1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, int *clearobjflags); 105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 106 int *clearobjflags); 107 static void vm_object_qcollapse(vm_object_t object); 108 static void vm_object_vndeallocate(vm_object_t object); 109 110 /* 111 * Virtual memory objects maintain the actual data 112 * associated with allocated virtual memory. A given 113 * page of memory exists within exactly one object. 114 * 115 * An object is only deallocated when all "references" 116 * are given up. Only one "reference" to a given 117 * region of an object should be writeable. 118 * 119 * Associated with each object is a list of all resident 120 * memory pages belonging to that object; this list is 121 * maintained by the "vm_page" module, and locked by the object's 122 * lock. 123 * 124 * Each object also records a "pager" routine which is 125 * used to retrieve (and store) pages to the proper backing 126 * storage. In addition, objects may be backed by other 127 * objects from which they were virtual-copied. 128 * 129 * The only items within the object structure which are 130 * modified after time of creation are: 131 * reference count locked by object's lock 132 * pager routine locked by object's lock 133 * 134 */ 135 136 struct object_q vm_object_list; 137 struct mtx vm_object_list_mtx; /* lock for object list and count */ 138 139 struct vm_object kernel_object_store; 140 struct vm_object kmem_object_store; 141 142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats"); 143 144 static long object_collapses; 145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 146 &object_collapses, 0, "VM object collapses"); 147 148 static long object_bypasses; 149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 150 &object_bypasses, 0, "VM object bypasses"); 151 152 static uma_zone_t obj_zone; 153 154 static int vm_object_zinit(void *mem, int size, int flags); 155 156 #ifdef INVARIANTS 157 static void vm_object_zdtor(void *mem, int size, void *arg); 158 159 static void 160 vm_object_zdtor(void *mem, int size, void *arg) 161 { 162 vm_object_t object; 163 164 object = (vm_object_t)mem; 165 KASSERT(TAILQ_EMPTY(&object->memq), 166 ("object %p has resident pages", 167 object)); 168 #if VM_NRESERVLEVEL > 0 169 KASSERT(LIST_EMPTY(&object->rvq), 170 ("object %p has reservations", 171 object)); 172 #endif 173 KASSERT(object->cache == NULL, 174 ("object %p has cached pages", 175 object)); 176 KASSERT(object->paging_in_progress == 0, 177 ("object %p paging_in_progress = %d", 178 object, object->paging_in_progress)); 179 KASSERT(object->resident_page_count == 0, 180 ("object %p resident_page_count = %d", 181 object, object->resident_page_count)); 182 KASSERT(object->shadow_count == 0, 183 ("object %p shadow_count = %d", 184 object, object->shadow_count)); 185 } 186 #endif 187 188 static int 189 vm_object_zinit(void *mem, int size, int flags) 190 { 191 vm_object_t object; 192 193 object = (vm_object_t)mem; 194 bzero(&object->mtx, sizeof(object->mtx)); 195 VM_OBJECT_LOCK_INIT(object, "standard object"); 196 197 /* These are true for any object that has been freed */ 198 object->paging_in_progress = 0; 199 object->resident_page_count = 0; 200 object->shadow_count = 0; 201 return (0); 202 } 203 204 void 205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 206 { 207 208 TAILQ_INIT(&object->memq); 209 LIST_INIT(&object->shadow_head); 210 211 object->root = NULL; 212 object->type = type; 213 object->size = size; 214 object->generation = 1; 215 object->ref_count = 1; 216 object->memattr = VM_MEMATTR_DEFAULT; 217 object->flags = 0; 218 object->cred = NULL; 219 object->charge = 0; 220 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 221 object->flags = OBJ_ONEMAPPING; 222 object->pg_color = 0; 223 object->handle = NULL; 224 object->backing_object = NULL; 225 object->backing_object_offset = (vm_ooffset_t) 0; 226 #if VM_NRESERVLEVEL > 0 227 LIST_INIT(&object->rvq); 228 #endif 229 object->cache = NULL; 230 231 mtx_lock(&vm_object_list_mtx); 232 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 233 mtx_unlock(&vm_object_list_mtx); 234 } 235 236 /* 237 * vm_object_init: 238 * 239 * Initialize the VM objects module. 240 */ 241 void 242 vm_object_init(void) 243 { 244 TAILQ_INIT(&vm_object_list); 245 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 246 247 VM_OBJECT_LOCK_INIT(kernel_object, "kernel object"); 248 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 249 kernel_object); 250 #if VM_NRESERVLEVEL > 0 251 kernel_object->flags |= OBJ_COLORED; 252 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 253 #endif 254 255 VM_OBJECT_LOCK_INIT(kmem_object, "kmem object"); 256 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 257 kmem_object); 258 #if VM_NRESERVLEVEL > 0 259 kmem_object->flags |= OBJ_COLORED; 260 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 261 #endif 262 263 /* 264 * The lock portion of struct vm_object must be type stable due 265 * to vm_pageout_fallback_object_lock locking a vm object 266 * without holding any references to it. 267 */ 268 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 269 #ifdef INVARIANTS 270 vm_object_zdtor, 271 #else 272 NULL, 273 #endif 274 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 275 } 276 277 void 278 vm_object_clear_flag(vm_object_t object, u_short bits) 279 { 280 281 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 282 object->flags &= ~bits; 283 } 284 285 /* 286 * Sets the default memory attribute for the specified object. Pages 287 * that are allocated to this object are by default assigned this memory 288 * attribute. 289 * 290 * Presently, this function must be called before any pages are allocated 291 * to the object. In the future, this requirement may be relaxed for 292 * "default" and "swap" objects. 293 */ 294 int 295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 296 { 297 298 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 299 switch (object->type) { 300 case OBJT_DEFAULT: 301 case OBJT_DEVICE: 302 case OBJT_PHYS: 303 case OBJT_SG: 304 case OBJT_SWAP: 305 case OBJT_VNODE: 306 if (!TAILQ_EMPTY(&object->memq)) 307 return (KERN_FAILURE); 308 break; 309 case OBJT_DEAD: 310 return (KERN_INVALID_ARGUMENT); 311 } 312 object->memattr = memattr; 313 return (KERN_SUCCESS); 314 } 315 316 void 317 vm_object_pip_add(vm_object_t object, short i) 318 { 319 320 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 321 object->paging_in_progress += i; 322 } 323 324 void 325 vm_object_pip_subtract(vm_object_t object, short i) 326 { 327 328 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 329 object->paging_in_progress -= i; 330 } 331 332 void 333 vm_object_pip_wakeup(vm_object_t object) 334 { 335 336 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 337 object->paging_in_progress--; 338 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 339 vm_object_clear_flag(object, OBJ_PIPWNT); 340 wakeup(object); 341 } 342 } 343 344 void 345 vm_object_pip_wakeupn(vm_object_t object, short i) 346 { 347 348 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 349 if (i) 350 object->paging_in_progress -= i; 351 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 352 vm_object_clear_flag(object, OBJ_PIPWNT); 353 wakeup(object); 354 } 355 } 356 357 void 358 vm_object_pip_wait(vm_object_t object, char *waitid) 359 { 360 361 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 362 while (object->paging_in_progress) { 363 object->flags |= OBJ_PIPWNT; 364 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 365 } 366 } 367 368 /* 369 * vm_object_allocate: 370 * 371 * Returns a new object with the given size. 372 */ 373 vm_object_t 374 vm_object_allocate(objtype_t type, vm_pindex_t size) 375 { 376 vm_object_t object; 377 378 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 379 _vm_object_allocate(type, size, object); 380 return (object); 381 } 382 383 384 /* 385 * vm_object_reference: 386 * 387 * Gets another reference to the given object. Note: OBJ_DEAD 388 * objects can be referenced during final cleaning. 389 */ 390 void 391 vm_object_reference(vm_object_t object) 392 { 393 if (object == NULL) 394 return; 395 VM_OBJECT_LOCK(object); 396 vm_object_reference_locked(object); 397 VM_OBJECT_UNLOCK(object); 398 } 399 400 /* 401 * vm_object_reference_locked: 402 * 403 * Gets another reference to the given object. 404 * 405 * The object must be locked. 406 */ 407 void 408 vm_object_reference_locked(vm_object_t object) 409 { 410 struct vnode *vp; 411 412 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 413 object->ref_count++; 414 if (object->type == OBJT_VNODE) { 415 vp = object->handle; 416 vref(vp); 417 } 418 } 419 420 /* 421 * Handle deallocating an object of type OBJT_VNODE. 422 */ 423 static void 424 vm_object_vndeallocate(vm_object_t object) 425 { 426 struct vnode *vp = (struct vnode *) object->handle; 427 428 VFS_ASSERT_GIANT(vp->v_mount); 429 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 430 KASSERT(object->type == OBJT_VNODE, 431 ("vm_object_vndeallocate: not a vnode object")); 432 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 433 #ifdef INVARIANTS 434 if (object->ref_count == 0) { 435 vprint("vm_object_vndeallocate", vp); 436 panic("vm_object_vndeallocate: bad object reference count"); 437 } 438 #endif 439 440 if (object->ref_count > 1) { 441 object->ref_count--; 442 VM_OBJECT_UNLOCK(object); 443 /* vrele may need the vnode lock. */ 444 vrele(vp); 445 } else { 446 vhold(vp); 447 VM_OBJECT_UNLOCK(object); 448 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 449 vdrop(vp); 450 VM_OBJECT_LOCK(object); 451 object->ref_count--; 452 if (object->type == OBJT_DEAD) { 453 VM_OBJECT_UNLOCK(object); 454 VOP_UNLOCK(vp, 0); 455 } else { 456 if (object->ref_count == 0) 457 vp->v_vflag &= ~VV_TEXT; 458 VM_OBJECT_UNLOCK(object); 459 vput(vp); 460 } 461 } 462 } 463 464 /* 465 * vm_object_deallocate: 466 * 467 * Release a reference to the specified object, 468 * gained either through a vm_object_allocate 469 * or a vm_object_reference call. When all references 470 * are gone, storage associated with this object 471 * may be relinquished. 472 * 473 * No object may be locked. 474 */ 475 void 476 vm_object_deallocate(vm_object_t object) 477 { 478 vm_object_t temp; 479 480 while (object != NULL) { 481 int vfslocked; 482 483 vfslocked = 0; 484 restart: 485 VM_OBJECT_LOCK(object); 486 if (object->type == OBJT_VNODE) { 487 struct vnode *vp = (struct vnode *) object->handle; 488 489 /* 490 * Conditionally acquire Giant for a vnode-backed 491 * object. We have to be careful since the type of 492 * a vnode object can change while the object is 493 * unlocked. 494 */ 495 if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) { 496 vfslocked = 1; 497 if (!mtx_trylock(&Giant)) { 498 VM_OBJECT_UNLOCK(object); 499 mtx_lock(&Giant); 500 goto restart; 501 } 502 } 503 vm_object_vndeallocate(object); 504 VFS_UNLOCK_GIANT(vfslocked); 505 return; 506 } else 507 /* 508 * This is to handle the case that the object 509 * changed type while we dropped its lock to 510 * obtain Giant. 511 */ 512 VFS_UNLOCK_GIANT(vfslocked); 513 514 KASSERT(object->ref_count != 0, 515 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 516 517 /* 518 * If the reference count goes to 0 we start calling 519 * vm_object_terminate() on the object chain. 520 * A ref count of 1 may be a special case depending on the 521 * shadow count being 0 or 1. 522 */ 523 object->ref_count--; 524 if (object->ref_count > 1) { 525 VM_OBJECT_UNLOCK(object); 526 return; 527 } else if (object->ref_count == 1) { 528 if (object->shadow_count == 0 && 529 object->handle == NULL && 530 (object->type == OBJT_DEFAULT || 531 object->type == OBJT_SWAP)) { 532 vm_object_set_flag(object, OBJ_ONEMAPPING); 533 } else if ((object->shadow_count == 1) && 534 (object->handle == NULL) && 535 (object->type == OBJT_DEFAULT || 536 object->type == OBJT_SWAP)) { 537 vm_object_t robject; 538 539 robject = LIST_FIRST(&object->shadow_head); 540 KASSERT(robject != NULL, 541 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 542 object->ref_count, 543 object->shadow_count)); 544 if (!VM_OBJECT_TRYLOCK(robject)) { 545 /* 546 * Avoid a potential deadlock. 547 */ 548 object->ref_count++; 549 VM_OBJECT_UNLOCK(object); 550 /* 551 * More likely than not the thread 552 * holding robject's lock has lower 553 * priority than the current thread. 554 * Let the lower priority thread run. 555 */ 556 pause("vmo_de", 1); 557 continue; 558 } 559 /* 560 * Collapse object into its shadow unless its 561 * shadow is dead. In that case, object will 562 * be deallocated by the thread that is 563 * deallocating its shadow. 564 */ 565 if ((robject->flags & OBJ_DEAD) == 0 && 566 (robject->handle == NULL) && 567 (robject->type == OBJT_DEFAULT || 568 robject->type == OBJT_SWAP)) { 569 570 robject->ref_count++; 571 retry: 572 if (robject->paging_in_progress) { 573 VM_OBJECT_UNLOCK(object); 574 vm_object_pip_wait(robject, 575 "objde1"); 576 temp = robject->backing_object; 577 if (object == temp) { 578 VM_OBJECT_LOCK(object); 579 goto retry; 580 } 581 } else if (object->paging_in_progress) { 582 VM_OBJECT_UNLOCK(robject); 583 object->flags |= OBJ_PIPWNT; 584 msleep(object, 585 VM_OBJECT_MTX(object), 586 PDROP | PVM, "objde2", 0); 587 VM_OBJECT_LOCK(robject); 588 temp = robject->backing_object; 589 if (object == temp) { 590 VM_OBJECT_LOCK(object); 591 goto retry; 592 } 593 } else 594 VM_OBJECT_UNLOCK(object); 595 596 if (robject->ref_count == 1) { 597 robject->ref_count--; 598 object = robject; 599 goto doterm; 600 } 601 object = robject; 602 vm_object_collapse(object); 603 VM_OBJECT_UNLOCK(object); 604 continue; 605 } 606 VM_OBJECT_UNLOCK(robject); 607 } 608 VM_OBJECT_UNLOCK(object); 609 return; 610 } 611 doterm: 612 temp = object->backing_object; 613 if (temp != NULL) { 614 VM_OBJECT_LOCK(temp); 615 LIST_REMOVE(object, shadow_list); 616 temp->shadow_count--; 617 VM_OBJECT_UNLOCK(temp); 618 object->backing_object = NULL; 619 } 620 /* 621 * Don't double-terminate, we could be in a termination 622 * recursion due to the terminate having to sync data 623 * to disk. 624 */ 625 if ((object->flags & OBJ_DEAD) == 0) 626 vm_object_terminate(object); 627 else 628 VM_OBJECT_UNLOCK(object); 629 object = temp; 630 } 631 } 632 633 /* 634 * vm_object_destroy removes the object from the global object list 635 * and frees the space for the object. 636 */ 637 void 638 vm_object_destroy(vm_object_t object) 639 { 640 641 /* 642 * Remove the object from the global object list. 643 */ 644 mtx_lock(&vm_object_list_mtx); 645 TAILQ_REMOVE(&vm_object_list, object, object_list); 646 mtx_unlock(&vm_object_list_mtx); 647 648 /* 649 * Release the allocation charge. 650 */ 651 if (object->cred != NULL) { 652 KASSERT(object->type == OBJT_DEFAULT || 653 object->type == OBJT_SWAP, 654 ("vm_object_terminate: non-swap obj %p has cred", 655 object)); 656 swap_release_by_cred(object->charge, object->cred); 657 object->charge = 0; 658 crfree(object->cred); 659 object->cred = NULL; 660 } 661 662 /* 663 * Free the space for the object. 664 */ 665 uma_zfree(obj_zone, object); 666 } 667 668 /* 669 * vm_object_terminate actually destroys the specified object, freeing 670 * up all previously used resources. 671 * 672 * The object must be locked. 673 * This routine may block. 674 */ 675 void 676 vm_object_terminate(vm_object_t object) 677 { 678 vm_page_t p, p_next; 679 680 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 681 682 /* 683 * Make sure no one uses us. 684 */ 685 vm_object_set_flag(object, OBJ_DEAD); 686 687 /* 688 * wait for the pageout daemon to be done with the object 689 */ 690 vm_object_pip_wait(object, "objtrm"); 691 692 KASSERT(!object->paging_in_progress, 693 ("vm_object_terminate: pageout in progress")); 694 695 /* 696 * Clean and free the pages, as appropriate. All references to the 697 * object are gone, so we don't need to lock it. 698 */ 699 if (object->type == OBJT_VNODE) { 700 struct vnode *vp = (struct vnode *)object->handle; 701 702 /* 703 * Clean pages and flush buffers. 704 */ 705 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 706 VM_OBJECT_UNLOCK(object); 707 708 vinvalbuf(vp, V_SAVE, 0, 0); 709 710 VM_OBJECT_LOCK(object); 711 } 712 713 KASSERT(object->ref_count == 0, 714 ("vm_object_terminate: object with references, ref_count=%d", 715 object->ref_count)); 716 717 /* 718 * Free any remaining pageable pages. This also removes them from the 719 * paging queues. However, don't free wired pages, just remove them 720 * from the object. Rather than incrementally removing each page from 721 * the object, the page and object are reset to any empty state. 722 */ 723 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 724 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 725 ("vm_object_terminate: freeing busy page %p", p)); 726 vm_page_lock(p); 727 /* 728 * Optimize the page's removal from the object by resetting 729 * its "object" field. Specifically, if the page is not 730 * wired, then the effect of this assignment is that 731 * vm_page_free()'s call to vm_page_remove() will return 732 * immediately without modifying the page or the object. 733 */ 734 p->object = NULL; 735 if (p->wire_count == 0) { 736 vm_page_free(p); 737 PCPU_INC(cnt.v_pfree); 738 } 739 vm_page_unlock(p); 740 } 741 /* 742 * If the object contained any pages, then reset it to an empty state. 743 * None of the object's fields, including "resident_page_count", were 744 * modified by the preceding loop. 745 */ 746 if (object->resident_page_count != 0) { 747 object->root = NULL; 748 TAILQ_INIT(&object->memq); 749 object->resident_page_count = 0; 750 if (object->type == OBJT_VNODE) 751 vdrop(object->handle); 752 } 753 754 #if VM_NRESERVLEVEL > 0 755 if (__predict_false(!LIST_EMPTY(&object->rvq))) 756 vm_reserv_break_all(object); 757 #endif 758 if (__predict_false(object->cache != NULL)) 759 vm_page_cache_free(object, 0, 0); 760 761 /* 762 * Let the pager know object is dead. 763 */ 764 vm_pager_deallocate(object); 765 VM_OBJECT_UNLOCK(object); 766 767 vm_object_destroy(object); 768 } 769 770 /* 771 * Make the page read-only so that we can clear the object flags. However, if 772 * this is a nosync mmap then the object is likely to stay dirty so do not 773 * mess with the page and do not clear the object flags. Returns TRUE if the 774 * page should be flushed, and FALSE otherwise. 775 */ 776 static boolean_t 777 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags) 778 { 779 780 /* 781 * If we have been asked to skip nosync pages and this is a 782 * nosync page, skip it. Note that the object flags were not 783 * cleared in this case so we do not have to set them. 784 */ 785 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 786 *clearobjflags = 0; 787 return (FALSE); 788 } else { 789 pmap_remove_write(p); 790 return (p->dirty != 0); 791 } 792 } 793 794 /* 795 * vm_object_page_clean 796 * 797 * Clean all dirty pages in the specified range of object. Leaves page 798 * on whatever queue it is currently on. If NOSYNC is set then do not 799 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 800 * leaving the object dirty. 801 * 802 * When stuffing pages asynchronously, allow clustering. XXX we need a 803 * synchronous clustering mode implementation. 804 * 805 * Odd semantics: if start == end, we clean everything. 806 * 807 * The object must be locked. 808 */ 809 void 810 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 811 int flags) 812 { 813 vm_page_t np, p; 814 vm_pindex_t pi, tend, tstart; 815 int clearobjflags, curgeneration, n, pagerflags; 816 817 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 818 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 819 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 820 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 821 object->resident_page_count == 0) 822 return; 823 824 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 825 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 826 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 827 828 tstart = OFF_TO_IDX(start); 829 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 830 clearobjflags = tstart == 0 && tend >= object->size; 831 832 rescan: 833 curgeneration = object->generation; 834 835 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 836 pi = p->pindex; 837 if (pi >= tend) 838 break; 839 np = TAILQ_NEXT(p, listq); 840 if (p->valid == 0) 841 continue; 842 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 843 if (object->generation != curgeneration) 844 goto rescan; 845 np = vm_page_find_least(object, pi); 846 continue; 847 } 848 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 849 continue; 850 851 n = vm_object_page_collect_flush(object, p, pagerflags, 852 flags, &clearobjflags); 853 if (object->generation != curgeneration) 854 goto rescan; 855 856 /* 857 * If the VOP_PUTPAGES() did a truncated write, so 858 * that even the first page of the run is not fully 859 * written, vm_pageout_flush() returns 0 as the run 860 * length. Since the condition that caused truncated 861 * write may be permanent, e.g. exhausted free space, 862 * accepting n == 0 would cause an infinite loop. 863 * 864 * Forwarding the iterator leaves the unwritten page 865 * behind, but there is not much we can do there if 866 * filesystem refuses to write it. 867 */ 868 if (n == 0) 869 n = 1; 870 np = vm_page_find_least(object, pi + n); 871 } 872 #if 0 873 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 874 #endif 875 876 if (clearobjflags) 877 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 878 } 879 880 static int 881 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 882 int flags, int *clearobjflags) 883 { 884 vm_page_t ma[vm_pageout_page_count], p_first, tp; 885 int count, i, mreq, runlen; 886 887 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 888 vm_page_lock_assert(p, MA_NOTOWNED); 889 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 890 891 count = 1; 892 mreq = 0; 893 894 for (tp = p; count < vm_pageout_page_count; count++) { 895 tp = vm_page_next(tp); 896 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 897 break; 898 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 899 break; 900 } 901 902 for (p_first = p; count < vm_pageout_page_count; count++) { 903 tp = vm_page_prev(p_first); 904 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 905 break; 906 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 907 break; 908 p_first = tp; 909 mreq++; 910 } 911 912 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 913 ma[i] = tp; 914 915 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen); 916 return (runlen); 917 } 918 919 /* 920 * Note that there is absolutely no sense in writing out 921 * anonymous objects, so we track down the vnode object 922 * to write out. 923 * We invalidate (remove) all pages from the address space 924 * for semantic correctness. 925 * 926 * If the backing object is a device object with unmanaged pages, then any 927 * mappings to the specified range of pages must be removed before this 928 * function is called. 929 * 930 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 931 * may start out with a NULL object. 932 */ 933 void 934 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 935 boolean_t syncio, boolean_t invalidate) 936 { 937 vm_object_t backing_object; 938 struct vnode *vp; 939 struct mount *mp; 940 int flags; 941 942 if (object == NULL) 943 return; 944 VM_OBJECT_LOCK(object); 945 while ((backing_object = object->backing_object) != NULL) { 946 VM_OBJECT_LOCK(backing_object); 947 offset += object->backing_object_offset; 948 VM_OBJECT_UNLOCK(object); 949 object = backing_object; 950 if (object->size < OFF_TO_IDX(offset + size)) 951 size = IDX_TO_OFF(object->size) - offset; 952 } 953 /* 954 * Flush pages if writing is allowed, invalidate them 955 * if invalidation requested. Pages undergoing I/O 956 * will be ignored by vm_object_page_remove(). 957 * 958 * We cannot lock the vnode and then wait for paging 959 * to complete without deadlocking against vm_fault. 960 * Instead we simply call vm_object_page_remove() and 961 * allow it to block internally on a page-by-page 962 * basis when it encounters pages undergoing async 963 * I/O. 964 */ 965 if (object->type == OBJT_VNODE && 966 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 967 int vfslocked; 968 vp = object->handle; 969 VM_OBJECT_UNLOCK(object); 970 (void) vn_start_write(vp, &mp, V_WAIT); 971 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 972 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 973 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 974 flags |= invalidate ? OBJPC_INVAL : 0; 975 VM_OBJECT_LOCK(object); 976 vm_object_page_clean(object, offset, offset + size, flags); 977 VM_OBJECT_UNLOCK(object); 978 VOP_UNLOCK(vp, 0); 979 VFS_UNLOCK_GIANT(vfslocked); 980 vn_finished_write(mp); 981 VM_OBJECT_LOCK(object); 982 } 983 if ((object->type == OBJT_VNODE || 984 object->type == OBJT_DEVICE) && invalidate) { 985 if (object->type == OBJT_DEVICE) 986 /* 987 * The option OBJPR_NOTMAPPED must be passed here 988 * because vm_object_page_remove() cannot remove 989 * unmanaged mappings. 990 */ 991 flags = OBJPR_NOTMAPPED; 992 else if (old_msync) 993 flags = 0; 994 else 995 flags = OBJPR_CLEANONLY; 996 vm_object_page_remove(object, OFF_TO_IDX(offset), 997 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 998 } 999 VM_OBJECT_UNLOCK(object); 1000 } 1001 1002 /* 1003 * vm_object_madvise: 1004 * 1005 * Implements the madvise function at the object/page level. 1006 * 1007 * MADV_WILLNEED (any object) 1008 * 1009 * Activate the specified pages if they are resident. 1010 * 1011 * MADV_DONTNEED (any object) 1012 * 1013 * Deactivate the specified pages if they are resident. 1014 * 1015 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1016 * OBJ_ONEMAPPING only) 1017 * 1018 * Deactivate and clean the specified pages if they are 1019 * resident. This permits the process to reuse the pages 1020 * without faulting or the kernel to reclaim the pages 1021 * without I/O. 1022 */ 1023 void 1024 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1025 { 1026 vm_pindex_t end, tpindex; 1027 vm_object_t backing_object, tobject; 1028 vm_page_t m; 1029 1030 if (object == NULL) 1031 return; 1032 VM_OBJECT_LOCK(object); 1033 end = pindex + count; 1034 /* 1035 * Locate and adjust resident pages 1036 */ 1037 for (; pindex < end; pindex += 1) { 1038 relookup: 1039 tobject = object; 1040 tpindex = pindex; 1041 shadowlookup: 1042 /* 1043 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1044 * and those pages must be OBJ_ONEMAPPING. 1045 */ 1046 if (advise == MADV_FREE) { 1047 if ((tobject->type != OBJT_DEFAULT && 1048 tobject->type != OBJT_SWAP) || 1049 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1050 goto unlock_tobject; 1051 } 1052 } else if (tobject->type == OBJT_PHYS) 1053 goto unlock_tobject; 1054 m = vm_page_lookup(tobject, tpindex); 1055 if (m == NULL && advise == MADV_WILLNEED) { 1056 /* 1057 * If the page is cached, reactivate it. 1058 */ 1059 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1060 VM_ALLOC_NOBUSY); 1061 } 1062 if (m == NULL) { 1063 /* 1064 * There may be swap even if there is no backing page 1065 */ 1066 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1067 swap_pager_freespace(tobject, tpindex, 1); 1068 /* 1069 * next object 1070 */ 1071 backing_object = tobject->backing_object; 1072 if (backing_object == NULL) 1073 goto unlock_tobject; 1074 VM_OBJECT_LOCK(backing_object); 1075 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1076 if (tobject != object) 1077 VM_OBJECT_UNLOCK(tobject); 1078 tobject = backing_object; 1079 goto shadowlookup; 1080 } else if (m->valid != VM_PAGE_BITS_ALL) 1081 goto unlock_tobject; 1082 /* 1083 * If the page is not in a normal state, skip it. 1084 */ 1085 vm_page_lock(m); 1086 if (m->hold_count != 0 || m->wire_count != 0) { 1087 vm_page_unlock(m); 1088 goto unlock_tobject; 1089 } 1090 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1091 ("vm_object_madvise: page %p is fictitious", m)); 1092 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1093 ("vm_object_madvise: page %p is not managed", m)); 1094 if ((m->oflags & VPO_BUSY) || m->busy) { 1095 if (advise == MADV_WILLNEED) { 1096 /* 1097 * Reference the page before unlocking and 1098 * sleeping so that the page daemon is less 1099 * likely to reclaim it. 1100 */ 1101 vm_page_aflag_set(m, PGA_REFERENCED); 1102 } 1103 vm_page_unlock(m); 1104 if (object != tobject) 1105 VM_OBJECT_UNLOCK(object); 1106 m->oflags |= VPO_WANTED; 1107 msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 1108 0); 1109 VM_OBJECT_LOCK(object); 1110 goto relookup; 1111 } 1112 if (advise == MADV_WILLNEED) { 1113 vm_page_activate(m); 1114 } else if (advise == MADV_DONTNEED) { 1115 vm_page_dontneed(m); 1116 } else if (advise == MADV_FREE) { 1117 /* 1118 * Mark the page clean. This will allow the page 1119 * to be freed up by the system. However, such pages 1120 * are often reused quickly by malloc()/free() 1121 * so we do not do anything that would cause 1122 * a page fault if we can help it. 1123 * 1124 * Specifically, we do not try to actually free 1125 * the page now nor do we try to put it in the 1126 * cache (which would cause a page fault on reuse). 1127 * 1128 * But we do make the page is freeable as we 1129 * can without actually taking the step of unmapping 1130 * it. 1131 */ 1132 pmap_clear_modify(m); 1133 m->dirty = 0; 1134 m->act_count = 0; 1135 vm_page_dontneed(m); 1136 } 1137 vm_page_unlock(m); 1138 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1139 swap_pager_freespace(tobject, tpindex, 1); 1140 unlock_tobject: 1141 if (tobject != object) 1142 VM_OBJECT_UNLOCK(tobject); 1143 } 1144 VM_OBJECT_UNLOCK(object); 1145 } 1146 1147 /* 1148 * vm_object_shadow: 1149 * 1150 * Create a new object which is backed by the 1151 * specified existing object range. The source 1152 * object reference is deallocated. 1153 * 1154 * The new object and offset into that object 1155 * are returned in the source parameters. 1156 */ 1157 void 1158 vm_object_shadow( 1159 vm_object_t *object, /* IN/OUT */ 1160 vm_ooffset_t *offset, /* IN/OUT */ 1161 vm_size_t length) 1162 { 1163 vm_object_t source; 1164 vm_object_t result; 1165 1166 source = *object; 1167 1168 /* 1169 * Don't create the new object if the old object isn't shared. 1170 */ 1171 if (source != NULL) { 1172 VM_OBJECT_LOCK(source); 1173 if (source->ref_count == 1 && 1174 source->handle == NULL && 1175 (source->type == OBJT_DEFAULT || 1176 source->type == OBJT_SWAP)) { 1177 VM_OBJECT_UNLOCK(source); 1178 return; 1179 } 1180 VM_OBJECT_UNLOCK(source); 1181 } 1182 1183 /* 1184 * Allocate a new object with the given length. 1185 */ 1186 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1187 1188 /* 1189 * The new object shadows the source object, adding a reference to it. 1190 * Our caller changes his reference to point to the new object, 1191 * removing a reference to the source object. Net result: no change 1192 * of reference count. 1193 * 1194 * Try to optimize the result object's page color when shadowing 1195 * in order to maintain page coloring consistency in the combined 1196 * shadowed object. 1197 */ 1198 result->backing_object = source; 1199 /* 1200 * Store the offset into the source object, and fix up the offset into 1201 * the new object. 1202 */ 1203 result->backing_object_offset = *offset; 1204 if (source != NULL) { 1205 VM_OBJECT_LOCK(source); 1206 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1207 source->shadow_count++; 1208 #if VM_NRESERVLEVEL > 0 1209 result->flags |= source->flags & OBJ_COLORED; 1210 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1211 ((1 << (VM_NFREEORDER - 1)) - 1); 1212 #endif 1213 VM_OBJECT_UNLOCK(source); 1214 } 1215 1216 1217 /* 1218 * Return the new things 1219 */ 1220 *offset = 0; 1221 *object = result; 1222 } 1223 1224 /* 1225 * vm_object_split: 1226 * 1227 * Split the pages in a map entry into a new object. This affords 1228 * easier removal of unused pages, and keeps object inheritance from 1229 * being a negative impact on memory usage. 1230 */ 1231 void 1232 vm_object_split(vm_map_entry_t entry) 1233 { 1234 vm_page_t m, m_next; 1235 vm_object_t orig_object, new_object, source; 1236 vm_pindex_t idx, offidxstart; 1237 vm_size_t size; 1238 1239 orig_object = entry->object.vm_object; 1240 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1241 return; 1242 if (orig_object->ref_count <= 1) 1243 return; 1244 VM_OBJECT_UNLOCK(orig_object); 1245 1246 offidxstart = OFF_TO_IDX(entry->offset); 1247 size = atop(entry->end - entry->start); 1248 1249 /* 1250 * If swap_pager_copy() is later called, it will convert new_object 1251 * into a swap object. 1252 */ 1253 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1254 1255 /* 1256 * At this point, the new object is still private, so the order in 1257 * which the original and new objects are locked does not matter. 1258 */ 1259 VM_OBJECT_LOCK(new_object); 1260 VM_OBJECT_LOCK(orig_object); 1261 source = orig_object->backing_object; 1262 if (source != NULL) { 1263 VM_OBJECT_LOCK(source); 1264 if ((source->flags & OBJ_DEAD) != 0) { 1265 VM_OBJECT_UNLOCK(source); 1266 VM_OBJECT_UNLOCK(orig_object); 1267 VM_OBJECT_UNLOCK(new_object); 1268 vm_object_deallocate(new_object); 1269 VM_OBJECT_LOCK(orig_object); 1270 return; 1271 } 1272 LIST_INSERT_HEAD(&source->shadow_head, 1273 new_object, shadow_list); 1274 source->shadow_count++; 1275 vm_object_reference_locked(source); /* for new_object */ 1276 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1277 VM_OBJECT_UNLOCK(source); 1278 new_object->backing_object_offset = 1279 orig_object->backing_object_offset + entry->offset; 1280 new_object->backing_object = source; 1281 } 1282 if (orig_object->cred != NULL) { 1283 new_object->cred = orig_object->cred; 1284 crhold(orig_object->cred); 1285 new_object->charge = ptoa(size); 1286 KASSERT(orig_object->charge >= ptoa(size), 1287 ("orig_object->charge < 0")); 1288 orig_object->charge -= ptoa(size); 1289 } 1290 retry: 1291 m = vm_page_find_least(orig_object, offidxstart); 1292 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1293 m = m_next) { 1294 m_next = TAILQ_NEXT(m, listq); 1295 1296 /* 1297 * We must wait for pending I/O to complete before we can 1298 * rename the page. 1299 * 1300 * We do not have to VM_PROT_NONE the page as mappings should 1301 * not be changed by this operation. 1302 */ 1303 if ((m->oflags & VPO_BUSY) || m->busy) { 1304 VM_OBJECT_UNLOCK(new_object); 1305 m->oflags |= VPO_WANTED; 1306 msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0); 1307 VM_OBJECT_LOCK(new_object); 1308 goto retry; 1309 } 1310 vm_page_lock(m); 1311 vm_page_rename(m, new_object, idx); 1312 vm_page_unlock(m); 1313 /* page automatically made dirty by rename and cache handled */ 1314 vm_page_busy(m); 1315 } 1316 if (orig_object->type == OBJT_SWAP) { 1317 /* 1318 * swap_pager_copy() can sleep, in which case the orig_object's 1319 * and new_object's locks are released and reacquired. 1320 */ 1321 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1322 1323 /* 1324 * Transfer any cached pages from orig_object to new_object. 1325 */ 1326 if (__predict_false(orig_object->cache != NULL)) 1327 vm_page_cache_transfer(orig_object, offidxstart, 1328 new_object); 1329 } 1330 VM_OBJECT_UNLOCK(orig_object); 1331 TAILQ_FOREACH(m, &new_object->memq, listq) 1332 vm_page_wakeup(m); 1333 VM_OBJECT_UNLOCK(new_object); 1334 entry->object.vm_object = new_object; 1335 entry->offset = 0LL; 1336 vm_object_deallocate(orig_object); 1337 VM_OBJECT_LOCK(new_object); 1338 } 1339 1340 #define OBSC_TEST_ALL_SHADOWED 0x0001 1341 #define OBSC_COLLAPSE_NOWAIT 0x0002 1342 #define OBSC_COLLAPSE_WAIT 0x0004 1343 1344 static int 1345 vm_object_backing_scan(vm_object_t object, int op) 1346 { 1347 int r = 1; 1348 vm_page_t p; 1349 vm_object_t backing_object; 1350 vm_pindex_t backing_offset_index; 1351 1352 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1353 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1354 1355 backing_object = object->backing_object; 1356 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1357 1358 /* 1359 * Initial conditions 1360 */ 1361 if (op & OBSC_TEST_ALL_SHADOWED) { 1362 /* 1363 * We do not want to have to test for the existence of cache 1364 * or swap pages in the backing object. XXX but with the 1365 * new swapper this would be pretty easy to do. 1366 * 1367 * XXX what about anonymous MAP_SHARED memory that hasn't 1368 * been ZFOD faulted yet? If we do not test for this, the 1369 * shadow test may succeed! XXX 1370 */ 1371 if (backing_object->type != OBJT_DEFAULT) { 1372 return (0); 1373 } 1374 } 1375 if (op & OBSC_COLLAPSE_WAIT) { 1376 vm_object_set_flag(backing_object, OBJ_DEAD); 1377 } 1378 1379 /* 1380 * Our scan 1381 */ 1382 p = TAILQ_FIRST(&backing_object->memq); 1383 while (p) { 1384 vm_page_t next = TAILQ_NEXT(p, listq); 1385 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1386 1387 if (op & OBSC_TEST_ALL_SHADOWED) { 1388 vm_page_t pp; 1389 1390 /* 1391 * Ignore pages outside the parent object's range 1392 * and outside the parent object's mapping of the 1393 * backing object. 1394 * 1395 * note that we do not busy the backing object's 1396 * page. 1397 */ 1398 if ( 1399 p->pindex < backing_offset_index || 1400 new_pindex >= object->size 1401 ) { 1402 p = next; 1403 continue; 1404 } 1405 1406 /* 1407 * See if the parent has the page or if the parent's 1408 * object pager has the page. If the parent has the 1409 * page but the page is not valid, the parent's 1410 * object pager must have the page. 1411 * 1412 * If this fails, the parent does not completely shadow 1413 * the object and we might as well give up now. 1414 */ 1415 1416 pp = vm_page_lookup(object, new_pindex); 1417 if ( 1418 (pp == NULL || pp->valid == 0) && 1419 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1420 ) { 1421 r = 0; 1422 break; 1423 } 1424 } 1425 1426 /* 1427 * Check for busy page 1428 */ 1429 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1430 vm_page_t pp; 1431 1432 if (op & OBSC_COLLAPSE_NOWAIT) { 1433 if ((p->oflags & VPO_BUSY) || 1434 !p->valid || 1435 p->busy) { 1436 p = next; 1437 continue; 1438 } 1439 } else if (op & OBSC_COLLAPSE_WAIT) { 1440 if ((p->oflags & VPO_BUSY) || p->busy) { 1441 VM_OBJECT_UNLOCK(object); 1442 p->oflags |= VPO_WANTED; 1443 msleep(p, VM_OBJECT_MTX(backing_object), 1444 PDROP | PVM, "vmocol", 0); 1445 VM_OBJECT_LOCK(object); 1446 VM_OBJECT_LOCK(backing_object); 1447 /* 1448 * If we slept, anything could have 1449 * happened. Since the object is 1450 * marked dead, the backing offset 1451 * should not have changed so we 1452 * just restart our scan. 1453 */ 1454 p = TAILQ_FIRST(&backing_object->memq); 1455 continue; 1456 } 1457 } 1458 1459 KASSERT( 1460 p->object == backing_object, 1461 ("vm_object_backing_scan: object mismatch") 1462 ); 1463 1464 /* 1465 * Destroy any associated swap 1466 */ 1467 if (backing_object->type == OBJT_SWAP) { 1468 swap_pager_freespace( 1469 backing_object, 1470 p->pindex, 1471 1 1472 ); 1473 } 1474 1475 if ( 1476 p->pindex < backing_offset_index || 1477 new_pindex >= object->size 1478 ) { 1479 /* 1480 * Page is out of the parent object's range, we 1481 * can simply destroy it. 1482 */ 1483 vm_page_lock(p); 1484 KASSERT(!pmap_page_is_mapped(p), 1485 ("freeing mapped page %p", p)); 1486 if (p->wire_count == 0) 1487 vm_page_free(p); 1488 else 1489 vm_page_remove(p); 1490 vm_page_unlock(p); 1491 p = next; 1492 continue; 1493 } 1494 1495 pp = vm_page_lookup(object, new_pindex); 1496 if ( 1497 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1498 (pp != NULL && pp->valid == 0) 1499 ) { 1500 /* 1501 * The page in the parent is not (yet) valid. 1502 * We don't know anything about the state of 1503 * the original page. It might be mapped, 1504 * so we must avoid the next if here. 1505 * 1506 * This is due to a race in vm_fault() where 1507 * we must unbusy the original (backing_obj) 1508 * page before we can (re)lock the parent. 1509 * Hence we can get here. 1510 */ 1511 p = next; 1512 continue; 1513 } 1514 if ( 1515 pp != NULL || 1516 vm_pager_has_page(object, new_pindex, NULL, NULL) 1517 ) { 1518 /* 1519 * page already exists in parent OR swap exists 1520 * for this location in the parent. Destroy 1521 * the original page from the backing object. 1522 * 1523 * Leave the parent's page alone 1524 */ 1525 vm_page_lock(p); 1526 KASSERT(!pmap_page_is_mapped(p), 1527 ("freeing mapped page %p", p)); 1528 if (p->wire_count == 0) 1529 vm_page_free(p); 1530 else 1531 vm_page_remove(p); 1532 vm_page_unlock(p); 1533 p = next; 1534 continue; 1535 } 1536 1537 #if VM_NRESERVLEVEL > 0 1538 /* 1539 * Rename the reservation. 1540 */ 1541 vm_reserv_rename(p, object, backing_object, 1542 backing_offset_index); 1543 #endif 1544 1545 /* 1546 * Page does not exist in parent, rename the 1547 * page from the backing object to the main object. 1548 * 1549 * If the page was mapped to a process, it can remain 1550 * mapped through the rename. 1551 */ 1552 vm_page_lock(p); 1553 vm_page_rename(p, object, new_pindex); 1554 vm_page_unlock(p); 1555 /* page automatically made dirty by rename */ 1556 } 1557 p = next; 1558 } 1559 return (r); 1560 } 1561 1562 1563 /* 1564 * this version of collapse allows the operation to occur earlier and 1565 * when paging_in_progress is true for an object... This is not a complete 1566 * operation, but should plug 99.9% of the rest of the leaks. 1567 */ 1568 static void 1569 vm_object_qcollapse(vm_object_t object) 1570 { 1571 vm_object_t backing_object = object->backing_object; 1572 1573 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1574 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1575 1576 if (backing_object->ref_count != 1) 1577 return; 1578 1579 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1580 } 1581 1582 /* 1583 * vm_object_collapse: 1584 * 1585 * Collapse an object with the object backing it. 1586 * Pages in the backing object are moved into the 1587 * parent, and the backing object is deallocated. 1588 */ 1589 void 1590 vm_object_collapse(vm_object_t object) 1591 { 1592 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1593 1594 while (TRUE) { 1595 vm_object_t backing_object; 1596 1597 /* 1598 * Verify that the conditions are right for collapse: 1599 * 1600 * The object exists and the backing object exists. 1601 */ 1602 if ((backing_object = object->backing_object) == NULL) 1603 break; 1604 1605 /* 1606 * we check the backing object first, because it is most likely 1607 * not collapsable. 1608 */ 1609 VM_OBJECT_LOCK(backing_object); 1610 if (backing_object->handle != NULL || 1611 (backing_object->type != OBJT_DEFAULT && 1612 backing_object->type != OBJT_SWAP) || 1613 (backing_object->flags & OBJ_DEAD) || 1614 object->handle != NULL || 1615 (object->type != OBJT_DEFAULT && 1616 object->type != OBJT_SWAP) || 1617 (object->flags & OBJ_DEAD)) { 1618 VM_OBJECT_UNLOCK(backing_object); 1619 break; 1620 } 1621 1622 if ( 1623 object->paging_in_progress != 0 || 1624 backing_object->paging_in_progress != 0 1625 ) { 1626 vm_object_qcollapse(object); 1627 VM_OBJECT_UNLOCK(backing_object); 1628 break; 1629 } 1630 /* 1631 * We know that we can either collapse the backing object (if 1632 * the parent is the only reference to it) or (perhaps) have 1633 * the parent bypass the object if the parent happens to shadow 1634 * all the resident pages in the entire backing object. 1635 * 1636 * This is ignoring pager-backed pages such as swap pages. 1637 * vm_object_backing_scan fails the shadowing test in this 1638 * case. 1639 */ 1640 if (backing_object->ref_count == 1) { 1641 /* 1642 * If there is exactly one reference to the backing 1643 * object, we can collapse it into the parent. 1644 */ 1645 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1646 1647 #if VM_NRESERVLEVEL > 0 1648 /* 1649 * Break any reservations from backing_object. 1650 */ 1651 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1652 vm_reserv_break_all(backing_object); 1653 #endif 1654 1655 /* 1656 * Move the pager from backing_object to object. 1657 */ 1658 if (backing_object->type == OBJT_SWAP) { 1659 /* 1660 * swap_pager_copy() can sleep, in which case 1661 * the backing_object's and object's locks are 1662 * released and reacquired. 1663 */ 1664 swap_pager_copy( 1665 backing_object, 1666 object, 1667 OFF_TO_IDX(object->backing_object_offset), TRUE); 1668 1669 /* 1670 * Free any cached pages from backing_object. 1671 */ 1672 if (__predict_false(backing_object->cache != NULL)) 1673 vm_page_cache_free(backing_object, 0, 0); 1674 } 1675 /* 1676 * Object now shadows whatever backing_object did. 1677 * Note that the reference to 1678 * backing_object->backing_object moves from within 1679 * backing_object to within object. 1680 */ 1681 LIST_REMOVE(object, shadow_list); 1682 backing_object->shadow_count--; 1683 if (backing_object->backing_object) { 1684 VM_OBJECT_LOCK(backing_object->backing_object); 1685 LIST_REMOVE(backing_object, shadow_list); 1686 LIST_INSERT_HEAD( 1687 &backing_object->backing_object->shadow_head, 1688 object, shadow_list); 1689 /* 1690 * The shadow_count has not changed. 1691 */ 1692 VM_OBJECT_UNLOCK(backing_object->backing_object); 1693 } 1694 object->backing_object = backing_object->backing_object; 1695 object->backing_object_offset += 1696 backing_object->backing_object_offset; 1697 1698 /* 1699 * Discard backing_object. 1700 * 1701 * Since the backing object has no pages, no pager left, 1702 * and no object references within it, all that is 1703 * necessary is to dispose of it. 1704 */ 1705 KASSERT(backing_object->ref_count == 1, ( 1706 "backing_object %p was somehow re-referenced during collapse!", 1707 backing_object)); 1708 VM_OBJECT_UNLOCK(backing_object); 1709 vm_object_destroy(backing_object); 1710 1711 object_collapses++; 1712 } else { 1713 vm_object_t new_backing_object; 1714 1715 /* 1716 * If we do not entirely shadow the backing object, 1717 * there is nothing we can do so we give up. 1718 */ 1719 if (object->resident_page_count != object->size && 1720 vm_object_backing_scan(object, 1721 OBSC_TEST_ALL_SHADOWED) == 0) { 1722 VM_OBJECT_UNLOCK(backing_object); 1723 break; 1724 } 1725 1726 /* 1727 * Make the parent shadow the next object in the 1728 * chain. Deallocating backing_object will not remove 1729 * it, since its reference count is at least 2. 1730 */ 1731 LIST_REMOVE(object, shadow_list); 1732 backing_object->shadow_count--; 1733 1734 new_backing_object = backing_object->backing_object; 1735 if ((object->backing_object = new_backing_object) != NULL) { 1736 VM_OBJECT_LOCK(new_backing_object); 1737 LIST_INSERT_HEAD( 1738 &new_backing_object->shadow_head, 1739 object, 1740 shadow_list 1741 ); 1742 new_backing_object->shadow_count++; 1743 vm_object_reference_locked(new_backing_object); 1744 VM_OBJECT_UNLOCK(new_backing_object); 1745 object->backing_object_offset += 1746 backing_object->backing_object_offset; 1747 } 1748 1749 /* 1750 * Drop the reference count on backing_object. Since 1751 * its ref_count was at least 2, it will not vanish. 1752 */ 1753 backing_object->ref_count--; 1754 VM_OBJECT_UNLOCK(backing_object); 1755 object_bypasses++; 1756 } 1757 1758 /* 1759 * Try again with this object's new backing object. 1760 */ 1761 } 1762 } 1763 1764 /* 1765 * vm_object_page_remove: 1766 * 1767 * For the given object, either frees or invalidates each of the 1768 * specified pages. In general, a page is freed. However, if a page is 1769 * wired for any reason other than the existence of a managed, wired 1770 * mapping, then it may be invalidated but not removed from the object. 1771 * Pages are specified by the given range ["start", "end") and the option 1772 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1773 * extends from "start" to the end of the object. If the option 1774 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1775 * specified range are affected. If the option OBJPR_NOTMAPPED is 1776 * specified, then the pages within the specified range must have no 1777 * mappings. Otherwise, if this option is not specified, any mappings to 1778 * the specified pages are removed before the pages are freed or 1779 * invalidated. 1780 * 1781 * In general, this operation should only be performed on objects that 1782 * contain managed pages. There are, however, two exceptions. First, it 1783 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1784 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1785 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1786 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1787 * 1788 * The object must be locked. 1789 */ 1790 void 1791 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1792 int options) 1793 { 1794 vm_page_t p, next; 1795 int wirings; 1796 1797 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1798 KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) || 1799 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1800 ("vm_object_page_remove: illegal options for object %p", object)); 1801 if (object->resident_page_count == 0) 1802 goto skipmemq; 1803 vm_object_pip_add(object, 1); 1804 again: 1805 p = vm_page_find_least(object, start); 1806 1807 /* 1808 * Here, the variable "p" is either (1) the page with the least pindex 1809 * greater than or equal to the parameter "start" or (2) NULL. 1810 */ 1811 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1812 next = TAILQ_NEXT(p, listq); 1813 1814 /* 1815 * If the page is wired for any reason besides the existence 1816 * of managed, wired mappings, then it cannot be freed. For 1817 * example, fictitious pages, which represent device memory, 1818 * are inherently wired and cannot be freed. They can, 1819 * however, be invalidated if the option OBJPR_CLEANONLY is 1820 * not specified. 1821 */ 1822 vm_page_lock(p); 1823 if ((wirings = p->wire_count) != 0 && 1824 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1825 if ((options & OBJPR_NOTMAPPED) == 0) { 1826 pmap_remove_all(p); 1827 /* Account for removal of wired mappings. */ 1828 if (wirings != 0) 1829 p->wire_count -= wirings; 1830 } 1831 if ((options & OBJPR_CLEANONLY) == 0) { 1832 p->valid = 0; 1833 vm_page_undirty(p); 1834 } 1835 vm_page_unlock(p); 1836 continue; 1837 } 1838 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1839 goto again; 1840 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1841 ("vm_object_page_remove: page %p is fictitious", p)); 1842 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1843 if ((options & OBJPR_NOTMAPPED) == 0) 1844 pmap_remove_write(p); 1845 if (p->dirty) { 1846 vm_page_unlock(p); 1847 continue; 1848 } 1849 } 1850 if ((options & OBJPR_NOTMAPPED) == 0) { 1851 pmap_remove_all(p); 1852 /* Account for removal of wired mappings. */ 1853 if (wirings != 0) 1854 p->wire_count -= wirings; 1855 } 1856 vm_page_free(p); 1857 vm_page_unlock(p); 1858 } 1859 vm_object_pip_wakeup(object); 1860 skipmemq: 1861 if (__predict_false(object->cache != NULL)) 1862 vm_page_cache_free(object, start, end); 1863 } 1864 1865 /* 1866 * Populate the specified range of the object with valid pages. Returns 1867 * TRUE if the range is successfully populated and FALSE otherwise. 1868 * 1869 * Note: This function should be optimized to pass a larger array of 1870 * pages to vm_pager_get_pages() before it is applied to a non- 1871 * OBJT_DEVICE object. 1872 * 1873 * The object must be locked. 1874 */ 1875 boolean_t 1876 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1877 { 1878 vm_page_t m, ma[1]; 1879 vm_pindex_t pindex; 1880 int rv; 1881 1882 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1883 for (pindex = start; pindex < end; pindex++) { 1884 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1885 VM_ALLOC_RETRY); 1886 if (m->valid != VM_PAGE_BITS_ALL) { 1887 ma[0] = m; 1888 rv = vm_pager_get_pages(object, ma, 1, 0); 1889 m = vm_page_lookup(object, pindex); 1890 if (m == NULL) 1891 break; 1892 if (rv != VM_PAGER_OK) { 1893 vm_page_lock(m); 1894 vm_page_free(m); 1895 vm_page_unlock(m); 1896 break; 1897 } 1898 } 1899 /* 1900 * Keep "m" busy because a subsequent iteration may unlock 1901 * the object. 1902 */ 1903 } 1904 if (pindex > start) { 1905 m = vm_page_lookup(object, start); 1906 while (m != NULL && m->pindex < pindex) { 1907 vm_page_wakeup(m); 1908 m = TAILQ_NEXT(m, listq); 1909 } 1910 } 1911 return (pindex == end); 1912 } 1913 1914 /* 1915 * Routine: vm_object_coalesce 1916 * Function: Coalesces two objects backing up adjoining 1917 * regions of memory into a single object. 1918 * 1919 * returns TRUE if objects were combined. 1920 * 1921 * NOTE: Only works at the moment if the second object is NULL - 1922 * if it's not, which object do we lock first? 1923 * 1924 * Parameters: 1925 * prev_object First object to coalesce 1926 * prev_offset Offset into prev_object 1927 * prev_size Size of reference to prev_object 1928 * next_size Size of reference to the second object 1929 * reserved Indicator that extension region has 1930 * swap accounted for 1931 * 1932 * Conditions: 1933 * The object must *not* be locked. 1934 */ 1935 boolean_t 1936 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1937 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 1938 { 1939 vm_pindex_t next_pindex; 1940 1941 if (prev_object == NULL) 1942 return (TRUE); 1943 VM_OBJECT_LOCK(prev_object); 1944 if (prev_object->type != OBJT_DEFAULT && 1945 prev_object->type != OBJT_SWAP) { 1946 VM_OBJECT_UNLOCK(prev_object); 1947 return (FALSE); 1948 } 1949 1950 /* 1951 * Try to collapse the object first 1952 */ 1953 vm_object_collapse(prev_object); 1954 1955 /* 1956 * Can't coalesce if: . more than one reference . paged out . shadows 1957 * another object . has a copy elsewhere (any of which mean that the 1958 * pages not mapped to prev_entry may be in use anyway) 1959 */ 1960 if (prev_object->backing_object != NULL) { 1961 VM_OBJECT_UNLOCK(prev_object); 1962 return (FALSE); 1963 } 1964 1965 prev_size >>= PAGE_SHIFT; 1966 next_size >>= PAGE_SHIFT; 1967 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1968 1969 if ((prev_object->ref_count > 1) && 1970 (prev_object->size != next_pindex)) { 1971 VM_OBJECT_UNLOCK(prev_object); 1972 return (FALSE); 1973 } 1974 1975 /* 1976 * Account for the charge. 1977 */ 1978 if (prev_object->cred != NULL) { 1979 1980 /* 1981 * If prev_object was charged, then this mapping, 1982 * althought not charged now, may become writable 1983 * later. Non-NULL cred in the object would prevent 1984 * swap reservation during enabling of the write 1985 * access, so reserve swap now. Failed reservation 1986 * cause allocation of the separate object for the map 1987 * entry, and swap reservation for this entry is 1988 * managed in appropriate time. 1989 */ 1990 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 1991 prev_object->cred)) { 1992 return (FALSE); 1993 } 1994 prev_object->charge += ptoa(next_size); 1995 } 1996 1997 /* 1998 * Remove any pages that may still be in the object from a previous 1999 * deallocation. 2000 */ 2001 if (next_pindex < prev_object->size) { 2002 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2003 next_size, 0); 2004 if (prev_object->type == OBJT_SWAP) 2005 swap_pager_freespace(prev_object, 2006 next_pindex, next_size); 2007 #if 0 2008 if (prev_object->cred != NULL) { 2009 KASSERT(prev_object->charge >= 2010 ptoa(prev_object->size - next_pindex), 2011 ("object %p overcharged 1 %jx %jx", prev_object, 2012 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2013 prev_object->charge -= ptoa(prev_object->size - 2014 next_pindex); 2015 } 2016 #endif 2017 } 2018 2019 /* 2020 * Extend the object if necessary. 2021 */ 2022 if (next_pindex + next_size > prev_object->size) 2023 prev_object->size = next_pindex + next_size; 2024 2025 VM_OBJECT_UNLOCK(prev_object); 2026 return (TRUE); 2027 } 2028 2029 void 2030 vm_object_set_writeable_dirty(vm_object_t object) 2031 { 2032 2033 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2034 if (object->type != OBJT_VNODE) 2035 return; 2036 object->generation++; 2037 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2038 return; 2039 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2040 } 2041 2042 #include "opt_ddb.h" 2043 #ifdef DDB 2044 #include <sys/kernel.h> 2045 2046 #include <sys/cons.h> 2047 2048 #include <ddb/ddb.h> 2049 2050 static int 2051 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2052 { 2053 vm_map_t tmpm; 2054 vm_map_entry_t tmpe; 2055 vm_object_t obj; 2056 int entcount; 2057 2058 if (map == 0) 2059 return 0; 2060 2061 if (entry == 0) { 2062 tmpe = map->header.next; 2063 entcount = map->nentries; 2064 while (entcount-- && (tmpe != &map->header)) { 2065 if (_vm_object_in_map(map, object, tmpe)) { 2066 return 1; 2067 } 2068 tmpe = tmpe->next; 2069 } 2070 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2071 tmpm = entry->object.sub_map; 2072 tmpe = tmpm->header.next; 2073 entcount = tmpm->nentries; 2074 while (entcount-- && tmpe != &tmpm->header) { 2075 if (_vm_object_in_map(tmpm, object, tmpe)) { 2076 return 1; 2077 } 2078 tmpe = tmpe->next; 2079 } 2080 } else if ((obj = entry->object.vm_object) != NULL) { 2081 for (; obj; obj = obj->backing_object) 2082 if (obj == object) { 2083 return 1; 2084 } 2085 } 2086 return 0; 2087 } 2088 2089 static int 2090 vm_object_in_map(vm_object_t object) 2091 { 2092 struct proc *p; 2093 2094 /* sx_slock(&allproc_lock); */ 2095 FOREACH_PROC_IN_SYSTEM(p) { 2096 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2097 continue; 2098 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2099 /* sx_sunlock(&allproc_lock); */ 2100 return 1; 2101 } 2102 } 2103 /* sx_sunlock(&allproc_lock); */ 2104 if (_vm_object_in_map(kernel_map, object, 0)) 2105 return 1; 2106 if (_vm_object_in_map(kmem_map, object, 0)) 2107 return 1; 2108 if (_vm_object_in_map(pager_map, object, 0)) 2109 return 1; 2110 if (_vm_object_in_map(buffer_map, object, 0)) 2111 return 1; 2112 return 0; 2113 } 2114 2115 DB_SHOW_COMMAND(vmochk, vm_object_check) 2116 { 2117 vm_object_t object; 2118 2119 /* 2120 * make sure that internal objs are in a map somewhere 2121 * and none have zero ref counts. 2122 */ 2123 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2124 if (object->handle == NULL && 2125 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2126 if (object->ref_count == 0) { 2127 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2128 (long)object->size); 2129 } 2130 if (!vm_object_in_map(object)) { 2131 db_printf( 2132 "vmochk: internal obj is not in a map: " 2133 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2134 object->ref_count, (u_long)object->size, 2135 (u_long)object->size, 2136 (void *)object->backing_object); 2137 } 2138 } 2139 } 2140 } 2141 2142 /* 2143 * vm_object_print: [ debug ] 2144 */ 2145 DB_SHOW_COMMAND(object, vm_object_print_static) 2146 { 2147 /* XXX convert args. */ 2148 vm_object_t object = (vm_object_t)addr; 2149 boolean_t full = have_addr; 2150 2151 vm_page_t p; 2152 2153 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2154 #define count was_count 2155 2156 int count; 2157 2158 if (object == NULL) 2159 return; 2160 2161 db_iprintf( 2162 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2163 object, (int)object->type, (uintmax_t)object->size, 2164 object->resident_page_count, object->ref_count, object->flags, 2165 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2166 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2167 object->shadow_count, 2168 object->backing_object ? object->backing_object->ref_count : 0, 2169 object->backing_object, (uintmax_t)object->backing_object_offset); 2170 2171 if (!full) 2172 return; 2173 2174 db_indent += 2; 2175 count = 0; 2176 TAILQ_FOREACH(p, &object->memq, listq) { 2177 if (count == 0) 2178 db_iprintf("memory:="); 2179 else if (count == 6) { 2180 db_printf("\n"); 2181 db_iprintf(" ..."); 2182 count = 0; 2183 } else 2184 db_printf(","); 2185 count++; 2186 2187 db_printf("(off=0x%jx,page=0x%jx)", 2188 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2189 } 2190 if (count != 0) 2191 db_printf("\n"); 2192 db_indent -= 2; 2193 } 2194 2195 /* XXX. */ 2196 #undef count 2197 2198 /* XXX need this non-static entry for calling from vm_map_print. */ 2199 void 2200 vm_object_print( 2201 /* db_expr_t */ long addr, 2202 boolean_t have_addr, 2203 /* db_expr_t */ long count, 2204 char *modif) 2205 { 2206 vm_object_print_static(addr, have_addr, count, modif); 2207 } 2208 2209 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2210 { 2211 vm_object_t object; 2212 vm_pindex_t fidx; 2213 vm_paddr_t pa; 2214 vm_page_t m, prev_m; 2215 int rcount, nl, c; 2216 2217 nl = 0; 2218 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2219 db_printf("new object: %p\n", (void *)object); 2220 if (nl > 18) { 2221 c = cngetc(); 2222 if (c != ' ') 2223 return; 2224 nl = 0; 2225 } 2226 nl++; 2227 rcount = 0; 2228 fidx = 0; 2229 pa = -1; 2230 TAILQ_FOREACH(m, &object->memq, listq) { 2231 if (m->pindex > 128) 2232 break; 2233 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2234 prev_m->pindex + 1 != m->pindex) { 2235 if (rcount) { 2236 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2237 (long)fidx, rcount, (long)pa); 2238 if (nl > 18) { 2239 c = cngetc(); 2240 if (c != ' ') 2241 return; 2242 nl = 0; 2243 } 2244 nl++; 2245 rcount = 0; 2246 } 2247 } 2248 if (rcount && 2249 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2250 ++rcount; 2251 continue; 2252 } 2253 if (rcount) { 2254 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2255 (long)fidx, rcount, (long)pa); 2256 if (nl > 18) { 2257 c = cngetc(); 2258 if (c != ' ') 2259 return; 2260 nl = 0; 2261 } 2262 nl++; 2263 } 2264 fidx = m->pindex; 2265 pa = VM_PAGE_TO_PHYS(m); 2266 rcount = 1; 2267 } 2268 if (rcount) { 2269 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2270 (long)fidx, rcount, (long)pa); 2271 if (nl > 18) { 2272 c = cngetc(); 2273 if (c != ' ') 2274 return; 2275 nl = 0; 2276 } 2277 nl++; 2278 } 2279 } 2280 } 2281 #endif /* DDB */ 2282