xref: /freebsd/sys/vm/vm_object.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>		/* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111 
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115 
116 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117 		    int pagerflags, int flags, boolean_t *allclean,
118 		    boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120 		    boolean_t *allclean);
121 static void	vm_object_backing_remove(vm_object_t object);
122 
123 /*
124  *	Virtual memory objects maintain the actual data
125  *	associated with allocated virtual memory.  A given
126  *	page of memory exists within exactly one object.
127  *
128  *	An object is only deallocated when all "references"
129  *	are given up.  Only one "reference" to a given
130  *	region of an object should be writeable.
131  *
132  *	Associated with each object is a list of all resident
133  *	memory pages belonging to that object; this list is
134  *	maintained by the "vm_page" module, and locked by the object's
135  *	lock.
136  *
137  *	Each object also records a "pager" routine which is
138  *	used to retrieve (and store) pages to the proper backing
139  *	storage.  In addition, objects may be backed by other
140  *	objects from which they were virtual-copied.
141  *
142  *	The only items within the object structure which are
143  *	modified after time of creation are:
144  *		reference count		locked by object's lock
145  *		pager routine		locked by object's lock
146  *
147  */
148 
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;	/* lock for object list and count */
151 
152 struct vm_object kernel_object_store;
153 
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156 
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161 
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166 
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171 
172 static uma_zone_t obj_zone;
173 
174 static int vm_object_zinit(void *mem, int size, int flags);
175 
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178 
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182 	vm_object_t object;
183 
184 	object = (vm_object_t)mem;
185 	KASSERT(object->ref_count == 0,
186 	    ("object %p ref_count = %d", object, object->ref_count));
187 	KASSERT(TAILQ_EMPTY(&object->memq),
188 	    ("object %p has resident pages in its memq", object));
189 	KASSERT(vm_radix_is_empty(&object->rtree),
190 	    ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192 	KASSERT(LIST_EMPTY(&object->rvq),
193 	    ("object %p has reservations",
194 	    object));
195 #endif
196 	KASSERT(!vm_object_busied(object),
197 	    ("object %p busy = %d", object, blockcount_read(&object->busy)));
198 	KASSERT(object->resident_page_count == 0,
199 	    ("object %p resident_page_count = %d",
200 	    object, object->resident_page_count));
201 	KASSERT(object->shadow_count == 0,
202 	    ("object %p shadow_count = %d",
203 	    object, object->shadow_count));
204 	KASSERT(object->type == OBJT_DEAD,
205 	    ("object %p has non-dead type %d",
206 	    object, object->type));
207 }
208 #endif
209 
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213 	vm_object_t object;
214 
215 	object = (vm_object_t)mem;
216 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217 
218 	/* These are true for any object that has been freed */
219 	object->type = OBJT_DEAD;
220 	vm_radix_init(&object->rtree);
221 	refcount_init(&object->ref_count, 0);
222 	blockcount_init(&object->paging_in_progress);
223 	blockcount_init(&object->busy);
224 	object->resident_page_count = 0;
225 	object->shadow_count = 0;
226 	object->flags = OBJ_DEAD;
227 
228 	mtx_lock(&vm_object_list_mtx);
229 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230 	mtx_unlock(&vm_object_list_mtx);
231 	return (0);
232 }
233 
234 static void
235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
236     vm_object_t object, void *handle)
237 {
238 
239 	TAILQ_INIT(&object->memq);
240 	LIST_INIT(&object->shadow_head);
241 
242 	object->type = type;
243 	object->flags = flags;
244 	if ((flags & OBJ_SWAP) != 0)
245 		pctrie_init(&object->un_pager.swp.swp_blks);
246 
247 	/*
248 	 * Ensure that swap_pager_swapoff() iteration over object_list
249 	 * sees up to date type and pctrie head if it observed
250 	 * non-dead object.
251 	 */
252 	atomic_thread_fence_rel();
253 
254 	object->pg_color = 0;
255 	object->size = size;
256 	object->domain.dr_policy = NULL;
257 	object->generation = 1;
258 	object->cleangeneration = 1;
259 	refcount_init(&object->ref_count, 1);
260 	object->memattr = VM_MEMATTR_DEFAULT;
261 	object->cred = NULL;
262 	object->charge = 0;
263 	object->handle = handle;
264 	object->backing_object = NULL;
265 	object->backing_object_offset = (vm_ooffset_t) 0;
266 #if VM_NRESERVLEVEL > 0
267 	LIST_INIT(&object->rvq);
268 #endif
269 	umtx_shm_object_init(object);
270 }
271 
272 /*
273  *	vm_object_init:
274  *
275  *	Initialize the VM objects module.
276  */
277 void
278 vm_object_init(void)
279 {
280 	TAILQ_INIT(&vm_object_list);
281 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
282 
283 	rw_init(&kernel_object->lock, "kernel vm object");
284 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285 	    VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287 	kernel_object->flags |= OBJ_COLORED;
288 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290 	kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291 
292 	/*
293 	 * The lock portion of struct vm_object must be type stable due
294 	 * to vm_pageout_fallback_object_lock locking a vm object
295 	 * without holding any references to it.
296 	 *
297 	 * paging_in_progress is valid always.  Lockless references to
298 	 * the objects may acquire pip and then check OBJ_DEAD.
299 	 */
300 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302 	    vm_object_zdtor,
303 #else
304 	    NULL,
305 #endif
306 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 
308 	vm_radix_zinit();
309 }
310 
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314 
315 	VM_OBJECT_ASSERT_WLOCKED(object);
316 	object->flags &= ~bits;
317 }
318 
319 /*
320  *	Sets the default memory attribute for the specified object.  Pages
321  *	that are allocated to this object are by default assigned this memory
322  *	attribute.
323  *
324  *	Presently, this function must be called before any pages are allocated
325  *	to the object.  In the future, this requirement may be relaxed for
326  *	"default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331 
332 	VM_OBJECT_ASSERT_WLOCKED(object);
333 
334 	if (object->type == OBJT_DEAD)
335 		return (KERN_INVALID_ARGUMENT);
336 	if (!TAILQ_EMPTY(&object->memq))
337 		return (KERN_FAILURE);
338 
339 	object->memattr = memattr;
340 	return (KERN_SUCCESS);
341 }
342 
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346 
347 	if (i > 0)
348 		blockcount_acquire(&object->paging_in_progress, i);
349 }
350 
351 void
352 vm_object_pip_wakeup(vm_object_t object)
353 {
354 
355 	vm_object_pip_wakeupn(object, 1);
356 }
357 
358 void
359 vm_object_pip_wakeupn(vm_object_t object, short i)
360 {
361 
362 	if (i > 0)
363 		blockcount_release(&object->paging_in_progress, i);
364 }
365 
366 /*
367  * Atomically drop the object lock and wait for pip to drain.  This protects
368  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
369  * on return.
370  */
371 static void
372 vm_object_pip_sleep(vm_object_t object, const char *waitid)
373 {
374 
375 	(void)blockcount_sleep(&object->paging_in_progress, &object->lock,
376 	    waitid, PVM | PDROP);
377 }
378 
379 void
380 vm_object_pip_wait(vm_object_t object, const char *waitid)
381 {
382 
383 	VM_OBJECT_ASSERT_WLOCKED(object);
384 
385 	blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
386 	    PVM);
387 }
388 
389 void
390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
391 {
392 
393 	VM_OBJECT_ASSERT_UNLOCKED(object);
394 
395 	blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
396 }
397 
398 /*
399  *	vm_object_allocate:
400  *
401  *	Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406 	vm_object_t object;
407 	u_short flags;
408 
409 	switch (type) {
410 	case OBJT_DEAD:
411 		panic("vm_object_allocate: can't create OBJT_DEAD");
412 	case OBJT_DEFAULT:
413 		flags = OBJ_COLORED;
414 		break;
415 	case OBJT_SWAP:
416 		flags = OBJ_COLORED | OBJ_SWAP;
417 		break;
418 	case OBJT_DEVICE:
419 	case OBJT_SG:
420 		flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
421 		break;
422 	case OBJT_MGTDEVICE:
423 		flags = OBJ_FICTITIOUS;
424 		break;
425 	case OBJT_PHYS:
426 		flags = OBJ_UNMANAGED;
427 		break;
428 	case OBJT_VNODE:
429 		flags = 0;
430 		break;
431 	default:
432 		panic("vm_object_allocate: type %d is undefined or dynamic",
433 		    type);
434 	}
435 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
436 	_vm_object_allocate(type, size, flags, object, NULL);
437 
438 	return (object);
439 }
440 
441 vm_object_t
442 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
443 {
444 	vm_object_t object;
445 
446 	MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
447 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
448 	_vm_object_allocate(dyntype, size, flags, object, NULL);
449 
450 	return (object);
451 }
452 
453 /*
454  *	vm_object_allocate_anon:
455  *
456  *	Returns a new default object of the given size and marked as
457  *	anonymous memory for special split/collapse handling.  Color
458  *	to be initialized by the caller.
459  */
460 vm_object_t
461 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
462     struct ucred *cred, vm_size_t charge)
463 {
464 	vm_object_t handle, object;
465 
466 	if (backing_object == NULL)
467 		handle = NULL;
468 	else if ((backing_object->flags & OBJ_ANON) != 0)
469 		handle = backing_object->handle;
470 	else
471 		handle = backing_object;
472 	object = uma_zalloc(obj_zone, M_WAITOK);
473 	_vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
474 	    object, handle);
475 	object->cred = cred;
476 	object->charge = cred != NULL ? charge : 0;
477 	return (object);
478 }
479 
480 static void
481 vm_object_reference_vnode(vm_object_t object)
482 {
483 	u_int old;
484 
485 	/*
486 	 * vnode objects need the lock for the first reference
487 	 * to serialize with vnode_object_deallocate().
488 	 */
489 	if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
490 		VM_OBJECT_RLOCK(object);
491 		old = refcount_acquire(&object->ref_count);
492 		if (object->type == OBJT_VNODE && old == 0)
493 			vref(object->handle);
494 		VM_OBJECT_RUNLOCK(object);
495 	}
496 }
497 
498 /*
499  *	vm_object_reference:
500  *
501  *	Acquires a reference to the given object.
502  */
503 void
504 vm_object_reference(vm_object_t object)
505 {
506 
507 	if (object == NULL)
508 		return;
509 
510 	if (object->type == OBJT_VNODE)
511 		vm_object_reference_vnode(object);
512 	else
513 		refcount_acquire(&object->ref_count);
514 	KASSERT((object->flags & OBJ_DEAD) == 0,
515 	    ("vm_object_reference: Referenced dead object."));
516 }
517 
518 /*
519  *	vm_object_reference_locked:
520  *
521  *	Gets another reference to the given object.
522  *
523  *	The object must be locked.
524  */
525 void
526 vm_object_reference_locked(vm_object_t object)
527 {
528 	u_int old;
529 
530 	VM_OBJECT_ASSERT_LOCKED(object);
531 	old = refcount_acquire(&object->ref_count);
532 	if (object->type == OBJT_VNODE && old == 0)
533 		vref(object->handle);
534 	KASSERT((object->flags & OBJ_DEAD) == 0,
535 	    ("vm_object_reference: Referenced dead object."));
536 }
537 
538 /*
539  * Handle deallocating an object of type OBJT_VNODE.
540  */
541 static void
542 vm_object_deallocate_vnode(vm_object_t object)
543 {
544 	struct vnode *vp = (struct vnode *) object->handle;
545 	bool last;
546 
547 	KASSERT(object->type == OBJT_VNODE,
548 	    ("vm_object_deallocate_vnode: not a vnode object"));
549 	KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
550 
551 	/* Object lock to protect handle lookup. */
552 	last = refcount_release(&object->ref_count);
553 	VM_OBJECT_RUNLOCK(object);
554 
555 	if (!last)
556 		return;
557 
558 	if (!umtx_shm_vnobj_persistent)
559 		umtx_shm_object_terminated(object);
560 
561 	/* vrele may need the vnode lock. */
562 	vrele(vp);
563 }
564 
565 /*
566  * We dropped a reference on an object and discovered that it had a
567  * single remaining shadow.  This is a sibling of the reference we
568  * dropped.  Attempt to collapse the sibling and backing object.
569  */
570 static vm_object_t
571 vm_object_deallocate_anon(vm_object_t backing_object)
572 {
573 	vm_object_t object;
574 
575 	/* Fetch the final shadow.  */
576 	object = LIST_FIRST(&backing_object->shadow_head);
577 	KASSERT(object != NULL && backing_object->shadow_count == 1,
578 	    ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
579 	    backing_object->ref_count, backing_object->shadow_count));
580 	KASSERT((object->flags & OBJ_ANON) != 0,
581 	    ("invalid shadow object %p", object));
582 
583 	if (!VM_OBJECT_TRYWLOCK(object)) {
584 		/*
585 		 * Prevent object from disappearing since we do not have a
586 		 * reference.
587 		 */
588 		vm_object_pip_add(object, 1);
589 		VM_OBJECT_WUNLOCK(backing_object);
590 		VM_OBJECT_WLOCK(object);
591 		vm_object_pip_wakeup(object);
592 	} else
593 		VM_OBJECT_WUNLOCK(backing_object);
594 
595 	/*
596 	 * Check for a collapse/terminate race with the last reference holder.
597 	 */
598 	if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
599 	    !refcount_acquire_if_not_zero(&object->ref_count)) {
600 		VM_OBJECT_WUNLOCK(object);
601 		return (NULL);
602 	}
603 	backing_object = object->backing_object;
604 	if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
605 		vm_object_collapse(object);
606 	VM_OBJECT_WUNLOCK(object);
607 
608 	return (object);
609 }
610 
611 /*
612  *	vm_object_deallocate:
613  *
614  *	Release a reference to the specified object,
615  *	gained either through a vm_object_allocate
616  *	or a vm_object_reference call.  When all references
617  *	are gone, storage associated with this object
618  *	may be relinquished.
619  *
620  *	No object may be locked.
621  */
622 void
623 vm_object_deallocate(vm_object_t object)
624 {
625 	vm_object_t temp;
626 	bool released;
627 
628 	while (object != NULL) {
629 		/*
630 		 * If the reference count goes to 0 we start calling
631 		 * vm_object_terminate() on the object chain.  A ref count
632 		 * of 1 may be a special case depending on the shadow count
633 		 * being 0 or 1.  These cases require a write lock on the
634 		 * object.
635 		 */
636 		if ((object->flags & OBJ_ANON) == 0)
637 			released = refcount_release_if_gt(&object->ref_count, 1);
638 		else
639 			released = refcount_release_if_gt(&object->ref_count, 2);
640 		if (released)
641 			return;
642 
643 		if (object->type == OBJT_VNODE) {
644 			VM_OBJECT_RLOCK(object);
645 			if (object->type == OBJT_VNODE) {
646 				vm_object_deallocate_vnode(object);
647 				return;
648 			}
649 			VM_OBJECT_RUNLOCK(object);
650 		}
651 
652 		VM_OBJECT_WLOCK(object);
653 		KASSERT(object->ref_count > 0,
654 		    ("vm_object_deallocate: object deallocated too many times: %d",
655 		    object->type));
656 
657 		/*
658 		 * If this is not the final reference to an anonymous
659 		 * object we may need to collapse the shadow chain.
660 		 */
661 		if (!refcount_release(&object->ref_count)) {
662 			if (object->ref_count > 1 ||
663 			    object->shadow_count == 0) {
664 				if ((object->flags & OBJ_ANON) != 0 &&
665 				    object->ref_count == 1)
666 					vm_object_set_flag(object,
667 					    OBJ_ONEMAPPING);
668 				VM_OBJECT_WUNLOCK(object);
669 				return;
670 			}
671 
672 			/* Handle collapsing last ref on anonymous objects. */
673 			object = vm_object_deallocate_anon(object);
674 			continue;
675 		}
676 
677 		/*
678 		 * Handle the final reference to an object.  We restart
679 		 * the loop with the backing object to avoid recursion.
680 		 */
681 		umtx_shm_object_terminated(object);
682 		temp = object->backing_object;
683 		if (temp != NULL) {
684 			KASSERT(object->type == OBJT_DEFAULT ||
685 			    object->type == OBJT_SWAP,
686 			    ("shadowed tmpfs v_object 2 %p", object));
687 			vm_object_backing_remove(object);
688 		}
689 
690 		KASSERT((object->flags & OBJ_DEAD) == 0,
691 		    ("vm_object_deallocate: Terminating dead object."));
692 		vm_object_set_flag(object, OBJ_DEAD);
693 		vm_object_terminate(object);
694 		object = temp;
695 	}
696 }
697 
698 /*
699  *	vm_object_destroy removes the object from the global object list
700  *      and frees the space for the object.
701  */
702 void
703 vm_object_destroy(vm_object_t object)
704 {
705 
706 	/*
707 	 * Release the allocation charge.
708 	 */
709 	if (object->cred != NULL) {
710 		swap_release_by_cred(object->charge, object->cred);
711 		object->charge = 0;
712 		crfree(object->cred);
713 		object->cred = NULL;
714 	}
715 
716 	/*
717 	 * Free the space for the object.
718 	 */
719 	uma_zfree(obj_zone, object);
720 }
721 
722 static void
723 vm_object_backing_remove_locked(vm_object_t object)
724 {
725 	vm_object_t backing_object;
726 
727 	backing_object = object->backing_object;
728 	VM_OBJECT_ASSERT_WLOCKED(object);
729 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
730 
731 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
732 	    ("vm_object_backing_remove: Removing collapsing object."));
733 
734 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
735 		LIST_REMOVE(object, shadow_list);
736 		backing_object->shadow_count--;
737 		object->flags &= ~OBJ_SHADOWLIST;
738 	}
739 	object->backing_object = NULL;
740 }
741 
742 static void
743 vm_object_backing_remove(vm_object_t object)
744 {
745 	vm_object_t backing_object;
746 
747 	VM_OBJECT_ASSERT_WLOCKED(object);
748 
749 	if ((object->flags & OBJ_SHADOWLIST) != 0) {
750 		backing_object = object->backing_object;
751 		VM_OBJECT_WLOCK(backing_object);
752 		vm_object_backing_remove_locked(object);
753 		VM_OBJECT_WUNLOCK(backing_object);
754 	} else
755 		object->backing_object = NULL;
756 }
757 
758 static void
759 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
760 {
761 
762 	VM_OBJECT_ASSERT_WLOCKED(object);
763 
764 	if ((backing_object->flags & OBJ_ANON) != 0) {
765 		VM_OBJECT_ASSERT_WLOCKED(backing_object);
766 		LIST_INSERT_HEAD(&backing_object->shadow_head, object,
767 		    shadow_list);
768 		backing_object->shadow_count++;
769 		object->flags |= OBJ_SHADOWLIST;
770 	}
771 	object->backing_object = backing_object;
772 }
773 
774 static void
775 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
776 {
777 
778 	VM_OBJECT_ASSERT_WLOCKED(object);
779 
780 	if ((backing_object->flags & OBJ_ANON) != 0) {
781 		VM_OBJECT_WLOCK(backing_object);
782 		vm_object_backing_insert_locked(object, backing_object);
783 		VM_OBJECT_WUNLOCK(backing_object);
784 	} else
785 		object->backing_object = backing_object;
786 }
787 
788 /*
789  * Insert an object into a backing_object's shadow list with an additional
790  * reference to the backing_object added.
791  */
792 static void
793 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
794 {
795 
796 	VM_OBJECT_ASSERT_WLOCKED(object);
797 
798 	if ((backing_object->flags & OBJ_ANON) != 0) {
799 		VM_OBJECT_WLOCK(backing_object);
800 		KASSERT((backing_object->flags & OBJ_DEAD) == 0,
801 		    ("shadowing dead anonymous object"));
802 		vm_object_reference_locked(backing_object);
803 		vm_object_backing_insert_locked(object, backing_object);
804 		vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
805 		VM_OBJECT_WUNLOCK(backing_object);
806 	} else {
807 		vm_object_reference(backing_object);
808 		object->backing_object = backing_object;
809 	}
810 }
811 
812 /*
813  * Transfer a backing reference from backing_object to object.
814  */
815 static void
816 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
817 {
818 	vm_object_t new_backing_object;
819 
820 	/*
821 	 * Note that the reference to backing_object->backing_object
822 	 * moves from within backing_object to within object.
823 	 */
824 	vm_object_backing_remove_locked(object);
825 	new_backing_object = backing_object->backing_object;
826 	if (new_backing_object == NULL)
827 		return;
828 	if ((new_backing_object->flags & OBJ_ANON) != 0) {
829 		VM_OBJECT_WLOCK(new_backing_object);
830 		vm_object_backing_remove_locked(backing_object);
831 		vm_object_backing_insert_locked(object, new_backing_object);
832 		VM_OBJECT_WUNLOCK(new_backing_object);
833 	} else {
834 		object->backing_object = new_backing_object;
835 		backing_object->backing_object = NULL;
836 	}
837 }
838 
839 /*
840  * Wait for a concurrent collapse to settle.
841  */
842 static void
843 vm_object_collapse_wait(vm_object_t object)
844 {
845 
846 	VM_OBJECT_ASSERT_WLOCKED(object);
847 
848 	while ((object->flags & OBJ_COLLAPSING) != 0) {
849 		vm_object_pip_wait(object, "vmcolwait");
850 		counter_u64_add(object_collapse_waits, 1);
851 	}
852 }
853 
854 /*
855  * Waits for a backing object to clear a pending collapse and returns
856  * it locked if it is an ANON object.
857  */
858 static vm_object_t
859 vm_object_backing_collapse_wait(vm_object_t object)
860 {
861 	vm_object_t backing_object;
862 
863 	VM_OBJECT_ASSERT_WLOCKED(object);
864 
865 	for (;;) {
866 		backing_object = object->backing_object;
867 		if (backing_object == NULL ||
868 		    (backing_object->flags & OBJ_ANON) == 0)
869 			return (NULL);
870 		VM_OBJECT_WLOCK(backing_object);
871 		if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
872 			break;
873 		VM_OBJECT_WUNLOCK(object);
874 		vm_object_pip_sleep(backing_object, "vmbckwait");
875 		counter_u64_add(object_collapse_waits, 1);
876 		VM_OBJECT_WLOCK(object);
877 	}
878 	return (backing_object);
879 }
880 
881 /*
882  *	vm_object_terminate_pages removes any remaining pageable pages
883  *	from the object and resets the object to an empty state.
884  */
885 static void
886 vm_object_terminate_pages(vm_object_t object)
887 {
888 	vm_page_t p, p_next;
889 
890 	VM_OBJECT_ASSERT_WLOCKED(object);
891 
892 	/*
893 	 * Free any remaining pageable pages.  This also removes them from the
894 	 * paging queues.  However, don't free wired pages, just remove them
895 	 * from the object.  Rather than incrementally removing each page from
896 	 * the object, the page and object are reset to any empty state.
897 	 */
898 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
899 		vm_page_assert_unbusied(p);
900 		KASSERT(p->object == object &&
901 		    (p->ref_count & VPRC_OBJREF) != 0,
902 		    ("vm_object_terminate_pages: page %p is inconsistent", p));
903 
904 		p->object = NULL;
905 		if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
906 			VM_CNT_INC(v_pfree);
907 			vm_page_free(p);
908 		}
909 	}
910 
911 	/*
912 	 * If the object contained any pages, then reset it to an empty state.
913 	 * None of the object's fields, including "resident_page_count", were
914 	 * modified by the preceding loop.
915 	 */
916 	if (object->resident_page_count != 0) {
917 		vm_radix_reclaim_allnodes(&object->rtree);
918 		TAILQ_INIT(&object->memq);
919 		object->resident_page_count = 0;
920 		if (object->type == OBJT_VNODE)
921 			vdrop(object->handle);
922 	}
923 }
924 
925 /*
926  *	vm_object_terminate actually destroys the specified object, freeing
927  *	up all previously used resources.
928  *
929  *	The object must be locked.
930  *	This routine may block.
931  */
932 void
933 vm_object_terminate(vm_object_t object)
934 {
935 
936 	VM_OBJECT_ASSERT_WLOCKED(object);
937 	KASSERT((object->flags & OBJ_DEAD) != 0,
938 	    ("terminating non-dead obj %p", object));
939 	KASSERT((object->flags & OBJ_COLLAPSING) == 0,
940 	    ("terminating collapsing obj %p", object));
941 	KASSERT(object->backing_object == NULL,
942 	    ("terminating shadow obj %p", object));
943 
944 	/*
945 	 * Wait for the pageout daemon and other current users to be
946 	 * done with the object.  Note that new paging_in_progress
947 	 * users can come after this wait, but they must check
948 	 * OBJ_DEAD flag set (without unlocking the object), and avoid
949 	 * the object being terminated.
950 	 */
951 	vm_object_pip_wait(object, "objtrm");
952 
953 	KASSERT(object->ref_count == 0,
954 	    ("vm_object_terminate: object with references, ref_count=%d",
955 	    object->ref_count));
956 
957 	if ((object->flags & OBJ_PG_DTOR) == 0)
958 		vm_object_terminate_pages(object);
959 
960 #if VM_NRESERVLEVEL > 0
961 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
962 		vm_reserv_break_all(object);
963 #endif
964 
965 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
966 	    (object->flags & OBJ_SWAP) != 0,
967 	    ("%s: non-swap obj %p has cred", __func__, object));
968 
969 	/*
970 	 * Let the pager know object is dead.
971 	 */
972 	vm_pager_deallocate(object);
973 	VM_OBJECT_WUNLOCK(object);
974 
975 	vm_object_destroy(object);
976 }
977 
978 /*
979  * Make the page read-only so that we can clear the object flags.  However, if
980  * this is a nosync mmap then the object is likely to stay dirty so do not
981  * mess with the page and do not clear the object flags.  Returns TRUE if the
982  * page should be flushed, and FALSE otherwise.
983  */
984 static boolean_t
985 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
986 {
987 
988 	vm_page_assert_busied(p);
989 
990 	/*
991 	 * If we have been asked to skip nosync pages and this is a
992 	 * nosync page, skip it.  Note that the object flags were not
993 	 * cleared in this case so we do not have to set them.
994 	 */
995 	if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
996 		*allclean = FALSE;
997 		return (FALSE);
998 	} else {
999 		pmap_remove_write(p);
1000 		return (p->dirty != 0);
1001 	}
1002 }
1003 
1004 /*
1005  *	vm_object_page_clean
1006  *
1007  *	Clean all dirty pages in the specified range of object.  Leaves page
1008  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
1009  *	write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1010  *	leaving the object dirty.
1011  *
1012  *	For swap objects backing tmpfs regular files, do not flush anything,
1013  *	but remove write protection on the mapped pages to update mtime through
1014  *	mmaped writes.
1015  *
1016  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
1017  *	synchronous clustering mode implementation.
1018  *
1019  *	Odd semantics: if start == end, we clean everything.
1020  *
1021  *	The object must be locked.
1022  *
1023  *	Returns FALSE if some page from the range was not written, as
1024  *	reported by the pager, and TRUE otherwise.
1025  */
1026 boolean_t
1027 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1028     int flags)
1029 {
1030 	vm_page_t np, p;
1031 	vm_pindex_t pi, tend, tstart;
1032 	int curgeneration, n, pagerflags;
1033 	boolean_t eio, res, allclean;
1034 
1035 	VM_OBJECT_ASSERT_WLOCKED(object);
1036 
1037 	if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1038 		return (TRUE);
1039 
1040 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1041 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1042 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1043 
1044 	tstart = OFF_TO_IDX(start);
1045 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1046 	allclean = tstart == 0 && tend >= object->size;
1047 	res = TRUE;
1048 
1049 rescan:
1050 	curgeneration = object->generation;
1051 
1052 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1053 		pi = p->pindex;
1054 		if (pi >= tend)
1055 			break;
1056 		np = TAILQ_NEXT(p, listq);
1057 		if (vm_page_none_valid(p))
1058 			continue;
1059 		if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1060 			if (object->generation != curgeneration &&
1061 			    (flags & OBJPC_SYNC) != 0)
1062 				goto rescan;
1063 			np = vm_page_find_least(object, pi);
1064 			continue;
1065 		}
1066 		if (!vm_object_page_remove_write(p, flags, &allclean)) {
1067 			vm_page_xunbusy(p);
1068 			continue;
1069 		}
1070 		if (object->type == OBJT_VNODE) {
1071 			n = vm_object_page_collect_flush(object, p, pagerflags,
1072 			    flags, &allclean, &eio);
1073 			if (eio) {
1074 				res = FALSE;
1075 				allclean = FALSE;
1076 			}
1077 			if (object->generation != curgeneration &&
1078 			    (flags & OBJPC_SYNC) != 0)
1079 				goto rescan;
1080 
1081 			/*
1082 			 * If the VOP_PUTPAGES() did a truncated write, so
1083 			 * that even the first page of the run is not fully
1084 			 * written, vm_pageout_flush() returns 0 as the run
1085 			 * length.  Since the condition that caused truncated
1086 			 * write may be permanent, e.g. exhausted free space,
1087 			 * accepting n == 0 would cause an infinite loop.
1088 			 *
1089 			 * Forwarding the iterator leaves the unwritten page
1090 			 * behind, but there is not much we can do there if
1091 			 * filesystem refuses to write it.
1092 			 */
1093 			if (n == 0) {
1094 				n = 1;
1095 				allclean = FALSE;
1096 			}
1097 		} else {
1098 			n = 1;
1099 			vm_page_xunbusy(p);
1100 		}
1101 		np = vm_page_find_least(object, pi + n);
1102 	}
1103 #if 0
1104 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1105 #endif
1106 
1107 	/*
1108 	 * Leave updating cleangeneration for tmpfs objects to tmpfs
1109 	 * scan.  It needs to update mtime, which happens for other
1110 	 * filesystems during page writeouts.
1111 	 */
1112 	if (allclean && object->type == OBJT_VNODE)
1113 		object->cleangeneration = curgeneration;
1114 	return (res);
1115 }
1116 
1117 static int
1118 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1119     int flags, boolean_t *allclean, boolean_t *eio)
1120 {
1121 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
1122 	int count, i, mreq, runlen;
1123 
1124 	vm_page_lock_assert(p, MA_NOTOWNED);
1125 	vm_page_assert_xbusied(p);
1126 	VM_OBJECT_ASSERT_WLOCKED(object);
1127 
1128 	count = 1;
1129 	mreq = 0;
1130 
1131 	for (tp = p; count < vm_pageout_page_count; count++) {
1132 		tp = vm_page_next(tp);
1133 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1134 			break;
1135 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1136 			vm_page_xunbusy(tp);
1137 			break;
1138 		}
1139 	}
1140 
1141 	for (p_first = p; count < vm_pageout_page_count; count++) {
1142 		tp = vm_page_prev(p_first);
1143 		if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1144 			break;
1145 		if (!vm_object_page_remove_write(tp, flags, allclean)) {
1146 			vm_page_xunbusy(tp);
1147 			break;
1148 		}
1149 		p_first = tp;
1150 		mreq++;
1151 	}
1152 
1153 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1154 		ma[i] = tp;
1155 
1156 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1157 	return (runlen);
1158 }
1159 
1160 /*
1161  * Note that there is absolutely no sense in writing out
1162  * anonymous objects, so we track down the vnode object
1163  * to write out.
1164  * We invalidate (remove) all pages from the address space
1165  * for semantic correctness.
1166  *
1167  * If the backing object is a device object with unmanaged pages, then any
1168  * mappings to the specified range of pages must be removed before this
1169  * function is called.
1170  *
1171  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1172  * may start out with a NULL object.
1173  */
1174 boolean_t
1175 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1176     boolean_t syncio, boolean_t invalidate)
1177 {
1178 	vm_object_t backing_object;
1179 	struct vnode *vp;
1180 	struct mount *mp;
1181 	int error, flags, fsync_after;
1182 	boolean_t res;
1183 
1184 	if (object == NULL)
1185 		return (TRUE);
1186 	res = TRUE;
1187 	error = 0;
1188 	VM_OBJECT_WLOCK(object);
1189 	while ((backing_object = object->backing_object) != NULL) {
1190 		VM_OBJECT_WLOCK(backing_object);
1191 		offset += object->backing_object_offset;
1192 		VM_OBJECT_WUNLOCK(object);
1193 		object = backing_object;
1194 		if (object->size < OFF_TO_IDX(offset + size))
1195 			size = IDX_TO_OFF(object->size) - offset;
1196 	}
1197 	/*
1198 	 * Flush pages if writing is allowed, invalidate them
1199 	 * if invalidation requested.  Pages undergoing I/O
1200 	 * will be ignored by vm_object_page_remove().
1201 	 *
1202 	 * We cannot lock the vnode and then wait for paging
1203 	 * to complete without deadlocking against vm_fault.
1204 	 * Instead we simply call vm_object_page_remove() and
1205 	 * allow it to block internally on a page-by-page
1206 	 * basis when it encounters pages undergoing async
1207 	 * I/O.
1208 	 */
1209 	if (object->type == OBJT_VNODE &&
1210 	    vm_object_mightbedirty(object) != 0 &&
1211 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1212 		VM_OBJECT_WUNLOCK(object);
1213 		(void) vn_start_write(vp, &mp, V_WAIT);
1214 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1215 		if (syncio && !invalidate && offset == 0 &&
1216 		    atop(size) == object->size) {
1217 			/*
1218 			 * If syncing the whole mapping of the file,
1219 			 * it is faster to schedule all the writes in
1220 			 * async mode, also allowing the clustering,
1221 			 * and then wait for i/o to complete.
1222 			 */
1223 			flags = 0;
1224 			fsync_after = TRUE;
1225 		} else {
1226 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1227 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1228 			fsync_after = FALSE;
1229 		}
1230 		VM_OBJECT_WLOCK(object);
1231 		res = vm_object_page_clean(object, offset, offset + size,
1232 		    flags);
1233 		VM_OBJECT_WUNLOCK(object);
1234 		if (fsync_after)
1235 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1236 		VOP_UNLOCK(vp);
1237 		vn_finished_write(mp);
1238 		if (error != 0)
1239 			res = FALSE;
1240 		VM_OBJECT_WLOCK(object);
1241 	}
1242 	if ((object->type == OBJT_VNODE ||
1243 	     object->type == OBJT_DEVICE) && invalidate) {
1244 		if (object->type == OBJT_DEVICE)
1245 			/*
1246 			 * The option OBJPR_NOTMAPPED must be passed here
1247 			 * because vm_object_page_remove() cannot remove
1248 			 * unmanaged mappings.
1249 			 */
1250 			flags = OBJPR_NOTMAPPED;
1251 		else if (old_msync)
1252 			flags = 0;
1253 		else
1254 			flags = OBJPR_CLEANONLY;
1255 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1256 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1257 	}
1258 	VM_OBJECT_WUNLOCK(object);
1259 	return (res);
1260 }
1261 
1262 /*
1263  * Determine whether the given advice can be applied to the object.  Advice is
1264  * not applied to unmanaged pages since they never belong to page queues, and
1265  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1266  * have been mapped at most once.
1267  */
1268 static bool
1269 vm_object_advice_applies(vm_object_t object, int advice)
1270 {
1271 
1272 	if ((object->flags & OBJ_UNMANAGED) != 0)
1273 		return (false);
1274 	if (advice != MADV_FREE)
1275 		return (true);
1276 	return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1277 	    (OBJ_ONEMAPPING | OBJ_ANON));
1278 }
1279 
1280 static void
1281 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1282     vm_size_t size)
1283 {
1284 
1285 	if (advice == MADV_FREE)
1286 		vm_pager_freespace(object, pindex, size);
1287 }
1288 
1289 /*
1290  *	vm_object_madvise:
1291  *
1292  *	Implements the madvise function at the object/page level.
1293  *
1294  *	MADV_WILLNEED	(any object)
1295  *
1296  *	    Activate the specified pages if they are resident.
1297  *
1298  *	MADV_DONTNEED	(any object)
1299  *
1300  *	    Deactivate the specified pages if they are resident.
1301  *
1302  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1303  *			 OBJ_ONEMAPPING only)
1304  *
1305  *	    Deactivate and clean the specified pages if they are
1306  *	    resident.  This permits the process to reuse the pages
1307  *	    without faulting or the kernel to reclaim the pages
1308  *	    without I/O.
1309  */
1310 void
1311 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1312     int advice)
1313 {
1314 	vm_pindex_t tpindex;
1315 	vm_object_t backing_object, tobject;
1316 	vm_page_t m, tm;
1317 
1318 	if (object == NULL)
1319 		return;
1320 
1321 relookup:
1322 	VM_OBJECT_WLOCK(object);
1323 	if (!vm_object_advice_applies(object, advice)) {
1324 		VM_OBJECT_WUNLOCK(object);
1325 		return;
1326 	}
1327 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1328 		tobject = object;
1329 
1330 		/*
1331 		 * If the next page isn't resident in the top-level object, we
1332 		 * need to search the shadow chain.  When applying MADV_FREE, we
1333 		 * take care to release any swap space used to store
1334 		 * non-resident pages.
1335 		 */
1336 		if (m == NULL || pindex < m->pindex) {
1337 			/*
1338 			 * Optimize a common case: if the top-level object has
1339 			 * no backing object, we can skip over the non-resident
1340 			 * range in constant time.
1341 			 */
1342 			if (object->backing_object == NULL) {
1343 				tpindex = (m != NULL && m->pindex < end) ?
1344 				    m->pindex : end;
1345 				vm_object_madvise_freespace(object, advice,
1346 				    pindex, tpindex - pindex);
1347 				if ((pindex = tpindex) == end)
1348 					break;
1349 				goto next_page;
1350 			}
1351 
1352 			tpindex = pindex;
1353 			do {
1354 				vm_object_madvise_freespace(tobject, advice,
1355 				    tpindex, 1);
1356 				/*
1357 				 * Prepare to search the next object in the
1358 				 * chain.
1359 				 */
1360 				backing_object = tobject->backing_object;
1361 				if (backing_object == NULL)
1362 					goto next_pindex;
1363 				VM_OBJECT_WLOCK(backing_object);
1364 				tpindex +=
1365 				    OFF_TO_IDX(tobject->backing_object_offset);
1366 				if (tobject != object)
1367 					VM_OBJECT_WUNLOCK(tobject);
1368 				tobject = backing_object;
1369 				if (!vm_object_advice_applies(tobject, advice))
1370 					goto next_pindex;
1371 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1372 			    NULL);
1373 		} else {
1374 next_page:
1375 			tm = m;
1376 			m = TAILQ_NEXT(m, listq);
1377 		}
1378 
1379 		/*
1380 		 * If the page is not in a normal state, skip it.  The page
1381 		 * can not be invalidated while the object lock is held.
1382 		 */
1383 		if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1384 			goto next_pindex;
1385 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1386 		    ("vm_object_madvise: page %p is fictitious", tm));
1387 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1388 		    ("vm_object_madvise: page %p is not managed", tm));
1389 		if (vm_page_tryxbusy(tm) == 0) {
1390 			if (object != tobject)
1391 				VM_OBJECT_WUNLOCK(object);
1392 			if (advice == MADV_WILLNEED) {
1393 				/*
1394 				 * Reference the page before unlocking and
1395 				 * sleeping so that the page daemon is less
1396 				 * likely to reclaim it.
1397 				 */
1398 				vm_page_aflag_set(tm, PGA_REFERENCED);
1399 			}
1400 			vm_page_busy_sleep(tm, "madvpo", false);
1401   			goto relookup;
1402 		}
1403 		vm_page_advise(tm, advice);
1404 		vm_page_xunbusy(tm);
1405 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1406 next_pindex:
1407 		if (tobject != object)
1408 			VM_OBJECT_WUNLOCK(tobject);
1409 	}
1410 	VM_OBJECT_WUNLOCK(object);
1411 }
1412 
1413 /*
1414  *	vm_object_shadow:
1415  *
1416  *	Create a new object which is backed by the
1417  *	specified existing object range.  The source
1418  *	object reference is deallocated.
1419  *
1420  *	The new object and offset into that object
1421  *	are returned in the source parameters.
1422  */
1423 void
1424 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1425     struct ucred *cred, bool shared)
1426 {
1427 	vm_object_t source;
1428 	vm_object_t result;
1429 
1430 	source = *object;
1431 
1432 	/*
1433 	 * Don't create the new object if the old object isn't shared.
1434 	 *
1435 	 * If we hold the only reference we can guarantee that it won't
1436 	 * increase while we have the map locked.  Otherwise the race is
1437 	 * harmless and we will end up with an extra shadow object that
1438 	 * will be collapsed later.
1439 	 */
1440 	if (source != NULL && source->ref_count == 1 &&
1441 	    (source->flags & OBJ_ANON) != 0)
1442 		return;
1443 
1444 	/*
1445 	 * Allocate a new object with the given length.
1446 	 */
1447 	result = vm_object_allocate_anon(atop(length), source, cred, length);
1448 
1449 	/*
1450 	 * Store the offset into the source object, and fix up the offset into
1451 	 * the new object.
1452 	 */
1453 	result->backing_object_offset = *offset;
1454 
1455 	if (shared || source != NULL) {
1456 		VM_OBJECT_WLOCK(result);
1457 
1458 		/*
1459 		 * The new object shadows the source object, adding a
1460 		 * reference to it.  Our caller changes his reference
1461 		 * to point to the new object, removing a reference to
1462 		 * the source object.  Net result: no change of
1463 		 * reference count, unless the caller needs to add one
1464 		 * more reference due to forking a shared map entry.
1465 		 */
1466 		if (shared) {
1467 			vm_object_reference_locked(result);
1468 			vm_object_clear_flag(result, OBJ_ONEMAPPING);
1469 		}
1470 
1471 		/*
1472 		 * Try to optimize the result object's page color when
1473 		 * shadowing in order to maintain page coloring
1474 		 * consistency in the combined shadowed object.
1475 		 */
1476 		if (source != NULL) {
1477 			vm_object_backing_insert(result, source);
1478 			result->domain = source->domain;
1479 #if VM_NRESERVLEVEL > 0
1480 			result->flags |= source->flags & OBJ_COLORED;
1481 			result->pg_color = (source->pg_color +
1482 			    OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1483 			    1)) - 1);
1484 #endif
1485 		}
1486 		VM_OBJECT_WUNLOCK(result);
1487 	}
1488 
1489 	/*
1490 	 * Return the new things
1491 	 */
1492 	*offset = 0;
1493 	*object = result;
1494 }
1495 
1496 /*
1497  *	vm_object_split:
1498  *
1499  * Split the pages in a map entry into a new object.  This affords
1500  * easier removal of unused pages, and keeps object inheritance from
1501  * being a negative impact on memory usage.
1502  */
1503 void
1504 vm_object_split(vm_map_entry_t entry)
1505 {
1506 	vm_page_t m, m_busy, m_next;
1507 	vm_object_t orig_object, new_object, backing_object;
1508 	vm_pindex_t idx, offidxstart;
1509 	vm_size_t size;
1510 
1511 	orig_object = entry->object.vm_object;
1512 	KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1513 	    ("vm_object_split:  Splitting object with multiple mappings."));
1514 	if ((orig_object->flags & OBJ_ANON) == 0)
1515 		return;
1516 	if (orig_object->ref_count <= 1)
1517 		return;
1518 	VM_OBJECT_WUNLOCK(orig_object);
1519 
1520 	offidxstart = OFF_TO_IDX(entry->offset);
1521 	size = atop(entry->end - entry->start);
1522 
1523 	/*
1524 	 * If swap_pager_copy() is later called, it will convert new_object
1525 	 * into a swap object.
1526 	 */
1527 	new_object = vm_object_allocate_anon(size, orig_object,
1528 	    orig_object->cred, ptoa(size));
1529 
1530 	/*
1531 	 * We must wait for the orig_object to complete any in-progress
1532 	 * collapse so that the swap blocks are stable below.  The
1533 	 * additional reference on backing_object by new object will
1534 	 * prevent further collapse operations until split completes.
1535 	 */
1536 	VM_OBJECT_WLOCK(orig_object);
1537 	vm_object_collapse_wait(orig_object);
1538 
1539 	/*
1540 	 * At this point, the new object is still private, so the order in
1541 	 * which the original and new objects are locked does not matter.
1542 	 */
1543 	VM_OBJECT_WLOCK(new_object);
1544 	new_object->domain = orig_object->domain;
1545 	backing_object = orig_object->backing_object;
1546 	if (backing_object != NULL) {
1547 		vm_object_backing_insert_ref(new_object, backing_object);
1548 		new_object->backing_object_offset =
1549 		    orig_object->backing_object_offset + entry->offset;
1550 	}
1551 	if (orig_object->cred != NULL) {
1552 		crhold(orig_object->cred);
1553 		KASSERT(orig_object->charge >= ptoa(size),
1554 		    ("orig_object->charge < 0"));
1555 		orig_object->charge -= ptoa(size);
1556 	}
1557 
1558 	/*
1559 	 * Mark the split operation so that swap_pager_getpages() knows
1560 	 * that the object is in transition.
1561 	 */
1562 	vm_object_set_flag(orig_object, OBJ_SPLIT);
1563 	m_busy = NULL;
1564 #ifdef INVARIANTS
1565 	idx = 0;
1566 #endif
1567 retry:
1568 	m = vm_page_find_least(orig_object, offidxstart);
1569 	KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1570 	    ("%s: object %p was repopulated", __func__, orig_object));
1571 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1572 	    m = m_next) {
1573 		m_next = TAILQ_NEXT(m, listq);
1574 
1575 		/*
1576 		 * We must wait for pending I/O to complete before we can
1577 		 * rename the page.
1578 		 *
1579 		 * We do not have to VM_PROT_NONE the page as mappings should
1580 		 * not be changed by this operation.
1581 		 */
1582 		if (vm_page_tryxbusy(m) == 0) {
1583 			VM_OBJECT_WUNLOCK(new_object);
1584 			vm_page_sleep_if_busy(m, "spltwt");
1585 			VM_OBJECT_WLOCK(new_object);
1586 			goto retry;
1587 		}
1588 
1589 		/*
1590 		 * The page was left invalid.  Likely placed there by
1591 		 * an incomplete fault.  Just remove and ignore.
1592 		 */
1593 		if (vm_page_none_valid(m)) {
1594 			if (vm_page_remove(m))
1595 				vm_page_free(m);
1596 			continue;
1597 		}
1598 
1599 		/* vm_page_rename() will dirty the page. */
1600 		if (vm_page_rename(m, new_object, idx)) {
1601 			vm_page_xunbusy(m);
1602 			VM_OBJECT_WUNLOCK(new_object);
1603 			VM_OBJECT_WUNLOCK(orig_object);
1604 			vm_radix_wait();
1605 			VM_OBJECT_WLOCK(orig_object);
1606 			VM_OBJECT_WLOCK(new_object);
1607 			goto retry;
1608 		}
1609 
1610 #if VM_NRESERVLEVEL > 0
1611 		/*
1612 		 * If some of the reservation's allocated pages remain with
1613 		 * the original object, then transferring the reservation to
1614 		 * the new object is neither particularly beneficial nor
1615 		 * particularly harmful as compared to leaving the reservation
1616 		 * with the original object.  If, however, all of the
1617 		 * reservation's allocated pages are transferred to the new
1618 		 * object, then transferring the reservation is typically
1619 		 * beneficial.  Determining which of these two cases applies
1620 		 * would be more costly than unconditionally renaming the
1621 		 * reservation.
1622 		 */
1623 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1624 #endif
1625 
1626 		/*
1627 		 * orig_object's type may change while sleeping, so keep track
1628 		 * of the beginning of the busied range.
1629 		 */
1630 		if (orig_object->type != OBJT_SWAP)
1631 			vm_page_xunbusy(m);
1632 		else if (m_busy == NULL)
1633 			m_busy = m;
1634 	}
1635 	if ((orig_object->flags & OBJ_SWAP) != 0) {
1636 		/*
1637 		 * swap_pager_copy() can sleep, in which case the orig_object's
1638 		 * and new_object's locks are released and reacquired.
1639 		 */
1640 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1641 		if (m_busy != NULL)
1642 			TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1643 				vm_page_xunbusy(m_busy);
1644 	}
1645 	vm_object_clear_flag(orig_object, OBJ_SPLIT);
1646 	VM_OBJECT_WUNLOCK(orig_object);
1647 	VM_OBJECT_WUNLOCK(new_object);
1648 	entry->object.vm_object = new_object;
1649 	entry->offset = 0LL;
1650 	vm_object_deallocate(orig_object);
1651 	VM_OBJECT_WLOCK(new_object);
1652 }
1653 
1654 static vm_page_t
1655 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1656 {
1657 	vm_object_t backing_object;
1658 
1659 	VM_OBJECT_ASSERT_WLOCKED(object);
1660 	backing_object = object->backing_object;
1661 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1662 
1663 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1664 	    ("invalid ownership %p %p %p", p, object, backing_object));
1665 	/* The page is only NULL when rename fails. */
1666 	if (p == NULL) {
1667 		VM_OBJECT_WUNLOCK(object);
1668 		VM_OBJECT_WUNLOCK(backing_object);
1669 		vm_radix_wait();
1670 	} else {
1671 		if (p->object == object)
1672 			VM_OBJECT_WUNLOCK(backing_object);
1673 		else
1674 			VM_OBJECT_WUNLOCK(object);
1675 		vm_page_busy_sleep(p, "vmocol", false);
1676 	}
1677 	VM_OBJECT_WLOCK(object);
1678 	VM_OBJECT_WLOCK(backing_object);
1679 	return (TAILQ_FIRST(&backing_object->memq));
1680 }
1681 
1682 static bool
1683 vm_object_scan_all_shadowed(vm_object_t object)
1684 {
1685 	vm_object_t backing_object;
1686 	vm_page_t p, pp;
1687 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1688 
1689 	VM_OBJECT_ASSERT_WLOCKED(object);
1690 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1691 
1692 	backing_object = object->backing_object;
1693 
1694 	if ((backing_object->flags & OBJ_ANON) == 0)
1695 		return (false);
1696 
1697 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1698 	p = vm_page_find_least(backing_object, pi);
1699 	ps = swap_pager_find_least(backing_object, pi);
1700 
1701 	/*
1702 	 * Only check pages inside the parent object's range and
1703 	 * inside the parent object's mapping of the backing object.
1704 	 */
1705 	for (;; pi++) {
1706 		if (p != NULL && p->pindex < pi)
1707 			p = TAILQ_NEXT(p, listq);
1708 		if (ps < pi)
1709 			ps = swap_pager_find_least(backing_object, pi);
1710 		if (p == NULL && ps >= backing_object->size)
1711 			break;
1712 		else if (p == NULL)
1713 			pi = ps;
1714 		else
1715 			pi = MIN(p->pindex, ps);
1716 
1717 		new_pindex = pi - backing_offset_index;
1718 		if (new_pindex >= object->size)
1719 			break;
1720 
1721 		if (p != NULL) {
1722 			/*
1723 			 * If the backing object page is busy a
1724 			 * grandparent or older page may still be
1725 			 * undergoing CoW.  It is not safe to collapse
1726 			 * the backing object until it is quiesced.
1727 			 */
1728 			if (vm_page_tryxbusy(p) == 0)
1729 				return (false);
1730 
1731 			/*
1732 			 * We raced with the fault handler that left
1733 			 * newly allocated invalid page on the object
1734 			 * queue and retried.
1735 			 */
1736 			if (!vm_page_all_valid(p))
1737 				goto unbusy_ret;
1738 		}
1739 
1740 		/*
1741 		 * See if the parent has the page or if the parent's object
1742 		 * pager has the page.  If the parent has the page but the page
1743 		 * is not valid, the parent's object pager must have the page.
1744 		 *
1745 		 * If this fails, the parent does not completely shadow the
1746 		 * object and we might as well give up now.
1747 		 */
1748 		pp = vm_page_lookup(object, new_pindex);
1749 
1750 		/*
1751 		 * The valid check here is stable due to object lock
1752 		 * being required to clear valid and initiate paging.
1753 		 * Busy of p disallows fault handler to validate pp.
1754 		 */
1755 		if ((pp == NULL || vm_page_none_valid(pp)) &&
1756 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1757 			goto unbusy_ret;
1758 		if (p != NULL)
1759 			vm_page_xunbusy(p);
1760 	}
1761 	return (true);
1762 
1763 unbusy_ret:
1764 	if (p != NULL)
1765 		vm_page_xunbusy(p);
1766 	return (false);
1767 }
1768 
1769 static void
1770 vm_object_collapse_scan(vm_object_t object)
1771 {
1772 	vm_object_t backing_object;
1773 	vm_page_t next, p, pp;
1774 	vm_pindex_t backing_offset_index, new_pindex;
1775 
1776 	VM_OBJECT_ASSERT_WLOCKED(object);
1777 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1778 
1779 	backing_object = object->backing_object;
1780 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1781 
1782 	/*
1783 	 * Our scan
1784 	 */
1785 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1786 		next = TAILQ_NEXT(p, listq);
1787 		new_pindex = p->pindex - backing_offset_index;
1788 
1789 		/*
1790 		 * Check for busy page
1791 		 */
1792 		if (vm_page_tryxbusy(p) == 0) {
1793 			next = vm_object_collapse_scan_wait(object, p);
1794 			continue;
1795 		}
1796 
1797 		KASSERT(object->backing_object == backing_object,
1798 		    ("vm_object_collapse_scan: backing object mismatch %p != %p",
1799 		    object->backing_object, backing_object));
1800 		KASSERT(p->object == backing_object,
1801 		    ("vm_object_collapse_scan: object mismatch %p != %p",
1802 		    p->object, backing_object));
1803 
1804 		if (p->pindex < backing_offset_index ||
1805 		    new_pindex >= object->size) {
1806 			vm_pager_freespace(backing_object, p->pindex, 1);
1807 
1808 			KASSERT(!pmap_page_is_mapped(p),
1809 			    ("freeing mapped page %p", p));
1810 			if (vm_page_remove(p))
1811 				vm_page_free(p);
1812 			continue;
1813 		}
1814 
1815 		if (!vm_page_all_valid(p)) {
1816 			KASSERT(!pmap_page_is_mapped(p),
1817 			    ("freeing mapped page %p", p));
1818 			if (vm_page_remove(p))
1819 				vm_page_free(p);
1820 			continue;
1821 		}
1822 
1823 		pp = vm_page_lookup(object, new_pindex);
1824 		if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1825 			vm_page_xunbusy(p);
1826 			/*
1827 			 * The page in the parent is busy and possibly not
1828 			 * (yet) valid.  Until its state is finalized by the
1829 			 * busy bit owner, we can't tell whether it shadows the
1830 			 * original page.
1831 			 */
1832 			next = vm_object_collapse_scan_wait(object, pp);
1833 			continue;
1834 		}
1835 
1836 		if (pp != NULL && vm_page_none_valid(pp)) {
1837 			/*
1838 			 * The page was invalid in the parent.  Likely placed
1839 			 * there by an incomplete fault.  Just remove and
1840 			 * ignore.  p can replace it.
1841 			 */
1842 			if (vm_page_remove(pp))
1843 				vm_page_free(pp);
1844 			pp = NULL;
1845 		}
1846 
1847 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1848 			NULL)) {
1849 			/*
1850 			 * The page already exists in the parent OR swap exists
1851 			 * for this location in the parent.  Leave the parent's
1852 			 * page alone.  Destroy the original page from the
1853 			 * backing object.
1854 			 */
1855 			vm_pager_freespace(backing_object, p->pindex, 1);
1856 			KASSERT(!pmap_page_is_mapped(p),
1857 			    ("freeing mapped page %p", p));
1858 			if (vm_page_remove(p))
1859 				vm_page_free(p);
1860 			if (pp != NULL)
1861 				vm_page_xunbusy(pp);
1862 			continue;
1863 		}
1864 
1865 		/*
1866 		 * Page does not exist in parent, rename the page from the
1867 		 * backing object to the main object.
1868 		 *
1869 		 * If the page was mapped to a process, it can remain mapped
1870 		 * through the rename.  vm_page_rename() will dirty the page.
1871 		 */
1872 		if (vm_page_rename(p, object, new_pindex)) {
1873 			vm_page_xunbusy(p);
1874 			next = vm_object_collapse_scan_wait(object, NULL);
1875 			continue;
1876 		}
1877 
1878 		/* Use the old pindex to free the right page. */
1879 		vm_pager_freespace(backing_object, new_pindex +
1880 		    backing_offset_index, 1);
1881 
1882 #if VM_NRESERVLEVEL > 0
1883 		/*
1884 		 * Rename the reservation.
1885 		 */
1886 		vm_reserv_rename(p, object, backing_object,
1887 		    backing_offset_index);
1888 #endif
1889 		vm_page_xunbusy(p);
1890 	}
1891 	return;
1892 }
1893 
1894 /*
1895  *	vm_object_collapse:
1896  *
1897  *	Collapse an object with the object backing it.
1898  *	Pages in the backing object are moved into the
1899  *	parent, and the backing object is deallocated.
1900  */
1901 void
1902 vm_object_collapse(vm_object_t object)
1903 {
1904 	vm_object_t backing_object, new_backing_object;
1905 
1906 	VM_OBJECT_ASSERT_WLOCKED(object);
1907 
1908 	while (TRUE) {
1909 		KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1910 		    ("collapsing invalid object"));
1911 
1912 		/*
1913 		 * Wait for the backing_object to finish any pending
1914 		 * collapse so that the caller sees the shortest possible
1915 		 * shadow chain.
1916 		 */
1917 		backing_object = vm_object_backing_collapse_wait(object);
1918 		if (backing_object == NULL)
1919 			return;
1920 
1921 		KASSERT(object->ref_count > 0 &&
1922 		    object->ref_count > object->shadow_count,
1923 		    ("collapse with invalid ref %d or shadow %d count.",
1924 		    object->ref_count, object->shadow_count));
1925 		KASSERT((backing_object->flags &
1926 		    (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1927 		    ("vm_object_collapse: Backing object already collapsing."));
1928 		KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1929 		    ("vm_object_collapse: object is already collapsing."));
1930 
1931 		/*
1932 		 * We know that we can either collapse the backing object if
1933 		 * the parent is the only reference to it, or (perhaps) have
1934 		 * the parent bypass the object if the parent happens to shadow
1935 		 * all the resident pages in the entire backing object.
1936 		 */
1937 		if (backing_object->ref_count == 1) {
1938 			KASSERT(backing_object->shadow_count == 1,
1939 			    ("vm_object_collapse: shadow_count: %d",
1940 			    backing_object->shadow_count));
1941 			vm_object_pip_add(object, 1);
1942 			vm_object_set_flag(object, OBJ_COLLAPSING);
1943 			vm_object_pip_add(backing_object, 1);
1944 			vm_object_set_flag(backing_object, OBJ_DEAD);
1945 
1946 			/*
1947 			 * If there is exactly one reference to the backing
1948 			 * object, we can collapse it into the parent.
1949 			 */
1950 			vm_object_collapse_scan(object);
1951 
1952 #if VM_NRESERVLEVEL > 0
1953 			/*
1954 			 * Break any reservations from backing_object.
1955 			 */
1956 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1957 				vm_reserv_break_all(backing_object);
1958 #endif
1959 
1960 			/*
1961 			 * Move the pager from backing_object to object.
1962 			 */
1963 			if ((backing_object->flags & OBJ_SWAP) != 0) {
1964 				/*
1965 				 * swap_pager_copy() can sleep, in which case
1966 				 * the backing_object's and object's locks are
1967 				 * released and reacquired.
1968 				 * Since swap_pager_copy() is being asked to
1969 				 * destroy backing_object, it will change the
1970 				 * type to OBJT_DEFAULT.
1971 				 */
1972 				swap_pager_copy(
1973 				    backing_object,
1974 				    object,
1975 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1976 			}
1977 
1978 			/*
1979 			 * Object now shadows whatever backing_object did.
1980 			 */
1981 			vm_object_clear_flag(object, OBJ_COLLAPSING);
1982 			vm_object_backing_transfer(object, backing_object);
1983 			object->backing_object_offset +=
1984 			    backing_object->backing_object_offset;
1985 			VM_OBJECT_WUNLOCK(object);
1986 			vm_object_pip_wakeup(object);
1987 
1988 			/*
1989 			 * Discard backing_object.
1990 			 *
1991 			 * Since the backing object has no pages, no pager left,
1992 			 * and no object references within it, all that is
1993 			 * necessary is to dispose of it.
1994 			 */
1995 			KASSERT(backing_object->ref_count == 1, (
1996 "backing_object %p was somehow re-referenced during collapse!",
1997 			    backing_object));
1998 			vm_object_pip_wakeup(backing_object);
1999 			(void)refcount_release(&backing_object->ref_count);
2000 			vm_object_terminate(backing_object);
2001 			counter_u64_add(object_collapses, 1);
2002 			VM_OBJECT_WLOCK(object);
2003 		} else {
2004 			/*
2005 			 * If we do not entirely shadow the backing object,
2006 			 * there is nothing we can do so we give up.
2007 			 *
2008 			 * The object lock and backing_object lock must not
2009 			 * be dropped during this sequence.
2010 			 */
2011 			if (!vm_object_scan_all_shadowed(object)) {
2012 				VM_OBJECT_WUNLOCK(backing_object);
2013 				break;
2014 			}
2015 
2016 			/*
2017 			 * Make the parent shadow the next object in the
2018 			 * chain.  Deallocating backing_object will not remove
2019 			 * it, since its reference count is at least 2.
2020 			 */
2021 			vm_object_backing_remove_locked(object);
2022 			new_backing_object = backing_object->backing_object;
2023 			if (new_backing_object != NULL) {
2024 				vm_object_backing_insert_ref(object,
2025 				    new_backing_object);
2026 				object->backing_object_offset +=
2027 				    backing_object->backing_object_offset;
2028 			}
2029 
2030 			/*
2031 			 * Drop the reference count on backing_object. Since
2032 			 * its ref_count was at least 2, it will not vanish.
2033 			 */
2034 			(void)refcount_release(&backing_object->ref_count);
2035 			KASSERT(backing_object->ref_count >= 1, (
2036 "backing_object %p was somehow dereferenced during collapse!",
2037 			    backing_object));
2038 			VM_OBJECT_WUNLOCK(backing_object);
2039 			counter_u64_add(object_bypasses, 1);
2040 		}
2041 
2042 		/*
2043 		 * Try again with this object's new backing object.
2044 		 */
2045 	}
2046 }
2047 
2048 /*
2049  *	vm_object_page_remove:
2050  *
2051  *	For the given object, either frees or invalidates each of the
2052  *	specified pages.  In general, a page is freed.  However, if a page is
2053  *	wired for any reason other than the existence of a managed, wired
2054  *	mapping, then it may be invalidated but not removed from the object.
2055  *	Pages are specified by the given range ["start", "end") and the option
2056  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2057  *	extends from "start" to the end of the object.  If the option
2058  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2059  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
2060  *	specified, then the pages within the specified range must have no
2061  *	mappings.  Otherwise, if this option is not specified, any mappings to
2062  *	the specified pages are removed before the pages are freed or
2063  *	invalidated.
2064  *
2065  *	In general, this operation should only be performed on objects that
2066  *	contain managed pages.  There are, however, two exceptions.  First, it
2067  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
2068  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2069  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2070  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
2071  *
2072  *	The object must be locked.
2073  */
2074 void
2075 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2076     int options)
2077 {
2078 	vm_page_t p, next;
2079 
2080 	VM_OBJECT_ASSERT_WLOCKED(object);
2081 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2082 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2083 	    ("vm_object_page_remove: illegal options for object %p", object));
2084 	if (object->resident_page_count == 0)
2085 		return;
2086 	vm_object_pip_add(object, 1);
2087 again:
2088 	p = vm_page_find_least(object, start);
2089 
2090 	/*
2091 	 * Here, the variable "p" is either (1) the page with the least pindex
2092 	 * greater than or equal to the parameter "start" or (2) NULL.
2093 	 */
2094 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2095 		next = TAILQ_NEXT(p, listq);
2096 
2097 		/*
2098 		 * If the page is wired for any reason besides the existence
2099 		 * of managed, wired mappings, then it cannot be freed.  For
2100 		 * example, fictitious pages, which represent device memory,
2101 		 * are inherently wired and cannot be freed.  They can,
2102 		 * however, be invalidated if the option OBJPR_CLEANONLY is
2103 		 * not specified.
2104 		 */
2105 		if (vm_page_tryxbusy(p) == 0) {
2106 			vm_page_sleep_if_busy(p, "vmopar");
2107 			goto again;
2108 		}
2109 		if (vm_page_wired(p)) {
2110 wired:
2111 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2112 			    object->ref_count != 0)
2113 				pmap_remove_all(p);
2114 			if ((options & OBJPR_CLEANONLY) == 0) {
2115 				vm_page_invalid(p);
2116 				vm_page_undirty(p);
2117 			}
2118 			vm_page_xunbusy(p);
2119 			continue;
2120 		}
2121 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
2122 		    ("vm_object_page_remove: page %p is fictitious", p));
2123 		if ((options & OBJPR_CLEANONLY) != 0 &&
2124 		    !vm_page_none_valid(p)) {
2125 			if ((options & OBJPR_NOTMAPPED) == 0 &&
2126 			    object->ref_count != 0 &&
2127 			    !vm_page_try_remove_write(p))
2128 				goto wired;
2129 			if (p->dirty != 0) {
2130 				vm_page_xunbusy(p);
2131 				continue;
2132 			}
2133 		}
2134 		if ((options & OBJPR_NOTMAPPED) == 0 &&
2135 		    object->ref_count != 0 && !vm_page_try_remove_all(p))
2136 			goto wired;
2137 		vm_page_free(p);
2138 	}
2139 	vm_object_pip_wakeup(object);
2140 
2141 	vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2142 	    start);
2143 }
2144 
2145 /*
2146  *	vm_object_page_noreuse:
2147  *
2148  *	For the given object, attempt to move the specified pages to
2149  *	the head of the inactive queue.  This bypasses regular LRU
2150  *	operation and allows the pages to be reused quickly under memory
2151  *	pressure.  If a page is wired for any reason, then it will not
2152  *	be queued.  Pages are specified by the range ["start", "end").
2153  *	As a special case, if "end" is zero, then the range extends from
2154  *	"start" to the end of the object.
2155  *
2156  *	This operation should only be performed on objects that
2157  *	contain non-fictitious, managed pages.
2158  *
2159  *	The object must be locked.
2160  */
2161 void
2162 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2163 {
2164 	vm_page_t p, next;
2165 
2166 	VM_OBJECT_ASSERT_LOCKED(object);
2167 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2168 	    ("vm_object_page_noreuse: illegal object %p", object));
2169 	if (object->resident_page_count == 0)
2170 		return;
2171 	p = vm_page_find_least(object, start);
2172 
2173 	/*
2174 	 * Here, the variable "p" is either (1) the page with the least pindex
2175 	 * greater than or equal to the parameter "start" or (2) NULL.
2176 	 */
2177 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2178 		next = TAILQ_NEXT(p, listq);
2179 		vm_page_deactivate_noreuse(p);
2180 	}
2181 }
2182 
2183 /*
2184  *	Populate the specified range of the object with valid pages.  Returns
2185  *	TRUE if the range is successfully populated and FALSE otherwise.
2186  *
2187  *	Note: This function should be optimized to pass a larger array of
2188  *	pages to vm_pager_get_pages() before it is applied to a non-
2189  *	OBJT_DEVICE object.
2190  *
2191  *	The object must be locked.
2192  */
2193 boolean_t
2194 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2195 {
2196 	vm_page_t m;
2197 	vm_pindex_t pindex;
2198 	int rv;
2199 
2200 	VM_OBJECT_ASSERT_WLOCKED(object);
2201 	for (pindex = start; pindex < end; pindex++) {
2202 		rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2203 		if (rv != VM_PAGER_OK)
2204 			break;
2205 
2206 		/*
2207 		 * Keep "m" busy because a subsequent iteration may unlock
2208 		 * the object.
2209 		 */
2210 	}
2211 	if (pindex > start) {
2212 		m = vm_page_lookup(object, start);
2213 		while (m != NULL && m->pindex < pindex) {
2214 			vm_page_xunbusy(m);
2215 			m = TAILQ_NEXT(m, listq);
2216 		}
2217 	}
2218 	return (pindex == end);
2219 }
2220 
2221 /*
2222  *	Routine:	vm_object_coalesce
2223  *	Function:	Coalesces two objects backing up adjoining
2224  *			regions of memory into a single object.
2225  *
2226  *	returns TRUE if objects were combined.
2227  *
2228  *	NOTE:	Only works at the moment if the second object is NULL -
2229  *		if it's not, which object do we lock first?
2230  *
2231  *	Parameters:
2232  *		prev_object	First object to coalesce
2233  *		prev_offset	Offset into prev_object
2234  *		prev_size	Size of reference to prev_object
2235  *		next_size	Size of reference to the second object
2236  *		reserved	Indicator that extension region has
2237  *				swap accounted for
2238  *
2239  *	Conditions:
2240  *	The object must *not* be locked.
2241  */
2242 boolean_t
2243 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2244     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2245 {
2246 	vm_pindex_t next_pindex;
2247 
2248 	if (prev_object == NULL)
2249 		return (TRUE);
2250 	if ((prev_object->flags & OBJ_ANON) == 0)
2251 		return (FALSE);
2252 
2253 	VM_OBJECT_WLOCK(prev_object);
2254 	/*
2255 	 * Try to collapse the object first.
2256 	 */
2257 	vm_object_collapse(prev_object);
2258 
2259 	/*
2260 	 * Can't coalesce if: . more than one reference . paged out . shadows
2261 	 * another object . has a copy elsewhere (any of which mean that the
2262 	 * pages not mapped to prev_entry may be in use anyway)
2263 	 */
2264 	if (prev_object->backing_object != NULL) {
2265 		VM_OBJECT_WUNLOCK(prev_object);
2266 		return (FALSE);
2267 	}
2268 
2269 	prev_size >>= PAGE_SHIFT;
2270 	next_size >>= PAGE_SHIFT;
2271 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2272 
2273 	if (prev_object->ref_count > 1 &&
2274 	    prev_object->size != next_pindex &&
2275 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2276 		VM_OBJECT_WUNLOCK(prev_object);
2277 		return (FALSE);
2278 	}
2279 
2280 	/*
2281 	 * Account for the charge.
2282 	 */
2283 	if (prev_object->cred != NULL) {
2284 		/*
2285 		 * If prev_object was charged, then this mapping,
2286 		 * although not charged now, may become writable
2287 		 * later. Non-NULL cred in the object would prevent
2288 		 * swap reservation during enabling of the write
2289 		 * access, so reserve swap now. Failed reservation
2290 		 * cause allocation of the separate object for the map
2291 		 * entry, and swap reservation for this entry is
2292 		 * managed in appropriate time.
2293 		 */
2294 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2295 		    prev_object->cred)) {
2296 			VM_OBJECT_WUNLOCK(prev_object);
2297 			return (FALSE);
2298 		}
2299 		prev_object->charge += ptoa(next_size);
2300 	}
2301 
2302 	/*
2303 	 * Remove any pages that may still be in the object from a previous
2304 	 * deallocation.
2305 	 */
2306 	if (next_pindex < prev_object->size) {
2307 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2308 		    next_size, 0);
2309 #if 0
2310 		if (prev_object->cred != NULL) {
2311 			KASSERT(prev_object->charge >=
2312 			    ptoa(prev_object->size - next_pindex),
2313 			    ("object %p overcharged 1 %jx %jx", prev_object,
2314 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2315 			prev_object->charge -= ptoa(prev_object->size -
2316 			    next_pindex);
2317 		}
2318 #endif
2319 	}
2320 
2321 	/*
2322 	 * Extend the object if necessary.
2323 	 */
2324 	if (next_pindex + next_size > prev_object->size)
2325 		prev_object->size = next_pindex + next_size;
2326 
2327 	VM_OBJECT_WUNLOCK(prev_object);
2328 	return (TRUE);
2329 }
2330 
2331 void
2332 vm_object_set_writeable_dirty_(vm_object_t object)
2333 {
2334 	atomic_add_int(&object->generation, 1);
2335 }
2336 
2337 bool
2338 vm_object_mightbedirty_(vm_object_t object)
2339 {
2340 	return (object->generation != object->cleangeneration);
2341 }
2342 
2343 /*
2344  *	vm_object_unwire:
2345  *
2346  *	For each page offset within the specified range of the given object,
2347  *	find the highest-level page in the shadow chain and unwire it.  A page
2348  *	must exist at every page offset, and the highest-level page must be
2349  *	wired.
2350  */
2351 void
2352 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2353     uint8_t queue)
2354 {
2355 	vm_object_t tobject, t1object;
2356 	vm_page_t m, tm;
2357 	vm_pindex_t end_pindex, pindex, tpindex;
2358 	int depth, locked_depth;
2359 
2360 	KASSERT((offset & PAGE_MASK) == 0,
2361 	    ("vm_object_unwire: offset is not page aligned"));
2362 	KASSERT((length & PAGE_MASK) == 0,
2363 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2364 	/* The wired count of a fictitious page never changes. */
2365 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2366 		return;
2367 	pindex = OFF_TO_IDX(offset);
2368 	end_pindex = pindex + atop(length);
2369 again:
2370 	locked_depth = 1;
2371 	VM_OBJECT_RLOCK(object);
2372 	m = vm_page_find_least(object, pindex);
2373 	while (pindex < end_pindex) {
2374 		if (m == NULL || pindex < m->pindex) {
2375 			/*
2376 			 * The first object in the shadow chain doesn't
2377 			 * contain a page at the current index.  Therefore,
2378 			 * the page must exist in a backing object.
2379 			 */
2380 			tobject = object;
2381 			tpindex = pindex;
2382 			depth = 0;
2383 			do {
2384 				tpindex +=
2385 				    OFF_TO_IDX(tobject->backing_object_offset);
2386 				tobject = tobject->backing_object;
2387 				KASSERT(tobject != NULL,
2388 				    ("vm_object_unwire: missing page"));
2389 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2390 					goto next_page;
2391 				depth++;
2392 				if (depth == locked_depth) {
2393 					locked_depth++;
2394 					VM_OBJECT_RLOCK(tobject);
2395 				}
2396 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2397 			    NULL);
2398 		} else {
2399 			tm = m;
2400 			m = TAILQ_NEXT(m, listq);
2401 		}
2402 		if (vm_page_trysbusy(tm) == 0) {
2403 			for (tobject = object; locked_depth >= 1;
2404 			    locked_depth--) {
2405 				t1object = tobject->backing_object;
2406 				if (tm->object != tobject)
2407 					VM_OBJECT_RUNLOCK(tobject);
2408 				tobject = t1object;
2409 			}
2410 			vm_page_busy_sleep(tm, "unwbo", true);
2411 			goto again;
2412 		}
2413 		vm_page_unwire(tm, queue);
2414 		vm_page_sunbusy(tm);
2415 next_page:
2416 		pindex++;
2417 	}
2418 	/* Release the accumulated object locks. */
2419 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2420 		t1object = tobject->backing_object;
2421 		VM_OBJECT_RUNLOCK(tobject);
2422 		tobject = t1object;
2423 	}
2424 }
2425 
2426 /*
2427  * Return the vnode for the given object, or NULL if none exists.
2428  * For tmpfs objects, the function may return NULL if there is
2429  * no vnode allocated at the time of the call.
2430  */
2431 struct vnode *
2432 vm_object_vnode(vm_object_t object)
2433 {
2434 	struct vnode *vp;
2435 
2436 	VM_OBJECT_ASSERT_LOCKED(object);
2437 	vm_pager_getvp(object, &vp, NULL);
2438 	return (vp);
2439 }
2440 
2441 /*
2442  * Busy the vm object.  This prevents new pages belonging to the object from
2443  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2444  * for checking page state before proceeding.
2445  */
2446 void
2447 vm_object_busy(vm_object_t obj)
2448 {
2449 
2450 	VM_OBJECT_ASSERT_LOCKED(obj);
2451 
2452 	blockcount_acquire(&obj->busy, 1);
2453 	/* The fence is required to order loads of page busy. */
2454 	atomic_thread_fence_acq_rel();
2455 }
2456 
2457 void
2458 vm_object_unbusy(vm_object_t obj)
2459 {
2460 
2461 	blockcount_release(&obj->busy, 1);
2462 }
2463 
2464 void
2465 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2466 {
2467 
2468 	VM_OBJECT_ASSERT_UNLOCKED(obj);
2469 
2470 	(void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2471 }
2472 
2473 static int
2474 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2475 {
2476 	struct kinfo_vmobject *kvo;
2477 	char *fullpath, *freepath;
2478 	struct vnode *vp;
2479 	struct vattr va;
2480 	vm_object_t obj;
2481 	vm_page_t m;
2482 	u_long sp;
2483 	int count, error;
2484 
2485 	if (req->oldptr == NULL) {
2486 		/*
2487 		 * If an old buffer has not been provided, generate an
2488 		 * estimate of the space needed for a subsequent call.
2489 		 */
2490 		mtx_lock(&vm_object_list_mtx);
2491 		count = 0;
2492 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2493 			if (obj->type == OBJT_DEAD)
2494 				continue;
2495 			count++;
2496 		}
2497 		mtx_unlock(&vm_object_list_mtx);
2498 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2499 		    count * 11 / 10));
2500 	}
2501 
2502 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2503 	error = 0;
2504 
2505 	/*
2506 	 * VM objects are type stable and are never removed from the
2507 	 * list once added.  This allows us to safely read obj->object_list
2508 	 * after reacquiring the VM object lock.
2509 	 */
2510 	mtx_lock(&vm_object_list_mtx);
2511 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2512 		if (obj->type == OBJT_DEAD ||
2513 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2514 			continue;
2515 		VM_OBJECT_RLOCK(obj);
2516 		if (obj->type == OBJT_DEAD ||
2517 		    (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2518 			VM_OBJECT_RUNLOCK(obj);
2519 			continue;
2520 		}
2521 		mtx_unlock(&vm_object_list_mtx);
2522 		kvo->kvo_size = ptoa(obj->size);
2523 		kvo->kvo_resident = obj->resident_page_count;
2524 		kvo->kvo_ref_count = obj->ref_count;
2525 		kvo->kvo_shadow_count = obj->shadow_count;
2526 		kvo->kvo_memattr = obj->memattr;
2527 		kvo->kvo_active = 0;
2528 		kvo->kvo_inactive = 0;
2529 		if (!swap_only) {
2530 			TAILQ_FOREACH(m, &obj->memq, listq) {
2531 				/*
2532 				 * A page may belong to the object but be
2533 				 * dequeued and set to PQ_NONE while the
2534 				 * object lock is not held.  This makes the
2535 				 * reads of m->queue below racy, and we do not
2536 				 * count pages set to PQ_NONE.  However, this
2537 				 * sysctl is only meant to give an
2538 				 * approximation of the system anyway.
2539 				 */
2540 				if (m->a.queue == PQ_ACTIVE)
2541 					kvo->kvo_active++;
2542 				else if (m->a.queue == PQ_INACTIVE)
2543 					kvo->kvo_inactive++;
2544 			}
2545 		}
2546 
2547 		kvo->kvo_vn_fileid = 0;
2548 		kvo->kvo_vn_fsid = 0;
2549 		kvo->kvo_vn_fsid_freebsd11 = 0;
2550 		freepath = NULL;
2551 		fullpath = "";
2552 		vp = NULL;
2553 		kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2554 		if (vp != NULL) {
2555 			vref(vp);
2556 		} else if ((obj->flags & OBJ_ANON) != 0) {
2557 			MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2558 			    kvo->kvo_type == KVME_TYPE_SWAP);
2559 			kvo->kvo_me = (uintptr_t)obj;
2560 			/* tmpfs objs are reported as vnodes */
2561 			kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2562 			sp = swap_pager_swapped_pages(obj);
2563 			kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2564 		}
2565 		VM_OBJECT_RUNLOCK(obj);
2566 		if (vp != NULL) {
2567 			vn_fullpath(vp, &fullpath, &freepath);
2568 			vn_lock(vp, LK_SHARED | LK_RETRY);
2569 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2570 				kvo->kvo_vn_fileid = va.va_fileid;
2571 				kvo->kvo_vn_fsid = va.va_fsid;
2572 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2573 								/* truncate */
2574 			}
2575 			vput(vp);
2576 		}
2577 
2578 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2579 		if (freepath != NULL)
2580 			free(freepath, M_TEMP);
2581 
2582 		/* Pack record size down */
2583 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2584 		    + strlen(kvo->kvo_path) + 1;
2585 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2586 		    sizeof(uint64_t));
2587 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2588 		maybe_yield();
2589 		mtx_lock(&vm_object_list_mtx);
2590 		if (error)
2591 			break;
2592 	}
2593 	mtx_unlock(&vm_object_list_mtx);
2594 	free(kvo, M_TEMP);
2595 	return (error);
2596 }
2597 
2598 static int
2599 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2600 {
2601 	return (vm_object_list_handler(req, false));
2602 }
2603 
2604 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2605     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2606     "List of VM objects");
2607 
2608 static int
2609 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2610 {
2611 	return (vm_object_list_handler(req, true));
2612 }
2613 
2614 /*
2615  * This sysctl returns list of the anonymous or swap objects. Intent
2616  * is to provide stripped optimized list useful to analyze swap use.
2617  * Since technically non-swap (default) objects participate in the
2618  * shadow chains, and are converted to swap type as needed by swap
2619  * pager, we must report them.
2620  */
2621 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2622     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2623     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2624     "List of swap VM objects");
2625 
2626 #include "opt_ddb.h"
2627 #ifdef DDB
2628 #include <sys/kernel.h>
2629 
2630 #include <sys/cons.h>
2631 
2632 #include <ddb/ddb.h>
2633 
2634 static int
2635 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2636 {
2637 	vm_map_t tmpm;
2638 	vm_map_entry_t tmpe;
2639 	vm_object_t obj;
2640 
2641 	if (map == 0)
2642 		return 0;
2643 
2644 	if (entry == 0) {
2645 		VM_MAP_ENTRY_FOREACH(tmpe, map) {
2646 			if (_vm_object_in_map(map, object, tmpe)) {
2647 				return 1;
2648 			}
2649 		}
2650 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2651 		tmpm = entry->object.sub_map;
2652 		VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2653 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2654 				return 1;
2655 			}
2656 		}
2657 	} else if ((obj = entry->object.vm_object) != NULL) {
2658 		for (; obj; obj = obj->backing_object)
2659 			if (obj == object) {
2660 				return 1;
2661 			}
2662 	}
2663 	return 0;
2664 }
2665 
2666 static int
2667 vm_object_in_map(vm_object_t object)
2668 {
2669 	struct proc *p;
2670 
2671 	/* sx_slock(&allproc_lock); */
2672 	FOREACH_PROC_IN_SYSTEM(p) {
2673 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2674 			continue;
2675 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2676 			/* sx_sunlock(&allproc_lock); */
2677 			return 1;
2678 		}
2679 	}
2680 	/* sx_sunlock(&allproc_lock); */
2681 	if (_vm_object_in_map(kernel_map, object, 0))
2682 		return 1;
2683 	return 0;
2684 }
2685 
2686 DB_SHOW_COMMAND(vmochk, vm_object_check)
2687 {
2688 	vm_object_t object;
2689 
2690 	/*
2691 	 * make sure that internal objs are in a map somewhere
2692 	 * and none have zero ref counts.
2693 	 */
2694 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2695 		if ((object->flags & OBJ_ANON) != 0) {
2696 			if (object->ref_count == 0) {
2697 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2698 					(long)object->size);
2699 			}
2700 			if (!vm_object_in_map(object)) {
2701 				db_printf(
2702 			"vmochk: internal obj is not in a map: "
2703 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2704 				    object->ref_count, (u_long)object->size,
2705 				    (u_long)object->size,
2706 				    (void *)object->backing_object);
2707 			}
2708 		}
2709 		if (db_pager_quit)
2710 			return;
2711 	}
2712 }
2713 
2714 /*
2715  *	vm_object_print:	[ debug ]
2716  */
2717 DB_SHOW_COMMAND(object, vm_object_print_static)
2718 {
2719 	/* XXX convert args. */
2720 	vm_object_t object = (vm_object_t)addr;
2721 	boolean_t full = have_addr;
2722 
2723 	vm_page_t p;
2724 
2725 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2726 #define	count	was_count
2727 
2728 	int count;
2729 
2730 	if (object == NULL)
2731 		return;
2732 
2733 	db_iprintf(
2734 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2735 	    object, (int)object->type, (uintmax_t)object->size,
2736 	    object->resident_page_count, object->ref_count, object->flags,
2737 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2738 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2739 	    object->shadow_count,
2740 	    object->backing_object ? object->backing_object->ref_count : 0,
2741 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2742 
2743 	if (!full)
2744 		return;
2745 
2746 	db_indent += 2;
2747 	count = 0;
2748 	TAILQ_FOREACH(p, &object->memq, listq) {
2749 		if (count == 0)
2750 			db_iprintf("memory:=");
2751 		else if (count == 6) {
2752 			db_printf("\n");
2753 			db_iprintf(" ...");
2754 			count = 0;
2755 		} else
2756 			db_printf(",");
2757 		count++;
2758 
2759 		db_printf("(off=0x%jx,page=0x%jx)",
2760 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2761 
2762 		if (db_pager_quit)
2763 			break;
2764 	}
2765 	if (count != 0)
2766 		db_printf("\n");
2767 	db_indent -= 2;
2768 }
2769 
2770 /* XXX. */
2771 #undef count
2772 
2773 /* XXX need this non-static entry for calling from vm_map_print. */
2774 void
2775 vm_object_print(
2776         /* db_expr_t */ long addr,
2777 	boolean_t have_addr,
2778 	/* db_expr_t */ long count,
2779 	char *modif)
2780 {
2781 	vm_object_print_static(addr, have_addr, count, modif);
2782 }
2783 
2784 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2785 {
2786 	vm_object_t object;
2787 	vm_pindex_t fidx;
2788 	vm_paddr_t pa;
2789 	vm_page_t m, prev_m;
2790 	int rcount, nl, c;
2791 
2792 	nl = 0;
2793 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2794 		db_printf("new object: %p\n", (void *)object);
2795 		if (nl > 18) {
2796 			c = cngetc();
2797 			if (c != ' ')
2798 				return;
2799 			nl = 0;
2800 		}
2801 		nl++;
2802 		rcount = 0;
2803 		fidx = 0;
2804 		pa = -1;
2805 		TAILQ_FOREACH(m, &object->memq, listq) {
2806 			if (m->pindex > 128)
2807 				break;
2808 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2809 			    prev_m->pindex + 1 != m->pindex) {
2810 				if (rcount) {
2811 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2812 						(long)fidx, rcount, (long)pa);
2813 					if (nl > 18) {
2814 						c = cngetc();
2815 						if (c != ' ')
2816 							return;
2817 						nl = 0;
2818 					}
2819 					nl++;
2820 					rcount = 0;
2821 				}
2822 			}
2823 			if (rcount &&
2824 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2825 				++rcount;
2826 				continue;
2827 			}
2828 			if (rcount) {
2829 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2830 					(long)fidx, rcount, (long)pa);
2831 				if (nl > 18) {
2832 					c = cngetc();
2833 					if (c != ' ')
2834 						return;
2835 					nl = 0;
2836 				}
2837 				nl++;
2838 			}
2839 			fidx = m->pindex;
2840 			pa = VM_PAGE_TO_PHYS(m);
2841 			rcount = 1;
2842 		}
2843 		if (rcount) {
2844 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2845 				(long)fidx, rcount, (long)pa);
2846 			if (nl > 18) {
2847 				c = cngetc();
2848 				if (c != ' ')
2849 					return;
2850 				nl = 0;
2851 			}
2852 			nl++;
2853 		}
2854 	}
2855 }
2856 #endif /* DDB */
2857