1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/mman.h> 72 #include <sys/mount.h> 73 #include <sys/kernel.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> /* for curproc, pageproc */ 77 #include <sys/socket.h> 78 #include <sys/vnode.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sx.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_pager.h> 90 #include <vm/swap_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 95 #define EASY_SCAN_FACTOR 8 96 97 #define MSYNC_FLUSH_HARDSEQ 0x01 98 #define MSYNC_FLUSH_SOFTSEQ 0x02 99 100 /* 101 * msync / VM object flushing optimizations 102 */ 103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ; 104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, 105 CTLFLAG_RW, &msync_flush_flags, 0, ""); 106 107 static int old_msync; 108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 109 "Use old (insecure) msync behavior"); 110 111 static void vm_object_qcollapse(vm_object_t object); 112 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static long object_collapses; 147 static long object_bypasses; 148 149 /* 150 * next_index determines the page color that is assigned to the next 151 * allocated object. Accesses to next_index are not synchronized 152 * because the effects of two or more object allocations using 153 * next_index simultaneously are inconsequential. At any given time, 154 * numerous objects have the same page color. 155 */ 156 static int next_index; 157 158 static uma_zone_t obj_zone; 159 160 static int vm_object_zinit(void *mem, int size, int flags); 161 162 #ifdef INVARIANTS 163 static void vm_object_zdtor(void *mem, int size, void *arg); 164 165 static void 166 vm_object_zdtor(void *mem, int size, void *arg) 167 { 168 vm_object_t object; 169 170 object = (vm_object_t)mem; 171 KASSERT(TAILQ_EMPTY(&object->memq), 172 ("object %p has resident pages", 173 object)); 174 KASSERT(object->paging_in_progress == 0, 175 ("object %p paging_in_progress = %d", 176 object, object->paging_in_progress)); 177 KASSERT(object->resident_page_count == 0, 178 ("object %p resident_page_count = %d", 179 object, object->resident_page_count)); 180 KASSERT(object->shadow_count == 0, 181 ("object %p shadow_count = %d", 182 object, object->shadow_count)); 183 } 184 #endif 185 186 static int 187 vm_object_zinit(void *mem, int size, int flags) 188 { 189 vm_object_t object; 190 191 object = (vm_object_t)mem; 192 bzero(&object->mtx, sizeof(object->mtx)); 193 VM_OBJECT_LOCK_INIT(object, "standard object"); 194 195 /* These are true for any object that has been freed */ 196 object->paging_in_progress = 0; 197 object->resident_page_count = 0; 198 object->shadow_count = 0; 199 return (0); 200 } 201 202 void 203 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 204 { 205 int incr; 206 207 TAILQ_INIT(&object->memq); 208 LIST_INIT(&object->shadow_head); 209 210 object->root = NULL; 211 object->type = type; 212 object->size = size; 213 object->generation = 1; 214 object->ref_count = 1; 215 object->flags = 0; 216 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP)) 217 object->flags = OBJ_ONEMAPPING; 218 incr = PQ_MAXLENGTH; 219 if (size <= incr) 220 incr = size; 221 object->pg_color = next_index; 222 next_index = (object->pg_color + incr) & PQ_COLORMASK; 223 object->handle = NULL; 224 object->backing_object = NULL; 225 object->backing_object_offset = (vm_ooffset_t) 0; 226 227 mtx_lock(&vm_object_list_mtx); 228 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 229 mtx_unlock(&vm_object_list_mtx); 230 } 231 232 /* 233 * vm_object_init: 234 * 235 * Initialize the VM objects module. 236 */ 237 void 238 vm_object_init(void) 239 { 240 TAILQ_INIT(&vm_object_list); 241 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 242 243 VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object"); 244 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 245 kernel_object); 246 247 VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object"); 248 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 249 kmem_object); 250 251 /* 252 * The lock portion of struct vm_object must be type stable due 253 * to vm_pageout_fallback_object_lock locking a vm object 254 * without holding any references to it. 255 */ 256 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 257 #ifdef INVARIANTS 258 vm_object_zdtor, 259 #else 260 NULL, 261 #endif 262 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 263 } 264 265 void 266 vm_object_clear_flag(vm_object_t object, u_short bits) 267 { 268 269 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 270 object->flags &= ~bits; 271 } 272 273 void 274 vm_object_pip_add(vm_object_t object, short i) 275 { 276 277 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 278 object->paging_in_progress += i; 279 } 280 281 void 282 vm_object_pip_subtract(vm_object_t object, short i) 283 { 284 285 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 286 object->paging_in_progress -= i; 287 } 288 289 void 290 vm_object_pip_wakeup(vm_object_t object) 291 { 292 293 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 294 object->paging_in_progress--; 295 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 296 vm_object_clear_flag(object, OBJ_PIPWNT); 297 wakeup(object); 298 } 299 } 300 301 void 302 vm_object_pip_wakeupn(vm_object_t object, short i) 303 { 304 305 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 306 if (i) 307 object->paging_in_progress -= i; 308 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 309 vm_object_clear_flag(object, OBJ_PIPWNT); 310 wakeup(object); 311 } 312 } 313 314 void 315 vm_object_pip_wait(vm_object_t object, char *waitid) 316 { 317 318 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 319 while (object->paging_in_progress) { 320 object->flags |= OBJ_PIPWNT; 321 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0); 322 } 323 } 324 325 /* 326 * vm_object_allocate: 327 * 328 * Returns a new object with the given size. 329 */ 330 vm_object_t 331 vm_object_allocate(objtype_t type, vm_pindex_t size) 332 { 333 vm_object_t object; 334 335 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 336 _vm_object_allocate(type, size, object); 337 return (object); 338 } 339 340 341 /* 342 * vm_object_reference: 343 * 344 * Gets another reference to the given object. Note: OBJ_DEAD 345 * objects can be referenced during final cleaning. 346 */ 347 void 348 vm_object_reference(vm_object_t object) 349 { 350 struct vnode *vp; 351 int flags; 352 353 if (object == NULL) 354 return; 355 VM_OBJECT_LOCK(object); 356 object->ref_count++; 357 if (object->type == OBJT_VNODE) { 358 vp = object->handle; 359 VI_LOCK(vp); 360 VM_OBJECT_UNLOCK(object); 361 for (flags = LK_INTERLOCK; vget(vp, flags, curthread); 362 flags = 0) 363 printf("vm_object_reference: delay in vget\n"); 364 } else 365 VM_OBJECT_UNLOCK(object); 366 } 367 368 /* 369 * vm_object_reference_locked: 370 * 371 * Gets another reference to the given object. 372 * 373 * The object must be locked. 374 */ 375 void 376 vm_object_reference_locked(vm_object_t object) 377 { 378 struct vnode *vp; 379 380 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 381 KASSERT((object->flags & OBJ_DEAD) == 0, 382 ("vm_object_reference_locked: dead object referenced")); 383 object->ref_count++; 384 if (object->type == OBJT_VNODE) { 385 vp = object->handle; 386 vref(vp); 387 } 388 } 389 390 /* 391 * Handle deallocating an object of type OBJT_VNODE. 392 */ 393 void 394 vm_object_vndeallocate(vm_object_t object) 395 { 396 struct vnode *vp = (struct vnode *) object->handle; 397 398 VFS_ASSERT_GIANT(vp->v_mount); 399 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 400 KASSERT(object->type == OBJT_VNODE, 401 ("vm_object_vndeallocate: not a vnode object")); 402 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 403 #ifdef INVARIANTS 404 if (object->ref_count == 0) { 405 vprint("vm_object_vndeallocate", vp); 406 panic("vm_object_vndeallocate: bad object reference count"); 407 } 408 #endif 409 410 object->ref_count--; 411 if (object->ref_count == 0) { 412 mp_fixme("Unlocked vflag access."); 413 vp->v_vflag &= ~VV_TEXT; 414 } 415 VM_OBJECT_UNLOCK(object); 416 /* 417 * vrele may need a vop lock 418 */ 419 vrele(vp); 420 } 421 422 /* 423 * vm_object_deallocate: 424 * 425 * Release a reference to the specified object, 426 * gained either through a vm_object_allocate 427 * or a vm_object_reference call. When all references 428 * are gone, storage associated with this object 429 * may be relinquished. 430 * 431 * No object may be locked. 432 */ 433 void 434 vm_object_deallocate(vm_object_t object) 435 { 436 vm_object_t temp; 437 438 while (object != NULL) { 439 int vfslocked; 440 /* 441 * In general, the object should be locked when working with 442 * its type. In this case, in order to maintain proper lock 443 * ordering, an exception is possible because a vnode-backed 444 * object never changes its type. 445 */ 446 vfslocked = 0; 447 if (object->type == OBJT_VNODE) { 448 struct vnode *vp = (struct vnode *) object->handle; 449 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 450 } 451 VM_OBJECT_LOCK(object); 452 if (object->type == OBJT_VNODE) { 453 vm_object_vndeallocate(object); 454 VFS_UNLOCK_GIANT(vfslocked); 455 return; 456 } 457 458 KASSERT(object->ref_count != 0, 459 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 460 461 /* 462 * If the reference count goes to 0 we start calling 463 * vm_object_terminate() on the object chain. 464 * A ref count of 1 may be a special case depending on the 465 * shadow count being 0 or 1. 466 */ 467 object->ref_count--; 468 if (object->ref_count > 1) { 469 VM_OBJECT_UNLOCK(object); 470 return; 471 } else if (object->ref_count == 1) { 472 if (object->shadow_count == 0) { 473 vm_object_set_flag(object, OBJ_ONEMAPPING); 474 } else if ((object->shadow_count == 1) && 475 (object->handle == NULL) && 476 (object->type == OBJT_DEFAULT || 477 object->type == OBJT_SWAP)) { 478 vm_object_t robject; 479 480 robject = LIST_FIRST(&object->shadow_head); 481 KASSERT(robject != NULL, 482 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 483 object->ref_count, 484 object->shadow_count)); 485 if (!VM_OBJECT_TRYLOCK(robject)) { 486 /* 487 * Avoid a potential deadlock. 488 */ 489 object->ref_count++; 490 VM_OBJECT_UNLOCK(object); 491 /* 492 * More likely than not the thread 493 * holding robject's lock has lower 494 * priority than the current thread. 495 * Let the lower priority thread run. 496 */ 497 tsleep(&proc0, PVM, "vmo_de", 1); 498 continue; 499 } 500 /* 501 * Collapse object into its shadow unless its 502 * shadow is dead. In that case, object will 503 * be deallocated by the thread that is 504 * deallocating its shadow. 505 */ 506 if ((robject->flags & OBJ_DEAD) == 0 && 507 (robject->handle == NULL) && 508 (robject->type == OBJT_DEFAULT || 509 robject->type == OBJT_SWAP)) { 510 511 robject->ref_count++; 512 retry: 513 if (robject->paging_in_progress) { 514 VM_OBJECT_UNLOCK(object); 515 vm_object_pip_wait(robject, 516 "objde1"); 517 VM_OBJECT_LOCK(object); 518 goto retry; 519 } else if (object->paging_in_progress) { 520 VM_OBJECT_UNLOCK(robject); 521 object->flags |= OBJ_PIPWNT; 522 msleep(object, 523 VM_OBJECT_MTX(object), 524 PDROP | PVM, "objde2", 0); 525 VM_OBJECT_LOCK(robject); 526 VM_OBJECT_LOCK(object); 527 goto retry; 528 } 529 VM_OBJECT_UNLOCK(object); 530 if (robject->ref_count == 1) { 531 robject->ref_count--; 532 object = robject; 533 goto doterm; 534 } 535 object = robject; 536 vm_object_collapse(object); 537 VM_OBJECT_UNLOCK(object); 538 continue; 539 } 540 VM_OBJECT_UNLOCK(robject); 541 } 542 VM_OBJECT_UNLOCK(object); 543 return; 544 } 545 doterm: 546 temp = object->backing_object; 547 if (temp != NULL) { 548 VM_OBJECT_LOCK(temp); 549 LIST_REMOVE(object, shadow_list); 550 temp->shadow_count--; 551 temp->generation++; 552 VM_OBJECT_UNLOCK(temp); 553 object->backing_object = NULL; 554 } 555 /* 556 * Don't double-terminate, we could be in a termination 557 * recursion due to the terminate having to sync data 558 * to disk. 559 */ 560 if ((object->flags & OBJ_DEAD) == 0) 561 vm_object_terminate(object); 562 else 563 VM_OBJECT_UNLOCK(object); 564 object = temp; 565 } 566 } 567 568 /* 569 * vm_object_terminate actually destroys the specified object, freeing 570 * up all previously used resources. 571 * 572 * The object must be locked. 573 * This routine may block. 574 */ 575 void 576 vm_object_terminate(vm_object_t object) 577 { 578 vm_page_t p; 579 580 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 581 582 /* 583 * Make sure no one uses us. 584 */ 585 vm_object_set_flag(object, OBJ_DEAD); 586 587 /* 588 * wait for the pageout daemon to be done with the object 589 */ 590 vm_object_pip_wait(object, "objtrm"); 591 592 KASSERT(!object->paging_in_progress, 593 ("vm_object_terminate: pageout in progress")); 594 595 /* 596 * Clean and free the pages, as appropriate. All references to the 597 * object are gone, so we don't need to lock it. 598 */ 599 if (object->type == OBJT_VNODE) { 600 struct vnode *vp = (struct vnode *)object->handle; 601 602 /* 603 * Clean pages and flush buffers. 604 */ 605 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 606 VM_OBJECT_UNLOCK(object); 607 608 vinvalbuf(vp, V_SAVE, NULL, 0, 0); 609 610 VM_OBJECT_LOCK(object); 611 } 612 613 KASSERT(object->ref_count == 0, 614 ("vm_object_terminate: object with references, ref_count=%d", 615 object->ref_count)); 616 617 /* 618 * Now free any remaining pages. For internal objects, this also 619 * removes them from paging queues. Don't free wired pages, just 620 * remove them from the object. 621 */ 622 vm_page_lock_queues(); 623 while ((p = TAILQ_FIRST(&object->memq)) != NULL) { 624 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0, 625 ("vm_object_terminate: freeing busy page %p " 626 "p->busy = %d, p->flags %x\n", p, p->busy, p->flags)); 627 if (p->wire_count == 0) { 628 vm_page_free(p); 629 cnt.v_pfree++; 630 } else { 631 vm_page_remove(p); 632 } 633 } 634 vm_page_unlock_queues(); 635 636 /* 637 * Let the pager know object is dead. 638 */ 639 vm_pager_deallocate(object); 640 VM_OBJECT_UNLOCK(object); 641 642 /* 643 * Remove the object from the global object list. 644 */ 645 mtx_lock(&vm_object_list_mtx); 646 TAILQ_REMOVE(&vm_object_list, object, object_list); 647 mtx_unlock(&vm_object_list_mtx); 648 649 /* 650 * Free the space for the object. 651 */ 652 uma_zfree(obj_zone, object); 653 } 654 655 /* 656 * vm_object_page_clean 657 * 658 * Clean all dirty pages in the specified range of object. Leaves page 659 * on whatever queue it is currently on. If NOSYNC is set then do not 660 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC), 661 * leaving the object dirty. 662 * 663 * When stuffing pages asynchronously, allow clustering. XXX we need a 664 * synchronous clustering mode implementation. 665 * 666 * Odd semantics: if start == end, we clean everything. 667 * 668 * The object must be locked. 669 */ 670 void 671 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags) 672 { 673 vm_page_t p, np; 674 vm_pindex_t tstart, tend; 675 vm_pindex_t pi; 676 int clearobjflags; 677 int pagerflags; 678 int curgeneration; 679 680 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 681 if (object->type != OBJT_VNODE || 682 (object->flags & OBJ_MIGHTBEDIRTY) == 0) 683 return; 684 685 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 686 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0; 687 688 vm_object_set_flag(object, OBJ_CLEANING); 689 690 tstart = start; 691 if (end == 0) { 692 tend = object->size; 693 } else { 694 tend = end; 695 } 696 697 vm_page_lock_queues(); 698 /* 699 * If the caller is smart and only msync()s a range he knows is 700 * dirty, we may be able to avoid an object scan. This results in 701 * a phenominal improvement in performance. We cannot do this 702 * as a matter of course because the object may be huge - e.g. 703 * the size might be in the gigabytes or terrabytes. 704 */ 705 if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) { 706 vm_pindex_t tscan; 707 int scanlimit; 708 int scanreset; 709 710 scanreset = object->resident_page_count / EASY_SCAN_FACTOR; 711 if (scanreset < 16) 712 scanreset = 16; 713 pagerflags |= VM_PAGER_IGNORE_CLEANCHK; 714 715 scanlimit = scanreset; 716 tscan = tstart; 717 while (tscan < tend) { 718 curgeneration = object->generation; 719 p = vm_page_lookup(object, tscan); 720 if (p == NULL || p->valid == 0 || 721 (p->queue - p->pc) == PQ_CACHE) { 722 if (--scanlimit == 0) 723 break; 724 ++tscan; 725 continue; 726 } 727 vm_page_test_dirty(p); 728 if ((p->dirty & p->valid) == 0) { 729 if (--scanlimit == 0) 730 break; 731 ++tscan; 732 continue; 733 } 734 /* 735 * If we have been asked to skip nosync pages and 736 * this is a nosync page, we can't continue. 737 */ 738 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 739 if (--scanlimit == 0) 740 break; 741 ++tscan; 742 continue; 743 } 744 scanlimit = scanreset; 745 746 /* 747 * This returns 0 if it was unable to busy the first 748 * page (i.e. had to sleep). 749 */ 750 tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags); 751 } 752 753 /* 754 * If everything was dirty and we flushed it successfully, 755 * and the requested range is not the entire object, we 756 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can 757 * return immediately. 758 */ 759 if (tscan >= tend && (tstart || tend < object->size)) { 760 vm_page_unlock_queues(); 761 vm_object_clear_flag(object, OBJ_CLEANING); 762 return; 763 } 764 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK; 765 } 766 767 /* 768 * Generally set CLEANCHK interlock and make the page read-only so 769 * we can then clear the object flags. 770 * 771 * However, if this is a nosync mmap then the object is likely to 772 * stay dirty so do not mess with the page and do not clear the 773 * object flags. 774 */ 775 clearobjflags = 1; 776 TAILQ_FOREACH(p, &object->memq, listq) { 777 vm_page_flag_set(p, PG_CLEANCHK); 778 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) 779 clearobjflags = 0; 780 else 781 pmap_page_protect(p, VM_PROT_READ); 782 } 783 784 if (clearobjflags && (tstart == 0) && (tend == object->size)) { 785 struct vnode *vp; 786 787 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 788 if (object->type == OBJT_VNODE && 789 (vp = (struct vnode *)object->handle) != NULL) { 790 VI_LOCK(vp); 791 if (vp->v_iflag & VI_OBJDIRTY) 792 vp->v_iflag &= ~VI_OBJDIRTY; 793 VI_UNLOCK(vp); 794 } 795 } 796 797 rescan: 798 curgeneration = object->generation; 799 800 for (p = TAILQ_FIRST(&object->memq); p; p = np) { 801 int n; 802 803 np = TAILQ_NEXT(p, listq); 804 805 again: 806 pi = p->pindex; 807 if (((p->flags & PG_CLEANCHK) == 0) || 808 (pi < tstart) || (pi >= tend) || 809 (p->valid == 0) || 810 ((p->queue - p->pc) == PQ_CACHE)) { 811 vm_page_flag_clear(p, PG_CLEANCHK); 812 continue; 813 } 814 815 vm_page_test_dirty(p); 816 if ((p->dirty & p->valid) == 0) { 817 vm_page_flag_clear(p, PG_CLEANCHK); 818 continue; 819 } 820 821 /* 822 * If we have been asked to skip nosync pages and this is a 823 * nosync page, skip it. Note that the object flags were 824 * not cleared in this case so we do not have to set them. 825 */ 826 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) { 827 vm_page_flag_clear(p, PG_CLEANCHK); 828 continue; 829 } 830 831 n = vm_object_page_collect_flush(object, p, 832 curgeneration, pagerflags); 833 if (n == 0) 834 goto rescan; 835 836 if (object->generation != curgeneration) 837 goto rescan; 838 839 /* 840 * Try to optimize the next page. If we can't we pick up 841 * our (random) scan where we left off. 842 */ 843 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) { 844 if ((p = vm_page_lookup(object, pi + n)) != NULL) 845 goto again; 846 } 847 } 848 vm_page_unlock_queues(); 849 #if 0 850 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc); 851 #endif 852 853 vm_object_clear_flag(object, OBJ_CLEANING); 854 return; 855 } 856 857 static int 858 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags) 859 { 860 int runlen; 861 int maxf; 862 int chkb; 863 int maxb; 864 int i; 865 vm_pindex_t pi; 866 vm_page_t maf[vm_pageout_page_count]; 867 vm_page_t mab[vm_pageout_page_count]; 868 vm_page_t ma[vm_pageout_page_count]; 869 870 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 871 pi = p->pindex; 872 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 873 vm_page_lock_queues(); 874 if (object->generation != curgeneration) { 875 return(0); 876 } 877 } 878 maxf = 0; 879 for(i = 1; i < vm_pageout_page_count; i++) { 880 vm_page_t tp; 881 882 if ((tp = vm_page_lookup(object, pi + i)) != NULL) { 883 if ((tp->flags & PG_BUSY) || 884 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 885 (tp->flags & PG_CLEANCHK) == 0) || 886 (tp->busy != 0)) 887 break; 888 if((tp->queue - tp->pc) == PQ_CACHE) { 889 vm_page_flag_clear(tp, PG_CLEANCHK); 890 break; 891 } 892 vm_page_test_dirty(tp); 893 if ((tp->dirty & tp->valid) == 0) { 894 vm_page_flag_clear(tp, PG_CLEANCHK); 895 break; 896 } 897 maf[ i - 1 ] = tp; 898 maxf++; 899 continue; 900 } 901 break; 902 } 903 904 maxb = 0; 905 chkb = vm_pageout_page_count - maxf; 906 if (chkb) { 907 for(i = 1; i < chkb;i++) { 908 vm_page_t tp; 909 910 if ((tp = vm_page_lookup(object, pi - i)) != NULL) { 911 if ((tp->flags & PG_BUSY) || 912 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 913 (tp->flags & PG_CLEANCHK) == 0) || 914 (tp->busy != 0)) 915 break; 916 if ((tp->queue - tp->pc) == PQ_CACHE) { 917 vm_page_flag_clear(tp, PG_CLEANCHK); 918 break; 919 } 920 vm_page_test_dirty(tp); 921 if ((tp->dirty & tp->valid) == 0) { 922 vm_page_flag_clear(tp, PG_CLEANCHK); 923 break; 924 } 925 mab[ i - 1 ] = tp; 926 maxb++; 927 continue; 928 } 929 break; 930 } 931 } 932 933 for(i = 0; i < maxb; i++) { 934 int index = (maxb - i) - 1; 935 ma[index] = mab[i]; 936 vm_page_flag_clear(ma[index], PG_CLEANCHK); 937 } 938 vm_page_flag_clear(p, PG_CLEANCHK); 939 ma[maxb] = p; 940 for(i = 0; i < maxf; i++) { 941 int index = (maxb + i) + 1; 942 ma[index] = maf[i]; 943 vm_page_flag_clear(ma[index], PG_CLEANCHK); 944 } 945 runlen = maxb + maxf + 1; 946 947 vm_pageout_flush(ma, runlen, pagerflags); 948 for (i = 0; i < runlen; i++) { 949 if (ma[i]->valid & ma[i]->dirty) { 950 pmap_page_protect(ma[i], VM_PROT_READ); 951 vm_page_flag_set(ma[i], PG_CLEANCHK); 952 953 /* 954 * maxf will end up being the actual number of pages 955 * we wrote out contiguously, non-inclusive of the 956 * first page. We do not count look-behind pages. 957 */ 958 if (i >= maxb + 1 && (maxf > i - maxb - 1)) 959 maxf = i - maxb - 1; 960 } 961 } 962 return(maxf + 1); 963 } 964 965 /* 966 * Note that there is absolutely no sense in writing out 967 * anonymous objects, so we track down the vnode object 968 * to write out. 969 * We invalidate (remove) all pages from the address space 970 * for semantic correctness. 971 * 972 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 973 * may start out with a NULL object. 974 */ 975 void 976 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 977 boolean_t syncio, boolean_t invalidate) 978 { 979 vm_object_t backing_object; 980 struct vnode *vp; 981 int flags; 982 983 if (object == NULL) 984 return; 985 VM_OBJECT_LOCK(object); 986 while ((backing_object = object->backing_object) != NULL) { 987 VM_OBJECT_LOCK(backing_object); 988 offset += object->backing_object_offset; 989 VM_OBJECT_UNLOCK(object); 990 object = backing_object; 991 if (object->size < OFF_TO_IDX(offset + size)) 992 size = IDX_TO_OFF(object->size) - offset; 993 } 994 /* 995 * Flush pages if writing is allowed, invalidate them 996 * if invalidation requested. Pages undergoing I/O 997 * will be ignored by vm_object_page_remove(). 998 * 999 * We cannot lock the vnode and then wait for paging 1000 * to complete without deadlocking against vm_fault. 1001 * Instead we simply call vm_object_page_remove() and 1002 * allow it to block internally on a page-by-page 1003 * basis when it encounters pages undergoing async 1004 * I/O. 1005 */ 1006 if (object->type == OBJT_VNODE && 1007 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1008 int vfslocked; 1009 vp = object->handle; 1010 VM_OBJECT_UNLOCK(object); 1011 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1012 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread); 1013 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1014 flags |= invalidate ? OBJPC_INVAL : 0; 1015 VM_OBJECT_LOCK(object); 1016 vm_object_page_clean(object, 1017 OFF_TO_IDX(offset), 1018 OFF_TO_IDX(offset + size + PAGE_MASK), 1019 flags); 1020 VM_OBJECT_UNLOCK(object); 1021 VOP_UNLOCK(vp, 0, curthread); 1022 VFS_UNLOCK_GIANT(vfslocked); 1023 VM_OBJECT_LOCK(object); 1024 } 1025 if ((object->type == OBJT_VNODE || 1026 object->type == OBJT_DEVICE) && invalidate) { 1027 boolean_t purge; 1028 purge = old_msync || (object->type == OBJT_DEVICE); 1029 vm_object_page_remove(object, 1030 OFF_TO_IDX(offset), 1031 OFF_TO_IDX(offset + size + PAGE_MASK), 1032 purge ? FALSE : TRUE); 1033 } 1034 VM_OBJECT_UNLOCK(object); 1035 } 1036 1037 /* 1038 * vm_object_madvise: 1039 * 1040 * Implements the madvise function at the object/page level. 1041 * 1042 * MADV_WILLNEED (any object) 1043 * 1044 * Activate the specified pages if they are resident. 1045 * 1046 * MADV_DONTNEED (any object) 1047 * 1048 * Deactivate the specified pages if they are resident. 1049 * 1050 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1051 * OBJ_ONEMAPPING only) 1052 * 1053 * Deactivate and clean the specified pages if they are 1054 * resident. This permits the process to reuse the pages 1055 * without faulting or the kernel to reclaim the pages 1056 * without I/O. 1057 */ 1058 void 1059 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise) 1060 { 1061 vm_pindex_t end, tpindex; 1062 vm_object_t backing_object, tobject; 1063 vm_page_t m; 1064 1065 if (object == NULL) 1066 return; 1067 VM_OBJECT_LOCK(object); 1068 end = pindex + count; 1069 /* 1070 * Locate and adjust resident pages 1071 */ 1072 for (; pindex < end; pindex += 1) { 1073 relookup: 1074 tobject = object; 1075 tpindex = pindex; 1076 shadowlookup: 1077 /* 1078 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1079 * and those pages must be OBJ_ONEMAPPING. 1080 */ 1081 if (advise == MADV_FREE) { 1082 if ((tobject->type != OBJT_DEFAULT && 1083 tobject->type != OBJT_SWAP) || 1084 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1085 goto unlock_tobject; 1086 } 1087 } 1088 m = vm_page_lookup(tobject, tpindex); 1089 if (m == NULL) { 1090 /* 1091 * There may be swap even if there is no backing page 1092 */ 1093 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1094 swap_pager_freespace(tobject, tpindex, 1); 1095 /* 1096 * next object 1097 */ 1098 backing_object = tobject->backing_object; 1099 if (backing_object == NULL) 1100 goto unlock_tobject; 1101 VM_OBJECT_LOCK(backing_object); 1102 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1103 if (tobject != object) 1104 VM_OBJECT_UNLOCK(tobject); 1105 tobject = backing_object; 1106 goto shadowlookup; 1107 } 1108 /* 1109 * If the page is busy or not in a normal active state, 1110 * we skip it. If the page is not managed there are no 1111 * page queues to mess with. Things can break if we mess 1112 * with pages in any of the below states. 1113 */ 1114 vm_page_lock_queues(); 1115 if (m->hold_count || 1116 m->wire_count || 1117 (m->flags & PG_UNMANAGED) || 1118 m->valid != VM_PAGE_BITS_ALL) { 1119 vm_page_unlock_queues(); 1120 goto unlock_tobject; 1121 } 1122 if ((m->flags & PG_BUSY) || m->busy) { 1123 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1124 if (object != tobject) 1125 VM_OBJECT_UNLOCK(object); 1126 VM_OBJECT_UNLOCK(tobject); 1127 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0); 1128 VM_OBJECT_LOCK(object); 1129 goto relookup; 1130 } 1131 if (advise == MADV_WILLNEED) { 1132 vm_page_activate(m); 1133 } else if (advise == MADV_DONTNEED) { 1134 vm_page_dontneed(m); 1135 } else if (advise == MADV_FREE) { 1136 /* 1137 * Mark the page clean. This will allow the page 1138 * to be freed up by the system. However, such pages 1139 * are often reused quickly by malloc()/free() 1140 * so we do not do anything that would cause 1141 * a page fault if we can help it. 1142 * 1143 * Specifically, we do not try to actually free 1144 * the page now nor do we try to put it in the 1145 * cache (which would cause a page fault on reuse). 1146 * 1147 * But we do make the page is freeable as we 1148 * can without actually taking the step of unmapping 1149 * it. 1150 */ 1151 pmap_clear_modify(m); 1152 m->dirty = 0; 1153 m->act_count = 0; 1154 vm_page_dontneed(m); 1155 } 1156 vm_page_unlock_queues(); 1157 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1158 swap_pager_freespace(tobject, tpindex, 1); 1159 unlock_tobject: 1160 if (tobject != object) 1161 VM_OBJECT_UNLOCK(tobject); 1162 } 1163 VM_OBJECT_UNLOCK(object); 1164 } 1165 1166 /* 1167 * vm_object_shadow: 1168 * 1169 * Create a new object which is backed by the 1170 * specified existing object range. The source 1171 * object reference is deallocated. 1172 * 1173 * The new object and offset into that object 1174 * are returned in the source parameters. 1175 */ 1176 void 1177 vm_object_shadow( 1178 vm_object_t *object, /* IN/OUT */ 1179 vm_ooffset_t *offset, /* IN/OUT */ 1180 vm_size_t length) 1181 { 1182 vm_object_t source; 1183 vm_object_t result; 1184 1185 source = *object; 1186 1187 /* 1188 * Don't create the new object if the old object isn't shared. 1189 */ 1190 if (source != NULL) { 1191 VM_OBJECT_LOCK(source); 1192 if (source->ref_count == 1 && 1193 source->handle == NULL && 1194 (source->type == OBJT_DEFAULT || 1195 source->type == OBJT_SWAP)) { 1196 VM_OBJECT_UNLOCK(source); 1197 return; 1198 } 1199 VM_OBJECT_UNLOCK(source); 1200 } 1201 1202 /* 1203 * Allocate a new object with the given length. 1204 */ 1205 result = vm_object_allocate(OBJT_DEFAULT, length); 1206 1207 /* 1208 * The new object shadows the source object, adding a reference to it. 1209 * Our caller changes his reference to point to the new object, 1210 * removing a reference to the source object. Net result: no change 1211 * of reference count. 1212 * 1213 * Try to optimize the result object's page color when shadowing 1214 * in order to maintain page coloring consistency in the combined 1215 * shadowed object. 1216 */ 1217 result->backing_object = source; 1218 /* 1219 * Store the offset into the source object, and fix up the offset into 1220 * the new object. 1221 */ 1222 result->backing_object_offset = *offset; 1223 if (source != NULL) { 1224 VM_OBJECT_LOCK(source); 1225 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1226 source->shadow_count++; 1227 source->generation++; 1228 if (length < source->size) 1229 length = source->size; 1230 if (length > PQ_MAXLENGTH || source->generation > 1) 1231 length = PQ_MAXLENGTH; 1232 result->pg_color = (source->pg_color + 1233 length * source->generation) & PQ_COLORMASK; 1234 result->flags |= source->flags & OBJ_NEEDGIANT; 1235 VM_OBJECT_UNLOCK(source); 1236 next_index = (result->pg_color + PQ_MAXLENGTH) & PQ_COLORMASK; 1237 } 1238 1239 1240 /* 1241 * Return the new things 1242 */ 1243 *offset = 0; 1244 *object = result; 1245 } 1246 1247 /* 1248 * vm_object_split: 1249 * 1250 * Split the pages in a map entry into a new object. This affords 1251 * easier removal of unused pages, and keeps object inheritance from 1252 * being a negative impact on memory usage. 1253 */ 1254 void 1255 vm_object_split(vm_map_entry_t entry) 1256 { 1257 vm_page_t m; 1258 vm_object_t orig_object, new_object, source; 1259 vm_pindex_t offidxstart, offidxend; 1260 vm_size_t idx, size; 1261 1262 orig_object = entry->object.vm_object; 1263 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1264 return; 1265 if (orig_object->ref_count <= 1) 1266 return; 1267 VM_OBJECT_UNLOCK(orig_object); 1268 1269 offidxstart = OFF_TO_IDX(entry->offset); 1270 offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start); 1271 size = offidxend - offidxstart; 1272 1273 /* 1274 * If swap_pager_copy() is later called, it will convert new_object 1275 * into a swap object. 1276 */ 1277 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1278 1279 VM_OBJECT_LOCK(new_object); 1280 VM_OBJECT_LOCK(orig_object); 1281 source = orig_object->backing_object; 1282 if (source != NULL) { 1283 VM_OBJECT_LOCK(source); 1284 LIST_INSERT_HEAD(&source->shadow_head, 1285 new_object, shadow_list); 1286 source->shadow_count++; 1287 source->generation++; 1288 vm_object_reference_locked(source); /* for new_object */ 1289 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1290 VM_OBJECT_UNLOCK(source); 1291 new_object->backing_object_offset = 1292 orig_object->backing_object_offset + entry->offset; 1293 new_object->backing_object = source; 1294 } 1295 new_object->flags |= orig_object->flags & OBJ_NEEDGIANT; 1296 vm_page_lock_queues(); 1297 for (idx = 0; idx < size; idx++) { 1298 retry: 1299 m = vm_page_lookup(orig_object, offidxstart + idx); 1300 if (m == NULL) 1301 continue; 1302 1303 /* 1304 * We must wait for pending I/O to complete before we can 1305 * rename the page. 1306 * 1307 * We do not have to VM_PROT_NONE the page as mappings should 1308 * not be changed by this operation. 1309 */ 1310 if ((m->flags & PG_BUSY) || m->busy) { 1311 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1312 VM_OBJECT_UNLOCK(orig_object); 1313 VM_OBJECT_UNLOCK(new_object); 1314 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0); 1315 VM_OBJECT_LOCK(new_object); 1316 VM_OBJECT_LOCK(orig_object); 1317 vm_page_lock_queues(); 1318 goto retry; 1319 } 1320 vm_page_rename(m, new_object, idx); 1321 /* page automatically made dirty by rename and cache handled */ 1322 vm_page_busy(m); 1323 } 1324 vm_page_unlock_queues(); 1325 if (orig_object->type == OBJT_SWAP) { 1326 /* 1327 * swap_pager_copy() can sleep, in which case the orig_object's 1328 * and new_object's locks are released and reacquired. 1329 */ 1330 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1331 } 1332 VM_OBJECT_UNLOCK(orig_object); 1333 vm_page_lock_queues(); 1334 TAILQ_FOREACH(m, &new_object->memq, listq) 1335 vm_page_wakeup(m); 1336 vm_page_unlock_queues(); 1337 VM_OBJECT_UNLOCK(new_object); 1338 entry->object.vm_object = new_object; 1339 entry->offset = 0LL; 1340 vm_object_deallocate(orig_object); 1341 VM_OBJECT_LOCK(new_object); 1342 } 1343 1344 #define OBSC_TEST_ALL_SHADOWED 0x0001 1345 #define OBSC_COLLAPSE_NOWAIT 0x0002 1346 #define OBSC_COLLAPSE_WAIT 0x0004 1347 1348 static int 1349 vm_object_backing_scan(vm_object_t object, int op) 1350 { 1351 int r = 1; 1352 vm_page_t p; 1353 vm_object_t backing_object; 1354 vm_pindex_t backing_offset_index; 1355 1356 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1357 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1358 1359 backing_object = object->backing_object; 1360 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1361 1362 /* 1363 * Initial conditions 1364 */ 1365 if (op & OBSC_TEST_ALL_SHADOWED) { 1366 /* 1367 * We do not want to have to test for the existence of 1368 * swap pages in the backing object. XXX but with the 1369 * new swapper this would be pretty easy to do. 1370 * 1371 * XXX what about anonymous MAP_SHARED memory that hasn't 1372 * been ZFOD faulted yet? If we do not test for this, the 1373 * shadow test may succeed! XXX 1374 */ 1375 if (backing_object->type != OBJT_DEFAULT) { 1376 return (0); 1377 } 1378 } 1379 if (op & OBSC_COLLAPSE_WAIT) { 1380 vm_object_set_flag(backing_object, OBJ_DEAD); 1381 } 1382 1383 /* 1384 * Our scan 1385 */ 1386 p = TAILQ_FIRST(&backing_object->memq); 1387 while (p) { 1388 vm_page_t next = TAILQ_NEXT(p, listq); 1389 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1390 1391 if (op & OBSC_TEST_ALL_SHADOWED) { 1392 vm_page_t pp; 1393 1394 /* 1395 * Ignore pages outside the parent object's range 1396 * and outside the parent object's mapping of the 1397 * backing object. 1398 * 1399 * note that we do not busy the backing object's 1400 * page. 1401 */ 1402 if ( 1403 p->pindex < backing_offset_index || 1404 new_pindex >= object->size 1405 ) { 1406 p = next; 1407 continue; 1408 } 1409 1410 /* 1411 * See if the parent has the page or if the parent's 1412 * object pager has the page. If the parent has the 1413 * page but the page is not valid, the parent's 1414 * object pager must have the page. 1415 * 1416 * If this fails, the parent does not completely shadow 1417 * the object and we might as well give up now. 1418 */ 1419 1420 pp = vm_page_lookup(object, new_pindex); 1421 if ( 1422 (pp == NULL || pp->valid == 0) && 1423 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1424 ) { 1425 r = 0; 1426 break; 1427 } 1428 } 1429 1430 /* 1431 * Check for busy page 1432 */ 1433 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1434 vm_page_t pp; 1435 1436 if (op & OBSC_COLLAPSE_NOWAIT) { 1437 if ((p->flags & PG_BUSY) || 1438 !p->valid || 1439 p->busy) { 1440 p = next; 1441 continue; 1442 } 1443 } else if (op & OBSC_COLLAPSE_WAIT) { 1444 if ((p->flags & PG_BUSY) || p->busy) { 1445 vm_page_lock_queues(); 1446 vm_page_flag_set(p, 1447 PG_WANTED | PG_REFERENCED); 1448 VM_OBJECT_UNLOCK(backing_object); 1449 VM_OBJECT_UNLOCK(object); 1450 msleep(p, &vm_page_queue_mtx, 1451 PDROP | PVM, "vmocol", 0); 1452 VM_OBJECT_LOCK(object); 1453 VM_OBJECT_LOCK(backing_object); 1454 /* 1455 * If we slept, anything could have 1456 * happened. Since the object is 1457 * marked dead, the backing offset 1458 * should not have changed so we 1459 * just restart our scan. 1460 */ 1461 p = TAILQ_FIRST(&backing_object->memq); 1462 continue; 1463 } 1464 } 1465 1466 KASSERT( 1467 p->object == backing_object, 1468 ("vm_object_backing_scan: object mismatch") 1469 ); 1470 1471 /* 1472 * Destroy any associated swap 1473 */ 1474 if (backing_object->type == OBJT_SWAP) { 1475 swap_pager_freespace( 1476 backing_object, 1477 p->pindex, 1478 1 1479 ); 1480 } 1481 1482 if ( 1483 p->pindex < backing_offset_index || 1484 new_pindex >= object->size 1485 ) { 1486 /* 1487 * Page is out of the parent object's range, we 1488 * can simply destroy it. 1489 */ 1490 vm_page_lock_queues(); 1491 KASSERT(!pmap_page_is_mapped(p), 1492 ("freeing mapped page %p", p)); 1493 if (p->wire_count == 0) 1494 vm_page_free(p); 1495 else 1496 vm_page_remove(p); 1497 vm_page_unlock_queues(); 1498 p = next; 1499 continue; 1500 } 1501 1502 pp = vm_page_lookup(object, new_pindex); 1503 if ( 1504 pp != NULL || 1505 vm_pager_has_page(object, new_pindex, NULL, NULL) 1506 ) { 1507 /* 1508 * page already exists in parent OR swap exists 1509 * for this location in the parent. Destroy 1510 * the original page from the backing object. 1511 * 1512 * Leave the parent's page alone 1513 */ 1514 vm_page_lock_queues(); 1515 KASSERT(!pmap_page_is_mapped(p), 1516 ("freeing mapped page %p", p)); 1517 if (p->wire_count == 0) 1518 vm_page_free(p); 1519 else 1520 vm_page_remove(p); 1521 vm_page_unlock_queues(); 1522 p = next; 1523 continue; 1524 } 1525 1526 /* 1527 * Page does not exist in parent, rename the 1528 * page from the backing object to the main object. 1529 * 1530 * If the page was mapped to a process, it can remain 1531 * mapped through the rename. 1532 */ 1533 vm_page_lock_queues(); 1534 vm_page_rename(p, object, new_pindex); 1535 vm_page_unlock_queues(); 1536 /* page automatically made dirty by rename */ 1537 } 1538 p = next; 1539 } 1540 return (r); 1541 } 1542 1543 1544 /* 1545 * this version of collapse allows the operation to occur earlier and 1546 * when paging_in_progress is true for an object... This is not a complete 1547 * operation, but should plug 99.9% of the rest of the leaks. 1548 */ 1549 static void 1550 vm_object_qcollapse(vm_object_t object) 1551 { 1552 vm_object_t backing_object = object->backing_object; 1553 1554 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1555 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1556 1557 if (backing_object->ref_count != 1) 1558 return; 1559 1560 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1561 } 1562 1563 /* 1564 * vm_object_collapse: 1565 * 1566 * Collapse an object with the object backing it. 1567 * Pages in the backing object are moved into the 1568 * parent, and the backing object is deallocated. 1569 */ 1570 void 1571 vm_object_collapse(vm_object_t object) 1572 { 1573 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1574 1575 while (TRUE) { 1576 vm_object_t backing_object; 1577 1578 /* 1579 * Verify that the conditions are right for collapse: 1580 * 1581 * The object exists and the backing object exists. 1582 */ 1583 if ((backing_object = object->backing_object) == NULL) 1584 break; 1585 1586 /* 1587 * we check the backing object first, because it is most likely 1588 * not collapsable. 1589 */ 1590 VM_OBJECT_LOCK(backing_object); 1591 if (backing_object->handle != NULL || 1592 (backing_object->type != OBJT_DEFAULT && 1593 backing_object->type != OBJT_SWAP) || 1594 (backing_object->flags & OBJ_DEAD) || 1595 object->handle != NULL || 1596 (object->type != OBJT_DEFAULT && 1597 object->type != OBJT_SWAP) || 1598 (object->flags & OBJ_DEAD)) { 1599 VM_OBJECT_UNLOCK(backing_object); 1600 break; 1601 } 1602 1603 if ( 1604 object->paging_in_progress != 0 || 1605 backing_object->paging_in_progress != 0 1606 ) { 1607 vm_object_qcollapse(object); 1608 VM_OBJECT_UNLOCK(backing_object); 1609 break; 1610 } 1611 /* 1612 * We know that we can either collapse the backing object (if 1613 * the parent is the only reference to it) or (perhaps) have 1614 * the parent bypass the object if the parent happens to shadow 1615 * all the resident pages in the entire backing object. 1616 * 1617 * This is ignoring pager-backed pages such as swap pages. 1618 * vm_object_backing_scan fails the shadowing test in this 1619 * case. 1620 */ 1621 if (backing_object->ref_count == 1) { 1622 /* 1623 * If there is exactly one reference to the backing 1624 * object, we can collapse it into the parent. 1625 */ 1626 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1627 1628 /* 1629 * Move the pager from backing_object to object. 1630 */ 1631 if (backing_object->type == OBJT_SWAP) { 1632 /* 1633 * swap_pager_copy() can sleep, in which case 1634 * the backing_object's and object's locks are 1635 * released and reacquired. 1636 */ 1637 swap_pager_copy( 1638 backing_object, 1639 object, 1640 OFF_TO_IDX(object->backing_object_offset), TRUE); 1641 } 1642 /* 1643 * Object now shadows whatever backing_object did. 1644 * Note that the reference to 1645 * backing_object->backing_object moves from within 1646 * backing_object to within object. 1647 */ 1648 LIST_REMOVE(object, shadow_list); 1649 backing_object->shadow_count--; 1650 backing_object->generation++; 1651 if (backing_object->backing_object) { 1652 VM_OBJECT_LOCK(backing_object->backing_object); 1653 LIST_REMOVE(backing_object, shadow_list); 1654 LIST_INSERT_HEAD( 1655 &backing_object->backing_object->shadow_head, 1656 object, shadow_list); 1657 /* 1658 * The shadow_count has not changed. 1659 */ 1660 backing_object->backing_object->generation++; 1661 VM_OBJECT_UNLOCK(backing_object->backing_object); 1662 } 1663 object->backing_object = backing_object->backing_object; 1664 object->backing_object_offset += 1665 backing_object->backing_object_offset; 1666 1667 /* 1668 * Discard backing_object. 1669 * 1670 * Since the backing object has no pages, no pager left, 1671 * and no object references within it, all that is 1672 * necessary is to dispose of it. 1673 */ 1674 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object)); 1675 VM_OBJECT_UNLOCK(backing_object); 1676 1677 mtx_lock(&vm_object_list_mtx); 1678 TAILQ_REMOVE( 1679 &vm_object_list, 1680 backing_object, 1681 object_list 1682 ); 1683 mtx_unlock(&vm_object_list_mtx); 1684 1685 uma_zfree(obj_zone, backing_object); 1686 1687 object_collapses++; 1688 } else { 1689 vm_object_t new_backing_object; 1690 1691 /* 1692 * If we do not entirely shadow the backing object, 1693 * there is nothing we can do so we give up. 1694 */ 1695 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) { 1696 VM_OBJECT_UNLOCK(backing_object); 1697 break; 1698 } 1699 1700 /* 1701 * Make the parent shadow the next object in the 1702 * chain. Deallocating backing_object will not remove 1703 * it, since its reference count is at least 2. 1704 */ 1705 LIST_REMOVE(object, shadow_list); 1706 backing_object->shadow_count--; 1707 backing_object->generation++; 1708 1709 new_backing_object = backing_object->backing_object; 1710 if ((object->backing_object = new_backing_object) != NULL) { 1711 VM_OBJECT_LOCK(new_backing_object); 1712 LIST_INSERT_HEAD( 1713 &new_backing_object->shadow_head, 1714 object, 1715 shadow_list 1716 ); 1717 new_backing_object->shadow_count++; 1718 new_backing_object->generation++; 1719 vm_object_reference_locked(new_backing_object); 1720 VM_OBJECT_UNLOCK(new_backing_object); 1721 object->backing_object_offset += 1722 backing_object->backing_object_offset; 1723 } 1724 1725 /* 1726 * Drop the reference count on backing_object. Since 1727 * its ref_count was at least 2, it will not vanish. 1728 */ 1729 backing_object->ref_count--; 1730 VM_OBJECT_UNLOCK(backing_object); 1731 object_bypasses++; 1732 } 1733 1734 /* 1735 * Try again with this object's new backing object. 1736 */ 1737 } 1738 } 1739 1740 /* 1741 * vm_object_page_remove: 1742 * 1743 * Removes all physical pages in the given range from the 1744 * object's list of pages. If the range's end is zero, all 1745 * physical pages from the range's start to the end of the object 1746 * are deleted. 1747 * 1748 * The object must be locked. 1749 */ 1750 void 1751 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1752 boolean_t clean_only) 1753 { 1754 vm_page_t p, next; 1755 1756 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1757 if (object->resident_page_count == 0) 1758 return; 1759 1760 /* 1761 * Since physically-backed objects do not use managed pages, we can't 1762 * remove pages from the object (we must instead remove the page 1763 * references, and then destroy the object). 1764 */ 1765 KASSERT(object->type != OBJT_PHYS, 1766 ("attempt to remove pages from a physical object")); 1767 1768 vm_object_pip_add(object, 1); 1769 again: 1770 vm_page_lock_queues(); 1771 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1772 if (p->pindex < start) { 1773 p = vm_page_splay(start, object->root); 1774 if ((object->root = p)->pindex < start) 1775 p = TAILQ_NEXT(p, listq); 1776 } 1777 } 1778 /* 1779 * Assert: the variable p is either (1) the page with the 1780 * least pindex greater than or equal to the parameter pindex 1781 * or (2) NULL. 1782 */ 1783 for (; 1784 p != NULL && (p->pindex < end || end == 0); 1785 p = next) { 1786 next = TAILQ_NEXT(p, listq); 1787 1788 if (p->wire_count != 0) { 1789 pmap_remove_all(p); 1790 if (!clean_only) 1791 p->valid = 0; 1792 continue; 1793 } 1794 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1795 goto again; 1796 if (clean_only && p->valid) { 1797 pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE); 1798 if (p->valid & p->dirty) 1799 continue; 1800 } 1801 pmap_remove_all(p); 1802 vm_page_free(p); 1803 } 1804 vm_page_unlock_queues(); 1805 vm_object_pip_wakeup(object); 1806 } 1807 1808 /* 1809 * Routine: vm_object_coalesce 1810 * Function: Coalesces two objects backing up adjoining 1811 * regions of memory into a single object. 1812 * 1813 * returns TRUE if objects were combined. 1814 * 1815 * NOTE: Only works at the moment if the second object is NULL - 1816 * if it's not, which object do we lock first? 1817 * 1818 * Parameters: 1819 * prev_object First object to coalesce 1820 * prev_offset Offset into prev_object 1821 * prev_size Size of reference to prev_object 1822 * next_size Size of reference to the second object 1823 * 1824 * Conditions: 1825 * The object must *not* be locked. 1826 */ 1827 boolean_t 1828 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 1829 vm_size_t prev_size, vm_size_t next_size) 1830 { 1831 vm_pindex_t next_pindex; 1832 1833 if (prev_object == NULL) 1834 return (TRUE); 1835 VM_OBJECT_LOCK(prev_object); 1836 if (prev_object->type != OBJT_DEFAULT && 1837 prev_object->type != OBJT_SWAP) { 1838 VM_OBJECT_UNLOCK(prev_object); 1839 return (FALSE); 1840 } 1841 1842 /* 1843 * Try to collapse the object first 1844 */ 1845 vm_object_collapse(prev_object); 1846 1847 /* 1848 * Can't coalesce if: . more than one reference . paged out . shadows 1849 * another object . has a copy elsewhere (any of which mean that the 1850 * pages not mapped to prev_entry may be in use anyway) 1851 */ 1852 if (prev_object->backing_object != NULL) { 1853 VM_OBJECT_UNLOCK(prev_object); 1854 return (FALSE); 1855 } 1856 1857 prev_size >>= PAGE_SHIFT; 1858 next_size >>= PAGE_SHIFT; 1859 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 1860 1861 if ((prev_object->ref_count > 1) && 1862 (prev_object->size != next_pindex)) { 1863 VM_OBJECT_UNLOCK(prev_object); 1864 return (FALSE); 1865 } 1866 1867 /* 1868 * Remove any pages that may still be in the object from a previous 1869 * deallocation. 1870 */ 1871 if (next_pindex < prev_object->size) { 1872 vm_object_page_remove(prev_object, 1873 next_pindex, 1874 next_pindex + next_size, FALSE); 1875 if (prev_object->type == OBJT_SWAP) 1876 swap_pager_freespace(prev_object, 1877 next_pindex, next_size); 1878 } 1879 1880 /* 1881 * Extend the object if necessary. 1882 */ 1883 if (next_pindex + next_size > prev_object->size) 1884 prev_object->size = next_pindex + next_size; 1885 1886 VM_OBJECT_UNLOCK(prev_object); 1887 return (TRUE); 1888 } 1889 1890 void 1891 vm_object_set_writeable_dirty(vm_object_t object) 1892 { 1893 struct vnode *vp; 1894 1895 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1896 if ((object->flags & (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) == 1897 (OBJ_MIGHTBEDIRTY|OBJ_WRITEABLE)) 1898 return; 1899 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 1900 if (object->type == OBJT_VNODE && 1901 (vp = (struct vnode *)object->handle) != NULL) { 1902 VI_LOCK(vp); 1903 vp->v_iflag |= VI_OBJDIRTY; 1904 VI_UNLOCK(vp); 1905 } 1906 } 1907 1908 #include "opt_ddb.h" 1909 #ifdef DDB 1910 #include <sys/kernel.h> 1911 1912 #include <sys/cons.h> 1913 1914 #include <ddb/ddb.h> 1915 1916 static int 1917 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 1918 { 1919 vm_map_t tmpm; 1920 vm_map_entry_t tmpe; 1921 vm_object_t obj; 1922 int entcount; 1923 1924 if (map == 0) 1925 return 0; 1926 1927 if (entry == 0) { 1928 tmpe = map->header.next; 1929 entcount = map->nentries; 1930 while (entcount-- && (tmpe != &map->header)) { 1931 if (_vm_object_in_map(map, object, tmpe)) { 1932 return 1; 1933 } 1934 tmpe = tmpe->next; 1935 } 1936 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 1937 tmpm = entry->object.sub_map; 1938 tmpe = tmpm->header.next; 1939 entcount = tmpm->nentries; 1940 while (entcount-- && tmpe != &tmpm->header) { 1941 if (_vm_object_in_map(tmpm, object, tmpe)) { 1942 return 1; 1943 } 1944 tmpe = tmpe->next; 1945 } 1946 } else if ((obj = entry->object.vm_object) != NULL) { 1947 for (; obj; obj = obj->backing_object) 1948 if (obj == object) { 1949 return 1; 1950 } 1951 } 1952 return 0; 1953 } 1954 1955 static int 1956 vm_object_in_map(vm_object_t object) 1957 { 1958 struct proc *p; 1959 1960 /* sx_slock(&allproc_lock); */ 1961 LIST_FOREACH(p, &allproc, p_list) { 1962 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 1963 continue; 1964 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 1965 /* sx_sunlock(&allproc_lock); */ 1966 return 1; 1967 } 1968 } 1969 /* sx_sunlock(&allproc_lock); */ 1970 if (_vm_object_in_map(kernel_map, object, 0)) 1971 return 1; 1972 if (_vm_object_in_map(kmem_map, object, 0)) 1973 return 1; 1974 if (_vm_object_in_map(pager_map, object, 0)) 1975 return 1; 1976 if (_vm_object_in_map(buffer_map, object, 0)) 1977 return 1; 1978 return 0; 1979 } 1980 1981 DB_SHOW_COMMAND(vmochk, vm_object_check) 1982 { 1983 vm_object_t object; 1984 1985 /* 1986 * make sure that internal objs are in a map somewhere 1987 * and none have zero ref counts. 1988 */ 1989 TAILQ_FOREACH(object, &vm_object_list, object_list) { 1990 if (object->handle == NULL && 1991 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1992 if (object->ref_count == 0) { 1993 db_printf("vmochk: internal obj has zero ref count: %ld\n", 1994 (long)object->size); 1995 } 1996 if (!vm_object_in_map(object)) { 1997 db_printf( 1998 "vmochk: internal obj is not in a map: " 1999 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2000 object->ref_count, (u_long)object->size, 2001 (u_long)object->size, 2002 (void *)object->backing_object); 2003 } 2004 } 2005 } 2006 } 2007 2008 /* 2009 * vm_object_print: [ debug ] 2010 */ 2011 DB_SHOW_COMMAND(object, vm_object_print_static) 2012 { 2013 /* XXX convert args. */ 2014 vm_object_t object = (vm_object_t)addr; 2015 boolean_t full = have_addr; 2016 2017 vm_page_t p; 2018 2019 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2020 #define count was_count 2021 2022 int count; 2023 2024 if (object == NULL) 2025 return; 2026 2027 db_iprintf( 2028 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n", 2029 object, (int)object->type, (uintmax_t)object->size, 2030 object->resident_page_count, object->ref_count, object->flags); 2031 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2032 object->shadow_count, 2033 object->backing_object ? object->backing_object->ref_count : 0, 2034 object->backing_object, (uintmax_t)object->backing_object_offset); 2035 2036 if (!full) 2037 return; 2038 2039 db_indent += 2; 2040 count = 0; 2041 TAILQ_FOREACH(p, &object->memq, listq) { 2042 if (count == 0) 2043 db_iprintf("memory:="); 2044 else if (count == 6) { 2045 db_printf("\n"); 2046 db_iprintf(" ..."); 2047 count = 0; 2048 } else 2049 db_printf(","); 2050 count++; 2051 2052 db_printf("(off=0x%jx,page=0x%jx)", 2053 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2054 } 2055 if (count != 0) 2056 db_printf("\n"); 2057 db_indent -= 2; 2058 } 2059 2060 /* XXX. */ 2061 #undef count 2062 2063 /* XXX need this non-static entry for calling from vm_map_print. */ 2064 void 2065 vm_object_print( 2066 /* db_expr_t */ long addr, 2067 boolean_t have_addr, 2068 /* db_expr_t */ long count, 2069 char *modif) 2070 { 2071 vm_object_print_static(addr, have_addr, count, modif); 2072 } 2073 2074 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2075 { 2076 vm_object_t object; 2077 int nl = 0; 2078 int c; 2079 2080 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2081 vm_pindex_t idx, fidx; 2082 vm_pindex_t osize; 2083 vm_paddr_t pa = -1, padiff; 2084 int rcount; 2085 vm_page_t m; 2086 2087 db_printf("new object: %p\n", (void *)object); 2088 if (nl > 18) { 2089 c = cngetc(); 2090 if (c != ' ') 2091 return; 2092 nl = 0; 2093 } 2094 nl++; 2095 rcount = 0; 2096 fidx = 0; 2097 osize = object->size; 2098 if (osize > 128) 2099 osize = 128; 2100 for (idx = 0; idx < osize; idx++) { 2101 m = vm_page_lookup(object, idx); 2102 if (m == NULL) { 2103 if (rcount) { 2104 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2105 (long)fidx, rcount, (long)pa); 2106 if (nl > 18) { 2107 c = cngetc(); 2108 if (c != ' ') 2109 return; 2110 nl = 0; 2111 } 2112 nl++; 2113 rcount = 0; 2114 } 2115 continue; 2116 } 2117 2118 2119 if (rcount && 2120 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2121 ++rcount; 2122 continue; 2123 } 2124 if (rcount) { 2125 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m); 2126 padiff >>= PAGE_SHIFT; 2127 padiff &= PQ_COLORMASK; 2128 if (padiff == 0) { 2129 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE; 2130 ++rcount; 2131 continue; 2132 } 2133 db_printf(" index(%ld)run(%d)pa(0x%lx)", 2134 (long)fidx, rcount, (long)pa); 2135 db_printf("pd(%ld)\n", (long)padiff); 2136 if (nl > 18) { 2137 c = cngetc(); 2138 if (c != ' ') 2139 return; 2140 nl = 0; 2141 } 2142 nl++; 2143 } 2144 fidx = idx; 2145 pa = VM_PAGE_TO_PHYS(m); 2146 rcount = 1; 2147 } 2148 if (rcount) { 2149 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2150 (long)fidx, rcount, (long)pa); 2151 if (nl > 18) { 2152 c = cngetc(); 2153 if (c != ' ') 2154 return; 2155 nl = 0; 2156 } 2157 nl++; 2158 } 2159 } 2160 } 2161 #endif /* DDB */ 2162