1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vnode.h> 82 #include <sys/vmmeter.h> 83 #include <sys/sx.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_reserv.h> 97 #include <vm/uma.h> 98 99 static int old_msync; 100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 101 "Use old (insecure) msync behavior"); 102 103 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 104 int pagerflags, int flags, boolean_t *clearobjflags, 105 boolean_t *eio); 106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 107 boolean_t *clearobjflags); 108 static void vm_object_qcollapse(vm_object_t object); 109 static void vm_object_vndeallocate(vm_object_t object); 110 111 /* 112 * Virtual memory objects maintain the actual data 113 * associated with allocated virtual memory. A given 114 * page of memory exists within exactly one object. 115 * 116 * An object is only deallocated when all "references" 117 * are given up. Only one "reference" to a given 118 * region of an object should be writeable. 119 * 120 * Associated with each object is a list of all resident 121 * memory pages belonging to that object; this list is 122 * maintained by the "vm_page" module, and locked by the object's 123 * lock. 124 * 125 * Each object also records a "pager" routine which is 126 * used to retrieve (and store) pages to the proper backing 127 * storage. In addition, objects may be backed by other 128 * objects from which they were virtual-copied. 129 * 130 * The only items within the object structure which are 131 * modified after time of creation are: 132 * reference count locked by object's lock 133 * pager routine locked by object's lock 134 * 135 */ 136 137 struct object_q vm_object_list; 138 struct mtx vm_object_list_mtx; /* lock for object list and count */ 139 140 struct vm_object kernel_object_store; 141 struct vm_object kmem_object_store; 142 143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 144 "VM object stats"); 145 146 static long object_collapses; 147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 148 &object_collapses, 0, "VM object collapses"); 149 150 static long object_bypasses; 151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 152 &object_bypasses, 0, "VM object bypasses"); 153 154 static uma_zone_t obj_zone; 155 156 static int vm_object_zinit(void *mem, int size, int flags); 157 158 #ifdef INVARIANTS 159 static void vm_object_zdtor(void *mem, int size, void *arg); 160 161 static void 162 vm_object_zdtor(void *mem, int size, void *arg) 163 { 164 vm_object_t object; 165 166 object = (vm_object_t)mem; 167 KASSERT(TAILQ_EMPTY(&object->memq), 168 ("object %p has resident pages", 169 object)); 170 #if VM_NRESERVLEVEL > 0 171 KASSERT(LIST_EMPTY(&object->rvq), 172 ("object %p has reservations", 173 object)); 174 #endif 175 KASSERT(object->cache == NULL, 176 ("object %p has cached pages", 177 object)); 178 KASSERT(object->paging_in_progress == 0, 179 ("object %p paging_in_progress = %d", 180 object, object->paging_in_progress)); 181 KASSERT(object->resident_page_count == 0, 182 ("object %p resident_page_count = %d", 183 object, object->resident_page_count)); 184 KASSERT(object->shadow_count == 0, 185 ("object %p shadow_count = %d", 186 object, object->shadow_count)); 187 } 188 #endif 189 190 static int 191 vm_object_zinit(void *mem, int size, int flags) 192 { 193 vm_object_t object; 194 195 object = (vm_object_t)mem; 196 bzero(&object->mtx, sizeof(object->mtx)); 197 mtx_init(&object->mtx, "vm object", NULL, MTX_DEF | MTX_DUPOK); 198 199 /* These are true for any object that has been freed */ 200 object->paging_in_progress = 0; 201 object->resident_page_count = 0; 202 object->shadow_count = 0; 203 return (0); 204 } 205 206 static void 207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 208 { 209 210 TAILQ_INIT(&object->memq); 211 LIST_INIT(&object->shadow_head); 212 213 object->root = NULL; 214 object->type = type; 215 switch (type) { 216 case OBJT_DEAD: 217 panic("_vm_object_allocate: can't create OBJT_DEAD"); 218 case OBJT_DEFAULT: 219 case OBJT_SWAP: 220 object->flags = OBJ_ONEMAPPING; 221 break; 222 case OBJT_DEVICE: 223 case OBJT_SG: 224 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 225 break; 226 case OBJT_MGTDEVICE: 227 object->flags = OBJ_FICTITIOUS; 228 break; 229 case OBJT_PHYS: 230 object->flags = OBJ_UNMANAGED; 231 break; 232 case OBJT_VNODE: 233 object->flags = 0; 234 break; 235 default: 236 panic("_vm_object_allocate: type %d is undefined", type); 237 } 238 object->size = size; 239 object->generation = 1; 240 object->ref_count = 1; 241 object->memattr = VM_MEMATTR_DEFAULT; 242 object->cred = NULL; 243 object->charge = 0; 244 object->handle = NULL; 245 object->backing_object = NULL; 246 object->backing_object_offset = (vm_ooffset_t) 0; 247 #if VM_NRESERVLEVEL > 0 248 LIST_INIT(&object->rvq); 249 #endif 250 object->cache = NULL; 251 252 mtx_lock(&vm_object_list_mtx); 253 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 254 mtx_unlock(&vm_object_list_mtx); 255 } 256 257 /* 258 * vm_object_init: 259 * 260 * Initialize the VM objects module. 261 */ 262 void 263 vm_object_init(void) 264 { 265 TAILQ_INIT(&vm_object_list); 266 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 267 268 mtx_init(&kernel_object->mtx, "vm object", "kernel object", MTX_DEF); 269 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 270 kernel_object); 271 #if VM_NRESERVLEVEL > 0 272 kernel_object->flags |= OBJ_COLORED; 273 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 274 #endif 275 276 mtx_init(&kmem_object->mtx, "vm object", "kmem object", MTX_DEF); 277 _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), 278 kmem_object); 279 #if VM_NRESERVLEVEL > 0 280 kmem_object->flags |= OBJ_COLORED; 281 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 282 #endif 283 284 /* 285 * The lock portion of struct vm_object must be type stable due 286 * to vm_pageout_fallback_object_lock locking a vm object 287 * without holding any references to it. 288 */ 289 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 290 #ifdef INVARIANTS 291 vm_object_zdtor, 292 #else 293 NULL, 294 #endif 295 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE); 296 } 297 298 void 299 vm_object_clear_flag(vm_object_t object, u_short bits) 300 { 301 302 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 303 object->flags &= ~bits; 304 } 305 306 /* 307 * Sets the default memory attribute for the specified object. Pages 308 * that are allocated to this object are by default assigned this memory 309 * attribute. 310 * 311 * Presently, this function must be called before any pages are allocated 312 * to the object. In the future, this requirement may be relaxed for 313 * "default" and "swap" objects. 314 */ 315 int 316 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 317 { 318 319 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 320 switch (object->type) { 321 case OBJT_DEFAULT: 322 case OBJT_DEVICE: 323 case OBJT_MGTDEVICE: 324 case OBJT_PHYS: 325 case OBJT_SG: 326 case OBJT_SWAP: 327 case OBJT_VNODE: 328 if (!TAILQ_EMPTY(&object->memq)) 329 return (KERN_FAILURE); 330 break; 331 case OBJT_DEAD: 332 return (KERN_INVALID_ARGUMENT); 333 default: 334 panic("vm_object_set_memattr: object %p is of undefined type", 335 object); 336 } 337 object->memattr = memattr; 338 return (KERN_SUCCESS); 339 } 340 341 void 342 vm_object_pip_add(vm_object_t object, short i) 343 { 344 345 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 346 object->paging_in_progress += i; 347 } 348 349 void 350 vm_object_pip_subtract(vm_object_t object, short i) 351 { 352 353 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 354 object->paging_in_progress -= i; 355 } 356 357 void 358 vm_object_pip_wakeup(vm_object_t object) 359 { 360 361 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 362 object->paging_in_progress--; 363 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 364 vm_object_clear_flag(object, OBJ_PIPWNT); 365 wakeup(object); 366 } 367 } 368 369 void 370 vm_object_pip_wakeupn(vm_object_t object, short i) 371 { 372 373 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 374 if (i) 375 object->paging_in_progress -= i; 376 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 377 vm_object_clear_flag(object, OBJ_PIPWNT); 378 wakeup(object); 379 } 380 } 381 382 void 383 vm_object_pip_wait(vm_object_t object, char *waitid) 384 { 385 386 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 387 while (object->paging_in_progress) { 388 object->flags |= OBJ_PIPWNT; 389 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 390 } 391 } 392 393 /* 394 * vm_object_allocate: 395 * 396 * Returns a new object with the given size. 397 */ 398 vm_object_t 399 vm_object_allocate(objtype_t type, vm_pindex_t size) 400 { 401 vm_object_t object; 402 403 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 404 _vm_object_allocate(type, size, object); 405 return (object); 406 } 407 408 409 /* 410 * vm_object_reference: 411 * 412 * Gets another reference to the given object. Note: OBJ_DEAD 413 * objects can be referenced during final cleaning. 414 */ 415 void 416 vm_object_reference(vm_object_t object) 417 { 418 if (object == NULL) 419 return; 420 VM_OBJECT_LOCK(object); 421 vm_object_reference_locked(object); 422 VM_OBJECT_UNLOCK(object); 423 } 424 425 /* 426 * vm_object_reference_locked: 427 * 428 * Gets another reference to the given object. 429 * 430 * The object must be locked. 431 */ 432 void 433 vm_object_reference_locked(vm_object_t object) 434 { 435 struct vnode *vp; 436 437 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 438 object->ref_count++; 439 if (object->type == OBJT_VNODE) { 440 vp = object->handle; 441 vref(vp); 442 } 443 } 444 445 /* 446 * Handle deallocating an object of type OBJT_VNODE. 447 */ 448 static void 449 vm_object_vndeallocate(vm_object_t object) 450 { 451 struct vnode *vp = (struct vnode *) object->handle; 452 453 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 454 KASSERT(object->type == OBJT_VNODE, 455 ("vm_object_vndeallocate: not a vnode object")); 456 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 457 #ifdef INVARIANTS 458 if (object->ref_count == 0) { 459 vprint("vm_object_vndeallocate", vp); 460 panic("vm_object_vndeallocate: bad object reference count"); 461 } 462 #endif 463 464 if (object->ref_count > 1) { 465 object->ref_count--; 466 VM_OBJECT_UNLOCK(object); 467 /* vrele may need the vnode lock. */ 468 vrele(vp); 469 } else { 470 vhold(vp); 471 VM_OBJECT_UNLOCK(object); 472 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 473 vdrop(vp); 474 VM_OBJECT_LOCK(object); 475 object->ref_count--; 476 if (object->type == OBJT_DEAD) { 477 VM_OBJECT_UNLOCK(object); 478 VOP_UNLOCK(vp, 0); 479 } else { 480 if (object->ref_count == 0) 481 VOP_UNSET_TEXT(vp); 482 VM_OBJECT_UNLOCK(object); 483 vput(vp); 484 } 485 } 486 } 487 488 /* 489 * vm_object_deallocate: 490 * 491 * Release a reference to the specified object, 492 * gained either through a vm_object_allocate 493 * or a vm_object_reference call. When all references 494 * are gone, storage associated with this object 495 * may be relinquished. 496 * 497 * No object may be locked. 498 */ 499 void 500 vm_object_deallocate(vm_object_t object) 501 { 502 vm_object_t temp; 503 504 while (object != NULL) { 505 VM_OBJECT_LOCK(object); 506 if (object->type == OBJT_VNODE) { 507 vm_object_vndeallocate(object); 508 return; 509 } 510 511 KASSERT(object->ref_count != 0, 512 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 513 514 /* 515 * If the reference count goes to 0 we start calling 516 * vm_object_terminate() on the object chain. 517 * A ref count of 1 may be a special case depending on the 518 * shadow count being 0 or 1. 519 */ 520 object->ref_count--; 521 if (object->ref_count > 1) { 522 VM_OBJECT_UNLOCK(object); 523 return; 524 } else if (object->ref_count == 1) { 525 if (object->shadow_count == 0 && 526 object->handle == NULL && 527 (object->type == OBJT_DEFAULT || 528 object->type == OBJT_SWAP)) { 529 vm_object_set_flag(object, OBJ_ONEMAPPING); 530 } else if ((object->shadow_count == 1) && 531 (object->handle == NULL) && 532 (object->type == OBJT_DEFAULT || 533 object->type == OBJT_SWAP)) { 534 vm_object_t robject; 535 536 robject = LIST_FIRST(&object->shadow_head); 537 KASSERT(robject != NULL, 538 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 539 object->ref_count, 540 object->shadow_count)); 541 if (!VM_OBJECT_TRYLOCK(robject)) { 542 /* 543 * Avoid a potential deadlock. 544 */ 545 object->ref_count++; 546 VM_OBJECT_UNLOCK(object); 547 /* 548 * More likely than not the thread 549 * holding robject's lock has lower 550 * priority than the current thread. 551 * Let the lower priority thread run. 552 */ 553 pause("vmo_de", 1); 554 continue; 555 } 556 /* 557 * Collapse object into its shadow unless its 558 * shadow is dead. In that case, object will 559 * be deallocated by the thread that is 560 * deallocating its shadow. 561 */ 562 if ((robject->flags & OBJ_DEAD) == 0 && 563 (robject->handle == NULL) && 564 (robject->type == OBJT_DEFAULT || 565 robject->type == OBJT_SWAP)) { 566 567 robject->ref_count++; 568 retry: 569 if (robject->paging_in_progress) { 570 VM_OBJECT_UNLOCK(object); 571 vm_object_pip_wait(robject, 572 "objde1"); 573 temp = robject->backing_object; 574 if (object == temp) { 575 VM_OBJECT_LOCK(object); 576 goto retry; 577 } 578 } else if (object->paging_in_progress) { 579 VM_OBJECT_UNLOCK(robject); 580 object->flags |= OBJ_PIPWNT; 581 VM_OBJECT_SLEEP(object, object, 582 PDROP | PVM, "objde2", 0); 583 VM_OBJECT_LOCK(robject); 584 temp = robject->backing_object; 585 if (object == temp) { 586 VM_OBJECT_LOCK(object); 587 goto retry; 588 } 589 } else 590 VM_OBJECT_UNLOCK(object); 591 592 if (robject->ref_count == 1) { 593 robject->ref_count--; 594 object = robject; 595 goto doterm; 596 } 597 object = robject; 598 vm_object_collapse(object); 599 VM_OBJECT_UNLOCK(object); 600 continue; 601 } 602 VM_OBJECT_UNLOCK(robject); 603 } 604 VM_OBJECT_UNLOCK(object); 605 return; 606 } 607 doterm: 608 temp = object->backing_object; 609 if (temp != NULL) { 610 VM_OBJECT_LOCK(temp); 611 LIST_REMOVE(object, shadow_list); 612 temp->shadow_count--; 613 VM_OBJECT_UNLOCK(temp); 614 object->backing_object = NULL; 615 } 616 /* 617 * Don't double-terminate, we could be in a termination 618 * recursion due to the terminate having to sync data 619 * to disk. 620 */ 621 if ((object->flags & OBJ_DEAD) == 0) 622 vm_object_terminate(object); 623 else 624 VM_OBJECT_UNLOCK(object); 625 object = temp; 626 } 627 } 628 629 /* 630 * vm_object_destroy removes the object from the global object list 631 * and frees the space for the object. 632 */ 633 void 634 vm_object_destroy(vm_object_t object) 635 { 636 637 /* 638 * Remove the object from the global object list. 639 */ 640 mtx_lock(&vm_object_list_mtx); 641 TAILQ_REMOVE(&vm_object_list, object, object_list); 642 mtx_unlock(&vm_object_list_mtx); 643 644 /* 645 * Release the allocation charge. 646 */ 647 if (object->cred != NULL) { 648 KASSERT(object->type == OBJT_DEFAULT || 649 object->type == OBJT_SWAP, 650 ("vm_object_terminate: non-swap obj %p has cred", 651 object)); 652 swap_release_by_cred(object->charge, object->cred); 653 object->charge = 0; 654 crfree(object->cred); 655 object->cred = NULL; 656 } 657 658 /* 659 * Free the space for the object. 660 */ 661 uma_zfree(obj_zone, object); 662 } 663 664 /* 665 * vm_object_terminate actually destroys the specified object, freeing 666 * up all previously used resources. 667 * 668 * The object must be locked. 669 * This routine may block. 670 */ 671 void 672 vm_object_terminate(vm_object_t object) 673 { 674 vm_page_t p, p_next; 675 676 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 677 678 /* 679 * Make sure no one uses us. 680 */ 681 vm_object_set_flag(object, OBJ_DEAD); 682 683 /* 684 * wait for the pageout daemon to be done with the object 685 */ 686 vm_object_pip_wait(object, "objtrm"); 687 688 KASSERT(!object->paging_in_progress, 689 ("vm_object_terminate: pageout in progress")); 690 691 /* 692 * Clean and free the pages, as appropriate. All references to the 693 * object are gone, so we don't need to lock it. 694 */ 695 if (object->type == OBJT_VNODE) { 696 struct vnode *vp = (struct vnode *)object->handle; 697 698 /* 699 * Clean pages and flush buffers. 700 */ 701 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 702 VM_OBJECT_UNLOCK(object); 703 704 vinvalbuf(vp, V_SAVE, 0, 0); 705 706 VM_OBJECT_LOCK(object); 707 } 708 709 KASSERT(object->ref_count == 0, 710 ("vm_object_terminate: object with references, ref_count=%d", 711 object->ref_count)); 712 713 /* 714 * Free any remaining pageable pages. This also removes them from the 715 * paging queues. However, don't free wired pages, just remove them 716 * from the object. Rather than incrementally removing each page from 717 * the object, the page and object are reset to any empty state. 718 */ 719 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 720 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0, 721 ("vm_object_terminate: freeing busy page %p", p)); 722 vm_page_lock(p); 723 /* 724 * Optimize the page's removal from the object by resetting 725 * its "object" field. Specifically, if the page is not 726 * wired, then the effect of this assignment is that 727 * vm_page_free()'s call to vm_page_remove() will return 728 * immediately without modifying the page or the object. 729 */ 730 p->object = NULL; 731 if (p->wire_count == 0) { 732 vm_page_free(p); 733 PCPU_INC(cnt.v_pfree); 734 } 735 vm_page_unlock(p); 736 } 737 /* 738 * If the object contained any pages, then reset it to an empty state. 739 * None of the object's fields, including "resident_page_count", were 740 * modified by the preceding loop. 741 */ 742 if (object->resident_page_count != 0) { 743 object->root = NULL; 744 TAILQ_INIT(&object->memq); 745 object->resident_page_count = 0; 746 if (object->type == OBJT_VNODE) 747 vdrop(object->handle); 748 } 749 750 #if VM_NRESERVLEVEL > 0 751 if (__predict_false(!LIST_EMPTY(&object->rvq))) 752 vm_reserv_break_all(object); 753 #endif 754 if (__predict_false(object->cache != NULL)) 755 vm_page_cache_free(object, 0, 0); 756 757 /* 758 * Let the pager know object is dead. 759 */ 760 vm_pager_deallocate(object); 761 VM_OBJECT_UNLOCK(object); 762 763 vm_object_destroy(object); 764 } 765 766 /* 767 * Make the page read-only so that we can clear the object flags. However, if 768 * this is a nosync mmap then the object is likely to stay dirty so do not 769 * mess with the page and do not clear the object flags. Returns TRUE if the 770 * page should be flushed, and FALSE otherwise. 771 */ 772 static boolean_t 773 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 774 { 775 776 /* 777 * If we have been asked to skip nosync pages and this is a 778 * nosync page, skip it. Note that the object flags were not 779 * cleared in this case so we do not have to set them. 780 */ 781 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 782 *clearobjflags = FALSE; 783 return (FALSE); 784 } else { 785 pmap_remove_write(p); 786 return (p->dirty != 0); 787 } 788 } 789 790 /* 791 * vm_object_page_clean 792 * 793 * Clean all dirty pages in the specified range of object. Leaves page 794 * on whatever queue it is currently on. If NOSYNC is set then do not 795 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 796 * leaving the object dirty. 797 * 798 * When stuffing pages asynchronously, allow clustering. XXX we need a 799 * synchronous clustering mode implementation. 800 * 801 * Odd semantics: if start == end, we clean everything. 802 * 803 * The object must be locked. 804 * 805 * Returns FALSE if some page from the range was not written, as 806 * reported by the pager, and TRUE otherwise. 807 */ 808 boolean_t 809 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 810 int flags) 811 { 812 vm_page_t np, p; 813 vm_pindex_t pi, tend, tstart; 814 int curgeneration, n, pagerflags; 815 boolean_t clearobjflags, eio, res; 816 817 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 818 KASSERT(object->type == OBJT_VNODE, ("Not a vnode object")); 819 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 820 object->resident_page_count == 0) 821 return (TRUE); 822 823 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 824 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 825 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 826 827 tstart = OFF_TO_IDX(start); 828 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 829 clearobjflags = tstart == 0 && tend >= object->size; 830 res = TRUE; 831 832 rescan: 833 curgeneration = object->generation; 834 835 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 836 pi = p->pindex; 837 if (pi >= tend) 838 break; 839 np = TAILQ_NEXT(p, listq); 840 if (p->valid == 0) 841 continue; 842 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) { 843 if (object->generation != curgeneration) { 844 if ((flags & OBJPC_SYNC) != 0) 845 goto rescan; 846 else 847 clearobjflags = FALSE; 848 } 849 np = vm_page_find_least(object, pi); 850 continue; 851 } 852 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 853 continue; 854 855 n = vm_object_page_collect_flush(object, p, pagerflags, 856 flags, &clearobjflags, &eio); 857 if (eio) { 858 res = FALSE; 859 clearobjflags = FALSE; 860 } 861 if (object->generation != curgeneration) { 862 if ((flags & OBJPC_SYNC) != 0) 863 goto rescan; 864 else 865 clearobjflags = FALSE; 866 } 867 868 /* 869 * If the VOP_PUTPAGES() did a truncated write, so 870 * that even the first page of the run is not fully 871 * written, vm_pageout_flush() returns 0 as the run 872 * length. Since the condition that caused truncated 873 * write may be permanent, e.g. exhausted free space, 874 * accepting n == 0 would cause an infinite loop. 875 * 876 * Forwarding the iterator leaves the unwritten page 877 * behind, but there is not much we can do there if 878 * filesystem refuses to write it. 879 */ 880 if (n == 0) { 881 n = 1; 882 clearobjflags = FALSE; 883 } 884 np = vm_page_find_least(object, pi + n); 885 } 886 #if 0 887 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 888 #endif 889 890 if (clearobjflags) 891 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 892 return (res); 893 } 894 895 static int 896 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 897 int flags, boolean_t *clearobjflags, boolean_t *eio) 898 { 899 vm_page_t ma[vm_pageout_page_count], p_first, tp; 900 int count, i, mreq, runlen; 901 902 vm_page_lock_assert(p, MA_NOTOWNED); 903 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 904 905 count = 1; 906 mreq = 0; 907 908 for (tp = p; count < vm_pageout_page_count; count++) { 909 tp = vm_page_next(tp); 910 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 911 break; 912 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 913 break; 914 } 915 916 for (p_first = p; count < vm_pageout_page_count; count++) { 917 tp = vm_page_prev(p_first); 918 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0) 919 break; 920 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 921 break; 922 p_first = tp; 923 mreq++; 924 } 925 926 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 927 ma[i] = tp; 928 929 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 930 return (runlen); 931 } 932 933 /* 934 * Note that there is absolutely no sense in writing out 935 * anonymous objects, so we track down the vnode object 936 * to write out. 937 * We invalidate (remove) all pages from the address space 938 * for semantic correctness. 939 * 940 * If the backing object is a device object with unmanaged pages, then any 941 * mappings to the specified range of pages must be removed before this 942 * function is called. 943 * 944 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 945 * may start out with a NULL object. 946 */ 947 boolean_t 948 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 949 boolean_t syncio, boolean_t invalidate) 950 { 951 vm_object_t backing_object; 952 struct vnode *vp; 953 struct mount *mp; 954 int error, flags, fsync_after; 955 boolean_t res; 956 957 if (object == NULL) 958 return (TRUE); 959 res = TRUE; 960 error = 0; 961 VM_OBJECT_LOCK(object); 962 while ((backing_object = object->backing_object) != NULL) { 963 VM_OBJECT_LOCK(backing_object); 964 offset += object->backing_object_offset; 965 VM_OBJECT_UNLOCK(object); 966 object = backing_object; 967 if (object->size < OFF_TO_IDX(offset + size)) 968 size = IDX_TO_OFF(object->size) - offset; 969 } 970 /* 971 * Flush pages if writing is allowed, invalidate them 972 * if invalidation requested. Pages undergoing I/O 973 * will be ignored by vm_object_page_remove(). 974 * 975 * We cannot lock the vnode and then wait for paging 976 * to complete without deadlocking against vm_fault. 977 * Instead we simply call vm_object_page_remove() and 978 * allow it to block internally on a page-by-page 979 * basis when it encounters pages undergoing async 980 * I/O. 981 */ 982 if (object->type == OBJT_VNODE && 983 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 984 vp = object->handle; 985 VM_OBJECT_UNLOCK(object); 986 (void) vn_start_write(vp, &mp, V_WAIT); 987 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 988 if (syncio && !invalidate && offset == 0 && 989 OFF_TO_IDX(size) == object->size) { 990 /* 991 * If syncing the whole mapping of the file, 992 * it is faster to schedule all the writes in 993 * async mode, also allowing the clustering, 994 * and then wait for i/o to complete. 995 */ 996 flags = 0; 997 fsync_after = TRUE; 998 } else { 999 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1000 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1001 fsync_after = FALSE; 1002 } 1003 VM_OBJECT_LOCK(object); 1004 res = vm_object_page_clean(object, offset, offset + size, 1005 flags); 1006 VM_OBJECT_UNLOCK(object); 1007 if (fsync_after) 1008 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1009 VOP_UNLOCK(vp, 0); 1010 vn_finished_write(mp); 1011 if (error != 0) 1012 res = FALSE; 1013 VM_OBJECT_LOCK(object); 1014 } 1015 if ((object->type == OBJT_VNODE || 1016 object->type == OBJT_DEVICE) && invalidate) { 1017 if (object->type == OBJT_DEVICE) 1018 /* 1019 * The option OBJPR_NOTMAPPED must be passed here 1020 * because vm_object_page_remove() cannot remove 1021 * unmanaged mappings. 1022 */ 1023 flags = OBJPR_NOTMAPPED; 1024 else if (old_msync) 1025 flags = 0; 1026 else 1027 flags = OBJPR_CLEANONLY; 1028 vm_object_page_remove(object, OFF_TO_IDX(offset), 1029 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1030 } 1031 VM_OBJECT_UNLOCK(object); 1032 return (res); 1033 } 1034 1035 /* 1036 * vm_object_madvise: 1037 * 1038 * Implements the madvise function at the object/page level. 1039 * 1040 * MADV_WILLNEED (any object) 1041 * 1042 * Activate the specified pages if they are resident. 1043 * 1044 * MADV_DONTNEED (any object) 1045 * 1046 * Deactivate the specified pages if they are resident. 1047 * 1048 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1049 * OBJ_ONEMAPPING only) 1050 * 1051 * Deactivate and clean the specified pages if they are 1052 * resident. This permits the process to reuse the pages 1053 * without faulting or the kernel to reclaim the pages 1054 * without I/O. 1055 */ 1056 void 1057 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1058 int advise) 1059 { 1060 vm_pindex_t tpindex; 1061 vm_object_t backing_object, tobject; 1062 vm_page_t m; 1063 1064 if (object == NULL) 1065 return; 1066 VM_OBJECT_LOCK(object); 1067 /* 1068 * Locate and adjust resident pages 1069 */ 1070 for (; pindex < end; pindex += 1) { 1071 relookup: 1072 tobject = object; 1073 tpindex = pindex; 1074 shadowlookup: 1075 /* 1076 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages 1077 * and those pages must be OBJ_ONEMAPPING. 1078 */ 1079 if (advise == MADV_FREE) { 1080 if ((tobject->type != OBJT_DEFAULT && 1081 tobject->type != OBJT_SWAP) || 1082 (tobject->flags & OBJ_ONEMAPPING) == 0) { 1083 goto unlock_tobject; 1084 } 1085 } else if ((tobject->flags & OBJ_UNMANAGED) != 0) 1086 goto unlock_tobject; 1087 m = vm_page_lookup(tobject, tpindex); 1088 if (m == NULL && advise == MADV_WILLNEED) { 1089 /* 1090 * If the page is cached, reactivate it. 1091 */ 1092 m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED | 1093 VM_ALLOC_NOBUSY); 1094 } 1095 if (m == NULL) { 1096 /* 1097 * There may be swap even if there is no backing page 1098 */ 1099 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1100 swap_pager_freespace(tobject, tpindex, 1); 1101 /* 1102 * next object 1103 */ 1104 backing_object = tobject->backing_object; 1105 if (backing_object == NULL) 1106 goto unlock_tobject; 1107 VM_OBJECT_LOCK(backing_object); 1108 tpindex += OFF_TO_IDX(tobject->backing_object_offset); 1109 if (tobject != object) 1110 VM_OBJECT_UNLOCK(tobject); 1111 tobject = backing_object; 1112 goto shadowlookup; 1113 } else if (m->valid != VM_PAGE_BITS_ALL) 1114 goto unlock_tobject; 1115 /* 1116 * If the page is not in a normal state, skip it. 1117 */ 1118 vm_page_lock(m); 1119 if (m->hold_count != 0 || m->wire_count != 0) { 1120 vm_page_unlock(m); 1121 goto unlock_tobject; 1122 } 1123 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1124 ("vm_object_madvise: page %p is fictitious", m)); 1125 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1126 ("vm_object_madvise: page %p is not managed", m)); 1127 if ((m->oflags & VPO_BUSY) || m->busy) { 1128 if (advise == MADV_WILLNEED) { 1129 /* 1130 * Reference the page before unlocking and 1131 * sleeping so that the page daemon is less 1132 * likely to reclaim it. 1133 */ 1134 vm_page_aflag_set(m, PGA_REFERENCED); 1135 } 1136 vm_page_unlock(m); 1137 if (object != tobject) 1138 VM_OBJECT_UNLOCK(object); 1139 m->oflags |= VPO_WANTED; 1140 VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0); 1141 VM_OBJECT_LOCK(object); 1142 goto relookup; 1143 } 1144 if (advise == MADV_WILLNEED) { 1145 vm_page_activate(m); 1146 } else if (advise == MADV_DONTNEED) { 1147 vm_page_dontneed(m); 1148 } else if (advise == MADV_FREE) { 1149 /* 1150 * Mark the page clean. This will allow the page 1151 * to be freed up by the system. However, such pages 1152 * are often reused quickly by malloc()/free() 1153 * so we do not do anything that would cause 1154 * a page fault if we can help it. 1155 * 1156 * Specifically, we do not try to actually free 1157 * the page now nor do we try to put it in the 1158 * cache (which would cause a page fault on reuse). 1159 * 1160 * But we do make the page is freeable as we 1161 * can without actually taking the step of unmapping 1162 * it. 1163 */ 1164 pmap_clear_modify(m); 1165 m->dirty = 0; 1166 m->act_count = 0; 1167 vm_page_dontneed(m); 1168 } 1169 vm_page_unlock(m); 1170 if (advise == MADV_FREE && tobject->type == OBJT_SWAP) 1171 swap_pager_freespace(tobject, tpindex, 1); 1172 unlock_tobject: 1173 if (tobject != object) 1174 VM_OBJECT_UNLOCK(tobject); 1175 } 1176 VM_OBJECT_UNLOCK(object); 1177 } 1178 1179 /* 1180 * vm_object_shadow: 1181 * 1182 * Create a new object which is backed by the 1183 * specified existing object range. The source 1184 * object reference is deallocated. 1185 * 1186 * The new object and offset into that object 1187 * are returned in the source parameters. 1188 */ 1189 void 1190 vm_object_shadow( 1191 vm_object_t *object, /* IN/OUT */ 1192 vm_ooffset_t *offset, /* IN/OUT */ 1193 vm_size_t length) 1194 { 1195 vm_object_t source; 1196 vm_object_t result; 1197 1198 source = *object; 1199 1200 /* 1201 * Don't create the new object if the old object isn't shared. 1202 */ 1203 if (source != NULL) { 1204 VM_OBJECT_LOCK(source); 1205 if (source->ref_count == 1 && 1206 source->handle == NULL && 1207 (source->type == OBJT_DEFAULT || 1208 source->type == OBJT_SWAP)) { 1209 VM_OBJECT_UNLOCK(source); 1210 return; 1211 } 1212 VM_OBJECT_UNLOCK(source); 1213 } 1214 1215 /* 1216 * Allocate a new object with the given length. 1217 */ 1218 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1219 1220 /* 1221 * The new object shadows the source object, adding a reference to it. 1222 * Our caller changes his reference to point to the new object, 1223 * removing a reference to the source object. Net result: no change 1224 * of reference count. 1225 * 1226 * Try to optimize the result object's page color when shadowing 1227 * in order to maintain page coloring consistency in the combined 1228 * shadowed object. 1229 */ 1230 result->backing_object = source; 1231 /* 1232 * Store the offset into the source object, and fix up the offset into 1233 * the new object. 1234 */ 1235 result->backing_object_offset = *offset; 1236 if (source != NULL) { 1237 VM_OBJECT_LOCK(source); 1238 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1239 source->shadow_count++; 1240 #if VM_NRESERVLEVEL > 0 1241 result->flags |= source->flags & OBJ_COLORED; 1242 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1243 ((1 << (VM_NFREEORDER - 1)) - 1); 1244 #endif 1245 VM_OBJECT_UNLOCK(source); 1246 } 1247 1248 1249 /* 1250 * Return the new things 1251 */ 1252 *offset = 0; 1253 *object = result; 1254 } 1255 1256 /* 1257 * vm_object_split: 1258 * 1259 * Split the pages in a map entry into a new object. This affords 1260 * easier removal of unused pages, and keeps object inheritance from 1261 * being a negative impact on memory usage. 1262 */ 1263 void 1264 vm_object_split(vm_map_entry_t entry) 1265 { 1266 vm_page_t m, m_next; 1267 vm_object_t orig_object, new_object, source; 1268 vm_pindex_t idx, offidxstart; 1269 vm_size_t size; 1270 1271 orig_object = entry->object.vm_object; 1272 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1273 return; 1274 if (orig_object->ref_count <= 1) 1275 return; 1276 VM_OBJECT_UNLOCK(orig_object); 1277 1278 offidxstart = OFF_TO_IDX(entry->offset); 1279 size = atop(entry->end - entry->start); 1280 1281 /* 1282 * If swap_pager_copy() is later called, it will convert new_object 1283 * into a swap object. 1284 */ 1285 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1286 1287 /* 1288 * At this point, the new object is still private, so the order in 1289 * which the original and new objects are locked does not matter. 1290 */ 1291 VM_OBJECT_LOCK(new_object); 1292 VM_OBJECT_LOCK(orig_object); 1293 source = orig_object->backing_object; 1294 if (source != NULL) { 1295 VM_OBJECT_LOCK(source); 1296 if ((source->flags & OBJ_DEAD) != 0) { 1297 VM_OBJECT_UNLOCK(source); 1298 VM_OBJECT_UNLOCK(orig_object); 1299 VM_OBJECT_UNLOCK(new_object); 1300 vm_object_deallocate(new_object); 1301 VM_OBJECT_LOCK(orig_object); 1302 return; 1303 } 1304 LIST_INSERT_HEAD(&source->shadow_head, 1305 new_object, shadow_list); 1306 source->shadow_count++; 1307 vm_object_reference_locked(source); /* for new_object */ 1308 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1309 VM_OBJECT_UNLOCK(source); 1310 new_object->backing_object_offset = 1311 orig_object->backing_object_offset + entry->offset; 1312 new_object->backing_object = source; 1313 } 1314 if (orig_object->cred != NULL) { 1315 new_object->cred = orig_object->cred; 1316 crhold(orig_object->cred); 1317 new_object->charge = ptoa(size); 1318 KASSERT(orig_object->charge >= ptoa(size), 1319 ("orig_object->charge < 0")); 1320 orig_object->charge -= ptoa(size); 1321 } 1322 retry: 1323 m = vm_page_find_least(orig_object, offidxstart); 1324 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1325 m = m_next) { 1326 m_next = TAILQ_NEXT(m, listq); 1327 1328 /* 1329 * We must wait for pending I/O to complete before we can 1330 * rename the page. 1331 * 1332 * We do not have to VM_PROT_NONE the page as mappings should 1333 * not be changed by this operation. 1334 */ 1335 if ((m->oflags & VPO_BUSY) || m->busy) { 1336 VM_OBJECT_UNLOCK(new_object); 1337 m->oflags |= VPO_WANTED; 1338 VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0); 1339 VM_OBJECT_LOCK(new_object); 1340 goto retry; 1341 } 1342 #if VM_NRESERVLEVEL > 0 1343 /* 1344 * If some of the reservation's allocated pages remain with 1345 * the original object, then transferring the reservation to 1346 * the new object is neither particularly beneficial nor 1347 * particularly harmful as compared to leaving the reservation 1348 * with the original object. If, however, all of the 1349 * reservation's allocated pages are transferred to the new 1350 * object, then transferring the reservation is typically 1351 * beneficial. Determining which of these two cases applies 1352 * would be more costly than unconditionally renaming the 1353 * reservation. 1354 */ 1355 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1356 #endif 1357 vm_page_lock(m); 1358 vm_page_rename(m, new_object, idx); 1359 vm_page_unlock(m); 1360 /* page automatically made dirty by rename and cache handled */ 1361 vm_page_busy(m); 1362 } 1363 if (orig_object->type == OBJT_SWAP) { 1364 /* 1365 * swap_pager_copy() can sleep, in which case the orig_object's 1366 * and new_object's locks are released and reacquired. 1367 */ 1368 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1369 1370 /* 1371 * Transfer any cached pages from orig_object to new_object. 1372 * If swap_pager_copy() found swapped out pages within the 1373 * specified range of orig_object, then it changed 1374 * new_object's type to OBJT_SWAP when it transferred those 1375 * pages to new_object. Otherwise, new_object's type 1376 * should still be OBJT_DEFAULT and orig_object should not 1377 * contain any cached pages within the specified range. 1378 */ 1379 if (__predict_false(orig_object->cache != NULL)) 1380 vm_page_cache_transfer(orig_object, offidxstart, 1381 new_object); 1382 } 1383 VM_OBJECT_UNLOCK(orig_object); 1384 TAILQ_FOREACH(m, &new_object->memq, listq) 1385 vm_page_wakeup(m); 1386 VM_OBJECT_UNLOCK(new_object); 1387 entry->object.vm_object = new_object; 1388 entry->offset = 0LL; 1389 vm_object_deallocate(orig_object); 1390 VM_OBJECT_LOCK(new_object); 1391 } 1392 1393 #define OBSC_TEST_ALL_SHADOWED 0x0001 1394 #define OBSC_COLLAPSE_NOWAIT 0x0002 1395 #define OBSC_COLLAPSE_WAIT 0x0004 1396 1397 static int 1398 vm_object_backing_scan(vm_object_t object, int op) 1399 { 1400 int r = 1; 1401 vm_page_t p; 1402 vm_object_t backing_object; 1403 vm_pindex_t backing_offset_index; 1404 1405 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1406 VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED); 1407 1408 backing_object = object->backing_object; 1409 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1410 1411 /* 1412 * Initial conditions 1413 */ 1414 if (op & OBSC_TEST_ALL_SHADOWED) { 1415 /* 1416 * We do not want to have to test for the existence of cache 1417 * or swap pages in the backing object. XXX but with the 1418 * new swapper this would be pretty easy to do. 1419 * 1420 * XXX what about anonymous MAP_SHARED memory that hasn't 1421 * been ZFOD faulted yet? If we do not test for this, the 1422 * shadow test may succeed! XXX 1423 */ 1424 if (backing_object->type != OBJT_DEFAULT) { 1425 return (0); 1426 } 1427 } 1428 if (op & OBSC_COLLAPSE_WAIT) { 1429 vm_object_set_flag(backing_object, OBJ_DEAD); 1430 } 1431 1432 /* 1433 * Our scan 1434 */ 1435 p = TAILQ_FIRST(&backing_object->memq); 1436 while (p) { 1437 vm_page_t next = TAILQ_NEXT(p, listq); 1438 vm_pindex_t new_pindex = p->pindex - backing_offset_index; 1439 1440 if (op & OBSC_TEST_ALL_SHADOWED) { 1441 vm_page_t pp; 1442 1443 /* 1444 * Ignore pages outside the parent object's range 1445 * and outside the parent object's mapping of the 1446 * backing object. 1447 * 1448 * note that we do not busy the backing object's 1449 * page. 1450 */ 1451 if ( 1452 p->pindex < backing_offset_index || 1453 new_pindex >= object->size 1454 ) { 1455 p = next; 1456 continue; 1457 } 1458 1459 /* 1460 * See if the parent has the page or if the parent's 1461 * object pager has the page. If the parent has the 1462 * page but the page is not valid, the parent's 1463 * object pager must have the page. 1464 * 1465 * If this fails, the parent does not completely shadow 1466 * the object and we might as well give up now. 1467 */ 1468 1469 pp = vm_page_lookup(object, new_pindex); 1470 if ( 1471 (pp == NULL || pp->valid == 0) && 1472 !vm_pager_has_page(object, new_pindex, NULL, NULL) 1473 ) { 1474 r = 0; 1475 break; 1476 } 1477 } 1478 1479 /* 1480 * Check for busy page 1481 */ 1482 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) { 1483 vm_page_t pp; 1484 1485 if (op & OBSC_COLLAPSE_NOWAIT) { 1486 if ((p->oflags & VPO_BUSY) || 1487 !p->valid || 1488 p->busy) { 1489 p = next; 1490 continue; 1491 } 1492 } else if (op & OBSC_COLLAPSE_WAIT) { 1493 if ((p->oflags & VPO_BUSY) || p->busy) { 1494 VM_OBJECT_UNLOCK(object); 1495 p->oflags |= VPO_WANTED; 1496 VM_OBJECT_SLEEP(backing_object, p, 1497 PDROP | PVM, "vmocol", 0); 1498 VM_OBJECT_LOCK(object); 1499 VM_OBJECT_LOCK(backing_object); 1500 /* 1501 * If we slept, anything could have 1502 * happened. Since the object is 1503 * marked dead, the backing offset 1504 * should not have changed so we 1505 * just restart our scan. 1506 */ 1507 p = TAILQ_FIRST(&backing_object->memq); 1508 continue; 1509 } 1510 } 1511 1512 KASSERT( 1513 p->object == backing_object, 1514 ("vm_object_backing_scan: object mismatch") 1515 ); 1516 1517 /* 1518 * Destroy any associated swap 1519 */ 1520 if (backing_object->type == OBJT_SWAP) { 1521 swap_pager_freespace( 1522 backing_object, 1523 p->pindex, 1524 1 1525 ); 1526 } 1527 1528 if ( 1529 p->pindex < backing_offset_index || 1530 new_pindex >= object->size 1531 ) { 1532 /* 1533 * Page is out of the parent object's range, we 1534 * can simply destroy it. 1535 */ 1536 vm_page_lock(p); 1537 KASSERT(!pmap_page_is_mapped(p), 1538 ("freeing mapped page %p", p)); 1539 if (p->wire_count == 0) 1540 vm_page_free(p); 1541 else 1542 vm_page_remove(p); 1543 vm_page_unlock(p); 1544 p = next; 1545 continue; 1546 } 1547 1548 pp = vm_page_lookup(object, new_pindex); 1549 if ( 1550 (op & OBSC_COLLAPSE_NOWAIT) != 0 && 1551 (pp != NULL && pp->valid == 0) 1552 ) { 1553 /* 1554 * The page in the parent is not (yet) valid. 1555 * We don't know anything about the state of 1556 * the original page. It might be mapped, 1557 * so we must avoid the next if here. 1558 * 1559 * This is due to a race in vm_fault() where 1560 * we must unbusy the original (backing_obj) 1561 * page before we can (re)lock the parent. 1562 * Hence we can get here. 1563 */ 1564 p = next; 1565 continue; 1566 } 1567 if ( 1568 pp != NULL || 1569 vm_pager_has_page(object, new_pindex, NULL, NULL) 1570 ) { 1571 /* 1572 * page already exists in parent OR swap exists 1573 * for this location in the parent. Destroy 1574 * the original page from the backing object. 1575 * 1576 * Leave the parent's page alone 1577 */ 1578 vm_page_lock(p); 1579 KASSERT(!pmap_page_is_mapped(p), 1580 ("freeing mapped page %p", p)); 1581 if (p->wire_count == 0) 1582 vm_page_free(p); 1583 else 1584 vm_page_remove(p); 1585 vm_page_unlock(p); 1586 p = next; 1587 continue; 1588 } 1589 1590 #if VM_NRESERVLEVEL > 0 1591 /* 1592 * Rename the reservation. 1593 */ 1594 vm_reserv_rename(p, object, backing_object, 1595 backing_offset_index); 1596 #endif 1597 1598 /* 1599 * Page does not exist in parent, rename the 1600 * page from the backing object to the main object. 1601 * 1602 * If the page was mapped to a process, it can remain 1603 * mapped through the rename. 1604 */ 1605 vm_page_lock(p); 1606 vm_page_rename(p, object, new_pindex); 1607 vm_page_unlock(p); 1608 /* page automatically made dirty by rename */ 1609 } 1610 p = next; 1611 } 1612 return (r); 1613 } 1614 1615 1616 /* 1617 * this version of collapse allows the operation to occur earlier and 1618 * when paging_in_progress is true for an object... This is not a complete 1619 * operation, but should plug 99.9% of the rest of the leaks. 1620 */ 1621 static void 1622 vm_object_qcollapse(vm_object_t object) 1623 { 1624 vm_object_t backing_object = object->backing_object; 1625 1626 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1627 VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED); 1628 1629 if (backing_object->ref_count != 1) 1630 return; 1631 1632 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT); 1633 } 1634 1635 /* 1636 * vm_object_collapse: 1637 * 1638 * Collapse an object with the object backing it. 1639 * Pages in the backing object are moved into the 1640 * parent, and the backing object is deallocated. 1641 */ 1642 void 1643 vm_object_collapse(vm_object_t object) 1644 { 1645 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1646 1647 while (TRUE) { 1648 vm_object_t backing_object; 1649 1650 /* 1651 * Verify that the conditions are right for collapse: 1652 * 1653 * The object exists and the backing object exists. 1654 */ 1655 if ((backing_object = object->backing_object) == NULL) 1656 break; 1657 1658 /* 1659 * we check the backing object first, because it is most likely 1660 * not collapsable. 1661 */ 1662 VM_OBJECT_LOCK(backing_object); 1663 if (backing_object->handle != NULL || 1664 (backing_object->type != OBJT_DEFAULT && 1665 backing_object->type != OBJT_SWAP) || 1666 (backing_object->flags & OBJ_DEAD) || 1667 object->handle != NULL || 1668 (object->type != OBJT_DEFAULT && 1669 object->type != OBJT_SWAP) || 1670 (object->flags & OBJ_DEAD)) { 1671 VM_OBJECT_UNLOCK(backing_object); 1672 break; 1673 } 1674 1675 if ( 1676 object->paging_in_progress != 0 || 1677 backing_object->paging_in_progress != 0 1678 ) { 1679 vm_object_qcollapse(object); 1680 VM_OBJECT_UNLOCK(backing_object); 1681 break; 1682 } 1683 /* 1684 * We know that we can either collapse the backing object (if 1685 * the parent is the only reference to it) or (perhaps) have 1686 * the parent bypass the object if the parent happens to shadow 1687 * all the resident pages in the entire backing object. 1688 * 1689 * This is ignoring pager-backed pages such as swap pages. 1690 * vm_object_backing_scan fails the shadowing test in this 1691 * case. 1692 */ 1693 if (backing_object->ref_count == 1) { 1694 /* 1695 * If there is exactly one reference to the backing 1696 * object, we can collapse it into the parent. 1697 */ 1698 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT); 1699 1700 #if VM_NRESERVLEVEL > 0 1701 /* 1702 * Break any reservations from backing_object. 1703 */ 1704 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1705 vm_reserv_break_all(backing_object); 1706 #endif 1707 1708 /* 1709 * Move the pager from backing_object to object. 1710 */ 1711 if (backing_object->type == OBJT_SWAP) { 1712 /* 1713 * swap_pager_copy() can sleep, in which case 1714 * the backing_object's and object's locks are 1715 * released and reacquired. 1716 * Since swap_pager_copy() is being asked to 1717 * destroy the source, it will change the 1718 * backing_object's type to OBJT_DEFAULT. 1719 */ 1720 swap_pager_copy( 1721 backing_object, 1722 object, 1723 OFF_TO_IDX(object->backing_object_offset), TRUE); 1724 1725 /* 1726 * Free any cached pages from backing_object. 1727 */ 1728 if (__predict_false(backing_object->cache != NULL)) 1729 vm_page_cache_free(backing_object, 0, 0); 1730 } 1731 /* 1732 * Object now shadows whatever backing_object did. 1733 * Note that the reference to 1734 * backing_object->backing_object moves from within 1735 * backing_object to within object. 1736 */ 1737 LIST_REMOVE(object, shadow_list); 1738 backing_object->shadow_count--; 1739 if (backing_object->backing_object) { 1740 VM_OBJECT_LOCK(backing_object->backing_object); 1741 LIST_REMOVE(backing_object, shadow_list); 1742 LIST_INSERT_HEAD( 1743 &backing_object->backing_object->shadow_head, 1744 object, shadow_list); 1745 /* 1746 * The shadow_count has not changed. 1747 */ 1748 VM_OBJECT_UNLOCK(backing_object->backing_object); 1749 } 1750 object->backing_object = backing_object->backing_object; 1751 object->backing_object_offset += 1752 backing_object->backing_object_offset; 1753 1754 /* 1755 * Discard backing_object. 1756 * 1757 * Since the backing object has no pages, no pager left, 1758 * and no object references within it, all that is 1759 * necessary is to dispose of it. 1760 */ 1761 KASSERT(backing_object->ref_count == 1, ( 1762 "backing_object %p was somehow re-referenced during collapse!", 1763 backing_object)); 1764 VM_OBJECT_UNLOCK(backing_object); 1765 vm_object_destroy(backing_object); 1766 1767 object_collapses++; 1768 } else { 1769 vm_object_t new_backing_object; 1770 1771 /* 1772 * If we do not entirely shadow the backing object, 1773 * there is nothing we can do so we give up. 1774 */ 1775 if (object->resident_page_count != object->size && 1776 vm_object_backing_scan(object, 1777 OBSC_TEST_ALL_SHADOWED) == 0) { 1778 VM_OBJECT_UNLOCK(backing_object); 1779 break; 1780 } 1781 1782 /* 1783 * Make the parent shadow the next object in the 1784 * chain. Deallocating backing_object will not remove 1785 * it, since its reference count is at least 2. 1786 */ 1787 LIST_REMOVE(object, shadow_list); 1788 backing_object->shadow_count--; 1789 1790 new_backing_object = backing_object->backing_object; 1791 if ((object->backing_object = new_backing_object) != NULL) { 1792 VM_OBJECT_LOCK(new_backing_object); 1793 LIST_INSERT_HEAD( 1794 &new_backing_object->shadow_head, 1795 object, 1796 shadow_list 1797 ); 1798 new_backing_object->shadow_count++; 1799 vm_object_reference_locked(new_backing_object); 1800 VM_OBJECT_UNLOCK(new_backing_object); 1801 object->backing_object_offset += 1802 backing_object->backing_object_offset; 1803 } 1804 1805 /* 1806 * Drop the reference count on backing_object. Since 1807 * its ref_count was at least 2, it will not vanish. 1808 */ 1809 backing_object->ref_count--; 1810 VM_OBJECT_UNLOCK(backing_object); 1811 object_bypasses++; 1812 } 1813 1814 /* 1815 * Try again with this object's new backing object. 1816 */ 1817 } 1818 } 1819 1820 /* 1821 * vm_object_page_remove: 1822 * 1823 * For the given object, either frees or invalidates each of the 1824 * specified pages. In general, a page is freed. However, if a page is 1825 * wired for any reason other than the existence of a managed, wired 1826 * mapping, then it may be invalidated but not removed from the object. 1827 * Pages are specified by the given range ["start", "end") and the option 1828 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1829 * extends from "start" to the end of the object. If the option 1830 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1831 * specified range are affected. If the option OBJPR_NOTMAPPED is 1832 * specified, then the pages within the specified range must have no 1833 * mappings. Otherwise, if this option is not specified, any mappings to 1834 * the specified pages are removed before the pages are freed or 1835 * invalidated. 1836 * 1837 * In general, this operation should only be performed on objects that 1838 * contain managed pages. There are, however, two exceptions. First, it 1839 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1840 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1841 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1842 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1843 * 1844 * The object must be locked. 1845 */ 1846 void 1847 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1848 int options) 1849 { 1850 vm_page_t p, next; 1851 int wirings; 1852 1853 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1854 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1855 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1856 ("vm_object_page_remove: illegal options for object %p", object)); 1857 if (object->resident_page_count == 0) 1858 goto skipmemq; 1859 vm_object_pip_add(object, 1); 1860 again: 1861 p = vm_page_find_least(object, start); 1862 1863 /* 1864 * Here, the variable "p" is either (1) the page with the least pindex 1865 * greater than or equal to the parameter "start" or (2) NULL. 1866 */ 1867 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1868 next = TAILQ_NEXT(p, listq); 1869 1870 /* 1871 * If the page is wired for any reason besides the existence 1872 * of managed, wired mappings, then it cannot be freed. For 1873 * example, fictitious pages, which represent device memory, 1874 * are inherently wired and cannot be freed. They can, 1875 * however, be invalidated if the option OBJPR_CLEANONLY is 1876 * not specified. 1877 */ 1878 vm_page_lock(p); 1879 if ((wirings = p->wire_count) != 0 && 1880 (wirings = pmap_page_wired_mappings(p)) != p->wire_count) { 1881 if ((options & OBJPR_NOTMAPPED) == 0) { 1882 pmap_remove_all(p); 1883 /* Account for removal of wired mappings. */ 1884 if (wirings != 0) 1885 p->wire_count -= wirings; 1886 } 1887 if ((options & OBJPR_CLEANONLY) == 0) { 1888 p->valid = 0; 1889 vm_page_undirty(p); 1890 } 1891 vm_page_unlock(p); 1892 continue; 1893 } 1894 if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) 1895 goto again; 1896 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1897 ("vm_object_page_remove: page %p is fictitious", p)); 1898 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1899 if ((options & OBJPR_NOTMAPPED) == 0) 1900 pmap_remove_write(p); 1901 if (p->dirty) { 1902 vm_page_unlock(p); 1903 continue; 1904 } 1905 } 1906 if ((options & OBJPR_NOTMAPPED) == 0) { 1907 pmap_remove_all(p); 1908 /* Account for removal of wired mappings. */ 1909 if (wirings != 0) { 1910 KASSERT(p->wire_count == wirings, 1911 ("inconsistent wire count %d %d %p", 1912 p->wire_count, wirings, p)); 1913 p->wire_count = 0; 1914 atomic_subtract_int(&cnt.v_wire_count, 1); 1915 } 1916 } 1917 vm_page_free(p); 1918 vm_page_unlock(p); 1919 } 1920 vm_object_pip_wakeup(object); 1921 skipmemq: 1922 if (__predict_false(object->cache != NULL)) 1923 vm_page_cache_free(object, start, end); 1924 } 1925 1926 /* 1927 * vm_object_page_cache: 1928 * 1929 * For the given object, attempt to move the specified clean 1930 * pages to the cache queue. If a page is wired for any reason, 1931 * then it will not be changed. Pages are specified by the given 1932 * range ["start", "end"). As a special case, if "end" is zero, 1933 * then the range extends from "start" to the end of the object. 1934 * Any mappings to the specified pages are removed before the 1935 * pages are moved to the cache queue. 1936 * 1937 * This operation should only be performed on objects that 1938 * contain non-fictitious, managed pages. 1939 * 1940 * The object must be locked. 1941 */ 1942 void 1943 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1944 { 1945 struct mtx *mtx, *new_mtx; 1946 vm_page_t p, next; 1947 1948 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1949 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1950 ("vm_object_page_cache: illegal object %p", object)); 1951 if (object->resident_page_count == 0) 1952 return; 1953 p = vm_page_find_least(object, start); 1954 1955 /* 1956 * Here, the variable "p" is either (1) the page with the least pindex 1957 * greater than or equal to the parameter "start" or (2) NULL. 1958 */ 1959 mtx = NULL; 1960 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1961 next = TAILQ_NEXT(p, listq); 1962 1963 /* 1964 * Avoid releasing and reacquiring the same page lock. 1965 */ 1966 new_mtx = vm_page_lockptr(p); 1967 if (mtx != new_mtx) { 1968 if (mtx != NULL) 1969 mtx_unlock(mtx); 1970 mtx = new_mtx; 1971 mtx_lock(mtx); 1972 } 1973 vm_page_try_to_cache(p); 1974 } 1975 if (mtx != NULL) 1976 mtx_unlock(mtx); 1977 } 1978 1979 /* 1980 * Populate the specified range of the object with valid pages. Returns 1981 * TRUE if the range is successfully populated and FALSE otherwise. 1982 * 1983 * Note: This function should be optimized to pass a larger array of 1984 * pages to vm_pager_get_pages() before it is applied to a non- 1985 * OBJT_DEVICE object. 1986 * 1987 * The object must be locked. 1988 */ 1989 boolean_t 1990 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1991 { 1992 vm_page_t m, ma[1]; 1993 vm_pindex_t pindex; 1994 int rv; 1995 1996 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1997 for (pindex = start; pindex < end; pindex++) { 1998 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | 1999 VM_ALLOC_RETRY); 2000 if (m->valid != VM_PAGE_BITS_ALL) { 2001 ma[0] = m; 2002 rv = vm_pager_get_pages(object, ma, 1, 0); 2003 m = vm_page_lookup(object, pindex); 2004 if (m == NULL) 2005 break; 2006 if (rv != VM_PAGER_OK) { 2007 vm_page_lock(m); 2008 vm_page_free(m); 2009 vm_page_unlock(m); 2010 break; 2011 } 2012 } 2013 /* 2014 * Keep "m" busy because a subsequent iteration may unlock 2015 * the object. 2016 */ 2017 } 2018 if (pindex > start) { 2019 m = vm_page_lookup(object, start); 2020 while (m != NULL && m->pindex < pindex) { 2021 vm_page_wakeup(m); 2022 m = TAILQ_NEXT(m, listq); 2023 } 2024 } 2025 return (pindex == end); 2026 } 2027 2028 /* 2029 * Routine: vm_object_coalesce 2030 * Function: Coalesces two objects backing up adjoining 2031 * regions of memory into a single object. 2032 * 2033 * returns TRUE if objects were combined. 2034 * 2035 * NOTE: Only works at the moment if the second object is NULL - 2036 * if it's not, which object do we lock first? 2037 * 2038 * Parameters: 2039 * prev_object First object to coalesce 2040 * prev_offset Offset into prev_object 2041 * prev_size Size of reference to prev_object 2042 * next_size Size of reference to the second object 2043 * reserved Indicator that extension region has 2044 * swap accounted for 2045 * 2046 * Conditions: 2047 * The object must *not* be locked. 2048 */ 2049 boolean_t 2050 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2051 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2052 { 2053 vm_pindex_t next_pindex; 2054 2055 if (prev_object == NULL) 2056 return (TRUE); 2057 VM_OBJECT_LOCK(prev_object); 2058 if (prev_object->type != OBJT_DEFAULT && 2059 prev_object->type != OBJT_SWAP) { 2060 VM_OBJECT_UNLOCK(prev_object); 2061 return (FALSE); 2062 } 2063 2064 /* 2065 * Try to collapse the object first 2066 */ 2067 vm_object_collapse(prev_object); 2068 2069 /* 2070 * Can't coalesce if: . more than one reference . paged out . shadows 2071 * another object . has a copy elsewhere (any of which mean that the 2072 * pages not mapped to prev_entry may be in use anyway) 2073 */ 2074 if (prev_object->backing_object != NULL) { 2075 VM_OBJECT_UNLOCK(prev_object); 2076 return (FALSE); 2077 } 2078 2079 prev_size >>= PAGE_SHIFT; 2080 next_size >>= PAGE_SHIFT; 2081 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2082 2083 if ((prev_object->ref_count > 1) && 2084 (prev_object->size != next_pindex)) { 2085 VM_OBJECT_UNLOCK(prev_object); 2086 return (FALSE); 2087 } 2088 2089 /* 2090 * Account for the charge. 2091 */ 2092 if (prev_object->cred != NULL) { 2093 2094 /* 2095 * If prev_object was charged, then this mapping, 2096 * althought not charged now, may become writable 2097 * later. Non-NULL cred in the object would prevent 2098 * swap reservation during enabling of the write 2099 * access, so reserve swap now. Failed reservation 2100 * cause allocation of the separate object for the map 2101 * entry, and swap reservation for this entry is 2102 * managed in appropriate time. 2103 */ 2104 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2105 prev_object->cred)) { 2106 return (FALSE); 2107 } 2108 prev_object->charge += ptoa(next_size); 2109 } 2110 2111 /* 2112 * Remove any pages that may still be in the object from a previous 2113 * deallocation. 2114 */ 2115 if (next_pindex < prev_object->size) { 2116 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2117 next_size, 0); 2118 if (prev_object->type == OBJT_SWAP) 2119 swap_pager_freespace(prev_object, 2120 next_pindex, next_size); 2121 #if 0 2122 if (prev_object->cred != NULL) { 2123 KASSERT(prev_object->charge >= 2124 ptoa(prev_object->size - next_pindex), 2125 ("object %p overcharged 1 %jx %jx", prev_object, 2126 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2127 prev_object->charge -= ptoa(prev_object->size - 2128 next_pindex); 2129 } 2130 #endif 2131 } 2132 2133 /* 2134 * Extend the object if necessary. 2135 */ 2136 if (next_pindex + next_size > prev_object->size) 2137 prev_object->size = next_pindex + next_size; 2138 2139 VM_OBJECT_UNLOCK(prev_object); 2140 return (TRUE); 2141 } 2142 2143 void 2144 vm_object_set_writeable_dirty(vm_object_t object) 2145 { 2146 2147 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2148 if (object->type != OBJT_VNODE) 2149 return; 2150 object->generation++; 2151 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2152 return; 2153 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2154 } 2155 2156 #include "opt_ddb.h" 2157 #ifdef DDB 2158 #include <sys/kernel.h> 2159 2160 #include <sys/cons.h> 2161 2162 #include <ddb/ddb.h> 2163 2164 static int 2165 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2166 { 2167 vm_map_t tmpm; 2168 vm_map_entry_t tmpe; 2169 vm_object_t obj; 2170 int entcount; 2171 2172 if (map == 0) 2173 return 0; 2174 2175 if (entry == 0) { 2176 tmpe = map->header.next; 2177 entcount = map->nentries; 2178 while (entcount-- && (tmpe != &map->header)) { 2179 if (_vm_object_in_map(map, object, tmpe)) { 2180 return 1; 2181 } 2182 tmpe = tmpe->next; 2183 } 2184 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2185 tmpm = entry->object.sub_map; 2186 tmpe = tmpm->header.next; 2187 entcount = tmpm->nentries; 2188 while (entcount-- && tmpe != &tmpm->header) { 2189 if (_vm_object_in_map(tmpm, object, tmpe)) { 2190 return 1; 2191 } 2192 tmpe = tmpe->next; 2193 } 2194 } else if ((obj = entry->object.vm_object) != NULL) { 2195 for (; obj; obj = obj->backing_object) 2196 if (obj == object) { 2197 return 1; 2198 } 2199 } 2200 return 0; 2201 } 2202 2203 static int 2204 vm_object_in_map(vm_object_t object) 2205 { 2206 struct proc *p; 2207 2208 /* sx_slock(&allproc_lock); */ 2209 FOREACH_PROC_IN_SYSTEM(p) { 2210 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2211 continue; 2212 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2213 /* sx_sunlock(&allproc_lock); */ 2214 return 1; 2215 } 2216 } 2217 /* sx_sunlock(&allproc_lock); */ 2218 if (_vm_object_in_map(kernel_map, object, 0)) 2219 return 1; 2220 if (_vm_object_in_map(kmem_map, object, 0)) 2221 return 1; 2222 if (_vm_object_in_map(pager_map, object, 0)) 2223 return 1; 2224 if (_vm_object_in_map(buffer_map, object, 0)) 2225 return 1; 2226 return 0; 2227 } 2228 2229 DB_SHOW_COMMAND(vmochk, vm_object_check) 2230 { 2231 vm_object_t object; 2232 2233 /* 2234 * make sure that internal objs are in a map somewhere 2235 * and none have zero ref counts. 2236 */ 2237 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2238 if (object->handle == NULL && 2239 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2240 if (object->ref_count == 0) { 2241 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2242 (long)object->size); 2243 } 2244 if (!vm_object_in_map(object)) { 2245 db_printf( 2246 "vmochk: internal obj is not in a map: " 2247 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2248 object->ref_count, (u_long)object->size, 2249 (u_long)object->size, 2250 (void *)object->backing_object); 2251 } 2252 } 2253 } 2254 } 2255 2256 /* 2257 * vm_object_print: [ debug ] 2258 */ 2259 DB_SHOW_COMMAND(object, vm_object_print_static) 2260 { 2261 /* XXX convert args. */ 2262 vm_object_t object = (vm_object_t)addr; 2263 boolean_t full = have_addr; 2264 2265 vm_page_t p; 2266 2267 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2268 #define count was_count 2269 2270 int count; 2271 2272 if (object == NULL) 2273 return; 2274 2275 db_iprintf( 2276 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2277 object, (int)object->type, (uintmax_t)object->size, 2278 object->resident_page_count, object->ref_count, object->flags, 2279 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2280 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2281 object->shadow_count, 2282 object->backing_object ? object->backing_object->ref_count : 0, 2283 object->backing_object, (uintmax_t)object->backing_object_offset); 2284 2285 if (!full) 2286 return; 2287 2288 db_indent += 2; 2289 count = 0; 2290 TAILQ_FOREACH(p, &object->memq, listq) { 2291 if (count == 0) 2292 db_iprintf("memory:="); 2293 else if (count == 6) { 2294 db_printf("\n"); 2295 db_iprintf(" ..."); 2296 count = 0; 2297 } else 2298 db_printf(","); 2299 count++; 2300 2301 db_printf("(off=0x%jx,page=0x%jx)", 2302 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2303 } 2304 if (count != 0) 2305 db_printf("\n"); 2306 db_indent -= 2; 2307 } 2308 2309 /* XXX. */ 2310 #undef count 2311 2312 /* XXX need this non-static entry for calling from vm_map_print. */ 2313 void 2314 vm_object_print( 2315 /* db_expr_t */ long addr, 2316 boolean_t have_addr, 2317 /* db_expr_t */ long count, 2318 char *modif) 2319 { 2320 vm_object_print_static(addr, have_addr, count, modif); 2321 } 2322 2323 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2324 { 2325 vm_object_t object; 2326 vm_pindex_t fidx; 2327 vm_paddr_t pa; 2328 vm_page_t m, prev_m; 2329 int rcount, nl, c; 2330 2331 nl = 0; 2332 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2333 db_printf("new object: %p\n", (void *)object); 2334 if (nl > 18) { 2335 c = cngetc(); 2336 if (c != ' ') 2337 return; 2338 nl = 0; 2339 } 2340 nl++; 2341 rcount = 0; 2342 fidx = 0; 2343 pa = -1; 2344 TAILQ_FOREACH(m, &object->memq, listq) { 2345 if (m->pindex > 128) 2346 break; 2347 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2348 prev_m->pindex + 1 != m->pindex) { 2349 if (rcount) { 2350 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2351 (long)fidx, rcount, (long)pa); 2352 if (nl > 18) { 2353 c = cngetc(); 2354 if (c != ' ') 2355 return; 2356 nl = 0; 2357 } 2358 nl++; 2359 rcount = 0; 2360 } 2361 } 2362 if (rcount && 2363 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2364 ++rcount; 2365 continue; 2366 } 2367 if (rcount) { 2368 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2369 (long)fidx, rcount, (long)pa); 2370 if (nl > 18) { 2371 c = cngetc(); 2372 if (c != ' ') 2373 return; 2374 nl = 0; 2375 } 2376 nl++; 2377 } 2378 fidx = m->pindex; 2379 pa = VM_PAGE_TO_PHYS(m); 2380 rcount = 1; 2381 } 2382 if (rcount) { 2383 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2384 (long)fidx, rcount, (long)pa); 2385 if (nl > 18) { 2386 c = cngetc(); 2387 if (c != ' ') 2388 return; 2389 nl = 0; 2390 } 2391 nl++; 2392 } 2393 } 2394 } 2395 #endif /* DDB */ 2396