1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/blockcount.h> 73 #include <sys/cpuset.h> 74 #include <sys/limits.h> 75 #include <sys/lock.h> 76 #include <sys/mman.h> 77 #include <sys/mount.h> 78 #include <sys/kernel.h> 79 #include <sys/pctrie.h> 80 #include <sys/sysctl.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> /* for curproc, pageproc */ 83 #include <sys/refcount.h> 84 #include <sys/socket.h> 85 #include <sys/resourcevar.h> 86 #include <sys/refcount.h> 87 #include <sys/rwlock.h> 88 #include <sys/user.h> 89 #include <sys/vnode.h> 90 #include <sys/vmmeter.h> 91 #include <sys/sx.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_param.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/swap_pager.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/uma.h> 109 110 static int old_msync; 111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 112 "Use old (insecure) msync behavior"); 113 114 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 115 int pagerflags, int flags, boolean_t *allclean, 116 boolean_t *eio); 117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 118 boolean_t *allclean); 119 static void vm_object_backing_remove(vm_object_t object); 120 121 /* 122 * Virtual memory objects maintain the actual data 123 * associated with allocated virtual memory. A given 124 * page of memory exists within exactly one object. 125 * 126 * An object is only deallocated when all "references" 127 * are given up. Only one "reference" to a given 128 * region of an object should be writeable. 129 * 130 * Associated with each object is a list of all resident 131 * memory pages belonging to that object; this list is 132 * maintained by the "vm_page" module, and locked by the object's 133 * lock. 134 * 135 * Each object also records a "pager" routine which is 136 * used to retrieve (and store) pages to the proper backing 137 * storage. In addition, objects may be backed by other 138 * objects from which they were virtual-copied. 139 * 140 * The only items within the object structure which are 141 * modified after time of creation are: 142 * reference count locked by object's lock 143 * pager routine locked by object's lock 144 * 145 */ 146 147 struct object_q vm_object_list; 148 struct mtx vm_object_list_mtx; /* lock for object list and count */ 149 150 struct vm_object kernel_object_store; 151 152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 153 "VM object stats"); 154 155 static COUNTER_U64_DEFINE_EARLY(object_collapses); 156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 157 &object_collapses, 158 "VM object collapses"); 159 160 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 162 &object_bypasses, 163 "VM object bypasses"); 164 165 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 166 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 167 &object_collapse_waits, 168 "Number of sleeps for collapse"); 169 170 static uma_zone_t obj_zone; 171 172 static int vm_object_zinit(void *mem, int size, int flags); 173 174 #ifdef INVARIANTS 175 static void vm_object_zdtor(void *mem, int size, void *arg); 176 177 static void 178 vm_object_zdtor(void *mem, int size, void *arg) 179 { 180 vm_object_t object; 181 182 object = (vm_object_t)mem; 183 KASSERT(object->ref_count == 0, 184 ("object %p ref_count = %d", object, object->ref_count)); 185 KASSERT(TAILQ_EMPTY(&object->memq), 186 ("object %p has resident pages in its memq", object)); 187 KASSERT(vm_radix_is_empty(&object->rtree), 188 ("object %p has resident pages in its trie", object)); 189 #if VM_NRESERVLEVEL > 0 190 KASSERT(LIST_EMPTY(&object->rvq), 191 ("object %p has reservations", 192 object)); 193 #endif 194 KASSERT(!vm_object_busied(object), 195 ("object %p busy = %d", object, blockcount_read(&object->busy))); 196 KASSERT(object->resident_page_count == 0, 197 ("object %p resident_page_count = %d", 198 object, object->resident_page_count)); 199 KASSERT(atomic_load_int(&object->shadow_count) == 0, 200 ("object %p shadow_count = %d", 201 object, atomic_load_int(&object->shadow_count))); 202 KASSERT(object->type == OBJT_DEAD, 203 ("object %p has non-dead type %d", 204 object, object->type)); 205 KASSERT(object->charge == 0 && object->cred == NULL, 206 ("object %p has non-zero charge %ju (%p)", 207 object, (uintmax_t)object->charge, object->cred)); 208 } 209 #endif 210 211 static int 212 vm_object_zinit(void *mem, int size, int flags) 213 { 214 vm_object_t object; 215 216 object = (vm_object_t)mem; 217 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW); 218 219 /* These are true for any object that has been freed */ 220 object->type = OBJT_DEAD; 221 vm_radix_init(&object->rtree); 222 refcount_init(&object->ref_count, 0); 223 blockcount_init(&object->paging_in_progress); 224 blockcount_init(&object->busy); 225 object->resident_page_count = 0; 226 atomic_store_int(&object->shadow_count, 0); 227 object->flags = OBJ_DEAD; 228 229 mtx_lock(&vm_object_list_mtx); 230 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 231 mtx_unlock(&vm_object_list_mtx); 232 return (0); 233 } 234 235 static void 236 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 237 vm_object_t object, void *handle) 238 { 239 240 TAILQ_INIT(&object->memq); 241 LIST_INIT(&object->shadow_head); 242 243 object->type = type; 244 object->flags = flags; 245 if ((flags & OBJ_SWAP) != 0) { 246 pctrie_init(&object->un_pager.swp.swp_blks); 247 object->un_pager.swp.writemappings = 0; 248 } 249 250 /* 251 * Ensure that swap_pager_swapoff() iteration over object_list 252 * sees up to date type and pctrie head if it observed 253 * non-dead object. 254 */ 255 atomic_thread_fence_rel(); 256 257 object->pg_color = 0; 258 object->size = size; 259 object->domain.dr_policy = NULL; 260 object->generation = 1; 261 object->cleangeneration = 1; 262 refcount_init(&object->ref_count, 1); 263 object->memattr = VM_MEMATTR_DEFAULT; 264 object->cred = NULL; 265 object->charge = 0; 266 object->handle = handle; 267 object->backing_object = NULL; 268 object->backing_object_offset = (vm_ooffset_t) 0; 269 #if VM_NRESERVLEVEL > 0 270 LIST_INIT(&object->rvq); 271 #endif 272 umtx_shm_object_init(object); 273 } 274 275 /* 276 * vm_object_init: 277 * 278 * Initialize the VM objects module. 279 */ 280 void 281 vm_object_init(void) 282 { 283 TAILQ_INIT(&vm_object_list); 284 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 285 286 rw_init(&kernel_object->lock, "kernel vm object"); 287 vm_radix_init(&kernel_object->rtree); 288 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 289 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 290 #if VM_NRESERVLEVEL > 0 291 kernel_object->flags |= OBJ_COLORED; 292 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 293 #endif 294 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 295 296 /* 297 * The lock portion of struct vm_object must be type stable due 298 * to vm_pageout_fallback_object_lock locking a vm object 299 * without holding any references to it. 300 * 301 * paging_in_progress is valid always. Lockless references to 302 * the objects may acquire pip and then check OBJ_DEAD. 303 */ 304 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 305 #ifdef INVARIANTS 306 vm_object_zdtor, 307 #else 308 NULL, 309 #endif 310 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 311 312 vm_radix_zinit(); 313 } 314 315 void 316 vm_object_clear_flag(vm_object_t object, u_short bits) 317 { 318 319 VM_OBJECT_ASSERT_WLOCKED(object); 320 object->flags &= ~bits; 321 } 322 323 /* 324 * Sets the default memory attribute for the specified object. Pages 325 * that are allocated to this object are by default assigned this memory 326 * attribute. 327 * 328 * Presently, this function must be called before any pages are allocated 329 * to the object. In the future, this requirement may be relaxed for 330 * "default" and "swap" objects. 331 */ 332 int 333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 334 { 335 336 VM_OBJECT_ASSERT_WLOCKED(object); 337 338 if (object->type == OBJT_DEAD) 339 return (KERN_INVALID_ARGUMENT); 340 if (!TAILQ_EMPTY(&object->memq)) 341 return (KERN_FAILURE); 342 343 object->memattr = memattr; 344 return (KERN_SUCCESS); 345 } 346 347 void 348 vm_object_pip_add(vm_object_t object, short i) 349 { 350 351 if (i > 0) 352 blockcount_acquire(&object->paging_in_progress, i); 353 } 354 355 void 356 vm_object_pip_wakeup(vm_object_t object) 357 { 358 359 vm_object_pip_wakeupn(object, 1); 360 } 361 362 void 363 vm_object_pip_wakeupn(vm_object_t object, short i) 364 { 365 366 if (i > 0) 367 blockcount_release(&object->paging_in_progress, i); 368 } 369 370 /* 371 * Atomically drop the object lock and wait for pip to drain. This protects 372 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 373 * on return. 374 */ 375 static void 376 vm_object_pip_sleep(vm_object_t object, const char *waitid) 377 { 378 379 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 380 waitid, PVM | PDROP); 381 } 382 383 void 384 vm_object_pip_wait(vm_object_t object, const char *waitid) 385 { 386 387 VM_OBJECT_ASSERT_WLOCKED(object); 388 389 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 390 PVM); 391 } 392 393 void 394 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 395 { 396 397 VM_OBJECT_ASSERT_UNLOCKED(object); 398 399 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 400 } 401 402 /* 403 * vm_object_allocate: 404 * 405 * Returns a new object with the given size. 406 */ 407 vm_object_t 408 vm_object_allocate(objtype_t type, vm_pindex_t size) 409 { 410 vm_object_t object; 411 u_short flags; 412 413 switch (type) { 414 case OBJT_DEAD: 415 panic("vm_object_allocate: can't create OBJT_DEAD"); 416 case OBJT_SWAP: 417 flags = OBJ_COLORED | OBJ_SWAP; 418 break; 419 case OBJT_DEVICE: 420 case OBJT_SG: 421 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 422 break; 423 case OBJT_MGTDEVICE: 424 flags = OBJ_FICTITIOUS; 425 break; 426 case OBJT_PHYS: 427 flags = OBJ_UNMANAGED; 428 break; 429 case OBJT_VNODE: 430 flags = 0; 431 break; 432 default: 433 panic("vm_object_allocate: type %d is undefined or dynamic", 434 type); 435 } 436 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 437 _vm_object_allocate(type, size, flags, object, NULL); 438 439 return (object); 440 } 441 442 vm_object_t 443 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) 444 { 445 vm_object_t object; 446 447 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); 448 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 449 _vm_object_allocate(dyntype, size, flags, object, NULL); 450 451 return (object); 452 } 453 454 /* 455 * vm_object_allocate_anon: 456 * 457 * Returns a new default object of the given size and marked as 458 * anonymous memory for special split/collapse handling. Color 459 * to be initialized by the caller. 460 */ 461 vm_object_t 462 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 463 struct ucred *cred, vm_size_t charge) 464 { 465 vm_object_t handle, object; 466 467 if (backing_object == NULL) 468 handle = NULL; 469 else if ((backing_object->flags & OBJ_ANON) != 0) 470 handle = backing_object->handle; 471 else 472 handle = backing_object; 473 object = uma_zalloc(obj_zone, M_WAITOK); 474 _vm_object_allocate(OBJT_SWAP, size, 475 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); 476 object->cred = cred; 477 object->charge = cred != NULL ? charge : 0; 478 return (object); 479 } 480 481 static void 482 vm_object_reference_vnode(vm_object_t object) 483 { 484 u_int old; 485 486 /* 487 * vnode objects need the lock for the first reference 488 * to serialize with vnode_object_deallocate(). 489 */ 490 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 491 VM_OBJECT_RLOCK(object); 492 old = refcount_acquire(&object->ref_count); 493 if (object->type == OBJT_VNODE && old == 0) 494 vref(object->handle); 495 VM_OBJECT_RUNLOCK(object); 496 } 497 } 498 499 /* 500 * vm_object_reference: 501 * 502 * Acquires a reference to the given object. 503 */ 504 void 505 vm_object_reference(vm_object_t object) 506 { 507 508 if (object == NULL) 509 return; 510 511 if (object->type == OBJT_VNODE) 512 vm_object_reference_vnode(object); 513 else 514 refcount_acquire(&object->ref_count); 515 KASSERT((object->flags & OBJ_DEAD) == 0, 516 ("vm_object_reference: Referenced dead object.")); 517 } 518 519 /* 520 * vm_object_reference_locked: 521 * 522 * Gets another reference to the given object. 523 * 524 * The object must be locked. 525 */ 526 void 527 vm_object_reference_locked(vm_object_t object) 528 { 529 u_int old; 530 531 VM_OBJECT_ASSERT_LOCKED(object); 532 old = refcount_acquire(&object->ref_count); 533 if (object->type == OBJT_VNODE && old == 0) 534 vref(object->handle); 535 KASSERT((object->flags & OBJ_DEAD) == 0, 536 ("vm_object_reference: Referenced dead object.")); 537 } 538 539 /* 540 * Handle deallocating an object of type OBJT_VNODE. 541 */ 542 static void 543 vm_object_deallocate_vnode(vm_object_t object) 544 { 545 struct vnode *vp = (struct vnode *) object->handle; 546 bool last; 547 548 KASSERT(object->type == OBJT_VNODE, 549 ("vm_object_deallocate_vnode: not a vnode object")); 550 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 551 552 /* Object lock to protect handle lookup. */ 553 last = refcount_release(&object->ref_count); 554 VM_OBJECT_RUNLOCK(object); 555 556 if (!last) 557 return; 558 559 if (!umtx_shm_vnobj_persistent) 560 umtx_shm_object_terminated(object); 561 562 /* vrele may need the vnode lock. */ 563 vrele(vp); 564 } 565 566 /* 567 * We dropped a reference on an object and discovered that it had a 568 * single remaining shadow. This is a sibling of the reference we 569 * dropped. Attempt to collapse the sibling and backing object. 570 */ 571 static vm_object_t 572 vm_object_deallocate_anon(vm_object_t backing_object) 573 { 574 vm_object_t object; 575 576 /* Fetch the final shadow. */ 577 object = LIST_FIRST(&backing_object->shadow_head); 578 KASSERT(object != NULL && 579 atomic_load_int(&backing_object->shadow_count) == 1, 580 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 581 backing_object->ref_count, 582 atomic_load_int(&backing_object->shadow_count))); 583 KASSERT((object->flags & OBJ_ANON) != 0, 584 ("invalid shadow object %p", object)); 585 586 if (!VM_OBJECT_TRYWLOCK(object)) { 587 /* 588 * Prevent object from disappearing since we do not have a 589 * reference. 590 */ 591 vm_object_pip_add(object, 1); 592 VM_OBJECT_WUNLOCK(backing_object); 593 VM_OBJECT_WLOCK(object); 594 vm_object_pip_wakeup(object); 595 } else 596 VM_OBJECT_WUNLOCK(backing_object); 597 598 /* 599 * Check for a collapse/terminate race with the last reference holder. 600 */ 601 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 602 !refcount_acquire_if_not_zero(&object->ref_count)) { 603 VM_OBJECT_WUNLOCK(object); 604 return (NULL); 605 } 606 backing_object = object->backing_object; 607 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 608 vm_object_collapse(object); 609 VM_OBJECT_WUNLOCK(object); 610 611 return (object); 612 } 613 614 /* 615 * vm_object_deallocate: 616 * 617 * Release a reference to the specified object, 618 * gained either through a vm_object_allocate 619 * or a vm_object_reference call. When all references 620 * are gone, storage associated with this object 621 * may be relinquished. 622 * 623 * No object may be locked. 624 */ 625 void 626 vm_object_deallocate(vm_object_t object) 627 { 628 vm_object_t temp; 629 bool released; 630 631 while (object != NULL) { 632 /* 633 * If the reference count goes to 0 we start calling 634 * vm_object_terminate() on the object chain. A ref count 635 * of 1 may be a special case depending on the shadow count 636 * being 0 or 1. These cases require a write lock on the 637 * object. 638 */ 639 if ((object->flags & OBJ_ANON) == 0) 640 released = refcount_release_if_gt(&object->ref_count, 1); 641 else 642 released = refcount_release_if_gt(&object->ref_count, 2); 643 if (released) 644 return; 645 646 if (object->type == OBJT_VNODE) { 647 VM_OBJECT_RLOCK(object); 648 if (object->type == OBJT_VNODE) { 649 vm_object_deallocate_vnode(object); 650 return; 651 } 652 VM_OBJECT_RUNLOCK(object); 653 } 654 655 VM_OBJECT_WLOCK(object); 656 KASSERT(object->ref_count > 0, 657 ("vm_object_deallocate: object deallocated too many times: %d", 658 object->type)); 659 660 /* 661 * If this is not the final reference to an anonymous 662 * object we may need to collapse the shadow chain. 663 */ 664 if (!refcount_release(&object->ref_count)) { 665 if (object->ref_count > 1 || 666 atomic_load_int(&object->shadow_count) == 0) { 667 if ((object->flags & OBJ_ANON) != 0 && 668 object->ref_count == 1) 669 vm_object_set_flag(object, 670 OBJ_ONEMAPPING); 671 VM_OBJECT_WUNLOCK(object); 672 return; 673 } 674 675 /* Handle collapsing last ref on anonymous objects. */ 676 object = vm_object_deallocate_anon(object); 677 continue; 678 } 679 680 /* 681 * Handle the final reference to an object. We restart 682 * the loop with the backing object to avoid recursion. 683 */ 684 umtx_shm_object_terminated(object); 685 temp = object->backing_object; 686 if (temp != NULL) { 687 KASSERT(object->type == OBJT_SWAP, 688 ("shadowed tmpfs v_object 2 %p", object)); 689 vm_object_backing_remove(object); 690 } 691 692 KASSERT((object->flags & OBJ_DEAD) == 0, 693 ("vm_object_deallocate: Terminating dead object.")); 694 vm_object_set_flag(object, OBJ_DEAD); 695 vm_object_terminate(object); 696 object = temp; 697 } 698 } 699 700 void 701 vm_object_destroy(vm_object_t object) 702 { 703 uma_zfree(obj_zone, object); 704 } 705 706 static void 707 vm_object_sub_shadow(vm_object_t object) 708 { 709 KASSERT(object->shadow_count >= 1, 710 ("object %p sub_shadow count zero", object)); 711 atomic_subtract_int(&object->shadow_count, 1); 712 } 713 714 static void 715 vm_object_backing_remove_locked(vm_object_t object) 716 { 717 vm_object_t backing_object; 718 719 backing_object = object->backing_object; 720 VM_OBJECT_ASSERT_WLOCKED(object); 721 VM_OBJECT_ASSERT_WLOCKED(backing_object); 722 723 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 724 ("vm_object_backing_remove: Removing collapsing object.")); 725 726 vm_object_sub_shadow(backing_object); 727 if ((object->flags & OBJ_SHADOWLIST) != 0) { 728 LIST_REMOVE(object, shadow_list); 729 vm_object_clear_flag(object, OBJ_SHADOWLIST); 730 } 731 object->backing_object = NULL; 732 } 733 734 static void 735 vm_object_backing_remove(vm_object_t object) 736 { 737 vm_object_t backing_object; 738 739 VM_OBJECT_ASSERT_WLOCKED(object); 740 741 backing_object = object->backing_object; 742 if ((object->flags & OBJ_SHADOWLIST) != 0) { 743 VM_OBJECT_WLOCK(backing_object); 744 vm_object_backing_remove_locked(object); 745 VM_OBJECT_WUNLOCK(backing_object); 746 } else { 747 object->backing_object = NULL; 748 vm_object_sub_shadow(backing_object); 749 } 750 } 751 752 static void 753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 754 { 755 756 VM_OBJECT_ASSERT_WLOCKED(object); 757 758 atomic_add_int(&backing_object->shadow_count, 1); 759 if ((backing_object->flags & OBJ_ANON) != 0) { 760 VM_OBJECT_ASSERT_WLOCKED(backing_object); 761 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 762 shadow_list); 763 vm_object_set_flag(object, OBJ_SHADOWLIST); 764 } 765 object->backing_object = backing_object; 766 } 767 768 static void 769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 770 { 771 772 VM_OBJECT_ASSERT_WLOCKED(object); 773 774 if ((backing_object->flags & OBJ_ANON) != 0) { 775 VM_OBJECT_WLOCK(backing_object); 776 vm_object_backing_insert_locked(object, backing_object); 777 VM_OBJECT_WUNLOCK(backing_object); 778 } else { 779 object->backing_object = backing_object; 780 atomic_add_int(&backing_object->shadow_count, 1); 781 } 782 } 783 784 /* 785 * Insert an object into a backing_object's shadow list with an additional 786 * reference to the backing_object added. 787 */ 788 static void 789 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 790 { 791 792 VM_OBJECT_ASSERT_WLOCKED(object); 793 794 if ((backing_object->flags & OBJ_ANON) != 0) { 795 VM_OBJECT_WLOCK(backing_object); 796 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 797 ("shadowing dead anonymous object")); 798 vm_object_reference_locked(backing_object); 799 vm_object_backing_insert_locked(object, backing_object); 800 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 801 VM_OBJECT_WUNLOCK(backing_object); 802 } else { 803 vm_object_reference(backing_object); 804 atomic_add_int(&backing_object->shadow_count, 1); 805 object->backing_object = backing_object; 806 } 807 } 808 809 /* 810 * Transfer a backing reference from backing_object to object. 811 */ 812 static void 813 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 814 { 815 vm_object_t new_backing_object; 816 817 /* 818 * Note that the reference to backing_object->backing_object 819 * moves from within backing_object to within object. 820 */ 821 vm_object_backing_remove_locked(object); 822 new_backing_object = backing_object->backing_object; 823 if (new_backing_object == NULL) 824 return; 825 if ((new_backing_object->flags & OBJ_ANON) != 0) { 826 VM_OBJECT_WLOCK(new_backing_object); 827 vm_object_backing_remove_locked(backing_object); 828 vm_object_backing_insert_locked(object, new_backing_object); 829 VM_OBJECT_WUNLOCK(new_backing_object); 830 } else { 831 /* 832 * shadow_count for new_backing_object is left 833 * unchanged, its reference provided by backing_object 834 * is replaced by object. 835 */ 836 object->backing_object = new_backing_object; 837 backing_object->backing_object = NULL; 838 } 839 } 840 841 /* 842 * Wait for a concurrent collapse to settle. 843 */ 844 static void 845 vm_object_collapse_wait(vm_object_t object) 846 { 847 848 VM_OBJECT_ASSERT_WLOCKED(object); 849 850 while ((object->flags & OBJ_COLLAPSING) != 0) { 851 vm_object_pip_wait(object, "vmcolwait"); 852 counter_u64_add(object_collapse_waits, 1); 853 } 854 } 855 856 /* 857 * Waits for a backing object to clear a pending collapse and returns 858 * it locked if it is an ANON object. 859 */ 860 static vm_object_t 861 vm_object_backing_collapse_wait(vm_object_t object) 862 { 863 vm_object_t backing_object; 864 865 VM_OBJECT_ASSERT_WLOCKED(object); 866 867 for (;;) { 868 backing_object = object->backing_object; 869 if (backing_object == NULL || 870 (backing_object->flags & OBJ_ANON) == 0) 871 return (NULL); 872 VM_OBJECT_WLOCK(backing_object); 873 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 874 break; 875 VM_OBJECT_WUNLOCK(object); 876 vm_object_pip_sleep(backing_object, "vmbckwait"); 877 counter_u64_add(object_collapse_waits, 1); 878 VM_OBJECT_WLOCK(object); 879 } 880 return (backing_object); 881 } 882 883 /* 884 * vm_object_terminate_pages removes any remaining pageable pages 885 * from the object and resets the object to an empty state. 886 */ 887 static void 888 vm_object_terminate_pages(vm_object_t object) 889 { 890 vm_page_t p, p_next; 891 892 VM_OBJECT_ASSERT_WLOCKED(object); 893 894 /* 895 * Free any remaining pageable pages. This also removes them from the 896 * paging queues. However, don't free wired pages, just remove them 897 * from the object. Rather than incrementally removing each page from 898 * the object, the page and object are reset to any empty state. 899 */ 900 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 901 vm_page_assert_unbusied(p); 902 KASSERT(p->object == object && 903 (p->ref_count & VPRC_OBJREF) != 0, 904 ("vm_object_terminate_pages: page %p is inconsistent", p)); 905 906 p->object = NULL; 907 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 908 VM_CNT_INC(v_pfree); 909 vm_page_free(p); 910 } 911 } 912 913 /* 914 * If the object contained any pages, then reset it to an empty state. 915 * None of the object's fields, including "resident_page_count", were 916 * modified by the preceding loop. 917 */ 918 if (object->resident_page_count != 0) { 919 vm_radix_reclaim_allnodes(&object->rtree); 920 TAILQ_INIT(&object->memq); 921 object->resident_page_count = 0; 922 if (object->type == OBJT_VNODE) 923 vdrop(object->handle); 924 } 925 } 926 927 /* 928 * vm_object_terminate actually destroys the specified object, freeing 929 * up all previously used resources. 930 * 931 * The object must be locked. 932 * This routine may block. 933 */ 934 void 935 vm_object_terminate(vm_object_t object) 936 { 937 938 VM_OBJECT_ASSERT_WLOCKED(object); 939 KASSERT((object->flags & OBJ_DEAD) != 0, 940 ("terminating non-dead obj %p", object)); 941 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 942 ("terminating collapsing obj %p", object)); 943 KASSERT(object->backing_object == NULL, 944 ("terminating shadow obj %p", object)); 945 946 /* 947 * Wait for the pageout daemon and other current users to be 948 * done with the object. Note that new paging_in_progress 949 * users can come after this wait, but they must check 950 * OBJ_DEAD flag set (without unlocking the object), and avoid 951 * the object being terminated. 952 */ 953 vm_object_pip_wait(object, "objtrm"); 954 955 KASSERT(object->ref_count == 0, 956 ("vm_object_terminate: object with references, ref_count=%d", 957 object->ref_count)); 958 959 if ((object->flags & OBJ_PG_DTOR) == 0) 960 vm_object_terminate_pages(object); 961 962 #if VM_NRESERVLEVEL > 0 963 if (__predict_false(!LIST_EMPTY(&object->rvq))) 964 vm_reserv_break_all(object); 965 #endif 966 967 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, 968 ("%s: non-swap obj %p has cred", __func__, object)); 969 970 /* 971 * Let the pager know object is dead. 972 */ 973 vm_pager_deallocate(object); 974 VM_OBJECT_WUNLOCK(object); 975 976 vm_object_destroy(object); 977 } 978 979 /* 980 * Make the page read-only so that we can clear the object flags. However, if 981 * this is a nosync mmap then the object is likely to stay dirty so do not 982 * mess with the page and do not clear the object flags. Returns TRUE if the 983 * page should be flushed, and FALSE otherwise. 984 */ 985 static boolean_t 986 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 987 { 988 989 vm_page_assert_busied(p); 990 991 /* 992 * If we have been asked to skip nosync pages and this is a 993 * nosync page, skip it. Note that the object flags were not 994 * cleared in this case so we do not have to set them. 995 */ 996 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 997 *allclean = FALSE; 998 return (FALSE); 999 } else { 1000 pmap_remove_write(p); 1001 return (p->dirty != 0); 1002 } 1003 } 1004 1005 /* 1006 * vm_object_page_clean 1007 * 1008 * Clean all dirty pages in the specified range of object. Leaves page 1009 * on whatever queue it is currently on. If NOSYNC is set then do not 1010 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1011 * leaving the object dirty. 1012 * 1013 * For swap objects backing tmpfs regular files, do not flush anything, 1014 * but remove write protection on the mapped pages to update mtime through 1015 * mmaped writes. 1016 * 1017 * When stuffing pages asynchronously, allow clustering. XXX we need a 1018 * synchronous clustering mode implementation. 1019 * 1020 * Odd semantics: if start == end, we clean everything. 1021 * 1022 * The object must be locked. 1023 * 1024 * Returns FALSE if some page from the range was not written, as 1025 * reported by the pager, and TRUE otherwise. 1026 */ 1027 boolean_t 1028 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1029 int flags) 1030 { 1031 vm_page_t np, p; 1032 vm_pindex_t pi, tend, tstart; 1033 int curgeneration, n, pagerflags; 1034 boolean_t eio, res, allclean; 1035 1036 VM_OBJECT_ASSERT_WLOCKED(object); 1037 1038 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1039 return (TRUE); 1040 1041 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1042 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1043 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1044 1045 tstart = OFF_TO_IDX(start); 1046 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1047 allclean = tstart == 0 && tend >= object->size; 1048 res = TRUE; 1049 1050 rescan: 1051 curgeneration = object->generation; 1052 1053 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 1054 pi = p->pindex; 1055 if (pi >= tend) 1056 break; 1057 np = TAILQ_NEXT(p, listq); 1058 if (vm_page_none_valid(p)) 1059 continue; 1060 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 1061 if (object->generation != curgeneration && 1062 (flags & OBJPC_SYNC) != 0) 1063 goto rescan; 1064 np = vm_page_find_least(object, pi); 1065 continue; 1066 } 1067 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1068 vm_page_xunbusy(p); 1069 continue; 1070 } 1071 if (object->type == OBJT_VNODE) { 1072 n = vm_object_page_collect_flush(object, p, pagerflags, 1073 flags, &allclean, &eio); 1074 if (eio) { 1075 res = FALSE; 1076 allclean = FALSE; 1077 } 1078 if (object->generation != curgeneration && 1079 (flags & OBJPC_SYNC) != 0) 1080 goto rescan; 1081 1082 /* 1083 * If the VOP_PUTPAGES() did a truncated write, so 1084 * that even the first page of the run is not fully 1085 * written, vm_pageout_flush() returns 0 as the run 1086 * length. Since the condition that caused truncated 1087 * write may be permanent, e.g. exhausted free space, 1088 * accepting n == 0 would cause an infinite loop. 1089 * 1090 * Forwarding the iterator leaves the unwritten page 1091 * behind, but there is not much we can do there if 1092 * filesystem refuses to write it. 1093 */ 1094 if (n == 0) { 1095 n = 1; 1096 allclean = FALSE; 1097 } 1098 } else { 1099 n = 1; 1100 vm_page_xunbusy(p); 1101 } 1102 np = vm_page_find_least(object, pi + n); 1103 } 1104 #if 0 1105 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1106 #endif 1107 1108 /* 1109 * Leave updating cleangeneration for tmpfs objects to tmpfs 1110 * scan. It needs to update mtime, which happens for other 1111 * filesystems during page writeouts. 1112 */ 1113 if (allclean && object->type == OBJT_VNODE) 1114 object->cleangeneration = curgeneration; 1115 return (res); 1116 } 1117 1118 static int 1119 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1120 int flags, boolean_t *allclean, boolean_t *eio) 1121 { 1122 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1123 int count, i, mreq, runlen; 1124 1125 vm_page_lock_assert(p, MA_NOTOWNED); 1126 vm_page_assert_xbusied(p); 1127 VM_OBJECT_ASSERT_WLOCKED(object); 1128 1129 count = 1; 1130 mreq = 0; 1131 1132 for (tp = p; count < vm_pageout_page_count; count++) { 1133 tp = vm_page_next(tp); 1134 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1135 break; 1136 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1137 vm_page_xunbusy(tp); 1138 break; 1139 } 1140 } 1141 1142 for (p_first = p; count < vm_pageout_page_count; count++) { 1143 tp = vm_page_prev(p_first); 1144 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1145 break; 1146 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1147 vm_page_xunbusy(tp); 1148 break; 1149 } 1150 p_first = tp; 1151 mreq++; 1152 } 1153 1154 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1155 ma[i] = tp; 1156 1157 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1158 return (runlen); 1159 } 1160 1161 /* 1162 * Note that there is absolutely no sense in writing out 1163 * anonymous objects, so we track down the vnode object 1164 * to write out. 1165 * We invalidate (remove) all pages from the address space 1166 * for semantic correctness. 1167 * 1168 * If the backing object is a device object with unmanaged pages, then any 1169 * mappings to the specified range of pages must be removed before this 1170 * function is called. 1171 * 1172 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1173 * may start out with a NULL object. 1174 */ 1175 boolean_t 1176 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1177 boolean_t syncio, boolean_t invalidate) 1178 { 1179 vm_object_t backing_object; 1180 struct vnode *vp; 1181 struct mount *mp; 1182 int error, flags, fsync_after; 1183 boolean_t res; 1184 1185 if (object == NULL) 1186 return (TRUE); 1187 res = TRUE; 1188 error = 0; 1189 VM_OBJECT_WLOCK(object); 1190 while ((backing_object = object->backing_object) != NULL) { 1191 VM_OBJECT_WLOCK(backing_object); 1192 offset += object->backing_object_offset; 1193 VM_OBJECT_WUNLOCK(object); 1194 object = backing_object; 1195 if (object->size < OFF_TO_IDX(offset + size)) 1196 size = IDX_TO_OFF(object->size) - offset; 1197 } 1198 /* 1199 * Flush pages if writing is allowed, invalidate them 1200 * if invalidation requested. Pages undergoing I/O 1201 * will be ignored by vm_object_page_remove(). 1202 * 1203 * We cannot lock the vnode and then wait for paging 1204 * to complete without deadlocking against vm_fault. 1205 * Instead we simply call vm_object_page_remove() and 1206 * allow it to block internally on a page-by-page 1207 * basis when it encounters pages undergoing async 1208 * I/O. 1209 */ 1210 if (object->type == OBJT_VNODE && 1211 vm_object_mightbedirty(object) != 0 && 1212 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1213 VM_OBJECT_WUNLOCK(object); 1214 (void)vn_start_write(vp, &mp, V_WAIT); 1215 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1216 if (syncio && !invalidate && offset == 0 && 1217 atop(size) == object->size) { 1218 /* 1219 * If syncing the whole mapping of the file, 1220 * it is faster to schedule all the writes in 1221 * async mode, also allowing the clustering, 1222 * and then wait for i/o to complete. 1223 */ 1224 flags = 0; 1225 fsync_after = TRUE; 1226 } else { 1227 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1228 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1229 fsync_after = FALSE; 1230 } 1231 VM_OBJECT_WLOCK(object); 1232 res = vm_object_page_clean(object, offset, offset + size, 1233 flags); 1234 VM_OBJECT_WUNLOCK(object); 1235 if (fsync_after) { 1236 for (;;) { 1237 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1238 if (error != ERELOOKUP) 1239 break; 1240 1241 /* 1242 * Allow SU/bufdaemon to handle more 1243 * dependencies in the meantime. 1244 */ 1245 VOP_UNLOCK(vp); 1246 vn_finished_write(mp); 1247 1248 (void)vn_start_write(vp, &mp, V_WAIT); 1249 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1250 } 1251 } 1252 VOP_UNLOCK(vp); 1253 vn_finished_write(mp); 1254 if (error != 0) 1255 res = FALSE; 1256 VM_OBJECT_WLOCK(object); 1257 } 1258 if ((object->type == OBJT_VNODE || 1259 object->type == OBJT_DEVICE) && invalidate) { 1260 if (object->type == OBJT_DEVICE) 1261 /* 1262 * The option OBJPR_NOTMAPPED must be passed here 1263 * because vm_object_page_remove() cannot remove 1264 * unmanaged mappings. 1265 */ 1266 flags = OBJPR_NOTMAPPED; 1267 else if (old_msync) 1268 flags = 0; 1269 else 1270 flags = OBJPR_CLEANONLY; 1271 vm_object_page_remove(object, OFF_TO_IDX(offset), 1272 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1273 } 1274 VM_OBJECT_WUNLOCK(object); 1275 return (res); 1276 } 1277 1278 /* 1279 * Determine whether the given advice can be applied to the object. Advice is 1280 * not applied to unmanaged pages since they never belong to page queues, and 1281 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1282 * have been mapped at most once. 1283 */ 1284 static bool 1285 vm_object_advice_applies(vm_object_t object, int advice) 1286 { 1287 1288 if ((object->flags & OBJ_UNMANAGED) != 0) 1289 return (false); 1290 if (advice != MADV_FREE) 1291 return (true); 1292 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1293 (OBJ_ONEMAPPING | OBJ_ANON)); 1294 } 1295 1296 static void 1297 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1298 vm_size_t size) 1299 { 1300 1301 if (advice == MADV_FREE) 1302 vm_pager_freespace(object, pindex, size); 1303 } 1304 1305 /* 1306 * vm_object_madvise: 1307 * 1308 * Implements the madvise function at the object/page level. 1309 * 1310 * MADV_WILLNEED (any object) 1311 * 1312 * Activate the specified pages if they are resident. 1313 * 1314 * MADV_DONTNEED (any object) 1315 * 1316 * Deactivate the specified pages if they are resident. 1317 * 1318 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) 1319 * 1320 * Deactivate and clean the specified pages if they are 1321 * resident. This permits the process to reuse the pages 1322 * without faulting or the kernel to reclaim the pages 1323 * without I/O. 1324 */ 1325 void 1326 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1327 int advice) 1328 { 1329 vm_pindex_t tpindex; 1330 vm_object_t backing_object, tobject; 1331 vm_page_t m, tm; 1332 1333 if (object == NULL) 1334 return; 1335 1336 relookup: 1337 VM_OBJECT_WLOCK(object); 1338 if (!vm_object_advice_applies(object, advice)) { 1339 VM_OBJECT_WUNLOCK(object); 1340 return; 1341 } 1342 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1343 tobject = object; 1344 1345 /* 1346 * If the next page isn't resident in the top-level object, we 1347 * need to search the shadow chain. When applying MADV_FREE, we 1348 * take care to release any swap space used to store 1349 * non-resident pages. 1350 */ 1351 if (m == NULL || pindex < m->pindex) { 1352 /* 1353 * Optimize a common case: if the top-level object has 1354 * no backing object, we can skip over the non-resident 1355 * range in constant time. 1356 */ 1357 if (object->backing_object == NULL) { 1358 tpindex = (m != NULL && m->pindex < end) ? 1359 m->pindex : end; 1360 vm_object_madvise_freespace(object, advice, 1361 pindex, tpindex - pindex); 1362 if ((pindex = tpindex) == end) 1363 break; 1364 goto next_page; 1365 } 1366 1367 tpindex = pindex; 1368 do { 1369 vm_object_madvise_freespace(tobject, advice, 1370 tpindex, 1); 1371 /* 1372 * Prepare to search the next object in the 1373 * chain. 1374 */ 1375 backing_object = tobject->backing_object; 1376 if (backing_object == NULL) 1377 goto next_pindex; 1378 VM_OBJECT_WLOCK(backing_object); 1379 tpindex += 1380 OFF_TO_IDX(tobject->backing_object_offset); 1381 if (tobject != object) 1382 VM_OBJECT_WUNLOCK(tobject); 1383 tobject = backing_object; 1384 if (!vm_object_advice_applies(tobject, advice)) 1385 goto next_pindex; 1386 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1387 NULL); 1388 } else { 1389 next_page: 1390 tm = m; 1391 m = TAILQ_NEXT(m, listq); 1392 } 1393 1394 /* 1395 * If the page is not in a normal state, skip it. The page 1396 * can not be invalidated while the object lock is held. 1397 */ 1398 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1399 goto next_pindex; 1400 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1401 ("vm_object_madvise: page %p is fictitious", tm)); 1402 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1403 ("vm_object_madvise: page %p is not managed", tm)); 1404 if (vm_page_tryxbusy(tm) == 0) { 1405 if (object != tobject) 1406 VM_OBJECT_WUNLOCK(object); 1407 if (advice == MADV_WILLNEED) { 1408 /* 1409 * Reference the page before unlocking and 1410 * sleeping so that the page daemon is less 1411 * likely to reclaim it. 1412 */ 1413 vm_page_aflag_set(tm, PGA_REFERENCED); 1414 } 1415 if (!vm_page_busy_sleep(tm, "madvpo", 0)) 1416 VM_OBJECT_WUNLOCK(tobject); 1417 goto relookup; 1418 } 1419 vm_page_advise(tm, advice); 1420 vm_page_xunbusy(tm); 1421 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1422 next_pindex: 1423 if (tobject != object) 1424 VM_OBJECT_WUNLOCK(tobject); 1425 } 1426 VM_OBJECT_WUNLOCK(object); 1427 } 1428 1429 /* 1430 * vm_object_shadow: 1431 * 1432 * Create a new object which is backed by the 1433 * specified existing object range. The source 1434 * object reference is deallocated. 1435 * 1436 * The new object and offset into that object 1437 * are returned in the source parameters. 1438 */ 1439 void 1440 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1441 struct ucred *cred, bool shared) 1442 { 1443 vm_object_t source; 1444 vm_object_t result; 1445 1446 source = *object; 1447 1448 /* 1449 * Don't create the new object if the old object isn't shared. 1450 * 1451 * If we hold the only reference we can guarantee that it won't 1452 * increase while we have the map locked. Otherwise the race is 1453 * harmless and we will end up with an extra shadow object that 1454 * will be collapsed later. 1455 */ 1456 if (source != NULL && source->ref_count == 1 && 1457 (source->flags & OBJ_ANON) != 0) 1458 return; 1459 1460 /* 1461 * Allocate a new object with the given length. 1462 */ 1463 result = vm_object_allocate_anon(atop(length), source, cred, length); 1464 1465 /* 1466 * Store the offset into the source object, and fix up the offset into 1467 * the new object. 1468 */ 1469 result->backing_object_offset = *offset; 1470 1471 if (shared || source != NULL) { 1472 VM_OBJECT_WLOCK(result); 1473 1474 /* 1475 * The new object shadows the source object, adding a 1476 * reference to it. Our caller changes his reference 1477 * to point to the new object, removing a reference to 1478 * the source object. Net result: no change of 1479 * reference count, unless the caller needs to add one 1480 * more reference due to forking a shared map entry. 1481 */ 1482 if (shared) { 1483 vm_object_reference_locked(result); 1484 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1485 } 1486 1487 /* 1488 * Try to optimize the result object's page color when 1489 * shadowing in order to maintain page coloring 1490 * consistency in the combined shadowed object. 1491 */ 1492 if (source != NULL) { 1493 vm_object_backing_insert(result, source); 1494 result->domain = source->domain; 1495 #if VM_NRESERVLEVEL > 0 1496 vm_object_set_flag(result, 1497 (source->flags & OBJ_COLORED)); 1498 result->pg_color = (source->pg_color + 1499 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1500 1)) - 1); 1501 #endif 1502 } 1503 VM_OBJECT_WUNLOCK(result); 1504 } 1505 1506 /* 1507 * Return the new things 1508 */ 1509 *offset = 0; 1510 *object = result; 1511 } 1512 1513 /* 1514 * vm_object_split: 1515 * 1516 * Split the pages in a map entry into a new object. This affords 1517 * easier removal of unused pages, and keeps object inheritance from 1518 * being a negative impact on memory usage. 1519 */ 1520 void 1521 vm_object_split(vm_map_entry_t entry) 1522 { 1523 vm_page_t m, m_next; 1524 vm_object_t orig_object, new_object, backing_object; 1525 vm_pindex_t idx, offidxstart; 1526 vm_size_t size; 1527 1528 orig_object = entry->object.vm_object; 1529 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1530 ("vm_object_split: Splitting object with multiple mappings.")); 1531 if ((orig_object->flags & OBJ_ANON) == 0) 1532 return; 1533 if (orig_object->ref_count <= 1) 1534 return; 1535 VM_OBJECT_WUNLOCK(orig_object); 1536 1537 offidxstart = OFF_TO_IDX(entry->offset); 1538 size = atop(entry->end - entry->start); 1539 1540 new_object = vm_object_allocate_anon(size, orig_object, 1541 orig_object->cred, ptoa(size)); 1542 1543 /* 1544 * We must wait for the orig_object to complete any in-progress 1545 * collapse so that the swap blocks are stable below. The 1546 * additional reference on backing_object by new object will 1547 * prevent further collapse operations until split completes. 1548 */ 1549 VM_OBJECT_WLOCK(orig_object); 1550 vm_object_collapse_wait(orig_object); 1551 1552 /* 1553 * At this point, the new object is still private, so the order in 1554 * which the original and new objects are locked does not matter. 1555 */ 1556 VM_OBJECT_WLOCK(new_object); 1557 new_object->domain = orig_object->domain; 1558 backing_object = orig_object->backing_object; 1559 if (backing_object != NULL) { 1560 vm_object_backing_insert_ref(new_object, backing_object); 1561 new_object->backing_object_offset = 1562 orig_object->backing_object_offset + entry->offset; 1563 } 1564 if (orig_object->cred != NULL) { 1565 crhold(orig_object->cred); 1566 KASSERT(orig_object->charge >= ptoa(size), 1567 ("orig_object->charge < 0")); 1568 orig_object->charge -= ptoa(size); 1569 } 1570 1571 /* 1572 * Mark the split operation so that swap_pager_getpages() knows 1573 * that the object is in transition. 1574 */ 1575 vm_object_set_flag(orig_object, OBJ_SPLIT); 1576 #ifdef INVARIANTS 1577 idx = 0; 1578 #endif 1579 retry: 1580 m = vm_page_find_least(orig_object, offidxstart); 1581 KASSERT(m == NULL || idx <= m->pindex - offidxstart, 1582 ("%s: object %p was repopulated", __func__, orig_object)); 1583 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1584 m = m_next) { 1585 m_next = TAILQ_NEXT(m, listq); 1586 1587 /* 1588 * We must wait for pending I/O to complete before we can 1589 * rename the page. 1590 * 1591 * We do not have to VM_PROT_NONE the page as mappings should 1592 * not be changed by this operation. 1593 */ 1594 if (vm_page_tryxbusy(m) == 0) { 1595 VM_OBJECT_WUNLOCK(new_object); 1596 if (vm_page_busy_sleep(m, "spltwt", 0)) 1597 VM_OBJECT_WLOCK(orig_object); 1598 VM_OBJECT_WLOCK(new_object); 1599 goto retry; 1600 } 1601 1602 /* 1603 * The page was left invalid. Likely placed there by 1604 * an incomplete fault. Just remove and ignore. 1605 */ 1606 if (vm_page_none_valid(m)) { 1607 if (vm_page_remove(m)) 1608 vm_page_free(m); 1609 continue; 1610 } 1611 1612 /* vm_page_rename() will dirty the page. */ 1613 if (vm_page_rename(m, new_object, idx)) { 1614 vm_page_xunbusy(m); 1615 VM_OBJECT_WUNLOCK(new_object); 1616 VM_OBJECT_WUNLOCK(orig_object); 1617 vm_radix_wait(); 1618 VM_OBJECT_WLOCK(orig_object); 1619 VM_OBJECT_WLOCK(new_object); 1620 goto retry; 1621 } 1622 1623 #if VM_NRESERVLEVEL > 0 1624 /* 1625 * If some of the reservation's allocated pages remain with 1626 * the original object, then transferring the reservation to 1627 * the new object is neither particularly beneficial nor 1628 * particularly harmful as compared to leaving the reservation 1629 * with the original object. If, however, all of the 1630 * reservation's allocated pages are transferred to the new 1631 * object, then transferring the reservation is typically 1632 * beneficial. Determining which of these two cases applies 1633 * would be more costly than unconditionally renaming the 1634 * reservation. 1635 */ 1636 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1637 #endif 1638 } 1639 1640 /* 1641 * swap_pager_copy() can sleep, in which case the orig_object's 1642 * and new_object's locks are released and reacquired. 1643 */ 1644 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1645 1646 TAILQ_FOREACH(m, &new_object->memq, listq) 1647 vm_page_xunbusy(m); 1648 1649 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1650 VM_OBJECT_WUNLOCK(orig_object); 1651 VM_OBJECT_WUNLOCK(new_object); 1652 entry->object.vm_object = new_object; 1653 entry->offset = 0LL; 1654 vm_object_deallocate(orig_object); 1655 VM_OBJECT_WLOCK(new_object); 1656 } 1657 1658 static vm_page_t 1659 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) 1660 { 1661 vm_object_t backing_object; 1662 1663 VM_OBJECT_ASSERT_WLOCKED(object); 1664 backing_object = object->backing_object; 1665 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1666 1667 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1668 ("invalid ownership %p %p %p", p, object, backing_object)); 1669 /* The page is only NULL when rename fails. */ 1670 if (p == NULL) { 1671 VM_OBJECT_WUNLOCK(object); 1672 VM_OBJECT_WUNLOCK(backing_object); 1673 vm_radix_wait(); 1674 VM_OBJECT_WLOCK(object); 1675 } else if (p->object == object) { 1676 VM_OBJECT_WUNLOCK(backing_object); 1677 if (vm_page_busy_sleep(p, "vmocol", 0)) 1678 VM_OBJECT_WLOCK(object); 1679 } else { 1680 VM_OBJECT_WUNLOCK(object); 1681 if (!vm_page_busy_sleep(p, "vmocol", 0)) 1682 VM_OBJECT_WUNLOCK(backing_object); 1683 VM_OBJECT_WLOCK(object); 1684 } 1685 VM_OBJECT_WLOCK(backing_object); 1686 return (TAILQ_FIRST(&backing_object->memq)); 1687 } 1688 1689 static bool 1690 vm_object_scan_all_shadowed(vm_object_t object) 1691 { 1692 vm_object_t backing_object; 1693 vm_page_t p, pp; 1694 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1695 1696 VM_OBJECT_ASSERT_WLOCKED(object); 1697 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1698 1699 backing_object = object->backing_object; 1700 1701 if ((backing_object->flags & OBJ_ANON) == 0) 1702 return (false); 1703 1704 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1705 p = vm_page_find_least(backing_object, pi); 1706 ps = swap_pager_find_least(backing_object, pi); 1707 1708 /* 1709 * Only check pages inside the parent object's range and 1710 * inside the parent object's mapping of the backing object. 1711 */ 1712 for (;; pi++) { 1713 if (p != NULL && p->pindex < pi) 1714 p = TAILQ_NEXT(p, listq); 1715 if (ps < pi) 1716 ps = swap_pager_find_least(backing_object, pi); 1717 if (p == NULL && ps >= backing_object->size) 1718 break; 1719 else if (p == NULL) 1720 pi = ps; 1721 else 1722 pi = MIN(p->pindex, ps); 1723 1724 new_pindex = pi - backing_offset_index; 1725 if (new_pindex >= object->size) 1726 break; 1727 1728 if (p != NULL) { 1729 /* 1730 * If the backing object page is busy a 1731 * grandparent or older page may still be 1732 * undergoing CoW. It is not safe to collapse 1733 * the backing object until it is quiesced. 1734 */ 1735 if (vm_page_tryxbusy(p) == 0) 1736 return (false); 1737 1738 /* 1739 * We raced with the fault handler that left 1740 * newly allocated invalid page on the object 1741 * queue and retried. 1742 */ 1743 if (!vm_page_all_valid(p)) 1744 goto unbusy_ret; 1745 } 1746 1747 /* 1748 * See if the parent has the page or if the parent's object 1749 * pager has the page. If the parent has the page but the page 1750 * is not valid, the parent's object pager must have the page. 1751 * 1752 * If this fails, the parent does not completely shadow the 1753 * object and we might as well give up now. 1754 */ 1755 pp = vm_page_lookup(object, new_pindex); 1756 1757 /* 1758 * The valid check here is stable due to object lock 1759 * being required to clear valid and initiate paging. 1760 * Busy of p disallows fault handler to validate pp. 1761 */ 1762 if ((pp == NULL || vm_page_none_valid(pp)) && 1763 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1764 goto unbusy_ret; 1765 if (p != NULL) 1766 vm_page_xunbusy(p); 1767 } 1768 return (true); 1769 1770 unbusy_ret: 1771 if (p != NULL) 1772 vm_page_xunbusy(p); 1773 return (false); 1774 } 1775 1776 static void 1777 vm_object_collapse_scan(vm_object_t object) 1778 { 1779 vm_object_t backing_object; 1780 vm_page_t next, p, pp; 1781 vm_pindex_t backing_offset_index, new_pindex; 1782 1783 VM_OBJECT_ASSERT_WLOCKED(object); 1784 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1785 1786 backing_object = object->backing_object; 1787 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1788 1789 /* 1790 * Our scan 1791 */ 1792 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1793 next = TAILQ_NEXT(p, listq); 1794 new_pindex = p->pindex - backing_offset_index; 1795 1796 /* 1797 * Check for busy page 1798 */ 1799 if (vm_page_tryxbusy(p) == 0) { 1800 next = vm_object_collapse_scan_wait(object, p); 1801 continue; 1802 } 1803 1804 KASSERT(object->backing_object == backing_object, 1805 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1806 object->backing_object, backing_object)); 1807 KASSERT(p->object == backing_object, 1808 ("vm_object_collapse_scan: object mismatch %p != %p", 1809 p->object, backing_object)); 1810 1811 if (p->pindex < backing_offset_index || 1812 new_pindex >= object->size) { 1813 vm_pager_freespace(backing_object, p->pindex, 1); 1814 1815 KASSERT(!pmap_page_is_mapped(p), 1816 ("freeing mapped page %p", p)); 1817 if (vm_page_remove(p)) 1818 vm_page_free(p); 1819 continue; 1820 } 1821 1822 if (!vm_page_all_valid(p)) { 1823 KASSERT(!pmap_page_is_mapped(p), 1824 ("freeing mapped page %p", p)); 1825 if (vm_page_remove(p)) 1826 vm_page_free(p); 1827 continue; 1828 } 1829 1830 pp = vm_page_lookup(object, new_pindex); 1831 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1832 vm_page_xunbusy(p); 1833 /* 1834 * The page in the parent is busy and possibly not 1835 * (yet) valid. Until its state is finalized by the 1836 * busy bit owner, we can't tell whether it shadows the 1837 * original page. 1838 */ 1839 next = vm_object_collapse_scan_wait(object, pp); 1840 continue; 1841 } 1842 1843 if (pp != NULL && vm_page_none_valid(pp)) { 1844 /* 1845 * The page was invalid in the parent. Likely placed 1846 * there by an incomplete fault. Just remove and 1847 * ignore. p can replace it. 1848 */ 1849 if (vm_page_remove(pp)) 1850 vm_page_free(pp); 1851 pp = NULL; 1852 } 1853 1854 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1855 NULL)) { 1856 /* 1857 * The page already exists in the parent OR swap exists 1858 * for this location in the parent. Leave the parent's 1859 * page alone. Destroy the original page from the 1860 * backing object. 1861 */ 1862 vm_pager_freespace(backing_object, p->pindex, 1); 1863 KASSERT(!pmap_page_is_mapped(p), 1864 ("freeing mapped page %p", p)); 1865 if (vm_page_remove(p)) 1866 vm_page_free(p); 1867 if (pp != NULL) 1868 vm_page_xunbusy(pp); 1869 continue; 1870 } 1871 1872 /* 1873 * Page does not exist in parent, rename the page from the 1874 * backing object to the main object. 1875 * 1876 * If the page was mapped to a process, it can remain mapped 1877 * through the rename. vm_page_rename() will dirty the page. 1878 */ 1879 if (vm_page_rename(p, object, new_pindex)) { 1880 vm_page_xunbusy(p); 1881 next = vm_object_collapse_scan_wait(object, NULL); 1882 continue; 1883 } 1884 1885 /* Use the old pindex to free the right page. */ 1886 vm_pager_freespace(backing_object, new_pindex + 1887 backing_offset_index, 1); 1888 1889 #if VM_NRESERVLEVEL > 0 1890 /* 1891 * Rename the reservation. 1892 */ 1893 vm_reserv_rename(p, object, backing_object, 1894 backing_offset_index); 1895 #endif 1896 vm_page_xunbusy(p); 1897 } 1898 return; 1899 } 1900 1901 /* 1902 * vm_object_collapse: 1903 * 1904 * Collapse an object with the object backing it. 1905 * Pages in the backing object are moved into the 1906 * parent, and the backing object is deallocated. 1907 */ 1908 void 1909 vm_object_collapse(vm_object_t object) 1910 { 1911 vm_object_t backing_object, new_backing_object; 1912 1913 VM_OBJECT_ASSERT_WLOCKED(object); 1914 1915 while (TRUE) { 1916 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1917 ("collapsing invalid object")); 1918 1919 /* 1920 * Wait for the backing_object to finish any pending 1921 * collapse so that the caller sees the shortest possible 1922 * shadow chain. 1923 */ 1924 backing_object = vm_object_backing_collapse_wait(object); 1925 if (backing_object == NULL) 1926 return; 1927 1928 KASSERT(object->ref_count > 0 && 1929 object->ref_count > atomic_load_int(&object->shadow_count), 1930 ("collapse with invalid ref %d or shadow %d count.", 1931 object->ref_count, atomic_load_int(&object->shadow_count))); 1932 KASSERT((backing_object->flags & 1933 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1934 ("vm_object_collapse: Backing object already collapsing.")); 1935 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1936 ("vm_object_collapse: object is already collapsing.")); 1937 1938 /* 1939 * We know that we can either collapse the backing object if 1940 * the parent is the only reference to it, or (perhaps) have 1941 * the parent bypass the object if the parent happens to shadow 1942 * all the resident pages in the entire backing object. 1943 */ 1944 if (backing_object->ref_count == 1) { 1945 KASSERT(atomic_load_int(&backing_object->shadow_count) 1946 == 1, 1947 ("vm_object_collapse: shadow_count: %d", 1948 atomic_load_int(&backing_object->shadow_count))); 1949 vm_object_pip_add(object, 1); 1950 vm_object_set_flag(object, OBJ_COLLAPSING); 1951 vm_object_pip_add(backing_object, 1); 1952 vm_object_set_flag(backing_object, OBJ_DEAD); 1953 1954 /* 1955 * If there is exactly one reference to the backing 1956 * object, we can collapse it into the parent. 1957 */ 1958 vm_object_collapse_scan(object); 1959 1960 #if VM_NRESERVLEVEL > 0 1961 /* 1962 * Break any reservations from backing_object. 1963 */ 1964 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1965 vm_reserv_break_all(backing_object); 1966 #endif 1967 1968 /* 1969 * Move the pager from backing_object to object. 1970 * 1971 * swap_pager_copy() can sleep, in which case the 1972 * backing_object's and object's locks are released and 1973 * reacquired. 1974 */ 1975 swap_pager_copy(backing_object, object, 1976 OFF_TO_IDX(object->backing_object_offset), TRUE); 1977 1978 /* 1979 * Object now shadows whatever backing_object did. 1980 */ 1981 vm_object_clear_flag(object, OBJ_COLLAPSING); 1982 vm_object_backing_transfer(object, backing_object); 1983 object->backing_object_offset += 1984 backing_object->backing_object_offset; 1985 VM_OBJECT_WUNLOCK(object); 1986 vm_object_pip_wakeup(object); 1987 1988 /* 1989 * Discard backing_object. 1990 * 1991 * Since the backing object has no pages, no pager left, 1992 * and no object references within it, all that is 1993 * necessary is to dispose of it. 1994 */ 1995 KASSERT(backing_object->ref_count == 1, ( 1996 "backing_object %p was somehow re-referenced during collapse!", 1997 backing_object)); 1998 vm_object_pip_wakeup(backing_object); 1999 (void)refcount_release(&backing_object->ref_count); 2000 vm_object_terminate(backing_object); 2001 counter_u64_add(object_collapses, 1); 2002 VM_OBJECT_WLOCK(object); 2003 } else { 2004 /* 2005 * If we do not entirely shadow the backing object, 2006 * there is nothing we can do so we give up. 2007 * 2008 * The object lock and backing_object lock must not 2009 * be dropped during this sequence. 2010 */ 2011 if (!vm_object_scan_all_shadowed(object)) { 2012 VM_OBJECT_WUNLOCK(backing_object); 2013 break; 2014 } 2015 2016 /* 2017 * Make the parent shadow the next object in the 2018 * chain. Deallocating backing_object will not remove 2019 * it, since its reference count is at least 2. 2020 */ 2021 vm_object_backing_remove_locked(object); 2022 new_backing_object = backing_object->backing_object; 2023 if (new_backing_object != NULL) { 2024 vm_object_backing_insert_ref(object, 2025 new_backing_object); 2026 object->backing_object_offset += 2027 backing_object->backing_object_offset; 2028 } 2029 2030 /* 2031 * Drop the reference count on backing_object. Since 2032 * its ref_count was at least 2, it will not vanish. 2033 */ 2034 (void)refcount_release(&backing_object->ref_count); 2035 KASSERT(backing_object->ref_count >= 1, ( 2036 "backing_object %p was somehow dereferenced during collapse!", 2037 backing_object)); 2038 VM_OBJECT_WUNLOCK(backing_object); 2039 counter_u64_add(object_bypasses, 1); 2040 } 2041 2042 /* 2043 * Try again with this object's new backing object. 2044 */ 2045 } 2046 } 2047 2048 /* 2049 * vm_object_page_remove: 2050 * 2051 * For the given object, either frees or invalidates each of the 2052 * specified pages. In general, a page is freed. However, if a page is 2053 * wired for any reason other than the existence of a managed, wired 2054 * mapping, then it may be invalidated but not removed from the object. 2055 * Pages are specified by the given range ["start", "end") and the option 2056 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 2057 * extends from "start" to the end of the object. If the option 2058 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 2059 * specified range are affected. If the option OBJPR_NOTMAPPED is 2060 * specified, then the pages within the specified range must have no 2061 * mappings. Otherwise, if this option is not specified, any mappings to 2062 * the specified pages are removed before the pages are freed or 2063 * invalidated. 2064 * 2065 * In general, this operation should only be performed on objects that 2066 * contain managed pages. There are, however, two exceptions. First, it 2067 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 2068 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 2069 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 2070 * not be specified and the option OBJPR_NOTMAPPED must be specified. 2071 * 2072 * The object must be locked. 2073 */ 2074 void 2075 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2076 int options) 2077 { 2078 vm_page_t p, next; 2079 2080 VM_OBJECT_ASSERT_WLOCKED(object); 2081 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 2082 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 2083 ("vm_object_page_remove: illegal options for object %p", object)); 2084 if (object->resident_page_count == 0) 2085 return; 2086 vm_object_pip_add(object, 1); 2087 again: 2088 p = vm_page_find_least(object, start); 2089 2090 /* 2091 * Here, the variable "p" is either (1) the page with the least pindex 2092 * greater than or equal to the parameter "start" or (2) NULL. 2093 */ 2094 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2095 next = TAILQ_NEXT(p, listq); 2096 2097 /* 2098 * Skip invalid pages if asked to do so. Try to avoid acquiring 2099 * the busy lock, as some consumers rely on this to avoid 2100 * deadlocks. 2101 * 2102 * A thread may concurrently transition the page from invalid to 2103 * valid using only the busy lock, so the result of this check 2104 * is immediately stale. It is up to consumers to handle this, 2105 * for instance by ensuring that all invalid->valid transitions 2106 * happen with a mutex held, as may be possible for a 2107 * filesystem. 2108 */ 2109 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) 2110 continue; 2111 2112 /* 2113 * If the page is wired for any reason besides the existence 2114 * of managed, wired mappings, then it cannot be freed. For 2115 * example, fictitious pages, which represent device memory, 2116 * are inherently wired and cannot be freed. They can, 2117 * however, be invalidated if the option OBJPR_CLEANONLY is 2118 * not specified. 2119 */ 2120 if (vm_page_tryxbusy(p) == 0) { 2121 if (vm_page_busy_sleep(p, "vmopar", 0)) 2122 VM_OBJECT_WLOCK(object); 2123 goto again; 2124 } 2125 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { 2126 vm_page_xunbusy(p); 2127 continue; 2128 } 2129 if (vm_page_wired(p)) { 2130 wired: 2131 if ((options & OBJPR_NOTMAPPED) == 0 && 2132 object->ref_count != 0) 2133 pmap_remove_all(p); 2134 if ((options & OBJPR_CLEANONLY) == 0) { 2135 vm_page_invalid(p); 2136 vm_page_undirty(p); 2137 } 2138 vm_page_xunbusy(p); 2139 continue; 2140 } 2141 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2142 ("vm_object_page_remove: page %p is fictitious", p)); 2143 if ((options & OBJPR_CLEANONLY) != 0 && 2144 !vm_page_none_valid(p)) { 2145 if ((options & OBJPR_NOTMAPPED) == 0 && 2146 object->ref_count != 0 && 2147 !vm_page_try_remove_write(p)) 2148 goto wired; 2149 if (p->dirty != 0) { 2150 vm_page_xunbusy(p); 2151 continue; 2152 } 2153 } 2154 if ((options & OBJPR_NOTMAPPED) == 0 && 2155 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2156 goto wired; 2157 vm_page_free(p); 2158 } 2159 vm_object_pip_wakeup(object); 2160 2161 vm_pager_freespace(object, start, (end == 0 ? object->size : end) - 2162 start); 2163 } 2164 2165 /* 2166 * vm_object_page_noreuse: 2167 * 2168 * For the given object, attempt to move the specified pages to 2169 * the head of the inactive queue. This bypasses regular LRU 2170 * operation and allows the pages to be reused quickly under memory 2171 * pressure. If a page is wired for any reason, then it will not 2172 * be queued. Pages are specified by the range ["start", "end"). 2173 * As a special case, if "end" is zero, then the range extends from 2174 * "start" to the end of the object. 2175 * 2176 * This operation should only be performed on objects that 2177 * contain non-fictitious, managed pages. 2178 * 2179 * The object must be locked. 2180 */ 2181 void 2182 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2183 { 2184 vm_page_t p, next; 2185 2186 VM_OBJECT_ASSERT_LOCKED(object); 2187 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2188 ("vm_object_page_noreuse: illegal object %p", object)); 2189 if (object->resident_page_count == 0) 2190 return; 2191 p = vm_page_find_least(object, start); 2192 2193 /* 2194 * Here, the variable "p" is either (1) the page with the least pindex 2195 * greater than or equal to the parameter "start" or (2) NULL. 2196 */ 2197 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2198 next = TAILQ_NEXT(p, listq); 2199 vm_page_deactivate_noreuse(p); 2200 } 2201 } 2202 2203 /* 2204 * Populate the specified range of the object with valid pages. Returns 2205 * TRUE if the range is successfully populated and FALSE otherwise. 2206 * 2207 * Note: This function should be optimized to pass a larger array of 2208 * pages to vm_pager_get_pages() before it is applied to a non- 2209 * OBJT_DEVICE object. 2210 * 2211 * The object must be locked. 2212 */ 2213 boolean_t 2214 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2215 { 2216 vm_page_t m; 2217 vm_pindex_t pindex; 2218 int rv; 2219 2220 VM_OBJECT_ASSERT_WLOCKED(object); 2221 for (pindex = start; pindex < end; pindex++) { 2222 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2223 if (rv != VM_PAGER_OK) 2224 break; 2225 2226 /* 2227 * Keep "m" busy because a subsequent iteration may unlock 2228 * the object. 2229 */ 2230 } 2231 if (pindex > start) { 2232 m = vm_page_lookup(object, start); 2233 while (m != NULL && m->pindex < pindex) { 2234 vm_page_xunbusy(m); 2235 m = TAILQ_NEXT(m, listq); 2236 } 2237 } 2238 return (pindex == end); 2239 } 2240 2241 /* 2242 * Routine: vm_object_coalesce 2243 * Function: Coalesces two objects backing up adjoining 2244 * regions of memory into a single object. 2245 * 2246 * returns TRUE if objects were combined. 2247 * 2248 * NOTE: Only works at the moment if the second object is NULL - 2249 * if it's not, which object do we lock first? 2250 * 2251 * Parameters: 2252 * prev_object First object to coalesce 2253 * prev_offset Offset into prev_object 2254 * prev_size Size of reference to prev_object 2255 * next_size Size of reference to the second object 2256 * reserved Indicator that extension region has 2257 * swap accounted for 2258 * 2259 * Conditions: 2260 * The object must *not* be locked. 2261 */ 2262 boolean_t 2263 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2264 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2265 { 2266 vm_pindex_t next_pindex; 2267 2268 if (prev_object == NULL) 2269 return (TRUE); 2270 if ((prev_object->flags & OBJ_ANON) == 0) 2271 return (FALSE); 2272 2273 VM_OBJECT_WLOCK(prev_object); 2274 /* 2275 * Try to collapse the object first. 2276 */ 2277 vm_object_collapse(prev_object); 2278 2279 /* 2280 * Can't coalesce if: . more than one reference . paged out . shadows 2281 * another object . has a copy elsewhere (any of which mean that the 2282 * pages not mapped to prev_entry may be in use anyway) 2283 */ 2284 if (prev_object->backing_object != NULL) { 2285 VM_OBJECT_WUNLOCK(prev_object); 2286 return (FALSE); 2287 } 2288 2289 prev_size >>= PAGE_SHIFT; 2290 next_size >>= PAGE_SHIFT; 2291 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2292 2293 if (prev_object->ref_count > 1 && 2294 prev_object->size != next_pindex && 2295 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2296 VM_OBJECT_WUNLOCK(prev_object); 2297 return (FALSE); 2298 } 2299 2300 /* 2301 * Account for the charge. 2302 */ 2303 if (prev_object->cred != NULL) { 2304 /* 2305 * If prev_object was charged, then this mapping, 2306 * although not charged now, may become writable 2307 * later. Non-NULL cred in the object would prevent 2308 * swap reservation during enabling of the write 2309 * access, so reserve swap now. Failed reservation 2310 * cause allocation of the separate object for the map 2311 * entry, and swap reservation for this entry is 2312 * managed in appropriate time. 2313 */ 2314 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2315 prev_object->cred)) { 2316 VM_OBJECT_WUNLOCK(prev_object); 2317 return (FALSE); 2318 } 2319 prev_object->charge += ptoa(next_size); 2320 } 2321 2322 /* 2323 * Remove any pages that may still be in the object from a previous 2324 * deallocation. 2325 */ 2326 if (next_pindex < prev_object->size) { 2327 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2328 next_size, 0); 2329 #if 0 2330 if (prev_object->cred != NULL) { 2331 KASSERT(prev_object->charge >= 2332 ptoa(prev_object->size - next_pindex), 2333 ("object %p overcharged 1 %jx %jx", prev_object, 2334 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2335 prev_object->charge -= ptoa(prev_object->size - 2336 next_pindex); 2337 } 2338 #endif 2339 } 2340 2341 /* 2342 * Extend the object if necessary. 2343 */ 2344 if (next_pindex + next_size > prev_object->size) 2345 prev_object->size = next_pindex + next_size; 2346 2347 VM_OBJECT_WUNLOCK(prev_object); 2348 return (TRUE); 2349 } 2350 2351 void 2352 vm_object_set_writeable_dirty_(vm_object_t object) 2353 { 2354 atomic_add_int(&object->generation, 1); 2355 } 2356 2357 bool 2358 vm_object_mightbedirty_(vm_object_t object) 2359 { 2360 return (object->generation != object->cleangeneration); 2361 } 2362 2363 /* 2364 * vm_object_unwire: 2365 * 2366 * For each page offset within the specified range of the given object, 2367 * find the highest-level page in the shadow chain and unwire it. A page 2368 * must exist at every page offset, and the highest-level page must be 2369 * wired. 2370 */ 2371 void 2372 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2373 uint8_t queue) 2374 { 2375 vm_object_t tobject, t1object; 2376 vm_page_t m, tm; 2377 vm_pindex_t end_pindex, pindex, tpindex; 2378 int depth, locked_depth; 2379 2380 KASSERT((offset & PAGE_MASK) == 0, 2381 ("vm_object_unwire: offset is not page aligned")); 2382 KASSERT((length & PAGE_MASK) == 0, 2383 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2384 /* The wired count of a fictitious page never changes. */ 2385 if ((object->flags & OBJ_FICTITIOUS) != 0) 2386 return; 2387 pindex = OFF_TO_IDX(offset); 2388 end_pindex = pindex + atop(length); 2389 again: 2390 locked_depth = 1; 2391 VM_OBJECT_RLOCK(object); 2392 m = vm_page_find_least(object, pindex); 2393 while (pindex < end_pindex) { 2394 if (m == NULL || pindex < m->pindex) { 2395 /* 2396 * The first object in the shadow chain doesn't 2397 * contain a page at the current index. Therefore, 2398 * the page must exist in a backing object. 2399 */ 2400 tobject = object; 2401 tpindex = pindex; 2402 depth = 0; 2403 do { 2404 tpindex += 2405 OFF_TO_IDX(tobject->backing_object_offset); 2406 tobject = tobject->backing_object; 2407 KASSERT(tobject != NULL, 2408 ("vm_object_unwire: missing page")); 2409 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2410 goto next_page; 2411 depth++; 2412 if (depth == locked_depth) { 2413 locked_depth++; 2414 VM_OBJECT_RLOCK(tobject); 2415 } 2416 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2417 NULL); 2418 } else { 2419 tm = m; 2420 m = TAILQ_NEXT(m, listq); 2421 } 2422 if (vm_page_trysbusy(tm) == 0) { 2423 for (tobject = object; locked_depth >= 1; 2424 locked_depth--) { 2425 t1object = tobject->backing_object; 2426 if (tm->object != tobject) 2427 VM_OBJECT_RUNLOCK(tobject); 2428 tobject = t1object; 2429 } 2430 tobject = tm->object; 2431 if (!vm_page_busy_sleep(tm, "unwbo", 2432 VM_ALLOC_IGN_SBUSY)) 2433 VM_OBJECT_RUNLOCK(tobject); 2434 goto again; 2435 } 2436 vm_page_unwire(tm, queue); 2437 vm_page_sunbusy(tm); 2438 next_page: 2439 pindex++; 2440 } 2441 /* Release the accumulated object locks. */ 2442 for (tobject = object; locked_depth >= 1; locked_depth--) { 2443 t1object = tobject->backing_object; 2444 VM_OBJECT_RUNLOCK(tobject); 2445 tobject = t1object; 2446 } 2447 } 2448 2449 /* 2450 * Return the vnode for the given object, or NULL if none exists. 2451 * For tmpfs objects, the function may return NULL if there is 2452 * no vnode allocated at the time of the call. 2453 */ 2454 struct vnode * 2455 vm_object_vnode(vm_object_t object) 2456 { 2457 struct vnode *vp; 2458 2459 VM_OBJECT_ASSERT_LOCKED(object); 2460 vm_pager_getvp(object, &vp, NULL); 2461 return (vp); 2462 } 2463 2464 /* 2465 * Busy the vm object. This prevents new pages belonging to the object from 2466 * becoming busy. Existing pages persist as busy. Callers are responsible 2467 * for checking page state before proceeding. 2468 */ 2469 void 2470 vm_object_busy(vm_object_t obj) 2471 { 2472 2473 VM_OBJECT_ASSERT_LOCKED(obj); 2474 2475 blockcount_acquire(&obj->busy, 1); 2476 /* The fence is required to order loads of page busy. */ 2477 atomic_thread_fence_acq_rel(); 2478 } 2479 2480 void 2481 vm_object_unbusy(vm_object_t obj) 2482 { 2483 2484 blockcount_release(&obj->busy, 1); 2485 } 2486 2487 void 2488 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2489 { 2490 2491 VM_OBJECT_ASSERT_UNLOCKED(obj); 2492 2493 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2494 } 2495 2496 /* 2497 * This function aims to determine if the object is mapped, 2498 * specifically, if it is referenced by a vm_map_entry. Because 2499 * objects occasionally acquire transient references that do not 2500 * represent a mapping, the method used here is inexact. However, it 2501 * has very low overhead and is good enough for the advisory 2502 * vm.vmtotal sysctl. 2503 */ 2504 bool 2505 vm_object_is_active(vm_object_t obj) 2506 { 2507 2508 return (obj->ref_count > atomic_load_int(&obj->shadow_count)); 2509 } 2510 2511 static int 2512 vm_object_list_handler(struct sysctl_req *req, bool swap_only) 2513 { 2514 struct kinfo_vmobject *kvo; 2515 char *fullpath, *freepath; 2516 struct vnode *vp; 2517 struct vattr va; 2518 vm_object_t obj; 2519 vm_page_t m; 2520 u_long sp; 2521 int count, error; 2522 2523 if (req->oldptr == NULL) { 2524 /* 2525 * If an old buffer has not been provided, generate an 2526 * estimate of the space needed for a subsequent call. 2527 */ 2528 mtx_lock(&vm_object_list_mtx); 2529 count = 0; 2530 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2531 if (obj->type == OBJT_DEAD) 2532 continue; 2533 count++; 2534 } 2535 mtx_unlock(&vm_object_list_mtx); 2536 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2537 count * 11 / 10)); 2538 } 2539 2540 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO); 2541 error = 0; 2542 2543 /* 2544 * VM objects are type stable and are never removed from the 2545 * list once added. This allows us to safely read obj->object_list 2546 * after reacquiring the VM object lock. 2547 */ 2548 mtx_lock(&vm_object_list_mtx); 2549 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2550 if (obj->type == OBJT_DEAD || 2551 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) 2552 continue; 2553 VM_OBJECT_RLOCK(obj); 2554 if (obj->type == OBJT_DEAD || 2555 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { 2556 VM_OBJECT_RUNLOCK(obj); 2557 continue; 2558 } 2559 mtx_unlock(&vm_object_list_mtx); 2560 kvo->kvo_size = ptoa(obj->size); 2561 kvo->kvo_resident = obj->resident_page_count; 2562 kvo->kvo_ref_count = obj->ref_count; 2563 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); 2564 kvo->kvo_memattr = obj->memattr; 2565 kvo->kvo_active = 0; 2566 kvo->kvo_inactive = 0; 2567 if (!swap_only) { 2568 TAILQ_FOREACH(m, &obj->memq, listq) { 2569 /* 2570 * A page may belong to the object but be 2571 * dequeued and set to PQ_NONE while the 2572 * object lock is not held. This makes the 2573 * reads of m->queue below racy, and we do not 2574 * count pages set to PQ_NONE. However, this 2575 * sysctl is only meant to give an 2576 * approximation of the system anyway. 2577 */ 2578 if (m->a.queue == PQ_ACTIVE) 2579 kvo->kvo_active++; 2580 else if (m->a.queue == PQ_INACTIVE) 2581 kvo->kvo_inactive++; 2582 } 2583 } 2584 2585 kvo->kvo_vn_fileid = 0; 2586 kvo->kvo_vn_fsid = 0; 2587 kvo->kvo_vn_fsid_freebsd11 = 0; 2588 freepath = NULL; 2589 fullpath = ""; 2590 vp = NULL; 2591 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp); 2592 if (vp != NULL) { 2593 vref(vp); 2594 } else if ((obj->flags & OBJ_ANON) != 0) { 2595 MPASS(kvo->kvo_type == KVME_TYPE_SWAP); 2596 kvo->kvo_me = (uintptr_t)obj; 2597 /* tmpfs objs are reported as vnodes */ 2598 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2599 sp = swap_pager_swapped_pages(obj); 2600 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2601 } 2602 VM_OBJECT_RUNLOCK(obj); 2603 if (vp != NULL) { 2604 vn_fullpath(vp, &fullpath, &freepath); 2605 vn_lock(vp, LK_SHARED | LK_RETRY); 2606 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2607 kvo->kvo_vn_fileid = va.va_fileid; 2608 kvo->kvo_vn_fsid = va.va_fsid; 2609 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2610 /* truncate */ 2611 } 2612 vput(vp); 2613 } 2614 2615 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2616 if (freepath != NULL) 2617 free(freepath, M_TEMP); 2618 2619 /* Pack record size down */ 2620 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2621 + strlen(kvo->kvo_path) + 1; 2622 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2623 sizeof(uint64_t)); 2624 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2625 maybe_yield(); 2626 mtx_lock(&vm_object_list_mtx); 2627 if (error) 2628 break; 2629 } 2630 mtx_unlock(&vm_object_list_mtx); 2631 free(kvo, M_TEMP); 2632 return (error); 2633 } 2634 2635 static int 2636 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2637 { 2638 return (vm_object_list_handler(req, false)); 2639 } 2640 2641 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2642 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2643 "List of VM objects"); 2644 2645 static int 2646 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) 2647 { 2648 return (vm_object_list_handler(req, true)); 2649 } 2650 2651 /* 2652 * This sysctl returns list of the anonymous or swap objects. Intent 2653 * is to provide stripped optimized list useful to analyze swap use. 2654 * Since technically non-swap (default) objects participate in the 2655 * shadow chains, and are converted to swap type as needed by swap 2656 * pager, we must report them. 2657 */ 2658 SYSCTL_PROC(_vm, OID_AUTO, swap_objects, 2659 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, 2660 sysctl_vm_object_list_swap, "S,kinfo_vmobject", 2661 "List of swap VM objects"); 2662 2663 #include "opt_ddb.h" 2664 #ifdef DDB 2665 #include <sys/kernel.h> 2666 2667 #include <sys/cons.h> 2668 2669 #include <ddb/ddb.h> 2670 2671 static int 2672 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2673 { 2674 vm_map_t tmpm; 2675 vm_map_entry_t tmpe; 2676 vm_object_t obj; 2677 2678 if (map == 0) 2679 return 0; 2680 2681 if (entry == 0) { 2682 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2683 if (_vm_object_in_map(map, object, tmpe)) { 2684 return 1; 2685 } 2686 } 2687 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2688 tmpm = entry->object.sub_map; 2689 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2690 if (_vm_object_in_map(tmpm, object, tmpe)) { 2691 return 1; 2692 } 2693 } 2694 } else if ((obj = entry->object.vm_object) != NULL) { 2695 for (; obj; obj = obj->backing_object) 2696 if (obj == object) { 2697 return 1; 2698 } 2699 } 2700 return 0; 2701 } 2702 2703 static int 2704 vm_object_in_map(vm_object_t object) 2705 { 2706 struct proc *p; 2707 2708 /* sx_slock(&allproc_lock); */ 2709 FOREACH_PROC_IN_SYSTEM(p) { 2710 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2711 continue; 2712 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2713 /* sx_sunlock(&allproc_lock); */ 2714 return 1; 2715 } 2716 } 2717 /* sx_sunlock(&allproc_lock); */ 2718 if (_vm_object_in_map(kernel_map, object, 0)) 2719 return 1; 2720 return 0; 2721 } 2722 2723 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) 2724 { 2725 vm_object_t object; 2726 2727 /* 2728 * make sure that internal objs are in a map somewhere 2729 * and none have zero ref counts. 2730 */ 2731 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2732 if ((object->flags & OBJ_ANON) != 0) { 2733 if (object->ref_count == 0) { 2734 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2735 (long)object->size); 2736 } 2737 if (!vm_object_in_map(object)) { 2738 db_printf( 2739 "vmochk: internal obj is not in a map: " 2740 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2741 object->ref_count, (u_long)object->size, 2742 (u_long)object->size, 2743 (void *)object->backing_object); 2744 } 2745 } 2746 if (db_pager_quit) 2747 return; 2748 } 2749 } 2750 2751 /* 2752 * vm_object_print: [ debug ] 2753 */ 2754 DB_SHOW_COMMAND(object, vm_object_print_static) 2755 { 2756 /* XXX convert args. */ 2757 vm_object_t object = (vm_object_t)addr; 2758 boolean_t full = have_addr; 2759 2760 vm_page_t p; 2761 2762 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2763 #define count was_count 2764 2765 int count; 2766 2767 if (object == NULL) 2768 return; 2769 2770 db_iprintf( 2771 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2772 object, (int)object->type, (uintmax_t)object->size, 2773 object->resident_page_count, object->ref_count, object->flags, 2774 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2775 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2776 atomic_load_int(&object->shadow_count), 2777 object->backing_object ? object->backing_object->ref_count : 0, 2778 object->backing_object, (uintmax_t)object->backing_object_offset); 2779 2780 if (!full) 2781 return; 2782 2783 db_indent += 2; 2784 count = 0; 2785 TAILQ_FOREACH(p, &object->memq, listq) { 2786 if (count == 0) 2787 db_iprintf("memory:="); 2788 else if (count == 6) { 2789 db_printf("\n"); 2790 db_iprintf(" ..."); 2791 count = 0; 2792 } else 2793 db_printf(","); 2794 count++; 2795 2796 db_printf("(off=0x%jx,page=0x%jx)", 2797 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2798 2799 if (db_pager_quit) 2800 break; 2801 } 2802 if (count != 0) 2803 db_printf("\n"); 2804 db_indent -= 2; 2805 } 2806 2807 /* XXX. */ 2808 #undef count 2809 2810 /* XXX need this non-static entry for calling from vm_map_print. */ 2811 void 2812 vm_object_print( 2813 /* db_expr_t */ long addr, 2814 boolean_t have_addr, 2815 /* db_expr_t */ long count, 2816 char *modif) 2817 { 2818 vm_object_print_static(addr, have_addr, count, modif); 2819 } 2820 2821 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) 2822 { 2823 vm_object_t object; 2824 vm_pindex_t fidx; 2825 vm_paddr_t pa; 2826 vm_page_t m, prev_m; 2827 int rcount; 2828 2829 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2830 db_printf("new object: %p\n", (void *)object); 2831 if (db_pager_quit) 2832 return; 2833 2834 rcount = 0; 2835 fidx = 0; 2836 pa = -1; 2837 TAILQ_FOREACH(m, &object->memq, listq) { 2838 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2839 prev_m->pindex + 1 != m->pindex) { 2840 if (rcount) { 2841 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2842 (long)fidx, rcount, (long)pa); 2843 if (db_pager_quit) 2844 return; 2845 rcount = 0; 2846 } 2847 } 2848 if (rcount && 2849 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2850 ++rcount; 2851 continue; 2852 } 2853 if (rcount) { 2854 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2855 (long)fidx, rcount, (long)pa); 2856 if (db_pager_quit) 2857 return; 2858 } 2859 fidx = m->pindex; 2860 pa = VM_PAGE_TO_PHYS(m); 2861 rcount = 1; 2862 } 2863 if (rcount) { 2864 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2865 (long)fidx, rcount, (long)pa); 2866 if (db_pager_quit) 2867 return; 2868 } 2869 } 2870 } 2871 #endif /* DDB */ 2872