == 0)
1874 		return 0;
1875 
1876 	if (entry == 0) {
1877 		tmpe = map->header.next;
1878 		entcount = map->nentries;
1879 		while (entcount-- && (tmpe != &map->header)) {
1880 			if (_vm_object_in_map(map, object, tmpe)) {
1881 				return 1;
1882 			}
1883 			tmpe = tmpe->next;
1884 		}
1885 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1886 		tmpm = entry->object.sub_map;
1887 		tmpe = tmpm->header.next;
1888 		entcount = tmpm->nentries;
1889 		while (entcount-- && tmpe != &tmpm->header) {
1890 			if (_vm_object_in_map(tmpm, object, tmpe)) {
1891 				return 1;
1892 			}
1893 			tmpe = tmpe->next;
1894 		}
1895 	} else if ((obj = entry->object.vm_object) != NULL) {
1896 		for (; obj; obj = obj->backing_object)
1897 			if (obj == object) {
1898 				return 1;
1899 			}
1900 	}
1901 	return 0;
1902 }
1903 
1904 static int
1905 vm_object_in_map(vm_object_t object)
1906 {
1907 	struct proc *p;
1908 
1909 	/* sx_slock(&allproc_lock); */
1910 	LIST_FOREACH(p, &allproc, p_list) {
1911 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1912 			continue;
1913 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1914 			/* sx_sunlock(&allproc_lock); */
1915 			return 1;
1916 		}
1917 	}
1918 	/* sx_sunlock(&allproc_lock); */
1919 	if (_vm_object_in_map(kernel_map, object, 0))
1920 		return 1;
1921 	if (_vm_object_in_map(kmem_map, object, 0))
1922 		return 1;
1923 	if (_vm_object_in_map(pager_map, object, 0))
1924 		return 1;
1925 	if (_vm_object_in_map(buffer_map, object, 0))
1926 		return 1;
1927 	return 0;
1928 }
1929 
1930 DB_SHOW_COMMAND(vmochk, vm_object_check)
1931 {
1932 	vm_object_t object;
1933 
1934 	/*
1935 	 * make sure that internal objs are in a map somewhere
1936 	 * and none have zero ref counts.
1937 	 */
1938 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1939 		if (object->handle == NULL &&
1940 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1941 			if (object->ref_count == 0) {
1942 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1943 					(long)object->size);
1944 			}
1945 			if (!vm_object_in_map(object)) {
1946 				db_printf(
1947 			"vmochk: internal obj is not in a map: "
1948 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1949 				    object->ref_count, (u_long)object->size,
1950 				    (u_long)object->size,
1951 				    (void *)object->backing_object);
1952 			}
1953 		}
1954 	}
1955 }
1956 
1957 /*
1958  *	vm_object_print:	[ debug ]
1959  */
1960 DB_SHOW_COMMAND(object, vm_object_print_static)
1961 {
1962 	/* XXX convert args. */
1963 	vm_object_t object = (vm_object_t)addr;
1964 	boolean_t full = have_addr;
1965 
1966 	vm_page_t p;
1967 
1968 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1969 #define	count	was_count
1970 
1971 	int count;
1972 
1973 	if (object == NULL)
1974 		return;
1975 
1976 	db_iprintf(
1977 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
1978 	    object, (int)object->type, (uintmax_t)object->size,
1979 	    object->resident_page_count, object->ref_count, object->flags);
1980 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
1981 	    object->shadow_count,
1982 	    object->backing_object ? object->backing_object->ref_count : 0,
1983 	    object->backing_object, (uintmax_t)object->backing_object_offset);
1984 
1985 	if (!full)
1986 		return;
1987 
1988 	db_indent += 2;
1989 	count = 0;
1990 	TAILQ_FOREACH(p, &object->memq, listq) {
1991 		if (count == 0)
1992 			db_iprintf("memory:=");
1993 		else if (count == 6) {
1994 			db_printf("\n");
1995 			db_iprintf(" ...");
1996 			count = 0;
1997 		} else
1998 			db_printf(",");
1999 		count++;
2000 
2001 		db_printf("(off=0x%jx,page=0x%jx)",
2002 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2003 	}
2004 	if (count != 0)
2005 		db_printf("\n");
2006 	db_indent -= 2;
2007 }
2008 
2009 /* XXX. */
2010 #undef count
2011 
2012 /* XXX need this non-static entry for calling from vm_map_print. */
2013 void
2014 vm_object_print(
2015         /* db_expr_t */ long addr,
2016 	boolean_t have_addr,
2017 	/* db_expr_t */ long count,
2018 	char *modif)
2019 {
2020 	vm_object_print_static(addr, have_addr, count, modif);
2021 }
2022 
2023 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2024 {
2025 	vm_object_t object;
2026 	int nl = 0;
2027 	int c;
2028 
2029 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2030 		vm_pindex_t idx, fidx;
2031 		vm_pindex_t osize;
2032 		vm_paddr_t pa = -1, padiff;
2033 		int rcount;
2034 		vm_page_t m;
2035 
2036 		db_printf("new object: %p\n", (void *)object);
2037 		if (nl > 18) {
2038 			c = cngetc();
2039 			if (c != ' ')
2040 				return;
2041 			nl = 0;
2042 		}
2043 		nl++;
2044 		rcount = 0;
2045 		fidx = 0;
2046 		osize = object->size;
2047 		if (osize > 128)
2048 			osize = 128;
2049 		for (idx = 0; idx < osize; idx++) {
2050 			m = vm_page_lookup(object, idx);
2051 			if (m == NULL) {
2052 				if (rcount) {
2053 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2054 						(long)fidx, rcount, (long)pa);
2055 					if (nl > 18) {
2056 						c = cngetc();
2057 						if (c != ' ')
2058 							return;
2059 						nl = 0;
2060 					}
2061 					nl++;
2062 					rcount = 0;
2063 				}
2064 				continue;
2065 			}
2066 
2067 
2068 			if (rcount &&
2069 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2070 				++rcount;
2071 				continue;
2072 			}
2073 			if (rcount) {
2074 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2075 				padiff >>= PAGE_SHIFT;
2076 				padiff &= PQ_L2_MASK;
2077 				if (padiff == 0) {
2078 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2079 					++rcount;
2080 					continue;
2081 				}
2082 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2083 					(long)fidx, rcount, (long)pa);
2084 				db_printf("pd(%ld)\n", (long)padiff);
2085 				if (nl > 18) {
2086 					c = cngetc();
2087 					if (c != ' ')
2088 						return;
2089 					nl = 0;
2090 				}
2091 				nl++;
2092 			}
2093 			fidx = idx;
2094 			pa = VM_PAGE_TO_PHYS(m);
2095 			rcount = 1;
2096 		}
2097 		if (rcount) {
2098 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2099 				(long)fidx, rcount, (long)pa);
2100 			if (nl > 18) {
2101 				c = cngetc();
2102 				if (c != ' ')
2103 					return;
2104 				nl = 0;
2105 			}
2106 			nl++;
2107 		}
2108 	}
2109 }
2110 #endif /* DDB */
2111