1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory object module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/lock.h> 73 #include <sys/mman.h> 74 #include <sys/mount.h> 75 #include <sys/kernel.h> 76 #include <sys/sysctl.h> 77 #include <sys/mutex.h> 78 #include <sys/proc.h> /* for curproc, pageproc */ 79 #include <sys/socket.h> 80 #include <sys/resourcevar.h> 81 #include <sys/rwlock.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/vmmeter.h> 85 #include <sys/sx.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_radix.h> 99 #include <vm/vm_reserv.h> 100 #include <vm/uma.h> 101 102 static int old_msync; 103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 104 "Use old (insecure) msync behavior"); 105 106 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 107 int pagerflags, int flags, boolean_t *clearobjflags, 108 boolean_t *eio); 109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 110 boolean_t *clearobjflags); 111 static void vm_object_qcollapse(vm_object_t object); 112 static void vm_object_vndeallocate(vm_object_t object); 113 114 /* 115 * Virtual memory objects maintain the actual data 116 * associated with allocated virtual memory. A given 117 * page of memory exists within exactly one object. 118 * 119 * An object is only deallocated when all "references" 120 * are given up. Only one "reference" to a given 121 * region of an object should be writeable. 122 * 123 * Associated with each object is a list of all resident 124 * memory pages belonging to that object; this list is 125 * maintained by the "vm_page" module, and locked by the object's 126 * lock. 127 * 128 * Each object also records a "pager" routine which is 129 * used to retrieve (and store) pages to the proper backing 130 * storage. In addition, objects may be backed by other 131 * objects from which they were virtual-copied. 132 * 133 * The only items within the object structure which are 134 * modified after time of creation are: 135 * reference count locked by object's lock 136 * pager routine locked by object's lock 137 * 138 */ 139 140 struct object_q vm_object_list; 141 struct mtx vm_object_list_mtx; /* lock for object list and count */ 142 143 struct vm_object kernel_object_store; 144 struct vm_object kmem_object_store; 145 146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, 147 "VM object stats"); 148 149 static long object_collapses; 150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 151 &object_collapses, 0, "VM object collapses"); 152 153 static long object_bypasses; 154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 155 &object_bypasses, 0, "VM object bypasses"); 156 157 static uma_zone_t obj_zone; 158 159 static int vm_object_zinit(void *mem, int size, int flags); 160 161 #ifdef INVARIANTS 162 static void vm_object_zdtor(void *mem, int size, void *arg); 163 164 static void 165 vm_object_zdtor(void *mem, int size, void *arg) 166 { 167 vm_object_t object; 168 169 object = (vm_object_t)mem; 170 KASSERT(object->ref_count == 0, 171 ("object %p ref_count = %d", object, object->ref_count)); 172 KASSERT(TAILQ_EMPTY(&object->memq), 173 ("object %p has resident pages in its memq", object)); 174 KASSERT(vm_radix_is_empty(&object->rtree), 175 ("object %p has resident pages in its trie", object)); 176 #if VM_NRESERVLEVEL > 0 177 KASSERT(LIST_EMPTY(&object->rvq), 178 ("object %p has reservations", 179 object)); 180 #endif 181 KASSERT(object->paging_in_progress == 0, 182 ("object %p paging_in_progress = %d", 183 object, object->paging_in_progress)); 184 KASSERT(object->resident_page_count == 0, 185 ("object %p resident_page_count = %d", 186 object, object->resident_page_count)); 187 KASSERT(object->shadow_count == 0, 188 ("object %p shadow_count = %d", 189 object, object->shadow_count)); 190 KASSERT(object->type == OBJT_DEAD, 191 ("object %p has non-dead type %d", 192 object, object->type)); 193 } 194 #endif 195 196 static int 197 vm_object_zinit(void *mem, int size, int flags) 198 { 199 vm_object_t object; 200 201 object = (vm_object_t)mem; 202 rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW); 203 204 /* These are true for any object that has been freed */ 205 object->type = OBJT_DEAD; 206 object->ref_count = 0; 207 vm_radix_init(&object->rtree); 208 object->paging_in_progress = 0; 209 object->resident_page_count = 0; 210 object->shadow_count = 0; 211 212 mtx_lock(&vm_object_list_mtx); 213 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 214 mtx_unlock(&vm_object_list_mtx); 215 return (0); 216 } 217 218 static void 219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object) 220 { 221 222 TAILQ_INIT(&object->memq); 223 LIST_INIT(&object->shadow_head); 224 225 object->type = type; 226 switch (type) { 227 case OBJT_DEAD: 228 panic("_vm_object_allocate: can't create OBJT_DEAD"); 229 case OBJT_DEFAULT: 230 case OBJT_SWAP: 231 object->flags = OBJ_ONEMAPPING; 232 break; 233 case OBJT_DEVICE: 234 case OBJT_SG: 235 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 236 break; 237 case OBJT_MGTDEVICE: 238 object->flags = OBJ_FICTITIOUS; 239 break; 240 case OBJT_PHYS: 241 object->flags = OBJ_UNMANAGED; 242 break; 243 case OBJT_VNODE: 244 object->flags = 0; 245 break; 246 default: 247 panic("_vm_object_allocate: type %d is undefined", type); 248 } 249 object->size = size; 250 object->generation = 1; 251 object->ref_count = 1; 252 object->memattr = VM_MEMATTR_DEFAULT; 253 object->cred = NULL; 254 object->charge = 0; 255 object->handle = NULL; 256 object->backing_object = NULL; 257 object->backing_object_offset = (vm_ooffset_t) 0; 258 #if VM_NRESERVLEVEL > 0 259 LIST_INIT(&object->rvq); 260 #endif 261 umtx_shm_object_init(object); 262 } 263 264 /* 265 * vm_object_init: 266 * 267 * Initialize the VM objects module. 268 */ 269 void 270 vm_object_init(void) 271 { 272 TAILQ_INIT(&vm_object_list); 273 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 274 275 rw_init(&kernel_object->lock, "kernel vm object"); 276 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 277 VM_MIN_KERNEL_ADDRESS), kernel_object); 278 #if VM_NRESERVLEVEL > 0 279 kernel_object->flags |= OBJ_COLORED; 280 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 281 #endif 282 283 rw_init(&kmem_object->lock, "kmem vm object"); 284 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 285 VM_MIN_KERNEL_ADDRESS), kmem_object); 286 #if VM_NRESERVLEVEL > 0 287 kmem_object->flags |= OBJ_COLORED; 288 kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 289 #endif 290 291 /* 292 * The lock portion of struct vm_object must be type stable due 293 * to vm_pageout_fallback_object_lock locking a vm object 294 * without holding any references to it. 295 */ 296 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 297 #ifdef INVARIANTS 298 vm_object_zdtor, 299 #else 300 NULL, 301 #endif 302 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 303 304 vm_radix_zinit(); 305 } 306 307 void 308 vm_object_clear_flag(vm_object_t object, u_short bits) 309 { 310 311 VM_OBJECT_ASSERT_WLOCKED(object); 312 object->flags &= ~bits; 313 } 314 315 /* 316 * Sets the default memory attribute for the specified object. Pages 317 * that are allocated to this object are by default assigned this memory 318 * attribute. 319 * 320 * Presently, this function must be called before any pages are allocated 321 * to the object. In the future, this requirement may be relaxed for 322 * "default" and "swap" objects. 323 */ 324 int 325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 326 { 327 328 VM_OBJECT_ASSERT_WLOCKED(object); 329 switch (object->type) { 330 case OBJT_DEFAULT: 331 case OBJT_DEVICE: 332 case OBJT_MGTDEVICE: 333 case OBJT_PHYS: 334 case OBJT_SG: 335 case OBJT_SWAP: 336 case OBJT_VNODE: 337 if (!TAILQ_EMPTY(&object->memq)) 338 return (KERN_FAILURE); 339 break; 340 case OBJT_DEAD: 341 return (KERN_INVALID_ARGUMENT); 342 default: 343 panic("vm_object_set_memattr: object %p is of undefined type", 344 object); 345 } 346 object->memattr = memattr; 347 return (KERN_SUCCESS); 348 } 349 350 void 351 vm_object_pip_add(vm_object_t object, short i) 352 { 353 354 VM_OBJECT_ASSERT_WLOCKED(object); 355 object->paging_in_progress += i; 356 } 357 358 void 359 vm_object_pip_subtract(vm_object_t object, short i) 360 { 361 362 VM_OBJECT_ASSERT_WLOCKED(object); 363 object->paging_in_progress -= i; 364 } 365 366 void 367 vm_object_pip_wakeup(vm_object_t object) 368 { 369 370 VM_OBJECT_ASSERT_WLOCKED(object); 371 object->paging_in_progress--; 372 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 373 vm_object_clear_flag(object, OBJ_PIPWNT); 374 wakeup(object); 375 } 376 } 377 378 void 379 vm_object_pip_wakeupn(vm_object_t object, short i) 380 { 381 382 VM_OBJECT_ASSERT_WLOCKED(object); 383 if (i) 384 object->paging_in_progress -= i; 385 if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) { 386 vm_object_clear_flag(object, OBJ_PIPWNT); 387 wakeup(object); 388 } 389 } 390 391 void 392 vm_object_pip_wait(vm_object_t object, char *waitid) 393 { 394 395 VM_OBJECT_ASSERT_WLOCKED(object); 396 while (object->paging_in_progress) { 397 object->flags |= OBJ_PIPWNT; 398 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0); 399 } 400 } 401 402 /* 403 * vm_object_allocate: 404 * 405 * Returns a new object with the given size. 406 */ 407 vm_object_t 408 vm_object_allocate(objtype_t type, vm_pindex_t size) 409 { 410 vm_object_t object; 411 412 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 413 _vm_object_allocate(type, size, object); 414 return (object); 415 } 416 417 418 /* 419 * vm_object_reference: 420 * 421 * Gets another reference to the given object. Note: OBJ_DEAD 422 * objects can be referenced during final cleaning. 423 */ 424 void 425 vm_object_reference(vm_object_t object) 426 { 427 if (object == NULL) 428 return; 429 VM_OBJECT_WLOCK(object); 430 vm_object_reference_locked(object); 431 VM_OBJECT_WUNLOCK(object); 432 } 433 434 /* 435 * vm_object_reference_locked: 436 * 437 * Gets another reference to the given object. 438 * 439 * The object must be locked. 440 */ 441 void 442 vm_object_reference_locked(vm_object_t object) 443 { 444 struct vnode *vp; 445 446 VM_OBJECT_ASSERT_WLOCKED(object); 447 object->ref_count++; 448 if (object->type == OBJT_VNODE) { 449 vp = object->handle; 450 vref(vp); 451 } 452 } 453 454 /* 455 * Handle deallocating an object of type OBJT_VNODE. 456 */ 457 static void 458 vm_object_vndeallocate(vm_object_t object) 459 { 460 struct vnode *vp = (struct vnode *) object->handle; 461 462 VM_OBJECT_ASSERT_WLOCKED(object); 463 KASSERT(object->type == OBJT_VNODE, 464 ("vm_object_vndeallocate: not a vnode object")); 465 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp")); 466 #ifdef INVARIANTS 467 if (object->ref_count == 0) { 468 vn_printf(vp, "vm_object_vndeallocate "); 469 panic("vm_object_vndeallocate: bad object reference count"); 470 } 471 #endif 472 473 if (!umtx_shm_vnobj_persistent && object->ref_count == 1) 474 umtx_shm_object_terminated(object); 475 476 /* 477 * The test for text of vp vnode does not need a bypass to 478 * reach right VV_TEXT there, since it is obtained from 479 * object->handle. 480 */ 481 if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) { 482 object->ref_count--; 483 VM_OBJECT_WUNLOCK(object); 484 /* vrele may need the vnode lock. */ 485 vrele(vp); 486 } else { 487 vhold(vp); 488 VM_OBJECT_WUNLOCK(object); 489 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 490 vdrop(vp); 491 VM_OBJECT_WLOCK(object); 492 object->ref_count--; 493 if (object->type == OBJT_DEAD) { 494 VM_OBJECT_WUNLOCK(object); 495 VOP_UNLOCK(vp, 0); 496 } else { 497 if (object->ref_count == 0) 498 VOP_UNSET_TEXT(vp); 499 VM_OBJECT_WUNLOCK(object); 500 vput(vp); 501 } 502 } 503 } 504 505 /* 506 * vm_object_deallocate: 507 * 508 * Release a reference to the specified object, 509 * gained either through a vm_object_allocate 510 * or a vm_object_reference call. When all references 511 * are gone, storage associated with this object 512 * may be relinquished. 513 * 514 * No object may be locked. 515 */ 516 void 517 vm_object_deallocate(vm_object_t object) 518 { 519 vm_object_t temp; 520 struct vnode *vp; 521 522 while (object != NULL) { 523 VM_OBJECT_WLOCK(object); 524 if (object->type == OBJT_VNODE) { 525 vm_object_vndeallocate(object); 526 return; 527 } 528 529 KASSERT(object->ref_count != 0, 530 ("vm_object_deallocate: object deallocated too many times: %d", object->type)); 531 532 /* 533 * If the reference count goes to 0 we start calling 534 * vm_object_terminate() on the object chain. 535 * A ref count of 1 may be a special case depending on the 536 * shadow count being 0 or 1. 537 */ 538 object->ref_count--; 539 if (object->ref_count > 1) { 540 VM_OBJECT_WUNLOCK(object); 541 return; 542 } else if (object->ref_count == 1) { 543 if (object->type == OBJT_SWAP && 544 (object->flags & OBJ_TMPFS) != 0) { 545 vp = object->un_pager.swp.swp_tmpfs; 546 vhold(vp); 547 VM_OBJECT_WUNLOCK(object); 548 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 549 VM_OBJECT_WLOCK(object); 550 if (object->type == OBJT_DEAD || 551 object->ref_count != 1) { 552 VM_OBJECT_WUNLOCK(object); 553 VOP_UNLOCK(vp, 0); 554 vdrop(vp); 555 return; 556 } 557 if ((object->flags & OBJ_TMPFS) != 0) 558 VOP_UNSET_TEXT(vp); 559 VOP_UNLOCK(vp, 0); 560 vdrop(vp); 561 } 562 if (object->shadow_count == 0 && 563 object->handle == NULL && 564 (object->type == OBJT_DEFAULT || 565 (object->type == OBJT_SWAP && 566 (object->flags & OBJ_TMPFS_NODE) == 0))) { 567 vm_object_set_flag(object, OBJ_ONEMAPPING); 568 } else if ((object->shadow_count == 1) && 569 (object->handle == NULL) && 570 (object->type == OBJT_DEFAULT || 571 object->type == OBJT_SWAP)) { 572 vm_object_t robject; 573 574 robject = LIST_FIRST(&object->shadow_head); 575 KASSERT(robject != NULL, 576 ("vm_object_deallocate: ref_count: %d, shadow_count: %d", 577 object->ref_count, 578 object->shadow_count)); 579 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0, 580 ("shadowed tmpfs v_object %p", object)); 581 if (!VM_OBJECT_TRYWLOCK(robject)) { 582 /* 583 * Avoid a potential deadlock. 584 */ 585 object->ref_count++; 586 VM_OBJECT_WUNLOCK(object); 587 /* 588 * More likely than not the thread 589 * holding robject's lock has lower 590 * priority than the current thread. 591 * Let the lower priority thread run. 592 */ 593 pause("vmo_de", 1); 594 continue; 595 } 596 /* 597 * Collapse object into its shadow unless its 598 * shadow is dead. In that case, object will 599 * be deallocated by the thread that is 600 * deallocating its shadow. 601 */ 602 if ((robject->flags & OBJ_DEAD) == 0 && 603 (robject->handle == NULL) && 604 (robject->type == OBJT_DEFAULT || 605 robject->type == OBJT_SWAP)) { 606 607 robject->ref_count++; 608 retry: 609 if (robject->paging_in_progress) { 610 VM_OBJECT_WUNLOCK(object); 611 vm_object_pip_wait(robject, 612 "objde1"); 613 temp = robject->backing_object; 614 if (object == temp) { 615 VM_OBJECT_WLOCK(object); 616 goto retry; 617 } 618 } else if (object->paging_in_progress) { 619 VM_OBJECT_WUNLOCK(robject); 620 object->flags |= OBJ_PIPWNT; 621 VM_OBJECT_SLEEP(object, object, 622 PDROP | PVM, "objde2", 0); 623 VM_OBJECT_WLOCK(robject); 624 temp = robject->backing_object; 625 if (object == temp) { 626 VM_OBJECT_WLOCK(object); 627 goto retry; 628 } 629 } else 630 VM_OBJECT_WUNLOCK(object); 631 632 if (robject->ref_count == 1) { 633 robject->ref_count--; 634 object = robject; 635 goto doterm; 636 } 637 object = robject; 638 vm_object_collapse(object); 639 VM_OBJECT_WUNLOCK(object); 640 continue; 641 } 642 VM_OBJECT_WUNLOCK(robject); 643 } 644 VM_OBJECT_WUNLOCK(object); 645 return; 646 } 647 doterm: 648 umtx_shm_object_terminated(object); 649 temp = object->backing_object; 650 if (temp != NULL) { 651 KASSERT((object->flags & OBJ_TMPFS_NODE) == 0, 652 ("shadowed tmpfs v_object 2 %p", object)); 653 VM_OBJECT_WLOCK(temp); 654 LIST_REMOVE(object, shadow_list); 655 temp->shadow_count--; 656 VM_OBJECT_WUNLOCK(temp); 657 object->backing_object = NULL; 658 } 659 /* 660 * Don't double-terminate, we could be in a termination 661 * recursion due to the terminate having to sync data 662 * to disk. 663 */ 664 if ((object->flags & OBJ_DEAD) == 0) 665 vm_object_terminate(object); 666 else 667 VM_OBJECT_WUNLOCK(object); 668 object = temp; 669 } 670 } 671 672 /* 673 * vm_object_destroy removes the object from the global object list 674 * and frees the space for the object. 675 */ 676 void 677 vm_object_destroy(vm_object_t object) 678 { 679 680 /* 681 * Release the allocation charge. 682 */ 683 if (object->cred != NULL) { 684 swap_release_by_cred(object->charge, object->cred); 685 object->charge = 0; 686 crfree(object->cred); 687 object->cred = NULL; 688 } 689 690 /* 691 * Free the space for the object. 692 */ 693 uma_zfree(obj_zone, object); 694 } 695 696 /* 697 * vm_object_terminate_pages removes any remaining pageable pages 698 * from the object and resets the object to an empty state. 699 */ 700 static void 701 vm_object_terminate_pages(vm_object_t object) 702 { 703 vm_page_t p, p_next; 704 705 VM_OBJECT_ASSERT_WLOCKED(object); 706 707 /* 708 * Free any remaining pageable pages. This also removes them from the 709 * paging queues. However, don't free wired pages, just remove them 710 * from the object. Rather than incrementally removing each page from 711 * the object, the page and object are reset to any empty state. 712 */ 713 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 714 vm_page_assert_unbusied(p); 715 vm_page_lock(p); 716 /* 717 * Optimize the page's removal from the object by resetting 718 * its "object" field. Specifically, if the page is not 719 * wired, then the effect of this assignment is that 720 * vm_page_free()'s call to vm_page_remove() will return 721 * immediately without modifying the page or the object. 722 */ 723 p->object = NULL; 724 if (p->wire_count == 0) { 725 vm_page_free(p); 726 VM_CNT_INC(v_pfree); 727 } 728 vm_page_unlock(p); 729 } 730 /* 731 * If the object contained any pages, then reset it to an empty state. 732 * None of the object's fields, including "resident_page_count", were 733 * modified by the preceding loop. 734 */ 735 if (object->resident_page_count != 0) { 736 vm_radix_reclaim_allnodes(&object->rtree); 737 TAILQ_INIT(&object->memq); 738 object->resident_page_count = 0; 739 if (object->type == OBJT_VNODE) 740 vdrop(object->handle); 741 } 742 } 743 744 /* 745 * vm_object_terminate actually destroys the specified object, freeing 746 * up all previously used resources. 747 * 748 * The object must be locked. 749 * This routine may block. 750 */ 751 void 752 vm_object_terminate(vm_object_t object) 753 { 754 755 VM_OBJECT_ASSERT_WLOCKED(object); 756 757 /* 758 * Make sure no one uses us. 759 */ 760 vm_object_set_flag(object, OBJ_DEAD); 761 762 /* 763 * wait for the pageout daemon to be done with the object 764 */ 765 vm_object_pip_wait(object, "objtrm"); 766 767 KASSERT(!object->paging_in_progress, 768 ("vm_object_terminate: pageout in progress")); 769 770 /* 771 * Clean and free the pages, as appropriate. All references to the 772 * object are gone, so we don't need to lock it. 773 */ 774 if (object->type == OBJT_VNODE) { 775 struct vnode *vp = (struct vnode *)object->handle; 776 777 /* 778 * Clean pages and flush buffers. 779 */ 780 vm_object_page_clean(object, 0, 0, OBJPC_SYNC); 781 VM_OBJECT_WUNLOCK(object); 782 783 vinvalbuf(vp, V_SAVE, 0, 0); 784 785 BO_LOCK(&vp->v_bufobj); 786 vp->v_bufobj.bo_flag |= BO_DEAD; 787 BO_UNLOCK(&vp->v_bufobj); 788 789 VM_OBJECT_WLOCK(object); 790 } 791 792 KASSERT(object->ref_count == 0, 793 ("vm_object_terminate: object with references, ref_count=%d", 794 object->ref_count)); 795 796 if ((object->flags & OBJ_PG_DTOR) == 0) 797 vm_object_terminate_pages(object); 798 799 #if VM_NRESERVLEVEL > 0 800 if (__predict_false(!LIST_EMPTY(&object->rvq))) 801 vm_reserv_break_all(object); 802 #endif 803 804 KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT || 805 object->type == OBJT_SWAP, 806 ("%s: non-swap obj %p has cred", __func__, object)); 807 808 /* 809 * Let the pager know object is dead. 810 */ 811 vm_pager_deallocate(object); 812 VM_OBJECT_WUNLOCK(object); 813 814 vm_object_destroy(object); 815 } 816 817 /* 818 * Make the page read-only so that we can clear the object flags. However, if 819 * this is a nosync mmap then the object is likely to stay dirty so do not 820 * mess with the page and do not clear the object flags. Returns TRUE if the 821 * page should be flushed, and FALSE otherwise. 822 */ 823 static boolean_t 824 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags) 825 { 826 827 /* 828 * If we have been asked to skip nosync pages and this is a 829 * nosync page, skip it. Note that the object flags were not 830 * cleared in this case so we do not have to set them. 831 */ 832 if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) { 833 *clearobjflags = FALSE; 834 return (FALSE); 835 } else { 836 pmap_remove_write(p); 837 return (p->dirty != 0); 838 } 839 } 840 841 /* 842 * vm_object_page_clean 843 * 844 * Clean all dirty pages in the specified range of object. Leaves page 845 * on whatever queue it is currently on. If NOSYNC is set then do not 846 * write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC), 847 * leaving the object dirty. 848 * 849 * When stuffing pages asynchronously, allow clustering. XXX we need a 850 * synchronous clustering mode implementation. 851 * 852 * Odd semantics: if start == end, we clean everything. 853 * 854 * The object must be locked. 855 * 856 * Returns FALSE if some page from the range was not written, as 857 * reported by the pager, and TRUE otherwise. 858 */ 859 boolean_t 860 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 861 int flags) 862 { 863 vm_page_t np, p; 864 vm_pindex_t pi, tend, tstart; 865 int curgeneration, n, pagerflags; 866 boolean_t clearobjflags, eio, res; 867 868 VM_OBJECT_ASSERT_WLOCKED(object); 869 870 /* 871 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE 872 * objects. The check below prevents the function from 873 * operating on non-vnode objects. 874 */ 875 if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 || 876 object->resident_page_count == 0) 877 return (TRUE); 878 879 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 880 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 881 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 882 883 tstart = OFF_TO_IDX(start); 884 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 885 clearobjflags = tstart == 0 && tend >= object->size; 886 res = TRUE; 887 888 rescan: 889 curgeneration = object->generation; 890 891 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 892 pi = p->pindex; 893 if (pi >= tend) 894 break; 895 np = TAILQ_NEXT(p, listq); 896 if (p->valid == 0) 897 continue; 898 if (vm_page_sleep_if_busy(p, "vpcwai")) { 899 if (object->generation != curgeneration) { 900 if ((flags & OBJPC_SYNC) != 0) 901 goto rescan; 902 else 903 clearobjflags = FALSE; 904 } 905 np = vm_page_find_least(object, pi); 906 continue; 907 } 908 if (!vm_object_page_remove_write(p, flags, &clearobjflags)) 909 continue; 910 911 n = vm_object_page_collect_flush(object, p, pagerflags, 912 flags, &clearobjflags, &eio); 913 if (eio) { 914 res = FALSE; 915 clearobjflags = FALSE; 916 } 917 if (object->generation != curgeneration) { 918 if ((flags & OBJPC_SYNC) != 0) 919 goto rescan; 920 else 921 clearobjflags = FALSE; 922 } 923 924 /* 925 * If the VOP_PUTPAGES() did a truncated write, so 926 * that even the first page of the run is not fully 927 * written, vm_pageout_flush() returns 0 as the run 928 * length. Since the condition that caused truncated 929 * write may be permanent, e.g. exhausted free space, 930 * accepting n == 0 would cause an infinite loop. 931 * 932 * Forwarding the iterator leaves the unwritten page 933 * behind, but there is not much we can do there if 934 * filesystem refuses to write it. 935 */ 936 if (n == 0) { 937 n = 1; 938 clearobjflags = FALSE; 939 } 940 np = vm_page_find_least(object, pi + n); 941 } 942 #if 0 943 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 944 #endif 945 946 if (clearobjflags) 947 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY); 948 return (res); 949 } 950 951 static int 952 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 953 int flags, boolean_t *clearobjflags, boolean_t *eio) 954 { 955 vm_page_t ma[vm_pageout_page_count], p_first, tp; 956 int count, i, mreq, runlen; 957 958 vm_page_lock_assert(p, MA_NOTOWNED); 959 VM_OBJECT_ASSERT_WLOCKED(object); 960 961 count = 1; 962 mreq = 0; 963 964 for (tp = p; count < vm_pageout_page_count; count++) { 965 tp = vm_page_next(tp); 966 if (tp == NULL || vm_page_busied(tp)) 967 break; 968 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 969 break; 970 } 971 972 for (p_first = p; count < vm_pageout_page_count; count++) { 973 tp = vm_page_prev(p_first); 974 if (tp == NULL || vm_page_busied(tp)) 975 break; 976 if (!vm_object_page_remove_write(tp, flags, clearobjflags)) 977 break; 978 p_first = tp; 979 mreq++; 980 } 981 982 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 983 ma[i] = tp; 984 985 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 986 return (runlen); 987 } 988 989 /* 990 * Note that there is absolutely no sense in writing out 991 * anonymous objects, so we track down the vnode object 992 * to write out. 993 * We invalidate (remove) all pages from the address space 994 * for semantic correctness. 995 * 996 * If the backing object is a device object with unmanaged pages, then any 997 * mappings to the specified range of pages must be removed before this 998 * function is called. 999 * 1000 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1001 * may start out with a NULL object. 1002 */ 1003 boolean_t 1004 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1005 boolean_t syncio, boolean_t invalidate) 1006 { 1007 vm_object_t backing_object; 1008 struct vnode *vp; 1009 struct mount *mp; 1010 int error, flags, fsync_after; 1011 boolean_t res; 1012 1013 if (object == NULL) 1014 return (TRUE); 1015 res = TRUE; 1016 error = 0; 1017 VM_OBJECT_WLOCK(object); 1018 while ((backing_object = object->backing_object) != NULL) { 1019 VM_OBJECT_WLOCK(backing_object); 1020 offset += object->backing_object_offset; 1021 VM_OBJECT_WUNLOCK(object); 1022 object = backing_object; 1023 if (object->size < OFF_TO_IDX(offset + size)) 1024 size = IDX_TO_OFF(object->size) - offset; 1025 } 1026 /* 1027 * Flush pages if writing is allowed, invalidate them 1028 * if invalidation requested. Pages undergoing I/O 1029 * will be ignored by vm_object_page_remove(). 1030 * 1031 * We cannot lock the vnode and then wait for paging 1032 * to complete without deadlocking against vm_fault. 1033 * Instead we simply call vm_object_page_remove() and 1034 * allow it to block internally on a page-by-page 1035 * basis when it encounters pages undergoing async 1036 * I/O. 1037 */ 1038 if (object->type == OBJT_VNODE && 1039 (object->flags & OBJ_MIGHTBEDIRTY) != 0) { 1040 vp = object->handle; 1041 VM_OBJECT_WUNLOCK(object); 1042 (void) vn_start_write(vp, &mp, V_WAIT); 1043 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1044 if (syncio && !invalidate && offset == 0 && 1045 atop(size) == object->size) { 1046 /* 1047 * If syncing the whole mapping of the file, 1048 * it is faster to schedule all the writes in 1049 * async mode, also allowing the clustering, 1050 * and then wait for i/o to complete. 1051 */ 1052 flags = 0; 1053 fsync_after = TRUE; 1054 } else { 1055 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1056 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1057 fsync_after = FALSE; 1058 } 1059 VM_OBJECT_WLOCK(object); 1060 res = vm_object_page_clean(object, offset, offset + size, 1061 flags); 1062 VM_OBJECT_WUNLOCK(object); 1063 if (fsync_after) 1064 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1065 VOP_UNLOCK(vp, 0); 1066 vn_finished_write(mp); 1067 if (error != 0) 1068 res = FALSE; 1069 VM_OBJECT_WLOCK(object); 1070 } 1071 if ((object->type == OBJT_VNODE || 1072 object->type == OBJT_DEVICE) && invalidate) { 1073 if (object->type == OBJT_DEVICE) 1074 /* 1075 * The option OBJPR_NOTMAPPED must be passed here 1076 * because vm_object_page_remove() cannot remove 1077 * unmanaged mappings. 1078 */ 1079 flags = OBJPR_NOTMAPPED; 1080 else if (old_msync) 1081 flags = 0; 1082 else 1083 flags = OBJPR_CLEANONLY; 1084 vm_object_page_remove(object, OFF_TO_IDX(offset), 1085 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1086 } 1087 VM_OBJECT_WUNLOCK(object); 1088 return (res); 1089 } 1090 1091 /* 1092 * Determine whether the given advice can be applied to the object. Advice is 1093 * not applied to unmanaged pages since they never belong to page queues, and 1094 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1095 * have been mapped at most once. 1096 */ 1097 static bool 1098 vm_object_advice_applies(vm_object_t object, int advice) 1099 { 1100 1101 if ((object->flags & OBJ_UNMANAGED) != 0) 1102 return (false); 1103 if (advice != MADV_FREE) 1104 return (true); 1105 return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) && 1106 (object->flags & OBJ_ONEMAPPING) != 0); 1107 } 1108 1109 static void 1110 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1111 vm_size_t size) 1112 { 1113 1114 if (advice == MADV_FREE && object->type == OBJT_SWAP) 1115 swap_pager_freespace(object, pindex, size); 1116 } 1117 1118 /* 1119 * vm_object_madvise: 1120 * 1121 * Implements the madvise function at the object/page level. 1122 * 1123 * MADV_WILLNEED (any object) 1124 * 1125 * Activate the specified pages if they are resident. 1126 * 1127 * MADV_DONTNEED (any object) 1128 * 1129 * Deactivate the specified pages if they are resident. 1130 * 1131 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, 1132 * OBJ_ONEMAPPING only) 1133 * 1134 * Deactivate and clean the specified pages if they are 1135 * resident. This permits the process to reuse the pages 1136 * without faulting or the kernel to reclaim the pages 1137 * without I/O. 1138 */ 1139 void 1140 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1141 int advice) 1142 { 1143 vm_pindex_t tpindex; 1144 vm_object_t backing_object, tobject; 1145 vm_page_t m, tm; 1146 1147 if (object == NULL) 1148 return; 1149 1150 relookup: 1151 VM_OBJECT_WLOCK(object); 1152 if (!vm_object_advice_applies(object, advice)) { 1153 VM_OBJECT_WUNLOCK(object); 1154 return; 1155 } 1156 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1157 tobject = object; 1158 1159 /* 1160 * If the next page isn't resident in the top-level object, we 1161 * need to search the shadow chain. When applying MADV_FREE, we 1162 * take care to release any swap space used to store 1163 * non-resident pages. 1164 */ 1165 if (m == NULL || pindex < m->pindex) { 1166 /* 1167 * Optimize a common case: if the top-level object has 1168 * no backing object, we can skip over the non-resident 1169 * range in constant time. 1170 */ 1171 if (object->backing_object == NULL) { 1172 tpindex = (m != NULL && m->pindex < end) ? 1173 m->pindex : end; 1174 vm_object_madvise_freespace(object, advice, 1175 pindex, tpindex - pindex); 1176 if ((pindex = tpindex) == end) 1177 break; 1178 goto next_page; 1179 } 1180 1181 tpindex = pindex; 1182 do { 1183 vm_object_madvise_freespace(tobject, advice, 1184 tpindex, 1); 1185 /* 1186 * Prepare to search the next object in the 1187 * chain. 1188 */ 1189 backing_object = tobject->backing_object; 1190 if (backing_object == NULL) 1191 goto next_pindex; 1192 VM_OBJECT_WLOCK(backing_object); 1193 tpindex += 1194 OFF_TO_IDX(tobject->backing_object_offset); 1195 if (tobject != object) 1196 VM_OBJECT_WUNLOCK(tobject); 1197 tobject = backing_object; 1198 if (!vm_object_advice_applies(tobject, advice)) 1199 goto next_pindex; 1200 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1201 NULL); 1202 } else { 1203 next_page: 1204 tm = m; 1205 m = TAILQ_NEXT(m, listq); 1206 } 1207 1208 /* 1209 * If the page is not in a normal state, skip it. 1210 */ 1211 if (tm->valid != VM_PAGE_BITS_ALL) 1212 goto next_pindex; 1213 vm_page_lock(tm); 1214 if (tm->hold_count != 0 || tm->wire_count != 0) { 1215 vm_page_unlock(tm); 1216 goto next_pindex; 1217 } 1218 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1219 ("vm_object_madvise: page %p is fictitious", tm)); 1220 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1221 ("vm_object_madvise: page %p is not managed", tm)); 1222 if (vm_page_busied(tm)) { 1223 if (object != tobject) 1224 VM_OBJECT_WUNLOCK(tobject); 1225 VM_OBJECT_WUNLOCK(object); 1226 if (advice == MADV_WILLNEED) { 1227 /* 1228 * Reference the page before unlocking and 1229 * sleeping so that the page daemon is less 1230 * likely to reclaim it. 1231 */ 1232 vm_page_aflag_set(tm, PGA_REFERENCED); 1233 } 1234 vm_page_busy_sleep(tm, "madvpo", false); 1235 goto relookup; 1236 } 1237 vm_page_advise(tm, advice); 1238 vm_page_unlock(tm); 1239 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1240 next_pindex: 1241 if (tobject != object) 1242 VM_OBJECT_WUNLOCK(tobject); 1243 } 1244 VM_OBJECT_WUNLOCK(object); 1245 } 1246 1247 /* 1248 * vm_object_shadow: 1249 * 1250 * Create a new object which is backed by the 1251 * specified existing object range. The source 1252 * object reference is deallocated. 1253 * 1254 * The new object and offset into that object 1255 * are returned in the source parameters. 1256 */ 1257 void 1258 vm_object_shadow( 1259 vm_object_t *object, /* IN/OUT */ 1260 vm_ooffset_t *offset, /* IN/OUT */ 1261 vm_size_t length) 1262 { 1263 vm_object_t source; 1264 vm_object_t result; 1265 1266 source = *object; 1267 1268 /* 1269 * Don't create the new object if the old object isn't shared. 1270 */ 1271 if (source != NULL) { 1272 VM_OBJECT_WLOCK(source); 1273 if (source->ref_count == 1 && 1274 source->handle == NULL && 1275 (source->type == OBJT_DEFAULT || 1276 source->type == OBJT_SWAP)) { 1277 VM_OBJECT_WUNLOCK(source); 1278 return; 1279 } 1280 VM_OBJECT_WUNLOCK(source); 1281 } 1282 1283 /* 1284 * Allocate a new object with the given length. 1285 */ 1286 result = vm_object_allocate(OBJT_DEFAULT, atop(length)); 1287 1288 /* 1289 * The new object shadows the source object, adding a reference to it. 1290 * Our caller changes his reference to point to the new object, 1291 * removing a reference to the source object. Net result: no change 1292 * of reference count. 1293 * 1294 * Try to optimize the result object's page color when shadowing 1295 * in order to maintain page coloring consistency in the combined 1296 * shadowed object. 1297 */ 1298 result->backing_object = source; 1299 /* 1300 * Store the offset into the source object, and fix up the offset into 1301 * the new object. 1302 */ 1303 result->backing_object_offset = *offset; 1304 if (source != NULL) { 1305 VM_OBJECT_WLOCK(source); 1306 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list); 1307 source->shadow_count++; 1308 #if VM_NRESERVLEVEL > 0 1309 result->flags |= source->flags & OBJ_COLORED; 1310 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & 1311 ((1 << (VM_NFREEORDER - 1)) - 1); 1312 #endif 1313 VM_OBJECT_WUNLOCK(source); 1314 } 1315 1316 1317 /* 1318 * Return the new things 1319 */ 1320 *offset = 0; 1321 *object = result; 1322 } 1323 1324 /* 1325 * vm_object_split: 1326 * 1327 * Split the pages in a map entry into a new object. This affords 1328 * easier removal of unused pages, and keeps object inheritance from 1329 * being a negative impact on memory usage. 1330 */ 1331 void 1332 vm_object_split(vm_map_entry_t entry) 1333 { 1334 vm_page_t m, m_next; 1335 vm_object_t orig_object, new_object, source; 1336 vm_pindex_t idx, offidxstart; 1337 vm_size_t size; 1338 1339 orig_object = entry->object.vm_object; 1340 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1341 return; 1342 if (orig_object->ref_count <= 1) 1343 return; 1344 VM_OBJECT_WUNLOCK(orig_object); 1345 1346 offidxstart = OFF_TO_IDX(entry->offset); 1347 size = atop(entry->end - entry->start); 1348 1349 /* 1350 * If swap_pager_copy() is later called, it will convert new_object 1351 * into a swap object. 1352 */ 1353 new_object = vm_object_allocate(OBJT_DEFAULT, size); 1354 1355 /* 1356 * At this point, the new object is still private, so the order in 1357 * which the original and new objects are locked does not matter. 1358 */ 1359 VM_OBJECT_WLOCK(new_object); 1360 VM_OBJECT_WLOCK(orig_object); 1361 source = orig_object->backing_object; 1362 if (source != NULL) { 1363 VM_OBJECT_WLOCK(source); 1364 if ((source->flags & OBJ_DEAD) != 0) { 1365 VM_OBJECT_WUNLOCK(source); 1366 VM_OBJECT_WUNLOCK(orig_object); 1367 VM_OBJECT_WUNLOCK(new_object); 1368 vm_object_deallocate(new_object); 1369 VM_OBJECT_WLOCK(orig_object); 1370 return; 1371 } 1372 LIST_INSERT_HEAD(&source->shadow_head, 1373 new_object, shadow_list); 1374 source->shadow_count++; 1375 vm_object_reference_locked(source); /* for new_object */ 1376 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1377 VM_OBJECT_WUNLOCK(source); 1378 new_object->backing_object_offset = 1379 orig_object->backing_object_offset + entry->offset; 1380 new_object->backing_object = source; 1381 } 1382 if (orig_object->cred != NULL) { 1383 new_object->cred = orig_object->cred; 1384 crhold(orig_object->cred); 1385 new_object->charge = ptoa(size); 1386 KASSERT(orig_object->charge >= ptoa(size), 1387 ("orig_object->charge < 0")); 1388 orig_object->charge -= ptoa(size); 1389 } 1390 retry: 1391 m = vm_page_find_least(orig_object, offidxstart); 1392 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1393 m = m_next) { 1394 m_next = TAILQ_NEXT(m, listq); 1395 1396 /* 1397 * We must wait for pending I/O to complete before we can 1398 * rename the page. 1399 * 1400 * We do not have to VM_PROT_NONE the page as mappings should 1401 * not be changed by this operation. 1402 */ 1403 if (vm_page_busied(m)) { 1404 VM_OBJECT_WUNLOCK(new_object); 1405 vm_page_lock(m); 1406 VM_OBJECT_WUNLOCK(orig_object); 1407 vm_page_busy_sleep(m, "spltwt", false); 1408 VM_OBJECT_WLOCK(orig_object); 1409 VM_OBJECT_WLOCK(new_object); 1410 goto retry; 1411 } 1412 1413 /* vm_page_rename() will dirty the page. */ 1414 if (vm_page_rename(m, new_object, idx)) { 1415 VM_OBJECT_WUNLOCK(new_object); 1416 VM_OBJECT_WUNLOCK(orig_object); 1417 VM_WAIT; 1418 VM_OBJECT_WLOCK(orig_object); 1419 VM_OBJECT_WLOCK(new_object); 1420 goto retry; 1421 } 1422 #if VM_NRESERVLEVEL > 0 1423 /* 1424 * If some of the reservation's allocated pages remain with 1425 * the original object, then transferring the reservation to 1426 * the new object is neither particularly beneficial nor 1427 * particularly harmful as compared to leaving the reservation 1428 * with the original object. If, however, all of the 1429 * reservation's allocated pages are transferred to the new 1430 * object, then transferring the reservation is typically 1431 * beneficial. Determining which of these two cases applies 1432 * would be more costly than unconditionally renaming the 1433 * reservation. 1434 */ 1435 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1436 #endif 1437 if (orig_object->type == OBJT_SWAP) 1438 vm_page_xbusy(m); 1439 } 1440 if (orig_object->type == OBJT_SWAP) { 1441 /* 1442 * swap_pager_copy() can sleep, in which case the orig_object's 1443 * and new_object's locks are released and reacquired. 1444 */ 1445 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1446 TAILQ_FOREACH(m, &new_object->memq, listq) 1447 vm_page_xunbusy(m); 1448 } 1449 VM_OBJECT_WUNLOCK(orig_object); 1450 VM_OBJECT_WUNLOCK(new_object); 1451 entry->object.vm_object = new_object; 1452 entry->offset = 0LL; 1453 vm_object_deallocate(orig_object); 1454 VM_OBJECT_WLOCK(new_object); 1455 } 1456 1457 #define OBSC_COLLAPSE_NOWAIT 0x0002 1458 #define OBSC_COLLAPSE_WAIT 0x0004 1459 1460 static vm_page_t 1461 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next, 1462 int op) 1463 { 1464 vm_object_t backing_object; 1465 1466 VM_OBJECT_ASSERT_WLOCKED(object); 1467 backing_object = object->backing_object; 1468 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1469 1470 KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p)); 1471 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1472 ("invalid ownership %p %p %p", p, object, backing_object)); 1473 if ((op & OBSC_COLLAPSE_NOWAIT) != 0) 1474 return (next); 1475 if (p != NULL) 1476 vm_page_lock(p); 1477 VM_OBJECT_WUNLOCK(object); 1478 VM_OBJECT_WUNLOCK(backing_object); 1479 if (p == NULL) 1480 VM_WAIT; 1481 else 1482 vm_page_busy_sleep(p, "vmocol", false); 1483 VM_OBJECT_WLOCK(object); 1484 VM_OBJECT_WLOCK(backing_object); 1485 return (TAILQ_FIRST(&backing_object->memq)); 1486 } 1487 1488 static bool 1489 vm_object_scan_all_shadowed(vm_object_t object) 1490 { 1491 vm_object_t backing_object; 1492 vm_page_t p, pp; 1493 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1494 1495 VM_OBJECT_ASSERT_WLOCKED(object); 1496 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1497 1498 backing_object = object->backing_object; 1499 1500 if (backing_object->type != OBJT_DEFAULT && 1501 backing_object->type != OBJT_SWAP) 1502 return (false); 1503 1504 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1505 p = vm_page_find_least(backing_object, pi); 1506 ps = swap_pager_find_least(backing_object, pi); 1507 1508 /* 1509 * Only check pages inside the parent object's range and 1510 * inside the parent object's mapping of the backing object. 1511 */ 1512 for (;; pi++) { 1513 if (p != NULL && p->pindex < pi) 1514 p = TAILQ_NEXT(p, listq); 1515 if (ps < pi) 1516 ps = swap_pager_find_least(backing_object, pi); 1517 if (p == NULL && ps >= backing_object->size) 1518 break; 1519 else if (p == NULL) 1520 pi = ps; 1521 else 1522 pi = MIN(p->pindex, ps); 1523 1524 new_pindex = pi - backing_offset_index; 1525 if (new_pindex >= object->size) 1526 break; 1527 1528 /* 1529 * See if the parent has the page or if the parent's object 1530 * pager has the page. If the parent has the page but the page 1531 * is not valid, the parent's object pager must have the page. 1532 * 1533 * If this fails, the parent does not completely shadow the 1534 * object and we might as well give up now. 1535 */ 1536 pp = vm_page_lookup(object, new_pindex); 1537 if ((pp == NULL || pp->valid == 0) && 1538 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1539 return (false); 1540 } 1541 return (true); 1542 } 1543 1544 static bool 1545 vm_object_collapse_scan(vm_object_t object, int op) 1546 { 1547 vm_object_t backing_object; 1548 vm_page_t next, p, pp; 1549 vm_pindex_t backing_offset_index, new_pindex; 1550 1551 VM_OBJECT_ASSERT_WLOCKED(object); 1552 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1553 1554 backing_object = object->backing_object; 1555 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1556 1557 /* 1558 * Initial conditions 1559 */ 1560 if ((op & OBSC_COLLAPSE_WAIT) != 0) 1561 vm_object_set_flag(backing_object, OBJ_DEAD); 1562 1563 /* 1564 * Our scan 1565 */ 1566 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1567 next = TAILQ_NEXT(p, listq); 1568 new_pindex = p->pindex - backing_offset_index; 1569 1570 /* 1571 * Check for busy page 1572 */ 1573 if (vm_page_busied(p)) { 1574 next = vm_object_collapse_scan_wait(object, p, next, op); 1575 continue; 1576 } 1577 1578 KASSERT(p->object == backing_object, 1579 ("vm_object_collapse_scan: object mismatch")); 1580 1581 if (p->pindex < backing_offset_index || 1582 new_pindex >= object->size) { 1583 if (backing_object->type == OBJT_SWAP) 1584 swap_pager_freespace(backing_object, p->pindex, 1585 1); 1586 1587 /* 1588 * Page is out of the parent object's range, we can 1589 * simply destroy it. 1590 */ 1591 vm_page_lock(p); 1592 KASSERT(!pmap_page_is_mapped(p), 1593 ("freeing mapped page %p", p)); 1594 if (p->wire_count == 0) 1595 vm_page_free(p); 1596 else 1597 vm_page_remove(p); 1598 vm_page_unlock(p); 1599 continue; 1600 } 1601 1602 pp = vm_page_lookup(object, new_pindex); 1603 if (pp != NULL && vm_page_busied(pp)) { 1604 /* 1605 * The page in the parent is busy and possibly not 1606 * (yet) valid. Until its state is finalized by the 1607 * busy bit owner, we can't tell whether it shadows the 1608 * original page. Therefore, we must either skip it 1609 * and the original (backing_object) page or wait for 1610 * its state to be finalized. 1611 * 1612 * This is due to a race with vm_fault() where we must 1613 * unbusy the original (backing_obj) page before we can 1614 * (re)lock the parent. Hence we can get here. 1615 */ 1616 next = vm_object_collapse_scan_wait(object, pp, next, 1617 op); 1618 continue; 1619 } 1620 1621 KASSERT(pp == NULL || pp->valid != 0, 1622 ("unbusy invalid page %p", pp)); 1623 1624 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1625 NULL)) { 1626 /* 1627 * The page already exists in the parent OR swap exists 1628 * for this location in the parent. Leave the parent's 1629 * page alone. Destroy the original page from the 1630 * backing object. 1631 */ 1632 if (backing_object->type == OBJT_SWAP) 1633 swap_pager_freespace(backing_object, p->pindex, 1634 1); 1635 vm_page_lock(p); 1636 KASSERT(!pmap_page_is_mapped(p), 1637 ("freeing mapped page %p", p)); 1638 if (p->wire_count == 0) 1639 vm_page_free(p); 1640 else 1641 vm_page_remove(p); 1642 vm_page_unlock(p); 1643 continue; 1644 } 1645 1646 /* 1647 * Page does not exist in parent, rename the page from the 1648 * backing object to the main object. 1649 * 1650 * If the page was mapped to a process, it can remain mapped 1651 * through the rename. vm_page_rename() will dirty the page. 1652 */ 1653 if (vm_page_rename(p, object, new_pindex)) { 1654 next = vm_object_collapse_scan_wait(object, NULL, next, 1655 op); 1656 continue; 1657 } 1658 1659 /* Use the old pindex to free the right page. */ 1660 if (backing_object->type == OBJT_SWAP) 1661 swap_pager_freespace(backing_object, 1662 new_pindex + backing_offset_index, 1); 1663 1664 #if VM_NRESERVLEVEL > 0 1665 /* 1666 * Rename the reservation. 1667 */ 1668 vm_reserv_rename(p, object, backing_object, 1669 backing_offset_index); 1670 #endif 1671 } 1672 return (true); 1673 } 1674 1675 1676 /* 1677 * this version of collapse allows the operation to occur earlier and 1678 * when paging_in_progress is true for an object... This is not a complete 1679 * operation, but should plug 99.9% of the rest of the leaks. 1680 */ 1681 static void 1682 vm_object_qcollapse(vm_object_t object) 1683 { 1684 vm_object_t backing_object = object->backing_object; 1685 1686 VM_OBJECT_ASSERT_WLOCKED(object); 1687 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1688 1689 if (backing_object->ref_count != 1) 1690 return; 1691 1692 vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT); 1693 } 1694 1695 /* 1696 * vm_object_collapse: 1697 * 1698 * Collapse an object with the object backing it. 1699 * Pages in the backing object are moved into the 1700 * parent, and the backing object is deallocated. 1701 */ 1702 void 1703 vm_object_collapse(vm_object_t object) 1704 { 1705 vm_object_t backing_object, new_backing_object; 1706 1707 VM_OBJECT_ASSERT_WLOCKED(object); 1708 1709 while (TRUE) { 1710 /* 1711 * Verify that the conditions are right for collapse: 1712 * 1713 * The object exists and the backing object exists. 1714 */ 1715 if ((backing_object = object->backing_object) == NULL) 1716 break; 1717 1718 /* 1719 * we check the backing object first, because it is most likely 1720 * not collapsable. 1721 */ 1722 VM_OBJECT_WLOCK(backing_object); 1723 if (backing_object->handle != NULL || 1724 (backing_object->type != OBJT_DEFAULT && 1725 backing_object->type != OBJT_SWAP) || 1726 (backing_object->flags & OBJ_DEAD) || 1727 object->handle != NULL || 1728 (object->type != OBJT_DEFAULT && 1729 object->type != OBJT_SWAP) || 1730 (object->flags & OBJ_DEAD)) { 1731 VM_OBJECT_WUNLOCK(backing_object); 1732 break; 1733 } 1734 1735 if (object->paging_in_progress != 0 || 1736 backing_object->paging_in_progress != 0) { 1737 vm_object_qcollapse(object); 1738 VM_OBJECT_WUNLOCK(backing_object); 1739 break; 1740 } 1741 1742 /* 1743 * We know that we can either collapse the backing object (if 1744 * the parent is the only reference to it) or (perhaps) have 1745 * the parent bypass the object if the parent happens to shadow 1746 * all the resident pages in the entire backing object. 1747 * 1748 * This is ignoring pager-backed pages such as swap pages. 1749 * vm_object_collapse_scan fails the shadowing test in this 1750 * case. 1751 */ 1752 if (backing_object->ref_count == 1) { 1753 vm_object_pip_add(object, 1); 1754 vm_object_pip_add(backing_object, 1); 1755 1756 /* 1757 * If there is exactly one reference to the backing 1758 * object, we can collapse it into the parent. 1759 */ 1760 vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT); 1761 1762 #if VM_NRESERVLEVEL > 0 1763 /* 1764 * Break any reservations from backing_object. 1765 */ 1766 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1767 vm_reserv_break_all(backing_object); 1768 #endif 1769 1770 /* 1771 * Move the pager from backing_object to object. 1772 */ 1773 if (backing_object->type == OBJT_SWAP) { 1774 /* 1775 * swap_pager_copy() can sleep, in which case 1776 * the backing_object's and object's locks are 1777 * released and reacquired. 1778 * Since swap_pager_copy() is being asked to 1779 * destroy the source, it will change the 1780 * backing_object's type to OBJT_DEFAULT. 1781 */ 1782 swap_pager_copy( 1783 backing_object, 1784 object, 1785 OFF_TO_IDX(object->backing_object_offset), TRUE); 1786 } 1787 /* 1788 * Object now shadows whatever backing_object did. 1789 * Note that the reference to 1790 * backing_object->backing_object moves from within 1791 * backing_object to within object. 1792 */ 1793 LIST_REMOVE(object, shadow_list); 1794 backing_object->shadow_count--; 1795 if (backing_object->backing_object) { 1796 VM_OBJECT_WLOCK(backing_object->backing_object); 1797 LIST_REMOVE(backing_object, shadow_list); 1798 LIST_INSERT_HEAD( 1799 &backing_object->backing_object->shadow_head, 1800 object, shadow_list); 1801 /* 1802 * The shadow_count has not changed. 1803 */ 1804 VM_OBJECT_WUNLOCK(backing_object->backing_object); 1805 } 1806 object->backing_object = backing_object->backing_object; 1807 object->backing_object_offset += 1808 backing_object->backing_object_offset; 1809 1810 /* 1811 * Discard backing_object. 1812 * 1813 * Since the backing object has no pages, no pager left, 1814 * and no object references within it, all that is 1815 * necessary is to dispose of it. 1816 */ 1817 KASSERT(backing_object->ref_count == 1, ( 1818 "backing_object %p was somehow re-referenced during collapse!", 1819 backing_object)); 1820 vm_object_pip_wakeup(backing_object); 1821 backing_object->type = OBJT_DEAD; 1822 backing_object->ref_count = 0; 1823 VM_OBJECT_WUNLOCK(backing_object); 1824 vm_object_destroy(backing_object); 1825 1826 vm_object_pip_wakeup(object); 1827 object_collapses++; 1828 } else { 1829 /* 1830 * If we do not entirely shadow the backing object, 1831 * there is nothing we can do so we give up. 1832 */ 1833 if (object->resident_page_count != object->size && 1834 !vm_object_scan_all_shadowed(object)) { 1835 VM_OBJECT_WUNLOCK(backing_object); 1836 break; 1837 } 1838 1839 /* 1840 * Make the parent shadow the next object in the 1841 * chain. Deallocating backing_object will not remove 1842 * it, since its reference count is at least 2. 1843 */ 1844 LIST_REMOVE(object, shadow_list); 1845 backing_object->shadow_count--; 1846 1847 new_backing_object = backing_object->backing_object; 1848 if ((object->backing_object = new_backing_object) != NULL) { 1849 VM_OBJECT_WLOCK(new_backing_object); 1850 LIST_INSERT_HEAD( 1851 &new_backing_object->shadow_head, 1852 object, 1853 shadow_list 1854 ); 1855 new_backing_object->shadow_count++; 1856 vm_object_reference_locked(new_backing_object); 1857 VM_OBJECT_WUNLOCK(new_backing_object); 1858 object->backing_object_offset += 1859 backing_object->backing_object_offset; 1860 } 1861 1862 /* 1863 * Drop the reference count on backing_object. Since 1864 * its ref_count was at least 2, it will not vanish. 1865 */ 1866 backing_object->ref_count--; 1867 VM_OBJECT_WUNLOCK(backing_object); 1868 object_bypasses++; 1869 } 1870 1871 /* 1872 * Try again with this object's new backing object. 1873 */ 1874 } 1875 } 1876 1877 /* 1878 * vm_object_page_remove: 1879 * 1880 * For the given object, either frees or invalidates each of the 1881 * specified pages. In general, a page is freed. However, if a page is 1882 * wired for any reason other than the existence of a managed, wired 1883 * mapping, then it may be invalidated but not removed from the object. 1884 * Pages are specified by the given range ["start", "end") and the option 1885 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 1886 * extends from "start" to the end of the object. If the option 1887 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 1888 * specified range are affected. If the option OBJPR_NOTMAPPED is 1889 * specified, then the pages within the specified range must have no 1890 * mappings. Otherwise, if this option is not specified, any mappings to 1891 * the specified pages are removed before the pages are freed or 1892 * invalidated. 1893 * 1894 * In general, this operation should only be performed on objects that 1895 * contain managed pages. There are, however, two exceptions. First, it 1896 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 1897 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 1898 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 1899 * not be specified and the option OBJPR_NOTMAPPED must be specified. 1900 * 1901 * The object must be locked. 1902 */ 1903 void 1904 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 1905 int options) 1906 { 1907 vm_page_t p, next; 1908 1909 VM_OBJECT_ASSERT_WLOCKED(object); 1910 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 1911 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 1912 ("vm_object_page_remove: illegal options for object %p", object)); 1913 if (object->resident_page_count == 0) 1914 return; 1915 vm_object_pip_add(object, 1); 1916 again: 1917 p = vm_page_find_least(object, start); 1918 1919 /* 1920 * Here, the variable "p" is either (1) the page with the least pindex 1921 * greater than or equal to the parameter "start" or (2) NULL. 1922 */ 1923 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 1924 next = TAILQ_NEXT(p, listq); 1925 1926 /* 1927 * If the page is wired for any reason besides the existence 1928 * of managed, wired mappings, then it cannot be freed. For 1929 * example, fictitious pages, which represent device memory, 1930 * are inherently wired and cannot be freed. They can, 1931 * however, be invalidated if the option OBJPR_CLEANONLY is 1932 * not specified. 1933 */ 1934 vm_page_lock(p); 1935 if (vm_page_xbusied(p)) { 1936 VM_OBJECT_WUNLOCK(object); 1937 vm_page_busy_sleep(p, "vmopax", true); 1938 VM_OBJECT_WLOCK(object); 1939 goto again; 1940 } 1941 if (p->wire_count != 0) { 1942 if ((options & OBJPR_NOTMAPPED) == 0) 1943 pmap_remove_all(p); 1944 if ((options & OBJPR_CLEANONLY) == 0) { 1945 p->valid = 0; 1946 vm_page_undirty(p); 1947 } 1948 goto next; 1949 } 1950 if (vm_page_busied(p)) { 1951 VM_OBJECT_WUNLOCK(object); 1952 vm_page_busy_sleep(p, "vmopar", false); 1953 VM_OBJECT_WLOCK(object); 1954 goto again; 1955 } 1956 KASSERT((p->flags & PG_FICTITIOUS) == 0, 1957 ("vm_object_page_remove: page %p is fictitious", p)); 1958 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) { 1959 if ((options & OBJPR_NOTMAPPED) == 0) 1960 pmap_remove_write(p); 1961 if (p->dirty) 1962 goto next; 1963 } 1964 if ((options & OBJPR_NOTMAPPED) == 0) 1965 pmap_remove_all(p); 1966 vm_page_free(p); 1967 next: 1968 vm_page_unlock(p); 1969 } 1970 vm_object_pip_wakeup(object); 1971 } 1972 1973 /* 1974 * vm_object_page_noreuse: 1975 * 1976 * For the given object, attempt to move the specified pages to 1977 * the head of the inactive queue. This bypasses regular LRU 1978 * operation and allows the pages to be reused quickly under memory 1979 * pressure. If a page is wired for any reason, then it will not 1980 * be queued. Pages are specified by the range ["start", "end"). 1981 * As a special case, if "end" is zero, then the range extends from 1982 * "start" to the end of the object. 1983 * 1984 * This operation should only be performed on objects that 1985 * contain non-fictitious, managed pages. 1986 * 1987 * The object must be locked. 1988 */ 1989 void 1990 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1991 { 1992 struct mtx *mtx, *new_mtx; 1993 vm_page_t p, next; 1994 1995 VM_OBJECT_ASSERT_LOCKED(object); 1996 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 1997 ("vm_object_page_noreuse: illegal object %p", object)); 1998 if (object->resident_page_count == 0) 1999 return; 2000 p = vm_page_find_least(object, start); 2001 2002 /* 2003 * Here, the variable "p" is either (1) the page with the least pindex 2004 * greater than or equal to the parameter "start" or (2) NULL. 2005 */ 2006 mtx = NULL; 2007 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2008 next = TAILQ_NEXT(p, listq); 2009 2010 /* 2011 * Avoid releasing and reacquiring the same page lock. 2012 */ 2013 new_mtx = vm_page_lockptr(p); 2014 if (mtx != new_mtx) { 2015 if (mtx != NULL) 2016 mtx_unlock(mtx); 2017 mtx = new_mtx; 2018 mtx_lock(mtx); 2019 } 2020 vm_page_deactivate_noreuse(p); 2021 } 2022 if (mtx != NULL) 2023 mtx_unlock(mtx); 2024 } 2025 2026 /* 2027 * Populate the specified range of the object with valid pages. Returns 2028 * TRUE if the range is successfully populated and FALSE otherwise. 2029 * 2030 * Note: This function should be optimized to pass a larger array of 2031 * pages to vm_pager_get_pages() before it is applied to a non- 2032 * OBJT_DEVICE object. 2033 * 2034 * The object must be locked. 2035 */ 2036 boolean_t 2037 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2038 { 2039 vm_page_t m; 2040 vm_pindex_t pindex; 2041 int rv; 2042 2043 VM_OBJECT_ASSERT_WLOCKED(object); 2044 for (pindex = start; pindex < end; pindex++) { 2045 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 2046 if (m->valid != VM_PAGE_BITS_ALL) { 2047 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL); 2048 if (rv != VM_PAGER_OK) { 2049 vm_page_lock(m); 2050 vm_page_free(m); 2051 vm_page_unlock(m); 2052 break; 2053 } 2054 } 2055 /* 2056 * Keep "m" busy because a subsequent iteration may unlock 2057 * the object. 2058 */ 2059 } 2060 if (pindex > start) { 2061 m = vm_page_lookup(object, start); 2062 while (m != NULL && m->pindex < pindex) { 2063 vm_page_xunbusy(m); 2064 m = TAILQ_NEXT(m, listq); 2065 } 2066 } 2067 return (pindex == end); 2068 } 2069 2070 /* 2071 * Routine: vm_object_coalesce 2072 * Function: Coalesces two objects backing up adjoining 2073 * regions of memory into a single object. 2074 * 2075 * returns TRUE if objects were combined. 2076 * 2077 * NOTE: Only works at the moment if the second object is NULL - 2078 * if it's not, which object do we lock first? 2079 * 2080 * Parameters: 2081 * prev_object First object to coalesce 2082 * prev_offset Offset into prev_object 2083 * prev_size Size of reference to prev_object 2084 * next_size Size of reference to the second object 2085 * reserved Indicator that extension region has 2086 * swap accounted for 2087 * 2088 * Conditions: 2089 * The object must *not* be locked. 2090 */ 2091 boolean_t 2092 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2093 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2094 { 2095 vm_pindex_t next_pindex; 2096 2097 if (prev_object == NULL) 2098 return (TRUE); 2099 VM_OBJECT_WLOCK(prev_object); 2100 if ((prev_object->type != OBJT_DEFAULT && 2101 prev_object->type != OBJT_SWAP) || 2102 (prev_object->flags & OBJ_TMPFS_NODE) != 0) { 2103 VM_OBJECT_WUNLOCK(prev_object); 2104 return (FALSE); 2105 } 2106 2107 /* 2108 * Try to collapse the object first 2109 */ 2110 vm_object_collapse(prev_object); 2111 2112 /* 2113 * Can't coalesce if: . more than one reference . paged out . shadows 2114 * another object . has a copy elsewhere (any of which mean that the 2115 * pages not mapped to prev_entry may be in use anyway) 2116 */ 2117 if (prev_object->backing_object != NULL) { 2118 VM_OBJECT_WUNLOCK(prev_object); 2119 return (FALSE); 2120 } 2121 2122 prev_size >>= PAGE_SHIFT; 2123 next_size >>= PAGE_SHIFT; 2124 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2125 2126 if ((prev_object->ref_count > 1) && 2127 (prev_object->size != next_pindex)) { 2128 VM_OBJECT_WUNLOCK(prev_object); 2129 return (FALSE); 2130 } 2131 2132 /* 2133 * Account for the charge. 2134 */ 2135 if (prev_object->cred != NULL) { 2136 2137 /* 2138 * If prev_object was charged, then this mapping, 2139 * although not charged now, may become writable 2140 * later. Non-NULL cred in the object would prevent 2141 * swap reservation during enabling of the write 2142 * access, so reserve swap now. Failed reservation 2143 * cause allocation of the separate object for the map 2144 * entry, and swap reservation for this entry is 2145 * managed in appropriate time. 2146 */ 2147 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2148 prev_object->cred)) { 2149 VM_OBJECT_WUNLOCK(prev_object); 2150 return (FALSE); 2151 } 2152 prev_object->charge += ptoa(next_size); 2153 } 2154 2155 /* 2156 * Remove any pages that may still be in the object from a previous 2157 * deallocation. 2158 */ 2159 if (next_pindex < prev_object->size) { 2160 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2161 next_size, 0); 2162 if (prev_object->type == OBJT_SWAP) 2163 swap_pager_freespace(prev_object, 2164 next_pindex, next_size); 2165 #if 0 2166 if (prev_object->cred != NULL) { 2167 KASSERT(prev_object->charge >= 2168 ptoa(prev_object->size - next_pindex), 2169 ("object %p overcharged 1 %jx %jx", prev_object, 2170 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2171 prev_object->charge -= ptoa(prev_object->size - 2172 next_pindex); 2173 } 2174 #endif 2175 } 2176 2177 /* 2178 * Extend the object if necessary. 2179 */ 2180 if (next_pindex + next_size > prev_object->size) 2181 prev_object->size = next_pindex + next_size; 2182 2183 VM_OBJECT_WUNLOCK(prev_object); 2184 return (TRUE); 2185 } 2186 2187 void 2188 vm_object_set_writeable_dirty(vm_object_t object) 2189 { 2190 2191 VM_OBJECT_ASSERT_WLOCKED(object); 2192 if (object->type != OBJT_VNODE) { 2193 if ((object->flags & OBJ_TMPFS_NODE) != 0) { 2194 KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs")); 2195 vm_object_set_flag(object, OBJ_TMPFS_DIRTY); 2196 } 2197 return; 2198 } 2199 object->generation++; 2200 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) 2201 return; 2202 vm_object_set_flag(object, OBJ_MIGHTBEDIRTY); 2203 } 2204 2205 /* 2206 * vm_object_unwire: 2207 * 2208 * For each page offset within the specified range of the given object, 2209 * find the highest-level page in the shadow chain and unwire it. A page 2210 * must exist at every page offset, and the highest-level page must be 2211 * wired. 2212 */ 2213 void 2214 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2215 uint8_t queue) 2216 { 2217 vm_object_t tobject; 2218 vm_page_t m, tm; 2219 vm_pindex_t end_pindex, pindex, tpindex; 2220 int depth, locked_depth; 2221 2222 KASSERT((offset & PAGE_MASK) == 0, 2223 ("vm_object_unwire: offset is not page aligned")); 2224 KASSERT((length & PAGE_MASK) == 0, 2225 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2226 /* The wired count of a fictitious page never changes. */ 2227 if ((object->flags & OBJ_FICTITIOUS) != 0) 2228 return; 2229 pindex = OFF_TO_IDX(offset); 2230 end_pindex = pindex + atop(length); 2231 locked_depth = 1; 2232 VM_OBJECT_RLOCK(object); 2233 m = vm_page_find_least(object, pindex); 2234 while (pindex < end_pindex) { 2235 if (m == NULL || pindex < m->pindex) { 2236 /* 2237 * The first object in the shadow chain doesn't 2238 * contain a page at the current index. Therefore, 2239 * the page must exist in a backing object. 2240 */ 2241 tobject = object; 2242 tpindex = pindex; 2243 depth = 0; 2244 do { 2245 tpindex += 2246 OFF_TO_IDX(tobject->backing_object_offset); 2247 tobject = tobject->backing_object; 2248 KASSERT(tobject != NULL, 2249 ("vm_object_unwire: missing page")); 2250 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2251 goto next_page; 2252 depth++; 2253 if (depth == locked_depth) { 2254 locked_depth++; 2255 VM_OBJECT_RLOCK(tobject); 2256 } 2257 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2258 NULL); 2259 } else { 2260 tm = m; 2261 m = TAILQ_NEXT(m, listq); 2262 } 2263 vm_page_lock(tm); 2264 vm_page_unwire(tm, queue); 2265 vm_page_unlock(tm); 2266 next_page: 2267 pindex++; 2268 } 2269 /* Release the accumulated object locks. */ 2270 for (depth = 0; depth < locked_depth; depth++) { 2271 tobject = object->backing_object; 2272 VM_OBJECT_RUNLOCK(object); 2273 object = tobject; 2274 } 2275 } 2276 2277 struct vnode * 2278 vm_object_vnode(vm_object_t object) 2279 { 2280 2281 VM_OBJECT_ASSERT_LOCKED(object); 2282 if (object->type == OBJT_VNODE) 2283 return (object->handle); 2284 if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0) 2285 return (object->un_pager.swp.swp_tmpfs); 2286 return (NULL); 2287 } 2288 2289 static int 2290 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2291 { 2292 struct kinfo_vmobject *kvo; 2293 char *fullpath, *freepath; 2294 struct vnode *vp; 2295 struct vattr va; 2296 vm_object_t obj; 2297 vm_page_t m; 2298 int count, error; 2299 2300 if (req->oldptr == NULL) { 2301 /* 2302 * If an old buffer has not been provided, generate an 2303 * estimate of the space needed for a subsequent call. 2304 */ 2305 mtx_lock(&vm_object_list_mtx); 2306 count = 0; 2307 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2308 if (obj->type == OBJT_DEAD) 2309 continue; 2310 count++; 2311 } 2312 mtx_unlock(&vm_object_list_mtx); 2313 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2314 count * 11 / 10)); 2315 } 2316 2317 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK); 2318 error = 0; 2319 2320 /* 2321 * VM objects are type stable and are never removed from the 2322 * list once added. This allows us to safely read obj->object_list 2323 * after reacquiring the VM object lock. 2324 */ 2325 mtx_lock(&vm_object_list_mtx); 2326 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2327 if (obj->type == OBJT_DEAD) 2328 continue; 2329 VM_OBJECT_RLOCK(obj); 2330 if (obj->type == OBJT_DEAD) { 2331 VM_OBJECT_RUNLOCK(obj); 2332 continue; 2333 } 2334 mtx_unlock(&vm_object_list_mtx); 2335 kvo->kvo_size = ptoa(obj->size); 2336 kvo->kvo_resident = obj->resident_page_count; 2337 kvo->kvo_ref_count = obj->ref_count; 2338 kvo->kvo_shadow_count = obj->shadow_count; 2339 kvo->kvo_memattr = obj->memattr; 2340 kvo->kvo_active = 0; 2341 kvo->kvo_inactive = 0; 2342 TAILQ_FOREACH(m, &obj->memq, listq) { 2343 /* 2344 * A page may belong to the object but be 2345 * dequeued and set to PQ_NONE while the 2346 * object lock is not held. This makes the 2347 * reads of m->queue below racy, and we do not 2348 * count pages set to PQ_NONE. However, this 2349 * sysctl is only meant to give an 2350 * approximation of the system anyway. 2351 */ 2352 if (vm_page_active(m)) 2353 kvo->kvo_active++; 2354 else if (vm_page_inactive(m)) 2355 kvo->kvo_inactive++; 2356 } 2357 2358 kvo->kvo_vn_fileid = 0; 2359 kvo->kvo_vn_fsid = 0; 2360 kvo->kvo_vn_fsid_freebsd11 = 0; 2361 freepath = NULL; 2362 fullpath = ""; 2363 vp = NULL; 2364 switch (obj->type) { 2365 case OBJT_DEFAULT: 2366 kvo->kvo_type = KVME_TYPE_DEFAULT; 2367 break; 2368 case OBJT_VNODE: 2369 kvo->kvo_type = KVME_TYPE_VNODE; 2370 vp = obj->handle; 2371 vref(vp); 2372 break; 2373 case OBJT_SWAP: 2374 kvo->kvo_type = KVME_TYPE_SWAP; 2375 break; 2376 case OBJT_DEVICE: 2377 kvo->kvo_type = KVME_TYPE_DEVICE; 2378 break; 2379 case OBJT_PHYS: 2380 kvo->kvo_type = KVME_TYPE_PHYS; 2381 break; 2382 case OBJT_DEAD: 2383 kvo->kvo_type = KVME_TYPE_DEAD; 2384 break; 2385 case OBJT_SG: 2386 kvo->kvo_type = KVME_TYPE_SG; 2387 break; 2388 case OBJT_MGTDEVICE: 2389 kvo->kvo_type = KVME_TYPE_MGTDEVICE; 2390 break; 2391 default: 2392 kvo->kvo_type = KVME_TYPE_UNKNOWN; 2393 break; 2394 } 2395 VM_OBJECT_RUNLOCK(obj); 2396 if (vp != NULL) { 2397 vn_fullpath(curthread, vp, &fullpath, &freepath); 2398 vn_lock(vp, LK_SHARED | LK_RETRY); 2399 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2400 kvo->kvo_vn_fileid = va.va_fileid; 2401 kvo->kvo_vn_fsid = va.va_fsid; 2402 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2403 /* truncate */ 2404 } 2405 vput(vp); 2406 } 2407 2408 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2409 if (freepath != NULL) 2410 free(freepath, M_TEMP); 2411 2412 /* Pack record size down */ 2413 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2414 + strlen(kvo->kvo_path) + 1; 2415 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2416 sizeof(uint64_t)); 2417 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2418 mtx_lock(&vm_object_list_mtx); 2419 if (error) 2420 break; 2421 } 2422 mtx_unlock(&vm_object_list_mtx); 2423 free(kvo, M_TEMP); 2424 return (error); 2425 } 2426 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2427 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2428 "List of VM objects"); 2429 2430 #include "opt_ddb.h" 2431 #ifdef DDB 2432 #include <sys/kernel.h> 2433 2434 #include <sys/cons.h> 2435 2436 #include <ddb/ddb.h> 2437 2438 static int 2439 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2440 { 2441 vm_map_t tmpm; 2442 vm_map_entry_t tmpe; 2443 vm_object_t obj; 2444 int entcount; 2445 2446 if (map == 0) 2447 return 0; 2448 2449 if (entry == 0) { 2450 tmpe = map->header.next; 2451 entcount = map->nentries; 2452 while (entcount-- && (tmpe != &map->header)) { 2453 if (_vm_object_in_map(map, object, tmpe)) { 2454 return 1; 2455 } 2456 tmpe = tmpe->next; 2457 } 2458 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2459 tmpm = entry->object.sub_map; 2460 tmpe = tmpm->header.next; 2461 entcount = tmpm->nentries; 2462 while (entcount-- && tmpe != &tmpm->header) { 2463 if (_vm_object_in_map(tmpm, object, tmpe)) { 2464 return 1; 2465 } 2466 tmpe = tmpe->next; 2467 } 2468 } else if ((obj = entry->object.vm_object) != NULL) { 2469 for (; obj; obj = obj->backing_object) 2470 if (obj == object) { 2471 return 1; 2472 } 2473 } 2474 return 0; 2475 } 2476 2477 static int 2478 vm_object_in_map(vm_object_t object) 2479 { 2480 struct proc *p; 2481 2482 /* sx_slock(&allproc_lock); */ 2483 FOREACH_PROC_IN_SYSTEM(p) { 2484 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2485 continue; 2486 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2487 /* sx_sunlock(&allproc_lock); */ 2488 return 1; 2489 } 2490 } 2491 /* sx_sunlock(&allproc_lock); */ 2492 if (_vm_object_in_map(kernel_map, object, 0)) 2493 return 1; 2494 return 0; 2495 } 2496 2497 DB_SHOW_COMMAND(vmochk, vm_object_check) 2498 { 2499 vm_object_t object; 2500 2501 /* 2502 * make sure that internal objs are in a map somewhere 2503 * and none have zero ref counts. 2504 */ 2505 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2506 if (object->handle == NULL && 2507 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2508 if (object->ref_count == 0) { 2509 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2510 (long)object->size); 2511 } 2512 if (!vm_object_in_map(object)) { 2513 db_printf( 2514 "vmochk: internal obj is not in a map: " 2515 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2516 object->ref_count, (u_long)object->size, 2517 (u_long)object->size, 2518 (void *)object->backing_object); 2519 } 2520 } 2521 } 2522 } 2523 2524 /* 2525 * vm_object_print: [ debug ] 2526 */ 2527 DB_SHOW_COMMAND(object, vm_object_print_static) 2528 { 2529 /* XXX convert args. */ 2530 vm_object_t object = (vm_object_t)addr; 2531 boolean_t full = have_addr; 2532 2533 vm_page_t p; 2534 2535 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2536 #define count was_count 2537 2538 int count; 2539 2540 if (object == NULL) 2541 return; 2542 2543 db_iprintf( 2544 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2545 object, (int)object->type, (uintmax_t)object->size, 2546 object->resident_page_count, object->ref_count, object->flags, 2547 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2548 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2549 object->shadow_count, 2550 object->backing_object ? object->backing_object->ref_count : 0, 2551 object->backing_object, (uintmax_t)object->backing_object_offset); 2552 2553 if (!full) 2554 return; 2555 2556 db_indent += 2; 2557 count = 0; 2558 TAILQ_FOREACH(p, &object->memq, listq) { 2559 if (count == 0) 2560 db_iprintf("memory:="); 2561 else if (count == 6) { 2562 db_printf("\n"); 2563 db_iprintf(" ..."); 2564 count = 0; 2565 } else 2566 db_printf(","); 2567 count++; 2568 2569 db_printf("(off=0x%jx,page=0x%jx)", 2570 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2571 } 2572 if (count != 0) 2573 db_printf("\n"); 2574 db_indent -= 2; 2575 } 2576 2577 /* XXX. */ 2578 #undef count 2579 2580 /* XXX need this non-static entry for calling from vm_map_print. */ 2581 void 2582 vm_object_print( 2583 /* db_expr_t */ long addr, 2584 boolean_t have_addr, 2585 /* db_expr_t */ long count, 2586 char *modif) 2587 { 2588 vm_object_print_static(addr, have_addr, count, modif); 2589 } 2590 2591 DB_SHOW_COMMAND(vmopag, vm_object_print_pages) 2592 { 2593 vm_object_t object; 2594 vm_pindex_t fidx; 2595 vm_paddr_t pa; 2596 vm_page_t m, prev_m; 2597 int rcount, nl, c; 2598 2599 nl = 0; 2600 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2601 db_printf("new object: %p\n", (void *)object); 2602 if (nl > 18) { 2603 c = cngetc(); 2604 if (c != ' ') 2605 return; 2606 nl = 0; 2607 } 2608 nl++; 2609 rcount = 0; 2610 fidx = 0; 2611 pa = -1; 2612 TAILQ_FOREACH(m, &object->memq, listq) { 2613 if (m->pindex > 128) 2614 break; 2615 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2616 prev_m->pindex + 1 != m->pindex) { 2617 if (rcount) { 2618 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2619 (long)fidx, rcount, (long)pa); 2620 if (nl > 18) { 2621 c = cngetc(); 2622 if (c != ' ') 2623 return; 2624 nl = 0; 2625 } 2626 nl++; 2627 rcount = 0; 2628 } 2629 } 2630 if (rcount && 2631 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2632 ++rcount; 2633 continue; 2634 } 2635 if (rcount) { 2636 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2637 (long)fidx, rcount, (long)pa); 2638 if (nl > 18) { 2639 c = cngetc(); 2640 if (c != ' ') 2641 return; 2642 nl = 0; 2643 } 2644 nl++; 2645 } 2646 fidx = m->pindex; 2647 pa = VM_PAGE_TO_PHYS(m); 2648 rcount = 1; 2649 } 2650 if (rcount) { 2651 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2652 (long)fidx, rcount, (long)pa); 2653 if (nl > 18) { 2654 c = cngetc(); 2655 if (c != ' ') 2656 return; 2657 nl = 0; 2658 } 2659 nl++; 2660 } 2661 } 2662 } 2663 #endif /* DDB */ 2664