xref: /freebsd/sys/vm/vm_object.c (revision 26a222dc0c048fc071b548eadad7b80405a1b126)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100 
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104 
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106 		    int pagerflags, int flags, boolean_t *clearobjflags,
107 		    boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109 		    boolean_t *clearobjflags);
110 static void	vm_object_qcollapse(vm_object_t object);
111 static void	vm_object_vndeallocate(vm_object_t object);
112 
113 /*
114  *	Virtual memory objects maintain the actual data
115  *	associated with allocated virtual memory.  A given
116  *	page of memory exists within exactly one object.
117  *
118  *	An object is only deallocated when all "references"
119  *	are given up.  Only one "reference" to a given
120  *	region of an object should be writeable.
121  *
122  *	Associated with each object is a list of all resident
123  *	memory pages belonging to that object; this list is
124  *	maintained by the "vm_page" module, and locked by the object's
125  *	lock.
126  *
127  *	Each object also records a "pager" routine which is
128  *	used to retrieve (and store) pages to the proper backing
129  *	storage.  In addition, objects may be backed by other
130  *	objects from which they were virtual-copied.
131  *
132  *	The only items within the object structure which are
133  *	modified after time of creation are:
134  *		reference count		locked by object's lock
135  *		pager routine		locked by object's lock
136  *
137  */
138 
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;	/* lock for object list and count */
141 
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144 
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147 
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151 
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155 
156 static uma_zone_t obj_zone;
157 
158 static int vm_object_zinit(void *mem, int size, int flags);
159 
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162 
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166 	vm_object_t object;
167 
168 	object = (vm_object_t)mem;
169 	KASSERT(TAILQ_EMPTY(&object->memq),
170 	    ("object %p has resident pages in its memq", object));
171 	KASSERT(vm_radix_is_empty(&object->rtree),
172 	    ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174 	KASSERT(LIST_EMPTY(&object->rvq),
175 	    ("object %p has reservations",
176 	    object));
177 #endif
178 	KASSERT(vm_object_cache_is_empty(object),
179 	    ("object %p has cached pages",
180 	    object));
181 	KASSERT(object->paging_in_progress == 0,
182 	    ("object %p paging_in_progress = %d",
183 	    object, object->paging_in_progress));
184 	KASSERT(object->resident_page_count == 0,
185 	    ("object %p resident_page_count = %d",
186 	    object, object->resident_page_count));
187 	KASSERT(object->shadow_count == 0,
188 	    ("object %p shadow_count = %d",
189 	    object, object->shadow_count));
190 }
191 #endif
192 
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196 	vm_object_t object;
197 
198 	object = (vm_object_t)mem;
199 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
200 
201 	/* These are true for any object that has been freed */
202 	object->rtree.rt_root = 0;
203 	object->rtree.rt_flags = 0;
204 	object->paging_in_progress = 0;
205 	object->resident_page_count = 0;
206 	object->shadow_count = 0;
207 	object->cache.rt_root = 0;
208 	object->cache.rt_flags = 0;
209 	return (0);
210 }
211 
212 static void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215 
216 	TAILQ_INIT(&object->memq);
217 	LIST_INIT(&object->shadow_head);
218 
219 	object->type = type;
220 	switch (type) {
221 	case OBJT_DEAD:
222 		panic("_vm_object_allocate: can't create OBJT_DEAD");
223 	case OBJT_DEFAULT:
224 	case OBJT_SWAP:
225 		object->flags = OBJ_ONEMAPPING;
226 		break;
227 	case OBJT_DEVICE:
228 	case OBJT_SG:
229 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
230 		break;
231 	case OBJT_MGTDEVICE:
232 		object->flags = OBJ_FICTITIOUS;
233 		break;
234 	case OBJT_PHYS:
235 		object->flags = OBJ_UNMANAGED;
236 		break;
237 	case OBJT_VNODE:
238 		object->flags = 0;
239 		break;
240 	default:
241 		panic("_vm_object_allocate: type %d is undefined", type);
242 	}
243 	object->size = size;
244 	object->generation = 1;
245 	object->ref_count = 1;
246 	object->memattr = VM_MEMATTR_DEFAULT;
247 	object->cred = NULL;
248 	object->charge = 0;
249 	object->handle = NULL;
250 	object->backing_object = NULL;
251 	object->backing_object_offset = (vm_ooffset_t) 0;
252 #if VM_NRESERVLEVEL > 0
253 	LIST_INIT(&object->rvq);
254 #endif
255 
256 	mtx_lock(&vm_object_list_mtx);
257 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
258 	mtx_unlock(&vm_object_list_mtx);
259 }
260 
261 /*
262  *	vm_object_init:
263  *
264  *	Initialize the VM objects module.
265  */
266 void
267 vm_object_init(void)
268 {
269 	TAILQ_INIT(&vm_object_list);
270 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
271 
272 	rw_init(&kernel_object->lock, "kernel vm object");
273 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
274 	    kernel_object);
275 #if VM_NRESERVLEVEL > 0
276 	kernel_object->flags |= OBJ_COLORED;
277 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
278 #endif
279 
280 	rw_init(&kmem_object->lock, "kmem vm object");
281 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282 	    kmem_object);
283 #if VM_NRESERVLEVEL > 0
284 	kmem_object->flags |= OBJ_COLORED;
285 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286 #endif
287 
288 	/*
289 	 * The lock portion of struct vm_object must be type stable due
290 	 * to vm_pageout_fallback_object_lock locking a vm object
291 	 * without holding any references to it.
292 	 */
293 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
294 #ifdef INVARIANTS
295 	    vm_object_zdtor,
296 #else
297 	    NULL,
298 #endif
299 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300 
301 	vm_radix_init();
302 }
303 
304 void
305 vm_object_clear_flag(vm_object_t object, u_short bits)
306 {
307 
308 	VM_OBJECT_ASSERT_WLOCKED(object);
309 	object->flags &= ~bits;
310 }
311 
312 /*
313  *	Sets the default memory attribute for the specified object.  Pages
314  *	that are allocated to this object are by default assigned this memory
315  *	attribute.
316  *
317  *	Presently, this function must be called before any pages are allocated
318  *	to the object.  In the future, this requirement may be relaxed for
319  *	"default" and "swap" objects.
320  */
321 int
322 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
323 {
324 
325 	VM_OBJECT_ASSERT_WLOCKED(object);
326 	switch (object->type) {
327 	case OBJT_DEFAULT:
328 	case OBJT_DEVICE:
329 	case OBJT_MGTDEVICE:
330 	case OBJT_PHYS:
331 	case OBJT_SG:
332 	case OBJT_SWAP:
333 	case OBJT_VNODE:
334 		if (!TAILQ_EMPTY(&object->memq))
335 			return (KERN_FAILURE);
336 		break;
337 	case OBJT_DEAD:
338 		return (KERN_INVALID_ARGUMENT);
339 	default:
340 		panic("vm_object_set_memattr: object %p is of undefined type",
341 		    object);
342 	}
343 	object->memattr = memattr;
344 	return (KERN_SUCCESS);
345 }
346 
347 void
348 vm_object_pip_add(vm_object_t object, short i)
349 {
350 
351 	VM_OBJECT_ASSERT_WLOCKED(object);
352 	object->paging_in_progress += i;
353 }
354 
355 void
356 vm_object_pip_subtract(vm_object_t object, short i)
357 {
358 
359 	VM_OBJECT_ASSERT_WLOCKED(object);
360 	object->paging_in_progress -= i;
361 }
362 
363 void
364 vm_object_pip_wakeup(vm_object_t object)
365 {
366 
367 	VM_OBJECT_ASSERT_WLOCKED(object);
368 	object->paging_in_progress--;
369 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
370 		vm_object_clear_flag(object, OBJ_PIPWNT);
371 		wakeup(object);
372 	}
373 }
374 
375 void
376 vm_object_pip_wakeupn(vm_object_t object, short i)
377 {
378 
379 	VM_OBJECT_ASSERT_WLOCKED(object);
380 	if (i)
381 		object->paging_in_progress -= i;
382 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
383 		vm_object_clear_flag(object, OBJ_PIPWNT);
384 		wakeup(object);
385 	}
386 }
387 
388 void
389 vm_object_pip_wait(vm_object_t object, char *waitid)
390 {
391 
392 	VM_OBJECT_ASSERT_WLOCKED(object);
393 	while (object->paging_in_progress) {
394 		object->flags |= OBJ_PIPWNT;
395 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
396 	}
397 }
398 
399 /*
400  *	vm_object_allocate:
401  *
402  *	Returns a new object with the given size.
403  */
404 vm_object_t
405 vm_object_allocate(objtype_t type, vm_pindex_t size)
406 {
407 	vm_object_t object;
408 
409 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
410 	_vm_object_allocate(type, size, object);
411 	return (object);
412 }
413 
414 
415 /*
416  *	vm_object_reference:
417  *
418  *	Gets another reference to the given object.  Note: OBJ_DEAD
419  *	objects can be referenced during final cleaning.
420  */
421 void
422 vm_object_reference(vm_object_t object)
423 {
424 	if (object == NULL)
425 		return;
426 	VM_OBJECT_WLOCK(object);
427 	vm_object_reference_locked(object);
428 	VM_OBJECT_WUNLOCK(object);
429 }
430 
431 /*
432  *	vm_object_reference_locked:
433  *
434  *	Gets another reference to the given object.
435  *
436  *	The object must be locked.
437  */
438 void
439 vm_object_reference_locked(vm_object_t object)
440 {
441 	struct vnode *vp;
442 
443 	VM_OBJECT_ASSERT_WLOCKED(object);
444 	object->ref_count++;
445 	if (object->type == OBJT_VNODE) {
446 		vp = object->handle;
447 		vref(vp);
448 	}
449 }
450 
451 /*
452  * Handle deallocating an object of type OBJT_VNODE.
453  */
454 static void
455 vm_object_vndeallocate(vm_object_t object)
456 {
457 	struct vnode *vp = (struct vnode *) object->handle;
458 
459 	VM_OBJECT_ASSERT_WLOCKED(object);
460 	KASSERT(object->type == OBJT_VNODE,
461 	    ("vm_object_vndeallocate: not a vnode object"));
462 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
463 #ifdef INVARIANTS
464 	if (object->ref_count == 0) {
465 		vprint("vm_object_vndeallocate", vp);
466 		panic("vm_object_vndeallocate: bad object reference count");
467 	}
468 #endif
469 
470 	/*
471 	 * The test for text of vp vnode does not need a bypass to
472 	 * reach right VV_TEXT there, since it is obtained from
473 	 * object->handle.
474 	 */
475 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
476 		object->ref_count--;
477 		VM_OBJECT_WUNLOCK(object);
478 		/* vrele may need the vnode lock. */
479 		vrele(vp);
480 	} else {
481 		vhold(vp);
482 		VM_OBJECT_WUNLOCK(object);
483 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
484 		vdrop(vp);
485 		VM_OBJECT_WLOCK(object);
486 		object->ref_count--;
487 		if (object->type == OBJT_DEAD) {
488 			VM_OBJECT_WUNLOCK(object);
489 			VOP_UNLOCK(vp, 0);
490 		} else {
491 			if (object->ref_count == 0)
492 				VOP_UNSET_TEXT(vp);
493 			VM_OBJECT_WUNLOCK(object);
494 			vput(vp);
495 		}
496 	}
497 }
498 
499 /*
500  *	vm_object_deallocate:
501  *
502  *	Release a reference to the specified object,
503  *	gained either through a vm_object_allocate
504  *	or a vm_object_reference call.  When all references
505  *	are gone, storage associated with this object
506  *	may be relinquished.
507  *
508  *	No object may be locked.
509  */
510 void
511 vm_object_deallocate(vm_object_t object)
512 {
513 	vm_object_t temp;
514 	struct vnode *vp;
515 
516 	while (object != NULL) {
517 		VM_OBJECT_WLOCK(object);
518 		if (object->type == OBJT_VNODE) {
519 			vm_object_vndeallocate(object);
520 			return;
521 		}
522 
523 		KASSERT(object->ref_count != 0,
524 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
525 
526 		/*
527 		 * If the reference count goes to 0 we start calling
528 		 * vm_object_terminate() on the object chain.
529 		 * A ref count of 1 may be a special case depending on the
530 		 * shadow count being 0 or 1.
531 		 */
532 		object->ref_count--;
533 		if (object->ref_count > 1) {
534 			VM_OBJECT_WUNLOCK(object);
535 			return;
536 		} else if (object->ref_count == 1) {
537 			if (object->type == OBJT_SWAP &&
538 			    (object->flags & OBJ_TMPFS) != 0) {
539 				vp = object->un_pager.swp.swp_tmpfs;
540 				vhold(vp);
541 				VM_OBJECT_WUNLOCK(object);
542 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
543 				VM_OBJECT_WLOCK(object);
544 				if (object->type == OBJT_DEAD ||
545 				    object->ref_count != 1) {
546 					VM_OBJECT_WUNLOCK(object);
547 					VOP_UNLOCK(vp, 0);
548 					vdrop(vp);
549 					return;
550 				}
551 				if ((object->flags & OBJ_TMPFS) != 0)
552 					VOP_UNSET_TEXT(vp);
553 				VOP_UNLOCK(vp, 0);
554 				vdrop(vp);
555 			}
556 			if (object->shadow_count == 0 &&
557 			    object->handle == NULL &&
558 			    (object->type == OBJT_DEFAULT ||
559 			    (object->type == OBJT_SWAP &&
560 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
561 				vm_object_set_flag(object, OBJ_ONEMAPPING);
562 			} else if ((object->shadow_count == 1) &&
563 			    (object->handle == NULL) &&
564 			    (object->type == OBJT_DEFAULT ||
565 			     object->type == OBJT_SWAP)) {
566 				vm_object_t robject;
567 
568 				robject = LIST_FIRST(&object->shadow_head);
569 				KASSERT(robject != NULL,
570 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
571 					 object->ref_count,
572 					 object->shadow_count));
573 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
574 				    ("shadowed tmpfs v_object %p", object));
575 				if (!VM_OBJECT_TRYWLOCK(robject)) {
576 					/*
577 					 * Avoid a potential deadlock.
578 					 */
579 					object->ref_count++;
580 					VM_OBJECT_WUNLOCK(object);
581 					/*
582 					 * More likely than not the thread
583 					 * holding robject's lock has lower
584 					 * priority than the current thread.
585 					 * Let the lower priority thread run.
586 					 */
587 					pause("vmo_de", 1);
588 					continue;
589 				}
590 				/*
591 				 * Collapse object into its shadow unless its
592 				 * shadow is dead.  In that case, object will
593 				 * be deallocated by the thread that is
594 				 * deallocating its shadow.
595 				 */
596 				if ((robject->flags & OBJ_DEAD) == 0 &&
597 				    (robject->handle == NULL) &&
598 				    (robject->type == OBJT_DEFAULT ||
599 				     robject->type == OBJT_SWAP)) {
600 
601 					robject->ref_count++;
602 retry:
603 					if (robject->paging_in_progress) {
604 						VM_OBJECT_WUNLOCK(object);
605 						vm_object_pip_wait(robject,
606 						    "objde1");
607 						temp = robject->backing_object;
608 						if (object == temp) {
609 							VM_OBJECT_WLOCK(object);
610 							goto retry;
611 						}
612 					} else if (object->paging_in_progress) {
613 						VM_OBJECT_WUNLOCK(robject);
614 						object->flags |= OBJ_PIPWNT;
615 						VM_OBJECT_SLEEP(object, object,
616 						    PDROP | PVM, "objde2", 0);
617 						VM_OBJECT_WLOCK(robject);
618 						temp = robject->backing_object;
619 						if (object == temp) {
620 							VM_OBJECT_WLOCK(object);
621 							goto retry;
622 						}
623 					} else
624 						VM_OBJECT_WUNLOCK(object);
625 
626 					if (robject->ref_count == 1) {
627 						robject->ref_count--;
628 						object = robject;
629 						goto doterm;
630 					}
631 					object = robject;
632 					vm_object_collapse(object);
633 					VM_OBJECT_WUNLOCK(object);
634 					continue;
635 				}
636 				VM_OBJECT_WUNLOCK(robject);
637 			}
638 			VM_OBJECT_WUNLOCK(object);
639 			return;
640 		}
641 doterm:
642 		temp = object->backing_object;
643 		if (temp != NULL) {
644 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
645 			    ("shadowed tmpfs v_object 2 %p", object));
646 			VM_OBJECT_WLOCK(temp);
647 			LIST_REMOVE(object, shadow_list);
648 			temp->shadow_count--;
649 			VM_OBJECT_WUNLOCK(temp);
650 			object->backing_object = NULL;
651 		}
652 		/*
653 		 * Don't double-terminate, we could be in a termination
654 		 * recursion due to the terminate having to sync data
655 		 * to disk.
656 		 */
657 		if ((object->flags & OBJ_DEAD) == 0)
658 			vm_object_terminate(object);
659 		else
660 			VM_OBJECT_WUNLOCK(object);
661 		object = temp;
662 	}
663 }
664 
665 /*
666  *	vm_object_destroy removes the object from the global object list
667  *      and frees the space for the object.
668  */
669 void
670 vm_object_destroy(vm_object_t object)
671 {
672 
673 	/*
674 	 * Remove the object from the global object list.
675 	 */
676 	mtx_lock(&vm_object_list_mtx);
677 	TAILQ_REMOVE(&vm_object_list, object, object_list);
678 	mtx_unlock(&vm_object_list_mtx);
679 
680 	/*
681 	 * Release the allocation charge.
682 	 */
683 	if (object->cred != NULL) {
684 		KASSERT(object->type == OBJT_DEFAULT ||
685 		    object->type == OBJT_SWAP,
686 		    ("%s: non-swap obj %p has cred", __func__, object));
687 		swap_release_by_cred(object->charge, object->cred);
688 		object->charge = 0;
689 		crfree(object->cred);
690 		object->cred = NULL;
691 	}
692 
693 	/*
694 	 * Free the space for the object.
695 	 */
696 	uma_zfree(obj_zone, object);
697 }
698 
699 /*
700  *	vm_object_terminate actually destroys the specified object, freeing
701  *	up all previously used resources.
702  *
703  *	The object must be locked.
704  *	This routine may block.
705  */
706 void
707 vm_object_terminate(vm_object_t object)
708 {
709 	vm_page_t p, p_next;
710 
711 	VM_OBJECT_ASSERT_WLOCKED(object);
712 
713 	/*
714 	 * Make sure no one uses us.
715 	 */
716 	vm_object_set_flag(object, OBJ_DEAD);
717 
718 	/*
719 	 * wait for the pageout daemon to be done with the object
720 	 */
721 	vm_object_pip_wait(object, "objtrm");
722 
723 	KASSERT(!object->paging_in_progress,
724 		("vm_object_terminate: pageout in progress"));
725 
726 	/*
727 	 * Clean and free the pages, as appropriate. All references to the
728 	 * object are gone, so we don't need to lock it.
729 	 */
730 	if (object->type == OBJT_VNODE) {
731 		struct vnode *vp = (struct vnode *)object->handle;
732 
733 		/*
734 		 * Clean pages and flush buffers.
735 		 */
736 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
737 		VM_OBJECT_WUNLOCK(object);
738 
739 		vinvalbuf(vp, V_SAVE, 0, 0);
740 
741 		VM_OBJECT_WLOCK(object);
742 	}
743 
744 	KASSERT(object->ref_count == 0,
745 		("vm_object_terminate: object with references, ref_count=%d",
746 		object->ref_count));
747 
748 	/*
749 	 * Free any remaining pageable pages.  This also removes them from the
750 	 * paging queues.  However, don't free wired pages, just remove them
751 	 * from the object.  Rather than incrementally removing each page from
752 	 * the object, the page and object are reset to any empty state.
753 	 */
754 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
755 		vm_page_assert_unbusied(p);
756 		vm_page_lock(p);
757 		/*
758 		 * Optimize the page's removal from the object by resetting
759 		 * its "object" field.  Specifically, if the page is not
760 		 * wired, then the effect of this assignment is that
761 		 * vm_page_free()'s call to vm_page_remove() will return
762 		 * immediately without modifying the page or the object.
763 		 */
764 		p->object = NULL;
765 		if (p->wire_count == 0) {
766 			vm_page_free(p);
767 			PCPU_INC(cnt.v_pfree);
768 		}
769 		vm_page_unlock(p);
770 	}
771 	/*
772 	 * If the object contained any pages, then reset it to an empty state.
773 	 * None of the object's fields, including "resident_page_count", were
774 	 * modified by the preceding loop.
775 	 */
776 	if (object->resident_page_count != 0) {
777 		vm_radix_reclaim_allnodes(&object->rtree);
778 		TAILQ_INIT(&object->memq);
779 		object->resident_page_count = 0;
780 		if (object->type == OBJT_VNODE)
781 			vdrop(object->handle);
782 	}
783 
784 #if VM_NRESERVLEVEL > 0
785 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
786 		vm_reserv_break_all(object);
787 #endif
788 	if (__predict_false(!vm_object_cache_is_empty(object)))
789 		vm_page_cache_free(object, 0, 0);
790 
791 	/*
792 	 * Let the pager know object is dead.
793 	 */
794 	vm_pager_deallocate(object);
795 	VM_OBJECT_WUNLOCK(object);
796 
797 	vm_object_destroy(object);
798 }
799 
800 /*
801  * Make the page read-only so that we can clear the object flags.  However, if
802  * this is a nosync mmap then the object is likely to stay dirty so do not
803  * mess with the page and do not clear the object flags.  Returns TRUE if the
804  * page should be flushed, and FALSE otherwise.
805  */
806 static boolean_t
807 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
808 {
809 
810 	/*
811 	 * If we have been asked to skip nosync pages and this is a
812 	 * nosync page, skip it.  Note that the object flags were not
813 	 * cleared in this case so we do not have to set them.
814 	 */
815 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
816 		*clearobjflags = FALSE;
817 		return (FALSE);
818 	} else {
819 		pmap_remove_write(p);
820 		return (p->dirty != 0);
821 	}
822 }
823 
824 /*
825  *	vm_object_page_clean
826  *
827  *	Clean all dirty pages in the specified range of object.  Leaves page
828  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
829  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
830  *	leaving the object dirty.
831  *
832  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
833  *	synchronous clustering mode implementation.
834  *
835  *	Odd semantics: if start == end, we clean everything.
836  *
837  *	The object must be locked.
838  *
839  *	Returns FALSE if some page from the range was not written, as
840  *	reported by the pager, and TRUE otherwise.
841  */
842 boolean_t
843 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
844     int flags)
845 {
846 	vm_page_t np, p;
847 	vm_pindex_t pi, tend, tstart;
848 	int curgeneration, n, pagerflags;
849 	boolean_t clearobjflags, eio, res;
850 
851 	VM_OBJECT_ASSERT_WLOCKED(object);
852 
853 	/*
854 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
855 	 * objects.  The check below prevents the function from
856 	 * operating on non-vnode objects.
857 	 */
858 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
859 	    object->resident_page_count == 0)
860 		return (TRUE);
861 
862 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
863 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
864 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
865 
866 	tstart = OFF_TO_IDX(start);
867 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
868 	clearobjflags = tstart == 0 && tend >= object->size;
869 	res = TRUE;
870 
871 rescan:
872 	curgeneration = object->generation;
873 
874 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
875 		pi = p->pindex;
876 		if (pi >= tend)
877 			break;
878 		np = TAILQ_NEXT(p, listq);
879 		if (p->valid == 0)
880 			continue;
881 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
882 			if (object->generation != curgeneration) {
883 				if ((flags & OBJPC_SYNC) != 0)
884 					goto rescan;
885 				else
886 					clearobjflags = FALSE;
887 			}
888 			np = vm_page_find_least(object, pi);
889 			continue;
890 		}
891 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
892 			continue;
893 
894 		n = vm_object_page_collect_flush(object, p, pagerflags,
895 		    flags, &clearobjflags, &eio);
896 		if (eio) {
897 			res = FALSE;
898 			clearobjflags = FALSE;
899 		}
900 		if (object->generation != curgeneration) {
901 			if ((flags & OBJPC_SYNC) != 0)
902 				goto rescan;
903 			else
904 				clearobjflags = FALSE;
905 		}
906 
907 		/*
908 		 * If the VOP_PUTPAGES() did a truncated write, so
909 		 * that even the first page of the run is not fully
910 		 * written, vm_pageout_flush() returns 0 as the run
911 		 * length.  Since the condition that caused truncated
912 		 * write may be permanent, e.g. exhausted free space,
913 		 * accepting n == 0 would cause an infinite loop.
914 		 *
915 		 * Forwarding the iterator leaves the unwritten page
916 		 * behind, but there is not much we can do there if
917 		 * filesystem refuses to write it.
918 		 */
919 		if (n == 0) {
920 			n = 1;
921 			clearobjflags = FALSE;
922 		}
923 		np = vm_page_find_least(object, pi + n);
924 	}
925 #if 0
926 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
927 #endif
928 
929 	if (clearobjflags)
930 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
931 	return (res);
932 }
933 
934 static int
935 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
936     int flags, boolean_t *clearobjflags, boolean_t *eio)
937 {
938 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
939 	int count, i, mreq, runlen;
940 
941 	vm_page_lock_assert(p, MA_NOTOWNED);
942 	VM_OBJECT_ASSERT_WLOCKED(object);
943 
944 	count = 1;
945 	mreq = 0;
946 
947 	for (tp = p; count < vm_pageout_page_count; count++) {
948 		tp = vm_page_next(tp);
949 		if (tp == NULL || vm_page_busied(tp))
950 			break;
951 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
952 			break;
953 	}
954 
955 	for (p_first = p; count < vm_pageout_page_count; count++) {
956 		tp = vm_page_prev(p_first);
957 		if (tp == NULL || vm_page_busied(tp))
958 			break;
959 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
960 			break;
961 		p_first = tp;
962 		mreq++;
963 	}
964 
965 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
966 		ma[i] = tp;
967 
968 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
969 	return (runlen);
970 }
971 
972 /*
973  * Note that there is absolutely no sense in writing out
974  * anonymous objects, so we track down the vnode object
975  * to write out.
976  * We invalidate (remove) all pages from the address space
977  * for semantic correctness.
978  *
979  * If the backing object is a device object with unmanaged pages, then any
980  * mappings to the specified range of pages must be removed before this
981  * function is called.
982  *
983  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
984  * may start out with a NULL object.
985  */
986 boolean_t
987 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
988     boolean_t syncio, boolean_t invalidate)
989 {
990 	vm_object_t backing_object;
991 	struct vnode *vp;
992 	struct mount *mp;
993 	int error, flags, fsync_after;
994 	boolean_t res;
995 
996 	if (object == NULL)
997 		return (TRUE);
998 	res = TRUE;
999 	error = 0;
1000 	VM_OBJECT_WLOCK(object);
1001 	while ((backing_object = object->backing_object) != NULL) {
1002 		VM_OBJECT_WLOCK(backing_object);
1003 		offset += object->backing_object_offset;
1004 		VM_OBJECT_WUNLOCK(object);
1005 		object = backing_object;
1006 		if (object->size < OFF_TO_IDX(offset + size))
1007 			size = IDX_TO_OFF(object->size) - offset;
1008 	}
1009 	/*
1010 	 * Flush pages if writing is allowed, invalidate them
1011 	 * if invalidation requested.  Pages undergoing I/O
1012 	 * will be ignored by vm_object_page_remove().
1013 	 *
1014 	 * We cannot lock the vnode and then wait for paging
1015 	 * to complete without deadlocking against vm_fault.
1016 	 * Instead we simply call vm_object_page_remove() and
1017 	 * allow it to block internally on a page-by-page
1018 	 * basis when it encounters pages undergoing async
1019 	 * I/O.
1020 	 */
1021 	if (object->type == OBJT_VNODE &&
1022 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1023 		vp = object->handle;
1024 		VM_OBJECT_WUNLOCK(object);
1025 		(void) vn_start_write(vp, &mp, V_WAIT);
1026 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1027 		if (syncio && !invalidate && offset == 0 &&
1028 		    OFF_TO_IDX(size) == object->size) {
1029 			/*
1030 			 * If syncing the whole mapping of the file,
1031 			 * it is faster to schedule all the writes in
1032 			 * async mode, also allowing the clustering,
1033 			 * and then wait for i/o to complete.
1034 			 */
1035 			flags = 0;
1036 			fsync_after = TRUE;
1037 		} else {
1038 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1039 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1040 			fsync_after = FALSE;
1041 		}
1042 		VM_OBJECT_WLOCK(object);
1043 		res = vm_object_page_clean(object, offset, offset + size,
1044 		    flags);
1045 		VM_OBJECT_WUNLOCK(object);
1046 		if (fsync_after)
1047 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1048 		VOP_UNLOCK(vp, 0);
1049 		vn_finished_write(mp);
1050 		if (error != 0)
1051 			res = FALSE;
1052 		VM_OBJECT_WLOCK(object);
1053 	}
1054 	if ((object->type == OBJT_VNODE ||
1055 	     object->type == OBJT_DEVICE) && invalidate) {
1056 		if (object->type == OBJT_DEVICE)
1057 			/*
1058 			 * The option OBJPR_NOTMAPPED must be passed here
1059 			 * because vm_object_page_remove() cannot remove
1060 			 * unmanaged mappings.
1061 			 */
1062 			flags = OBJPR_NOTMAPPED;
1063 		else if (old_msync)
1064 			flags = OBJPR_NOTWIRED;
1065 		else
1066 			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1067 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1068 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1069 	}
1070 	VM_OBJECT_WUNLOCK(object);
1071 	return (res);
1072 }
1073 
1074 /*
1075  *	vm_object_madvise:
1076  *
1077  *	Implements the madvise function at the object/page level.
1078  *
1079  *	MADV_WILLNEED	(any object)
1080  *
1081  *	    Activate the specified pages if they are resident.
1082  *
1083  *	MADV_DONTNEED	(any object)
1084  *
1085  *	    Deactivate the specified pages if they are resident.
1086  *
1087  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1088  *			 OBJ_ONEMAPPING only)
1089  *
1090  *	    Deactivate and clean the specified pages if they are
1091  *	    resident.  This permits the process to reuse the pages
1092  *	    without faulting or the kernel to reclaim the pages
1093  *	    without I/O.
1094  */
1095 void
1096 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1097     int advise)
1098 {
1099 	vm_pindex_t tpindex;
1100 	vm_object_t backing_object, tobject;
1101 	vm_page_t m;
1102 
1103 	if (object == NULL)
1104 		return;
1105 	VM_OBJECT_WLOCK(object);
1106 	/*
1107 	 * Locate and adjust resident pages
1108 	 */
1109 	for (; pindex < end; pindex += 1) {
1110 relookup:
1111 		tobject = object;
1112 		tpindex = pindex;
1113 shadowlookup:
1114 		/*
1115 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1116 		 * and those pages must be OBJ_ONEMAPPING.
1117 		 */
1118 		if (advise == MADV_FREE) {
1119 			if ((tobject->type != OBJT_DEFAULT &&
1120 			     tobject->type != OBJT_SWAP) ||
1121 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1122 				goto unlock_tobject;
1123 			}
1124 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1125 			goto unlock_tobject;
1126 		m = vm_page_lookup(tobject, tpindex);
1127 		if (m == NULL && advise == MADV_WILLNEED) {
1128 			/*
1129 			 * If the page is cached, reactivate it.
1130 			 */
1131 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1132 			    VM_ALLOC_NOBUSY);
1133 		}
1134 		if (m == NULL) {
1135 			/*
1136 			 * There may be swap even if there is no backing page
1137 			 */
1138 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1139 				swap_pager_freespace(tobject, tpindex, 1);
1140 			/*
1141 			 * next object
1142 			 */
1143 			backing_object = tobject->backing_object;
1144 			if (backing_object == NULL)
1145 				goto unlock_tobject;
1146 			VM_OBJECT_WLOCK(backing_object);
1147 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1148 			if (tobject != object)
1149 				VM_OBJECT_WUNLOCK(tobject);
1150 			tobject = backing_object;
1151 			goto shadowlookup;
1152 		} else if (m->valid != VM_PAGE_BITS_ALL)
1153 			goto unlock_tobject;
1154 		/*
1155 		 * If the page is not in a normal state, skip it.
1156 		 */
1157 		vm_page_lock(m);
1158 		if (m->hold_count != 0 || m->wire_count != 0) {
1159 			vm_page_unlock(m);
1160 			goto unlock_tobject;
1161 		}
1162 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1163 		    ("vm_object_madvise: page %p is fictitious", m));
1164 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1165 		    ("vm_object_madvise: page %p is not managed", m));
1166 		if (vm_page_busied(m)) {
1167 			if (advise == MADV_WILLNEED) {
1168 				/*
1169 				 * Reference the page before unlocking and
1170 				 * sleeping so that the page daemon is less
1171 				 * likely to reclaim it.
1172 				 */
1173 				vm_page_aflag_set(m, PGA_REFERENCED);
1174 			}
1175 			if (object != tobject)
1176 				VM_OBJECT_WUNLOCK(object);
1177 			VM_OBJECT_WUNLOCK(tobject);
1178 			vm_page_busy_sleep(m, "madvpo");
1179 			VM_OBJECT_WLOCK(object);
1180   			goto relookup;
1181 		}
1182 		if (advise == MADV_WILLNEED) {
1183 			vm_page_activate(m);
1184 		} else {
1185 			vm_page_advise(m, advise);
1186 		}
1187 		vm_page_unlock(m);
1188 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1189 			swap_pager_freespace(tobject, tpindex, 1);
1190 unlock_tobject:
1191 		if (tobject != object)
1192 			VM_OBJECT_WUNLOCK(tobject);
1193 	}
1194 	VM_OBJECT_WUNLOCK(object);
1195 }
1196 
1197 /*
1198  *	vm_object_shadow:
1199  *
1200  *	Create a new object which is backed by the
1201  *	specified existing object range.  The source
1202  *	object reference is deallocated.
1203  *
1204  *	The new object and offset into that object
1205  *	are returned in the source parameters.
1206  */
1207 void
1208 vm_object_shadow(
1209 	vm_object_t *object,	/* IN/OUT */
1210 	vm_ooffset_t *offset,	/* IN/OUT */
1211 	vm_size_t length)
1212 {
1213 	vm_object_t source;
1214 	vm_object_t result;
1215 
1216 	source = *object;
1217 
1218 	/*
1219 	 * Don't create the new object if the old object isn't shared.
1220 	 */
1221 	if (source != NULL) {
1222 		VM_OBJECT_WLOCK(source);
1223 		if (source->ref_count == 1 &&
1224 		    source->handle == NULL &&
1225 		    (source->type == OBJT_DEFAULT ||
1226 		     source->type == OBJT_SWAP)) {
1227 			VM_OBJECT_WUNLOCK(source);
1228 			return;
1229 		}
1230 		VM_OBJECT_WUNLOCK(source);
1231 	}
1232 
1233 	/*
1234 	 * Allocate a new object with the given length.
1235 	 */
1236 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1237 
1238 	/*
1239 	 * The new object shadows the source object, adding a reference to it.
1240 	 * Our caller changes his reference to point to the new object,
1241 	 * removing a reference to the source object.  Net result: no change
1242 	 * of reference count.
1243 	 *
1244 	 * Try to optimize the result object's page color when shadowing
1245 	 * in order to maintain page coloring consistency in the combined
1246 	 * shadowed object.
1247 	 */
1248 	result->backing_object = source;
1249 	/*
1250 	 * Store the offset into the source object, and fix up the offset into
1251 	 * the new object.
1252 	 */
1253 	result->backing_object_offset = *offset;
1254 	if (source != NULL) {
1255 		VM_OBJECT_WLOCK(source);
1256 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1257 		source->shadow_count++;
1258 #if VM_NRESERVLEVEL > 0
1259 		result->flags |= source->flags & OBJ_COLORED;
1260 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1261 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1262 #endif
1263 		VM_OBJECT_WUNLOCK(source);
1264 	}
1265 
1266 
1267 	/*
1268 	 * Return the new things
1269 	 */
1270 	*offset = 0;
1271 	*object = result;
1272 }
1273 
1274 /*
1275  *	vm_object_split:
1276  *
1277  * Split the pages in a map entry into a new object.  This affords
1278  * easier removal of unused pages, and keeps object inheritance from
1279  * being a negative impact on memory usage.
1280  */
1281 void
1282 vm_object_split(vm_map_entry_t entry)
1283 {
1284 	vm_page_t m, m_next;
1285 	vm_object_t orig_object, new_object, source;
1286 	vm_pindex_t idx, offidxstart;
1287 	vm_size_t size;
1288 
1289 	orig_object = entry->object.vm_object;
1290 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1291 		return;
1292 	if (orig_object->ref_count <= 1)
1293 		return;
1294 	VM_OBJECT_WUNLOCK(orig_object);
1295 
1296 	offidxstart = OFF_TO_IDX(entry->offset);
1297 	size = atop(entry->end - entry->start);
1298 
1299 	/*
1300 	 * If swap_pager_copy() is later called, it will convert new_object
1301 	 * into a swap object.
1302 	 */
1303 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1304 
1305 	/*
1306 	 * At this point, the new object is still private, so the order in
1307 	 * which the original and new objects are locked does not matter.
1308 	 */
1309 	VM_OBJECT_WLOCK(new_object);
1310 	VM_OBJECT_WLOCK(orig_object);
1311 	source = orig_object->backing_object;
1312 	if (source != NULL) {
1313 		VM_OBJECT_WLOCK(source);
1314 		if ((source->flags & OBJ_DEAD) != 0) {
1315 			VM_OBJECT_WUNLOCK(source);
1316 			VM_OBJECT_WUNLOCK(orig_object);
1317 			VM_OBJECT_WUNLOCK(new_object);
1318 			vm_object_deallocate(new_object);
1319 			VM_OBJECT_WLOCK(orig_object);
1320 			return;
1321 		}
1322 		LIST_INSERT_HEAD(&source->shadow_head,
1323 				  new_object, shadow_list);
1324 		source->shadow_count++;
1325 		vm_object_reference_locked(source);	/* for new_object */
1326 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1327 		VM_OBJECT_WUNLOCK(source);
1328 		new_object->backing_object_offset =
1329 			orig_object->backing_object_offset + entry->offset;
1330 		new_object->backing_object = source;
1331 	}
1332 	if (orig_object->cred != NULL) {
1333 		new_object->cred = orig_object->cred;
1334 		crhold(orig_object->cred);
1335 		new_object->charge = ptoa(size);
1336 		KASSERT(orig_object->charge >= ptoa(size),
1337 		    ("orig_object->charge < 0"));
1338 		orig_object->charge -= ptoa(size);
1339 	}
1340 retry:
1341 	m = vm_page_find_least(orig_object, offidxstart);
1342 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1343 	    m = m_next) {
1344 		m_next = TAILQ_NEXT(m, listq);
1345 
1346 		/*
1347 		 * We must wait for pending I/O to complete before we can
1348 		 * rename the page.
1349 		 *
1350 		 * We do not have to VM_PROT_NONE the page as mappings should
1351 		 * not be changed by this operation.
1352 		 */
1353 		if (vm_page_busied(m)) {
1354 			VM_OBJECT_WUNLOCK(new_object);
1355 			vm_page_lock(m);
1356 			VM_OBJECT_WUNLOCK(orig_object);
1357 			vm_page_busy_sleep(m, "spltwt");
1358 			VM_OBJECT_WLOCK(orig_object);
1359 			VM_OBJECT_WLOCK(new_object);
1360 			goto retry;
1361 		}
1362 
1363 		/* vm_page_rename() will handle dirty and cache. */
1364 		if (vm_page_rename(m, new_object, idx)) {
1365 			VM_OBJECT_WUNLOCK(new_object);
1366 			VM_OBJECT_WUNLOCK(orig_object);
1367 			VM_WAIT;
1368 			VM_OBJECT_WLOCK(orig_object);
1369 			VM_OBJECT_WLOCK(new_object);
1370 			goto retry;
1371 		}
1372 #if VM_NRESERVLEVEL > 0
1373 		/*
1374 		 * If some of the reservation's allocated pages remain with
1375 		 * the original object, then transferring the reservation to
1376 		 * the new object is neither particularly beneficial nor
1377 		 * particularly harmful as compared to leaving the reservation
1378 		 * with the original object.  If, however, all of the
1379 		 * reservation's allocated pages are transferred to the new
1380 		 * object, then transferring the reservation is typically
1381 		 * beneficial.  Determining which of these two cases applies
1382 		 * would be more costly than unconditionally renaming the
1383 		 * reservation.
1384 		 */
1385 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1386 #endif
1387 		if (orig_object->type == OBJT_SWAP)
1388 			vm_page_xbusy(m);
1389 	}
1390 	if (orig_object->type == OBJT_SWAP) {
1391 		/*
1392 		 * swap_pager_copy() can sleep, in which case the orig_object's
1393 		 * and new_object's locks are released and reacquired.
1394 		 */
1395 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1396 		TAILQ_FOREACH(m, &new_object->memq, listq)
1397 			vm_page_xunbusy(m);
1398 
1399 		/*
1400 		 * Transfer any cached pages from orig_object to new_object.
1401 		 * If swap_pager_copy() found swapped out pages within the
1402 		 * specified range of orig_object, then it changed
1403 		 * new_object's type to OBJT_SWAP when it transferred those
1404 		 * pages to new_object.  Otherwise, new_object's type
1405 		 * should still be OBJT_DEFAULT and orig_object should not
1406 		 * contain any cached pages within the specified range.
1407 		 */
1408 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1409 			vm_page_cache_transfer(orig_object, offidxstart,
1410 			    new_object);
1411 	}
1412 	VM_OBJECT_WUNLOCK(orig_object);
1413 	VM_OBJECT_WUNLOCK(new_object);
1414 	entry->object.vm_object = new_object;
1415 	entry->offset = 0LL;
1416 	vm_object_deallocate(orig_object);
1417 	VM_OBJECT_WLOCK(new_object);
1418 }
1419 
1420 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1421 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1422 #define	OBSC_COLLAPSE_WAIT	0x0004
1423 
1424 static int
1425 vm_object_backing_scan(vm_object_t object, int op)
1426 {
1427 	int r = 1;
1428 	vm_page_t p;
1429 	vm_object_t backing_object;
1430 	vm_pindex_t backing_offset_index;
1431 
1432 	VM_OBJECT_ASSERT_WLOCKED(object);
1433 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1434 
1435 	backing_object = object->backing_object;
1436 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1437 
1438 	/*
1439 	 * Initial conditions
1440 	 */
1441 	if (op & OBSC_TEST_ALL_SHADOWED) {
1442 		/*
1443 		 * We do not want to have to test for the existence of cache
1444 		 * or swap pages in the backing object.  XXX but with the
1445 		 * new swapper this would be pretty easy to do.
1446 		 *
1447 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1448 		 * been ZFOD faulted yet?  If we do not test for this, the
1449 		 * shadow test may succeed! XXX
1450 		 */
1451 		if (backing_object->type != OBJT_DEFAULT) {
1452 			return (0);
1453 		}
1454 	}
1455 	if (op & OBSC_COLLAPSE_WAIT) {
1456 		vm_object_set_flag(backing_object, OBJ_DEAD);
1457 	}
1458 
1459 	/*
1460 	 * Our scan
1461 	 */
1462 	p = TAILQ_FIRST(&backing_object->memq);
1463 	while (p) {
1464 		vm_page_t next = TAILQ_NEXT(p, listq);
1465 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1466 
1467 		if (op & OBSC_TEST_ALL_SHADOWED) {
1468 			vm_page_t pp;
1469 
1470 			/*
1471 			 * Ignore pages outside the parent object's range
1472 			 * and outside the parent object's mapping of the
1473 			 * backing object.
1474 			 *
1475 			 * note that we do not busy the backing object's
1476 			 * page.
1477 			 */
1478 			if (
1479 			    p->pindex < backing_offset_index ||
1480 			    new_pindex >= object->size
1481 			) {
1482 				p = next;
1483 				continue;
1484 			}
1485 
1486 			/*
1487 			 * See if the parent has the page or if the parent's
1488 			 * object pager has the page.  If the parent has the
1489 			 * page but the page is not valid, the parent's
1490 			 * object pager must have the page.
1491 			 *
1492 			 * If this fails, the parent does not completely shadow
1493 			 * the object and we might as well give up now.
1494 			 */
1495 
1496 			pp = vm_page_lookup(object, new_pindex);
1497 			if (
1498 			    (pp == NULL || pp->valid == 0) &&
1499 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1500 			) {
1501 				r = 0;
1502 				break;
1503 			}
1504 		}
1505 
1506 		/*
1507 		 * Check for busy page
1508 		 */
1509 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1510 			vm_page_t pp;
1511 
1512 			if (op & OBSC_COLLAPSE_NOWAIT) {
1513 				if (!p->valid || vm_page_busied(p)) {
1514 					p = next;
1515 					continue;
1516 				}
1517 			} else if (op & OBSC_COLLAPSE_WAIT) {
1518 				if (vm_page_busied(p)) {
1519 					VM_OBJECT_WUNLOCK(object);
1520 					vm_page_lock(p);
1521 					VM_OBJECT_WUNLOCK(backing_object);
1522 					vm_page_busy_sleep(p, "vmocol");
1523 					VM_OBJECT_WLOCK(object);
1524 					VM_OBJECT_WLOCK(backing_object);
1525 					/*
1526 					 * If we slept, anything could have
1527 					 * happened.  Since the object is
1528 					 * marked dead, the backing offset
1529 					 * should not have changed so we
1530 					 * just restart our scan.
1531 					 */
1532 					p = TAILQ_FIRST(&backing_object->memq);
1533 					continue;
1534 				}
1535 			}
1536 
1537 			KASSERT(
1538 			    p->object == backing_object,
1539 			    ("vm_object_backing_scan: object mismatch")
1540 			);
1541 
1542 			if (
1543 			    p->pindex < backing_offset_index ||
1544 			    new_pindex >= object->size
1545 			) {
1546 				if (backing_object->type == OBJT_SWAP)
1547 					swap_pager_freespace(backing_object,
1548 					    p->pindex, 1);
1549 
1550 				/*
1551 				 * Page is out of the parent object's range, we
1552 				 * can simply destroy it.
1553 				 */
1554 				vm_page_lock(p);
1555 				KASSERT(!pmap_page_is_mapped(p),
1556 				    ("freeing mapped page %p", p));
1557 				if (p->wire_count == 0)
1558 					vm_page_free(p);
1559 				else
1560 					vm_page_remove(p);
1561 				vm_page_unlock(p);
1562 				p = next;
1563 				continue;
1564 			}
1565 
1566 			pp = vm_page_lookup(object, new_pindex);
1567 			if (
1568 			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1569 			    (pp != NULL && pp->valid == 0)
1570 			) {
1571 				if (backing_object->type == OBJT_SWAP)
1572 					swap_pager_freespace(backing_object,
1573 					    p->pindex, 1);
1574 
1575 				/*
1576 				 * The page in the parent is not (yet) valid.
1577 				 * We don't know anything about the state of
1578 				 * the original page.  It might be mapped,
1579 				 * so we must avoid the next if here.
1580 				 *
1581 				 * This is due to a race in vm_fault() where
1582 				 * we must unbusy the original (backing_obj)
1583 				 * page before we can (re)lock the parent.
1584 				 * Hence we can get here.
1585 				 */
1586 				p = next;
1587 				continue;
1588 			}
1589 			if (
1590 			    pp != NULL ||
1591 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1592 			) {
1593 				if (backing_object->type == OBJT_SWAP)
1594 					swap_pager_freespace(backing_object,
1595 					    p->pindex, 1);
1596 
1597 				/*
1598 				 * page already exists in parent OR swap exists
1599 				 * for this location in the parent.  Destroy
1600 				 * the original page from the backing object.
1601 				 *
1602 				 * Leave the parent's page alone
1603 				 */
1604 				vm_page_lock(p);
1605 				KASSERT(!pmap_page_is_mapped(p),
1606 				    ("freeing mapped page %p", p));
1607 				if (p->wire_count == 0)
1608 					vm_page_free(p);
1609 				else
1610 					vm_page_remove(p);
1611 				vm_page_unlock(p);
1612 				p = next;
1613 				continue;
1614 			}
1615 
1616 			/*
1617 			 * Page does not exist in parent, rename the
1618 			 * page from the backing object to the main object.
1619 			 *
1620 			 * If the page was mapped to a process, it can remain
1621 			 * mapped through the rename.
1622 			 * vm_page_rename() will handle dirty and cache.
1623 			 */
1624 			if (vm_page_rename(p, object, new_pindex)) {
1625 				if (op & OBSC_COLLAPSE_NOWAIT) {
1626 					p = next;
1627 					continue;
1628 				}
1629 				VM_OBJECT_WUNLOCK(backing_object);
1630 				VM_OBJECT_WUNLOCK(object);
1631 				VM_WAIT;
1632 				VM_OBJECT_WLOCK(object);
1633 				VM_OBJECT_WLOCK(backing_object);
1634 				p = TAILQ_FIRST(&backing_object->memq);
1635 				continue;
1636 			}
1637 
1638 			/* Use the old pindex to free the right page. */
1639 			if (backing_object->type == OBJT_SWAP)
1640 				swap_pager_freespace(backing_object,
1641 				    new_pindex + backing_offset_index, 1);
1642 
1643 #if VM_NRESERVLEVEL > 0
1644 			/*
1645 			 * Rename the reservation.
1646 			 */
1647 			vm_reserv_rename(p, object, backing_object,
1648 			    backing_offset_index);
1649 #endif
1650 		}
1651 		p = next;
1652 	}
1653 	return (r);
1654 }
1655 
1656 
1657 /*
1658  * this version of collapse allows the operation to occur earlier and
1659  * when paging_in_progress is true for an object...  This is not a complete
1660  * operation, but should plug 99.9% of the rest of the leaks.
1661  */
1662 static void
1663 vm_object_qcollapse(vm_object_t object)
1664 {
1665 	vm_object_t backing_object = object->backing_object;
1666 
1667 	VM_OBJECT_ASSERT_WLOCKED(object);
1668 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1669 
1670 	if (backing_object->ref_count != 1)
1671 		return;
1672 
1673 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1674 }
1675 
1676 /*
1677  *	vm_object_collapse:
1678  *
1679  *	Collapse an object with the object backing it.
1680  *	Pages in the backing object are moved into the
1681  *	parent, and the backing object is deallocated.
1682  */
1683 void
1684 vm_object_collapse(vm_object_t object)
1685 {
1686 	VM_OBJECT_ASSERT_WLOCKED(object);
1687 
1688 	while (TRUE) {
1689 		vm_object_t backing_object;
1690 
1691 		/*
1692 		 * Verify that the conditions are right for collapse:
1693 		 *
1694 		 * The object exists and the backing object exists.
1695 		 */
1696 		if ((backing_object = object->backing_object) == NULL)
1697 			break;
1698 
1699 		/*
1700 		 * we check the backing object first, because it is most likely
1701 		 * not collapsable.
1702 		 */
1703 		VM_OBJECT_WLOCK(backing_object);
1704 		if (backing_object->handle != NULL ||
1705 		    (backing_object->type != OBJT_DEFAULT &&
1706 		     backing_object->type != OBJT_SWAP) ||
1707 		    (backing_object->flags & OBJ_DEAD) ||
1708 		    object->handle != NULL ||
1709 		    (object->type != OBJT_DEFAULT &&
1710 		     object->type != OBJT_SWAP) ||
1711 		    (object->flags & OBJ_DEAD)) {
1712 			VM_OBJECT_WUNLOCK(backing_object);
1713 			break;
1714 		}
1715 
1716 		if (
1717 		    object->paging_in_progress != 0 ||
1718 		    backing_object->paging_in_progress != 0
1719 		) {
1720 			vm_object_qcollapse(object);
1721 			VM_OBJECT_WUNLOCK(backing_object);
1722 			break;
1723 		}
1724 		/*
1725 		 * We know that we can either collapse the backing object (if
1726 		 * the parent is the only reference to it) or (perhaps) have
1727 		 * the parent bypass the object if the parent happens to shadow
1728 		 * all the resident pages in the entire backing object.
1729 		 *
1730 		 * This is ignoring pager-backed pages such as swap pages.
1731 		 * vm_object_backing_scan fails the shadowing test in this
1732 		 * case.
1733 		 */
1734 		if (backing_object->ref_count == 1) {
1735 			/*
1736 			 * If there is exactly one reference to the backing
1737 			 * object, we can collapse it into the parent.
1738 			 */
1739 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1740 
1741 #if VM_NRESERVLEVEL > 0
1742 			/*
1743 			 * Break any reservations from backing_object.
1744 			 */
1745 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1746 				vm_reserv_break_all(backing_object);
1747 #endif
1748 
1749 			/*
1750 			 * Move the pager from backing_object to object.
1751 			 */
1752 			if (backing_object->type == OBJT_SWAP) {
1753 				/*
1754 				 * swap_pager_copy() can sleep, in which case
1755 				 * the backing_object's and object's locks are
1756 				 * released and reacquired.
1757 				 * Since swap_pager_copy() is being asked to
1758 				 * destroy the source, it will change the
1759 				 * backing_object's type to OBJT_DEFAULT.
1760 				 */
1761 				swap_pager_copy(
1762 				    backing_object,
1763 				    object,
1764 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1765 
1766 				/*
1767 				 * Free any cached pages from backing_object.
1768 				 */
1769 				if (__predict_false(
1770 				    !vm_object_cache_is_empty(backing_object)))
1771 					vm_page_cache_free(backing_object, 0, 0);
1772 			}
1773 			/*
1774 			 * Object now shadows whatever backing_object did.
1775 			 * Note that the reference to
1776 			 * backing_object->backing_object moves from within
1777 			 * backing_object to within object.
1778 			 */
1779 			LIST_REMOVE(object, shadow_list);
1780 			backing_object->shadow_count--;
1781 			if (backing_object->backing_object) {
1782 				VM_OBJECT_WLOCK(backing_object->backing_object);
1783 				LIST_REMOVE(backing_object, shadow_list);
1784 				LIST_INSERT_HEAD(
1785 				    &backing_object->backing_object->shadow_head,
1786 				    object, shadow_list);
1787 				/*
1788 				 * The shadow_count has not changed.
1789 				 */
1790 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1791 			}
1792 			object->backing_object = backing_object->backing_object;
1793 			object->backing_object_offset +=
1794 			    backing_object->backing_object_offset;
1795 
1796 			/*
1797 			 * Discard backing_object.
1798 			 *
1799 			 * Since the backing object has no pages, no pager left,
1800 			 * and no object references within it, all that is
1801 			 * necessary is to dispose of it.
1802 			 */
1803 			KASSERT(backing_object->ref_count == 1, (
1804 "backing_object %p was somehow re-referenced during collapse!",
1805 			    backing_object));
1806 			VM_OBJECT_WUNLOCK(backing_object);
1807 			vm_object_destroy(backing_object);
1808 
1809 			object_collapses++;
1810 		} else {
1811 			vm_object_t new_backing_object;
1812 
1813 			/*
1814 			 * If we do not entirely shadow the backing object,
1815 			 * there is nothing we can do so we give up.
1816 			 */
1817 			if (object->resident_page_count != object->size &&
1818 			    vm_object_backing_scan(object,
1819 			    OBSC_TEST_ALL_SHADOWED) == 0) {
1820 				VM_OBJECT_WUNLOCK(backing_object);
1821 				break;
1822 			}
1823 
1824 			/*
1825 			 * Make the parent shadow the next object in the
1826 			 * chain.  Deallocating backing_object will not remove
1827 			 * it, since its reference count is at least 2.
1828 			 */
1829 			LIST_REMOVE(object, shadow_list);
1830 			backing_object->shadow_count--;
1831 
1832 			new_backing_object = backing_object->backing_object;
1833 			if ((object->backing_object = new_backing_object) != NULL) {
1834 				VM_OBJECT_WLOCK(new_backing_object);
1835 				LIST_INSERT_HEAD(
1836 				    &new_backing_object->shadow_head,
1837 				    object,
1838 				    shadow_list
1839 				);
1840 				new_backing_object->shadow_count++;
1841 				vm_object_reference_locked(new_backing_object);
1842 				VM_OBJECT_WUNLOCK(new_backing_object);
1843 				object->backing_object_offset +=
1844 					backing_object->backing_object_offset;
1845 			}
1846 
1847 			/*
1848 			 * Drop the reference count on backing_object. Since
1849 			 * its ref_count was at least 2, it will not vanish.
1850 			 */
1851 			backing_object->ref_count--;
1852 			VM_OBJECT_WUNLOCK(backing_object);
1853 			object_bypasses++;
1854 		}
1855 
1856 		/*
1857 		 * Try again with this object's new backing object.
1858 		 */
1859 	}
1860 }
1861 
1862 /*
1863  *	vm_object_page_remove:
1864  *
1865  *	For the given object, either frees or invalidates each of the
1866  *	specified pages.  In general, a page is freed.  However, if a page is
1867  *	wired for any reason other than the existence of a managed, wired
1868  *	mapping, then it may be invalidated but not removed from the object.
1869  *	Pages are specified by the given range ["start", "end") and the option
1870  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1871  *	extends from "start" to the end of the object.  If the option
1872  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1873  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1874  *	specified, then the pages within the specified range must have no
1875  *	mappings.  Otherwise, if this option is not specified, any mappings to
1876  *	the specified pages are removed before the pages are freed or
1877  *	invalidated.
1878  *
1879  *	In general, this operation should only be performed on objects that
1880  *	contain managed pages.  There are, however, two exceptions.  First, it
1881  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1882  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1883  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1884  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1885  *
1886  *	The object must be locked.
1887  */
1888 void
1889 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1890     int options)
1891 {
1892 	vm_page_t p, next;
1893 	int wirings;
1894 
1895 	VM_OBJECT_ASSERT_WLOCKED(object);
1896 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1897 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1898 	    ("vm_object_page_remove: illegal options for object %p", object));
1899 	if (object->resident_page_count == 0)
1900 		goto skipmemq;
1901 	vm_object_pip_add(object, 1);
1902 again:
1903 	p = vm_page_find_least(object, start);
1904 
1905 	/*
1906 	 * Here, the variable "p" is either (1) the page with the least pindex
1907 	 * greater than or equal to the parameter "start" or (2) NULL.
1908 	 */
1909 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1910 		next = TAILQ_NEXT(p, listq);
1911 
1912 		/*
1913 		 * If the page is wired for any reason besides the existence
1914 		 * of managed, wired mappings, then it cannot be freed.  For
1915 		 * example, fictitious pages, which represent device memory,
1916 		 * are inherently wired and cannot be freed.  They can,
1917 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1918 		 * not specified.
1919 		 */
1920 		vm_page_lock(p);
1921 		if (vm_page_xbusied(p)) {
1922 			VM_OBJECT_WUNLOCK(object);
1923 			vm_page_busy_sleep(p, "vmopax");
1924 			VM_OBJECT_WLOCK(object);
1925 			goto again;
1926 		}
1927 		if ((wirings = p->wire_count) != 0 &&
1928 		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1929 			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1930 			    0) {
1931 				pmap_remove_all(p);
1932 				/* Account for removal of wired mappings. */
1933 				if (wirings != 0)
1934 					p->wire_count -= wirings;
1935 			}
1936 			if ((options & OBJPR_CLEANONLY) == 0) {
1937 				p->valid = 0;
1938 				vm_page_undirty(p);
1939 			}
1940 			goto next;
1941 		}
1942 		if (vm_page_busied(p)) {
1943 			VM_OBJECT_WUNLOCK(object);
1944 			vm_page_busy_sleep(p, "vmopar");
1945 			VM_OBJECT_WLOCK(object);
1946 			goto again;
1947 		}
1948 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1949 		    ("vm_object_page_remove: page %p is fictitious", p));
1950 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1951 			if ((options & OBJPR_NOTMAPPED) == 0)
1952 				pmap_remove_write(p);
1953 			if (p->dirty)
1954 				goto next;
1955 		}
1956 		if ((options & OBJPR_NOTMAPPED) == 0) {
1957 			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1958 				goto next;
1959 			pmap_remove_all(p);
1960 			/* Account for removal of wired mappings. */
1961 			if (wirings != 0) {
1962 				KASSERT(p->wire_count == wirings,
1963 				    ("inconsistent wire count %d %d %p",
1964 				    p->wire_count, wirings, p));
1965 				p->wire_count = 0;
1966 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1967 			}
1968 		}
1969 		vm_page_free(p);
1970 next:
1971 		vm_page_unlock(p);
1972 	}
1973 	vm_object_pip_wakeup(object);
1974 skipmemq:
1975 	if (__predict_false(!vm_object_cache_is_empty(object)))
1976 		vm_page_cache_free(object, start, end);
1977 }
1978 
1979 /*
1980  *	vm_object_page_cache:
1981  *
1982  *	For the given object, attempt to move the specified clean
1983  *	pages to the cache queue.  If a page is wired for any reason,
1984  *	then it will not be changed.  Pages are specified by the given
1985  *	range ["start", "end").  As a special case, if "end" is zero,
1986  *	then the range extends from "start" to the end of the object.
1987  *	Any mappings to the specified pages are removed before the
1988  *	pages are moved to the cache queue.
1989  *
1990  *	This operation should only be performed on objects that
1991  *	contain non-fictitious, managed pages.
1992  *
1993  *	The object must be locked.
1994  */
1995 void
1996 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1997 {
1998 	struct mtx *mtx, *new_mtx;
1999 	vm_page_t p, next;
2000 
2001 	VM_OBJECT_ASSERT_WLOCKED(object);
2002 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2003 	    ("vm_object_page_cache: illegal object %p", object));
2004 	if (object->resident_page_count == 0)
2005 		return;
2006 	p = vm_page_find_least(object, start);
2007 
2008 	/*
2009 	 * Here, the variable "p" is either (1) the page with the least pindex
2010 	 * greater than or equal to the parameter "start" or (2) NULL.
2011 	 */
2012 	mtx = NULL;
2013 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2014 		next = TAILQ_NEXT(p, listq);
2015 
2016 		/*
2017 		 * Avoid releasing and reacquiring the same page lock.
2018 		 */
2019 		new_mtx = vm_page_lockptr(p);
2020 		if (mtx != new_mtx) {
2021 			if (mtx != NULL)
2022 				mtx_unlock(mtx);
2023 			mtx = new_mtx;
2024 			mtx_lock(mtx);
2025 		}
2026 		vm_page_try_to_cache(p);
2027 	}
2028 	if (mtx != NULL)
2029 		mtx_unlock(mtx);
2030 }
2031 
2032 /*
2033  *	Populate the specified range of the object with valid pages.  Returns
2034  *	TRUE if the range is successfully populated and FALSE otherwise.
2035  *
2036  *	Note: This function should be optimized to pass a larger array of
2037  *	pages to vm_pager_get_pages() before it is applied to a non-
2038  *	OBJT_DEVICE object.
2039  *
2040  *	The object must be locked.
2041  */
2042 boolean_t
2043 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2044 {
2045 	vm_page_t m, ma[1];
2046 	vm_pindex_t pindex;
2047 	int rv;
2048 
2049 	VM_OBJECT_ASSERT_WLOCKED(object);
2050 	for (pindex = start; pindex < end; pindex++) {
2051 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2052 		if (m->valid != VM_PAGE_BITS_ALL) {
2053 			ma[0] = m;
2054 			rv = vm_pager_get_pages(object, ma, 1, 0);
2055 			m = vm_page_lookup(object, pindex);
2056 			if (m == NULL)
2057 				break;
2058 			if (rv != VM_PAGER_OK) {
2059 				vm_page_lock(m);
2060 				vm_page_free(m);
2061 				vm_page_unlock(m);
2062 				break;
2063 			}
2064 		}
2065 		/*
2066 		 * Keep "m" busy because a subsequent iteration may unlock
2067 		 * the object.
2068 		 */
2069 	}
2070 	if (pindex > start) {
2071 		m = vm_page_lookup(object, start);
2072 		while (m != NULL && m->pindex < pindex) {
2073 			vm_page_xunbusy(m);
2074 			m = TAILQ_NEXT(m, listq);
2075 		}
2076 	}
2077 	return (pindex == end);
2078 }
2079 
2080 /*
2081  *	Routine:	vm_object_coalesce
2082  *	Function:	Coalesces two objects backing up adjoining
2083  *			regions of memory into a single object.
2084  *
2085  *	returns TRUE if objects were combined.
2086  *
2087  *	NOTE:	Only works at the moment if the second object is NULL -
2088  *		if it's not, which object do we lock first?
2089  *
2090  *	Parameters:
2091  *		prev_object	First object to coalesce
2092  *		prev_offset	Offset into prev_object
2093  *		prev_size	Size of reference to prev_object
2094  *		next_size	Size of reference to the second object
2095  *		reserved	Indicator that extension region has
2096  *				swap accounted for
2097  *
2098  *	Conditions:
2099  *	The object must *not* be locked.
2100  */
2101 boolean_t
2102 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2103     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2104 {
2105 	vm_pindex_t next_pindex;
2106 
2107 	if (prev_object == NULL)
2108 		return (TRUE);
2109 	VM_OBJECT_WLOCK(prev_object);
2110 	if ((prev_object->type != OBJT_DEFAULT &&
2111 	    prev_object->type != OBJT_SWAP) ||
2112 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2113 		VM_OBJECT_WUNLOCK(prev_object);
2114 		return (FALSE);
2115 	}
2116 
2117 	/*
2118 	 * Try to collapse the object first
2119 	 */
2120 	vm_object_collapse(prev_object);
2121 
2122 	/*
2123 	 * Can't coalesce if: . more than one reference . paged out . shadows
2124 	 * another object . has a copy elsewhere (any of which mean that the
2125 	 * pages not mapped to prev_entry may be in use anyway)
2126 	 */
2127 	if (prev_object->backing_object != NULL) {
2128 		VM_OBJECT_WUNLOCK(prev_object);
2129 		return (FALSE);
2130 	}
2131 
2132 	prev_size >>= PAGE_SHIFT;
2133 	next_size >>= PAGE_SHIFT;
2134 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2135 
2136 	if ((prev_object->ref_count > 1) &&
2137 	    (prev_object->size != next_pindex)) {
2138 		VM_OBJECT_WUNLOCK(prev_object);
2139 		return (FALSE);
2140 	}
2141 
2142 	/*
2143 	 * Account for the charge.
2144 	 */
2145 	if (prev_object->cred != NULL) {
2146 
2147 		/*
2148 		 * If prev_object was charged, then this mapping,
2149 		 * althought not charged now, may become writable
2150 		 * later. Non-NULL cred in the object would prevent
2151 		 * swap reservation during enabling of the write
2152 		 * access, so reserve swap now. Failed reservation
2153 		 * cause allocation of the separate object for the map
2154 		 * entry, and swap reservation for this entry is
2155 		 * managed in appropriate time.
2156 		 */
2157 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2158 		    prev_object->cred)) {
2159 			return (FALSE);
2160 		}
2161 		prev_object->charge += ptoa(next_size);
2162 	}
2163 
2164 	/*
2165 	 * Remove any pages that may still be in the object from a previous
2166 	 * deallocation.
2167 	 */
2168 	if (next_pindex < prev_object->size) {
2169 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2170 		    next_size, 0);
2171 		if (prev_object->type == OBJT_SWAP)
2172 			swap_pager_freespace(prev_object,
2173 					     next_pindex, next_size);
2174 #if 0
2175 		if (prev_object->cred != NULL) {
2176 			KASSERT(prev_object->charge >=
2177 			    ptoa(prev_object->size - next_pindex),
2178 			    ("object %p overcharged 1 %jx %jx", prev_object,
2179 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2180 			prev_object->charge -= ptoa(prev_object->size -
2181 			    next_pindex);
2182 		}
2183 #endif
2184 	}
2185 
2186 	/*
2187 	 * Extend the object if necessary.
2188 	 */
2189 	if (next_pindex + next_size > prev_object->size)
2190 		prev_object->size = next_pindex + next_size;
2191 
2192 	VM_OBJECT_WUNLOCK(prev_object);
2193 	return (TRUE);
2194 }
2195 
2196 void
2197 vm_object_set_writeable_dirty(vm_object_t object)
2198 {
2199 
2200 	VM_OBJECT_ASSERT_WLOCKED(object);
2201 	if (object->type != OBJT_VNODE) {
2202 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2203 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2204 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2205 		}
2206 		return;
2207 	}
2208 	object->generation++;
2209 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2210 		return;
2211 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2212 }
2213 
2214 /*
2215  *	vm_object_unwire:
2216  *
2217  *	For each page offset within the specified range of the given object,
2218  *	find the highest-level page in the shadow chain and unwire it.  A page
2219  *	must exist at every page offset, and the highest-level page must be
2220  *	wired.
2221  */
2222 void
2223 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2224     uint8_t queue)
2225 {
2226 	vm_object_t tobject;
2227 	vm_page_t m, tm;
2228 	vm_pindex_t end_pindex, pindex, tpindex;
2229 	int depth, locked_depth;
2230 
2231 	KASSERT((offset & PAGE_MASK) == 0,
2232 	    ("vm_object_unwire: offset is not page aligned"));
2233 	KASSERT((length & PAGE_MASK) == 0,
2234 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2235 	/* The wired count of a fictitious page never changes. */
2236 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2237 		return;
2238 	pindex = OFF_TO_IDX(offset);
2239 	end_pindex = pindex + atop(length);
2240 	locked_depth = 1;
2241 	VM_OBJECT_RLOCK(object);
2242 	m = vm_page_find_least(object, pindex);
2243 	while (pindex < end_pindex) {
2244 		if (m == NULL || pindex < m->pindex) {
2245 			/*
2246 			 * The first object in the shadow chain doesn't
2247 			 * contain a page at the current index.  Therefore,
2248 			 * the page must exist in a backing object.
2249 			 */
2250 			tobject = object;
2251 			tpindex = pindex;
2252 			depth = 0;
2253 			do {
2254 				tpindex +=
2255 				    OFF_TO_IDX(tobject->backing_object_offset);
2256 				tobject = tobject->backing_object;
2257 				KASSERT(tobject != NULL,
2258 				    ("vm_object_unwire: missing page"));
2259 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2260 					goto next_page;
2261 				depth++;
2262 				if (depth == locked_depth) {
2263 					locked_depth++;
2264 					VM_OBJECT_RLOCK(tobject);
2265 				}
2266 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2267 			    NULL);
2268 		} else {
2269 			tm = m;
2270 			m = TAILQ_NEXT(m, listq);
2271 		}
2272 		vm_page_lock(tm);
2273 		vm_page_unwire(tm, queue);
2274 		vm_page_unlock(tm);
2275 next_page:
2276 		pindex++;
2277 	}
2278 	/* Release the accumulated object locks. */
2279 	for (depth = 0; depth < locked_depth; depth++) {
2280 		tobject = object->backing_object;
2281 		VM_OBJECT_RUNLOCK(object);
2282 		object = tobject;
2283 	}
2284 }
2285 
2286 #include "opt_ddb.h"
2287 #ifdef DDB
2288 #include <sys/kernel.h>
2289 
2290 #include <sys/cons.h>
2291 
2292 #include <ddb/ddb.h>
2293 
2294 static int
2295 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2296 {
2297 	vm_map_t tmpm;
2298 	vm_map_entry_t tmpe;
2299 	vm_object_t obj;
2300 	int entcount;
2301 
2302 	if (map == 0)
2303 		return 0;
2304 
2305 	if (entry == 0) {
2306 		tmpe = map->header.next;
2307 		entcount = map->nentries;
2308 		while (entcount-- && (tmpe != &map->header)) {
2309 			if (_vm_object_in_map(map, object, tmpe)) {
2310 				return 1;
2311 			}
2312 			tmpe = tmpe->next;
2313 		}
2314 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2315 		tmpm = entry->object.sub_map;
2316 		tmpe = tmpm->header.next;
2317 		entcount = tmpm->nentries;
2318 		while (entcount-- && tmpe != &tmpm->header) {
2319 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2320 				return 1;
2321 			}
2322 			tmpe = tmpe->next;
2323 		}
2324 	} else if ((obj = entry->object.vm_object) != NULL) {
2325 		for (; obj; obj = obj->backing_object)
2326 			if (obj == object) {
2327 				return 1;
2328 			}
2329 	}
2330 	return 0;
2331 }
2332 
2333 static int
2334 vm_object_in_map(vm_object_t object)
2335 {
2336 	struct proc *p;
2337 
2338 	/* sx_slock(&allproc_lock); */
2339 	FOREACH_PROC_IN_SYSTEM(p) {
2340 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2341 			continue;
2342 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2343 			/* sx_sunlock(&allproc_lock); */
2344 			return 1;
2345 		}
2346 	}
2347 	/* sx_sunlock(&allproc_lock); */
2348 	if (_vm_object_in_map(kernel_map, object, 0))
2349 		return 1;
2350 	return 0;
2351 }
2352 
2353 DB_SHOW_COMMAND(vmochk, vm_object_check)
2354 {
2355 	vm_object_t object;
2356 
2357 	/*
2358 	 * make sure that internal objs are in a map somewhere
2359 	 * and none have zero ref counts.
2360 	 */
2361 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2362 		if (object->handle == NULL &&
2363 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2364 			if (object->ref_count == 0) {
2365 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2366 					(long)object->size);
2367 			}
2368 			if (!vm_object_in_map(object)) {
2369 				db_printf(
2370 			"vmochk: internal obj is not in a map: "
2371 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2372 				    object->ref_count, (u_long)object->size,
2373 				    (u_long)object->size,
2374 				    (void *)object->backing_object);
2375 			}
2376 		}
2377 	}
2378 }
2379 
2380 /*
2381  *	vm_object_print:	[ debug ]
2382  */
2383 DB_SHOW_COMMAND(object, vm_object_print_static)
2384 {
2385 	/* XXX convert args. */
2386 	vm_object_t object = (vm_object_t)addr;
2387 	boolean_t full = have_addr;
2388 
2389 	vm_page_t p;
2390 
2391 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2392 #define	count	was_count
2393 
2394 	int count;
2395 
2396 	if (object == NULL)
2397 		return;
2398 
2399 	db_iprintf(
2400 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2401 	    object, (int)object->type, (uintmax_t)object->size,
2402 	    object->resident_page_count, object->ref_count, object->flags,
2403 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2404 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2405 	    object->shadow_count,
2406 	    object->backing_object ? object->backing_object->ref_count : 0,
2407 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2408 
2409 	if (!full)
2410 		return;
2411 
2412 	db_indent += 2;
2413 	count = 0;
2414 	TAILQ_FOREACH(p, &object->memq, listq) {
2415 		if (count == 0)
2416 			db_iprintf("memory:=");
2417 		else if (count == 6) {
2418 			db_printf("\n");
2419 			db_iprintf(" ...");
2420 			count = 0;
2421 		} else
2422 			db_printf(",");
2423 		count++;
2424 
2425 		db_printf("(off=0x%jx,page=0x%jx)",
2426 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2427 	}
2428 	if (count != 0)
2429 		db_printf("\n");
2430 	db_indent -= 2;
2431 }
2432 
2433 /* XXX. */
2434 #undef count
2435 
2436 /* XXX need this non-static entry for calling from vm_map_print. */
2437 void
2438 vm_object_print(
2439         /* db_expr_t */ long addr,
2440 	boolean_t have_addr,
2441 	/* db_expr_t */ long count,
2442 	char *modif)
2443 {
2444 	vm_object_print_static(addr, have_addr, count, modif);
2445 }
2446 
2447 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2448 {
2449 	vm_object_t object;
2450 	vm_pindex_t fidx;
2451 	vm_paddr_t pa;
2452 	vm_page_t m, prev_m;
2453 	int rcount, nl, c;
2454 
2455 	nl = 0;
2456 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2457 		db_printf("new object: %p\n", (void *)object);
2458 		if (nl > 18) {
2459 			c = cngetc();
2460 			if (c != ' ')
2461 				return;
2462 			nl = 0;
2463 		}
2464 		nl++;
2465 		rcount = 0;
2466 		fidx = 0;
2467 		pa = -1;
2468 		TAILQ_FOREACH(m, &object->memq, listq) {
2469 			if (m->pindex > 128)
2470 				break;
2471 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2472 			    prev_m->pindex + 1 != m->pindex) {
2473 				if (rcount) {
2474 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2475 						(long)fidx, rcount, (long)pa);
2476 					if (nl > 18) {
2477 						c = cngetc();
2478 						if (c != ' ')
2479 							return;
2480 						nl = 0;
2481 					}
2482 					nl++;
2483 					rcount = 0;
2484 				}
2485 			}
2486 			if (rcount &&
2487 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2488 				++rcount;
2489 				continue;
2490 			}
2491 			if (rcount) {
2492 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2493 					(long)fidx, rcount, (long)pa);
2494 				if (nl > 18) {
2495 					c = cngetc();
2496 					if (c != ' ')
2497 						return;
2498 					nl = 0;
2499 				}
2500 				nl++;
2501 			}
2502 			fidx = m->pindex;
2503 			pa = VM_PAGE_TO_PHYS(m);
2504 			rcount = 1;
2505 		}
2506 		if (rcount) {
2507 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2508 				(long)fidx, rcount, (long)pa);
2509 			if (nl > 18) {
2510 				c = cngetc();
2511 				if (c != ' ')
2512 					return;
2513 				nl = 0;
2514 			}
2515 			nl++;
2516 		}
2517 	}
2518 }
2519 #endif /* DDB */
2520